Merge branch 'kvm-ppc-next' of git://github.com/agraf/linux-2.6 into kvm-queue
[deliverable/linux.git] / drivers / net / ethernet / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28 #include "selftest.h"
29
30 #include "mcdi.h"
31 #include "workarounds.h"
32
33 /**************************************************************************
34 *
35 * Type name strings
36 *
37 **************************************************************************
38 */
39
40 /* Loopback mode names (see LOOPBACK_MODE()) */
41 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42 const char *const efx_loopback_mode_names[] = {
43 [LOOPBACK_NONE] = "NONE",
44 [LOOPBACK_DATA] = "DATAPATH",
45 [LOOPBACK_GMAC] = "GMAC",
46 [LOOPBACK_XGMII] = "XGMII",
47 [LOOPBACK_XGXS] = "XGXS",
48 [LOOPBACK_XAUI] = "XAUI",
49 [LOOPBACK_GMII] = "GMII",
50 [LOOPBACK_SGMII] = "SGMII",
51 [LOOPBACK_XGBR] = "XGBR",
52 [LOOPBACK_XFI] = "XFI",
53 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
54 [LOOPBACK_GMII_FAR] = "GMII_FAR",
55 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
56 [LOOPBACK_XFI_FAR] = "XFI_FAR",
57 [LOOPBACK_GPHY] = "GPHY",
58 [LOOPBACK_PHYXS] = "PHYXS",
59 [LOOPBACK_PCS] = "PCS",
60 [LOOPBACK_PMAPMD] = "PMA/PMD",
61 [LOOPBACK_XPORT] = "XPORT",
62 [LOOPBACK_XGMII_WS] = "XGMII_WS",
63 [LOOPBACK_XAUI_WS] = "XAUI_WS",
64 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
65 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66 [LOOPBACK_GMII_WS] = "GMII_WS",
67 [LOOPBACK_XFI_WS] = "XFI_WS",
68 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
69 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
70 };
71
72 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73 const char *const efx_reset_type_names[] = {
74 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
75 [RESET_TYPE_ALL] = "ALL",
76 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
77 [RESET_TYPE_WORLD] = "WORLD",
78 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
79 [RESET_TYPE_DISABLE] = "DISABLE",
80 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
81 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
82 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
83 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
84 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
85 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
86 };
87
88 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
89 * queued onto this work queue. This is not a per-nic work queue, because
90 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
91 */
92 static struct workqueue_struct *reset_workqueue;
93
94 /**************************************************************************
95 *
96 * Configurable values
97 *
98 *************************************************************************/
99
100 /*
101 * Use separate channels for TX and RX events
102 *
103 * Set this to 1 to use separate channels for TX and RX. It allows us
104 * to control interrupt affinity separately for TX and RX.
105 *
106 * This is only used in MSI-X interrupt mode
107 */
108 static bool separate_tx_channels;
109 module_param(separate_tx_channels, bool, 0444);
110 MODULE_PARM_DESC(separate_tx_channels,
111 "Use separate channels for TX and RX");
112
113 /* This is the weight assigned to each of the (per-channel) virtual
114 * NAPI devices.
115 */
116 static int napi_weight = 64;
117
118 /* This is the time (in jiffies) between invocations of the hardware
119 * monitor.
120 * On Falcon-based NICs, this will:
121 * - Check the on-board hardware monitor;
122 * - Poll the link state and reconfigure the hardware as necessary.
123 * On Siena-based NICs for power systems with EEH support, this will give EEH a
124 * chance to start.
125 */
126 static unsigned int efx_monitor_interval = 1 * HZ;
127
128 /* Initial interrupt moderation settings. They can be modified after
129 * module load with ethtool.
130 *
131 * The default for RX should strike a balance between increasing the
132 * round-trip latency and reducing overhead.
133 */
134 static unsigned int rx_irq_mod_usec = 60;
135
136 /* Initial interrupt moderation settings. They can be modified after
137 * module load with ethtool.
138 *
139 * This default is chosen to ensure that a 10G link does not go idle
140 * while a TX queue is stopped after it has become full. A queue is
141 * restarted when it drops below half full. The time this takes (assuming
142 * worst case 3 descriptors per packet and 1024 descriptors) is
143 * 512 / 3 * 1.2 = 205 usec.
144 */
145 static unsigned int tx_irq_mod_usec = 150;
146
147 /* This is the first interrupt mode to try out of:
148 * 0 => MSI-X
149 * 1 => MSI
150 * 2 => legacy
151 */
152 static unsigned int interrupt_mode;
153
154 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
155 * i.e. the number of CPUs among which we may distribute simultaneous
156 * interrupt handling.
157 *
158 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
159 * The default (0) means to assign an interrupt to each core.
160 */
161 static unsigned int rss_cpus;
162 module_param(rss_cpus, uint, 0444);
163 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
164
165 static bool phy_flash_cfg;
166 module_param(phy_flash_cfg, bool, 0644);
167 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
168
169 static unsigned irq_adapt_low_thresh = 8000;
170 module_param(irq_adapt_low_thresh, uint, 0644);
171 MODULE_PARM_DESC(irq_adapt_low_thresh,
172 "Threshold score for reducing IRQ moderation");
173
174 static unsigned irq_adapt_high_thresh = 16000;
175 module_param(irq_adapt_high_thresh, uint, 0644);
176 MODULE_PARM_DESC(irq_adapt_high_thresh,
177 "Threshold score for increasing IRQ moderation");
178
179 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
180 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
181 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
182 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
183 module_param(debug, uint, 0);
184 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
185
186 /**************************************************************************
187 *
188 * Utility functions and prototypes
189 *
190 *************************************************************************/
191
192 static int efx_soft_enable_interrupts(struct efx_nic *efx);
193 static void efx_soft_disable_interrupts(struct efx_nic *efx);
194 static void efx_remove_channel(struct efx_channel *channel);
195 static void efx_remove_channels(struct efx_nic *efx);
196 static const struct efx_channel_type efx_default_channel_type;
197 static void efx_remove_port(struct efx_nic *efx);
198 static void efx_init_napi_channel(struct efx_channel *channel);
199 static void efx_fini_napi(struct efx_nic *efx);
200 static void efx_fini_napi_channel(struct efx_channel *channel);
201 static void efx_fini_struct(struct efx_nic *efx);
202 static void efx_start_all(struct efx_nic *efx);
203 static void efx_stop_all(struct efx_nic *efx);
204
205 #define EFX_ASSERT_RESET_SERIALISED(efx) \
206 do { \
207 if ((efx->state == STATE_READY) || \
208 (efx->state == STATE_RECOVERY) || \
209 (efx->state == STATE_DISABLED)) \
210 ASSERT_RTNL(); \
211 } while (0)
212
213 static int efx_check_disabled(struct efx_nic *efx)
214 {
215 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
216 netif_err(efx, drv, efx->net_dev,
217 "device is disabled due to earlier errors\n");
218 return -EIO;
219 }
220 return 0;
221 }
222
223 /**************************************************************************
224 *
225 * Event queue processing
226 *
227 *************************************************************************/
228
229 /* Process channel's event queue
230 *
231 * This function is responsible for processing the event queue of a
232 * single channel. The caller must guarantee that this function will
233 * never be concurrently called more than once on the same channel,
234 * though different channels may be being processed concurrently.
235 */
236 static int efx_process_channel(struct efx_channel *channel, int budget)
237 {
238 int spent;
239
240 if (unlikely(!channel->enabled))
241 return 0;
242
243 spent = efx_nic_process_eventq(channel, budget);
244 if (spent && efx_channel_has_rx_queue(channel)) {
245 struct efx_rx_queue *rx_queue =
246 efx_channel_get_rx_queue(channel);
247
248 efx_rx_flush_packet(channel);
249 efx_fast_push_rx_descriptors(rx_queue);
250 }
251
252 return spent;
253 }
254
255 /* NAPI poll handler
256 *
257 * NAPI guarantees serialisation of polls of the same device, which
258 * provides the guarantee required by efx_process_channel().
259 */
260 static int efx_poll(struct napi_struct *napi, int budget)
261 {
262 struct efx_channel *channel =
263 container_of(napi, struct efx_channel, napi_str);
264 struct efx_nic *efx = channel->efx;
265 int spent;
266
267 netif_vdbg(efx, intr, efx->net_dev,
268 "channel %d NAPI poll executing on CPU %d\n",
269 channel->channel, raw_smp_processor_id());
270
271 spent = efx_process_channel(channel, budget);
272
273 if (spent < budget) {
274 if (efx_channel_has_rx_queue(channel) &&
275 efx->irq_rx_adaptive &&
276 unlikely(++channel->irq_count == 1000)) {
277 if (unlikely(channel->irq_mod_score <
278 irq_adapt_low_thresh)) {
279 if (channel->irq_moderation > 1) {
280 channel->irq_moderation -= 1;
281 efx->type->push_irq_moderation(channel);
282 }
283 } else if (unlikely(channel->irq_mod_score >
284 irq_adapt_high_thresh)) {
285 if (channel->irq_moderation <
286 efx->irq_rx_moderation) {
287 channel->irq_moderation += 1;
288 efx->type->push_irq_moderation(channel);
289 }
290 }
291 channel->irq_count = 0;
292 channel->irq_mod_score = 0;
293 }
294
295 efx_filter_rfs_expire(channel);
296
297 /* There is no race here; although napi_disable() will
298 * only wait for napi_complete(), this isn't a problem
299 * since efx_nic_eventq_read_ack() will have no effect if
300 * interrupts have already been disabled.
301 */
302 napi_complete(napi);
303 efx_nic_eventq_read_ack(channel);
304 }
305
306 return spent;
307 }
308
309 /* Create event queue
310 * Event queue memory allocations are done only once. If the channel
311 * is reset, the memory buffer will be reused; this guards against
312 * errors during channel reset and also simplifies interrupt handling.
313 */
314 static int efx_probe_eventq(struct efx_channel *channel)
315 {
316 struct efx_nic *efx = channel->efx;
317 unsigned long entries;
318
319 netif_dbg(efx, probe, efx->net_dev,
320 "chan %d create event queue\n", channel->channel);
321
322 /* Build an event queue with room for one event per tx and rx buffer,
323 * plus some extra for link state events and MCDI completions. */
324 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
325 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
326 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
327
328 return efx_nic_probe_eventq(channel);
329 }
330
331 /* Prepare channel's event queue */
332 static int efx_init_eventq(struct efx_channel *channel)
333 {
334 struct efx_nic *efx = channel->efx;
335 int rc;
336
337 EFX_WARN_ON_PARANOID(channel->eventq_init);
338
339 netif_dbg(efx, drv, efx->net_dev,
340 "chan %d init event queue\n", channel->channel);
341
342 rc = efx_nic_init_eventq(channel);
343 if (rc == 0) {
344 efx->type->push_irq_moderation(channel);
345 channel->eventq_read_ptr = 0;
346 channel->eventq_init = true;
347 }
348 return rc;
349 }
350
351 /* Enable event queue processing and NAPI */
352 static void efx_start_eventq(struct efx_channel *channel)
353 {
354 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
355 "chan %d start event queue\n", channel->channel);
356
357 /* Make sure the NAPI handler sees the enabled flag set */
358 channel->enabled = true;
359 smp_wmb();
360
361 napi_enable(&channel->napi_str);
362 efx_nic_eventq_read_ack(channel);
363 }
364
365 /* Disable event queue processing and NAPI */
366 static void efx_stop_eventq(struct efx_channel *channel)
367 {
368 if (!channel->enabled)
369 return;
370
371 napi_disable(&channel->napi_str);
372 channel->enabled = false;
373 }
374
375 static void efx_fini_eventq(struct efx_channel *channel)
376 {
377 if (!channel->eventq_init)
378 return;
379
380 netif_dbg(channel->efx, drv, channel->efx->net_dev,
381 "chan %d fini event queue\n", channel->channel);
382
383 efx_nic_fini_eventq(channel);
384 channel->eventq_init = false;
385 }
386
387 static void efx_remove_eventq(struct efx_channel *channel)
388 {
389 netif_dbg(channel->efx, drv, channel->efx->net_dev,
390 "chan %d remove event queue\n", channel->channel);
391
392 efx_nic_remove_eventq(channel);
393 }
394
395 /**************************************************************************
396 *
397 * Channel handling
398 *
399 *************************************************************************/
400
401 /* Allocate and initialise a channel structure. */
402 static struct efx_channel *
403 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
404 {
405 struct efx_channel *channel;
406 struct efx_rx_queue *rx_queue;
407 struct efx_tx_queue *tx_queue;
408 int j;
409
410 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
411 if (!channel)
412 return NULL;
413
414 channel->efx = efx;
415 channel->channel = i;
416 channel->type = &efx_default_channel_type;
417
418 for (j = 0; j < EFX_TXQ_TYPES; j++) {
419 tx_queue = &channel->tx_queue[j];
420 tx_queue->efx = efx;
421 tx_queue->queue = i * EFX_TXQ_TYPES + j;
422 tx_queue->channel = channel;
423 }
424
425 rx_queue = &channel->rx_queue;
426 rx_queue->efx = efx;
427 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
428 (unsigned long)rx_queue);
429
430 return channel;
431 }
432
433 /* Allocate and initialise a channel structure, copying parameters
434 * (but not resources) from an old channel structure.
435 */
436 static struct efx_channel *
437 efx_copy_channel(const struct efx_channel *old_channel)
438 {
439 struct efx_channel *channel;
440 struct efx_rx_queue *rx_queue;
441 struct efx_tx_queue *tx_queue;
442 int j;
443
444 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
445 if (!channel)
446 return NULL;
447
448 *channel = *old_channel;
449
450 channel->napi_dev = NULL;
451 memset(&channel->eventq, 0, sizeof(channel->eventq));
452
453 for (j = 0; j < EFX_TXQ_TYPES; j++) {
454 tx_queue = &channel->tx_queue[j];
455 if (tx_queue->channel)
456 tx_queue->channel = channel;
457 tx_queue->buffer = NULL;
458 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
459 }
460
461 rx_queue = &channel->rx_queue;
462 rx_queue->buffer = NULL;
463 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
464 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
465 (unsigned long)rx_queue);
466
467 return channel;
468 }
469
470 static int efx_probe_channel(struct efx_channel *channel)
471 {
472 struct efx_tx_queue *tx_queue;
473 struct efx_rx_queue *rx_queue;
474 int rc;
475
476 netif_dbg(channel->efx, probe, channel->efx->net_dev,
477 "creating channel %d\n", channel->channel);
478
479 rc = channel->type->pre_probe(channel);
480 if (rc)
481 goto fail;
482
483 rc = efx_probe_eventq(channel);
484 if (rc)
485 goto fail;
486
487 efx_for_each_channel_tx_queue(tx_queue, channel) {
488 rc = efx_probe_tx_queue(tx_queue);
489 if (rc)
490 goto fail;
491 }
492
493 efx_for_each_channel_rx_queue(rx_queue, channel) {
494 rc = efx_probe_rx_queue(rx_queue);
495 if (rc)
496 goto fail;
497 }
498
499 channel->n_rx_frm_trunc = 0;
500
501 return 0;
502
503 fail:
504 efx_remove_channel(channel);
505 return rc;
506 }
507
508 static void
509 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
510 {
511 struct efx_nic *efx = channel->efx;
512 const char *type;
513 int number;
514
515 number = channel->channel;
516 if (efx->tx_channel_offset == 0) {
517 type = "";
518 } else if (channel->channel < efx->tx_channel_offset) {
519 type = "-rx";
520 } else {
521 type = "-tx";
522 number -= efx->tx_channel_offset;
523 }
524 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
525 }
526
527 static void efx_set_channel_names(struct efx_nic *efx)
528 {
529 struct efx_channel *channel;
530
531 efx_for_each_channel(channel, efx)
532 channel->type->get_name(channel,
533 efx->msi_context[channel->channel].name,
534 sizeof(efx->msi_context[0].name));
535 }
536
537 static int efx_probe_channels(struct efx_nic *efx)
538 {
539 struct efx_channel *channel;
540 int rc;
541
542 /* Restart special buffer allocation */
543 efx->next_buffer_table = 0;
544
545 /* Probe channels in reverse, so that any 'extra' channels
546 * use the start of the buffer table. This allows the traffic
547 * channels to be resized without moving them or wasting the
548 * entries before them.
549 */
550 efx_for_each_channel_rev(channel, efx) {
551 rc = efx_probe_channel(channel);
552 if (rc) {
553 netif_err(efx, probe, efx->net_dev,
554 "failed to create channel %d\n",
555 channel->channel);
556 goto fail;
557 }
558 }
559 efx_set_channel_names(efx);
560
561 return 0;
562
563 fail:
564 efx_remove_channels(efx);
565 return rc;
566 }
567
568 /* Channels are shutdown and reinitialised whilst the NIC is running
569 * to propagate configuration changes (mtu, checksum offload), or
570 * to clear hardware error conditions
571 */
572 static void efx_start_datapath(struct efx_nic *efx)
573 {
574 bool old_rx_scatter = efx->rx_scatter;
575 struct efx_tx_queue *tx_queue;
576 struct efx_rx_queue *rx_queue;
577 struct efx_channel *channel;
578 size_t rx_buf_len;
579
580 /* Calculate the rx buffer allocation parameters required to
581 * support the current MTU, including padding for header
582 * alignment and overruns.
583 */
584 efx->rx_dma_len = (efx->rx_prefix_size +
585 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
586 efx->type->rx_buffer_padding);
587 rx_buf_len = (sizeof(struct efx_rx_page_state) +
588 efx->rx_ip_align + efx->rx_dma_len);
589 if (rx_buf_len <= PAGE_SIZE) {
590 efx->rx_scatter = efx->type->always_rx_scatter;
591 efx->rx_buffer_order = 0;
592 } else if (efx->type->can_rx_scatter) {
593 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
594 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
595 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
596 EFX_RX_BUF_ALIGNMENT) >
597 PAGE_SIZE);
598 efx->rx_scatter = true;
599 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
600 efx->rx_buffer_order = 0;
601 } else {
602 efx->rx_scatter = false;
603 efx->rx_buffer_order = get_order(rx_buf_len);
604 }
605
606 efx_rx_config_page_split(efx);
607 if (efx->rx_buffer_order)
608 netif_dbg(efx, drv, efx->net_dev,
609 "RX buf len=%u; page order=%u batch=%u\n",
610 efx->rx_dma_len, efx->rx_buffer_order,
611 efx->rx_pages_per_batch);
612 else
613 netif_dbg(efx, drv, efx->net_dev,
614 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
615 efx->rx_dma_len, efx->rx_page_buf_step,
616 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
617
618 /* RX filters may also have scatter-enabled flags */
619 if (efx->rx_scatter != old_rx_scatter)
620 efx->type->filter_update_rx_scatter(efx);
621
622 /* We must keep at least one descriptor in a TX ring empty.
623 * We could avoid this when the queue size does not exactly
624 * match the hardware ring size, but it's not that important.
625 * Therefore we stop the queue when one more skb might fill
626 * the ring completely. We wake it when half way back to
627 * empty.
628 */
629 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
630 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
631
632 /* Initialise the channels */
633 efx_for_each_channel(channel, efx) {
634 efx_for_each_channel_tx_queue(tx_queue, channel) {
635 efx_init_tx_queue(tx_queue);
636 atomic_inc(&efx->active_queues);
637 }
638
639 efx_for_each_channel_rx_queue(rx_queue, channel) {
640 efx_init_rx_queue(rx_queue);
641 atomic_inc(&efx->active_queues);
642 efx_nic_generate_fill_event(rx_queue);
643 }
644
645 WARN_ON(channel->rx_pkt_n_frags);
646 }
647
648 efx_ptp_start_datapath(efx);
649
650 if (netif_device_present(efx->net_dev))
651 netif_tx_wake_all_queues(efx->net_dev);
652 }
653
654 static void efx_stop_datapath(struct efx_nic *efx)
655 {
656 struct efx_channel *channel;
657 struct efx_tx_queue *tx_queue;
658 struct efx_rx_queue *rx_queue;
659 int rc;
660
661 EFX_ASSERT_RESET_SERIALISED(efx);
662 BUG_ON(efx->port_enabled);
663
664 efx_ptp_stop_datapath(efx);
665
666 /* Stop RX refill */
667 efx_for_each_channel(channel, efx) {
668 efx_for_each_channel_rx_queue(rx_queue, channel)
669 rx_queue->refill_enabled = false;
670 }
671
672 efx_for_each_channel(channel, efx) {
673 /* RX packet processing is pipelined, so wait for the
674 * NAPI handler to complete. At least event queue 0
675 * might be kept active by non-data events, so don't
676 * use napi_synchronize() but actually disable NAPI
677 * temporarily.
678 */
679 if (efx_channel_has_rx_queue(channel)) {
680 efx_stop_eventq(channel);
681 efx_start_eventq(channel);
682 }
683 }
684
685 rc = efx->type->fini_dmaq(efx);
686 if (rc && EFX_WORKAROUND_7803(efx)) {
687 /* Schedule a reset to recover from the flush failure. The
688 * descriptor caches reference memory we're about to free,
689 * but falcon_reconfigure_mac_wrapper() won't reconnect
690 * the MACs because of the pending reset.
691 */
692 netif_err(efx, drv, efx->net_dev,
693 "Resetting to recover from flush failure\n");
694 efx_schedule_reset(efx, RESET_TYPE_ALL);
695 } else if (rc) {
696 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
697 } else {
698 netif_dbg(efx, drv, efx->net_dev,
699 "successfully flushed all queues\n");
700 }
701
702 efx_for_each_channel(channel, efx) {
703 efx_for_each_channel_rx_queue(rx_queue, channel)
704 efx_fini_rx_queue(rx_queue);
705 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
706 efx_fini_tx_queue(tx_queue);
707 }
708 }
709
710 static void efx_remove_channel(struct efx_channel *channel)
711 {
712 struct efx_tx_queue *tx_queue;
713 struct efx_rx_queue *rx_queue;
714
715 netif_dbg(channel->efx, drv, channel->efx->net_dev,
716 "destroy chan %d\n", channel->channel);
717
718 efx_for_each_channel_rx_queue(rx_queue, channel)
719 efx_remove_rx_queue(rx_queue);
720 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
721 efx_remove_tx_queue(tx_queue);
722 efx_remove_eventq(channel);
723 channel->type->post_remove(channel);
724 }
725
726 static void efx_remove_channels(struct efx_nic *efx)
727 {
728 struct efx_channel *channel;
729
730 efx_for_each_channel(channel, efx)
731 efx_remove_channel(channel);
732 }
733
734 int
735 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
736 {
737 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
738 u32 old_rxq_entries, old_txq_entries;
739 unsigned i, next_buffer_table = 0;
740 int rc, rc2;
741
742 rc = efx_check_disabled(efx);
743 if (rc)
744 return rc;
745
746 /* Not all channels should be reallocated. We must avoid
747 * reallocating their buffer table entries.
748 */
749 efx_for_each_channel(channel, efx) {
750 struct efx_rx_queue *rx_queue;
751 struct efx_tx_queue *tx_queue;
752
753 if (channel->type->copy)
754 continue;
755 next_buffer_table = max(next_buffer_table,
756 channel->eventq.index +
757 channel->eventq.entries);
758 efx_for_each_channel_rx_queue(rx_queue, channel)
759 next_buffer_table = max(next_buffer_table,
760 rx_queue->rxd.index +
761 rx_queue->rxd.entries);
762 efx_for_each_channel_tx_queue(tx_queue, channel)
763 next_buffer_table = max(next_buffer_table,
764 tx_queue->txd.index +
765 tx_queue->txd.entries);
766 }
767
768 efx_device_detach_sync(efx);
769 efx_stop_all(efx);
770 efx_soft_disable_interrupts(efx);
771
772 /* Clone channels (where possible) */
773 memset(other_channel, 0, sizeof(other_channel));
774 for (i = 0; i < efx->n_channels; i++) {
775 channel = efx->channel[i];
776 if (channel->type->copy)
777 channel = channel->type->copy(channel);
778 if (!channel) {
779 rc = -ENOMEM;
780 goto out;
781 }
782 other_channel[i] = channel;
783 }
784
785 /* Swap entry counts and channel pointers */
786 old_rxq_entries = efx->rxq_entries;
787 old_txq_entries = efx->txq_entries;
788 efx->rxq_entries = rxq_entries;
789 efx->txq_entries = txq_entries;
790 for (i = 0; i < efx->n_channels; i++) {
791 channel = efx->channel[i];
792 efx->channel[i] = other_channel[i];
793 other_channel[i] = channel;
794 }
795
796 /* Restart buffer table allocation */
797 efx->next_buffer_table = next_buffer_table;
798
799 for (i = 0; i < efx->n_channels; i++) {
800 channel = efx->channel[i];
801 if (!channel->type->copy)
802 continue;
803 rc = efx_probe_channel(channel);
804 if (rc)
805 goto rollback;
806 efx_init_napi_channel(efx->channel[i]);
807 }
808
809 out:
810 /* Destroy unused channel structures */
811 for (i = 0; i < efx->n_channels; i++) {
812 channel = other_channel[i];
813 if (channel && channel->type->copy) {
814 efx_fini_napi_channel(channel);
815 efx_remove_channel(channel);
816 kfree(channel);
817 }
818 }
819
820 rc2 = efx_soft_enable_interrupts(efx);
821 if (rc2) {
822 rc = rc ? rc : rc2;
823 netif_err(efx, drv, efx->net_dev,
824 "unable to restart interrupts on channel reallocation\n");
825 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
826 } else {
827 efx_start_all(efx);
828 netif_device_attach(efx->net_dev);
829 }
830 return rc;
831
832 rollback:
833 /* Swap back */
834 efx->rxq_entries = old_rxq_entries;
835 efx->txq_entries = old_txq_entries;
836 for (i = 0; i < efx->n_channels; i++) {
837 channel = efx->channel[i];
838 efx->channel[i] = other_channel[i];
839 other_channel[i] = channel;
840 }
841 goto out;
842 }
843
844 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
845 {
846 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
847 }
848
849 static const struct efx_channel_type efx_default_channel_type = {
850 .pre_probe = efx_channel_dummy_op_int,
851 .post_remove = efx_channel_dummy_op_void,
852 .get_name = efx_get_channel_name,
853 .copy = efx_copy_channel,
854 .keep_eventq = false,
855 };
856
857 int efx_channel_dummy_op_int(struct efx_channel *channel)
858 {
859 return 0;
860 }
861
862 void efx_channel_dummy_op_void(struct efx_channel *channel)
863 {
864 }
865
866 /**************************************************************************
867 *
868 * Port handling
869 *
870 **************************************************************************/
871
872 /* This ensures that the kernel is kept informed (via
873 * netif_carrier_on/off) of the link status, and also maintains the
874 * link status's stop on the port's TX queue.
875 */
876 void efx_link_status_changed(struct efx_nic *efx)
877 {
878 struct efx_link_state *link_state = &efx->link_state;
879
880 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
881 * that no events are triggered between unregister_netdev() and the
882 * driver unloading. A more general condition is that NETDEV_CHANGE
883 * can only be generated between NETDEV_UP and NETDEV_DOWN */
884 if (!netif_running(efx->net_dev))
885 return;
886
887 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
888 efx->n_link_state_changes++;
889
890 if (link_state->up)
891 netif_carrier_on(efx->net_dev);
892 else
893 netif_carrier_off(efx->net_dev);
894 }
895
896 /* Status message for kernel log */
897 if (link_state->up)
898 netif_info(efx, link, efx->net_dev,
899 "link up at %uMbps %s-duplex (MTU %d)\n",
900 link_state->speed, link_state->fd ? "full" : "half",
901 efx->net_dev->mtu);
902 else
903 netif_info(efx, link, efx->net_dev, "link down\n");
904 }
905
906 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
907 {
908 efx->link_advertising = advertising;
909 if (advertising) {
910 if (advertising & ADVERTISED_Pause)
911 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
912 else
913 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
914 if (advertising & ADVERTISED_Asym_Pause)
915 efx->wanted_fc ^= EFX_FC_TX;
916 }
917 }
918
919 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
920 {
921 efx->wanted_fc = wanted_fc;
922 if (efx->link_advertising) {
923 if (wanted_fc & EFX_FC_RX)
924 efx->link_advertising |= (ADVERTISED_Pause |
925 ADVERTISED_Asym_Pause);
926 else
927 efx->link_advertising &= ~(ADVERTISED_Pause |
928 ADVERTISED_Asym_Pause);
929 if (wanted_fc & EFX_FC_TX)
930 efx->link_advertising ^= ADVERTISED_Asym_Pause;
931 }
932 }
933
934 static void efx_fini_port(struct efx_nic *efx);
935
936 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
937 * the MAC appropriately. All other PHY configuration changes are pushed
938 * through phy_op->set_settings(), and pushed asynchronously to the MAC
939 * through efx_monitor().
940 *
941 * Callers must hold the mac_lock
942 */
943 int __efx_reconfigure_port(struct efx_nic *efx)
944 {
945 enum efx_phy_mode phy_mode;
946 int rc;
947
948 WARN_ON(!mutex_is_locked(&efx->mac_lock));
949
950 /* Disable PHY transmit in mac level loopbacks */
951 phy_mode = efx->phy_mode;
952 if (LOOPBACK_INTERNAL(efx))
953 efx->phy_mode |= PHY_MODE_TX_DISABLED;
954 else
955 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
956
957 rc = efx->type->reconfigure_port(efx);
958
959 if (rc)
960 efx->phy_mode = phy_mode;
961
962 return rc;
963 }
964
965 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
966 * disabled. */
967 int efx_reconfigure_port(struct efx_nic *efx)
968 {
969 int rc;
970
971 EFX_ASSERT_RESET_SERIALISED(efx);
972
973 mutex_lock(&efx->mac_lock);
974 rc = __efx_reconfigure_port(efx);
975 mutex_unlock(&efx->mac_lock);
976
977 return rc;
978 }
979
980 /* Asynchronous work item for changing MAC promiscuity and multicast
981 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
982 * MAC directly. */
983 static void efx_mac_work(struct work_struct *data)
984 {
985 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
986
987 mutex_lock(&efx->mac_lock);
988 if (efx->port_enabled)
989 efx->type->reconfigure_mac(efx);
990 mutex_unlock(&efx->mac_lock);
991 }
992
993 static int efx_probe_port(struct efx_nic *efx)
994 {
995 int rc;
996
997 netif_dbg(efx, probe, efx->net_dev, "create port\n");
998
999 if (phy_flash_cfg)
1000 efx->phy_mode = PHY_MODE_SPECIAL;
1001
1002 /* Connect up MAC/PHY operations table */
1003 rc = efx->type->probe_port(efx);
1004 if (rc)
1005 return rc;
1006
1007 /* Initialise MAC address to permanent address */
1008 memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1009
1010 return 0;
1011 }
1012
1013 static int efx_init_port(struct efx_nic *efx)
1014 {
1015 int rc;
1016
1017 netif_dbg(efx, drv, efx->net_dev, "init port\n");
1018
1019 mutex_lock(&efx->mac_lock);
1020
1021 rc = efx->phy_op->init(efx);
1022 if (rc)
1023 goto fail1;
1024
1025 efx->port_initialized = true;
1026
1027 /* Reconfigure the MAC before creating dma queues (required for
1028 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1029 efx->type->reconfigure_mac(efx);
1030
1031 /* Ensure the PHY advertises the correct flow control settings */
1032 rc = efx->phy_op->reconfigure(efx);
1033 if (rc)
1034 goto fail2;
1035
1036 mutex_unlock(&efx->mac_lock);
1037 return 0;
1038
1039 fail2:
1040 efx->phy_op->fini(efx);
1041 fail1:
1042 mutex_unlock(&efx->mac_lock);
1043 return rc;
1044 }
1045
1046 static void efx_start_port(struct efx_nic *efx)
1047 {
1048 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1049 BUG_ON(efx->port_enabled);
1050
1051 mutex_lock(&efx->mac_lock);
1052 efx->port_enabled = true;
1053
1054 /* efx_mac_work() might have been scheduled after efx_stop_port(),
1055 * and then cancelled by efx_flush_all() */
1056 efx->type->reconfigure_mac(efx);
1057
1058 mutex_unlock(&efx->mac_lock);
1059 }
1060
1061 /* Prevent efx_mac_work() and efx_monitor() from working */
1062 static void efx_stop_port(struct efx_nic *efx)
1063 {
1064 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1065
1066 mutex_lock(&efx->mac_lock);
1067 efx->port_enabled = false;
1068 mutex_unlock(&efx->mac_lock);
1069
1070 /* Serialise against efx_set_multicast_list() */
1071 netif_addr_lock_bh(efx->net_dev);
1072 netif_addr_unlock_bh(efx->net_dev);
1073 }
1074
1075 static void efx_fini_port(struct efx_nic *efx)
1076 {
1077 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1078
1079 if (!efx->port_initialized)
1080 return;
1081
1082 efx->phy_op->fini(efx);
1083 efx->port_initialized = false;
1084
1085 efx->link_state.up = false;
1086 efx_link_status_changed(efx);
1087 }
1088
1089 static void efx_remove_port(struct efx_nic *efx)
1090 {
1091 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1092
1093 efx->type->remove_port(efx);
1094 }
1095
1096 /**************************************************************************
1097 *
1098 * NIC handling
1099 *
1100 **************************************************************************/
1101
1102 /* This configures the PCI device to enable I/O and DMA. */
1103 static int efx_init_io(struct efx_nic *efx)
1104 {
1105 struct pci_dev *pci_dev = efx->pci_dev;
1106 dma_addr_t dma_mask = efx->type->max_dma_mask;
1107 unsigned int mem_map_size = efx->type->mem_map_size(efx);
1108 int rc;
1109
1110 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1111
1112 rc = pci_enable_device(pci_dev);
1113 if (rc) {
1114 netif_err(efx, probe, efx->net_dev,
1115 "failed to enable PCI device\n");
1116 goto fail1;
1117 }
1118
1119 pci_set_master(pci_dev);
1120
1121 /* Set the PCI DMA mask. Try all possibilities from our
1122 * genuine mask down to 32 bits, because some architectures
1123 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1124 * masks event though they reject 46 bit masks.
1125 */
1126 while (dma_mask > 0x7fffffffUL) {
1127 if (dma_supported(&pci_dev->dev, dma_mask)) {
1128 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1129 if (rc == 0)
1130 break;
1131 }
1132 dma_mask >>= 1;
1133 }
1134 if (rc) {
1135 netif_err(efx, probe, efx->net_dev,
1136 "could not find a suitable DMA mask\n");
1137 goto fail2;
1138 }
1139 netif_dbg(efx, probe, efx->net_dev,
1140 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1141
1142 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1143 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1144 if (rc) {
1145 netif_err(efx, probe, efx->net_dev,
1146 "request for memory BAR failed\n");
1147 rc = -EIO;
1148 goto fail3;
1149 }
1150 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1151 if (!efx->membase) {
1152 netif_err(efx, probe, efx->net_dev,
1153 "could not map memory BAR at %llx+%x\n",
1154 (unsigned long long)efx->membase_phys, mem_map_size);
1155 rc = -ENOMEM;
1156 goto fail4;
1157 }
1158 netif_dbg(efx, probe, efx->net_dev,
1159 "memory BAR at %llx+%x (virtual %p)\n",
1160 (unsigned long long)efx->membase_phys, mem_map_size,
1161 efx->membase);
1162
1163 return 0;
1164
1165 fail4:
1166 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1167 fail3:
1168 efx->membase_phys = 0;
1169 fail2:
1170 pci_disable_device(efx->pci_dev);
1171 fail1:
1172 return rc;
1173 }
1174
1175 static void efx_fini_io(struct efx_nic *efx)
1176 {
1177 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1178
1179 if (efx->membase) {
1180 iounmap(efx->membase);
1181 efx->membase = NULL;
1182 }
1183
1184 if (efx->membase_phys) {
1185 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1186 efx->membase_phys = 0;
1187 }
1188
1189 pci_disable_device(efx->pci_dev);
1190 }
1191
1192 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1193 {
1194 cpumask_var_t thread_mask;
1195 unsigned int count;
1196 int cpu;
1197
1198 if (rss_cpus) {
1199 count = rss_cpus;
1200 } else {
1201 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1202 netif_warn(efx, probe, efx->net_dev,
1203 "RSS disabled due to allocation failure\n");
1204 return 1;
1205 }
1206
1207 count = 0;
1208 for_each_online_cpu(cpu) {
1209 if (!cpumask_test_cpu(cpu, thread_mask)) {
1210 ++count;
1211 cpumask_or(thread_mask, thread_mask,
1212 topology_thread_cpumask(cpu));
1213 }
1214 }
1215
1216 free_cpumask_var(thread_mask);
1217 }
1218
1219 /* If RSS is requested for the PF *and* VFs then we can't write RSS
1220 * table entries that are inaccessible to VFs
1221 */
1222 if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1223 count > efx_vf_size(efx)) {
1224 netif_warn(efx, probe, efx->net_dev,
1225 "Reducing number of RSS channels from %u to %u for "
1226 "VF support. Increase vf-msix-limit to use more "
1227 "channels on the PF.\n",
1228 count, efx_vf_size(efx));
1229 count = efx_vf_size(efx);
1230 }
1231
1232 return count;
1233 }
1234
1235 /* Probe the number and type of interrupts we are able to obtain, and
1236 * the resulting numbers of channels and RX queues.
1237 */
1238 static int efx_probe_interrupts(struct efx_nic *efx)
1239 {
1240 unsigned int extra_channels = 0;
1241 unsigned int i, j;
1242 int rc;
1243
1244 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1245 if (efx->extra_channel_type[i])
1246 ++extra_channels;
1247
1248 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1249 struct msix_entry xentries[EFX_MAX_CHANNELS];
1250 unsigned int n_channels;
1251
1252 n_channels = efx_wanted_parallelism(efx);
1253 if (separate_tx_channels)
1254 n_channels *= 2;
1255 n_channels += extra_channels;
1256 n_channels = min(n_channels, efx->max_channels);
1257
1258 for (i = 0; i < n_channels; i++)
1259 xentries[i].entry = i;
1260 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1261 if (rc > 0) {
1262 netif_err(efx, drv, efx->net_dev,
1263 "WARNING: Insufficient MSI-X vectors"
1264 " available (%d < %u).\n", rc, n_channels);
1265 netif_err(efx, drv, efx->net_dev,
1266 "WARNING: Performance may be reduced.\n");
1267 EFX_BUG_ON_PARANOID(rc >= n_channels);
1268 n_channels = rc;
1269 rc = pci_enable_msix(efx->pci_dev, xentries,
1270 n_channels);
1271 }
1272
1273 if (rc == 0) {
1274 efx->n_channels = n_channels;
1275 if (n_channels > extra_channels)
1276 n_channels -= extra_channels;
1277 if (separate_tx_channels) {
1278 efx->n_tx_channels = max(n_channels / 2, 1U);
1279 efx->n_rx_channels = max(n_channels -
1280 efx->n_tx_channels,
1281 1U);
1282 } else {
1283 efx->n_tx_channels = n_channels;
1284 efx->n_rx_channels = n_channels;
1285 }
1286 for (i = 0; i < efx->n_channels; i++)
1287 efx_get_channel(efx, i)->irq =
1288 xentries[i].vector;
1289 } else {
1290 /* Fall back to single channel MSI */
1291 efx->interrupt_mode = EFX_INT_MODE_MSI;
1292 netif_err(efx, drv, efx->net_dev,
1293 "could not enable MSI-X\n");
1294 }
1295 }
1296
1297 /* Try single interrupt MSI */
1298 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1299 efx->n_channels = 1;
1300 efx->n_rx_channels = 1;
1301 efx->n_tx_channels = 1;
1302 rc = pci_enable_msi(efx->pci_dev);
1303 if (rc == 0) {
1304 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1305 } else {
1306 netif_err(efx, drv, efx->net_dev,
1307 "could not enable MSI\n");
1308 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1309 }
1310 }
1311
1312 /* Assume legacy interrupts */
1313 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1314 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1315 efx->n_rx_channels = 1;
1316 efx->n_tx_channels = 1;
1317 efx->legacy_irq = efx->pci_dev->irq;
1318 }
1319
1320 /* Assign extra channels if possible */
1321 j = efx->n_channels;
1322 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1323 if (!efx->extra_channel_type[i])
1324 continue;
1325 if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1326 efx->n_channels <= extra_channels) {
1327 efx->extra_channel_type[i]->handle_no_channel(efx);
1328 } else {
1329 --j;
1330 efx_get_channel(efx, j)->type =
1331 efx->extra_channel_type[i];
1332 }
1333 }
1334
1335 /* RSS might be usable on VFs even if it is disabled on the PF */
1336 efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1337 efx->n_rx_channels : efx_vf_size(efx));
1338
1339 return 0;
1340 }
1341
1342 static int efx_soft_enable_interrupts(struct efx_nic *efx)
1343 {
1344 struct efx_channel *channel, *end_channel;
1345 int rc;
1346
1347 BUG_ON(efx->state == STATE_DISABLED);
1348
1349 efx->irq_soft_enabled = true;
1350 smp_wmb();
1351
1352 efx_for_each_channel(channel, efx) {
1353 if (!channel->type->keep_eventq) {
1354 rc = efx_init_eventq(channel);
1355 if (rc)
1356 goto fail;
1357 }
1358 efx_start_eventq(channel);
1359 }
1360
1361 efx_mcdi_mode_event(efx);
1362
1363 return 0;
1364 fail:
1365 end_channel = channel;
1366 efx_for_each_channel(channel, efx) {
1367 if (channel == end_channel)
1368 break;
1369 efx_stop_eventq(channel);
1370 if (!channel->type->keep_eventq)
1371 efx_fini_eventq(channel);
1372 }
1373
1374 return rc;
1375 }
1376
1377 static void efx_soft_disable_interrupts(struct efx_nic *efx)
1378 {
1379 struct efx_channel *channel;
1380
1381 if (efx->state == STATE_DISABLED)
1382 return;
1383
1384 efx_mcdi_mode_poll(efx);
1385
1386 efx->irq_soft_enabled = false;
1387 smp_wmb();
1388
1389 if (efx->legacy_irq)
1390 synchronize_irq(efx->legacy_irq);
1391
1392 efx_for_each_channel(channel, efx) {
1393 if (channel->irq)
1394 synchronize_irq(channel->irq);
1395
1396 efx_stop_eventq(channel);
1397 if (!channel->type->keep_eventq)
1398 efx_fini_eventq(channel);
1399 }
1400
1401 /* Flush the asynchronous MCDI request queue */
1402 efx_mcdi_flush_async(efx);
1403 }
1404
1405 static int efx_enable_interrupts(struct efx_nic *efx)
1406 {
1407 struct efx_channel *channel, *end_channel;
1408 int rc;
1409
1410 BUG_ON(efx->state == STATE_DISABLED);
1411
1412 if (efx->eeh_disabled_legacy_irq) {
1413 enable_irq(efx->legacy_irq);
1414 efx->eeh_disabled_legacy_irq = false;
1415 }
1416
1417 efx->type->irq_enable_master(efx);
1418
1419 efx_for_each_channel(channel, efx) {
1420 if (channel->type->keep_eventq) {
1421 rc = efx_init_eventq(channel);
1422 if (rc)
1423 goto fail;
1424 }
1425 }
1426
1427 rc = efx_soft_enable_interrupts(efx);
1428 if (rc)
1429 goto fail;
1430
1431 return 0;
1432
1433 fail:
1434 end_channel = channel;
1435 efx_for_each_channel(channel, efx) {
1436 if (channel == end_channel)
1437 break;
1438 if (channel->type->keep_eventq)
1439 efx_fini_eventq(channel);
1440 }
1441
1442 efx->type->irq_disable_non_ev(efx);
1443
1444 return rc;
1445 }
1446
1447 static void efx_disable_interrupts(struct efx_nic *efx)
1448 {
1449 struct efx_channel *channel;
1450
1451 efx_soft_disable_interrupts(efx);
1452
1453 efx_for_each_channel(channel, efx) {
1454 if (channel->type->keep_eventq)
1455 efx_fini_eventq(channel);
1456 }
1457
1458 efx->type->irq_disable_non_ev(efx);
1459 }
1460
1461 static void efx_remove_interrupts(struct efx_nic *efx)
1462 {
1463 struct efx_channel *channel;
1464
1465 /* Remove MSI/MSI-X interrupts */
1466 efx_for_each_channel(channel, efx)
1467 channel->irq = 0;
1468 pci_disable_msi(efx->pci_dev);
1469 pci_disable_msix(efx->pci_dev);
1470
1471 /* Remove legacy interrupt */
1472 efx->legacy_irq = 0;
1473 }
1474
1475 static void efx_set_channels(struct efx_nic *efx)
1476 {
1477 struct efx_channel *channel;
1478 struct efx_tx_queue *tx_queue;
1479
1480 efx->tx_channel_offset =
1481 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1482
1483 /* We need to mark which channels really have RX and TX
1484 * queues, and adjust the TX queue numbers if we have separate
1485 * RX-only and TX-only channels.
1486 */
1487 efx_for_each_channel(channel, efx) {
1488 if (channel->channel < efx->n_rx_channels)
1489 channel->rx_queue.core_index = channel->channel;
1490 else
1491 channel->rx_queue.core_index = -1;
1492
1493 efx_for_each_channel_tx_queue(tx_queue, channel)
1494 tx_queue->queue -= (efx->tx_channel_offset *
1495 EFX_TXQ_TYPES);
1496 }
1497 }
1498
1499 static int efx_probe_nic(struct efx_nic *efx)
1500 {
1501 size_t i;
1502 int rc;
1503
1504 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1505
1506 /* Carry out hardware-type specific initialisation */
1507 rc = efx->type->probe(efx);
1508 if (rc)
1509 return rc;
1510
1511 /* Determine the number of channels and queues by trying to hook
1512 * in MSI-X interrupts. */
1513 rc = efx_probe_interrupts(efx);
1514 if (rc)
1515 goto fail1;
1516
1517 rc = efx->type->dimension_resources(efx);
1518 if (rc)
1519 goto fail2;
1520
1521 if (efx->n_channels > 1)
1522 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1523 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1524 efx->rx_indir_table[i] =
1525 ethtool_rxfh_indir_default(i, efx->rss_spread);
1526
1527 efx_set_channels(efx);
1528 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1529 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1530
1531 /* Initialise the interrupt moderation settings */
1532 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1533 true);
1534
1535 return 0;
1536
1537 fail2:
1538 efx_remove_interrupts(efx);
1539 fail1:
1540 efx->type->remove(efx);
1541 return rc;
1542 }
1543
1544 static void efx_remove_nic(struct efx_nic *efx)
1545 {
1546 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1547
1548 efx_remove_interrupts(efx);
1549 efx->type->remove(efx);
1550 }
1551
1552 static int efx_probe_filters(struct efx_nic *efx)
1553 {
1554 int rc;
1555
1556 spin_lock_init(&efx->filter_lock);
1557
1558 rc = efx->type->filter_table_probe(efx);
1559 if (rc)
1560 return rc;
1561
1562 #ifdef CONFIG_RFS_ACCEL
1563 if (efx->type->offload_features & NETIF_F_NTUPLE) {
1564 efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1565 sizeof(*efx->rps_flow_id),
1566 GFP_KERNEL);
1567 if (!efx->rps_flow_id) {
1568 efx->type->filter_table_remove(efx);
1569 return -ENOMEM;
1570 }
1571 }
1572 #endif
1573
1574 return 0;
1575 }
1576
1577 static void efx_remove_filters(struct efx_nic *efx)
1578 {
1579 #ifdef CONFIG_RFS_ACCEL
1580 kfree(efx->rps_flow_id);
1581 #endif
1582 efx->type->filter_table_remove(efx);
1583 }
1584
1585 static void efx_restore_filters(struct efx_nic *efx)
1586 {
1587 efx->type->filter_table_restore(efx);
1588 }
1589
1590 /**************************************************************************
1591 *
1592 * NIC startup/shutdown
1593 *
1594 *************************************************************************/
1595
1596 static int efx_probe_all(struct efx_nic *efx)
1597 {
1598 int rc;
1599
1600 rc = efx_probe_nic(efx);
1601 if (rc) {
1602 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1603 goto fail1;
1604 }
1605
1606 rc = efx_probe_port(efx);
1607 if (rc) {
1608 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1609 goto fail2;
1610 }
1611
1612 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1613 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1614 rc = -EINVAL;
1615 goto fail3;
1616 }
1617 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1618
1619 rc = efx_probe_filters(efx);
1620 if (rc) {
1621 netif_err(efx, probe, efx->net_dev,
1622 "failed to create filter tables\n");
1623 goto fail3;
1624 }
1625
1626 rc = efx_probe_channels(efx);
1627 if (rc)
1628 goto fail4;
1629
1630 return 0;
1631
1632 fail4:
1633 efx_remove_filters(efx);
1634 fail3:
1635 efx_remove_port(efx);
1636 fail2:
1637 efx_remove_nic(efx);
1638 fail1:
1639 return rc;
1640 }
1641
1642 /* If the interface is supposed to be running but is not, start
1643 * the hardware and software data path, regular activity for the port
1644 * (MAC statistics, link polling, etc.) and schedule the port to be
1645 * reconfigured. Interrupts must already be enabled. This function
1646 * is safe to call multiple times, so long as the NIC is not disabled.
1647 * Requires the RTNL lock.
1648 */
1649 static void efx_start_all(struct efx_nic *efx)
1650 {
1651 EFX_ASSERT_RESET_SERIALISED(efx);
1652 BUG_ON(efx->state == STATE_DISABLED);
1653
1654 /* Check that it is appropriate to restart the interface. All
1655 * of these flags are safe to read under just the rtnl lock */
1656 if (efx->port_enabled || !netif_running(efx->net_dev))
1657 return;
1658
1659 efx_start_port(efx);
1660 efx_start_datapath(efx);
1661
1662 /* Start the hardware monitor if there is one */
1663 if (efx->type->monitor != NULL)
1664 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1665 efx_monitor_interval);
1666
1667 /* If link state detection is normally event-driven, we have
1668 * to poll now because we could have missed a change
1669 */
1670 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1671 mutex_lock(&efx->mac_lock);
1672 if (efx->phy_op->poll(efx))
1673 efx_link_status_changed(efx);
1674 mutex_unlock(&efx->mac_lock);
1675 }
1676
1677 efx->type->start_stats(efx);
1678 }
1679
1680 /* Flush all delayed work. Should only be called when no more delayed work
1681 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1682 * since we're holding the rtnl_lock at this point. */
1683 static void efx_flush_all(struct efx_nic *efx)
1684 {
1685 /* Make sure the hardware monitor and event self-test are stopped */
1686 cancel_delayed_work_sync(&efx->monitor_work);
1687 efx_selftest_async_cancel(efx);
1688 /* Stop scheduled port reconfigurations */
1689 cancel_work_sync(&efx->mac_work);
1690 }
1691
1692 /* Quiesce the hardware and software data path, and regular activity
1693 * for the port without bringing the link down. Safe to call multiple
1694 * times with the NIC in almost any state, but interrupts should be
1695 * enabled. Requires the RTNL lock.
1696 */
1697 static void efx_stop_all(struct efx_nic *efx)
1698 {
1699 EFX_ASSERT_RESET_SERIALISED(efx);
1700
1701 /* port_enabled can be read safely under the rtnl lock */
1702 if (!efx->port_enabled)
1703 return;
1704
1705 efx->type->stop_stats(efx);
1706 efx_stop_port(efx);
1707
1708 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
1709 efx_flush_all(efx);
1710
1711 /* Stop the kernel transmit interface. This is only valid if
1712 * the device is stopped or detached; otherwise the watchdog
1713 * may fire immediately.
1714 */
1715 WARN_ON(netif_running(efx->net_dev) &&
1716 netif_device_present(efx->net_dev));
1717 netif_tx_disable(efx->net_dev);
1718
1719 efx_stop_datapath(efx);
1720 }
1721
1722 static void efx_remove_all(struct efx_nic *efx)
1723 {
1724 efx_remove_channels(efx);
1725 efx_remove_filters(efx);
1726 efx_remove_port(efx);
1727 efx_remove_nic(efx);
1728 }
1729
1730 /**************************************************************************
1731 *
1732 * Interrupt moderation
1733 *
1734 **************************************************************************/
1735
1736 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1737 {
1738 if (usecs == 0)
1739 return 0;
1740 if (usecs * 1000 < quantum_ns)
1741 return 1; /* never round down to 0 */
1742 return usecs * 1000 / quantum_ns;
1743 }
1744
1745 /* Set interrupt moderation parameters */
1746 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1747 unsigned int rx_usecs, bool rx_adaptive,
1748 bool rx_may_override_tx)
1749 {
1750 struct efx_channel *channel;
1751 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1752 efx->timer_quantum_ns,
1753 1000);
1754 unsigned int tx_ticks;
1755 unsigned int rx_ticks;
1756
1757 EFX_ASSERT_RESET_SERIALISED(efx);
1758
1759 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1760 return -EINVAL;
1761
1762 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1763 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1764
1765 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1766 !rx_may_override_tx) {
1767 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1768 "RX and TX IRQ moderation must be equal\n");
1769 return -EINVAL;
1770 }
1771
1772 efx->irq_rx_adaptive = rx_adaptive;
1773 efx->irq_rx_moderation = rx_ticks;
1774 efx_for_each_channel(channel, efx) {
1775 if (efx_channel_has_rx_queue(channel))
1776 channel->irq_moderation = rx_ticks;
1777 else if (efx_channel_has_tx_queues(channel))
1778 channel->irq_moderation = tx_ticks;
1779 }
1780
1781 return 0;
1782 }
1783
1784 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1785 unsigned int *rx_usecs, bool *rx_adaptive)
1786 {
1787 /* We must round up when converting ticks to microseconds
1788 * because we round down when converting the other way.
1789 */
1790
1791 *rx_adaptive = efx->irq_rx_adaptive;
1792 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1793 efx->timer_quantum_ns,
1794 1000);
1795
1796 /* If channels are shared between RX and TX, so is IRQ
1797 * moderation. Otherwise, IRQ moderation is the same for all
1798 * TX channels and is not adaptive.
1799 */
1800 if (efx->tx_channel_offset == 0)
1801 *tx_usecs = *rx_usecs;
1802 else
1803 *tx_usecs = DIV_ROUND_UP(
1804 efx->channel[efx->tx_channel_offset]->irq_moderation *
1805 efx->timer_quantum_ns,
1806 1000);
1807 }
1808
1809 /**************************************************************************
1810 *
1811 * Hardware monitor
1812 *
1813 **************************************************************************/
1814
1815 /* Run periodically off the general workqueue */
1816 static void efx_monitor(struct work_struct *data)
1817 {
1818 struct efx_nic *efx = container_of(data, struct efx_nic,
1819 monitor_work.work);
1820
1821 netif_vdbg(efx, timer, efx->net_dev,
1822 "hardware monitor executing on CPU %d\n",
1823 raw_smp_processor_id());
1824 BUG_ON(efx->type->monitor == NULL);
1825
1826 /* If the mac_lock is already held then it is likely a port
1827 * reconfiguration is already in place, which will likely do
1828 * most of the work of monitor() anyway. */
1829 if (mutex_trylock(&efx->mac_lock)) {
1830 if (efx->port_enabled)
1831 efx->type->monitor(efx);
1832 mutex_unlock(&efx->mac_lock);
1833 }
1834
1835 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1836 efx_monitor_interval);
1837 }
1838
1839 /**************************************************************************
1840 *
1841 * ioctls
1842 *
1843 *************************************************************************/
1844
1845 /* Net device ioctl
1846 * Context: process, rtnl_lock() held.
1847 */
1848 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1849 {
1850 struct efx_nic *efx = netdev_priv(net_dev);
1851 struct mii_ioctl_data *data = if_mii(ifr);
1852
1853 if (cmd == SIOCSHWTSTAMP)
1854 return efx_ptp_ioctl(efx, ifr, cmd);
1855
1856 /* Convert phy_id from older PRTAD/DEVAD format */
1857 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1858 (data->phy_id & 0xfc00) == 0x0400)
1859 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1860
1861 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1862 }
1863
1864 /**************************************************************************
1865 *
1866 * NAPI interface
1867 *
1868 **************************************************************************/
1869
1870 static void efx_init_napi_channel(struct efx_channel *channel)
1871 {
1872 struct efx_nic *efx = channel->efx;
1873
1874 channel->napi_dev = efx->net_dev;
1875 netif_napi_add(channel->napi_dev, &channel->napi_str,
1876 efx_poll, napi_weight);
1877 }
1878
1879 static void efx_init_napi(struct efx_nic *efx)
1880 {
1881 struct efx_channel *channel;
1882
1883 efx_for_each_channel(channel, efx)
1884 efx_init_napi_channel(channel);
1885 }
1886
1887 static void efx_fini_napi_channel(struct efx_channel *channel)
1888 {
1889 if (channel->napi_dev)
1890 netif_napi_del(&channel->napi_str);
1891 channel->napi_dev = NULL;
1892 }
1893
1894 static void efx_fini_napi(struct efx_nic *efx)
1895 {
1896 struct efx_channel *channel;
1897
1898 efx_for_each_channel(channel, efx)
1899 efx_fini_napi_channel(channel);
1900 }
1901
1902 /**************************************************************************
1903 *
1904 * Kernel netpoll interface
1905 *
1906 *************************************************************************/
1907
1908 #ifdef CONFIG_NET_POLL_CONTROLLER
1909
1910 /* Although in the common case interrupts will be disabled, this is not
1911 * guaranteed. However, all our work happens inside the NAPI callback,
1912 * so no locking is required.
1913 */
1914 static void efx_netpoll(struct net_device *net_dev)
1915 {
1916 struct efx_nic *efx = netdev_priv(net_dev);
1917 struct efx_channel *channel;
1918
1919 efx_for_each_channel(channel, efx)
1920 efx_schedule_channel(channel);
1921 }
1922
1923 #endif
1924
1925 /**************************************************************************
1926 *
1927 * Kernel net device interface
1928 *
1929 *************************************************************************/
1930
1931 /* Context: process, rtnl_lock() held. */
1932 static int efx_net_open(struct net_device *net_dev)
1933 {
1934 struct efx_nic *efx = netdev_priv(net_dev);
1935 int rc;
1936
1937 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1938 raw_smp_processor_id());
1939
1940 rc = efx_check_disabled(efx);
1941 if (rc)
1942 return rc;
1943 if (efx->phy_mode & PHY_MODE_SPECIAL)
1944 return -EBUSY;
1945 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1946 return -EIO;
1947
1948 /* Notify the kernel of the link state polled during driver load,
1949 * before the monitor starts running */
1950 efx_link_status_changed(efx);
1951
1952 efx_start_all(efx);
1953 efx_selftest_async_start(efx);
1954 return 0;
1955 }
1956
1957 /* Context: process, rtnl_lock() held.
1958 * Note that the kernel will ignore our return code; this method
1959 * should really be a void.
1960 */
1961 static int efx_net_stop(struct net_device *net_dev)
1962 {
1963 struct efx_nic *efx = netdev_priv(net_dev);
1964
1965 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1966 raw_smp_processor_id());
1967
1968 /* Stop the device and flush all the channels */
1969 efx_stop_all(efx);
1970
1971 return 0;
1972 }
1973
1974 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1975 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
1976 struct rtnl_link_stats64 *stats)
1977 {
1978 struct efx_nic *efx = netdev_priv(net_dev);
1979
1980 spin_lock_bh(&efx->stats_lock);
1981 efx->type->update_stats(efx, NULL, stats);
1982 spin_unlock_bh(&efx->stats_lock);
1983
1984 return stats;
1985 }
1986
1987 /* Context: netif_tx_lock held, BHs disabled. */
1988 static void efx_watchdog(struct net_device *net_dev)
1989 {
1990 struct efx_nic *efx = netdev_priv(net_dev);
1991
1992 netif_err(efx, tx_err, efx->net_dev,
1993 "TX stuck with port_enabled=%d: resetting channels\n",
1994 efx->port_enabled);
1995
1996 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1997 }
1998
1999
2000 /* Context: process, rtnl_lock() held. */
2001 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2002 {
2003 struct efx_nic *efx = netdev_priv(net_dev);
2004 int rc;
2005
2006 rc = efx_check_disabled(efx);
2007 if (rc)
2008 return rc;
2009 if (new_mtu > EFX_MAX_MTU)
2010 return -EINVAL;
2011
2012 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2013
2014 efx_device_detach_sync(efx);
2015 efx_stop_all(efx);
2016
2017 mutex_lock(&efx->mac_lock);
2018 net_dev->mtu = new_mtu;
2019 efx->type->reconfigure_mac(efx);
2020 mutex_unlock(&efx->mac_lock);
2021
2022 efx_start_all(efx);
2023 netif_device_attach(efx->net_dev);
2024 return 0;
2025 }
2026
2027 static int efx_set_mac_address(struct net_device *net_dev, void *data)
2028 {
2029 struct efx_nic *efx = netdev_priv(net_dev);
2030 struct sockaddr *addr = data;
2031 char *new_addr = addr->sa_data;
2032
2033 if (!is_valid_ether_addr(new_addr)) {
2034 netif_err(efx, drv, efx->net_dev,
2035 "invalid ethernet MAC address requested: %pM\n",
2036 new_addr);
2037 return -EADDRNOTAVAIL;
2038 }
2039
2040 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
2041 efx_sriov_mac_address_changed(efx);
2042
2043 /* Reconfigure the MAC */
2044 mutex_lock(&efx->mac_lock);
2045 efx->type->reconfigure_mac(efx);
2046 mutex_unlock(&efx->mac_lock);
2047
2048 return 0;
2049 }
2050
2051 /* Context: netif_addr_lock held, BHs disabled. */
2052 static void efx_set_rx_mode(struct net_device *net_dev)
2053 {
2054 struct efx_nic *efx = netdev_priv(net_dev);
2055
2056 if (efx->port_enabled)
2057 queue_work(efx->workqueue, &efx->mac_work);
2058 /* Otherwise efx_start_port() will do this */
2059 }
2060
2061 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2062 {
2063 struct efx_nic *efx = netdev_priv(net_dev);
2064
2065 /* If disabling RX n-tuple filtering, clear existing filters */
2066 if (net_dev->features & ~data & NETIF_F_NTUPLE)
2067 efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2068
2069 return 0;
2070 }
2071
2072 static const struct net_device_ops efx_farch_netdev_ops = {
2073 .ndo_open = efx_net_open,
2074 .ndo_stop = efx_net_stop,
2075 .ndo_get_stats64 = efx_net_stats,
2076 .ndo_tx_timeout = efx_watchdog,
2077 .ndo_start_xmit = efx_hard_start_xmit,
2078 .ndo_validate_addr = eth_validate_addr,
2079 .ndo_do_ioctl = efx_ioctl,
2080 .ndo_change_mtu = efx_change_mtu,
2081 .ndo_set_mac_address = efx_set_mac_address,
2082 .ndo_set_rx_mode = efx_set_rx_mode,
2083 .ndo_set_features = efx_set_features,
2084 #ifdef CONFIG_SFC_SRIOV
2085 .ndo_set_vf_mac = efx_sriov_set_vf_mac,
2086 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
2087 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
2088 .ndo_get_vf_config = efx_sriov_get_vf_config,
2089 #endif
2090 #ifdef CONFIG_NET_POLL_CONTROLLER
2091 .ndo_poll_controller = efx_netpoll,
2092 #endif
2093 .ndo_setup_tc = efx_setup_tc,
2094 #ifdef CONFIG_RFS_ACCEL
2095 .ndo_rx_flow_steer = efx_filter_rfs,
2096 #endif
2097 };
2098
2099 static const struct net_device_ops efx_ef10_netdev_ops = {
2100 .ndo_open = efx_net_open,
2101 .ndo_stop = efx_net_stop,
2102 .ndo_get_stats64 = efx_net_stats,
2103 .ndo_tx_timeout = efx_watchdog,
2104 .ndo_start_xmit = efx_hard_start_xmit,
2105 .ndo_validate_addr = eth_validate_addr,
2106 .ndo_do_ioctl = efx_ioctl,
2107 .ndo_change_mtu = efx_change_mtu,
2108 .ndo_set_mac_address = efx_set_mac_address,
2109 .ndo_set_rx_mode = efx_set_rx_mode,
2110 .ndo_set_features = efx_set_features,
2111 #ifdef CONFIG_NET_POLL_CONTROLLER
2112 .ndo_poll_controller = efx_netpoll,
2113 #endif
2114 #ifdef CONFIG_RFS_ACCEL
2115 .ndo_rx_flow_steer = efx_filter_rfs,
2116 #endif
2117 };
2118
2119 static void efx_update_name(struct efx_nic *efx)
2120 {
2121 strcpy(efx->name, efx->net_dev->name);
2122 efx_mtd_rename(efx);
2123 efx_set_channel_names(efx);
2124 }
2125
2126 static int efx_netdev_event(struct notifier_block *this,
2127 unsigned long event, void *ptr)
2128 {
2129 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2130
2131 if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
2132 net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2133 event == NETDEV_CHANGENAME)
2134 efx_update_name(netdev_priv(net_dev));
2135
2136 return NOTIFY_DONE;
2137 }
2138
2139 static struct notifier_block efx_netdev_notifier = {
2140 .notifier_call = efx_netdev_event,
2141 };
2142
2143 static ssize_t
2144 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2145 {
2146 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2147 return sprintf(buf, "%d\n", efx->phy_type);
2148 }
2149 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2150
2151 static int efx_register_netdev(struct efx_nic *efx)
2152 {
2153 struct net_device *net_dev = efx->net_dev;
2154 struct efx_channel *channel;
2155 int rc;
2156
2157 net_dev->watchdog_timeo = 5 * HZ;
2158 net_dev->irq = efx->pci_dev->irq;
2159 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
2160 net_dev->netdev_ops = &efx_ef10_netdev_ops;
2161 net_dev->priv_flags |= IFF_UNICAST_FLT;
2162 } else {
2163 net_dev->netdev_ops = &efx_farch_netdev_ops;
2164 }
2165 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2166 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2167
2168 rtnl_lock();
2169
2170 /* Enable resets to be scheduled and check whether any were
2171 * already requested. If so, the NIC is probably hosed so we
2172 * abort.
2173 */
2174 efx->state = STATE_READY;
2175 smp_mb(); /* ensure we change state before checking reset_pending */
2176 if (efx->reset_pending) {
2177 netif_err(efx, probe, efx->net_dev,
2178 "aborting probe due to scheduled reset\n");
2179 rc = -EIO;
2180 goto fail_locked;
2181 }
2182
2183 rc = dev_alloc_name(net_dev, net_dev->name);
2184 if (rc < 0)
2185 goto fail_locked;
2186 efx_update_name(efx);
2187
2188 /* Always start with carrier off; PHY events will detect the link */
2189 netif_carrier_off(net_dev);
2190
2191 rc = register_netdevice(net_dev);
2192 if (rc)
2193 goto fail_locked;
2194
2195 efx_for_each_channel(channel, efx) {
2196 struct efx_tx_queue *tx_queue;
2197 efx_for_each_channel_tx_queue(tx_queue, channel)
2198 efx_init_tx_queue_core_txq(tx_queue);
2199 }
2200
2201 rtnl_unlock();
2202
2203 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2204 if (rc) {
2205 netif_err(efx, drv, efx->net_dev,
2206 "failed to init net dev attributes\n");
2207 goto fail_registered;
2208 }
2209
2210 return 0;
2211
2212 fail_registered:
2213 rtnl_lock();
2214 unregister_netdevice(net_dev);
2215 fail_locked:
2216 efx->state = STATE_UNINIT;
2217 rtnl_unlock();
2218 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2219 return rc;
2220 }
2221
2222 static void efx_unregister_netdev(struct efx_nic *efx)
2223 {
2224 if (!efx->net_dev)
2225 return;
2226
2227 BUG_ON(netdev_priv(efx->net_dev) != efx);
2228
2229 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2230 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2231
2232 rtnl_lock();
2233 unregister_netdevice(efx->net_dev);
2234 efx->state = STATE_UNINIT;
2235 rtnl_unlock();
2236 }
2237
2238 /**************************************************************************
2239 *
2240 * Device reset and suspend
2241 *
2242 **************************************************************************/
2243
2244 /* Tears down the entire software state and most of the hardware state
2245 * before reset. */
2246 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2247 {
2248 EFX_ASSERT_RESET_SERIALISED(efx);
2249
2250 efx_stop_all(efx);
2251 efx_disable_interrupts(efx);
2252
2253 mutex_lock(&efx->mac_lock);
2254 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2255 efx->phy_op->fini(efx);
2256 efx->type->fini(efx);
2257 }
2258
2259 /* This function will always ensure that the locks acquired in
2260 * efx_reset_down() are released. A failure return code indicates
2261 * that we were unable to reinitialise the hardware, and the
2262 * driver should be disabled. If ok is false, then the rx and tx
2263 * engines are not restarted, pending a RESET_DISABLE. */
2264 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2265 {
2266 int rc;
2267
2268 EFX_ASSERT_RESET_SERIALISED(efx);
2269
2270 rc = efx->type->init(efx);
2271 if (rc) {
2272 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2273 goto fail;
2274 }
2275
2276 if (!ok)
2277 goto fail;
2278
2279 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2280 rc = efx->phy_op->init(efx);
2281 if (rc)
2282 goto fail;
2283 if (efx->phy_op->reconfigure(efx))
2284 netif_err(efx, drv, efx->net_dev,
2285 "could not restore PHY settings\n");
2286 }
2287
2288 rc = efx_enable_interrupts(efx);
2289 if (rc)
2290 goto fail;
2291 efx_restore_filters(efx);
2292 efx_sriov_reset(efx);
2293
2294 mutex_unlock(&efx->mac_lock);
2295
2296 efx_start_all(efx);
2297
2298 return 0;
2299
2300 fail:
2301 efx->port_initialized = false;
2302
2303 mutex_unlock(&efx->mac_lock);
2304
2305 return rc;
2306 }
2307
2308 /* Reset the NIC using the specified method. Note that the reset may
2309 * fail, in which case the card will be left in an unusable state.
2310 *
2311 * Caller must hold the rtnl_lock.
2312 */
2313 int efx_reset(struct efx_nic *efx, enum reset_type method)
2314 {
2315 int rc, rc2;
2316 bool disabled;
2317
2318 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2319 RESET_TYPE(method));
2320
2321 efx_device_detach_sync(efx);
2322 efx_reset_down(efx, method);
2323
2324 rc = efx->type->reset(efx, method);
2325 if (rc) {
2326 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2327 goto out;
2328 }
2329
2330 /* Clear flags for the scopes we covered. We assume the NIC and
2331 * driver are now quiescent so that there is no race here.
2332 */
2333 efx->reset_pending &= -(1 << (method + 1));
2334
2335 /* Reinitialise bus-mastering, which may have been turned off before
2336 * the reset was scheduled. This is still appropriate, even in the
2337 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2338 * can respond to requests. */
2339 pci_set_master(efx->pci_dev);
2340
2341 out:
2342 /* Leave device stopped if necessary */
2343 disabled = rc ||
2344 method == RESET_TYPE_DISABLE ||
2345 method == RESET_TYPE_RECOVER_OR_DISABLE;
2346 rc2 = efx_reset_up(efx, method, !disabled);
2347 if (rc2) {
2348 disabled = true;
2349 if (!rc)
2350 rc = rc2;
2351 }
2352
2353 if (disabled) {
2354 dev_close(efx->net_dev);
2355 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2356 efx->state = STATE_DISABLED;
2357 } else {
2358 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2359 netif_device_attach(efx->net_dev);
2360 }
2361 return rc;
2362 }
2363
2364 /* Try recovery mechanisms.
2365 * For now only EEH is supported.
2366 * Returns 0 if the recovery mechanisms are unsuccessful.
2367 * Returns a non-zero value otherwise.
2368 */
2369 int efx_try_recovery(struct efx_nic *efx)
2370 {
2371 #ifdef CONFIG_EEH
2372 /* A PCI error can occur and not be seen by EEH because nothing
2373 * happens on the PCI bus. In this case the driver may fail and
2374 * schedule a 'recover or reset', leading to this recovery handler.
2375 * Manually call the eeh failure check function.
2376 */
2377 struct eeh_dev *eehdev =
2378 of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
2379
2380 if (eeh_dev_check_failure(eehdev)) {
2381 /* The EEH mechanisms will handle the error and reset the
2382 * device if necessary.
2383 */
2384 return 1;
2385 }
2386 #endif
2387 return 0;
2388 }
2389
2390 /* The worker thread exists so that code that cannot sleep can
2391 * schedule a reset for later.
2392 */
2393 static void efx_reset_work(struct work_struct *data)
2394 {
2395 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2396 unsigned long pending;
2397 enum reset_type method;
2398
2399 pending = ACCESS_ONCE(efx->reset_pending);
2400 method = fls(pending) - 1;
2401
2402 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2403 method == RESET_TYPE_RECOVER_OR_ALL) &&
2404 efx_try_recovery(efx))
2405 return;
2406
2407 if (!pending)
2408 return;
2409
2410 rtnl_lock();
2411
2412 /* We checked the state in efx_schedule_reset() but it may
2413 * have changed by now. Now that we have the RTNL lock,
2414 * it cannot change again.
2415 */
2416 if (efx->state == STATE_READY)
2417 (void)efx_reset(efx, method);
2418
2419 rtnl_unlock();
2420 }
2421
2422 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2423 {
2424 enum reset_type method;
2425
2426 if (efx->state == STATE_RECOVERY) {
2427 netif_dbg(efx, drv, efx->net_dev,
2428 "recovering: skip scheduling %s reset\n",
2429 RESET_TYPE(type));
2430 return;
2431 }
2432
2433 switch (type) {
2434 case RESET_TYPE_INVISIBLE:
2435 case RESET_TYPE_ALL:
2436 case RESET_TYPE_RECOVER_OR_ALL:
2437 case RESET_TYPE_WORLD:
2438 case RESET_TYPE_DISABLE:
2439 case RESET_TYPE_RECOVER_OR_DISABLE:
2440 method = type;
2441 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2442 RESET_TYPE(method));
2443 break;
2444 default:
2445 method = efx->type->map_reset_reason(type);
2446 netif_dbg(efx, drv, efx->net_dev,
2447 "scheduling %s reset for %s\n",
2448 RESET_TYPE(method), RESET_TYPE(type));
2449 break;
2450 }
2451
2452 set_bit(method, &efx->reset_pending);
2453 smp_mb(); /* ensure we change reset_pending before checking state */
2454
2455 /* If we're not READY then just leave the flags set as the cue
2456 * to abort probing or reschedule the reset later.
2457 */
2458 if (ACCESS_ONCE(efx->state) != STATE_READY)
2459 return;
2460
2461 /* efx_process_channel() will no longer read events once a
2462 * reset is scheduled. So switch back to poll'd MCDI completions. */
2463 efx_mcdi_mode_poll(efx);
2464
2465 queue_work(reset_workqueue, &efx->reset_work);
2466 }
2467
2468 /**************************************************************************
2469 *
2470 * List of NICs we support
2471 *
2472 **************************************************************************/
2473
2474 /* PCI device ID table */
2475 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2476 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2477 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2478 .driver_data = (unsigned long) &falcon_a1_nic_type},
2479 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2480 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2481 .driver_data = (unsigned long) &falcon_b0_nic_type},
2482 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
2483 .driver_data = (unsigned long) &siena_a0_nic_type},
2484 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
2485 .driver_data = (unsigned long) &siena_a0_nic_type},
2486 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */
2487 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2488 {0} /* end of list */
2489 };
2490
2491 /**************************************************************************
2492 *
2493 * Dummy PHY/MAC operations
2494 *
2495 * Can be used for some unimplemented operations
2496 * Needed so all function pointers are valid and do not have to be tested
2497 * before use
2498 *
2499 **************************************************************************/
2500 int efx_port_dummy_op_int(struct efx_nic *efx)
2501 {
2502 return 0;
2503 }
2504 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2505
2506 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2507 {
2508 return false;
2509 }
2510
2511 static const struct efx_phy_operations efx_dummy_phy_operations = {
2512 .init = efx_port_dummy_op_int,
2513 .reconfigure = efx_port_dummy_op_int,
2514 .poll = efx_port_dummy_op_poll,
2515 .fini = efx_port_dummy_op_void,
2516 };
2517
2518 /**************************************************************************
2519 *
2520 * Data housekeeping
2521 *
2522 **************************************************************************/
2523
2524 /* This zeroes out and then fills in the invariants in a struct
2525 * efx_nic (including all sub-structures).
2526 */
2527 static int efx_init_struct(struct efx_nic *efx,
2528 struct pci_dev *pci_dev, struct net_device *net_dev)
2529 {
2530 int i;
2531
2532 /* Initialise common structures */
2533 spin_lock_init(&efx->biu_lock);
2534 #ifdef CONFIG_SFC_MTD
2535 INIT_LIST_HEAD(&efx->mtd_list);
2536 #endif
2537 INIT_WORK(&efx->reset_work, efx_reset_work);
2538 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2539 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2540 efx->pci_dev = pci_dev;
2541 efx->msg_enable = debug;
2542 efx->state = STATE_UNINIT;
2543 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2544
2545 efx->net_dev = net_dev;
2546 efx->rx_prefix_size = efx->type->rx_prefix_size;
2547 efx->rx_ip_align =
2548 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2549 efx->rx_packet_hash_offset =
2550 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2551 spin_lock_init(&efx->stats_lock);
2552 mutex_init(&efx->mac_lock);
2553 efx->phy_op = &efx_dummy_phy_operations;
2554 efx->mdio.dev = net_dev;
2555 INIT_WORK(&efx->mac_work, efx_mac_work);
2556 init_waitqueue_head(&efx->flush_wq);
2557
2558 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2559 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2560 if (!efx->channel[i])
2561 goto fail;
2562 efx->msi_context[i].efx = efx;
2563 efx->msi_context[i].index = i;
2564 }
2565
2566 /* Higher numbered interrupt modes are less capable! */
2567 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2568 interrupt_mode);
2569
2570 /* Would be good to use the net_dev name, but we're too early */
2571 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2572 pci_name(pci_dev));
2573 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2574 if (!efx->workqueue)
2575 goto fail;
2576
2577 return 0;
2578
2579 fail:
2580 efx_fini_struct(efx);
2581 return -ENOMEM;
2582 }
2583
2584 static void efx_fini_struct(struct efx_nic *efx)
2585 {
2586 int i;
2587
2588 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2589 kfree(efx->channel[i]);
2590
2591 if (efx->workqueue) {
2592 destroy_workqueue(efx->workqueue);
2593 efx->workqueue = NULL;
2594 }
2595 }
2596
2597 /**************************************************************************
2598 *
2599 * PCI interface
2600 *
2601 **************************************************************************/
2602
2603 /* Main body of final NIC shutdown code
2604 * This is called only at module unload (or hotplug removal).
2605 */
2606 static void efx_pci_remove_main(struct efx_nic *efx)
2607 {
2608 /* Flush reset_work. It can no longer be scheduled since we
2609 * are not READY.
2610 */
2611 BUG_ON(efx->state == STATE_READY);
2612 cancel_work_sync(&efx->reset_work);
2613
2614 efx_disable_interrupts(efx);
2615 efx_nic_fini_interrupt(efx);
2616 efx_fini_port(efx);
2617 efx->type->fini(efx);
2618 efx_fini_napi(efx);
2619 efx_remove_all(efx);
2620 }
2621
2622 /* Final NIC shutdown
2623 * This is called only at module unload (or hotplug removal).
2624 */
2625 static void efx_pci_remove(struct pci_dev *pci_dev)
2626 {
2627 struct efx_nic *efx;
2628
2629 efx = pci_get_drvdata(pci_dev);
2630 if (!efx)
2631 return;
2632
2633 /* Mark the NIC as fini, then stop the interface */
2634 rtnl_lock();
2635 dev_close(efx->net_dev);
2636 efx_disable_interrupts(efx);
2637 rtnl_unlock();
2638
2639 efx_sriov_fini(efx);
2640 efx_unregister_netdev(efx);
2641
2642 efx_mtd_remove(efx);
2643
2644 efx_pci_remove_main(efx);
2645
2646 efx_fini_io(efx);
2647 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2648
2649 efx_fini_struct(efx);
2650 pci_set_drvdata(pci_dev, NULL);
2651 free_netdev(efx->net_dev);
2652
2653 pci_disable_pcie_error_reporting(pci_dev);
2654 };
2655
2656 /* NIC VPD information
2657 * Called during probe to display the part number of the
2658 * installed NIC. VPD is potentially very large but this should
2659 * always appear within the first 512 bytes.
2660 */
2661 #define SFC_VPD_LEN 512
2662 static void efx_print_product_vpd(struct efx_nic *efx)
2663 {
2664 struct pci_dev *dev = efx->pci_dev;
2665 char vpd_data[SFC_VPD_LEN];
2666 ssize_t vpd_size;
2667 int i, j;
2668
2669 /* Get the vpd data from the device */
2670 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2671 if (vpd_size <= 0) {
2672 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2673 return;
2674 }
2675
2676 /* Get the Read only section */
2677 i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2678 if (i < 0) {
2679 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2680 return;
2681 }
2682
2683 j = pci_vpd_lrdt_size(&vpd_data[i]);
2684 i += PCI_VPD_LRDT_TAG_SIZE;
2685 if (i + j > vpd_size)
2686 j = vpd_size - i;
2687
2688 /* Get the Part number */
2689 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2690 if (i < 0) {
2691 netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2692 return;
2693 }
2694
2695 j = pci_vpd_info_field_size(&vpd_data[i]);
2696 i += PCI_VPD_INFO_FLD_HDR_SIZE;
2697 if (i + j > vpd_size) {
2698 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2699 return;
2700 }
2701
2702 netif_info(efx, drv, efx->net_dev,
2703 "Part Number : %.*s\n", j, &vpd_data[i]);
2704 }
2705
2706
2707 /* Main body of NIC initialisation
2708 * This is called at module load (or hotplug insertion, theoretically).
2709 */
2710 static int efx_pci_probe_main(struct efx_nic *efx)
2711 {
2712 int rc;
2713
2714 /* Do start-of-day initialisation */
2715 rc = efx_probe_all(efx);
2716 if (rc)
2717 goto fail1;
2718
2719 efx_init_napi(efx);
2720
2721 rc = efx->type->init(efx);
2722 if (rc) {
2723 netif_err(efx, probe, efx->net_dev,
2724 "failed to initialise NIC\n");
2725 goto fail3;
2726 }
2727
2728 rc = efx_init_port(efx);
2729 if (rc) {
2730 netif_err(efx, probe, efx->net_dev,
2731 "failed to initialise port\n");
2732 goto fail4;
2733 }
2734
2735 rc = efx_nic_init_interrupt(efx);
2736 if (rc)
2737 goto fail5;
2738 rc = efx_enable_interrupts(efx);
2739 if (rc)
2740 goto fail6;
2741
2742 return 0;
2743
2744 fail6:
2745 efx_nic_fini_interrupt(efx);
2746 fail5:
2747 efx_fini_port(efx);
2748 fail4:
2749 efx->type->fini(efx);
2750 fail3:
2751 efx_fini_napi(efx);
2752 efx_remove_all(efx);
2753 fail1:
2754 return rc;
2755 }
2756
2757 /* NIC initialisation
2758 *
2759 * This is called at module load (or hotplug insertion,
2760 * theoretically). It sets up PCI mappings, resets the NIC,
2761 * sets up and registers the network devices with the kernel and hooks
2762 * the interrupt service routine. It does not prepare the device for
2763 * transmission; this is left to the first time one of the network
2764 * interfaces is brought up (i.e. efx_net_open).
2765 */
2766 static int efx_pci_probe(struct pci_dev *pci_dev,
2767 const struct pci_device_id *entry)
2768 {
2769 struct net_device *net_dev;
2770 struct efx_nic *efx;
2771 int rc;
2772
2773 /* Allocate and initialise a struct net_device and struct efx_nic */
2774 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2775 EFX_MAX_RX_QUEUES);
2776 if (!net_dev)
2777 return -ENOMEM;
2778 efx = netdev_priv(net_dev);
2779 efx->type = (const struct efx_nic_type *) entry->driver_data;
2780 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2781 NETIF_F_HIGHDMA | NETIF_F_TSO |
2782 NETIF_F_RXCSUM);
2783 if (efx->type->offload_features & NETIF_F_V6_CSUM)
2784 net_dev->features |= NETIF_F_TSO6;
2785 /* Mask for features that also apply to VLAN devices */
2786 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2787 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2788 NETIF_F_RXCSUM);
2789 /* All offloads can be toggled */
2790 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2791 pci_set_drvdata(pci_dev, efx);
2792 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2793 rc = efx_init_struct(efx, pci_dev, net_dev);
2794 if (rc)
2795 goto fail1;
2796
2797 netif_info(efx, probe, efx->net_dev,
2798 "Solarflare NIC detected\n");
2799
2800 efx_print_product_vpd(efx);
2801
2802 /* Set up basic I/O (BAR mappings etc) */
2803 rc = efx_init_io(efx);
2804 if (rc)
2805 goto fail2;
2806
2807 rc = efx_pci_probe_main(efx);
2808 if (rc)
2809 goto fail3;
2810
2811 rc = efx_register_netdev(efx);
2812 if (rc)
2813 goto fail4;
2814
2815 rc = efx_sriov_init(efx);
2816 if (rc)
2817 netif_err(efx, probe, efx->net_dev,
2818 "SR-IOV can't be enabled rc %d\n", rc);
2819
2820 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2821
2822 /* Try to create MTDs, but allow this to fail */
2823 rtnl_lock();
2824 rc = efx_mtd_probe(efx);
2825 rtnl_unlock();
2826 if (rc)
2827 netif_warn(efx, probe, efx->net_dev,
2828 "failed to create MTDs (%d)\n", rc);
2829
2830 rc = pci_enable_pcie_error_reporting(pci_dev);
2831 if (rc && rc != -EINVAL)
2832 netif_warn(efx, probe, efx->net_dev,
2833 "pci_enable_pcie_error_reporting failed (%d)\n", rc);
2834
2835 return 0;
2836
2837 fail4:
2838 efx_pci_remove_main(efx);
2839 fail3:
2840 efx_fini_io(efx);
2841 fail2:
2842 efx_fini_struct(efx);
2843 fail1:
2844 pci_set_drvdata(pci_dev, NULL);
2845 WARN_ON(rc > 0);
2846 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2847 free_netdev(net_dev);
2848 return rc;
2849 }
2850
2851 static int efx_pm_freeze(struct device *dev)
2852 {
2853 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2854
2855 rtnl_lock();
2856
2857 if (efx->state != STATE_DISABLED) {
2858 efx->state = STATE_UNINIT;
2859
2860 efx_device_detach_sync(efx);
2861
2862 efx_stop_all(efx);
2863 efx_disable_interrupts(efx);
2864 }
2865
2866 rtnl_unlock();
2867
2868 return 0;
2869 }
2870
2871 static int efx_pm_thaw(struct device *dev)
2872 {
2873 int rc;
2874 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2875
2876 rtnl_lock();
2877
2878 if (efx->state != STATE_DISABLED) {
2879 rc = efx_enable_interrupts(efx);
2880 if (rc)
2881 goto fail;
2882
2883 mutex_lock(&efx->mac_lock);
2884 efx->phy_op->reconfigure(efx);
2885 mutex_unlock(&efx->mac_lock);
2886
2887 efx_start_all(efx);
2888
2889 netif_device_attach(efx->net_dev);
2890
2891 efx->state = STATE_READY;
2892
2893 efx->type->resume_wol(efx);
2894 }
2895
2896 rtnl_unlock();
2897
2898 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2899 queue_work(reset_workqueue, &efx->reset_work);
2900
2901 return 0;
2902
2903 fail:
2904 rtnl_unlock();
2905
2906 return rc;
2907 }
2908
2909 static int efx_pm_poweroff(struct device *dev)
2910 {
2911 struct pci_dev *pci_dev = to_pci_dev(dev);
2912 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2913
2914 efx->type->fini(efx);
2915
2916 efx->reset_pending = 0;
2917
2918 pci_save_state(pci_dev);
2919 return pci_set_power_state(pci_dev, PCI_D3hot);
2920 }
2921
2922 /* Used for both resume and restore */
2923 static int efx_pm_resume(struct device *dev)
2924 {
2925 struct pci_dev *pci_dev = to_pci_dev(dev);
2926 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2927 int rc;
2928
2929 rc = pci_set_power_state(pci_dev, PCI_D0);
2930 if (rc)
2931 return rc;
2932 pci_restore_state(pci_dev);
2933 rc = pci_enable_device(pci_dev);
2934 if (rc)
2935 return rc;
2936 pci_set_master(efx->pci_dev);
2937 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2938 if (rc)
2939 return rc;
2940 rc = efx->type->init(efx);
2941 if (rc)
2942 return rc;
2943 rc = efx_pm_thaw(dev);
2944 return rc;
2945 }
2946
2947 static int efx_pm_suspend(struct device *dev)
2948 {
2949 int rc;
2950
2951 efx_pm_freeze(dev);
2952 rc = efx_pm_poweroff(dev);
2953 if (rc)
2954 efx_pm_resume(dev);
2955 return rc;
2956 }
2957
2958 static const struct dev_pm_ops efx_pm_ops = {
2959 .suspend = efx_pm_suspend,
2960 .resume = efx_pm_resume,
2961 .freeze = efx_pm_freeze,
2962 .thaw = efx_pm_thaw,
2963 .poweroff = efx_pm_poweroff,
2964 .restore = efx_pm_resume,
2965 };
2966
2967 /* A PCI error affecting this device was detected.
2968 * At this point MMIO and DMA may be disabled.
2969 * Stop the software path and request a slot reset.
2970 */
2971 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
2972 enum pci_channel_state state)
2973 {
2974 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
2975 struct efx_nic *efx = pci_get_drvdata(pdev);
2976
2977 if (state == pci_channel_io_perm_failure)
2978 return PCI_ERS_RESULT_DISCONNECT;
2979
2980 rtnl_lock();
2981
2982 if (efx->state != STATE_DISABLED) {
2983 efx->state = STATE_RECOVERY;
2984 efx->reset_pending = 0;
2985
2986 efx_device_detach_sync(efx);
2987
2988 efx_stop_all(efx);
2989 efx_disable_interrupts(efx);
2990
2991 status = PCI_ERS_RESULT_NEED_RESET;
2992 } else {
2993 /* If the interface is disabled we don't want to do anything
2994 * with it.
2995 */
2996 status = PCI_ERS_RESULT_RECOVERED;
2997 }
2998
2999 rtnl_unlock();
3000
3001 pci_disable_device(pdev);
3002
3003 return status;
3004 }
3005
3006 /* Fake a successfull reset, which will be performed later in efx_io_resume. */
3007 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3008 {
3009 struct efx_nic *efx = pci_get_drvdata(pdev);
3010 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3011 int rc;
3012
3013 if (pci_enable_device(pdev)) {
3014 netif_err(efx, hw, efx->net_dev,
3015 "Cannot re-enable PCI device after reset.\n");
3016 status = PCI_ERS_RESULT_DISCONNECT;
3017 }
3018
3019 rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3020 if (rc) {
3021 netif_err(efx, hw, efx->net_dev,
3022 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3023 /* Non-fatal error. Continue. */
3024 }
3025
3026 return status;
3027 }
3028
3029 /* Perform the actual reset and resume I/O operations. */
3030 static void efx_io_resume(struct pci_dev *pdev)
3031 {
3032 struct efx_nic *efx = pci_get_drvdata(pdev);
3033 int rc;
3034
3035 rtnl_lock();
3036
3037 if (efx->state == STATE_DISABLED)
3038 goto out;
3039
3040 rc = efx_reset(efx, RESET_TYPE_ALL);
3041 if (rc) {
3042 netif_err(efx, hw, efx->net_dev,
3043 "efx_reset failed after PCI error (%d)\n", rc);
3044 } else {
3045 efx->state = STATE_READY;
3046 netif_dbg(efx, hw, efx->net_dev,
3047 "Done resetting and resuming IO after PCI error.\n");
3048 }
3049
3050 out:
3051 rtnl_unlock();
3052 }
3053
3054 /* For simplicity and reliability, we always require a slot reset and try to
3055 * reset the hardware when a pci error affecting the device is detected.
3056 * We leave both the link_reset and mmio_enabled callback unimplemented:
3057 * with our request for slot reset the mmio_enabled callback will never be
3058 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3059 */
3060 static struct pci_error_handlers efx_err_handlers = {
3061 .error_detected = efx_io_error_detected,
3062 .slot_reset = efx_io_slot_reset,
3063 .resume = efx_io_resume,
3064 };
3065
3066 static struct pci_driver efx_pci_driver = {
3067 .name = KBUILD_MODNAME,
3068 .id_table = efx_pci_table,
3069 .probe = efx_pci_probe,
3070 .remove = efx_pci_remove,
3071 .driver.pm = &efx_pm_ops,
3072 .err_handler = &efx_err_handlers,
3073 };
3074
3075 /**************************************************************************
3076 *
3077 * Kernel module interface
3078 *
3079 *************************************************************************/
3080
3081 module_param(interrupt_mode, uint, 0444);
3082 MODULE_PARM_DESC(interrupt_mode,
3083 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3084
3085 static int __init efx_init_module(void)
3086 {
3087 int rc;
3088
3089 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3090
3091 rc = register_netdevice_notifier(&efx_netdev_notifier);
3092 if (rc)
3093 goto err_notifier;
3094
3095 rc = efx_init_sriov();
3096 if (rc)
3097 goto err_sriov;
3098
3099 reset_workqueue = create_singlethread_workqueue("sfc_reset");
3100 if (!reset_workqueue) {
3101 rc = -ENOMEM;
3102 goto err_reset;
3103 }
3104
3105 rc = pci_register_driver(&efx_pci_driver);
3106 if (rc < 0)
3107 goto err_pci;
3108
3109 return 0;
3110
3111 err_pci:
3112 destroy_workqueue(reset_workqueue);
3113 err_reset:
3114 efx_fini_sriov();
3115 err_sriov:
3116 unregister_netdevice_notifier(&efx_netdev_notifier);
3117 err_notifier:
3118 return rc;
3119 }
3120
3121 static void __exit efx_exit_module(void)
3122 {
3123 printk(KERN_INFO "Solarflare NET driver unloading\n");
3124
3125 pci_unregister_driver(&efx_pci_driver);
3126 destroy_workqueue(reset_workqueue);
3127 efx_fini_sriov();
3128 unregister_netdevice_notifier(&efx_netdev_notifier);
3129
3130 }
3131
3132 module_init(efx_init_module);
3133 module_exit(efx_exit_module);
3134
3135 MODULE_AUTHOR("Solarflare Communications and "
3136 "Michael Brown <mbrown@fensystems.co.uk>");
3137 MODULE_DESCRIPTION("Solarflare Communications network driver");
3138 MODULE_LICENSE("GPL");
3139 MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.094368 seconds and 6 git commands to generate.