Merge tag 'for-linus' of git://github.com/prasad-joshi/logfs_upstream
[deliverable/linux.git] / drivers / net / ethernet / sfc / efx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include <linux/gfp.h>
24 #include <linux/cpu_rmap.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28
29 #include "mcdi.h"
30 #include "workarounds.h"
31
32 /**************************************************************************
33 *
34 * Type name strings
35 *
36 **************************************************************************
37 */
38
39 /* Loopback mode names (see LOOPBACK_MODE()) */
40 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41 const char *efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
43 [LOOPBACK_DATA] = "DATAPATH",
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
69 };
70
71 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
72 const char *efx_reset_type_names[] = {
73 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
74 [RESET_TYPE_ALL] = "ALL",
75 [RESET_TYPE_WORLD] = "WORLD",
76 [RESET_TYPE_DISABLE] = "DISABLE",
77 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
78 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
79 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
80 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
81 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
82 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
83 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
84 };
85
86 #define EFX_MAX_MTU (9 * 1024)
87
88 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
89 * queued onto this work queue. This is not a per-nic work queue, because
90 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
91 */
92 static struct workqueue_struct *reset_workqueue;
93
94 /**************************************************************************
95 *
96 * Configurable values
97 *
98 *************************************************************************/
99
100 /*
101 * Use separate channels for TX and RX events
102 *
103 * Set this to 1 to use separate channels for TX and RX. It allows us
104 * to control interrupt affinity separately for TX and RX.
105 *
106 * This is only used in MSI-X interrupt mode
107 */
108 static unsigned int separate_tx_channels;
109 module_param(separate_tx_channels, uint, 0444);
110 MODULE_PARM_DESC(separate_tx_channels,
111 "Use separate channels for TX and RX");
112
113 /* This is the weight assigned to each of the (per-channel) virtual
114 * NAPI devices.
115 */
116 static int napi_weight = 64;
117
118 /* This is the time (in jiffies) between invocations of the hardware
119 * monitor. On Falcon-based NICs, this will:
120 * - Check the on-board hardware monitor;
121 * - Poll the link state and reconfigure the hardware as necessary.
122 */
123 static unsigned int efx_monitor_interval = 1 * HZ;
124
125 /* This controls whether or not the driver will initialise devices
126 * with invalid MAC addresses stored in the EEPROM or flash. If true,
127 * such devices will be initialised with a random locally-generated
128 * MAC address. This allows for loading the sfc_mtd driver to
129 * reprogram the flash, even if the flash contents (including the MAC
130 * address) have previously been erased.
131 */
132 static unsigned int allow_bad_hwaddr;
133
134 /* Initial interrupt moderation settings. They can be modified after
135 * module load with ethtool.
136 *
137 * The default for RX should strike a balance between increasing the
138 * round-trip latency and reducing overhead.
139 */
140 static unsigned int rx_irq_mod_usec = 60;
141
142 /* Initial interrupt moderation settings. They can be modified after
143 * module load with ethtool.
144 *
145 * This default is chosen to ensure that a 10G link does not go idle
146 * while a TX queue is stopped after it has become full. A queue is
147 * restarted when it drops below half full. The time this takes (assuming
148 * worst case 3 descriptors per packet and 1024 descriptors) is
149 * 512 / 3 * 1.2 = 205 usec.
150 */
151 static unsigned int tx_irq_mod_usec = 150;
152
153 /* This is the first interrupt mode to try out of:
154 * 0 => MSI-X
155 * 1 => MSI
156 * 2 => legacy
157 */
158 static unsigned int interrupt_mode;
159
160 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
161 * i.e. the number of CPUs among which we may distribute simultaneous
162 * interrupt handling.
163 *
164 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
165 * The default (0) means to assign an interrupt to each package (level II cache)
166 */
167 static unsigned int rss_cpus;
168 module_param(rss_cpus, uint, 0444);
169 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
170
171 static int phy_flash_cfg;
172 module_param(phy_flash_cfg, int, 0644);
173 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
174
175 static unsigned irq_adapt_low_thresh = 10000;
176 module_param(irq_adapt_low_thresh, uint, 0644);
177 MODULE_PARM_DESC(irq_adapt_low_thresh,
178 "Threshold score for reducing IRQ moderation");
179
180 static unsigned irq_adapt_high_thresh = 20000;
181 module_param(irq_adapt_high_thresh, uint, 0644);
182 MODULE_PARM_DESC(irq_adapt_high_thresh,
183 "Threshold score for increasing IRQ moderation");
184
185 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
186 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
187 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
188 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
189 module_param(debug, uint, 0);
190 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
191
192 /**************************************************************************
193 *
194 * Utility functions and prototypes
195 *
196 *************************************************************************/
197
198 static void efx_remove_channels(struct efx_nic *efx);
199 static void efx_remove_port(struct efx_nic *efx);
200 static void efx_init_napi(struct efx_nic *efx);
201 static void efx_fini_napi(struct efx_nic *efx);
202 static void efx_fini_napi_channel(struct efx_channel *channel);
203 static void efx_fini_struct(struct efx_nic *efx);
204 static void efx_start_all(struct efx_nic *efx);
205 static void efx_stop_all(struct efx_nic *efx);
206
207 #define EFX_ASSERT_RESET_SERIALISED(efx) \
208 do { \
209 if ((efx->state == STATE_RUNNING) || \
210 (efx->state == STATE_DISABLED)) \
211 ASSERT_RTNL(); \
212 } while (0)
213
214 /**************************************************************************
215 *
216 * Event queue processing
217 *
218 *************************************************************************/
219
220 /* Process channel's event queue
221 *
222 * This function is responsible for processing the event queue of a
223 * single channel. The caller must guarantee that this function will
224 * never be concurrently called more than once on the same channel,
225 * though different channels may be being processed concurrently.
226 */
227 static int efx_process_channel(struct efx_channel *channel, int budget)
228 {
229 struct efx_nic *efx = channel->efx;
230 int spent;
231
232 if (unlikely(efx->reset_pending || !channel->enabled))
233 return 0;
234
235 spent = efx_nic_process_eventq(channel, budget);
236 if (spent == 0)
237 return 0;
238
239 /* Deliver last RX packet. */
240 if (channel->rx_pkt) {
241 __efx_rx_packet(channel, channel->rx_pkt,
242 channel->rx_pkt_csummed);
243 channel->rx_pkt = NULL;
244 }
245
246 efx_rx_strategy(channel);
247
248 efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
249
250 return spent;
251 }
252
253 /* Mark channel as finished processing
254 *
255 * Note that since we will not receive further interrupts for this
256 * channel before we finish processing and call the eventq_read_ack()
257 * method, there is no need to use the interrupt hold-off timers.
258 */
259 static inline void efx_channel_processed(struct efx_channel *channel)
260 {
261 /* The interrupt handler for this channel may set work_pending
262 * as soon as we acknowledge the events we've seen. Make sure
263 * it's cleared before then. */
264 channel->work_pending = false;
265 smp_wmb();
266
267 efx_nic_eventq_read_ack(channel);
268 }
269
270 /* NAPI poll handler
271 *
272 * NAPI guarantees serialisation of polls of the same device, which
273 * provides the guarantee required by efx_process_channel().
274 */
275 static int efx_poll(struct napi_struct *napi, int budget)
276 {
277 struct efx_channel *channel =
278 container_of(napi, struct efx_channel, napi_str);
279 struct efx_nic *efx = channel->efx;
280 int spent;
281
282 netif_vdbg(efx, intr, efx->net_dev,
283 "channel %d NAPI poll executing on CPU %d\n",
284 channel->channel, raw_smp_processor_id());
285
286 spent = efx_process_channel(channel, budget);
287
288 if (spent < budget) {
289 if (channel->channel < efx->n_rx_channels &&
290 efx->irq_rx_adaptive &&
291 unlikely(++channel->irq_count == 1000)) {
292 if (unlikely(channel->irq_mod_score <
293 irq_adapt_low_thresh)) {
294 if (channel->irq_moderation > 1) {
295 channel->irq_moderation -= 1;
296 efx->type->push_irq_moderation(channel);
297 }
298 } else if (unlikely(channel->irq_mod_score >
299 irq_adapt_high_thresh)) {
300 if (channel->irq_moderation <
301 efx->irq_rx_moderation) {
302 channel->irq_moderation += 1;
303 efx->type->push_irq_moderation(channel);
304 }
305 }
306 channel->irq_count = 0;
307 channel->irq_mod_score = 0;
308 }
309
310 efx_filter_rfs_expire(channel);
311
312 /* There is no race here; although napi_disable() will
313 * only wait for napi_complete(), this isn't a problem
314 * since efx_channel_processed() will have no effect if
315 * interrupts have already been disabled.
316 */
317 napi_complete(napi);
318 efx_channel_processed(channel);
319 }
320
321 return spent;
322 }
323
324 /* Process the eventq of the specified channel immediately on this CPU
325 *
326 * Disable hardware generated interrupts, wait for any existing
327 * processing to finish, then directly poll (and ack ) the eventq.
328 * Finally reenable NAPI and interrupts.
329 *
330 * This is for use only during a loopback self-test. It must not
331 * deliver any packets up the stack as this can result in deadlock.
332 */
333 void efx_process_channel_now(struct efx_channel *channel)
334 {
335 struct efx_nic *efx = channel->efx;
336
337 BUG_ON(channel->channel >= efx->n_channels);
338 BUG_ON(!channel->enabled);
339 BUG_ON(!efx->loopback_selftest);
340
341 /* Disable interrupts and wait for ISRs to complete */
342 efx_nic_disable_interrupts(efx);
343 if (efx->legacy_irq) {
344 synchronize_irq(efx->legacy_irq);
345 efx->legacy_irq_enabled = false;
346 }
347 if (channel->irq)
348 synchronize_irq(channel->irq);
349
350 /* Wait for any NAPI processing to complete */
351 napi_disable(&channel->napi_str);
352
353 /* Poll the channel */
354 efx_process_channel(channel, channel->eventq_mask + 1);
355
356 /* Ack the eventq. This may cause an interrupt to be generated
357 * when they are reenabled */
358 efx_channel_processed(channel);
359
360 napi_enable(&channel->napi_str);
361 if (efx->legacy_irq)
362 efx->legacy_irq_enabled = true;
363 efx_nic_enable_interrupts(efx);
364 }
365
366 /* Create event queue
367 * Event queue memory allocations are done only once. If the channel
368 * is reset, the memory buffer will be reused; this guards against
369 * errors during channel reset and also simplifies interrupt handling.
370 */
371 static int efx_probe_eventq(struct efx_channel *channel)
372 {
373 struct efx_nic *efx = channel->efx;
374 unsigned long entries;
375
376 netif_dbg(channel->efx, probe, channel->efx->net_dev,
377 "chan %d create event queue\n", channel->channel);
378
379 /* Build an event queue with room for one event per tx and rx buffer,
380 * plus some extra for link state events and MCDI completions. */
381 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
382 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
383 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
384
385 return efx_nic_probe_eventq(channel);
386 }
387
388 /* Prepare channel's event queue */
389 static void efx_init_eventq(struct efx_channel *channel)
390 {
391 netif_dbg(channel->efx, drv, channel->efx->net_dev,
392 "chan %d init event queue\n", channel->channel);
393
394 channel->eventq_read_ptr = 0;
395
396 efx_nic_init_eventq(channel);
397 }
398
399 static void efx_fini_eventq(struct efx_channel *channel)
400 {
401 netif_dbg(channel->efx, drv, channel->efx->net_dev,
402 "chan %d fini event queue\n", channel->channel);
403
404 efx_nic_fini_eventq(channel);
405 }
406
407 static void efx_remove_eventq(struct efx_channel *channel)
408 {
409 netif_dbg(channel->efx, drv, channel->efx->net_dev,
410 "chan %d remove event queue\n", channel->channel);
411
412 efx_nic_remove_eventq(channel);
413 }
414
415 /**************************************************************************
416 *
417 * Channel handling
418 *
419 *************************************************************************/
420
421 /* Allocate and initialise a channel structure, optionally copying
422 * parameters (but not resources) from an old channel structure. */
423 static struct efx_channel *
424 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
425 {
426 struct efx_channel *channel;
427 struct efx_rx_queue *rx_queue;
428 struct efx_tx_queue *tx_queue;
429 int j;
430
431 if (old_channel) {
432 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
433 if (!channel)
434 return NULL;
435
436 *channel = *old_channel;
437
438 channel->napi_dev = NULL;
439 memset(&channel->eventq, 0, sizeof(channel->eventq));
440
441 rx_queue = &channel->rx_queue;
442 rx_queue->buffer = NULL;
443 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
444
445 for (j = 0; j < EFX_TXQ_TYPES; j++) {
446 tx_queue = &channel->tx_queue[j];
447 if (tx_queue->channel)
448 tx_queue->channel = channel;
449 tx_queue->buffer = NULL;
450 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
451 }
452 } else {
453 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
454 if (!channel)
455 return NULL;
456
457 channel->efx = efx;
458 channel->channel = i;
459
460 for (j = 0; j < EFX_TXQ_TYPES; j++) {
461 tx_queue = &channel->tx_queue[j];
462 tx_queue->efx = efx;
463 tx_queue->queue = i * EFX_TXQ_TYPES + j;
464 tx_queue->channel = channel;
465 }
466 }
467
468 rx_queue = &channel->rx_queue;
469 rx_queue->efx = efx;
470 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
471 (unsigned long)rx_queue);
472
473 return channel;
474 }
475
476 static int efx_probe_channel(struct efx_channel *channel)
477 {
478 struct efx_tx_queue *tx_queue;
479 struct efx_rx_queue *rx_queue;
480 int rc;
481
482 netif_dbg(channel->efx, probe, channel->efx->net_dev,
483 "creating channel %d\n", channel->channel);
484
485 rc = efx_probe_eventq(channel);
486 if (rc)
487 goto fail1;
488
489 efx_for_each_channel_tx_queue(tx_queue, channel) {
490 rc = efx_probe_tx_queue(tx_queue);
491 if (rc)
492 goto fail2;
493 }
494
495 efx_for_each_channel_rx_queue(rx_queue, channel) {
496 rc = efx_probe_rx_queue(rx_queue);
497 if (rc)
498 goto fail3;
499 }
500
501 channel->n_rx_frm_trunc = 0;
502
503 return 0;
504
505 fail3:
506 efx_for_each_channel_rx_queue(rx_queue, channel)
507 efx_remove_rx_queue(rx_queue);
508 fail2:
509 efx_for_each_channel_tx_queue(tx_queue, channel)
510 efx_remove_tx_queue(tx_queue);
511 fail1:
512 return rc;
513 }
514
515
516 static void efx_set_channel_names(struct efx_nic *efx)
517 {
518 struct efx_channel *channel;
519 const char *type = "";
520 int number;
521
522 efx_for_each_channel(channel, efx) {
523 number = channel->channel;
524 if (efx->n_channels > efx->n_rx_channels) {
525 if (channel->channel < efx->n_rx_channels) {
526 type = "-rx";
527 } else {
528 type = "-tx";
529 number -= efx->n_rx_channels;
530 }
531 }
532 snprintf(efx->channel_name[channel->channel],
533 sizeof(efx->channel_name[0]),
534 "%s%s-%d", efx->name, type, number);
535 }
536 }
537
538 static int efx_probe_channels(struct efx_nic *efx)
539 {
540 struct efx_channel *channel;
541 int rc;
542
543 /* Restart special buffer allocation */
544 efx->next_buffer_table = 0;
545
546 efx_for_each_channel(channel, efx) {
547 rc = efx_probe_channel(channel);
548 if (rc) {
549 netif_err(efx, probe, efx->net_dev,
550 "failed to create channel %d\n",
551 channel->channel);
552 goto fail;
553 }
554 }
555 efx_set_channel_names(efx);
556
557 return 0;
558
559 fail:
560 efx_remove_channels(efx);
561 return rc;
562 }
563
564 /* Channels are shutdown and reinitialised whilst the NIC is running
565 * to propagate configuration changes (mtu, checksum offload), or
566 * to clear hardware error conditions
567 */
568 static void efx_init_channels(struct efx_nic *efx)
569 {
570 struct efx_tx_queue *tx_queue;
571 struct efx_rx_queue *rx_queue;
572 struct efx_channel *channel;
573
574 /* Calculate the rx buffer allocation parameters required to
575 * support the current MTU, including padding for header
576 * alignment and overruns.
577 */
578 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
579 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
580 efx->type->rx_buffer_hash_size +
581 efx->type->rx_buffer_padding);
582 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
583 sizeof(struct efx_rx_page_state));
584
585 /* Initialise the channels */
586 efx_for_each_channel(channel, efx) {
587 netif_dbg(channel->efx, drv, channel->efx->net_dev,
588 "init chan %d\n", channel->channel);
589
590 efx_init_eventq(channel);
591
592 efx_for_each_channel_tx_queue(tx_queue, channel)
593 efx_init_tx_queue(tx_queue);
594
595 /* The rx buffer allocation strategy is MTU dependent */
596 efx_rx_strategy(channel);
597
598 efx_for_each_channel_rx_queue(rx_queue, channel)
599 efx_init_rx_queue(rx_queue);
600
601 WARN_ON(channel->rx_pkt != NULL);
602 efx_rx_strategy(channel);
603 }
604 }
605
606 /* This enables event queue processing and packet transmission.
607 *
608 * Note that this function is not allowed to fail, since that would
609 * introduce too much complexity into the suspend/resume path.
610 */
611 static void efx_start_channel(struct efx_channel *channel)
612 {
613 struct efx_rx_queue *rx_queue;
614
615 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
616 "starting chan %d\n", channel->channel);
617
618 /* The interrupt handler for this channel may set work_pending
619 * as soon as we enable it. Make sure it's cleared before
620 * then. Similarly, make sure it sees the enabled flag set. */
621 channel->work_pending = false;
622 channel->enabled = true;
623 smp_wmb();
624
625 /* Fill the queues before enabling NAPI */
626 efx_for_each_channel_rx_queue(rx_queue, channel)
627 efx_fast_push_rx_descriptors(rx_queue);
628
629 napi_enable(&channel->napi_str);
630 }
631
632 /* This disables event queue processing and packet transmission.
633 * This function does not guarantee that all queue processing
634 * (e.g. RX refill) is complete.
635 */
636 static void efx_stop_channel(struct efx_channel *channel)
637 {
638 if (!channel->enabled)
639 return;
640
641 netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
642 "stop chan %d\n", channel->channel);
643
644 channel->enabled = false;
645 napi_disable(&channel->napi_str);
646 }
647
648 static void efx_fini_channels(struct efx_nic *efx)
649 {
650 struct efx_channel *channel;
651 struct efx_tx_queue *tx_queue;
652 struct efx_rx_queue *rx_queue;
653 int rc;
654
655 EFX_ASSERT_RESET_SERIALISED(efx);
656 BUG_ON(efx->port_enabled);
657
658 rc = efx_nic_flush_queues(efx);
659 if (rc && EFX_WORKAROUND_7803(efx)) {
660 /* Schedule a reset to recover from the flush failure. The
661 * descriptor caches reference memory we're about to free,
662 * but falcon_reconfigure_mac_wrapper() won't reconnect
663 * the MACs because of the pending reset. */
664 netif_err(efx, drv, efx->net_dev,
665 "Resetting to recover from flush failure\n");
666 efx_schedule_reset(efx, RESET_TYPE_ALL);
667 } else if (rc) {
668 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
669 } else {
670 netif_dbg(efx, drv, efx->net_dev,
671 "successfully flushed all queues\n");
672 }
673
674 efx_for_each_channel(channel, efx) {
675 netif_dbg(channel->efx, drv, channel->efx->net_dev,
676 "shut down chan %d\n", channel->channel);
677
678 efx_for_each_channel_rx_queue(rx_queue, channel)
679 efx_fini_rx_queue(rx_queue);
680 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
681 efx_fini_tx_queue(tx_queue);
682 efx_fini_eventq(channel);
683 }
684 }
685
686 static void efx_remove_channel(struct efx_channel *channel)
687 {
688 struct efx_tx_queue *tx_queue;
689 struct efx_rx_queue *rx_queue;
690
691 netif_dbg(channel->efx, drv, channel->efx->net_dev,
692 "destroy chan %d\n", channel->channel);
693
694 efx_for_each_channel_rx_queue(rx_queue, channel)
695 efx_remove_rx_queue(rx_queue);
696 efx_for_each_possible_channel_tx_queue(tx_queue, channel)
697 efx_remove_tx_queue(tx_queue);
698 efx_remove_eventq(channel);
699 }
700
701 static void efx_remove_channels(struct efx_nic *efx)
702 {
703 struct efx_channel *channel;
704
705 efx_for_each_channel(channel, efx)
706 efx_remove_channel(channel);
707 }
708
709 int
710 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
711 {
712 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
713 u32 old_rxq_entries, old_txq_entries;
714 unsigned i;
715 int rc;
716
717 efx_stop_all(efx);
718 efx_fini_channels(efx);
719
720 /* Clone channels */
721 memset(other_channel, 0, sizeof(other_channel));
722 for (i = 0; i < efx->n_channels; i++) {
723 channel = efx_alloc_channel(efx, i, efx->channel[i]);
724 if (!channel) {
725 rc = -ENOMEM;
726 goto out;
727 }
728 other_channel[i] = channel;
729 }
730
731 /* Swap entry counts and channel pointers */
732 old_rxq_entries = efx->rxq_entries;
733 old_txq_entries = efx->txq_entries;
734 efx->rxq_entries = rxq_entries;
735 efx->txq_entries = txq_entries;
736 for (i = 0; i < efx->n_channels; i++) {
737 channel = efx->channel[i];
738 efx->channel[i] = other_channel[i];
739 other_channel[i] = channel;
740 }
741
742 rc = efx_probe_channels(efx);
743 if (rc)
744 goto rollback;
745
746 efx_init_napi(efx);
747
748 /* Destroy old channels */
749 for (i = 0; i < efx->n_channels; i++) {
750 efx_fini_napi_channel(other_channel[i]);
751 efx_remove_channel(other_channel[i]);
752 }
753 out:
754 /* Free unused channel structures */
755 for (i = 0; i < efx->n_channels; i++)
756 kfree(other_channel[i]);
757
758 efx_init_channels(efx);
759 efx_start_all(efx);
760 return rc;
761
762 rollback:
763 /* Swap back */
764 efx->rxq_entries = old_rxq_entries;
765 efx->txq_entries = old_txq_entries;
766 for (i = 0; i < efx->n_channels; i++) {
767 channel = efx->channel[i];
768 efx->channel[i] = other_channel[i];
769 other_channel[i] = channel;
770 }
771 goto out;
772 }
773
774 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
775 {
776 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
777 }
778
779 /**************************************************************************
780 *
781 * Port handling
782 *
783 **************************************************************************/
784
785 /* This ensures that the kernel is kept informed (via
786 * netif_carrier_on/off) of the link status, and also maintains the
787 * link status's stop on the port's TX queue.
788 */
789 void efx_link_status_changed(struct efx_nic *efx)
790 {
791 struct efx_link_state *link_state = &efx->link_state;
792
793 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
794 * that no events are triggered between unregister_netdev() and the
795 * driver unloading. A more general condition is that NETDEV_CHANGE
796 * can only be generated between NETDEV_UP and NETDEV_DOWN */
797 if (!netif_running(efx->net_dev))
798 return;
799
800 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
801 efx->n_link_state_changes++;
802
803 if (link_state->up)
804 netif_carrier_on(efx->net_dev);
805 else
806 netif_carrier_off(efx->net_dev);
807 }
808
809 /* Status message for kernel log */
810 if (link_state->up) {
811 netif_info(efx, link, efx->net_dev,
812 "link up at %uMbps %s-duplex (MTU %d)%s\n",
813 link_state->speed, link_state->fd ? "full" : "half",
814 efx->net_dev->mtu,
815 (efx->promiscuous ? " [PROMISC]" : ""));
816 } else {
817 netif_info(efx, link, efx->net_dev, "link down\n");
818 }
819
820 }
821
822 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
823 {
824 efx->link_advertising = advertising;
825 if (advertising) {
826 if (advertising & ADVERTISED_Pause)
827 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
828 else
829 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
830 if (advertising & ADVERTISED_Asym_Pause)
831 efx->wanted_fc ^= EFX_FC_TX;
832 }
833 }
834
835 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
836 {
837 efx->wanted_fc = wanted_fc;
838 if (efx->link_advertising) {
839 if (wanted_fc & EFX_FC_RX)
840 efx->link_advertising |= (ADVERTISED_Pause |
841 ADVERTISED_Asym_Pause);
842 else
843 efx->link_advertising &= ~(ADVERTISED_Pause |
844 ADVERTISED_Asym_Pause);
845 if (wanted_fc & EFX_FC_TX)
846 efx->link_advertising ^= ADVERTISED_Asym_Pause;
847 }
848 }
849
850 static void efx_fini_port(struct efx_nic *efx);
851
852 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
853 * the MAC appropriately. All other PHY configuration changes are pushed
854 * through phy_op->set_settings(), and pushed asynchronously to the MAC
855 * through efx_monitor().
856 *
857 * Callers must hold the mac_lock
858 */
859 int __efx_reconfigure_port(struct efx_nic *efx)
860 {
861 enum efx_phy_mode phy_mode;
862 int rc;
863
864 WARN_ON(!mutex_is_locked(&efx->mac_lock));
865
866 /* Serialise the promiscuous flag with efx_set_multicast_list. */
867 if (efx_dev_registered(efx)) {
868 netif_addr_lock_bh(efx->net_dev);
869 netif_addr_unlock_bh(efx->net_dev);
870 }
871
872 /* Disable PHY transmit in mac level loopbacks */
873 phy_mode = efx->phy_mode;
874 if (LOOPBACK_INTERNAL(efx))
875 efx->phy_mode |= PHY_MODE_TX_DISABLED;
876 else
877 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
878
879 rc = efx->type->reconfigure_port(efx);
880
881 if (rc)
882 efx->phy_mode = phy_mode;
883
884 return rc;
885 }
886
887 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
888 * disabled. */
889 int efx_reconfigure_port(struct efx_nic *efx)
890 {
891 int rc;
892
893 EFX_ASSERT_RESET_SERIALISED(efx);
894
895 mutex_lock(&efx->mac_lock);
896 rc = __efx_reconfigure_port(efx);
897 mutex_unlock(&efx->mac_lock);
898
899 return rc;
900 }
901
902 /* Asynchronous work item for changing MAC promiscuity and multicast
903 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
904 * MAC directly. */
905 static void efx_mac_work(struct work_struct *data)
906 {
907 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
908
909 mutex_lock(&efx->mac_lock);
910 if (efx->port_enabled) {
911 efx->type->push_multicast_hash(efx);
912 efx->mac_op->reconfigure(efx);
913 }
914 mutex_unlock(&efx->mac_lock);
915 }
916
917 static int efx_probe_port(struct efx_nic *efx)
918 {
919 unsigned char *perm_addr;
920 int rc;
921
922 netif_dbg(efx, probe, efx->net_dev, "create port\n");
923
924 if (phy_flash_cfg)
925 efx->phy_mode = PHY_MODE_SPECIAL;
926
927 /* Connect up MAC/PHY operations table */
928 rc = efx->type->probe_port(efx);
929 if (rc)
930 return rc;
931
932 /* Sanity check MAC address */
933 perm_addr = efx->net_dev->perm_addr;
934 if (is_valid_ether_addr(perm_addr)) {
935 memcpy(efx->net_dev->dev_addr, perm_addr, ETH_ALEN);
936 } else {
937 netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
938 perm_addr);
939 if (!allow_bad_hwaddr) {
940 rc = -EINVAL;
941 goto err;
942 }
943 random_ether_addr(efx->net_dev->dev_addr);
944 netif_info(efx, probe, efx->net_dev,
945 "using locally-generated MAC %pM\n",
946 efx->net_dev->dev_addr);
947 }
948
949 return 0;
950
951 err:
952 efx->type->remove_port(efx);
953 return rc;
954 }
955
956 static int efx_init_port(struct efx_nic *efx)
957 {
958 int rc;
959
960 netif_dbg(efx, drv, efx->net_dev, "init port\n");
961
962 mutex_lock(&efx->mac_lock);
963
964 rc = efx->phy_op->init(efx);
965 if (rc)
966 goto fail1;
967
968 efx->port_initialized = true;
969
970 /* Reconfigure the MAC before creating dma queues (required for
971 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
972 efx->mac_op->reconfigure(efx);
973
974 /* Ensure the PHY advertises the correct flow control settings */
975 rc = efx->phy_op->reconfigure(efx);
976 if (rc)
977 goto fail2;
978
979 mutex_unlock(&efx->mac_lock);
980 return 0;
981
982 fail2:
983 efx->phy_op->fini(efx);
984 fail1:
985 mutex_unlock(&efx->mac_lock);
986 return rc;
987 }
988
989 static void efx_start_port(struct efx_nic *efx)
990 {
991 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
992 BUG_ON(efx->port_enabled);
993
994 mutex_lock(&efx->mac_lock);
995 efx->port_enabled = true;
996
997 /* efx_mac_work() might have been scheduled after efx_stop_port(),
998 * and then cancelled by efx_flush_all() */
999 efx->type->push_multicast_hash(efx);
1000 efx->mac_op->reconfigure(efx);
1001
1002 mutex_unlock(&efx->mac_lock);
1003 }
1004
1005 /* Prevent efx_mac_work() and efx_monitor() from working */
1006 static void efx_stop_port(struct efx_nic *efx)
1007 {
1008 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1009
1010 mutex_lock(&efx->mac_lock);
1011 efx->port_enabled = false;
1012 mutex_unlock(&efx->mac_lock);
1013
1014 /* Serialise against efx_set_multicast_list() */
1015 if (efx_dev_registered(efx)) {
1016 netif_addr_lock_bh(efx->net_dev);
1017 netif_addr_unlock_bh(efx->net_dev);
1018 }
1019 }
1020
1021 static void efx_fini_port(struct efx_nic *efx)
1022 {
1023 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1024
1025 if (!efx->port_initialized)
1026 return;
1027
1028 efx->phy_op->fini(efx);
1029 efx->port_initialized = false;
1030
1031 efx->link_state.up = false;
1032 efx_link_status_changed(efx);
1033 }
1034
1035 static void efx_remove_port(struct efx_nic *efx)
1036 {
1037 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1038
1039 efx->type->remove_port(efx);
1040 }
1041
1042 /**************************************************************************
1043 *
1044 * NIC handling
1045 *
1046 **************************************************************************/
1047
1048 /* This configures the PCI device to enable I/O and DMA. */
1049 static int efx_init_io(struct efx_nic *efx)
1050 {
1051 struct pci_dev *pci_dev = efx->pci_dev;
1052 dma_addr_t dma_mask = efx->type->max_dma_mask;
1053 int rc;
1054
1055 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1056
1057 rc = pci_enable_device(pci_dev);
1058 if (rc) {
1059 netif_err(efx, probe, efx->net_dev,
1060 "failed to enable PCI device\n");
1061 goto fail1;
1062 }
1063
1064 pci_set_master(pci_dev);
1065
1066 /* Set the PCI DMA mask. Try all possibilities from our
1067 * genuine mask down to 32 bits, because some architectures
1068 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1069 * masks event though they reject 46 bit masks.
1070 */
1071 while (dma_mask > 0x7fffffffUL) {
1072 if (pci_dma_supported(pci_dev, dma_mask) &&
1073 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
1074 break;
1075 dma_mask >>= 1;
1076 }
1077 if (rc) {
1078 netif_err(efx, probe, efx->net_dev,
1079 "could not find a suitable DMA mask\n");
1080 goto fail2;
1081 }
1082 netif_dbg(efx, probe, efx->net_dev,
1083 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1084 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1085 if (rc) {
1086 /* pci_set_consistent_dma_mask() is not *allowed* to
1087 * fail with a mask that pci_set_dma_mask() accepted,
1088 * but just in case...
1089 */
1090 netif_err(efx, probe, efx->net_dev,
1091 "failed to set consistent DMA mask\n");
1092 goto fail2;
1093 }
1094
1095 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1096 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1097 if (rc) {
1098 netif_err(efx, probe, efx->net_dev,
1099 "request for memory BAR failed\n");
1100 rc = -EIO;
1101 goto fail3;
1102 }
1103 efx->membase = ioremap_nocache(efx->membase_phys,
1104 efx->type->mem_map_size);
1105 if (!efx->membase) {
1106 netif_err(efx, probe, efx->net_dev,
1107 "could not map memory BAR at %llx+%x\n",
1108 (unsigned long long)efx->membase_phys,
1109 efx->type->mem_map_size);
1110 rc = -ENOMEM;
1111 goto fail4;
1112 }
1113 netif_dbg(efx, probe, efx->net_dev,
1114 "memory BAR at %llx+%x (virtual %p)\n",
1115 (unsigned long long)efx->membase_phys,
1116 efx->type->mem_map_size, efx->membase);
1117
1118 return 0;
1119
1120 fail4:
1121 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1122 fail3:
1123 efx->membase_phys = 0;
1124 fail2:
1125 pci_disable_device(efx->pci_dev);
1126 fail1:
1127 return rc;
1128 }
1129
1130 static void efx_fini_io(struct efx_nic *efx)
1131 {
1132 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1133
1134 if (efx->membase) {
1135 iounmap(efx->membase);
1136 efx->membase = NULL;
1137 }
1138
1139 if (efx->membase_phys) {
1140 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1141 efx->membase_phys = 0;
1142 }
1143
1144 pci_disable_device(efx->pci_dev);
1145 }
1146
1147 /* Get number of channels wanted. Each channel will have its own IRQ,
1148 * 1 RX queue and/or 2 TX queues. */
1149 static int efx_wanted_channels(void)
1150 {
1151 cpumask_var_t core_mask;
1152 int count;
1153 int cpu;
1154
1155 if (rss_cpus)
1156 return rss_cpus;
1157
1158 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
1159 printk(KERN_WARNING
1160 "sfc: RSS disabled due to allocation failure\n");
1161 return 1;
1162 }
1163
1164 count = 0;
1165 for_each_online_cpu(cpu) {
1166 if (!cpumask_test_cpu(cpu, core_mask)) {
1167 ++count;
1168 cpumask_or(core_mask, core_mask,
1169 topology_core_cpumask(cpu));
1170 }
1171 }
1172
1173 free_cpumask_var(core_mask);
1174 return count;
1175 }
1176
1177 static int
1178 efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
1179 {
1180 #ifdef CONFIG_RFS_ACCEL
1181 int i, rc;
1182
1183 efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
1184 if (!efx->net_dev->rx_cpu_rmap)
1185 return -ENOMEM;
1186 for (i = 0; i < efx->n_rx_channels; i++) {
1187 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1188 xentries[i].vector);
1189 if (rc) {
1190 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1191 efx->net_dev->rx_cpu_rmap = NULL;
1192 return rc;
1193 }
1194 }
1195 #endif
1196 return 0;
1197 }
1198
1199 /* Probe the number and type of interrupts we are able to obtain, and
1200 * the resulting numbers of channels and RX queues.
1201 */
1202 static int efx_probe_interrupts(struct efx_nic *efx)
1203 {
1204 int max_channels =
1205 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1206 int rc, i;
1207
1208 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1209 struct msix_entry xentries[EFX_MAX_CHANNELS];
1210 int n_channels;
1211
1212 n_channels = efx_wanted_channels();
1213 if (separate_tx_channels)
1214 n_channels *= 2;
1215 n_channels = min(n_channels, max_channels);
1216
1217 for (i = 0; i < n_channels; i++)
1218 xentries[i].entry = i;
1219 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1220 if (rc > 0) {
1221 netif_err(efx, drv, efx->net_dev,
1222 "WARNING: Insufficient MSI-X vectors"
1223 " available (%d < %d).\n", rc, n_channels);
1224 netif_err(efx, drv, efx->net_dev,
1225 "WARNING: Performance may be reduced.\n");
1226 EFX_BUG_ON_PARANOID(rc >= n_channels);
1227 n_channels = rc;
1228 rc = pci_enable_msix(efx->pci_dev, xentries,
1229 n_channels);
1230 }
1231
1232 if (rc == 0) {
1233 efx->n_channels = n_channels;
1234 if (separate_tx_channels) {
1235 efx->n_tx_channels =
1236 max(efx->n_channels / 2, 1U);
1237 efx->n_rx_channels =
1238 max(efx->n_channels -
1239 efx->n_tx_channels, 1U);
1240 } else {
1241 efx->n_tx_channels = efx->n_channels;
1242 efx->n_rx_channels = efx->n_channels;
1243 }
1244 rc = efx_init_rx_cpu_rmap(efx, xentries);
1245 if (rc) {
1246 pci_disable_msix(efx->pci_dev);
1247 return rc;
1248 }
1249 for (i = 0; i < n_channels; i++)
1250 efx_get_channel(efx, i)->irq =
1251 xentries[i].vector;
1252 } else {
1253 /* Fall back to single channel MSI */
1254 efx->interrupt_mode = EFX_INT_MODE_MSI;
1255 netif_err(efx, drv, efx->net_dev,
1256 "could not enable MSI-X\n");
1257 }
1258 }
1259
1260 /* Try single interrupt MSI */
1261 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1262 efx->n_channels = 1;
1263 efx->n_rx_channels = 1;
1264 efx->n_tx_channels = 1;
1265 rc = pci_enable_msi(efx->pci_dev);
1266 if (rc == 0) {
1267 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1268 } else {
1269 netif_err(efx, drv, efx->net_dev,
1270 "could not enable MSI\n");
1271 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1272 }
1273 }
1274
1275 /* Assume legacy interrupts */
1276 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1277 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1278 efx->n_rx_channels = 1;
1279 efx->n_tx_channels = 1;
1280 efx->legacy_irq = efx->pci_dev->irq;
1281 }
1282
1283 return 0;
1284 }
1285
1286 static void efx_remove_interrupts(struct efx_nic *efx)
1287 {
1288 struct efx_channel *channel;
1289
1290 /* Remove MSI/MSI-X interrupts */
1291 efx_for_each_channel(channel, efx)
1292 channel->irq = 0;
1293 pci_disable_msi(efx->pci_dev);
1294 pci_disable_msix(efx->pci_dev);
1295
1296 /* Remove legacy interrupt */
1297 efx->legacy_irq = 0;
1298 }
1299
1300 static void efx_set_channels(struct efx_nic *efx)
1301 {
1302 struct efx_channel *channel;
1303 struct efx_tx_queue *tx_queue;
1304
1305 efx->tx_channel_offset =
1306 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1307
1308 /* We need to adjust the TX queue numbers if we have separate
1309 * RX-only and TX-only channels.
1310 */
1311 efx_for_each_channel(channel, efx) {
1312 efx_for_each_channel_tx_queue(tx_queue, channel)
1313 tx_queue->queue -= (efx->tx_channel_offset *
1314 EFX_TXQ_TYPES);
1315 }
1316 }
1317
1318 static int efx_probe_nic(struct efx_nic *efx)
1319 {
1320 size_t i;
1321 int rc;
1322
1323 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1324
1325 /* Carry out hardware-type specific initialisation */
1326 rc = efx->type->probe(efx);
1327 if (rc)
1328 return rc;
1329
1330 /* Determine the number of channels and queues by trying to hook
1331 * in MSI-X interrupts. */
1332 rc = efx_probe_interrupts(efx);
1333 if (rc)
1334 goto fail;
1335
1336 if (efx->n_channels > 1)
1337 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1338 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1339 efx->rx_indir_table[i] =
1340 ethtool_rxfh_indir_default(i, efx->n_rx_channels);
1341
1342 efx_set_channels(efx);
1343 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1344 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1345
1346 /* Initialise the interrupt moderation settings */
1347 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1348 true);
1349
1350 return 0;
1351
1352 fail:
1353 efx->type->remove(efx);
1354 return rc;
1355 }
1356
1357 static void efx_remove_nic(struct efx_nic *efx)
1358 {
1359 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1360
1361 efx_remove_interrupts(efx);
1362 efx->type->remove(efx);
1363 }
1364
1365 /**************************************************************************
1366 *
1367 * NIC startup/shutdown
1368 *
1369 *************************************************************************/
1370
1371 static int efx_probe_all(struct efx_nic *efx)
1372 {
1373 int rc;
1374
1375 rc = efx_probe_nic(efx);
1376 if (rc) {
1377 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1378 goto fail1;
1379 }
1380
1381 rc = efx_probe_port(efx);
1382 if (rc) {
1383 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1384 goto fail2;
1385 }
1386
1387 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1388 rc = efx_probe_channels(efx);
1389 if (rc)
1390 goto fail3;
1391
1392 rc = efx_probe_filters(efx);
1393 if (rc) {
1394 netif_err(efx, probe, efx->net_dev,
1395 "failed to create filter tables\n");
1396 goto fail4;
1397 }
1398
1399 return 0;
1400
1401 fail4:
1402 efx_remove_channels(efx);
1403 fail3:
1404 efx_remove_port(efx);
1405 fail2:
1406 efx_remove_nic(efx);
1407 fail1:
1408 return rc;
1409 }
1410
1411 /* Called after previous invocation(s) of efx_stop_all, restarts the
1412 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1413 * and ensures that the port is scheduled to be reconfigured.
1414 * This function is safe to call multiple times when the NIC is in any
1415 * state. */
1416 static void efx_start_all(struct efx_nic *efx)
1417 {
1418 struct efx_channel *channel;
1419
1420 EFX_ASSERT_RESET_SERIALISED(efx);
1421
1422 /* Check that it is appropriate to restart the interface. All
1423 * of these flags are safe to read under just the rtnl lock */
1424 if (efx->port_enabled)
1425 return;
1426 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1427 return;
1428 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1429 return;
1430
1431 /* Mark the port as enabled so port reconfigurations can start, then
1432 * restart the transmit interface early so the watchdog timer stops */
1433 efx_start_port(efx);
1434
1435 if (efx_dev_registered(efx) && netif_device_present(efx->net_dev))
1436 netif_tx_wake_all_queues(efx->net_dev);
1437
1438 efx_for_each_channel(channel, efx)
1439 efx_start_channel(channel);
1440
1441 if (efx->legacy_irq)
1442 efx->legacy_irq_enabled = true;
1443 efx_nic_enable_interrupts(efx);
1444
1445 /* Switch to event based MCDI completions after enabling interrupts.
1446 * If a reset has been scheduled, then we need to stay in polled mode.
1447 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1448 * reset_pending [modified from an atomic context], we instead guarantee
1449 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1450 efx_mcdi_mode_event(efx);
1451 if (efx->reset_pending)
1452 efx_mcdi_mode_poll(efx);
1453
1454 /* Start the hardware monitor if there is one. Otherwise (we're link
1455 * event driven), we have to poll the PHY because after an event queue
1456 * flush, we could have a missed a link state change */
1457 if (efx->type->monitor != NULL) {
1458 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1459 efx_monitor_interval);
1460 } else {
1461 mutex_lock(&efx->mac_lock);
1462 if (efx->phy_op->poll(efx))
1463 efx_link_status_changed(efx);
1464 mutex_unlock(&efx->mac_lock);
1465 }
1466
1467 efx->type->start_stats(efx);
1468 }
1469
1470 /* Flush all delayed work. Should only be called when no more delayed work
1471 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1472 * since we're holding the rtnl_lock at this point. */
1473 static void efx_flush_all(struct efx_nic *efx)
1474 {
1475 /* Make sure the hardware monitor is stopped */
1476 cancel_delayed_work_sync(&efx->monitor_work);
1477 /* Stop scheduled port reconfigurations */
1478 cancel_work_sync(&efx->mac_work);
1479 }
1480
1481 /* Quiesce hardware and software without bringing the link down.
1482 * Safe to call multiple times, when the nic and interface is in any
1483 * state. The caller is guaranteed to subsequently be in a position
1484 * to modify any hardware and software state they see fit without
1485 * taking locks. */
1486 static void efx_stop_all(struct efx_nic *efx)
1487 {
1488 struct efx_channel *channel;
1489
1490 EFX_ASSERT_RESET_SERIALISED(efx);
1491
1492 /* port_enabled can be read safely under the rtnl lock */
1493 if (!efx->port_enabled)
1494 return;
1495
1496 efx->type->stop_stats(efx);
1497
1498 /* Switch to MCDI polling on Siena before disabling interrupts */
1499 efx_mcdi_mode_poll(efx);
1500
1501 /* Disable interrupts and wait for ISR to complete */
1502 efx_nic_disable_interrupts(efx);
1503 if (efx->legacy_irq) {
1504 synchronize_irq(efx->legacy_irq);
1505 efx->legacy_irq_enabled = false;
1506 }
1507 efx_for_each_channel(channel, efx) {
1508 if (channel->irq)
1509 synchronize_irq(channel->irq);
1510 }
1511
1512 /* Stop all NAPI processing and synchronous rx refills */
1513 efx_for_each_channel(channel, efx)
1514 efx_stop_channel(channel);
1515
1516 /* Stop all asynchronous port reconfigurations. Since all
1517 * event processing has already been stopped, there is no
1518 * window to loose phy events */
1519 efx_stop_port(efx);
1520
1521 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
1522 efx_flush_all(efx);
1523
1524 /* Stop the kernel transmit interface late, so the watchdog
1525 * timer isn't ticking over the flush */
1526 if (efx_dev_registered(efx)) {
1527 netif_tx_stop_all_queues(efx->net_dev);
1528 netif_tx_lock_bh(efx->net_dev);
1529 netif_tx_unlock_bh(efx->net_dev);
1530 }
1531 }
1532
1533 static void efx_remove_all(struct efx_nic *efx)
1534 {
1535 efx_remove_filters(efx);
1536 efx_remove_channels(efx);
1537 efx_remove_port(efx);
1538 efx_remove_nic(efx);
1539 }
1540
1541 /**************************************************************************
1542 *
1543 * Interrupt moderation
1544 *
1545 **************************************************************************/
1546
1547 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int resolution)
1548 {
1549 if (usecs == 0)
1550 return 0;
1551 if (usecs < resolution)
1552 return 1; /* never round down to 0 */
1553 return usecs / resolution;
1554 }
1555
1556 /* Set interrupt moderation parameters */
1557 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1558 unsigned int rx_usecs, bool rx_adaptive,
1559 bool rx_may_override_tx)
1560 {
1561 struct efx_channel *channel;
1562 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1563 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
1564
1565 EFX_ASSERT_RESET_SERIALISED(efx);
1566
1567 if (tx_ticks > EFX_IRQ_MOD_MAX || rx_ticks > EFX_IRQ_MOD_MAX)
1568 return -EINVAL;
1569
1570 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1571 !rx_may_override_tx) {
1572 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1573 "RX and TX IRQ moderation must be equal\n");
1574 return -EINVAL;
1575 }
1576
1577 efx->irq_rx_adaptive = rx_adaptive;
1578 efx->irq_rx_moderation = rx_ticks;
1579 efx_for_each_channel(channel, efx) {
1580 if (efx_channel_has_rx_queue(channel))
1581 channel->irq_moderation = rx_ticks;
1582 else if (efx_channel_has_tx_queues(channel))
1583 channel->irq_moderation = tx_ticks;
1584 }
1585
1586 return 0;
1587 }
1588
1589 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1590 unsigned int *rx_usecs, bool *rx_adaptive)
1591 {
1592 *rx_adaptive = efx->irq_rx_adaptive;
1593 *rx_usecs = efx->irq_rx_moderation * EFX_IRQ_MOD_RESOLUTION;
1594
1595 /* If channels are shared between RX and TX, so is IRQ
1596 * moderation. Otherwise, IRQ moderation is the same for all
1597 * TX channels and is not adaptive.
1598 */
1599 if (efx->tx_channel_offset == 0)
1600 *tx_usecs = *rx_usecs;
1601 else
1602 *tx_usecs =
1603 efx->channel[efx->tx_channel_offset]->irq_moderation *
1604 EFX_IRQ_MOD_RESOLUTION;
1605 }
1606
1607 /**************************************************************************
1608 *
1609 * Hardware monitor
1610 *
1611 **************************************************************************/
1612
1613 /* Run periodically off the general workqueue */
1614 static void efx_monitor(struct work_struct *data)
1615 {
1616 struct efx_nic *efx = container_of(data, struct efx_nic,
1617 monitor_work.work);
1618
1619 netif_vdbg(efx, timer, efx->net_dev,
1620 "hardware monitor executing on CPU %d\n",
1621 raw_smp_processor_id());
1622 BUG_ON(efx->type->monitor == NULL);
1623
1624 /* If the mac_lock is already held then it is likely a port
1625 * reconfiguration is already in place, which will likely do
1626 * most of the work of monitor() anyway. */
1627 if (mutex_trylock(&efx->mac_lock)) {
1628 if (efx->port_enabled)
1629 efx->type->monitor(efx);
1630 mutex_unlock(&efx->mac_lock);
1631 }
1632
1633 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1634 efx_monitor_interval);
1635 }
1636
1637 /**************************************************************************
1638 *
1639 * ioctls
1640 *
1641 *************************************************************************/
1642
1643 /* Net device ioctl
1644 * Context: process, rtnl_lock() held.
1645 */
1646 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1647 {
1648 struct efx_nic *efx = netdev_priv(net_dev);
1649 struct mii_ioctl_data *data = if_mii(ifr);
1650
1651 EFX_ASSERT_RESET_SERIALISED(efx);
1652
1653 /* Convert phy_id from older PRTAD/DEVAD format */
1654 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1655 (data->phy_id & 0xfc00) == 0x0400)
1656 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1657
1658 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1659 }
1660
1661 /**************************************************************************
1662 *
1663 * NAPI interface
1664 *
1665 **************************************************************************/
1666
1667 static void efx_init_napi(struct efx_nic *efx)
1668 {
1669 struct efx_channel *channel;
1670
1671 efx_for_each_channel(channel, efx) {
1672 channel->napi_dev = efx->net_dev;
1673 netif_napi_add(channel->napi_dev, &channel->napi_str,
1674 efx_poll, napi_weight);
1675 }
1676 }
1677
1678 static void efx_fini_napi_channel(struct efx_channel *channel)
1679 {
1680 if (channel->napi_dev)
1681 netif_napi_del(&channel->napi_str);
1682 channel->napi_dev = NULL;
1683 }
1684
1685 static void efx_fini_napi(struct efx_nic *efx)
1686 {
1687 struct efx_channel *channel;
1688
1689 efx_for_each_channel(channel, efx)
1690 efx_fini_napi_channel(channel);
1691 }
1692
1693 /**************************************************************************
1694 *
1695 * Kernel netpoll interface
1696 *
1697 *************************************************************************/
1698
1699 #ifdef CONFIG_NET_POLL_CONTROLLER
1700
1701 /* Although in the common case interrupts will be disabled, this is not
1702 * guaranteed. However, all our work happens inside the NAPI callback,
1703 * so no locking is required.
1704 */
1705 static void efx_netpoll(struct net_device *net_dev)
1706 {
1707 struct efx_nic *efx = netdev_priv(net_dev);
1708 struct efx_channel *channel;
1709
1710 efx_for_each_channel(channel, efx)
1711 efx_schedule_channel(channel);
1712 }
1713
1714 #endif
1715
1716 /**************************************************************************
1717 *
1718 * Kernel net device interface
1719 *
1720 *************************************************************************/
1721
1722 /* Context: process, rtnl_lock() held. */
1723 static int efx_net_open(struct net_device *net_dev)
1724 {
1725 struct efx_nic *efx = netdev_priv(net_dev);
1726 EFX_ASSERT_RESET_SERIALISED(efx);
1727
1728 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1729 raw_smp_processor_id());
1730
1731 if (efx->state == STATE_DISABLED)
1732 return -EIO;
1733 if (efx->phy_mode & PHY_MODE_SPECIAL)
1734 return -EBUSY;
1735 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1736 return -EIO;
1737
1738 /* Notify the kernel of the link state polled during driver load,
1739 * before the monitor starts running */
1740 efx_link_status_changed(efx);
1741
1742 efx_start_all(efx);
1743 return 0;
1744 }
1745
1746 /* Context: process, rtnl_lock() held.
1747 * Note that the kernel will ignore our return code; this method
1748 * should really be a void.
1749 */
1750 static int efx_net_stop(struct net_device *net_dev)
1751 {
1752 struct efx_nic *efx = netdev_priv(net_dev);
1753
1754 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1755 raw_smp_processor_id());
1756
1757 if (efx->state != STATE_DISABLED) {
1758 /* Stop the device and flush all the channels */
1759 efx_stop_all(efx);
1760 efx_fini_channels(efx);
1761 efx_init_channels(efx);
1762 }
1763
1764 return 0;
1765 }
1766
1767 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1768 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
1769 {
1770 struct efx_nic *efx = netdev_priv(net_dev);
1771 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1772
1773 spin_lock_bh(&efx->stats_lock);
1774 efx->type->update_stats(efx);
1775 spin_unlock_bh(&efx->stats_lock);
1776
1777 stats->rx_packets = mac_stats->rx_packets;
1778 stats->tx_packets = mac_stats->tx_packets;
1779 stats->rx_bytes = mac_stats->rx_bytes;
1780 stats->tx_bytes = mac_stats->tx_bytes;
1781 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1782 stats->multicast = mac_stats->rx_multicast;
1783 stats->collisions = mac_stats->tx_collision;
1784 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1785 mac_stats->rx_length_error);
1786 stats->rx_crc_errors = mac_stats->rx_bad;
1787 stats->rx_frame_errors = mac_stats->rx_align_error;
1788 stats->rx_fifo_errors = mac_stats->rx_overflow;
1789 stats->rx_missed_errors = mac_stats->rx_missed;
1790 stats->tx_window_errors = mac_stats->tx_late_collision;
1791
1792 stats->rx_errors = (stats->rx_length_errors +
1793 stats->rx_crc_errors +
1794 stats->rx_frame_errors +
1795 mac_stats->rx_symbol_error);
1796 stats->tx_errors = (stats->tx_window_errors +
1797 mac_stats->tx_bad);
1798
1799 return stats;
1800 }
1801
1802 /* Context: netif_tx_lock held, BHs disabled. */
1803 static void efx_watchdog(struct net_device *net_dev)
1804 {
1805 struct efx_nic *efx = netdev_priv(net_dev);
1806
1807 netif_err(efx, tx_err, efx->net_dev,
1808 "TX stuck with port_enabled=%d: resetting channels\n",
1809 efx->port_enabled);
1810
1811 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1812 }
1813
1814
1815 /* Context: process, rtnl_lock() held. */
1816 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1817 {
1818 struct efx_nic *efx = netdev_priv(net_dev);
1819 int rc = 0;
1820
1821 EFX_ASSERT_RESET_SERIALISED(efx);
1822
1823 if (new_mtu > EFX_MAX_MTU)
1824 return -EINVAL;
1825
1826 efx_stop_all(efx);
1827
1828 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1829
1830 efx_fini_channels(efx);
1831
1832 mutex_lock(&efx->mac_lock);
1833 /* Reconfigure the MAC before enabling the dma queues so that
1834 * the RX buffers don't overflow */
1835 net_dev->mtu = new_mtu;
1836 efx->mac_op->reconfigure(efx);
1837 mutex_unlock(&efx->mac_lock);
1838
1839 efx_init_channels(efx);
1840
1841 efx_start_all(efx);
1842 return rc;
1843 }
1844
1845 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1846 {
1847 struct efx_nic *efx = netdev_priv(net_dev);
1848 struct sockaddr *addr = data;
1849 char *new_addr = addr->sa_data;
1850
1851 EFX_ASSERT_RESET_SERIALISED(efx);
1852
1853 if (!is_valid_ether_addr(new_addr)) {
1854 netif_err(efx, drv, efx->net_dev,
1855 "invalid ethernet MAC address requested: %pM\n",
1856 new_addr);
1857 return -EINVAL;
1858 }
1859
1860 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1861
1862 /* Reconfigure the MAC */
1863 mutex_lock(&efx->mac_lock);
1864 efx->mac_op->reconfigure(efx);
1865 mutex_unlock(&efx->mac_lock);
1866
1867 return 0;
1868 }
1869
1870 /* Context: netif_addr_lock held, BHs disabled. */
1871 static void efx_set_multicast_list(struct net_device *net_dev)
1872 {
1873 struct efx_nic *efx = netdev_priv(net_dev);
1874 struct netdev_hw_addr *ha;
1875 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1876 u32 crc;
1877 int bit;
1878
1879 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1880
1881 /* Build multicast hash table */
1882 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1883 memset(mc_hash, 0xff, sizeof(*mc_hash));
1884 } else {
1885 memset(mc_hash, 0x00, sizeof(*mc_hash));
1886 netdev_for_each_mc_addr(ha, net_dev) {
1887 crc = ether_crc_le(ETH_ALEN, ha->addr);
1888 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1889 set_bit_le(bit, mc_hash->byte);
1890 }
1891
1892 /* Broadcast packets go through the multicast hash filter.
1893 * ether_crc_le() of the broadcast address is 0xbe2612ff
1894 * so we always add bit 0xff to the mask.
1895 */
1896 set_bit_le(0xff, mc_hash->byte);
1897 }
1898
1899 if (efx->port_enabled)
1900 queue_work(efx->workqueue, &efx->mac_work);
1901 /* Otherwise efx_start_port() will do this */
1902 }
1903
1904 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
1905 {
1906 struct efx_nic *efx = netdev_priv(net_dev);
1907
1908 /* If disabling RX n-tuple filtering, clear existing filters */
1909 if (net_dev->features & ~data & NETIF_F_NTUPLE)
1910 efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
1911
1912 return 0;
1913 }
1914
1915 static const struct net_device_ops efx_netdev_ops = {
1916 .ndo_open = efx_net_open,
1917 .ndo_stop = efx_net_stop,
1918 .ndo_get_stats64 = efx_net_stats,
1919 .ndo_tx_timeout = efx_watchdog,
1920 .ndo_start_xmit = efx_hard_start_xmit,
1921 .ndo_validate_addr = eth_validate_addr,
1922 .ndo_do_ioctl = efx_ioctl,
1923 .ndo_change_mtu = efx_change_mtu,
1924 .ndo_set_mac_address = efx_set_mac_address,
1925 .ndo_set_rx_mode = efx_set_multicast_list,
1926 .ndo_set_features = efx_set_features,
1927 #ifdef CONFIG_NET_POLL_CONTROLLER
1928 .ndo_poll_controller = efx_netpoll,
1929 #endif
1930 .ndo_setup_tc = efx_setup_tc,
1931 #ifdef CONFIG_RFS_ACCEL
1932 .ndo_rx_flow_steer = efx_filter_rfs,
1933 #endif
1934 };
1935
1936 static void efx_update_name(struct efx_nic *efx)
1937 {
1938 strcpy(efx->name, efx->net_dev->name);
1939 efx_mtd_rename(efx);
1940 efx_set_channel_names(efx);
1941 }
1942
1943 static int efx_netdev_event(struct notifier_block *this,
1944 unsigned long event, void *ptr)
1945 {
1946 struct net_device *net_dev = ptr;
1947
1948 if (net_dev->netdev_ops == &efx_netdev_ops &&
1949 event == NETDEV_CHANGENAME)
1950 efx_update_name(netdev_priv(net_dev));
1951
1952 return NOTIFY_DONE;
1953 }
1954
1955 static struct notifier_block efx_netdev_notifier = {
1956 .notifier_call = efx_netdev_event,
1957 };
1958
1959 static ssize_t
1960 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1961 {
1962 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1963 return sprintf(buf, "%d\n", efx->phy_type);
1964 }
1965 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1966
1967 static int efx_register_netdev(struct efx_nic *efx)
1968 {
1969 struct net_device *net_dev = efx->net_dev;
1970 struct efx_channel *channel;
1971 int rc;
1972
1973 net_dev->watchdog_timeo = 5 * HZ;
1974 net_dev->irq = efx->pci_dev->irq;
1975 net_dev->netdev_ops = &efx_netdev_ops;
1976 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1977
1978 /* Clear MAC statistics */
1979 efx->mac_op->update_stats(efx);
1980 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1981
1982 rtnl_lock();
1983
1984 rc = dev_alloc_name(net_dev, net_dev->name);
1985 if (rc < 0)
1986 goto fail_locked;
1987 efx_update_name(efx);
1988
1989 rc = register_netdevice(net_dev);
1990 if (rc)
1991 goto fail_locked;
1992
1993 efx_for_each_channel(channel, efx) {
1994 struct efx_tx_queue *tx_queue;
1995 efx_for_each_channel_tx_queue(tx_queue, channel)
1996 efx_init_tx_queue_core_txq(tx_queue);
1997 }
1998
1999 /* Always start with carrier off; PHY events will detect the link */
2000 netif_carrier_off(efx->net_dev);
2001
2002 rtnl_unlock();
2003
2004 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2005 if (rc) {
2006 netif_err(efx, drv, efx->net_dev,
2007 "failed to init net dev attributes\n");
2008 goto fail_registered;
2009 }
2010
2011 return 0;
2012
2013 fail_locked:
2014 rtnl_unlock();
2015 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2016 return rc;
2017
2018 fail_registered:
2019 unregister_netdev(net_dev);
2020 return rc;
2021 }
2022
2023 static void efx_unregister_netdev(struct efx_nic *efx)
2024 {
2025 struct efx_channel *channel;
2026 struct efx_tx_queue *tx_queue;
2027
2028 if (!efx->net_dev)
2029 return;
2030
2031 BUG_ON(netdev_priv(efx->net_dev) != efx);
2032
2033 /* Free up any skbs still remaining. This has to happen before
2034 * we try to unregister the netdev as running their destructors
2035 * may be needed to get the device ref. count to 0. */
2036 efx_for_each_channel(channel, efx) {
2037 efx_for_each_channel_tx_queue(tx_queue, channel)
2038 efx_release_tx_buffers(tx_queue);
2039 }
2040
2041 if (efx_dev_registered(efx)) {
2042 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2043 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2044 unregister_netdev(efx->net_dev);
2045 }
2046 }
2047
2048 /**************************************************************************
2049 *
2050 * Device reset and suspend
2051 *
2052 **************************************************************************/
2053
2054 /* Tears down the entire software state and most of the hardware state
2055 * before reset. */
2056 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2057 {
2058 EFX_ASSERT_RESET_SERIALISED(efx);
2059
2060 efx_stop_all(efx);
2061 mutex_lock(&efx->mac_lock);
2062
2063 efx_fini_channels(efx);
2064 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2065 efx->phy_op->fini(efx);
2066 efx->type->fini(efx);
2067 }
2068
2069 /* This function will always ensure that the locks acquired in
2070 * efx_reset_down() are released. A failure return code indicates
2071 * that we were unable to reinitialise the hardware, and the
2072 * driver should be disabled. If ok is false, then the rx and tx
2073 * engines are not restarted, pending a RESET_DISABLE. */
2074 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2075 {
2076 int rc;
2077
2078 EFX_ASSERT_RESET_SERIALISED(efx);
2079
2080 rc = efx->type->init(efx);
2081 if (rc) {
2082 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2083 goto fail;
2084 }
2085
2086 if (!ok)
2087 goto fail;
2088
2089 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2090 rc = efx->phy_op->init(efx);
2091 if (rc)
2092 goto fail;
2093 if (efx->phy_op->reconfigure(efx))
2094 netif_err(efx, drv, efx->net_dev,
2095 "could not restore PHY settings\n");
2096 }
2097
2098 efx->mac_op->reconfigure(efx);
2099
2100 efx_init_channels(efx);
2101 efx_restore_filters(efx);
2102
2103 mutex_unlock(&efx->mac_lock);
2104
2105 efx_start_all(efx);
2106
2107 return 0;
2108
2109 fail:
2110 efx->port_initialized = false;
2111
2112 mutex_unlock(&efx->mac_lock);
2113
2114 return rc;
2115 }
2116
2117 /* Reset the NIC using the specified method. Note that the reset may
2118 * fail, in which case the card will be left in an unusable state.
2119 *
2120 * Caller must hold the rtnl_lock.
2121 */
2122 int efx_reset(struct efx_nic *efx, enum reset_type method)
2123 {
2124 int rc, rc2;
2125 bool disabled;
2126
2127 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2128 RESET_TYPE(method));
2129
2130 netif_device_detach(efx->net_dev);
2131 efx_reset_down(efx, method);
2132
2133 rc = efx->type->reset(efx, method);
2134 if (rc) {
2135 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2136 goto out;
2137 }
2138
2139 /* Clear flags for the scopes we covered. We assume the NIC and
2140 * driver are now quiescent so that there is no race here.
2141 */
2142 efx->reset_pending &= -(1 << (method + 1));
2143
2144 /* Reinitialise bus-mastering, which may have been turned off before
2145 * the reset was scheduled. This is still appropriate, even in the
2146 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2147 * can respond to requests. */
2148 pci_set_master(efx->pci_dev);
2149
2150 out:
2151 /* Leave device stopped if necessary */
2152 disabled = rc || method == RESET_TYPE_DISABLE;
2153 rc2 = efx_reset_up(efx, method, !disabled);
2154 if (rc2) {
2155 disabled = true;
2156 if (!rc)
2157 rc = rc2;
2158 }
2159
2160 if (disabled) {
2161 dev_close(efx->net_dev);
2162 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2163 efx->state = STATE_DISABLED;
2164 } else {
2165 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2166 netif_device_attach(efx->net_dev);
2167 }
2168 return rc;
2169 }
2170
2171 /* The worker thread exists so that code that cannot sleep can
2172 * schedule a reset for later.
2173 */
2174 static void efx_reset_work(struct work_struct *data)
2175 {
2176 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2177 unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2178
2179 if (!pending)
2180 return;
2181
2182 /* If we're not RUNNING then don't reset. Leave the reset_pending
2183 * flags set so that efx_pci_probe_main will be retried */
2184 if (efx->state != STATE_RUNNING) {
2185 netif_info(efx, drv, efx->net_dev,
2186 "scheduled reset quenched. NIC not RUNNING\n");
2187 return;
2188 }
2189
2190 rtnl_lock();
2191 (void)efx_reset(efx, fls(pending) - 1);
2192 rtnl_unlock();
2193 }
2194
2195 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2196 {
2197 enum reset_type method;
2198
2199 switch (type) {
2200 case RESET_TYPE_INVISIBLE:
2201 case RESET_TYPE_ALL:
2202 case RESET_TYPE_WORLD:
2203 case RESET_TYPE_DISABLE:
2204 method = type;
2205 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2206 RESET_TYPE(method));
2207 break;
2208 default:
2209 method = efx->type->map_reset_reason(type);
2210 netif_dbg(efx, drv, efx->net_dev,
2211 "scheduling %s reset for %s\n",
2212 RESET_TYPE(method), RESET_TYPE(type));
2213 break;
2214 }
2215
2216 set_bit(method, &efx->reset_pending);
2217
2218 /* efx_process_channel() will no longer read events once a
2219 * reset is scheduled. So switch back to poll'd MCDI completions. */
2220 efx_mcdi_mode_poll(efx);
2221
2222 queue_work(reset_workqueue, &efx->reset_work);
2223 }
2224
2225 /**************************************************************************
2226 *
2227 * List of NICs we support
2228 *
2229 **************************************************************************/
2230
2231 /* PCI device ID table */
2232 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2233 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2234 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2235 .driver_data = (unsigned long) &falcon_a1_nic_type},
2236 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2237 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2238 .driver_data = (unsigned long) &falcon_b0_nic_type},
2239 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
2240 .driver_data = (unsigned long) &siena_a0_nic_type},
2241 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
2242 .driver_data = (unsigned long) &siena_a0_nic_type},
2243 {0} /* end of list */
2244 };
2245
2246 /**************************************************************************
2247 *
2248 * Dummy PHY/MAC operations
2249 *
2250 * Can be used for some unimplemented operations
2251 * Needed so all function pointers are valid and do not have to be tested
2252 * before use
2253 *
2254 **************************************************************************/
2255 int efx_port_dummy_op_int(struct efx_nic *efx)
2256 {
2257 return 0;
2258 }
2259 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2260
2261 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2262 {
2263 return false;
2264 }
2265
2266 static const struct efx_phy_operations efx_dummy_phy_operations = {
2267 .init = efx_port_dummy_op_int,
2268 .reconfigure = efx_port_dummy_op_int,
2269 .poll = efx_port_dummy_op_poll,
2270 .fini = efx_port_dummy_op_void,
2271 };
2272
2273 /**************************************************************************
2274 *
2275 * Data housekeeping
2276 *
2277 **************************************************************************/
2278
2279 /* This zeroes out and then fills in the invariants in a struct
2280 * efx_nic (including all sub-structures).
2281 */
2282 static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
2283 struct pci_dev *pci_dev, struct net_device *net_dev)
2284 {
2285 int i;
2286
2287 /* Initialise common structures */
2288 memset(efx, 0, sizeof(*efx));
2289 spin_lock_init(&efx->biu_lock);
2290 #ifdef CONFIG_SFC_MTD
2291 INIT_LIST_HEAD(&efx->mtd_list);
2292 #endif
2293 INIT_WORK(&efx->reset_work, efx_reset_work);
2294 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2295 efx->pci_dev = pci_dev;
2296 efx->msg_enable = debug;
2297 efx->state = STATE_INIT;
2298 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2299
2300 efx->net_dev = net_dev;
2301 spin_lock_init(&efx->stats_lock);
2302 mutex_init(&efx->mac_lock);
2303 efx->mac_op = type->default_mac_ops;
2304 efx->phy_op = &efx_dummy_phy_operations;
2305 efx->mdio.dev = net_dev;
2306 INIT_WORK(&efx->mac_work, efx_mac_work);
2307
2308 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2309 efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2310 if (!efx->channel[i])
2311 goto fail;
2312 }
2313
2314 efx->type = type;
2315
2316 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2317
2318 /* Higher numbered interrupt modes are less capable! */
2319 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2320 interrupt_mode);
2321
2322 /* Would be good to use the net_dev name, but we're too early */
2323 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2324 pci_name(pci_dev));
2325 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2326 if (!efx->workqueue)
2327 goto fail;
2328
2329 return 0;
2330
2331 fail:
2332 efx_fini_struct(efx);
2333 return -ENOMEM;
2334 }
2335
2336 static void efx_fini_struct(struct efx_nic *efx)
2337 {
2338 int i;
2339
2340 for (i = 0; i < EFX_MAX_CHANNELS; i++)
2341 kfree(efx->channel[i]);
2342
2343 if (efx->workqueue) {
2344 destroy_workqueue(efx->workqueue);
2345 efx->workqueue = NULL;
2346 }
2347 }
2348
2349 /**************************************************************************
2350 *
2351 * PCI interface
2352 *
2353 **************************************************************************/
2354
2355 /* Main body of final NIC shutdown code
2356 * This is called only at module unload (or hotplug removal).
2357 */
2358 static void efx_pci_remove_main(struct efx_nic *efx)
2359 {
2360 #ifdef CONFIG_RFS_ACCEL
2361 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
2362 efx->net_dev->rx_cpu_rmap = NULL;
2363 #endif
2364 efx_nic_fini_interrupt(efx);
2365 efx_fini_channels(efx);
2366 efx_fini_port(efx);
2367 efx->type->fini(efx);
2368 efx_fini_napi(efx);
2369 efx_remove_all(efx);
2370 }
2371
2372 /* Final NIC shutdown
2373 * This is called only at module unload (or hotplug removal).
2374 */
2375 static void efx_pci_remove(struct pci_dev *pci_dev)
2376 {
2377 struct efx_nic *efx;
2378
2379 efx = pci_get_drvdata(pci_dev);
2380 if (!efx)
2381 return;
2382
2383 /* Mark the NIC as fini, then stop the interface */
2384 rtnl_lock();
2385 efx->state = STATE_FINI;
2386 dev_close(efx->net_dev);
2387
2388 /* Allow any queued efx_resets() to complete */
2389 rtnl_unlock();
2390
2391 efx_unregister_netdev(efx);
2392
2393 efx_mtd_remove(efx);
2394
2395 /* Wait for any scheduled resets to complete. No more will be
2396 * scheduled from this point because efx_stop_all() has been
2397 * called, we are no longer registered with driverlink, and
2398 * the net_device's have been removed. */
2399 cancel_work_sync(&efx->reset_work);
2400
2401 efx_pci_remove_main(efx);
2402
2403 efx_fini_io(efx);
2404 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2405
2406 pci_set_drvdata(pci_dev, NULL);
2407 efx_fini_struct(efx);
2408 free_netdev(efx->net_dev);
2409 };
2410
2411 /* Main body of NIC initialisation
2412 * This is called at module load (or hotplug insertion, theoretically).
2413 */
2414 static int efx_pci_probe_main(struct efx_nic *efx)
2415 {
2416 int rc;
2417
2418 /* Do start-of-day initialisation */
2419 rc = efx_probe_all(efx);
2420 if (rc)
2421 goto fail1;
2422
2423 efx_init_napi(efx);
2424
2425 rc = efx->type->init(efx);
2426 if (rc) {
2427 netif_err(efx, probe, efx->net_dev,
2428 "failed to initialise NIC\n");
2429 goto fail3;
2430 }
2431
2432 rc = efx_init_port(efx);
2433 if (rc) {
2434 netif_err(efx, probe, efx->net_dev,
2435 "failed to initialise port\n");
2436 goto fail4;
2437 }
2438
2439 efx_init_channels(efx);
2440
2441 rc = efx_nic_init_interrupt(efx);
2442 if (rc)
2443 goto fail5;
2444
2445 return 0;
2446
2447 fail5:
2448 efx_fini_channels(efx);
2449 efx_fini_port(efx);
2450 fail4:
2451 efx->type->fini(efx);
2452 fail3:
2453 efx_fini_napi(efx);
2454 efx_remove_all(efx);
2455 fail1:
2456 return rc;
2457 }
2458
2459 /* NIC initialisation
2460 *
2461 * This is called at module load (or hotplug insertion,
2462 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2463 * sets up and registers the network devices with the kernel and hooks
2464 * the interrupt service routine. It does not prepare the device for
2465 * transmission; this is left to the first time one of the network
2466 * interfaces is brought up (i.e. efx_net_open).
2467 */
2468 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2469 const struct pci_device_id *entry)
2470 {
2471 const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
2472 struct net_device *net_dev;
2473 struct efx_nic *efx;
2474 int i, rc;
2475
2476 /* Allocate and initialise a struct net_device and struct efx_nic */
2477 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2478 EFX_MAX_RX_QUEUES);
2479 if (!net_dev)
2480 return -ENOMEM;
2481 net_dev->features |= (type->offload_features | NETIF_F_SG |
2482 NETIF_F_HIGHDMA | NETIF_F_TSO |
2483 NETIF_F_RXCSUM);
2484 if (type->offload_features & NETIF_F_V6_CSUM)
2485 net_dev->features |= NETIF_F_TSO6;
2486 /* Mask for features that also apply to VLAN devices */
2487 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2488 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2489 NETIF_F_RXCSUM);
2490 /* All offloads can be toggled */
2491 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2492 efx = netdev_priv(net_dev);
2493 pci_set_drvdata(pci_dev, efx);
2494 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2495 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2496 if (rc)
2497 goto fail1;
2498
2499 netif_info(efx, probe, efx->net_dev,
2500 "Solarflare NIC detected\n");
2501
2502 /* Set up basic I/O (BAR mappings etc) */
2503 rc = efx_init_io(efx);
2504 if (rc)
2505 goto fail2;
2506
2507 /* No serialisation is required with the reset path because
2508 * we're in STATE_INIT. */
2509 for (i = 0; i < 5; i++) {
2510 rc = efx_pci_probe_main(efx);
2511
2512 /* Serialise against efx_reset(). No more resets will be
2513 * scheduled since efx_stop_all() has been called, and we
2514 * have not and never have been registered with either
2515 * the rtnetlink or driverlink layers. */
2516 cancel_work_sync(&efx->reset_work);
2517
2518 if (rc == 0) {
2519 if (efx->reset_pending) {
2520 /* If there was a scheduled reset during
2521 * probe, the NIC is probably hosed anyway */
2522 efx_pci_remove_main(efx);
2523 rc = -EIO;
2524 } else {
2525 break;
2526 }
2527 }
2528
2529 /* Retry if a recoverably reset event has been scheduled */
2530 if (efx->reset_pending &
2531 ~(1 << RESET_TYPE_INVISIBLE | 1 << RESET_TYPE_ALL) ||
2532 !efx->reset_pending)
2533 goto fail3;
2534
2535 efx->reset_pending = 0;
2536 }
2537
2538 if (rc) {
2539 netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
2540 goto fail4;
2541 }
2542
2543 /* Switch to the running state before we expose the device to the OS,
2544 * so that dev_open()|efx_start_all() will actually start the device */
2545 efx->state = STATE_RUNNING;
2546
2547 rc = efx_register_netdev(efx);
2548 if (rc)
2549 goto fail5;
2550
2551 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2552
2553 rtnl_lock();
2554 efx_mtd_probe(efx); /* allowed to fail */
2555 rtnl_unlock();
2556 return 0;
2557
2558 fail5:
2559 efx_pci_remove_main(efx);
2560 fail4:
2561 fail3:
2562 efx_fini_io(efx);
2563 fail2:
2564 efx_fini_struct(efx);
2565 fail1:
2566 WARN_ON(rc > 0);
2567 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2568 free_netdev(net_dev);
2569 return rc;
2570 }
2571
2572 static int efx_pm_freeze(struct device *dev)
2573 {
2574 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2575
2576 efx->state = STATE_FINI;
2577
2578 netif_device_detach(efx->net_dev);
2579
2580 efx_stop_all(efx);
2581 efx_fini_channels(efx);
2582
2583 return 0;
2584 }
2585
2586 static int efx_pm_thaw(struct device *dev)
2587 {
2588 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2589
2590 efx->state = STATE_INIT;
2591
2592 efx_init_channels(efx);
2593
2594 mutex_lock(&efx->mac_lock);
2595 efx->phy_op->reconfigure(efx);
2596 mutex_unlock(&efx->mac_lock);
2597
2598 efx_start_all(efx);
2599
2600 netif_device_attach(efx->net_dev);
2601
2602 efx->state = STATE_RUNNING;
2603
2604 efx->type->resume_wol(efx);
2605
2606 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2607 queue_work(reset_workqueue, &efx->reset_work);
2608
2609 return 0;
2610 }
2611
2612 static int efx_pm_poweroff(struct device *dev)
2613 {
2614 struct pci_dev *pci_dev = to_pci_dev(dev);
2615 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2616
2617 efx->type->fini(efx);
2618
2619 efx->reset_pending = 0;
2620
2621 pci_save_state(pci_dev);
2622 return pci_set_power_state(pci_dev, PCI_D3hot);
2623 }
2624
2625 /* Used for both resume and restore */
2626 static int efx_pm_resume(struct device *dev)
2627 {
2628 struct pci_dev *pci_dev = to_pci_dev(dev);
2629 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2630 int rc;
2631
2632 rc = pci_set_power_state(pci_dev, PCI_D0);
2633 if (rc)
2634 return rc;
2635 pci_restore_state(pci_dev);
2636 rc = pci_enable_device(pci_dev);
2637 if (rc)
2638 return rc;
2639 pci_set_master(efx->pci_dev);
2640 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2641 if (rc)
2642 return rc;
2643 rc = efx->type->init(efx);
2644 if (rc)
2645 return rc;
2646 efx_pm_thaw(dev);
2647 return 0;
2648 }
2649
2650 static int efx_pm_suspend(struct device *dev)
2651 {
2652 int rc;
2653
2654 efx_pm_freeze(dev);
2655 rc = efx_pm_poweroff(dev);
2656 if (rc)
2657 efx_pm_resume(dev);
2658 return rc;
2659 }
2660
2661 static struct dev_pm_ops efx_pm_ops = {
2662 .suspend = efx_pm_suspend,
2663 .resume = efx_pm_resume,
2664 .freeze = efx_pm_freeze,
2665 .thaw = efx_pm_thaw,
2666 .poweroff = efx_pm_poweroff,
2667 .restore = efx_pm_resume,
2668 };
2669
2670 static struct pci_driver efx_pci_driver = {
2671 .name = KBUILD_MODNAME,
2672 .id_table = efx_pci_table,
2673 .probe = efx_pci_probe,
2674 .remove = efx_pci_remove,
2675 .driver.pm = &efx_pm_ops,
2676 };
2677
2678 /**************************************************************************
2679 *
2680 * Kernel module interface
2681 *
2682 *************************************************************************/
2683
2684 module_param(interrupt_mode, uint, 0444);
2685 MODULE_PARM_DESC(interrupt_mode,
2686 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2687
2688 static int __init efx_init_module(void)
2689 {
2690 int rc;
2691
2692 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2693
2694 rc = register_netdevice_notifier(&efx_netdev_notifier);
2695 if (rc)
2696 goto err_notifier;
2697
2698 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2699 if (!reset_workqueue) {
2700 rc = -ENOMEM;
2701 goto err_reset;
2702 }
2703
2704 rc = pci_register_driver(&efx_pci_driver);
2705 if (rc < 0)
2706 goto err_pci;
2707
2708 return 0;
2709
2710 err_pci:
2711 destroy_workqueue(reset_workqueue);
2712 err_reset:
2713 unregister_netdevice_notifier(&efx_netdev_notifier);
2714 err_notifier:
2715 return rc;
2716 }
2717
2718 static void __exit efx_exit_module(void)
2719 {
2720 printk(KERN_INFO "Solarflare NET driver unloading\n");
2721
2722 pci_unregister_driver(&efx_pci_driver);
2723 destroy_workqueue(reset_workqueue);
2724 unregister_netdevice_notifier(&efx_netdev_notifier);
2725
2726 }
2727
2728 module_init(efx_init_module);
2729 module_exit(efx_exit_module);
2730
2731 MODULE_AUTHOR("Solarflare Communications and "
2732 "Michael Brown <mbrown@fensystems.co.uk>");
2733 MODULE_DESCRIPTION("Solarflare Communications network driver");
2734 MODULE_LICENSE("GPL");
2735 MODULE_DEVICE_TABLE(pci, efx_pci_table);
This page took 0.198731 seconds and 6 git commands to generate.