ARM: common: edma: Fix xbar mapping
[deliverable/linux.git] / drivers / net / ethernet / sfc / falcon.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "farch_regs.h"
24 #include "io.h"
25 #include "phy.h"
26 #include "workarounds.h"
27 #include "selftest.h"
28 #include "mdio_10g.h"
29
30 /* Hardware control for SFC4000 (aka Falcon). */
31
32 /**************************************************************************
33 *
34 * NIC stats
35 *
36 **************************************************************************
37 */
38
39 #define FALCON_MAC_STATS_SIZE 0x100
40
41 #define XgRxOctets_offset 0x0
42 #define XgRxOctets_WIDTH 48
43 #define XgRxOctetsOK_offset 0x8
44 #define XgRxOctetsOK_WIDTH 48
45 #define XgRxPkts_offset 0x10
46 #define XgRxPkts_WIDTH 32
47 #define XgRxPktsOK_offset 0x14
48 #define XgRxPktsOK_WIDTH 32
49 #define XgRxBroadcastPkts_offset 0x18
50 #define XgRxBroadcastPkts_WIDTH 32
51 #define XgRxMulticastPkts_offset 0x1C
52 #define XgRxMulticastPkts_WIDTH 32
53 #define XgRxUnicastPkts_offset 0x20
54 #define XgRxUnicastPkts_WIDTH 32
55 #define XgRxUndersizePkts_offset 0x24
56 #define XgRxUndersizePkts_WIDTH 32
57 #define XgRxOversizePkts_offset 0x28
58 #define XgRxOversizePkts_WIDTH 32
59 #define XgRxJabberPkts_offset 0x2C
60 #define XgRxJabberPkts_WIDTH 32
61 #define XgRxUndersizeFCSerrorPkts_offset 0x30
62 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
63 #define XgRxDropEvents_offset 0x34
64 #define XgRxDropEvents_WIDTH 32
65 #define XgRxFCSerrorPkts_offset 0x38
66 #define XgRxFCSerrorPkts_WIDTH 32
67 #define XgRxAlignError_offset 0x3C
68 #define XgRxAlignError_WIDTH 32
69 #define XgRxSymbolError_offset 0x40
70 #define XgRxSymbolError_WIDTH 32
71 #define XgRxInternalMACError_offset 0x44
72 #define XgRxInternalMACError_WIDTH 32
73 #define XgRxControlPkts_offset 0x48
74 #define XgRxControlPkts_WIDTH 32
75 #define XgRxPausePkts_offset 0x4C
76 #define XgRxPausePkts_WIDTH 32
77 #define XgRxPkts64Octets_offset 0x50
78 #define XgRxPkts64Octets_WIDTH 32
79 #define XgRxPkts65to127Octets_offset 0x54
80 #define XgRxPkts65to127Octets_WIDTH 32
81 #define XgRxPkts128to255Octets_offset 0x58
82 #define XgRxPkts128to255Octets_WIDTH 32
83 #define XgRxPkts256to511Octets_offset 0x5C
84 #define XgRxPkts256to511Octets_WIDTH 32
85 #define XgRxPkts512to1023Octets_offset 0x60
86 #define XgRxPkts512to1023Octets_WIDTH 32
87 #define XgRxPkts1024to15xxOctets_offset 0x64
88 #define XgRxPkts1024to15xxOctets_WIDTH 32
89 #define XgRxPkts15xxtoMaxOctets_offset 0x68
90 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
91 #define XgRxLengthError_offset 0x6C
92 #define XgRxLengthError_WIDTH 32
93 #define XgTxPkts_offset 0x80
94 #define XgTxPkts_WIDTH 32
95 #define XgTxOctets_offset 0x88
96 #define XgTxOctets_WIDTH 48
97 #define XgTxMulticastPkts_offset 0x90
98 #define XgTxMulticastPkts_WIDTH 32
99 #define XgTxBroadcastPkts_offset 0x94
100 #define XgTxBroadcastPkts_WIDTH 32
101 #define XgTxUnicastPkts_offset 0x98
102 #define XgTxUnicastPkts_WIDTH 32
103 #define XgTxControlPkts_offset 0x9C
104 #define XgTxControlPkts_WIDTH 32
105 #define XgTxPausePkts_offset 0xA0
106 #define XgTxPausePkts_WIDTH 32
107 #define XgTxPkts64Octets_offset 0xA4
108 #define XgTxPkts64Octets_WIDTH 32
109 #define XgTxPkts65to127Octets_offset 0xA8
110 #define XgTxPkts65to127Octets_WIDTH 32
111 #define XgTxPkts128to255Octets_offset 0xAC
112 #define XgTxPkts128to255Octets_WIDTH 32
113 #define XgTxPkts256to511Octets_offset 0xB0
114 #define XgTxPkts256to511Octets_WIDTH 32
115 #define XgTxPkts512to1023Octets_offset 0xB4
116 #define XgTxPkts512to1023Octets_WIDTH 32
117 #define XgTxPkts1024to15xxOctets_offset 0xB8
118 #define XgTxPkts1024to15xxOctets_WIDTH 32
119 #define XgTxPkts1519toMaxOctets_offset 0xBC
120 #define XgTxPkts1519toMaxOctets_WIDTH 32
121 #define XgTxUndersizePkts_offset 0xC0
122 #define XgTxUndersizePkts_WIDTH 32
123 #define XgTxOversizePkts_offset 0xC4
124 #define XgTxOversizePkts_WIDTH 32
125 #define XgTxNonTcpUdpPkt_offset 0xC8
126 #define XgTxNonTcpUdpPkt_WIDTH 16
127 #define XgTxMacSrcErrPkt_offset 0xCC
128 #define XgTxMacSrcErrPkt_WIDTH 16
129 #define XgTxIpSrcErrPkt_offset 0xD0
130 #define XgTxIpSrcErrPkt_WIDTH 16
131 #define XgDmaDone_offset 0xD4
132 #define XgDmaDone_WIDTH 32
133
134 #define FALCON_XMAC_STATS_DMA_FLAG(efx) \
135 (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
136
137 #define FALCON_DMA_STAT(ext_name, hw_name) \
138 [FALCON_STAT_ ## ext_name] = \
139 { #ext_name, \
140 /* 48-bit stats are zero-padded to 64 on DMA */ \
141 hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH, \
142 hw_name ## _ ## offset }
143 #define FALCON_OTHER_STAT(ext_name) \
144 [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
145
146 static const struct efx_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
147 FALCON_DMA_STAT(tx_bytes, XgTxOctets),
148 FALCON_DMA_STAT(tx_packets, XgTxPkts),
149 FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
150 FALCON_DMA_STAT(tx_control, XgTxControlPkts),
151 FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
152 FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
153 FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
154 FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
155 FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
156 FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
157 FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
158 FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
159 FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
160 FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
161 FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
162 FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
163 FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
164 FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
165 FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
166 FALCON_DMA_STAT(rx_bytes, XgRxOctets),
167 FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
168 FALCON_OTHER_STAT(rx_bad_bytes),
169 FALCON_DMA_STAT(rx_packets, XgRxPkts),
170 FALCON_DMA_STAT(rx_good, XgRxPktsOK),
171 FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
172 FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
173 FALCON_DMA_STAT(rx_control, XgRxControlPkts),
174 FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
175 FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
176 FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
177 FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
178 FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
179 FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
180 FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
181 FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
182 FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
183 FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
184 FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
185 FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
186 FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
187 FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
188 FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
189 FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
190 FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
191 FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
192 FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
193 FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
194 };
195 static const unsigned long falcon_stat_mask[] = {
196 [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
197 };
198
199 /**************************************************************************
200 *
201 * Basic SPI command set and bit definitions
202 *
203 *************************************************************************/
204
205 #define SPI_WRSR 0x01 /* Write status register */
206 #define SPI_WRITE 0x02 /* Write data to memory array */
207 #define SPI_READ 0x03 /* Read data from memory array */
208 #define SPI_WRDI 0x04 /* Reset write enable latch */
209 #define SPI_RDSR 0x05 /* Read status register */
210 #define SPI_WREN 0x06 /* Set write enable latch */
211 #define SPI_SST_EWSR 0x50 /* SST: Enable write to status register */
212
213 #define SPI_STATUS_WPEN 0x80 /* Write-protect pin enabled */
214 #define SPI_STATUS_BP2 0x10 /* Block protection bit 2 */
215 #define SPI_STATUS_BP1 0x08 /* Block protection bit 1 */
216 #define SPI_STATUS_BP0 0x04 /* Block protection bit 0 */
217 #define SPI_STATUS_WEN 0x02 /* State of the write enable latch */
218 #define SPI_STATUS_NRDY 0x01 /* Device busy flag */
219
220 /**************************************************************************
221 *
222 * Non-volatile memory layout
223 *
224 **************************************************************************
225 */
226
227 /* SFC4000 flash is partitioned into:
228 * 0-0x400 chip and board config (see struct falcon_nvconfig)
229 * 0x400-0x8000 unused (or may contain VPD if EEPROM not present)
230 * 0x8000-end boot code (mapped to PCI expansion ROM)
231 * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
232 * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
233 * 0-0x400 chip and board config
234 * configurable VPD
235 * 0x800-0x1800 boot config
236 * Aside from the chip and board config, all of these are optional and may
237 * be absent or truncated depending on the devices used.
238 */
239 #define FALCON_NVCONFIG_END 0x400U
240 #define FALCON_FLASH_BOOTCODE_START 0x8000U
241 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
242 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
243
244 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
245 struct falcon_nvconfig_board_v2 {
246 __le16 nports;
247 u8 port0_phy_addr;
248 u8 port0_phy_type;
249 u8 port1_phy_addr;
250 u8 port1_phy_type;
251 __le16 asic_sub_revision;
252 __le16 board_revision;
253 } __packed;
254
255 /* Board configuration v3 extra information */
256 struct falcon_nvconfig_board_v3 {
257 __le32 spi_device_type[2];
258 } __packed;
259
260 /* Bit numbers for spi_device_type */
261 #define SPI_DEV_TYPE_SIZE_LBN 0
262 #define SPI_DEV_TYPE_SIZE_WIDTH 5
263 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
264 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
265 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
266 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
267 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
268 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
269 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
270 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
271 #define SPI_DEV_TYPE_FIELD(type, field) \
272 (((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field)))
273
274 #define FALCON_NVCONFIG_OFFSET 0x300
275
276 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
277 struct falcon_nvconfig {
278 efx_oword_t ee_vpd_cfg_reg; /* 0x300 */
279 u8 mac_address[2][8]; /* 0x310 */
280 efx_oword_t pcie_sd_ctl0123_reg; /* 0x320 */
281 efx_oword_t pcie_sd_ctl45_reg; /* 0x330 */
282 efx_oword_t pcie_pcs_ctl_stat_reg; /* 0x340 */
283 efx_oword_t hw_init_reg; /* 0x350 */
284 efx_oword_t nic_stat_reg; /* 0x360 */
285 efx_oword_t glb_ctl_reg; /* 0x370 */
286 efx_oword_t srm_cfg_reg; /* 0x380 */
287 efx_oword_t spare_reg; /* 0x390 */
288 __le16 board_magic_num; /* 0x3A0 */
289 __le16 board_struct_ver;
290 __le16 board_checksum;
291 struct falcon_nvconfig_board_v2 board_v2;
292 efx_oword_t ee_base_page_reg; /* 0x3B0 */
293 struct falcon_nvconfig_board_v3 board_v3; /* 0x3C0 */
294 } __packed;
295
296 /*************************************************************************/
297
298 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
299 static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
300
301 static const unsigned int
302 /* "Large" EEPROM device: Atmel AT25640 or similar
303 * 8 KB, 16-bit address, 32 B write block */
304 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
305 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
306 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
307 /* Default flash device: Atmel AT25F1024
308 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
309 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
310 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
311 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
312 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
313 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
314
315 /**************************************************************************
316 *
317 * I2C bus - this is a bit-bashing interface using GPIO pins
318 * Note that it uses the output enables to tristate the outputs
319 * SDA is the data pin and SCL is the clock
320 *
321 **************************************************************************
322 */
323 static void falcon_setsda(void *data, int state)
324 {
325 struct efx_nic *efx = (struct efx_nic *)data;
326 efx_oword_t reg;
327
328 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
329 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
330 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
331 }
332
333 static void falcon_setscl(void *data, int state)
334 {
335 struct efx_nic *efx = (struct efx_nic *)data;
336 efx_oword_t reg;
337
338 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
339 EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
340 efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
341 }
342
343 static int falcon_getsda(void *data)
344 {
345 struct efx_nic *efx = (struct efx_nic *)data;
346 efx_oword_t reg;
347
348 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
349 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
350 }
351
352 static int falcon_getscl(void *data)
353 {
354 struct efx_nic *efx = (struct efx_nic *)data;
355 efx_oword_t reg;
356
357 efx_reado(efx, &reg, FR_AB_GPIO_CTL);
358 return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
359 }
360
361 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
362 .setsda = falcon_setsda,
363 .setscl = falcon_setscl,
364 .getsda = falcon_getsda,
365 .getscl = falcon_getscl,
366 .udelay = 5,
367 /* Wait up to 50 ms for slave to let us pull SCL high */
368 .timeout = DIV_ROUND_UP(HZ, 20),
369 };
370
371 static void falcon_push_irq_moderation(struct efx_channel *channel)
372 {
373 efx_dword_t timer_cmd;
374 struct efx_nic *efx = channel->efx;
375
376 /* Set timer register */
377 if (channel->irq_moderation) {
378 EFX_POPULATE_DWORD_2(timer_cmd,
379 FRF_AB_TC_TIMER_MODE,
380 FFE_BB_TIMER_MODE_INT_HLDOFF,
381 FRF_AB_TC_TIMER_VAL,
382 channel->irq_moderation - 1);
383 } else {
384 EFX_POPULATE_DWORD_2(timer_cmd,
385 FRF_AB_TC_TIMER_MODE,
386 FFE_BB_TIMER_MODE_DIS,
387 FRF_AB_TC_TIMER_VAL, 0);
388 }
389 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
390 efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
391 channel->channel);
392 }
393
394 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
395
396 static void falcon_prepare_flush(struct efx_nic *efx)
397 {
398 falcon_deconfigure_mac_wrapper(efx);
399
400 /* Wait for the tx and rx fifo's to get to the next packet boundary
401 * (~1ms without back-pressure), then to drain the remainder of the
402 * fifo's at data path speeds (negligible), with a healthy margin. */
403 msleep(10);
404 }
405
406 /* Acknowledge a legacy interrupt from Falcon
407 *
408 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
409 *
410 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
411 * BIU. Interrupt acknowledge is read sensitive so must write instead
412 * (then read to ensure the BIU collector is flushed)
413 *
414 * NB most hardware supports MSI interrupts
415 */
416 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
417 {
418 efx_dword_t reg;
419
420 EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
421 efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
422 efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
423 }
424
425 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
426 {
427 struct efx_nic *efx = dev_id;
428 efx_oword_t *int_ker = efx->irq_status.addr;
429 int syserr;
430 int queues;
431
432 /* Check to see if this is our interrupt. If it isn't, we
433 * exit without having touched the hardware.
434 */
435 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
436 netif_vdbg(efx, intr, efx->net_dev,
437 "IRQ %d on CPU %d not for me\n", irq,
438 raw_smp_processor_id());
439 return IRQ_NONE;
440 }
441 efx->last_irq_cpu = raw_smp_processor_id();
442 netif_vdbg(efx, intr, efx->net_dev,
443 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
444 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
445
446 if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
447 return IRQ_HANDLED;
448
449 /* Check to see if we have a serious error condition */
450 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
451 if (unlikely(syserr))
452 return efx_farch_fatal_interrupt(efx);
453
454 /* Determine interrupting queues, clear interrupt status
455 * register and acknowledge the device interrupt.
456 */
457 BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
458 queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
459 EFX_ZERO_OWORD(*int_ker);
460 wmb(); /* Ensure the vector is cleared before interrupt ack */
461 falcon_irq_ack_a1(efx);
462
463 if (queues & 1)
464 efx_schedule_channel_irq(efx_get_channel(efx, 0));
465 if (queues & 2)
466 efx_schedule_channel_irq(efx_get_channel(efx, 1));
467 return IRQ_HANDLED;
468 }
469
470 /**************************************************************************
471 *
472 * RSS
473 *
474 **************************************************************************
475 */
476
477 static void falcon_b0_rx_push_rss_config(struct efx_nic *efx)
478 {
479 efx_oword_t temp;
480
481 /* Set hash key for IPv4 */
482 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
483 efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
484
485 efx_farch_rx_push_indir_table(efx);
486 }
487
488 /**************************************************************************
489 *
490 * EEPROM/flash
491 *
492 **************************************************************************
493 */
494
495 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
496
497 static int falcon_spi_poll(struct efx_nic *efx)
498 {
499 efx_oword_t reg;
500 efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
501 return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
502 }
503
504 /* Wait for SPI command completion */
505 static int falcon_spi_wait(struct efx_nic *efx)
506 {
507 /* Most commands will finish quickly, so we start polling at
508 * very short intervals. Sometimes the command may have to
509 * wait for VPD or expansion ROM access outside of our
510 * control, so we allow up to 100 ms. */
511 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
512 int i;
513
514 for (i = 0; i < 10; i++) {
515 if (!falcon_spi_poll(efx))
516 return 0;
517 udelay(10);
518 }
519
520 for (;;) {
521 if (!falcon_spi_poll(efx))
522 return 0;
523 if (time_after_eq(jiffies, timeout)) {
524 netif_err(efx, hw, efx->net_dev,
525 "timed out waiting for SPI\n");
526 return -ETIMEDOUT;
527 }
528 schedule_timeout_uninterruptible(1);
529 }
530 }
531
532 static int
533 falcon_spi_cmd(struct efx_nic *efx, const struct falcon_spi_device *spi,
534 unsigned int command, int address,
535 const void *in, void *out, size_t len)
536 {
537 bool addressed = (address >= 0);
538 bool reading = (out != NULL);
539 efx_oword_t reg;
540 int rc;
541
542 /* Input validation */
543 if (len > FALCON_SPI_MAX_LEN)
544 return -EINVAL;
545
546 /* Check that previous command is not still running */
547 rc = falcon_spi_poll(efx);
548 if (rc)
549 return rc;
550
551 /* Program address register, if we have an address */
552 if (addressed) {
553 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
554 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
555 }
556
557 /* Program data register, if we have data */
558 if (in != NULL) {
559 memcpy(&reg, in, len);
560 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
561 }
562
563 /* Issue read/write command */
564 EFX_POPULATE_OWORD_7(reg,
565 FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
566 FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
567 FRF_AB_EE_SPI_HCMD_DABCNT, len,
568 FRF_AB_EE_SPI_HCMD_READ, reading,
569 FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
570 FRF_AB_EE_SPI_HCMD_ADBCNT,
571 (addressed ? spi->addr_len : 0),
572 FRF_AB_EE_SPI_HCMD_ENC, command);
573 efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
574
575 /* Wait for read/write to complete */
576 rc = falcon_spi_wait(efx);
577 if (rc)
578 return rc;
579
580 /* Read data */
581 if (out != NULL) {
582 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
583 memcpy(out, &reg, len);
584 }
585
586 return 0;
587 }
588
589 static inline u8
590 falcon_spi_munge_command(const struct falcon_spi_device *spi,
591 const u8 command, const unsigned int address)
592 {
593 return command | (((address >> 8) & spi->munge_address) << 3);
594 }
595
596 static int
597 falcon_spi_read(struct efx_nic *efx, const struct falcon_spi_device *spi,
598 loff_t start, size_t len, size_t *retlen, u8 *buffer)
599 {
600 size_t block_len, pos = 0;
601 unsigned int command;
602 int rc = 0;
603
604 while (pos < len) {
605 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
606
607 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
608 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
609 buffer + pos, block_len);
610 if (rc)
611 break;
612 pos += block_len;
613
614 /* Avoid locking up the system */
615 cond_resched();
616 if (signal_pending(current)) {
617 rc = -EINTR;
618 break;
619 }
620 }
621
622 if (retlen)
623 *retlen = pos;
624 return rc;
625 }
626
627 #ifdef CONFIG_SFC_MTD
628
629 struct falcon_mtd_partition {
630 struct efx_mtd_partition common;
631 const struct falcon_spi_device *spi;
632 size_t offset;
633 };
634
635 #define to_falcon_mtd_partition(mtd) \
636 container_of(mtd, struct falcon_mtd_partition, common.mtd)
637
638 static size_t
639 falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
640 {
641 return min(FALCON_SPI_MAX_LEN,
642 (spi->block_size - (start & (spi->block_size - 1))));
643 }
644
645 /* Wait up to 10 ms for buffered write completion */
646 static int
647 falcon_spi_wait_write(struct efx_nic *efx, const struct falcon_spi_device *spi)
648 {
649 unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
650 u8 status;
651 int rc;
652
653 for (;;) {
654 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
655 &status, sizeof(status));
656 if (rc)
657 return rc;
658 if (!(status & SPI_STATUS_NRDY))
659 return 0;
660 if (time_after_eq(jiffies, timeout)) {
661 netif_err(efx, hw, efx->net_dev,
662 "SPI write timeout on device %d"
663 " last status=0x%02x\n",
664 spi->device_id, status);
665 return -ETIMEDOUT;
666 }
667 schedule_timeout_uninterruptible(1);
668 }
669 }
670
671 static int
672 falcon_spi_write(struct efx_nic *efx, const struct falcon_spi_device *spi,
673 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
674 {
675 u8 verify_buffer[FALCON_SPI_MAX_LEN];
676 size_t block_len, pos = 0;
677 unsigned int command;
678 int rc = 0;
679
680 while (pos < len) {
681 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
682 if (rc)
683 break;
684
685 block_len = min(len - pos,
686 falcon_spi_write_limit(spi, start + pos));
687 command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
688 rc = falcon_spi_cmd(efx, spi, command, start + pos,
689 buffer + pos, NULL, block_len);
690 if (rc)
691 break;
692
693 rc = falcon_spi_wait_write(efx, spi);
694 if (rc)
695 break;
696
697 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
698 rc = falcon_spi_cmd(efx, spi, command, start + pos,
699 NULL, verify_buffer, block_len);
700 if (memcmp(verify_buffer, buffer + pos, block_len)) {
701 rc = -EIO;
702 break;
703 }
704
705 pos += block_len;
706
707 /* Avoid locking up the system */
708 cond_resched();
709 if (signal_pending(current)) {
710 rc = -EINTR;
711 break;
712 }
713 }
714
715 if (retlen)
716 *retlen = pos;
717 return rc;
718 }
719
720 static int
721 falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
722 {
723 const struct falcon_spi_device *spi = part->spi;
724 struct efx_nic *efx = part->common.mtd.priv;
725 u8 status;
726 int rc, i;
727
728 /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
729 for (i = 0; i < 40; i++) {
730 __set_current_state(uninterruptible ?
731 TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
732 schedule_timeout(HZ / 10);
733 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
734 &status, sizeof(status));
735 if (rc)
736 return rc;
737 if (!(status & SPI_STATUS_NRDY))
738 return 0;
739 if (signal_pending(current))
740 return -EINTR;
741 }
742 pr_err("%s: timed out waiting for %s\n",
743 part->common.name, part->common.dev_type_name);
744 return -ETIMEDOUT;
745 }
746
747 static int
748 falcon_spi_unlock(struct efx_nic *efx, const struct falcon_spi_device *spi)
749 {
750 const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
751 SPI_STATUS_BP0);
752 u8 status;
753 int rc;
754
755 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
756 &status, sizeof(status));
757 if (rc)
758 return rc;
759
760 if (!(status & unlock_mask))
761 return 0; /* already unlocked */
762
763 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
764 if (rc)
765 return rc;
766 rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
767 if (rc)
768 return rc;
769
770 status &= ~unlock_mask;
771 rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
772 NULL, sizeof(status));
773 if (rc)
774 return rc;
775 rc = falcon_spi_wait_write(efx, spi);
776 if (rc)
777 return rc;
778
779 return 0;
780 }
781
782 #define FALCON_SPI_VERIFY_BUF_LEN 16
783
784 static int
785 falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
786 {
787 const struct falcon_spi_device *spi = part->spi;
788 struct efx_nic *efx = part->common.mtd.priv;
789 unsigned pos, block_len;
790 u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
791 u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
792 int rc;
793
794 if (len != spi->erase_size)
795 return -EINVAL;
796
797 if (spi->erase_command == 0)
798 return -EOPNOTSUPP;
799
800 rc = falcon_spi_unlock(efx, spi);
801 if (rc)
802 return rc;
803 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
804 if (rc)
805 return rc;
806 rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
807 NULL, 0);
808 if (rc)
809 return rc;
810 rc = falcon_spi_slow_wait(part, false);
811
812 /* Verify the entire region has been wiped */
813 memset(empty, 0xff, sizeof(empty));
814 for (pos = 0; pos < len; pos += block_len) {
815 block_len = min(len - pos, sizeof(buffer));
816 rc = falcon_spi_read(efx, spi, start + pos, block_len,
817 NULL, buffer);
818 if (rc)
819 return rc;
820 if (memcmp(empty, buffer, block_len))
821 return -EIO;
822
823 /* Avoid locking up the system */
824 cond_resched();
825 if (signal_pending(current))
826 return -EINTR;
827 }
828
829 return rc;
830 }
831
832 static void falcon_mtd_rename(struct efx_mtd_partition *part)
833 {
834 struct efx_nic *efx = part->mtd.priv;
835
836 snprintf(part->name, sizeof(part->name), "%s %s",
837 efx->name, part->type_name);
838 }
839
840 static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
841 size_t len, size_t *retlen, u8 *buffer)
842 {
843 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
844 struct efx_nic *efx = mtd->priv;
845 struct falcon_nic_data *nic_data = efx->nic_data;
846 int rc;
847
848 rc = mutex_lock_interruptible(&nic_data->spi_lock);
849 if (rc)
850 return rc;
851 rc = falcon_spi_read(efx, part->spi, part->offset + start,
852 len, retlen, buffer);
853 mutex_unlock(&nic_data->spi_lock);
854 return rc;
855 }
856
857 static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
858 {
859 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
860 struct efx_nic *efx = mtd->priv;
861 struct falcon_nic_data *nic_data = efx->nic_data;
862 int rc;
863
864 rc = mutex_lock_interruptible(&nic_data->spi_lock);
865 if (rc)
866 return rc;
867 rc = falcon_spi_erase(part, part->offset + start, len);
868 mutex_unlock(&nic_data->spi_lock);
869 return rc;
870 }
871
872 static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
873 size_t len, size_t *retlen, const u8 *buffer)
874 {
875 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
876 struct efx_nic *efx = mtd->priv;
877 struct falcon_nic_data *nic_data = efx->nic_data;
878 int rc;
879
880 rc = mutex_lock_interruptible(&nic_data->spi_lock);
881 if (rc)
882 return rc;
883 rc = falcon_spi_write(efx, part->spi, part->offset + start,
884 len, retlen, buffer);
885 mutex_unlock(&nic_data->spi_lock);
886 return rc;
887 }
888
889 static int falcon_mtd_sync(struct mtd_info *mtd)
890 {
891 struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
892 struct efx_nic *efx = mtd->priv;
893 struct falcon_nic_data *nic_data = efx->nic_data;
894 int rc;
895
896 mutex_lock(&nic_data->spi_lock);
897 rc = falcon_spi_slow_wait(part, true);
898 mutex_unlock(&nic_data->spi_lock);
899 return rc;
900 }
901
902 static int falcon_mtd_probe(struct efx_nic *efx)
903 {
904 struct falcon_nic_data *nic_data = efx->nic_data;
905 struct falcon_mtd_partition *parts;
906 struct falcon_spi_device *spi;
907 size_t n_parts;
908 int rc = -ENODEV;
909
910 ASSERT_RTNL();
911
912 /* Allocate space for maximum number of partitions */
913 parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
914 if (!parts)
915 return -ENOMEM;
916 n_parts = 0;
917
918 spi = &nic_data->spi_flash;
919 if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
920 parts[n_parts].spi = spi;
921 parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
922 parts[n_parts].common.dev_type_name = "flash";
923 parts[n_parts].common.type_name = "sfc_flash_bootrom";
924 parts[n_parts].common.mtd.type = MTD_NORFLASH;
925 parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
926 parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
927 parts[n_parts].common.mtd.erasesize = spi->erase_size;
928 n_parts++;
929 }
930
931 spi = &nic_data->spi_eeprom;
932 if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
933 parts[n_parts].spi = spi;
934 parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
935 parts[n_parts].common.dev_type_name = "EEPROM";
936 parts[n_parts].common.type_name = "sfc_bootconfig";
937 parts[n_parts].common.mtd.type = MTD_RAM;
938 parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
939 parts[n_parts].common.mtd.size =
940 min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
941 FALCON_EEPROM_BOOTCONFIG_START;
942 parts[n_parts].common.mtd.erasesize = spi->erase_size;
943 n_parts++;
944 }
945
946 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
947 if (rc)
948 kfree(parts);
949 return rc;
950 }
951
952 #endif /* CONFIG_SFC_MTD */
953
954 /**************************************************************************
955 *
956 * XMAC operations
957 *
958 **************************************************************************
959 */
960
961 /* Configure the XAUI driver that is an output from Falcon */
962 static void falcon_setup_xaui(struct efx_nic *efx)
963 {
964 efx_oword_t sdctl, txdrv;
965
966 /* Move the XAUI into low power, unless there is no PHY, in
967 * which case the XAUI will have to drive a cable. */
968 if (efx->phy_type == PHY_TYPE_NONE)
969 return;
970
971 efx_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
972 EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
973 EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
974 EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
975 EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
976 EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
977 EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
978 EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
979 EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
980 efx_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
981
982 EFX_POPULATE_OWORD_8(txdrv,
983 FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
984 FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
985 FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
986 FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
987 FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
988 FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
989 FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
990 FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
991 efx_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
992 }
993
994 int falcon_reset_xaui(struct efx_nic *efx)
995 {
996 struct falcon_nic_data *nic_data = efx->nic_data;
997 efx_oword_t reg;
998 int count;
999
1000 /* Don't fetch MAC statistics over an XMAC reset */
1001 WARN_ON(nic_data->stats_disable_count == 0);
1002
1003 /* Start reset sequence */
1004 EFX_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1005 efx_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1006
1007 /* Wait up to 10 ms for completion, then reinitialise */
1008 for (count = 0; count < 1000; count++) {
1009 efx_reado(efx, &reg, FR_AB_XX_PWR_RST);
1010 if (EFX_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1011 EFX_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1012 falcon_setup_xaui(efx);
1013 return 0;
1014 }
1015 udelay(10);
1016 }
1017 netif_err(efx, hw, efx->net_dev,
1018 "timed out waiting for XAUI/XGXS reset\n");
1019 return -ETIMEDOUT;
1020 }
1021
1022 static void falcon_ack_status_intr(struct efx_nic *efx)
1023 {
1024 struct falcon_nic_data *nic_data = efx->nic_data;
1025 efx_oword_t reg;
1026
1027 if ((efx_nic_rev(efx) != EFX_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1028 return;
1029
1030 /* We expect xgmii faults if the wireside link is down */
1031 if (!efx->link_state.up)
1032 return;
1033
1034 /* We can only use this interrupt to signal the negative edge of
1035 * xaui_align [we have to poll the positive edge]. */
1036 if (nic_data->xmac_poll_required)
1037 return;
1038
1039 efx_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1040 }
1041
1042 static bool falcon_xgxs_link_ok(struct efx_nic *efx)
1043 {
1044 efx_oword_t reg;
1045 bool align_done, link_ok = false;
1046 int sync_status;
1047
1048 /* Read link status */
1049 efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1050
1051 align_done = EFX_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1052 sync_status = EFX_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1053 if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1054 link_ok = true;
1055
1056 /* Clear link status ready for next read */
1057 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1058 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1059 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1060 efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1061
1062 return link_ok;
1063 }
1064
1065 static bool falcon_xmac_link_ok(struct efx_nic *efx)
1066 {
1067 /*
1068 * Check MAC's XGXS link status except when using XGMII loopback
1069 * which bypasses the XGXS block.
1070 * If possible, check PHY's XGXS link status except when using
1071 * MAC loopback.
1072 */
1073 return (efx->loopback_mode == LOOPBACK_XGMII ||
1074 falcon_xgxs_link_ok(efx)) &&
1075 (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1076 LOOPBACK_INTERNAL(efx) ||
1077 efx_mdio_phyxgxs_lane_sync(efx));
1078 }
1079
1080 static void falcon_reconfigure_xmac_core(struct efx_nic *efx)
1081 {
1082 unsigned int max_frame_len;
1083 efx_oword_t reg;
1084 bool rx_fc = !!(efx->link_state.fc & EFX_FC_RX);
1085 bool tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1086
1087 /* Configure MAC - cut-thru mode is hard wired on */
1088 EFX_POPULATE_OWORD_3(reg,
1089 FRF_AB_XM_RX_JUMBO_MODE, 1,
1090 FRF_AB_XM_TX_STAT_EN, 1,
1091 FRF_AB_XM_RX_STAT_EN, 1);
1092 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1093
1094 /* Configure TX */
1095 EFX_POPULATE_OWORD_6(reg,
1096 FRF_AB_XM_TXEN, 1,
1097 FRF_AB_XM_TX_PRMBL, 1,
1098 FRF_AB_XM_AUTO_PAD, 1,
1099 FRF_AB_XM_TXCRC, 1,
1100 FRF_AB_XM_FCNTL, tx_fc,
1101 FRF_AB_XM_IPG, 0x3);
1102 efx_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1103
1104 /* Configure RX */
1105 EFX_POPULATE_OWORD_5(reg,
1106 FRF_AB_XM_RXEN, 1,
1107 FRF_AB_XM_AUTO_DEPAD, 0,
1108 FRF_AB_XM_ACPT_ALL_MCAST, 1,
1109 FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1110 FRF_AB_XM_PASS_CRC_ERR, 1);
1111 efx_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1112
1113 /* Set frame length */
1114 max_frame_len = EFX_MAX_FRAME_LEN(efx->net_dev->mtu);
1115 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1116 efx_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1117 EFX_POPULATE_OWORD_2(reg,
1118 FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1119 FRF_AB_XM_TX_JUMBO_MODE, 1);
1120 efx_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1121
1122 EFX_POPULATE_OWORD_2(reg,
1123 FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1124 FRF_AB_XM_DIS_FCNTL, !rx_fc);
1125 efx_writeo(efx, &reg, FR_AB_XM_FC);
1126
1127 /* Set MAC address */
1128 memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1129 efx_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1130 memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1131 efx_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1132 }
1133
1134 static void falcon_reconfigure_xgxs_core(struct efx_nic *efx)
1135 {
1136 efx_oword_t reg;
1137 bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1138 bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1139 bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1140 bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1141
1142 /* XGXS block is flaky and will need to be reset if moving
1143 * into our out of XGMII, XGXS or XAUI loopbacks. */
1144 efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1145 old_xgxs_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1146 old_xgmii_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1147
1148 efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1149 old_xaui_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1150
1151 /* The PHY driver may have turned XAUI off */
1152 if ((xgxs_loopback != old_xgxs_loopback) ||
1153 (xaui_loopback != old_xaui_loopback) ||
1154 (xgmii_loopback != old_xgmii_loopback))
1155 falcon_reset_xaui(efx);
1156
1157 efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1158 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1159 (xgxs_loopback || xaui_loopback) ?
1160 FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1161 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1162 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1163 efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1164
1165 efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1166 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1167 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1168 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1169 EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1170 efx_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1171 }
1172
1173
1174 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1175 static bool falcon_xmac_link_ok_retry(struct efx_nic *efx, int tries)
1176 {
1177 bool mac_up = falcon_xmac_link_ok(efx);
1178
1179 if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1180 efx_phy_mode_disabled(efx->phy_mode))
1181 /* XAUI link is expected to be down */
1182 return mac_up;
1183
1184 falcon_stop_nic_stats(efx);
1185
1186 while (!mac_up && tries) {
1187 netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1188 falcon_reset_xaui(efx);
1189 udelay(200);
1190
1191 mac_up = falcon_xmac_link_ok(efx);
1192 --tries;
1193 }
1194
1195 falcon_start_nic_stats(efx);
1196
1197 return mac_up;
1198 }
1199
1200 static bool falcon_xmac_check_fault(struct efx_nic *efx)
1201 {
1202 return !falcon_xmac_link_ok_retry(efx, 5);
1203 }
1204
1205 static int falcon_reconfigure_xmac(struct efx_nic *efx)
1206 {
1207 struct falcon_nic_data *nic_data = efx->nic_data;
1208
1209 efx_farch_filter_sync_rx_mode(efx);
1210
1211 falcon_reconfigure_xgxs_core(efx);
1212 falcon_reconfigure_xmac_core(efx);
1213
1214 falcon_reconfigure_mac_wrapper(efx);
1215
1216 nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1217 falcon_ack_status_intr(efx);
1218
1219 return 0;
1220 }
1221
1222 static void falcon_poll_xmac(struct efx_nic *efx)
1223 {
1224 struct falcon_nic_data *nic_data = efx->nic_data;
1225
1226 /* We expect xgmii faults if the wireside link is down */
1227 if (!efx->link_state.up || !nic_data->xmac_poll_required)
1228 return;
1229
1230 nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1231 falcon_ack_status_intr(efx);
1232 }
1233
1234 /**************************************************************************
1235 *
1236 * MAC wrapper
1237 *
1238 **************************************************************************
1239 */
1240
1241 static void falcon_push_multicast_hash(struct efx_nic *efx)
1242 {
1243 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1244
1245 WARN_ON(!mutex_is_locked(&efx->mac_lock));
1246
1247 efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1248 efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1249 }
1250
1251 static void falcon_reset_macs(struct efx_nic *efx)
1252 {
1253 struct falcon_nic_data *nic_data = efx->nic_data;
1254 efx_oword_t reg, mac_ctrl;
1255 int count;
1256
1257 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1258 /* It's not safe to use GLB_CTL_REG to reset the
1259 * macs, so instead use the internal MAC resets
1260 */
1261 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1262 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1263
1264 for (count = 0; count < 10000; count++) {
1265 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1266 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1267 0)
1268 return;
1269 udelay(10);
1270 }
1271
1272 netif_err(efx, hw, efx->net_dev,
1273 "timed out waiting for XMAC core reset\n");
1274 }
1275
1276 /* Mac stats will fail whist the TX fifo is draining */
1277 WARN_ON(nic_data->stats_disable_count == 0);
1278
1279 efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1280 EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1281 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1282
1283 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1284 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1285 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1286 EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1287 efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1288
1289 count = 0;
1290 while (1) {
1291 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1292 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1293 !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1294 !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1295 netif_dbg(efx, hw, efx->net_dev,
1296 "Completed MAC reset after %d loops\n",
1297 count);
1298 break;
1299 }
1300 if (count > 20) {
1301 netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1302 break;
1303 }
1304 count++;
1305 udelay(10);
1306 }
1307
1308 /* Ensure the correct MAC is selected before statistics
1309 * are re-enabled by the caller */
1310 efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1311
1312 falcon_setup_xaui(efx);
1313 }
1314
1315 static void falcon_drain_tx_fifo(struct efx_nic *efx)
1316 {
1317 efx_oword_t reg;
1318
1319 if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1320 (efx->loopback_mode != LOOPBACK_NONE))
1321 return;
1322
1323 efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1324 /* There is no point in draining more than once */
1325 if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1326 return;
1327
1328 falcon_reset_macs(efx);
1329 }
1330
1331 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1332 {
1333 efx_oword_t reg;
1334
1335 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1336 return;
1337
1338 /* Isolate the MAC -> RX */
1339 efx_reado(efx, &reg, FR_AZ_RX_CFG);
1340 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1341 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1342
1343 /* Isolate TX -> MAC */
1344 falcon_drain_tx_fifo(efx);
1345 }
1346
1347 static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1348 {
1349 struct efx_link_state *link_state = &efx->link_state;
1350 efx_oword_t reg;
1351 int link_speed, isolate;
1352
1353 isolate = !!ACCESS_ONCE(efx->reset_pending);
1354
1355 switch (link_state->speed) {
1356 case 10000: link_speed = 3; break;
1357 case 1000: link_speed = 2; break;
1358 case 100: link_speed = 1; break;
1359 default: link_speed = 0; break;
1360 }
1361
1362 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1363 * as advertised. Disable to ensure packets are not
1364 * indefinitely held and TX queue can be flushed at any point
1365 * while the link is down. */
1366 EFX_POPULATE_OWORD_5(reg,
1367 FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1368 FRF_AB_MAC_BCAD_ACPT, 1,
1369 FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1370 FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1371 FRF_AB_MAC_SPEED, link_speed);
1372 /* On B0, MAC backpressure can be disabled and packets get
1373 * discarded. */
1374 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1375 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1376 !link_state->up || isolate);
1377 }
1378
1379 efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1380
1381 /* Restore the multicast hash registers. */
1382 falcon_push_multicast_hash(efx);
1383
1384 efx_reado(efx, &reg, FR_AZ_RX_CFG);
1385 /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1386 * initialisation but it may read back as 0) */
1387 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1388 /* Unisolate the MAC -> RX */
1389 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1390 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1391 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1392 }
1393
1394 static void falcon_stats_request(struct efx_nic *efx)
1395 {
1396 struct falcon_nic_data *nic_data = efx->nic_data;
1397 efx_oword_t reg;
1398
1399 WARN_ON(nic_data->stats_pending);
1400 WARN_ON(nic_data->stats_disable_count);
1401
1402 FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1403 nic_data->stats_pending = true;
1404 wmb(); /* ensure done flag is clear */
1405
1406 /* Initiate DMA transfer of stats */
1407 EFX_POPULATE_OWORD_2(reg,
1408 FRF_AB_MAC_STAT_DMA_CMD, 1,
1409 FRF_AB_MAC_STAT_DMA_ADR,
1410 efx->stats_buffer.dma_addr);
1411 efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1412
1413 mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1414 }
1415
1416 static void falcon_stats_complete(struct efx_nic *efx)
1417 {
1418 struct falcon_nic_data *nic_data = efx->nic_data;
1419
1420 if (!nic_data->stats_pending)
1421 return;
1422
1423 nic_data->stats_pending = false;
1424 if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1425 rmb(); /* read the done flag before the stats */
1426 efx_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1427 falcon_stat_mask, nic_data->stats,
1428 efx->stats_buffer.addr, true);
1429 } else {
1430 netif_err(efx, hw, efx->net_dev,
1431 "timed out waiting for statistics\n");
1432 }
1433 }
1434
1435 static void falcon_stats_timer_func(unsigned long context)
1436 {
1437 struct efx_nic *efx = (struct efx_nic *)context;
1438 struct falcon_nic_data *nic_data = efx->nic_data;
1439
1440 spin_lock(&efx->stats_lock);
1441
1442 falcon_stats_complete(efx);
1443 if (nic_data->stats_disable_count == 0)
1444 falcon_stats_request(efx);
1445
1446 spin_unlock(&efx->stats_lock);
1447 }
1448
1449 static bool falcon_loopback_link_poll(struct efx_nic *efx)
1450 {
1451 struct efx_link_state old_state = efx->link_state;
1452
1453 WARN_ON(!mutex_is_locked(&efx->mac_lock));
1454 WARN_ON(!LOOPBACK_INTERNAL(efx));
1455
1456 efx->link_state.fd = true;
1457 efx->link_state.fc = efx->wanted_fc;
1458 efx->link_state.up = true;
1459 efx->link_state.speed = 10000;
1460
1461 return !efx_link_state_equal(&efx->link_state, &old_state);
1462 }
1463
1464 static int falcon_reconfigure_port(struct efx_nic *efx)
1465 {
1466 int rc;
1467
1468 WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
1469
1470 /* Poll the PHY link state *before* reconfiguring it. This means we
1471 * will pick up the correct speed (in loopback) to select the correct
1472 * MAC.
1473 */
1474 if (LOOPBACK_INTERNAL(efx))
1475 falcon_loopback_link_poll(efx);
1476 else
1477 efx->phy_op->poll(efx);
1478
1479 falcon_stop_nic_stats(efx);
1480 falcon_deconfigure_mac_wrapper(efx);
1481
1482 falcon_reset_macs(efx);
1483
1484 efx->phy_op->reconfigure(efx);
1485 rc = falcon_reconfigure_xmac(efx);
1486 BUG_ON(rc);
1487
1488 falcon_start_nic_stats(efx);
1489
1490 /* Synchronise efx->link_state with the kernel */
1491 efx_link_status_changed(efx);
1492
1493 return 0;
1494 }
1495
1496 /* TX flow control may automatically turn itself off if the link
1497 * partner (intermittently) stops responding to pause frames. There
1498 * isn't any indication that this has happened, so the best we do is
1499 * leave it up to the user to spot this and fix it by cycling transmit
1500 * flow control on this end.
1501 */
1502
1503 static void falcon_a1_prepare_enable_fc_tx(struct efx_nic *efx)
1504 {
1505 /* Schedule a reset to recover */
1506 efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1507 }
1508
1509 static void falcon_b0_prepare_enable_fc_tx(struct efx_nic *efx)
1510 {
1511 /* Recover by resetting the EM block */
1512 falcon_stop_nic_stats(efx);
1513 falcon_drain_tx_fifo(efx);
1514 falcon_reconfigure_xmac(efx);
1515 falcon_start_nic_stats(efx);
1516 }
1517
1518 /**************************************************************************
1519 *
1520 * PHY access via GMII
1521 *
1522 **************************************************************************
1523 */
1524
1525 /* Wait for GMII access to complete */
1526 static int falcon_gmii_wait(struct efx_nic *efx)
1527 {
1528 efx_oword_t md_stat;
1529 int count;
1530
1531 /* wait up to 50ms - taken max from datasheet */
1532 for (count = 0; count < 5000; count++) {
1533 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
1534 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1535 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1536 EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1537 netif_err(efx, hw, efx->net_dev,
1538 "error from GMII access "
1539 EFX_OWORD_FMT"\n",
1540 EFX_OWORD_VAL(md_stat));
1541 return -EIO;
1542 }
1543 return 0;
1544 }
1545 udelay(10);
1546 }
1547 netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1548 return -ETIMEDOUT;
1549 }
1550
1551 /* Write an MDIO register of a PHY connected to Falcon. */
1552 static int falcon_mdio_write(struct net_device *net_dev,
1553 int prtad, int devad, u16 addr, u16 value)
1554 {
1555 struct efx_nic *efx = netdev_priv(net_dev);
1556 struct falcon_nic_data *nic_data = efx->nic_data;
1557 efx_oword_t reg;
1558 int rc;
1559
1560 netif_vdbg(efx, hw, efx->net_dev,
1561 "writing MDIO %d register %d.%d with 0x%04x\n",
1562 prtad, devad, addr, value);
1563
1564 mutex_lock(&nic_data->mdio_lock);
1565
1566 /* Check MDIO not currently being accessed */
1567 rc = falcon_gmii_wait(efx);
1568 if (rc)
1569 goto out;
1570
1571 /* Write the address/ID register */
1572 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1573 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1574
1575 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1576 FRF_AB_MD_DEV_ADR, devad);
1577 efx_writeo(efx, &reg, FR_AB_MD_ID);
1578
1579 /* Write data */
1580 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1581 efx_writeo(efx, &reg, FR_AB_MD_TXD);
1582
1583 EFX_POPULATE_OWORD_2(reg,
1584 FRF_AB_MD_WRC, 1,
1585 FRF_AB_MD_GC, 0);
1586 efx_writeo(efx, &reg, FR_AB_MD_CS);
1587
1588 /* Wait for data to be written */
1589 rc = falcon_gmii_wait(efx);
1590 if (rc) {
1591 /* Abort the write operation */
1592 EFX_POPULATE_OWORD_2(reg,
1593 FRF_AB_MD_WRC, 0,
1594 FRF_AB_MD_GC, 1);
1595 efx_writeo(efx, &reg, FR_AB_MD_CS);
1596 udelay(10);
1597 }
1598
1599 out:
1600 mutex_unlock(&nic_data->mdio_lock);
1601 return rc;
1602 }
1603
1604 /* Read an MDIO register of a PHY connected to Falcon. */
1605 static int falcon_mdio_read(struct net_device *net_dev,
1606 int prtad, int devad, u16 addr)
1607 {
1608 struct efx_nic *efx = netdev_priv(net_dev);
1609 struct falcon_nic_data *nic_data = efx->nic_data;
1610 efx_oword_t reg;
1611 int rc;
1612
1613 mutex_lock(&nic_data->mdio_lock);
1614
1615 /* Check MDIO not currently being accessed */
1616 rc = falcon_gmii_wait(efx);
1617 if (rc)
1618 goto out;
1619
1620 EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1621 efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1622
1623 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1624 FRF_AB_MD_DEV_ADR, devad);
1625 efx_writeo(efx, &reg, FR_AB_MD_ID);
1626
1627 /* Request data to be read */
1628 EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1629 efx_writeo(efx, &reg, FR_AB_MD_CS);
1630
1631 /* Wait for data to become available */
1632 rc = falcon_gmii_wait(efx);
1633 if (rc == 0) {
1634 efx_reado(efx, &reg, FR_AB_MD_RXD);
1635 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1636 netif_vdbg(efx, hw, efx->net_dev,
1637 "read from MDIO %d register %d.%d, got %04x\n",
1638 prtad, devad, addr, rc);
1639 } else {
1640 /* Abort the read operation */
1641 EFX_POPULATE_OWORD_2(reg,
1642 FRF_AB_MD_RIC, 0,
1643 FRF_AB_MD_GC, 1);
1644 efx_writeo(efx, &reg, FR_AB_MD_CS);
1645
1646 netif_dbg(efx, hw, efx->net_dev,
1647 "read from MDIO %d register %d.%d, got error %d\n",
1648 prtad, devad, addr, rc);
1649 }
1650
1651 out:
1652 mutex_unlock(&nic_data->mdio_lock);
1653 return rc;
1654 }
1655
1656 /* This call is responsible for hooking in the MAC and PHY operations */
1657 static int falcon_probe_port(struct efx_nic *efx)
1658 {
1659 struct falcon_nic_data *nic_data = efx->nic_data;
1660 int rc;
1661
1662 switch (efx->phy_type) {
1663 case PHY_TYPE_SFX7101:
1664 efx->phy_op = &falcon_sfx7101_phy_ops;
1665 break;
1666 case PHY_TYPE_QT2022C2:
1667 case PHY_TYPE_QT2025C:
1668 efx->phy_op = &falcon_qt202x_phy_ops;
1669 break;
1670 case PHY_TYPE_TXC43128:
1671 efx->phy_op = &falcon_txc_phy_ops;
1672 break;
1673 default:
1674 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1675 efx->phy_type);
1676 return -ENODEV;
1677 }
1678
1679 /* Fill out MDIO structure and loopback modes */
1680 mutex_init(&nic_data->mdio_lock);
1681 efx->mdio.mdio_read = falcon_mdio_read;
1682 efx->mdio.mdio_write = falcon_mdio_write;
1683 rc = efx->phy_op->probe(efx);
1684 if (rc != 0)
1685 return rc;
1686
1687 /* Initial assumption */
1688 efx->link_state.speed = 10000;
1689 efx->link_state.fd = true;
1690
1691 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1692 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1693 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
1694 else
1695 efx->wanted_fc = EFX_FC_RX;
1696 if (efx->mdio.mmds & MDIO_DEVS_AN)
1697 efx->wanted_fc |= EFX_FC_AUTO;
1698
1699 /* Allocate buffer for stats */
1700 rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
1701 FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1702 if (rc)
1703 return rc;
1704 netif_dbg(efx, probe, efx->net_dev,
1705 "stats buffer at %llx (virt %p phys %llx)\n",
1706 (u64)efx->stats_buffer.dma_addr,
1707 efx->stats_buffer.addr,
1708 (u64)virt_to_phys(efx->stats_buffer.addr));
1709
1710 return 0;
1711 }
1712
1713 static void falcon_remove_port(struct efx_nic *efx)
1714 {
1715 efx->phy_op->remove(efx);
1716 efx_nic_free_buffer(efx, &efx->stats_buffer);
1717 }
1718
1719 /* Global events are basically PHY events */
1720 static bool
1721 falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
1722 {
1723 struct efx_nic *efx = channel->efx;
1724 struct falcon_nic_data *nic_data = efx->nic_data;
1725
1726 if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1727 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1728 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1729 /* Ignored */
1730 return true;
1731
1732 if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
1733 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1734 nic_data->xmac_poll_required = true;
1735 return true;
1736 }
1737
1738 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
1739 EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1740 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1741 netif_err(efx, rx_err, efx->net_dev,
1742 "channel %d seen global RX_RESET event. Resetting.\n",
1743 channel->channel);
1744
1745 atomic_inc(&efx->rx_reset);
1746 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1747 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1748 return true;
1749 }
1750
1751 return false;
1752 }
1753
1754 /**************************************************************************
1755 *
1756 * Falcon test code
1757 *
1758 **************************************************************************/
1759
1760 static int
1761 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
1762 {
1763 struct falcon_nic_data *nic_data = efx->nic_data;
1764 struct falcon_nvconfig *nvconfig;
1765 struct falcon_spi_device *spi;
1766 void *region;
1767 int rc, magic_num, struct_ver;
1768 __le16 *word, *limit;
1769 u32 csum;
1770
1771 if (falcon_spi_present(&nic_data->spi_flash))
1772 spi = &nic_data->spi_flash;
1773 else if (falcon_spi_present(&nic_data->spi_eeprom))
1774 spi = &nic_data->spi_eeprom;
1775 else
1776 return -EINVAL;
1777
1778 region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1779 if (!region)
1780 return -ENOMEM;
1781 nvconfig = region + FALCON_NVCONFIG_OFFSET;
1782
1783 mutex_lock(&nic_data->spi_lock);
1784 rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1785 mutex_unlock(&nic_data->spi_lock);
1786 if (rc) {
1787 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1788 falcon_spi_present(&nic_data->spi_flash) ?
1789 "flash" : "EEPROM");
1790 rc = -EIO;
1791 goto out;
1792 }
1793
1794 magic_num = le16_to_cpu(nvconfig->board_magic_num);
1795 struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1796
1797 rc = -EINVAL;
1798 if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1799 netif_err(efx, hw, efx->net_dev,
1800 "NVRAM bad magic 0x%x\n", magic_num);
1801 goto out;
1802 }
1803 if (struct_ver < 2) {
1804 netif_err(efx, hw, efx->net_dev,
1805 "NVRAM has ancient version 0x%x\n", struct_ver);
1806 goto out;
1807 } else if (struct_ver < 4) {
1808 word = &nvconfig->board_magic_num;
1809 limit = (__le16 *) (nvconfig + 1);
1810 } else {
1811 word = region;
1812 limit = region + FALCON_NVCONFIG_END;
1813 }
1814 for (csum = 0; word < limit; ++word)
1815 csum += le16_to_cpu(*word);
1816
1817 if (~csum & 0xffff) {
1818 netif_err(efx, hw, efx->net_dev,
1819 "NVRAM has incorrect checksum\n");
1820 goto out;
1821 }
1822
1823 rc = 0;
1824 if (nvconfig_out)
1825 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1826
1827 out:
1828 kfree(region);
1829 return rc;
1830 }
1831
1832 static int falcon_test_nvram(struct efx_nic *efx)
1833 {
1834 return falcon_read_nvram(efx, NULL);
1835 }
1836
1837 static const struct efx_farch_register_test falcon_b0_register_tests[] = {
1838 { FR_AZ_ADR_REGION,
1839 EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1840 { FR_AZ_RX_CFG,
1841 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1842 { FR_AZ_TX_CFG,
1843 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1844 { FR_AZ_TX_RESERVED,
1845 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1846 { FR_AB_MAC_CTRL,
1847 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1848 { FR_AZ_SRM_TX_DC_CFG,
1849 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1850 { FR_AZ_RX_DC_CFG,
1851 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1852 { FR_AZ_RX_DC_PF_WM,
1853 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1854 { FR_BZ_DP_CTRL,
1855 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1856 { FR_AB_GM_CFG2,
1857 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1858 { FR_AB_GMF_CFG0,
1859 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1860 { FR_AB_XM_GLB_CFG,
1861 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1862 { FR_AB_XM_TX_CFG,
1863 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1864 { FR_AB_XM_RX_CFG,
1865 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1866 { FR_AB_XM_RX_PARAM,
1867 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1868 { FR_AB_XM_FC,
1869 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1870 { FR_AB_XM_ADR_LO,
1871 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1872 { FR_AB_XX_SD_CTL,
1873 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1874 };
1875
1876 static int
1877 falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1878 {
1879 enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1880 int rc, rc2;
1881
1882 mutex_lock(&efx->mac_lock);
1883 if (efx->loopback_modes) {
1884 /* We need the 312 clock from the PHY to test the XMAC
1885 * registers, so move into XGMII loopback if available */
1886 if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1887 efx->loopback_mode = LOOPBACK_XGMII;
1888 else
1889 efx->loopback_mode = __ffs(efx->loopback_modes);
1890 }
1891 __efx_reconfigure_port(efx);
1892 mutex_unlock(&efx->mac_lock);
1893
1894 efx_reset_down(efx, reset_method);
1895
1896 tests->registers =
1897 efx_farch_test_registers(efx, falcon_b0_register_tests,
1898 ARRAY_SIZE(falcon_b0_register_tests))
1899 ? -1 : 1;
1900
1901 rc = falcon_reset_hw(efx, reset_method);
1902 rc2 = efx_reset_up(efx, reset_method, rc == 0);
1903 return rc ? rc : rc2;
1904 }
1905
1906 /**************************************************************************
1907 *
1908 * Device reset
1909 *
1910 **************************************************************************
1911 */
1912
1913 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1914 {
1915 switch (reason) {
1916 case RESET_TYPE_RX_RECOVERY:
1917 case RESET_TYPE_DMA_ERROR:
1918 case RESET_TYPE_TX_SKIP:
1919 /* These can occasionally occur due to hardware bugs.
1920 * We try to reset without disrupting the link.
1921 */
1922 return RESET_TYPE_INVISIBLE;
1923 default:
1924 return RESET_TYPE_ALL;
1925 }
1926 }
1927
1928 static int falcon_map_reset_flags(u32 *flags)
1929 {
1930 enum {
1931 FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1932 ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1933 FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1934 FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1935 };
1936
1937 if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1938 *flags &= ~FALCON_RESET_WORLD;
1939 return RESET_TYPE_WORLD;
1940 }
1941
1942 if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1943 *flags &= ~FALCON_RESET_ALL;
1944 return RESET_TYPE_ALL;
1945 }
1946
1947 if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1948 *flags &= ~FALCON_RESET_INVISIBLE;
1949 return RESET_TYPE_INVISIBLE;
1950 }
1951
1952 return -EINVAL;
1953 }
1954
1955 /* Resets NIC to known state. This routine must be called in process
1956 * context and is allowed to sleep. */
1957 static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1958 {
1959 struct falcon_nic_data *nic_data = efx->nic_data;
1960 efx_oword_t glb_ctl_reg_ker;
1961 int rc;
1962
1963 netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1964 RESET_TYPE(method));
1965
1966 /* Initiate device reset */
1967 if (method == RESET_TYPE_WORLD) {
1968 rc = pci_save_state(efx->pci_dev);
1969 if (rc) {
1970 netif_err(efx, drv, efx->net_dev,
1971 "failed to backup PCI state of primary "
1972 "function prior to hardware reset\n");
1973 goto fail1;
1974 }
1975 if (efx_nic_is_dual_func(efx)) {
1976 rc = pci_save_state(nic_data->pci_dev2);
1977 if (rc) {
1978 netif_err(efx, drv, efx->net_dev,
1979 "failed to backup PCI state of "
1980 "secondary function prior to "
1981 "hardware reset\n");
1982 goto fail2;
1983 }
1984 }
1985
1986 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1987 FRF_AB_EXT_PHY_RST_DUR,
1988 FFE_AB_EXT_PHY_RST_DUR_10240US,
1989 FRF_AB_SWRST, 1);
1990 } else {
1991 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1992 /* exclude PHY from "invisible" reset */
1993 FRF_AB_EXT_PHY_RST_CTL,
1994 method == RESET_TYPE_INVISIBLE,
1995 /* exclude EEPROM/flash and PCIe */
1996 FRF_AB_PCIE_CORE_RST_CTL, 1,
1997 FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1998 FRF_AB_PCIE_SD_RST_CTL, 1,
1999 FRF_AB_EE_RST_CTL, 1,
2000 FRF_AB_EXT_PHY_RST_DUR,
2001 FFE_AB_EXT_PHY_RST_DUR_10240US,
2002 FRF_AB_SWRST, 1);
2003 }
2004 efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2005
2006 netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2007 schedule_timeout_uninterruptible(HZ / 20);
2008
2009 /* Restore PCI configuration if needed */
2010 if (method == RESET_TYPE_WORLD) {
2011 if (efx_nic_is_dual_func(efx))
2012 pci_restore_state(nic_data->pci_dev2);
2013 pci_restore_state(efx->pci_dev);
2014 netif_dbg(efx, drv, efx->net_dev,
2015 "successfully restored PCI config\n");
2016 }
2017
2018 /* Assert that reset complete */
2019 efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2020 if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2021 rc = -ETIMEDOUT;
2022 netif_err(efx, hw, efx->net_dev,
2023 "timed out waiting for hardware reset\n");
2024 goto fail3;
2025 }
2026 netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2027
2028 return 0;
2029
2030 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2031 fail2:
2032 pci_restore_state(efx->pci_dev);
2033 fail1:
2034 fail3:
2035 return rc;
2036 }
2037
2038 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2039 {
2040 struct falcon_nic_data *nic_data = efx->nic_data;
2041 int rc;
2042
2043 mutex_lock(&nic_data->spi_lock);
2044 rc = __falcon_reset_hw(efx, method);
2045 mutex_unlock(&nic_data->spi_lock);
2046
2047 return rc;
2048 }
2049
2050 static void falcon_monitor(struct efx_nic *efx)
2051 {
2052 bool link_changed;
2053 int rc;
2054
2055 BUG_ON(!mutex_is_locked(&efx->mac_lock));
2056
2057 rc = falcon_board(efx)->type->monitor(efx);
2058 if (rc) {
2059 netif_err(efx, hw, efx->net_dev,
2060 "Board sensor %s; shutting down PHY\n",
2061 (rc == -ERANGE) ? "reported fault" : "failed");
2062 efx->phy_mode |= PHY_MODE_LOW_POWER;
2063 rc = __efx_reconfigure_port(efx);
2064 WARN_ON(rc);
2065 }
2066
2067 if (LOOPBACK_INTERNAL(efx))
2068 link_changed = falcon_loopback_link_poll(efx);
2069 else
2070 link_changed = efx->phy_op->poll(efx);
2071
2072 if (link_changed) {
2073 falcon_stop_nic_stats(efx);
2074 falcon_deconfigure_mac_wrapper(efx);
2075
2076 falcon_reset_macs(efx);
2077 rc = falcon_reconfigure_xmac(efx);
2078 BUG_ON(rc);
2079
2080 falcon_start_nic_stats(efx);
2081
2082 efx_link_status_changed(efx);
2083 }
2084
2085 falcon_poll_xmac(efx);
2086 }
2087
2088 /* Zeroes out the SRAM contents. This routine must be called in
2089 * process context and is allowed to sleep.
2090 */
2091 static int falcon_reset_sram(struct efx_nic *efx)
2092 {
2093 efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2094 int count;
2095
2096 /* Set the SRAM wake/sleep GPIO appropriately. */
2097 efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2098 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2099 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2100 efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2101
2102 /* Initiate SRAM reset */
2103 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2104 FRF_AZ_SRM_INIT_EN, 1,
2105 FRF_AZ_SRM_NB_SZ, 0);
2106 efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2107
2108 /* Wait for SRAM reset to complete */
2109 count = 0;
2110 do {
2111 netif_dbg(efx, hw, efx->net_dev,
2112 "waiting for SRAM reset (attempt %d)...\n", count);
2113
2114 /* SRAM reset is slow; expect around 16ms */
2115 schedule_timeout_uninterruptible(HZ / 50);
2116
2117 /* Check for reset complete */
2118 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2119 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2120 netif_dbg(efx, hw, efx->net_dev,
2121 "SRAM reset complete\n");
2122
2123 return 0;
2124 }
2125 } while (++count < 20); /* wait up to 0.4 sec */
2126
2127 netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2128 return -ETIMEDOUT;
2129 }
2130
2131 static void falcon_spi_device_init(struct efx_nic *efx,
2132 struct falcon_spi_device *spi_device,
2133 unsigned int device_id, u32 device_type)
2134 {
2135 if (device_type != 0) {
2136 spi_device->device_id = device_id;
2137 spi_device->size =
2138 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2139 spi_device->addr_len =
2140 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2141 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2142 spi_device->addr_len == 1);
2143 spi_device->erase_command =
2144 SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2145 spi_device->erase_size =
2146 1 << SPI_DEV_TYPE_FIELD(device_type,
2147 SPI_DEV_TYPE_ERASE_SIZE);
2148 spi_device->block_size =
2149 1 << SPI_DEV_TYPE_FIELD(device_type,
2150 SPI_DEV_TYPE_BLOCK_SIZE);
2151 } else {
2152 spi_device->size = 0;
2153 }
2154 }
2155
2156 /* Extract non-volatile configuration */
2157 static int falcon_probe_nvconfig(struct efx_nic *efx)
2158 {
2159 struct falcon_nic_data *nic_data = efx->nic_data;
2160 struct falcon_nvconfig *nvconfig;
2161 int rc;
2162
2163 nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2164 if (!nvconfig)
2165 return -ENOMEM;
2166
2167 rc = falcon_read_nvram(efx, nvconfig);
2168 if (rc)
2169 goto out;
2170
2171 efx->phy_type = nvconfig->board_v2.port0_phy_type;
2172 efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2173
2174 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2175 falcon_spi_device_init(
2176 efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2177 le32_to_cpu(nvconfig->board_v3
2178 .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2179 falcon_spi_device_init(
2180 efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2181 le32_to_cpu(nvconfig->board_v3
2182 .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2183 }
2184
2185 /* Read the MAC addresses */
2186 ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2187
2188 netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2189 efx->phy_type, efx->mdio.prtad);
2190
2191 rc = falcon_probe_board(efx,
2192 le16_to_cpu(nvconfig->board_v2.board_revision));
2193 out:
2194 kfree(nvconfig);
2195 return rc;
2196 }
2197
2198 static int falcon_dimension_resources(struct efx_nic *efx)
2199 {
2200 efx->rx_dc_base = 0x20000;
2201 efx->tx_dc_base = 0x26000;
2202 return 0;
2203 }
2204
2205 /* Probe all SPI devices on the NIC */
2206 static void falcon_probe_spi_devices(struct efx_nic *efx)
2207 {
2208 struct falcon_nic_data *nic_data = efx->nic_data;
2209 efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2210 int boot_dev;
2211
2212 efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2213 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2214 efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2215
2216 if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2217 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2218 FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2219 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2220 boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2221 "flash" : "EEPROM");
2222 } else {
2223 /* Disable VPD and set clock dividers to safe
2224 * values for initial programming. */
2225 boot_dev = -1;
2226 netif_dbg(efx, probe, efx->net_dev,
2227 "Booted from internal ASIC settings;"
2228 " setting SPI config\n");
2229 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2230 /* 125 MHz / 7 ~= 20 MHz */
2231 FRF_AB_EE_SF_CLOCK_DIV, 7,
2232 /* 125 MHz / 63 ~= 2 MHz */
2233 FRF_AB_EE_EE_CLOCK_DIV, 63);
2234 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2235 }
2236
2237 mutex_init(&nic_data->spi_lock);
2238
2239 if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2240 falcon_spi_device_init(efx, &nic_data->spi_flash,
2241 FFE_AB_SPI_DEVICE_FLASH,
2242 default_flash_type);
2243 if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2244 falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2245 FFE_AB_SPI_DEVICE_EEPROM,
2246 large_eeprom_type);
2247 }
2248
2249 static unsigned int falcon_a1_mem_map_size(struct efx_nic *efx)
2250 {
2251 return 0x20000;
2252 }
2253
2254 static unsigned int falcon_b0_mem_map_size(struct efx_nic *efx)
2255 {
2256 /* Map everything up to and including the RSS indirection table.
2257 * The PCI core takes care of mapping the MSI-X tables.
2258 */
2259 return FR_BZ_RX_INDIRECTION_TBL +
2260 FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2261 }
2262
2263 static int falcon_probe_nic(struct efx_nic *efx)
2264 {
2265 struct falcon_nic_data *nic_data;
2266 struct falcon_board *board;
2267 int rc;
2268
2269 efx->primary = efx; /* only one usable function per controller */
2270
2271 /* Allocate storage for hardware specific data */
2272 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2273 if (!nic_data)
2274 return -ENOMEM;
2275 efx->nic_data = nic_data;
2276
2277 rc = -ENODEV;
2278
2279 if (efx_farch_fpga_ver(efx) != 0) {
2280 netif_err(efx, probe, efx->net_dev,
2281 "Falcon FPGA not supported\n");
2282 goto fail1;
2283 }
2284
2285 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2286 efx_oword_t nic_stat;
2287 struct pci_dev *dev;
2288 u8 pci_rev = efx->pci_dev->revision;
2289
2290 if ((pci_rev == 0xff) || (pci_rev == 0)) {
2291 netif_err(efx, probe, efx->net_dev,
2292 "Falcon rev A0 not supported\n");
2293 goto fail1;
2294 }
2295 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2296 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2297 netif_err(efx, probe, efx->net_dev,
2298 "Falcon rev A1 1G not supported\n");
2299 goto fail1;
2300 }
2301 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2302 netif_err(efx, probe, efx->net_dev,
2303 "Falcon rev A1 PCI-X not supported\n");
2304 goto fail1;
2305 }
2306
2307 dev = pci_dev_get(efx->pci_dev);
2308 while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2309 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2310 dev))) {
2311 if (dev->bus == efx->pci_dev->bus &&
2312 dev->devfn == efx->pci_dev->devfn + 1) {
2313 nic_data->pci_dev2 = dev;
2314 break;
2315 }
2316 }
2317 if (!nic_data->pci_dev2) {
2318 netif_err(efx, probe, efx->net_dev,
2319 "failed to find secondary function\n");
2320 rc = -ENODEV;
2321 goto fail2;
2322 }
2323 }
2324
2325 /* Now we can reset the NIC */
2326 rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2327 if (rc) {
2328 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2329 goto fail3;
2330 }
2331
2332 /* Allocate memory for INT_KER */
2333 rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
2334 GFP_KERNEL);
2335 if (rc)
2336 goto fail4;
2337 BUG_ON(efx->irq_status.dma_addr & 0x0f);
2338
2339 netif_dbg(efx, probe, efx->net_dev,
2340 "INT_KER at %llx (virt %p phys %llx)\n",
2341 (u64)efx->irq_status.dma_addr,
2342 efx->irq_status.addr,
2343 (u64)virt_to_phys(efx->irq_status.addr));
2344
2345 falcon_probe_spi_devices(efx);
2346
2347 /* Read in the non-volatile configuration */
2348 rc = falcon_probe_nvconfig(efx);
2349 if (rc) {
2350 if (rc == -EINVAL)
2351 netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2352 goto fail5;
2353 }
2354
2355 efx->max_channels = (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? 4 :
2356 EFX_MAX_CHANNELS);
2357 efx->timer_quantum_ns = 4968; /* 621 cycles */
2358
2359 /* Initialise I2C adapter */
2360 board = falcon_board(efx);
2361 board->i2c_adap.owner = THIS_MODULE;
2362 board->i2c_data = falcon_i2c_bit_operations;
2363 board->i2c_data.data = efx;
2364 board->i2c_adap.algo_data = &board->i2c_data;
2365 board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2366 strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2367 sizeof(board->i2c_adap.name));
2368 rc = i2c_bit_add_bus(&board->i2c_adap);
2369 if (rc)
2370 goto fail5;
2371
2372 rc = falcon_board(efx)->type->init(efx);
2373 if (rc) {
2374 netif_err(efx, probe, efx->net_dev,
2375 "failed to initialise board\n");
2376 goto fail6;
2377 }
2378
2379 nic_data->stats_disable_count = 1;
2380 setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2381 (unsigned long)efx);
2382
2383 return 0;
2384
2385 fail6:
2386 i2c_del_adapter(&board->i2c_adap);
2387 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2388 fail5:
2389 efx_nic_free_buffer(efx, &efx->irq_status);
2390 fail4:
2391 fail3:
2392 if (nic_data->pci_dev2) {
2393 pci_dev_put(nic_data->pci_dev2);
2394 nic_data->pci_dev2 = NULL;
2395 }
2396 fail2:
2397 fail1:
2398 kfree(efx->nic_data);
2399 return rc;
2400 }
2401
2402 static void falcon_init_rx_cfg(struct efx_nic *efx)
2403 {
2404 /* RX control FIFO thresholds (32 entries) */
2405 const unsigned ctrl_xon_thr = 20;
2406 const unsigned ctrl_xoff_thr = 25;
2407 efx_oword_t reg;
2408
2409 efx_reado(efx, &reg, FR_AZ_RX_CFG);
2410 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2411 /* Data FIFO size is 5.5K. The RX DMA engine only
2412 * supports scattering for user-mode queues, but will
2413 * split DMA writes at intervals of RX_USR_BUF_SIZE
2414 * (32-byte units) even for kernel-mode queues. We
2415 * set it to be so large that that never happens.
2416 */
2417 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2418 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2419 (3 * 4096) >> 5);
2420 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2421 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2422 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2423 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2424 } else {
2425 /* Data FIFO size is 80K; register fields moved */
2426 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2427 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2428 EFX_RX_USR_BUF_SIZE >> 5);
2429 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2430 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2431 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2432 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2433 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2434 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2435
2436 /* Enable hash insertion. This is broken for the
2437 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2438 * IPv4 hashes. */
2439 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2440 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2441 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2442 }
2443 /* Always enable XOFF signal from RX FIFO. We enable
2444 * or disable transmission of pause frames at the MAC. */
2445 EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2446 efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2447 }
2448
2449 /* This call performs hardware-specific global initialisation, such as
2450 * defining the descriptor cache sizes and number of RSS channels.
2451 * It does not set up any buffers, descriptor rings or event queues.
2452 */
2453 static int falcon_init_nic(struct efx_nic *efx)
2454 {
2455 efx_oword_t temp;
2456 int rc;
2457
2458 /* Use on-chip SRAM */
2459 efx_reado(efx, &temp, FR_AB_NIC_STAT);
2460 EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2461 efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2462
2463 rc = falcon_reset_sram(efx);
2464 if (rc)
2465 return rc;
2466
2467 /* Clear the parity enables on the TX data fifos as
2468 * they produce false parity errors because of timing issues
2469 */
2470 if (EFX_WORKAROUND_5129(efx)) {
2471 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2472 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2473 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2474 }
2475
2476 if (EFX_WORKAROUND_7244(efx)) {
2477 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2478 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2479 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2480 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2481 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2482 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2483 }
2484
2485 /* XXX This is documented only for Falcon A0/A1 */
2486 /* Setup RX. Wait for descriptor is broken and must
2487 * be disabled. RXDP recovery shouldn't be needed, but is.
2488 */
2489 efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
2490 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2491 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2492 if (EFX_WORKAROUND_5583(efx))
2493 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2494 efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2495
2496 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2497 * descriptors (which is bad).
2498 */
2499 efx_reado(efx, &temp, FR_AZ_TX_CFG);
2500 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2501 efx_writeo(efx, &temp, FR_AZ_TX_CFG);
2502
2503 falcon_init_rx_cfg(efx);
2504
2505 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2506 falcon_b0_rx_push_rss_config(efx);
2507
2508 /* Set destination of both TX and RX Flush events */
2509 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2510 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
2511 }
2512
2513 efx_farch_init_common(efx);
2514
2515 return 0;
2516 }
2517
2518 static void falcon_remove_nic(struct efx_nic *efx)
2519 {
2520 struct falcon_nic_data *nic_data = efx->nic_data;
2521 struct falcon_board *board = falcon_board(efx);
2522
2523 board->type->fini(efx);
2524
2525 /* Remove I2C adapter and clear it in preparation for a retry */
2526 i2c_del_adapter(&board->i2c_adap);
2527 memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2528
2529 efx_nic_free_buffer(efx, &efx->irq_status);
2530
2531 __falcon_reset_hw(efx, RESET_TYPE_ALL);
2532
2533 /* Release the second function after the reset */
2534 if (nic_data->pci_dev2) {
2535 pci_dev_put(nic_data->pci_dev2);
2536 nic_data->pci_dev2 = NULL;
2537 }
2538
2539 /* Tear down the private nic state */
2540 kfree(efx->nic_data);
2541 efx->nic_data = NULL;
2542 }
2543
2544 static size_t falcon_describe_nic_stats(struct efx_nic *efx, u8 *names)
2545 {
2546 return efx_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2547 falcon_stat_mask, names);
2548 }
2549
2550 static size_t falcon_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
2551 struct rtnl_link_stats64 *core_stats)
2552 {
2553 struct falcon_nic_data *nic_data = efx->nic_data;
2554 u64 *stats = nic_data->stats;
2555 efx_oword_t cnt;
2556
2557 if (!nic_data->stats_disable_count) {
2558 efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2559 stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2560 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2561
2562 if (nic_data->stats_pending &&
2563 FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2564 nic_data->stats_pending = false;
2565 rmb(); /* read the done flag before the stats */
2566 efx_nic_update_stats(
2567 falcon_stat_desc, FALCON_STAT_COUNT,
2568 falcon_stat_mask,
2569 stats, efx->stats_buffer.addr, true);
2570 }
2571
2572 /* Update derived statistic */
2573 efx_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2574 stats[FALCON_STAT_rx_bytes] -
2575 stats[FALCON_STAT_rx_good_bytes] -
2576 stats[FALCON_STAT_rx_control] * 64);
2577 }
2578
2579 if (full_stats)
2580 memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2581
2582 if (core_stats) {
2583 core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2584 core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2585 core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2586 core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2587 core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt];
2588 core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2589 core_stats->rx_length_errors =
2590 stats[FALCON_STAT_rx_gtjumbo] +
2591 stats[FALCON_STAT_rx_length_error];
2592 core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2593 core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2594 core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2595
2596 core_stats->rx_errors = (core_stats->rx_length_errors +
2597 core_stats->rx_crc_errors +
2598 core_stats->rx_frame_errors +
2599 stats[FALCON_STAT_rx_symbol_error]);
2600 }
2601
2602 return FALCON_STAT_COUNT;
2603 }
2604
2605 void falcon_start_nic_stats(struct efx_nic *efx)
2606 {
2607 struct falcon_nic_data *nic_data = efx->nic_data;
2608
2609 spin_lock_bh(&efx->stats_lock);
2610 if (--nic_data->stats_disable_count == 0)
2611 falcon_stats_request(efx);
2612 spin_unlock_bh(&efx->stats_lock);
2613 }
2614
2615 /* We don't acutally pull stats on falcon. Wait 10ms so that
2616 * they arrive when we call this just after start_stats
2617 */
2618 static void falcon_pull_nic_stats(struct efx_nic *efx)
2619 {
2620 msleep(10);
2621 }
2622
2623 void falcon_stop_nic_stats(struct efx_nic *efx)
2624 {
2625 struct falcon_nic_data *nic_data = efx->nic_data;
2626 int i;
2627
2628 might_sleep();
2629
2630 spin_lock_bh(&efx->stats_lock);
2631 ++nic_data->stats_disable_count;
2632 spin_unlock_bh(&efx->stats_lock);
2633
2634 del_timer_sync(&nic_data->stats_timer);
2635
2636 /* Wait enough time for the most recent transfer to
2637 * complete. */
2638 for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2639 if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2640 break;
2641 msleep(1);
2642 }
2643
2644 spin_lock_bh(&efx->stats_lock);
2645 falcon_stats_complete(efx);
2646 spin_unlock_bh(&efx->stats_lock);
2647 }
2648
2649 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2650 {
2651 falcon_board(efx)->type->set_id_led(efx, mode);
2652 }
2653
2654 /**************************************************************************
2655 *
2656 * Wake on LAN
2657 *
2658 **************************************************************************
2659 */
2660
2661 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2662 {
2663 wol->supported = 0;
2664 wol->wolopts = 0;
2665 memset(&wol->sopass, 0, sizeof(wol->sopass));
2666 }
2667
2668 static int falcon_set_wol(struct efx_nic *efx, u32 type)
2669 {
2670 if (type != 0)
2671 return -EINVAL;
2672 return 0;
2673 }
2674
2675 /**************************************************************************
2676 *
2677 * Revision-dependent attributes used by efx.c and nic.c
2678 *
2679 **************************************************************************
2680 */
2681
2682 const struct efx_nic_type falcon_a1_nic_type = {
2683 .mem_map_size = falcon_a1_mem_map_size,
2684 .probe = falcon_probe_nic,
2685 .remove = falcon_remove_nic,
2686 .init = falcon_init_nic,
2687 .dimension_resources = falcon_dimension_resources,
2688 .fini = falcon_irq_ack_a1,
2689 .monitor = falcon_monitor,
2690 .map_reset_reason = falcon_map_reset_reason,
2691 .map_reset_flags = falcon_map_reset_flags,
2692 .reset = falcon_reset_hw,
2693 .probe_port = falcon_probe_port,
2694 .remove_port = falcon_remove_port,
2695 .handle_global_event = falcon_handle_global_event,
2696 .fini_dmaq = efx_farch_fini_dmaq,
2697 .prepare_flush = falcon_prepare_flush,
2698 .finish_flush = efx_port_dummy_op_void,
2699 .describe_stats = falcon_describe_nic_stats,
2700 .update_stats = falcon_update_nic_stats,
2701 .start_stats = falcon_start_nic_stats,
2702 .pull_stats = falcon_pull_nic_stats,
2703 .stop_stats = falcon_stop_nic_stats,
2704 .set_id_led = falcon_set_id_led,
2705 .push_irq_moderation = falcon_push_irq_moderation,
2706 .reconfigure_port = falcon_reconfigure_port,
2707 .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2708 .reconfigure_mac = falcon_reconfigure_xmac,
2709 .check_mac_fault = falcon_xmac_check_fault,
2710 .get_wol = falcon_get_wol,
2711 .set_wol = falcon_set_wol,
2712 .resume_wol = efx_port_dummy_op_void,
2713 .test_nvram = falcon_test_nvram,
2714 .irq_enable_master = efx_farch_irq_enable_master,
2715 .irq_test_generate = efx_farch_irq_test_generate,
2716 .irq_disable_non_ev = efx_farch_irq_disable_master,
2717 .irq_handle_msi = efx_farch_msi_interrupt,
2718 .irq_handle_legacy = falcon_legacy_interrupt_a1,
2719 .tx_probe = efx_farch_tx_probe,
2720 .tx_init = efx_farch_tx_init,
2721 .tx_remove = efx_farch_tx_remove,
2722 .tx_write = efx_farch_tx_write,
2723 .rx_push_rss_config = efx_port_dummy_op_void,
2724 .rx_probe = efx_farch_rx_probe,
2725 .rx_init = efx_farch_rx_init,
2726 .rx_remove = efx_farch_rx_remove,
2727 .rx_write = efx_farch_rx_write,
2728 .rx_defer_refill = efx_farch_rx_defer_refill,
2729 .ev_probe = efx_farch_ev_probe,
2730 .ev_init = efx_farch_ev_init,
2731 .ev_fini = efx_farch_ev_fini,
2732 .ev_remove = efx_farch_ev_remove,
2733 .ev_process = efx_farch_ev_process,
2734 .ev_read_ack = efx_farch_ev_read_ack,
2735 .ev_test_generate = efx_farch_ev_test_generate,
2736
2737 /* We don't expose the filter table on Falcon A1 as it is not
2738 * mapped into function 0, but these implementations still
2739 * work with a degenerate case of all tables set to size 0.
2740 */
2741 .filter_table_probe = efx_farch_filter_table_probe,
2742 .filter_table_restore = efx_farch_filter_table_restore,
2743 .filter_table_remove = efx_farch_filter_table_remove,
2744 .filter_insert = efx_farch_filter_insert,
2745 .filter_remove_safe = efx_farch_filter_remove_safe,
2746 .filter_get_safe = efx_farch_filter_get_safe,
2747 .filter_clear_rx = efx_farch_filter_clear_rx,
2748 .filter_count_rx_used = efx_farch_filter_count_rx_used,
2749 .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2750 .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2751
2752 #ifdef CONFIG_SFC_MTD
2753 .mtd_probe = falcon_mtd_probe,
2754 .mtd_rename = falcon_mtd_rename,
2755 .mtd_read = falcon_mtd_read,
2756 .mtd_erase = falcon_mtd_erase,
2757 .mtd_write = falcon_mtd_write,
2758 .mtd_sync = falcon_mtd_sync,
2759 #endif
2760
2761 .revision = EFX_REV_FALCON_A1,
2762 .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2763 .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2764 .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2765 .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2766 .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2767 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2768 .rx_buffer_padding = 0x24,
2769 .can_rx_scatter = false,
2770 .max_interrupt_mode = EFX_INT_MODE_MSI,
2771 .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2772 .offload_features = NETIF_F_IP_CSUM,
2773 .mcdi_max_ver = -1,
2774 };
2775
2776 const struct efx_nic_type falcon_b0_nic_type = {
2777 .mem_map_size = falcon_b0_mem_map_size,
2778 .probe = falcon_probe_nic,
2779 .remove = falcon_remove_nic,
2780 .init = falcon_init_nic,
2781 .dimension_resources = falcon_dimension_resources,
2782 .fini = efx_port_dummy_op_void,
2783 .monitor = falcon_monitor,
2784 .map_reset_reason = falcon_map_reset_reason,
2785 .map_reset_flags = falcon_map_reset_flags,
2786 .reset = falcon_reset_hw,
2787 .probe_port = falcon_probe_port,
2788 .remove_port = falcon_remove_port,
2789 .handle_global_event = falcon_handle_global_event,
2790 .fini_dmaq = efx_farch_fini_dmaq,
2791 .prepare_flush = falcon_prepare_flush,
2792 .finish_flush = efx_port_dummy_op_void,
2793 .describe_stats = falcon_describe_nic_stats,
2794 .update_stats = falcon_update_nic_stats,
2795 .start_stats = falcon_start_nic_stats,
2796 .pull_stats = falcon_pull_nic_stats,
2797 .stop_stats = falcon_stop_nic_stats,
2798 .set_id_led = falcon_set_id_led,
2799 .push_irq_moderation = falcon_push_irq_moderation,
2800 .reconfigure_port = falcon_reconfigure_port,
2801 .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2802 .reconfigure_mac = falcon_reconfigure_xmac,
2803 .check_mac_fault = falcon_xmac_check_fault,
2804 .get_wol = falcon_get_wol,
2805 .set_wol = falcon_set_wol,
2806 .resume_wol = efx_port_dummy_op_void,
2807 .test_chip = falcon_b0_test_chip,
2808 .test_nvram = falcon_test_nvram,
2809 .irq_enable_master = efx_farch_irq_enable_master,
2810 .irq_test_generate = efx_farch_irq_test_generate,
2811 .irq_disable_non_ev = efx_farch_irq_disable_master,
2812 .irq_handle_msi = efx_farch_msi_interrupt,
2813 .irq_handle_legacy = efx_farch_legacy_interrupt,
2814 .tx_probe = efx_farch_tx_probe,
2815 .tx_init = efx_farch_tx_init,
2816 .tx_remove = efx_farch_tx_remove,
2817 .tx_write = efx_farch_tx_write,
2818 .rx_push_rss_config = falcon_b0_rx_push_rss_config,
2819 .rx_probe = efx_farch_rx_probe,
2820 .rx_init = efx_farch_rx_init,
2821 .rx_remove = efx_farch_rx_remove,
2822 .rx_write = efx_farch_rx_write,
2823 .rx_defer_refill = efx_farch_rx_defer_refill,
2824 .ev_probe = efx_farch_ev_probe,
2825 .ev_init = efx_farch_ev_init,
2826 .ev_fini = efx_farch_ev_fini,
2827 .ev_remove = efx_farch_ev_remove,
2828 .ev_process = efx_farch_ev_process,
2829 .ev_read_ack = efx_farch_ev_read_ack,
2830 .ev_test_generate = efx_farch_ev_test_generate,
2831 .filter_table_probe = efx_farch_filter_table_probe,
2832 .filter_table_restore = efx_farch_filter_table_restore,
2833 .filter_table_remove = efx_farch_filter_table_remove,
2834 .filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
2835 .filter_insert = efx_farch_filter_insert,
2836 .filter_remove_safe = efx_farch_filter_remove_safe,
2837 .filter_get_safe = efx_farch_filter_get_safe,
2838 .filter_clear_rx = efx_farch_filter_clear_rx,
2839 .filter_count_rx_used = efx_farch_filter_count_rx_used,
2840 .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2841 .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2842 #ifdef CONFIG_RFS_ACCEL
2843 .filter_rfs_insert = efx_farch_filter_rfs_insert,
2844 .filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
2845 #endif
2846 #ifdef CONFIG_SFC_MTD
2847 .mtd_probe = falcon_mtd_probe,
2848 .mtd_rename = falcon_mtd_rename,
2849 .mtd_read = falcon_mtd_read,
2850 .mtd_erase = falcon_mtd_erase,
2851 .mtd_write = falcon_mtd_write,
2852 .mtd_sync = falcon_mtd_sync,
2853 #endif
2854
2855 .revision = EFX_REV_FALCON_B0,
2856 .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2857 .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2858 .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2859 .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2860 .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2861 .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2862 .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2863 .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2864 .rx_buffer_padding = 0,
2865 .can_rx_scatter = true,
2866 .max_interrupt_mode = EFX_INT_MODE_MSIX,
2867 .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2868 .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2869 .mcdi_max_ver = -1,
2870 .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2871 };
This page took 0.131124 seconds and 5 git commands to generate.