net/mlx5_core: Print resource number on QP/SRQ async events
[deliverable/linux.git] / drivers / net / ethernet / sfc / farch.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "io.h"
24 #include "workarounds.h"
25
26 /* Falcon-architecture (SFC4000 and SFC9000-family) support */
27
28 /**************************************************************************
29 *
30 * Configurable values
31 *
32 **************************************************************************
33 */
34
35 /* This is set to 16 for a good reason. In summary, if larger than
36 * 16, the descriptor cache holds more than a default socket
37 * buffer's worth of packets (for UDP we can only have at most one
38 * socket buffer's worth outstanding). This combined with the fact
39 * that we only get 1 TX event per descriptor cache means the NIC
40 * goes idle.
41 */
42 #define TX_DC_ENTRIES 16
43 #define TX_DC_ENTRIES_ORDER 1
44
45 #define RX_DC_ENTRIES 64
46 #define RX_DC_ENTRIES_ORDER 3
47
48 /* If EFX_MAX_INT_ERRORS internal errors occur within
49 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
50 * disable it.
51 */
52 #define EFX_INT_ERROR_EXPIRE 3600
53 #define EFX_MAX_INT_ERRORS 5
54
55 /* Depth of RX flush request fifo */
56 #define EFX_RX_FLUSH_COUNT 4
57
58 /* Driver generated events */
59 #define _EFX_CHANNEL_MAGIC_TEST 0x000101
60 #define _EFX_CHANNEL_MAGIC_FILL 0x000102
61 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
62 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
63
64 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
65 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
66
67 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
68 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
69 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
71 efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
73 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
74 efx_rx_queue_index(_rx_queue))
75 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
76 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
77 (_tx_queue)->queue)
78
79 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
80
81 /**************************************************************************
82 *
83 * Hardware access
84 *
85 **************************************************************************/
86
87 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
88 unsigned int index)
89 {
90 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
91 value, index);
92 }
93
94 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
95 const efx_oword_t *mask)
96 {
97 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
98 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
99 }
100
101 int efx_farch_test_registers(struct efx_nic *efx,
102 const struct efx_farch_register_test *regs,
103 size_t n_regs)
104 {
105 unsigned address = 0, i, j;
106 efx_oword_t mask, imask, original, reg, buf;
107
108 for (i = 0; i < n_regs; ++i) {
109 address = regs[i].address;
110 mask = imask = regs[i].mask;
111 EFX_INVERT_OWORD(imask);
112
113 efx_reado(efx, &original, address);
114
115 /* bit sweep on and off */
116 for (j = 0; j < 128; j++) {
117 if (!EFX_EXTRACT_OWORD32(mask, j, j))
118 continue;
119
120 /* Test this testable bit can be set in isolation */
121 EFX_AND_OWORD(reg, original, mask);
122 EFX_SET_OWORD32(reg, j, j, 1);
123
124 efx_writeo(efx, &reg, address);
125 efx_reado(efx, &buf, address);
126
127 if (efx_masked_compare_oword(&reg, &buf, &mask))
128 goto fail;
129
130 /* Test this testable bit can be cleared in isolation */
131 EFX_OR_OWORD(reg, original, mask);
132 EFX_SET_OWORD32(reg, j, j, 0);
133
134 efx_writeo(efx, &reg, address);
135 efx_reado(efx, &buf, address);
136
137 if (efx_masked_compare_oword(&reg, &buf, &mask))
138 goto fail;
139 }
140
141 efx_writeo(efx, &original, address);
142 }
143
144 return 0;
145
146 fail:
147 netif_err(efx, hw, efx->net_dev,
148 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
149 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
150 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
151 return -EIO;
152 }
153
154 /**************************************************************************
155 *
156 * Special buffer handling
157 * Special buffers are used for event queues and the TX and RX
158 * descriptor rings.
159 *
160 *************************************************************************/
161
162 /*
163 * Initialise a special buffer
164 *
165 * This will define a buffer (previously allocated via
166 * efx_alloc_special_buffer()) in the buffer table, allowing
167 * it to be used for event queues, descriptor rings etc.
168 */
169 static void
170 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
171 {
172 efx_qword_t buf_desc;
173 unsigned int index;
174 dma_addr_t dma_addr;
175 int i;
176
177 EFX_BUG_ON_PARANOID(!buffer->buf.addr);
178
179 /* Write buffer descriptors to NIC */
180 for (i = 0; i < buffer->entries; i++) {
181 index = buffer->index + i;
182 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
183 netif_dbg(efx, probe, efx->net_dev,
184 "mapping special buffer %d at %llx\n",
185 index, (unsigned long long)dma_addr);
186 EFX_POPULATE_QWORD_3(buf_desc,
187 FRF_AZ_BUF_ADR_REGION, 0,
188 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
189 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
190 efx_write_buf_tbl(efx, &buf_desc, index);
191 }
192 }
193
194 /* Unmaps a buffer and clears the buffer table entries */
195 static void
196 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
197 {
198 efx_oword_t buf_tbl_upd;
199 unsigned int start = buffer->index;
200 unsigned int end = (buffer->index + buffer->entries - 1);
201
202 if (!buffer->entries)
203 return;
204
205 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
206 buffer->index, buffer->index + buffer->entries - 1);
207
208 EFX_POPULATE_OWORD_4(buf_tbl_upd,
209 FRF_AZ_BUF_UPD_CMD, 0,
210 FRF_AZ_BUF_CLR_CMD, 1,
211 FRF_AZ_BUF_CLR_END_ID, end,
212 FRF_AZ_BUF_CLR_START_ID, start);
213 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
214 }
215
216 /*
217 * Allocate a new special buffer
218 *
219 * This allocates memory for a new buffer, clears it and allocates a
220 * new buffer ID range. It does not write into the buffer table.
221 *
222 * This call will allocate 4KB buffers, since 8KB buffers can't be
223 * used for event queues and descriptor rings.
224 */
225 static int efx_alloc_special_buffer(struct efx_nic *efx,
226 struct efx_special_buffer *buffer,
227 unsigned int len)
228 {
229 #ifdef CONFIG_SFC_SRIOV
230 struct siena_nic_data *nic_data = efx->nic_data;
231 #endif
232 len = ALIGN(len, EFX_BUF_SIZE);
233
234 if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
235 return -ENOMEM;
236 buffer->entries = len / EFX_BUF_SIZE;
237 BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
238
239 /* Select new buffer ID */
240 buffer->index = efx->next_buffer_table;
241 efx->next_buffer_table += buffer->entries;
242 #ifdef CONFIG_SFC_SRIOV
243 BUG_ON(efx_siena_sriov_enabled(efx) &&
244 nic_data->vf_buftbl_base < efx->next_buffer_table);
245 #endif
246
247 netif_dbg(efx, probe, efx->net_dev,
248 "allocating special buffers %d-%d at %llx+%x "
249 "(virt %p phys %llx)\n", buffer->index,
250 buffer->index + buffer->entries - 1,
251 (u64)buffer->buf.dma_addr, len,
252 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
253
254 return 0;
255 }
256
257 static void
258 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
259 {
260 if (!buffer->buf.addr)
261 return;
262
263 netif_dbg(efx, hw, efx->net_dev,
264 "deallocating special buffers %d-%d at %llx+%x "
265 "(virt %p phys %llx)\n", buffer->index,
266 buffer->index + buffer->entries - 1,
267 (u64)buffer->buf.dma_addr, buffer->buf.len,
268 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
269
270 efx_nic_free_buffer(efx, &buffer->buf);
271 buffer->entries = 0;
272 }
273
274 /**************************************************************************
275 *
276 * TX path
277 *
278 **************************************************************************/
279
280 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
281 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
282 {
283 unsigned write_ptr;
284 efx_dword_t reg;
285
286 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
287 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
288 efx_writed_page(tx_queue->efx, &reg,
289 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
290 }
291
292 /* Write pointer and first descriptor for TX descriptor ring */
293 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
294 const efx_qword_t *txd)
295 {
296 unsigned write_ptr;
297 efx_oword_t reg;
298
299 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
300 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
301
302 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
303 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
304 FRF_AZ_TX_DESC_WPTR, write_ptr);
305 reg.qword[0] = *txd;
306 efx_writeo_page(tx_queue->efx, &reg,
307 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
308 }
309
310
311 /* For each entry inserted into the software descriptor ring, create a
312 * descriptor in the hardware TX descriptor ring (in host memory), and
313 * write a doorbell.
314 */
315 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
316 {
317 struct efx_tx_buffer *buffer;
318 efx_qword_t *txd;
319 unsigned write_ptr;
320 unsigned old_write_count = tx_queue->write_count;
321
322 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
323
324 do {
325 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
326 buffer = &tx_queue->buffer[write_ptr];
327 txd = efx_tx_desc(tx_queue, write_ptr);
328 ++tx_queue->write_count;
329
330 EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
331
332 /* Create TX descriptor ring entry */
333 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
334 EFX_POPULATE_QWORD_4(*txd,
335 FSF_AZ_TX_KER_CONT,
336 buffer->flags & EFX_TX_BUF_CONT,
337 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
338 FSF_AZ_TX_KER_BUF_REGION, 0,
339 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
340 } while (tx_queue->write_count != tx_queue->insert_count);
341
342 wmb(); /* Ensure descriptors are written before they are fetched */
343
344 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
345 txd = efx_tx_desc(tx_queue,
346 old_write_count & tx_queue->ptr_mask);
347 efx_farch_push_tx_desc(tx_queue, txd);
348 ++tx_queue->pushes;
349 } else {
350 efx_farch_notify_tx_desc(tx_queue);
351 }
352 }
353
354 /* Allocate hardware resources for a TX queue */
355 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
356 {
357 struct efx_nic *efx = tx_queue->efx;
358 unsigned entries;
359
360 entries = tx_queue->ptr_mask + 1;
361 return efx_alloc_special_buffer(efx, &tx_queue->txd,
362 entries * sizeof(efx_qword_t));
363 }
364
365 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
366 {
367 struct efx_nic *efx = tx_queue->efx;
368 efx_oword_t reg;
369
370 /* Pin TX descriptor ring */
371 efx_init_special_buffer(efx, &tx_queue->txd);
372
373 /* Push TX descriptor ring to card */
374 EFX_POPULATE_OWORD_10(reg,
375 FRF_AZ_TX_DESCQ_EN, 1,
376 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
377 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
378 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
379 FRF_AZ_TX_DESCQ_EVQ_ID,
380 tx_queue->channel->channel,
381 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
382 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
383 FRF_AZ_TX_DESCQ_SIZE,
384 __ffs(tx_queue->txd.entries),
385 FRF_AZ_TX_DESCQ_TYPE, 0,
386 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
387
388 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
389 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
390 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
391 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
392 !csum);
393 }
394
395 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
396 tx_queue->queue);
397
398 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
399 /* Only 128 bits in this register */
400 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
401
402 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
403 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
404 __clear_bit_le(tx_queue->queue, &reg);
405 else
406 __set_bit_le(tx_queue->queue, &reg);
407 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
408 }
409
410 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
411 EFX_POPULATE_OWORD_1(reg,
412 FRF_BZ_TX_PACE,
413 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
414 FFE_BZ_TX_PACE_OFF :
415 FFE_BZ_TX_PACE_RESERVED);
416 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
417 tx_queue->queue);
418 }
419 }
420
421 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
422 {
423 struct efx_nic *efx = tx_queue->efx;
424 efx_oword_t tx_flush_descq;
425
426 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
427 atomic_set(&tx_queue->flush_outstanding, 1);
428
429 EFX_POPULATE_OWORD_2(tx_flush_descq,
430 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
431 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
432 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
433 }
434
435 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
436 {
437 struct efx_nic *efx = tx_queue->efx;
438 efx_oword_t tx_desc_ptr;
439
440 /* Remove TX descriptor ring from card */
441 EFX_ZERO_OWORD(tx_desc_ptr);
442 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
443 tx_queue->queue);
444
445 /* Unpin TX descriptor ring */
446 efx_fini_special_buffer(efx, &tx_queue->txd);
447 }
448
449 /* Free buffers backing TX queue */
450 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
451 {
452 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
453 }
454
455 /**************************************************************************
456 *
457 * RX path
458 *
459 **************************************************************************/
460
461 /* This creates an entry in the RX descriptor queue */
462 static inline void
463 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
464 {
465 struct efx_rx_buffer *rx_buf;
466 efx_qword_t *rxd;
467
468 rxd = efx_rx_desc(rx_queue, index);
469 rx_buf = efx_rx_buffer(rx_queue, index);
470 EFX_POPULATE_QWORD_3(*rxd,
471 FSF_AZ_RX_KER_BUF_SIZE,
472 rx_buf->len -
473 rx_queue->efx->type->rx_buffer_padding,
474 FSF_AZ_RX_KER_BUF_REGION, 0,
475 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
476 }
477
478 /* This writes to the RX_DESC_WPTR register for the specified receive
479 * descriptor ring.
480 */
481 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
482 {
483 struct efx_nic *efx = rx_queue->efx;
484 efx_dword_t reg;
485 unsigned write_ptr;
486
487 while (rx_queue->notified_count != rx_queue->added_count) {
488 efx_farch_build_rx_desc(
489 rx_queue,
490 rx_queue->notified_count & rx_queue->ptr_mask);
491 ++rx_queue->notified_count;
492 }
493
494 wmb();
495 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
496 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
497 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
498 efx_rx_queue_index(rx_queue));
499 }
500
501 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
502 {
503 struct efx_nic *efx = rx_queue->efx;
504 unsigned entries;
505
506 entries = rx_queue->ptr_mask + 1;
507 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
508 entries * sizeof(efx_qword_t));
509 }
510
511 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
512 {
513 efx_oword_t rx_desc_ptr;
514 struct efx_nic *efx = rx_queue->efx;
515 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
516 bool iscsi_digest_en = is_b0;
517 bool jumbo_en;
518
519 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
520 * DMA to continue after a PCIe page boundary (and scattering
521 * is not possible). In Falcon B0 and Siena, it enables
522 * scatter.
523 */
524 jumbo_en = !is_b0 || efx->rx_scatter;
525
526 netif_dbg(efx, hw, efx->net_dev,
527 "RX queue %d ring in special buffers %d-%d\n",
528 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
529 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
530
531 rx_queue->scatter_n = 0;
532
533 /* Pin RX descriptor ring */
534 efx_init_special_buffer(efx, &rx_queue->rxd);
535
536 /* Push RX descriptor ring to card */
537 EFX_POPULATE_OWORD_10(rx_desc_ptr,
538 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
539 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
540 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
541 FRF_AZ_RX_DESCQ_EVQ_ID,
542 efx_rx_queue_channel(rx_queue)->channel,
543 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
544 FRF_AZ_RX_DESCQ_LABEL,
545 efx_rx_queue_index(rx_queue),
546 FRF_AZ_RX_DESCQ_SIZE,
547 __ffs(rx_queue->rxd.entries),
548 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
549 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
550 FRF_AZ_RX_DESCQ_EN, 1);
551 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
552 efx_rx_queue_index(rx_queue));
553 }
554
555 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
556 {
557 struct efx_nic *efx = rx_queue->efx;
558 efx_oword_t rx_flush_descq;
559
560 EFX_POPULATE_OWORD_2(rx_flush_descq,
561 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
562 FRF_AZ_RX_FLUSH_DESCQ,
563 efx_rx_queue_index(rx_queue));
564 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
565 }
566
567 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
568 {
569 efx_oword_t rx_desc_ptr;
570 struct efx_nic *efx = rx_queue->efx;
571
572 /* Remove RX descriptor ring from card */
573 EFX_ZERO_OWORD(rx_desc_ptr);
574 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
575 efx_rx_queue_index(rx_queue));
576
577 /* Unpin RX descriptor ring */
578 efx_fini_special_buffer(efx, &rx_queue->rxd);
579 }
580
581 /* Free buffers backing RX queue */
582 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
583 {
584 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
585 }
586
587 /**************************************************************************
588 *
589 * Flush handling
590 *
591 **************************************************************************/
592
593 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
594 * or more RX flushes can be kicked off.
595 */
596 static bool efx_farch_flush_wake(struct efx_nic *efx)
597 {
598 /* Ensure that all updates are visible to efx_farch_flush_queues() */
599 smp_mb();
600
601 return (atomic_read(&efx->active_queues) == 0 ||
602 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
603 && atomic_read(&efx->rxq_flush_pending) > 0));
604 }
605
606 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
607 {
608 bool i = true;
609 efx_oword_t txd_ptr_tbl;
610 struct efx_channel *channel;
611 struct efx_tx_queue *tx_queue;
612
613 efx_for_each_channel(channel, efx) {
614 efx_for_each_channel_tx_queue(tx_queue, channel) {
615 efx_reado_table(efx, &txd_ptr_tbl,
616 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
617 if (EFX_OWORD_FIELD(txd_ptr_tbl,
618 FRF_AZ_TX_DESCQ_FLUSH) ||
619 EFX_OWORD_FIELD(txd_ptr_tbl,
620 FRF_AZ_TX_DESCQ_EN)) {
621 netif_dbg(efx, hw, efx->net_dev,
622 "flush did not complete on TXQ %d\n",
623 tx_queue->queue);
624 i = false;
625 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
626 1, 0)) {
627 /* The flush is complete, but we didn't
628 * receive a flush completion event
629 */
630 netif_dbg(efx, hw, efx->net_dev,
631 "flush complete on TXQ %d, so drain "
632 "the queue\n", tx_queue->queue);
633 /* Don't need to increment active_queues as it
634 * has already been incremented for the queues
635 * which did not drain
636 */
637 efx_farch_magic_event(channel,
638 EFX_CHANNEL_MAGIC_TX_DRAIN(
639 tx_queue));
640 }
641 }
642 }
643
644 return i;
645 }
646
647 /* Flush all the transmit queues, and continue flushing receive queues until
648 * they're all flushed. Wait for the DRAIN events to be recieved so that there
649 * are no more RX and TX events left on any channel. */
650 static int efx_farch_do_flush(struct efx_nic *efx)
651 {
652 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
653 struct efx_channel *channel;
654 struct efx_rx_queue *rx_queue;
655 struct efx_tx_queue *tx_queue;
656 int rc = 0;
657
658 efx_for_each_channel(channel, efx) {
659 efx_for_each_channel_tx_queue(tx_queue, channel) {
660 efx_farch_flush_tx_queue(tx_queue);
661 }
662 efx_for_each_channel_rx_queue(rx_queue, channel) {
663 rx_queue->flush_pending = true;
664 atomic_inc(&efx->rxq_flush_pending);
665 }
666 }
667
668 while (timeout && atomic_read(&efx->active_queues) > 0) {
669 /* If SRIOV is enabled, then offload receive queue flushing to
670 * the firmware (though we will still have to poll for
671 * completion). If that fails, fall back to the old scheme.
672 */
673 if (efx_siena_sriov_enabled(efx)) {
674 rc = efx_mcdi_flush_rxqs(efx);
675 if (!rc)
676 goto wait;
677 }
678
679 /* The hardware supports four concurrent rx flushes, each of
680 * which may need to be retried if there is an outstanding
681 * descriptor fetch
682 */
683 efx_for_each_channel(channel, efx) {
684 efx_for_each_channel_rx_queue(rx_queue, channel) {
685 if (atomic_read(&efx->rxq_flush_outstanding) >=
686 EFX_RX_FLUSH_COUNT)
687 break;
688
689 if (rx_queue->flush_pending) {
690 rx_queue->flush_pending = false;
691 atomic_dec(&efx->rxq_flush_pending);
692 atomic_inc(&efx->rxq_flush_outstanding);
693 efx_farch_flush_rx_queue(rx_queue);
694 }
695 }
696 }
697
698 wait:
699 timeout = wait_event_timeout(efx->flush_wq,
700 efx_farch_flush_wake(efx),
701 timeout);
702 }
703
704 if (atomic_read(&efx->active_queues) &&
705 !efx_check_tx_flush_complete(efx)) {
706 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
707 "(rx %d+%d)\n", atomic_read(&efx->active_queues),
708 atomic_read(&efx->rxq_flush_outstanding),
709 atomic_read(&efx->rxq_flush_pending));
710 rc = -ETIMEDOUT;
711
712 atomic_set(&efx->active_queues, 0);
713 atomic_set(&efx->rxq_flush_pending, 0);
714 atomic_set(&efx->rxq_flush_outstanding, 0);
715 }
716
717 return rc;
718 }
719
720 int efx_farch_fini_dmaq(struct efx_nic *efx)
721 {
722 struct efx_channel *channel;
723 struct efx_tx_queue *tx_queue;
724 struct efx_rx_queue *rx_queue;
725 int rc = 0;
726
727 /* Do not attempt to write to the NIC during EEH recovery */
728 if (efx->state != STATE_RECOVERY) {
729 /* Only perform flush if DMA is enabled */
730 if (efx->pci_dev->is_busmaster) {
731 efx->type->prepare_flush(efx);
732 rc = efx_farch_do_flush(efx);
733 efx->type->finish_flush(efx);
734 }
735
736 efx_for_each_channel(channel, efx) {
737 efx_for_each_channel_rx_queue(rx_queue, channel)
738 efx_farch_rx_fini(rx_queue);
739 efx_for_each_channel_tx_queue(tx_queue, channel)
740 efx_farch_tx_fini(tx_queue);
741 }
742 }
743
744 return rc;
745 }
746
747 /* Reset queue and flush accounting after FLR
748 *
749 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
750 * mastering was disabled), in which case we don't receive (RXQ) flush
751 * completion events. This means that efx->rxq_flush_outstanding remained at 4
752 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
753 * events were received, and we didn't go through efx_check_tx_flush_complete())
754 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
755 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
756 * for batched flush requests; and the efx->active_queues gets messed up because
757 * we keep incrementing for the newly initialised queues, but it never went to
758 * zero previously. Then we get a timeout every time we try to restart the
759 * queues, as it doesn't go back to zero when we should be flushing the queues.
760 */
761 void efx_farch_finish_flr(struct efx_nic *efx)
762 {
763 atomic_set(&efx->rxq_flush_pending, 0);
764 atomic_set(&efx->rxq_flush_outstanding, 0);
765 atomic_set(&efx->active_queues, 0);
766 }
767
768
769 /**************************************************************************
770 *
771 * Event queue processing
772 * Event queues are processed by per-channel tasklets.
773 *
774 **************************************************************************/
775
776 /* Update a channel's event queue's read pointer (RPTR) register
777 *
778 * This writes the EVQ_RPTR_REG register for the specified channel's
779 * event queue.
780 */
781 void efx_farch_ev_read_ack(struct efx_channel *channel)
782 {
783 efx_dword_t reg;
784 struct efx_nic *efx = channel->efx;
785
786 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
787 channel->eventq_read_ptr & channel->eventq_mask);
788
789 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
790 * of 4 bytes, but it is really 16 bytes just like later revisions.
791 */
792 efx_writed(efx, &reg,
793 efx->type->evq_rptr_tbl_base +
794 FR_BZ_EVQ_RPTR_STEP * channel->channel);
795 }
796
797 /* Use HW to insert a SW defined event */
798 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
799 efx_qword_t *event)
800 {
801 efx_oword_t drv_ev_reg;
802
803 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
804 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
805 drv_ev_reg.u32[0] = event->u32[0];
806 drv_ev_reg.u32[1] = event->u32[1];
807 drv_ev_reg.u32[2] = 0;
808 drv_ev_reg.u32[3] = 0;
809 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
810 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
811 }
812
813 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
814 {
815 efx_qword_t event;
816
817 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
818 FSE_AZ_EV_CODE_DRV_GEN_EV,
819 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
820 efx_farch_generate_event(channel->efx, channel->channel, &event);
821 }
822
823 /* Handle a transmit completion event
824 *
825 * The NIC batches TX completion events; the message we receive is of
826 * the form "complete all TX events up to this index".
827 */
828 static int
829 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
830 {
831 unsigned int tx_ev_desc_ptr;
832 unsigned int tx_ev_q_label;
833 struct efx_tx_queue *tx_queue;
834 struct efx_nic *efx = channel->efx;
835 int tx_packets = 0;
836
837 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
838 return 0;
839
840 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
841 /* Transmit completion */
842 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
843 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
844 tx_queue = efx_channel_get_tx_queue(
845 channel, tx_ev_q_label % EFX_TXQ_TYPES);
846 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
847 tx_queue->ptr_mask);
848 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
849 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
850 /* Rewrite the FIFO write pointer */
851 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
852 tx_queue = efx_channel_get_tx_queue(
853 channel, tx_ev_q_label % EFX_TXQ_TYPES);
854
855 netif_tx_lock(efx->net_dev);
856 efx_farch_notify_tx_desc(tx_queue);
857 netif_tx_unlock(efx->net_dev);
858 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
859 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
860 } else {
861 netif_err(efx, tx_err, efx->net_dev,
862 "channel %d unexpected TX event "
863 EFX_QWORD_FMT"\n", channel->channel,
864 EFX_QWORD_VAL(*event));
865 }
866
867 return tx_packets;
868 }
869
870 /* Detect errors included in the rx_evt_pkt_ok bit. */
871 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
872 const efx_qword_t *event)
873 {
874 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
875 struct efx_nic *efx = rx_queue->efx;
876 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
877 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
878 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
879 bool rx_ev_other_err, rx_ev_pause_frm;
880 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
881 unsigned rx_ev_pkt_type;
882
883 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
884 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
885 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
886 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
887 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
888 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
889 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
890 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
891 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
892 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
893 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
894 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
895 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
896 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
897 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
898
899 /* Every error apart from tobe_disc and pause_frm */
900 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
901 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
902 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
903
904 /* Count errors that are not in MAC stats. Ignore expected
905 * checksum errors during self-test. */
906 if (rx_ev_frm_trunc)
907 ++channel->n_rx_frm_trunc;
908 else if (rx_ev_tobe_disc)
909 ++channel->n_rx_tobe_disc;
910 else if (!efx->loopback_selftest) {
911 if (rx_ev_ip_hdr_chksum_err)
912 ++channel->n_rx_ip_hdr_chksum_err;
913 else if (rx_ev_tcp_udp_chksum_err)
914 ++channel->n_rx_tcp_udp_chksum_err;
915 }
916
917 /* TOBE_DISC is expected on unicast mismatches; don't print out an
918 * error message. FRM_TRUNC indicates RXDP dropped the packet due
919 * to a FIFO overflow.
920 */
921 #ifdef DEBUG
922 if (rx_ev_other_err && net_ratelimit()) {
923 netif_dbg(efx, rx_err, efx->net_dev,
924 " RX queue %d unexpected RX event "
925 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
926 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
927 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
928 rx_ev_ip_hdr_chksum_err ?
929 " [IP_HDR_CHKSUM_ERR]" : "",
930 rx_ev_tcp_udp_chksum_err ?
931 " [TCP_UDP_CHKSUM_ERR]" : "",
932 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
933 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
934 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
935 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
936 rx_ev_pause_frm ? " [PAUSE]" : "");
937 }
938 #endif
939
940 /* The frame must be discarded if any of these are true. */
941 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
942 rx_ev_tobe_disc | rx_ev_pause_frm) ?
943 EFX_RX_PKT_DISCARD : 0;
944 }
945
946 /* Handle receive events that are not in-order. Return true if this
947 * can be handled as a partial packet discard, false if it's more
948 * serious.
949 */
950 static bool
951 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
952 {
953 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
954 struct efx_nic *efx = rx_queue->efx;
955 unsigned expected, dropped;
956
957 if (rx_queue->scatter_n &&
958 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
959 rx_queue->ptr_mask)) {
960 ++channel->n_rx_nodesc_trunc;
961 return true;
962 }
963
964 expected = rx_queue->removed_count & rx_queue->ptr_mask;
965 dropped = (index - expected) & rx_queue->ptr_mask;
966 netif_info(efx, rx_err, efx->net_dev,
967 "dropped %d events (index=%d expected=%d)\n",
968 dropped, index, expected);
969
970 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
971 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
972 return false;
973 }
974
975 /* Handle a packet received event
976 *
977 * The NIC gives a "discard" flag if it's a unicast packet with the
978 * wrong destination address
979 * Also "is multicast" and "matches multicast filter" flags can be used to
980 * discard non-matching multicast packets.
981 */
982 static void
983 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
984 {
985 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
986 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
987 unsigned expected_ptr;
988 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
989 u16 flags;
990 struct efx_rx_queue *rx_queue;
991 struct efx_nic *efx = channel->efx;
992
993 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
994 return;
995
996 rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
997 rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
998 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
999 channel->channel);
1000
1001 rx_queue = efx_channel_get_rx_queue(channel);
1002
1003 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1004 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1005 rx_queue->ptr_mask);
1006
1007 /* Check for partial drops and other errors */
1008 if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1009 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1010 if (rx_ev_desc_ptr != expected_ptr &&
1011 !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1012 return;
1013
1014 /* Discard all pending fragments */
1015 if (rx_queue->scatter_n) {
1016 efx_rx_packet(
1017 rx_queue,
1018 rx_queue->removed_count & rx_queue->ptr_mask,
1019 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1020 rx_queue->removed_count += rx_queue->scatter_n;
1021 rx_queue->scatter_n = 0;
1022 }
1023
1024 /* Return if there is no new fragment */
1025 if (rx_ev_desc_ptr != expected_ptr)
1026 return;
1027
1028 /* Discard new fragment if not SOP */
1029 if (!rx_ev_sop) {
1030 efx_rx_packet(
1031 rx_queue,
1032 rx_queue->removed_count & rx_queue->ptr_mask,
1033 1, 0, EFX_RX_PKT_DISCARD);
1034 ++rx_queue->removed_count;
1035 return;
1036 }
1037 }
1038
1039 ++rx_queue->scatter_n;
1040 if (rx_ev_cont)
1041 return;
1042
1043 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1044 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1045 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1046
1047 if (likely(rx_ev_pkt_ok)) {
1048 /* If packet is marked as OK then we can rely on the
1049 * hardware checksum and classification.
1050 */
1051 flags = 0;
1052 switch (rx_ev_hdr_type) {
1053 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1054 flags |= EFX_RX_PKT_TCP;
1055 /* fall through */
1056 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1057 flags |= EFX_RX_PKT_CSUMMED;
1058 /* fall through */
1059 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1060 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1061 break;
1062 }
1063 } else {
1064 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1065 }
1066
1067 /* Detect multicast packets that didn't match the filter */
1068 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1069 if (rx_ev_mcast_pkt) {
1070 unsigned int rx_ev_mcast_hash_match =
1071 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1072
1073 if (unlikely(!rx_ev_mcast_hash_match)) {
1074 ++channel->n_rx_mcast_mismatch;
1075 flags |= EFX_RX_PKT_DISCARD;
1076 }
1077 }
1078
1079 channel->irq_mod_score += 2;
1080
1081 /* Handle received packet */
1082 efx_rx_packet(rx_queue,
1083 rx_queue->removed_count & rx_queue->ptr_mask,
1084 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1085 rx_queue->removed_count += rx_queue->scatter_n;
1086 rx_queue->scatter_n = 0;
1087 }
1088
1089 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1090 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1091 * of all transmit completions.
1092 */
1093 static void
1094 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1095 {
1096 struct efx_tx_queue *tx_queue;
1097 int qid;
1098
1099 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1100 if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1101 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1102 qid % EFX_TXQ_TYPES);
1103 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1104 efx_farch_magic_event(tx_queue->channel,
1105 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1106 }
1107 }
1108 }
1109
1110 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1111 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1112 * the RX queue back to the mask of RX queues in need of flushing.
1113 */
1114 static void
1115 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1116 {
1117 struct efx_channel *channel;
1118 struct efx_rx_queue *rx_queue;
1119 int qid;
1120 bool failed;
1121
1122 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1123 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1124 if (qid >= efx->n_channels)
1125 return;
1126 channel = efx_get_channel(efx, qid);
1127 if (!efx_channel_has_rx_queue(channel))
1128 return;
1129 rx_queue = efx_channel_get_rx_queue(channel);
1130
1131 if (failed) {
1132 netif_info(efx, hw, efx->net_dev,
1133 "RXQ %d flush retry\n", qid);
1134 rx_queue->flush_pending = true;
1135 atomic_inc(&efx->rxq_flush_pending);
1136 } else {
1137 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1138 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1139 }
1140 atomic_dec(&efx->rxq_flush_outstanding);
1141 if (efx_farch_flush_wake(efx))
1142 wake_up(&efx->flush_wq);
1143 }
1144
1145 static void
1146 efx_farch_handle_drain_event(struct efx_channel *channel)
1147 {
1148 struct efx_nic *efx = channel->efx;
1149
1150 WARN_ON(atomic_read(&efx->active_queues) == 0);
1151 atomic_dec(&efx->active_queues);
1152 if (efx_farch_flush_wake(efx))
1153 wake_up(&efx->flush_wq);
1154 }
1155
1156 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1157 efx_qword_t *event)
1158 {
1159 struct efx_nic *efx = channel->efx;
1160 struct efx_rx_queue *rx_queue =
1161 efx_channel_has_rx_queue(channel) ?
1162 efx_channel_get_rx_queue(channel) : NULL;
1163 unsigned magic, code;
1164
1165 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1166 code = _EFX_CHANNEL_MAGIC_CODE(magic);
1167
1168 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1169 channel->event_test_cpu = raw_smp_processor_id();
1170 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1171 /* The queue must be empty, so we won't receive any rx
1172 * events, so efx_process_channel() won't refill the
1173 * queue. Refill it here */
1174 efx_fast_push_rx_descriptors(rx_queue, true);
1175 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1176 efx_farch_handle_drain_event(channel);
1177 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1178 efx_farch_handle_drain_event(channel);
1179 } else {
1180 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1181 "generated event "EFX_QWORD_FMT"\n",
1182 channel->channel, EFX_QWORD_VAL(*event));
1183 }
1184 }
1185
1186 static void
1187 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1188 {
1189 struct efx_nic *efx = channel->efx;
1190 unsigned int ev_sub_code;
1191 unsigned int ev_sub_data;
1192
1193 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1194 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1195
1196 switch (ev_sub_code) {
1197 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1198 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1199 channel->channel, ev_sub_data);
1200 efx_farch_handle_tx_flush_done(efx, event);
1201 efx_siena_sriov_tx_flush_done(efx, event);
1202 break;
1203 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1204 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1205 channel->channel, ev_sub_data);
1206 efx_farch_handle_rx_flush_done(efx, event);
1207 efx_siena_sriov_rx_flush_done(efx, event);
1208 break;
1209 case FSE_AZ_EVQ_INIT_DONE_EV:
1210 netif_dbg(efx, hw, efx->net_dev,
1211 "channel %d EVQ %d initialised\n",
1212 channel->channel, ev_sub_data);
1213 break;
1214 case FSE_AZ_SRM_UPD_DONE_EV:
1215 netif_vdbg(efx, hw, efx->net_dev,
1216 "channel %d SRAM update done\n", channel->channel);
1217 break;
1218 case FSE_AZ_WAKE_UP_EV:
1219 netif_vdbg(efx, hw, efx->net_dev,
1220 "channel %d RXQ %d wakeup event\n",
1221 channel->channel, ev_sub_data);
1222 break;
1223 case FSE_AZ_TIMER_EV:
1224 netif_vdbg(efx, hw, efx->net_dev,
1225 "channel %d RX queue %d timer expired\n",
1226 channel->channel, ev_sub_data);
1227 break;
1228 case FSE_AA_RX_RECOVER_EV:
1229 netif_err(efx, rx_err, efx->net_dev,
1230 "channel %d seen DRIVER RX_RESET event. "
1231 "Resetting.\n", channel->channel);
1232 atomic_inc(&efx->rx_reset);
1233 efx_schedule_reset(efx,
1234 EFX_WORKAROUND_6555(efx) ?
1235 RESET_TYPE_RX_RECOVERY :
1236 RESET_TYPE_DISABLE);
1237 break;
1238 case FSE_BZ_RX_DSC_ERROR_EV:
1239 if (ev_sub_data < EFX_VI_BASE) {
1240 netif_err(efx, rx_err, efx->net_dev,
1241 "RX DMA Q %d reports descriptor fetch error."
1242 " RX Q %d is disabled.\n", ev_sub_data,
1243 ev_sub_data);
1244 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1245 } else
1246 efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1247 break;
1248 case FSE_BZ_TX_DSC_ERROR_EV:
1249 if (ev_sub_data < EFX_VI_BASE) {
1250 netif_err(efx, tx_err, efx->net_dev,
1251 "TX DMA Q %d reports descriptor fetch error."
1252 " TX Q %d is disabled.\n", ev_sub_data,
1253 ev_sub_data);
1254 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1255 } else
1256 efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1257 break;
1258 default:
1259 netif_vdbg(efx, hw, efx->net_dev,
1260 "channel %d unknown driver event code %d "
1261 "data %04x\n", channel->channel, ev_sub_code,
1262 ev_sub_data);
1263 break;
1264 }
1265 }
1266
1267 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1268 {
1269 struct efx_nic *efx = channel->efx;
1270 unsigned int read_ptr;
1271 efx_qword_t event, *p_event;
1272 int ev_code;
1273 int tx_packets = 0;
1274 int spent = 0;
1275
1276 if (budget <= 0)
1277 return spent;
1278
1279 read_ptr = channel->eventq_read_ptr;
1280
1281 for (;;) {
1282 p_event = efx_event(channel, read_ptr);
1283 event = *p_event;
1284
1285 if (!efx_event_present(&event))
1286 /* End of events */
1287 break;
1288
1289 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1290 "channel %d event is "EFX_QWORD_FMT"\n",
1291 channel->channel, EFX_QWORD_VAL(event));
1292
1293 /* Clear this event by marking it all ones */
1294 EFX_SET_QWORD(*p_event);
1295
1296 ++read_ptr;
1297
1298 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1299
1300 switch (ev_code) {
1301 case FSE_AZ_EV_CODE_RX_EV:
1302 efx_farch_handle_rx_event(channel, &event);
1303 if (++spent == budget)
1304 goto out;
1305 break;
1306 case FSE_AZ_EV_CODE_TX_EV:
1307 tx_packets += efx_farch_handle_tx_event(channel,
1308 &event);
1309 if (tx_packets > efx->txq_entries) {
1310 spent = budget;
1311 goto out;
1312 }
1313 break;
1314 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1315 efx_farch_handle_generated_event(channel, &event);
1316 break;
1317 case FSE_AZ_EV_CODE_DRIVER_EV:
1318 efx_farch_handle_driver_event(channel, &event);
1319 break;
1320 case FSE_CZ_EV_CODE_USER_EV:
1321 efx_siena_sriov_event(channel, &event);
1322 break;
1323 case FSE_CZ_EV_CODE_MCDI_EV:
1324 efx_mcdi_process_event(channel, &event);
1325 break;
1326 case FSE_AZ_EV_CODE_GLOBAL_EV:
1327 if (efx->type->handle_global_event &&
1328 efx->type->handle_global_event(channel, &event))
1329 break;
1330 /* else fall through */
1331 default:
1332 netif_err(channel->efx, hw, channel->efx->net_dev,
1333 "channel %d unknown event type %d (data "
1334 EFX_QWORD_FMT ")\n", channel->channel,
1335 ev_code, EFX_QWORD_VAL(event));
1336 }
1337 }
1338
1339 out:
1340 channel->eventq_read_ptr = read_ptr;
1341 return spent;
1342 }
1343
1344 /* Allocate buffer table entries for event queue */
1345 int efx_farch_ev_probe(struct efx_channel *channel)
1346 {
1347 struct efx_nic *efx = channel->efx;
1348 unsigned entries;
1349
1350 entries = channel->eventq_mask + 1;
1351 return efx_alloc_special_buffer(efx, &channel->eventq,
1352 entries * sizeof(efx_qword_t));
1353 }
1354
1355 int efx_farch_ev_init(struct efx_channel *channel)
1356 {
1357 efx_oword_t reg;
1358 struct efx_nic *efx = channel->efx;
1359
1360 netif_dbg(efx, hw, efx->net_dev,
1361 "channel %d event queue in special buffers %d-%d\n",
1362 channel->channel, channel->eventq.index,
1363 channel->eventq.index + channel->eventq.entries - 1);
1364
1365 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1366 EFX_POPULATE_OWORD_3(reg,
1367 FRF_CZ_TIMER_Q_EN, 1,
1368 FRF_CZ_HOST_NOTIFY_MODE, 0,
1369 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1370 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1371 }
1372
1373 /* Pin event queue buffer */
1374 efx_init_special_buffer(efx, &channel->eventq);
1375
1376 /* Fill event queue with all ones (i.e. empty events) */
1377 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1378
1379 /* Push event queue to card */
1380 EFX_POPULATE_OWORD_3(reg,
1381 FRF_AZ_EVQ_EN, 1,
1382 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1383 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1384 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1385 channel->channel);
1386
1387 return 0;
1388 }
1389
1390 void efx_farch_ev_fini(struct efx_channel *channel)
1391 {
1392 efx_oword_t reg;
1393 struct efx_nic *efx = channel->efx;
1394
1395 /* Remove event queue from card */
1396 EFX_ZERO_OWORD(reg);
1397 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1398 channel->channel);
1399 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1400 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1401
1402 /* Unpin event queue */
1403 efx_fini_special_buffer(efx, &channel->eventq);
1404 }
1405
1406 /* Free buffers backing event queue */
1407 void efx_farch_ev_remove(struct efx_channel *channel)
1408 {
1409 efx_free_special_buffer(channel->efx, &channel->eventq);
1410 }
1411
1412
1413 void efx_farch_ev_test_generate(struct efx_channel *channel)
1414 {
1415 efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1416 }
1417
1418 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1419 {
1420 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1421 EFX_CHANNEL_MAGIC_FILL(rx_queue));
1422 }
1423
1424 /**************************************************************************
1425 *
1426 * Hardware interrupts
1427 * The hardware interrupt handler does very little work; all the event
1428 * queue processing is carried out by per-channel tasklets.
1429 *
1430 **************************************************************************/
1431
1432 /* Enable/disable/generate interrupts */
1433 static inline void efx_farch_interrupts(struct efx_nic *efx,
1434 bool enabled, bool force)
1435 {
1436 efx_oword_t int_en_reg_ker;
1437
1438 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1439 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1440 FRF_AZ_KER_INT_KER, force,
1441 FRF_AZ_DRV_INT_EN_KER, enabled);
1442 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1443 }
1444
1445 void efx_farch_irq_enable_master(struct efx_nic *efx)
1446 {
1447 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1448 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1449
1450 efx_farch_interrupts(efx, true, false);
1451 }
1452
1453 void efx_farch_irq_disable_master(struct efx_nic *efx)
1454 {
1455 /* Disable interrupts */
1456 efx_farch_interrupts(efx, false, false);
1457 }
1458
1459 /* Generate a test interrupt
1460 * Interrupt must already have been enabled, otherwise nasty things
1461 * may happen.
1462 */
1463 void efx_farch_irq_test_generate(struct efx_nic *efx)
1464 {
1465 efx_farch_interrupts(efx, true, true);
1466 }
1467
1468 /* Process a fatal interrupt
1469 * Disable bus mastering ASAP and schedule a reset
1470 */
1471 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1472 {
1473 struct falcon_nic_data *nic_data = efx->nic_data;
1474 efx_oword_t *int_ker = efx->irq_status.addr;
1475 efx_oword_t fatal_intr;
1476 int error, mem_perr;
1477
1478 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1479 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1480
1481 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1482 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1483 EFX_OWORD_VAL(fatal_intr),
1484 error ? "disabling bus mastering" : "no recognised error");
1485
1486 /* If this is a memory parity error dump which blocks are offending */
1487 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1488 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1489 if (mem_perr) {
1490 efx_oword_t reg;
1491 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1492 netif_err(efx, hw, efx->net_dev,
1493 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1494 EFX_OWORD_VAL(reg));
1495 }
1496
1497 /* Disable both devices */
1498 pci_clear_master(efx->pci_dev);
1499 if (efx_nic_is_dual_func(efx))
1500 pci_clear_master(nic_data->pci_dev2);
1501 efx_farch_irq_disable_master(efx);
1502
1503 /* Count errors and reset or disable the NIC accordingly */
1504 if (efx->int_error_count == 0 ||
1505 time_after(jiffies, efx->int_error_expire)) {
1506 efx->int_error_count = 0;
1507 efx->int_error_expire =
1508 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1509 }
1510 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1511 netif_err(efx, hw, efx->net_dev,
1512 "SYSTEM ERROR - reset scheduled\n");
1513 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1514 } else {
1515 netif_err(efx, hw, efx->net_dev,
1516 "SYSTEM ERROR - max number of errors seen."
1517 "NIC will be disabled\n");
1518 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1519 }
1520
1521 return IRQ_HANDLED;
1522 }
1523
1524 /* Handle a legacy interrupt
1525 * Acknowledges the interrupt and schedule event queue processing.
1526 */
1527 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1528 {
1529 struct efx_nic *efx = dev_id;
1530 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1531 efx_oword_t *int_ker = efx->irq_status.addr;
1532 irqreturn_t result = IRQ_NONE;
1533 struct efx_channel *channel;
1534 efx_dword_t reg;
1535 u32 queues;
1536 int syserr;
1537
1538 /* Read the ISR which also ACKs the interrupts */
1539 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1540 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1541
1542 /* Legacy interrupts are disabled too late by the EEH kernel
1543 * code. Disable them earlier.
1544 * If an EEH error occurred, the read will have returned all ones.
1545 */
1546 if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1547 !efx->eeh_disabled_legacy_irq) {
1548 disable_irq_nosync(efx->legacy_irq);
1549 efx->eeh_disabled_legacy_irq = true;
1550 }
1551
1552 /* Handle non-event-queue sources */
1553 if (queues & (1U << efx->irq_level) && soft_enabled) {
1554 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1555 if (unlikely(syserr))
1556 return efx_farch_fatal_interrupt(efx);
1557 efx->last_irq_cpu = raw_smp_processor_id();
1558 }
1559
1560 if (queues != 0) {
1561 efx->irq_zero_count = 0;
1562
1563 /* Schedule processing of any interrupting queues */
1564 if (likely(soft_enabled)) {
1565 efx_for_each_channel(channel, efx) {
1566 if (queues & 1)
1567 efx_schedule_channel_irq(channel);
1568 queues >>= 1;
1569 }
1570 }
1571 result = IRQ_HANDLED;
1572
1573 } else {
1574 efx_qword_t *event;
1575
1576 /* Legacy ISR read can return zero once (SF bug 15783) */
1577
1578 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1579 * because this might be a shared interrupt. */
1580 if (efx->irq_zero_count++ == 0)
1581 result = IRQ_HANDLED;
1582
1583 /* Ensure we schedule or rearm all event queues */
1584 if (likely(soft_enabled)) {
1585 efx_for_each_channel(channel, efx) {
1586 event = efx_event(channel,
1587 channel->eventq_read_ptr);
1588 if (efx_event_present(event))
1589 efx_schedule_channel_irq(channel);
1590 else
1591 efx_farch_ev_read_ack(channel);
1592 }
1593 }
1594 }
1595
1596 if (result == IRQ_HANDLED)
1597 netif_vdbg(efx, intr, efx->net_dev,
1598 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1599 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1600
1601 return result;
1602 }
1603
1604 /* Handle an MSI interrupt
1605 *
1606 * Handle an MSI hardware interrupt. This routine schedules event
1607 * queue processing. No interrupt acknowledgement cycle is necessary.
1608 * Also, we never need to check that the interrupt is for us, since
1609 * MSI interrupts cannot be shared.
1610 */
1611 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1612 {
1613 struct efx_msi_context *context = dev_id;
1614 struct efx_nic *efx = context->efx;
1615 efx_oword_t *int_ker = efx->irq_status.addr;
1616 int syserr;
1617
1618 netif_vdbg(efx, intr, efx->net_dev,
1619 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1620 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1621
1622 if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1623 return IRQ_HANDLED;
1624
1625 /* Handle non-event-queue sources */
1626 if (context->index == efx->irq_level) {
1627 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1628 if (unlikely(syserr))
1629 return efx_farch_fatal_interrupt(efx);
1630 efx->last_irq_cpu = raw_smp_processor_id();
1631 }
1632
1633 /* Schedule processing of the channel */
1634 efx_schedule_channel_irq(efx->channel[context->index]);
1635
1636 return IRQ_HANDLED;
1637 }
1638
1639 /* Setup RSS indirection table.
1640 * This maps from the hash value of the packet to RXQ
1641 */
1642 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1643 {
1644 size_t i = 0;
1645 efx_dword_t dword;
1646
1647 BUG_ON(efx_nic_rev(efx) < EFX_REV_FALCON_B0);
1648
1649 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1650 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1651
1652 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1653 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1654 efx->rx_indir_table[i]);
1655 efx_writed(efx, &dword,
1656 FR_BZ_RX_INDIRECTION_TBL +
1657 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1658 }
1659 }
1660
1661 /* Looks at available SRAM resources and works out how many queues we
1662 * can support, and where things like descriptor caches should live.
1663 *
1664 * SRAM is split up as follows:
1665 * 0 buftbl entries for channels
1666 * efx->vf_buftbl_base buftbl entries for SR-IOV
1667 * efx->rx_dc_base RX descriptor caches
1668 * efx->tx_dc_base TX descriptor caches
1669 */
1670 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1671 {
1672 unsigned vi_count, buftbl_min;
1673
1674 #ifdef CONFIG_SFC_SRIOV
1675 struct siena_nic_data *nic_data = efx->nic_data;
1676 #endif
1677
1678 /* Account for the buffer table entries backing the datapath channels
1679 * and the descriptor caches for those channels.
1680 */
1681 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1682 efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1683 efx->n_channels * EFX_MAX_EVQ_SIZE)
1684 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1685 vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1686
1687 #ifdef CONFIG_SFC_SRIOV
1688 if (efx->type->sriov_wanted(efx)) {
1689 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1690
1691 nic_data->vf_buftbl_base = buftbl_min;
1692
1693 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1694 vi_count = max(vi_count, EFX_VI_BASE);
1695 buftbl_free = (sram_lim_qw - buftbl_min -
1696 vi_count * vi_dc_entries);
1697
1698 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1699 efx_vf_size(efx));
1700 vf_limit = min(buftbl_free / entries_per_vf,
1701 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1702
1703 if (efx->vf_count > vf_limit) {
1704 netif_err(efx, probe, efx->net_dev,
1705 "Reducing VF count from from %d to %d\n",
1706 efx->vf_count, vf_limit);
1707 efx->vf_count = vf_limit;
1708 }
1709 vi_count += efx->vf_count * efx_vf_size(efx);
1710 }
1711 #endif
1712
1713 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1714 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1715 }
1716
1717 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1718 {
1719 efx_oword_t altera_build;
1720 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1721 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1722 }
1723
1724 void efx_farch_init_common(struct efx_nic *efx)
1725 {
1726 efx_oword_t temp;
1727
1728 /* Set positions of descriptor caches in SRAM. */
1729 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1730 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1731 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1732 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1733
1734 /* Set TX descriptor cache size. */
1735 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1736 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1737 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1738
1739 /* Set RX descriptor cache size. Set low watermark to size-8, as
1740 * this allows most efficient prefetching.
1741 */
1742 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1743 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1744 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1745 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1746 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1747
1748 /* Program INT_KER address */
1749 EFX_POPULATE_OWORD_2(temp,
1750 FRF_AZ_NORM_INT_VEC_DIS_KER,
1751 EFX_INT_MODE_USE_MSI(efx),
1752 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1753 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1754
1755 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1756 /* Use an interrupt level unused by event queues */
1757 efx->irq_level = 0x1f;
1758 else
1759 /* Use a valid MSI-X vector */
1760 efx->irq_level = 0;
1761
1762 /* Enable all the genuinely fatal interrupts. (They are still
1763 * masked by the overall interrupt mask, controlled by
1764 * falcon_interrupts()).
1765 *
1766 * Note: All other fatal interrupts are enabled
1767 */
1768 EFX_POPULATE_OWORD_3(temp,
1769 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1770 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1771 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1772 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1773 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1774 EFX_INVERT_OWORD(temp);
1775 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1776
1777 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1778 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1779 */
1780 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1781 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1782 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1783 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1784 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1785 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1786 /* Enable SW_EV to inherit in char driver - assume harmless here */
1787 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1788 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1789 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1790 /* Disable hardware watchdog which can misfire */
1791 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1792 /* Squash TX of packets of 16 bytes or less */
1793 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1794 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1795 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1796
1797 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1798 EFX_POPULATE_OWORD_4(temp,
1799 /* Default values */
1800 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1801 FRF_BZ_TX_PACE_SB_AF, 0xb,
1802 FRF_BZ_TX_PACE_FB_BASE, 0,
1803 /* Allow large pace values in the
1804 * fast bin. */
1805 FRF_BZ_TX_PACE_BIN_TH,
1806 FFE_BZ_TX_PACE_RESERVED);
1807 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1808 }
1809 }
1810
1811 /**************************************************************************
1812 *
1813 * Filter tables
1814 *
1815 **************************************************************************
1816 */
1817
1818 /* "Fudge factors" - difference between programmed value and actual depth.
1819 * Due to pipelined implementation we need to program H/W with a value that
1820 * is larger than the hop limit we want.
1821 */
1822 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1823 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1824
1825 /* Hard maximum search limit. Hardware will time-out beyond 200-something.
1826 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1827 * table is full.
1828 */
1829 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1830
1831 /* Don't try very hard to find space for performance hints, as this is
1832 * counter-productive. */
1833 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1834
1835 enum efx_farch_filter_type {
1836 EFX_FARCH_FILTER_TCP_FULL = 0,
1837 EFX_FARCH_FILTER_TCP_WILD,
1838 EFX_FARCH_FILTER_UDP_FULL,
1839 EFX_FARCH_FILTER_UDP_WILD,
1840 EFX_FARCH_FILTER_MAC_FULL = 4,
1841 EFX_FARCH_FILTER_MAC_WILD,
1842 EFX_FARCH_FILTER_UC_DEF = 8,
1843 EFX_FARCH_FILTER_MC_DEF,
1844 EFX_FARCH_FILTER_TYPE_COUNT, /* number of specific types */
1845 };
1846
1847 enum efx_farch_filter_table_id {
1848 EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1849 EFX_FARCH_FILTER_TABLE_RX_MAC,
1850 EFX_FARCH_FILTER_TABLE_RX_DEF,
1851 EFX_FARCH_FILTER_TABLE_TX_MAC,
1852 EFX_FARCH_FILTER_TABLE_COUNT,
1853 };
1854
1855 enum efx_farch_filter_index {
1856 EFX_FARCH_FILTER_INDEX_UC_DEF,
1857 EFX_FARCH_FILTER_INDEX_MC_DEF,
1858 EFX_FARCH_FILTER_SIZE_RX_DEF,
1859 };
1860
1861 struct efx_farch_filter_spec {
1862 u8 type:4;
1863 u8 priority:4;
1864 u8 flags;
1865 u16 dmaq_id;
1866 u32 data[3];
1867 };
1868
1869 struct efx_farch_filter_table {
1870 enum efx_farch_filter_table_id id;
1871 u32 offset; /* address of table relative to BAR */
1872 unsigned size; /* number of entries */
1873 unsigned step; /* step between entries */
1874 unsigned used; /* number currently used */
1875 unsigned long *used_bitmap;
1876 struct efx_farch_filter_spec *spec;
1877 unsigned search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1878 };
1879
1880 struct efx_farch_filter_state {
1881 struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1882 };
1883
1884 static void
1885 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1886 struct efx_farch_filter_table *table,
1887 unsigned int filter_idx);
1888
1889 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1890 * key derived from the n-tuple. The initial LFSR state is 0xffff. */
1891 static u16 efx_farch_filter_hash(u32 key)
1892 {
1893 u16 tmp;
1894
1895 /* First 16 rounds */
1896 tmp = 0x1fff ^ key >> 16;
1897 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1898 tmp = tmp ^ tmp >> 9;
1899 /* Last 16 rounds */
1900 tmp = tmp ^ tmp << 13 ^ key;
1901 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1902 return tmp ^ tmp >> 9;
1903 }
1904
1905 /* To allow for hash collisions, filter search continues at these
1906 * increments from the first possible entry selected by the hash. */
1907 static u16 efx_farch_filter_increment(u32 key)
1908 {
1909 return key * 2 - 1;
1910 }
1911
1912 static enum efx_farch_filter_table_id
1913 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1914 {
1915 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1916 (EFX_FARCH_FILTER_TCP_FULL >> 2));
1917 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1918 (EFX_FARCH_FILTER_TCP_WILD >> 2));
1919 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1920 (EFX_FARCH_FILTER_UDP_FULL >> 2));
1921 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1922 (EFX_FARCH_FILTER_UDP_WILD >> 2));
1923 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1924 (EFX_FARCH_FILTER_MAC_FULL >> 2));
1925 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1926 (EFX_FARCH_FILTER_MAC_WILD >> 2));
1927 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1928 EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1929 return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1930 }
1931
1932 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1933 {
1934 struct efx_farch_filter_state *state = efx->filter_state;
1935 struct efx_farch_filter_table *table;
1936 efx_oword_t filter_ctl;
1937
1938 efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1939
1940 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1941 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1942 table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1943 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1944 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1945 table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1946 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1947 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1948 table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1949 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1950 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1951 table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1952 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1953
1954 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1955 if (table->size) {
1956 EFX_SET_OWORD_FIELD(
1957 filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1958 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1959 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1960 EFX_SET_OWORD_FIELD(
1961 filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1962 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1963 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1964 }
1965
1966 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1967 if (table->size) {
1968 EFX_SET_OWORD_FIELD(
1969 filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1970 table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1971 EFX_SET_OWORD_FIELD(
1972 filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1973 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1974 EFX_FILTER_FLAG_RX_RSS));
1975 EFX_SET_OWORD_FIELD(
1976 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1977 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1978 EFX_SET_OWORD_FIELD(
1979 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1980 !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1981 EFX_FILTER_FLAG_RX_RSS));
1982
1983 /* There is a single bit to enable RX scatter for all
1984 * unmatched packets. Only set it if scatter is
1985 * enabled in both filter specs.
1986 */
1987 EFX_SET_OWORD_FIELD(
1988 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1989 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1990 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1991 EFX_FILTER_FLAG_RX_SCATTER));
1992 } else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1993 /* We don't expose 'default' filters because unmatched
1994 * packets always go to the queue number found in the
1995 * RSS table. But we still need to set the RX scatter
1996 * bit here.
1997 */
1998 EFX_SET_OWORD_FIELD(
1999 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2000 efx->rx_scatter);
2001 }
2002
2003 efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2004 }
2005
2006 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2007 {
2008 struct efx_farch_filter_state *state = efx->filter_state;
2009 struct efx_farch_filter_table *table;
2010 efx_oword_t tx_cfg;
2011
2012 efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2013
2014 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2015 if (table->size) {
2016 EFX_SET_OWORD_FIELD(
2017 tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2018 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2019 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2020 EFX_SET_OWORD_FIELD(
2021 tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2022 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2023 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2024 }
2025
2026 efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2027 }
2028
2029 static int
2030 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2031 const struct efx_filter_spec *gen_spec)
2032 {
2033 bool is_full = false;
2034
2035 if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2036 gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2037 return -EINVAL;
2038
2039 spec->priority = gen_spec->priority;
2040 spec->flags = gen_spec->flags;
2041 spec->dmaq_id = gen_spec->dmaq_id;
2042
2043 switch (gen_spec->match_flags) {
2044 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2045 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2046 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2047 is_full = true;
2048 /* fall through */
2049 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2050 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2051 __be32 rhost, host1, host2;
2052 __be16 rport, port1, port2;
2053
2054 EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2055
2056 if (gen_spec->ether_type != htons(ETH_P_IP))
2057 return -EPROTONOSUPPORT;
2058 if (gen_spec->loc_port == 0 ||
2059 (is_full && gen_spec->rem_port == 0))
2060 return -EADDRNOTAVAIL;
2061 switch (gen_spec->ip_proto) {
2062 case IPPROTO_TCP:
2063 spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2064 EFX_FARCH_FILTER_TCP_WILD);
2065 break;
2066 case IPPROTO_UDP:
2067 spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2068 EFX_FARCH_FILTER_UDP_WILD);
2069 break;
2070 default:
2071 return -EPROTONOSUPPORT;
2072 }
2073
2074 /* Filter is constructed in terms of source and destination,
2075 * with the odd wrinkle that the ports are swapped in a UDP
2076 * wildcard filter. We need to convert from local and remote
2077 * (= zero for wildcard) addresses.
2078 */
2079 rhost = is_full ? gen_spec->rem_host[0] : 0;
2080 rport = is_full ? gen_spec->rem_port : 0;
2081 host1 = rhost;
2082 host2 = gen_spec->loc_host[0];
2083 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2084 port1 = gen_spec->loc_port;
2085 port2 = rport;
2086 } else {
2087 port1 = rport;
2088 port2 = gen_spec->loc_port;
2089 }
2090 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2091 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2092 spec->data[2] = ntohl(host2);
2093
2094 break;
2095 }
2096
2097 case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2098 is_full = true;
2099 /* fall through */
2100 case EFX_FILTER_MATCH_LOC_MAC:
2101 spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2102 EFX_FARCH_FILTER_MAC_WILD);
2103 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2104 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2105 gen_spec->loc_mac[3] << 16 |
2106 gen_spec->loc_mac[4] << 8 |
2107 gen_spec->loc_mac[5]);
2108 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2109 gen_spec->loc_mac[1]);
2110 break;
2111
2112 case EFX_FILTER_MATCH_LOC_MAC_IG:
2113 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2114 EFX_FARCH_FILTER_MC_DEF :
2115 EFX_FARCH_FILTER_UC_DEF);
2116 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2117 break;
2118
2119 default:
2120 return -EPROTONOSUPPORT;
2121 }
2122
2123 return 0;
2124 }
2125
2126 static void
2127 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2128 const struct efx_farch_filter_spec *spec)
2129 {
2130 bool is_full = false;
2131
2132 /* *gen_spec should be completely initialised, to be consistent
2133 * with efx_filter_init_{rx,tx}() and in case we want to copy
2134 * it back to userland.
2135 */
2136 memset(gen_spec, 0, sizeof(*gen_spec));
2137
2138 gen_spec->priority = spec->priority;
2139 gen_spec->flags = spec->flags;
2140 gen_spec->dmaq_id = spec->dmaq_id;
2141
2142 switch (spec->type) {
2143 case EFX_FARCH_FILTER_TCP_FULL:
2144 case EFX_FARCH_FILTER_UDP_FULL:
2145 is_full = true;
2146 /* fall through */
2147 case EFX_FARCH_FILTER_TCP_WILD:
2148 case EFX_FARCH_FILTER_UDP_WILD: {
2149 __be32 host1, host2;
2150 __be16 port1, port2;
2151
2152 gen_spec->match_flags =
2153 EFX_FILTER_MATCH_ETHER_TYPE |
2154 EFX_FILTER_MATCH_IP_PROTO |
2155 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2156 if (is_full)
2157 gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2158 EFX_FILTER_MATCH_REM_PORT);
2159 gen_spec->ether_type = htons(ETH_P_IP);
2160 gen_spec->ip_proto =
2161 (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2162 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2163 IPPROTO_TCP : IPPROTO_UDP;
2164
2165 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2166 port1 = htons(spec->data[0]);
2167 host2 = htonl(spec->data[2]);
2168 port2 = htons(spec->data[1] >> 16);
2169 if (spec->flags & EFX_FILTER_FLAG_TX) {
2170 gen_spec->loc_host[0] = host1;
2171 gen_spec->rem_host[0] = host2;
2172 } else {
2173 gen_spec->loc_host[0] = host2;
2174 gen_spec->rem_host[0] = host1;
2175 }
2176 if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2177 (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2178 gen_spec->loc_port = port1;
2179 gen_spec->rem_port = port2;
2180 } else {
2181 gen_spec->loc_port = port2;
2182 gen_spec->rem_port = port1;
2183 }
2184
2185 break;
2186 }
2187
2188 case EFX_FARCH_FILTER_MAC_FULL:
2189 is_full = true;
2190 /* fall through */
2191 case EFX_FARCH_FILTER_MAC_WILD:
2192 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2193 if (is_full)
2194 gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2195 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2196 gen_spec->loc_mac[1] = spec->data[2];
2197 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2198 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2199 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2200 gen_spec->loc_mac[5] = spec->data[1];
2201 gen_spec->outer_vid = htons(spec->data[0]);
2202 break;
2203
2204 case EFX_FARCH_FILTER_UC_DEF:
2205 case EFX_FARCH_FILTER_MC_DEF:
2206 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2207 gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2208 break;
2209
2210 default:
2211 WARN_ON(1);
2212 break;
2213 }
2214 }
2215
2216 static void
2217 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2218 struct efx_farch_filter_spec *spec)
2219 {
2220 /* If there's only one channel then disable RSS for non VF
2221 * traffic, thereby allowing VFs to use RSS when the PF can't.
2222 */
2223 spec->priority = EFX_FILTER_PRI_AUTO;
2224 spec->flags = (EFX_FILTER_FLAG_RX |
2225 (efx->n_rx_channels > 1 ? EFX_FILTER_FLAG_RX_RSS : 0) |
2226 (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2227 spec->dmaq_id = 0;
2228 }
2229
2230 /* Build a filter entry and return its n-tuple key. */
2231 static u32 efx_farch_filter_build(efx_oword_t *filter,
2232 struct efx_farch_filter_spec *spec)
2233 {
2234 u32 data3;
2235
2236 switch (efx_farch_filter_spec_table_id(spec)) {
2237 case EFX_FARCH_FILTER_TABLE_RX_IP: {
2238 bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2239 spec->type == EFX_FARCH_FILTER_UDP_WILD);
2240 EFX_POPULATE_OWORD_7(
2241 *filter,
2242 FRF_BZ_RSS_EN,
2243 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2244 FRF_BZ_SCATTER_EN,
2245 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2246 FRF_BZ_TCP_UDP, is_udp,
2247 FRF_BZ_RXQ_ID, spec->dmaq_id,
2248 EFX_DWORD_2, spec->data[2],
2249 EFX_DWORD_1, spec->data[1],
2250 EFX_DWORD_0, spec->data[0]);
2251 data3 = is_udp;
2252 break;
2253 }
2254
2255 case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2256 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2257 EFX_POPULATE_OWORD_7(
2258 *filter,
2259 FRF_CZ_RMFT_RSS_EN,
2260 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2261 FRF_CZ_RMFT_SCATTER_EN,
2262 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2263 FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2264 FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2265 FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2266 FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2267 FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2268 data3 = is_wild;
2269 break;
2270 }
2271
2272 case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2273 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2274 EFX_POPULATE_OWORD_5(*filter,
2275 FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2276 FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2277 FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2278 FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2279 FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2280 data3 = is_wild | spec->dmaq_id << 1;
2281 break;
2282 }
2283
2284 default:
2285 BUG();
2286 }
2287
2288 return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2289 }
2290
2291 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2292 const struct efx_farch_filter_spec *right)
2293 {
2294 if (left->type != right->type ||
2295 memcmp(left->data, right->data, sizeof(left->data)))
2296 return false;
2297
2298 if (left->flags & EFX_FILTER_FLAG_TX &&
2299 left->dmaq_id != right->dmaq_id)
2300 return false;
2301
2302 return true;
2303 }
2304
2305 /*
2306 * Construct/deconstruct external filter IDs. At least the RX filter
2307 * IDs must be ordered by matching priority, for RX NFC semantics.
2308 *
2309 * Deconstruction needs to be robust against invalid IDs so that
2310 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2311 * accept user-provided IDs.
2312 */
2313
2314 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT 5
2315
2316 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2317 [EFX_FARCH_FILTER_TCP_FULL] = 0,
2318 [EFX_FARCH_FILTER_UDP_FULL] = 0,
2319 [EFX_FARCH_FILTER_TCP_WILD] = 1,
2320 [EFX_FARCH_FILTER_UDP_WILD] = 1,
2321 [EFX_FARCH_FILTER_MAC_FULL] = 2,
2322 [EFX_FARCH_FILTER_MAC_WILD] = 3,
2323 [EFX_FARCH_FILTER_UC_DEF] = 4,
2324 [EFX_FARCH_FILTER_MC_DEF] = 4,
2325 };
2326
2327 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2328 EFX_FARCH_FILTER_TABLE_RX_IP, /* RX match pri 0 */
2329 EFX_FARCH_FILTER_TABLE_RX_IP,
2330 EFX_FARCH_FILTER_TABLE_RX_MAC,
2331 EFX_FARCH_FILTER_TABLE_RX_MAC,
2332 EFX_FARCH_FILTER_TABLE_RX_DEF, /* RX match pri 4 */
2333 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 0 */
2334 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 1 */
2335 };
2336
2337 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2338 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2339
2340 static inline u32
2341 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2342 unsigned int index)
2343 {
2344 unsigned int range;
2345
2346 range = efx_farch_filter_type_match_pri[spec->type];
2347 if (!(spec->flags & EFX_FILTER_FLAG_RX))
2348 range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2349
2350 return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2351 }
2352
2353 static inline enum efx_farch_filter_table_id
2354 efx_farch_filter_id_table_id(u32 id)
2355 {
2356 unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2357
2358 if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2359 return efx_farch_filter_range_table[range];
2360 else
2361 return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2362 }
2363
2364 static inline unsigned int efx_farch_filter_id_index(u32 id)
2365 {
2366 return id & EFX_FARCH_FILTER_INDEX_MASK;
2367 }
2368
2369 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2370 {
2371 struct efx_farch_filter_state *state = efx->filter_state;
2372 unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2373 enum efx_farch_filter_table_id table_id;
2374
2375 do {
2376 table_id = efx_farch_filter_range_table[range];
2377 if (state->table[table_id].size != 0)
2378 return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2379 state->table[table_id].size;
2380 } while (range--);
2381
2382 return 0;
2383 }
2384
2385 s32 efx_farch_filter_insert(struct efx_nic *efx,
2386 struct efx_filter_spec *gen_spec,
2387 bool replace_equal)
2388 {
2389 struct efx_farch_filter_state *state = efx->filter_state;
2390 struct efx_farch_filter_table *table;
2391 struct efx_farch_filter_spec spec;
2392 efx_oword_t filter;
2393 int rep_index, ins_index;
2394 unsigned int depth = 0;
2395 int rc;
2396
2397 rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2398 if (rc)
2399 return rc;
2400
2401 table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2402 if (table->size == 0)
2403 return -EINVAL;
2404
2405 netif_vdbg(efx, hw, efx->net_dev,
2406 "%s: type %d search_limit=%d", __func__, spec.type,
2407 table->search_limit[spec.type]);
2408
2409 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2410 /* One filter spec per type */
2411 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2412 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2413 EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2414 rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2415 ins_index = rep_index;
2416
2417 spin_lock_bh(&efx->filter_lock);
2418 } else {
2419 /* Search concurrently for
2420 * (1) a filter to be replaced (rep_index): any filter
2421 * with the same match values, up to the current
2422 * search depth for this type, and
2423 * (2) the insertion point (ins_index): (1) or any
2424 * free slot before it or up to the maximum search
2425 * depth for this priority
2426 * We fail if we cannot find (2).
2427 *
2428 * We can stop once either
2429 * (a) we find (1), in which case we have definitely
2430 * found (2) as well; or
2431 * (b) we have searched exhaustively for (1), and have
2432 * either found (2) or searched exhaustively for it
2433 */
2434 u32 key = efx_farch_filter_build(&filter, &spec);
2435 unsigned int hash = efx_farch_filter_hash(key);
2436 unsigned int incr = efx_farch_filter_increment(key);
2437 unsigned int max_rep_depth = table->search_limit[spec.type];
2438 unsigned int max_ins_depth =
2439 spec.priority <= EFX_FILTER_PRI_HINT ?
2440 EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2441 EFX_FARCH_FILTER_CTL_SRCH_MAX;
2442 unsigned int i = hash & (table->size - 1);
2443
2444 ins_index = -1;
2445 depth = 1;
2446
2447 spin_lock_bh(&efx->filter_lock);
2448
2449 for (;;) {
2450 if (!test_bit(i, table->used_bitmap)) {
2451 if (ins_index < 0)
2452 ins_index = i;
2453 } else if (efx_farch_filter_equal(&spec,
2454 &table->spec[i])) {
2455 /* Case (a) */
2456 if (ins_index < 0)
2457 ins_index = i;
2458 rep_index = i;
2459 break;
2460 }
2461
2462 if (depth >= max_rep_depth &&
2463 (ins_index >= 0 || depth >= max_ins_depth)) {
2464 /* Case (b) */
2465 if (ins_index < 0) {
2466 rc = -EBUSY;
2467 goto out;
2468 }
2469 rep_index = -1;
2470 break;
2471 }
2472
2473 i = (i + incr) & (table->size - 1);
2474 ++depth;
2475 }
2476 }
2477
2478 /* If we found a filter to be replaced, check whether we
2479 * should do so
2480 */
2481 if (rep_index >= 0) {
2482 struct efx_farch_filter_spec *saved_spec =
2483 &table->spec[rep_index];
2484
2485 if (spec.priority == saved_spec->priority && !replace_equal) {
2486 rc = -EEXIST;
2487 goto out;
2488 }
2489 if (spec.priority < saved_spec->priority) {
2490 rc = -EPERM;
2491 goto out;
2492 }
2493 if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2494 saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2495 spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2496 }
2497
2498 /* Insert the filter */
2499 if (ins_index != rep_index) {
2500 __set_bit(ins_index, table->used_bitmap);
2501 ++table->used;
2502 }
2503 table->spec[ins_index] = spec;
2504
2505 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2506 efx_farch_filter_push_rx_config(efx);
2507 } else {
2508 if (table->search_limit[spec.type] < depth) {
2509 table->search_limit[spec.type] = depth;
2510 if (spec.flags & EFX_FILTER_FLAG_TX)
2511 efx_farch_filter_push_tx_limits(efx);
2512 else
2513 efx_farch_filter_push_rx_config(efx);
2514 }
2515
2516 efx_writeo(efx, &filter,
2517 table->offset + table->step * ins_index);
2518
2519 /* If we were able to replace a filter by inserting
2520 * at a lower depth, clear the replaced filter
2521 */
2522 if (ins_index != rep_index && rep_index >= 0)
2523 efx_farch_filter_table_clear_entry(efx, table,
2524 rep_index);
2525 }
2526
2527 netif_vdbg(efx, hw, efx->net_dev,
2528 "%s: filter type %d index %d rxq %u set",
2529 __func__, spec.type, ins_index, spec.dmaq_id);
2530 rc = efx_farch_filter_make_id(&spec, ins_index);
2531
2532 out:
2533 spin_unlock_bh(&efx->filter_lock);
2534 return rc;
2535 }
2536
2537 static void
2538 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2539 struct efx_farch_filter_table *table,
2540 unsigned int filter_idx)
2541 {
2542 static efx_oword_t filter;
2543
2544 EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2545 BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2546
2547 __clear_bit(filter_idx, table->used_bitmap);
2548 --table->used;
2549 memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2550
2551 efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2552
2553 /* If this filter required a greater search depth than
2554 * any other, the search limit for its type can now be
2555 * decreased. However, it is hard to determine that
2556 * unless the table has become completely empty - in
2557 * which case, all its search limits can be set to 0.
2558 */
2559 if (unlikely(table->used == 0)) {
2560 memset(table->search_limit, 0, sizeof(table->search_limit));
2561 if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2562 efx_farch_filter_push_tx_limits(efx);
2563 else
2564 efx_farch_filter_push_rx_config(efx);
2565 }
2566 }
2567
2568 static int efx_farch_filter_remove(struct efx_nic *efx,
2569 struct efx_farch_filter_table *table,
2570 unsigned int filter_idx,
2571 enum efx_filter_priority priority)
2572 {
2573 struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2574
2575 if (!test_bit(filter_idx, table->used_bitmap) ||
2576 spec->priority != priority)
2577 return -ENOENT;
2578
2579 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2580 efx_farch_filter_init_rx_auto(efx, spec);
2581 efx_farch_filter_push_rx_config(efx);
2582 } else {
2583 efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2584 }
2585
2586 return 0;
2587 }
2588
2589 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2590 enum efx_filter_priority priority,
2591 u32 filter_id)
2592 {
2593 struct efx_farch_filter_state *state = efx->filter_state;
2594 enum efx_farch_filter_table_id table_id;
2595 struct efx_farch_filter_table *table;
2596 unsigned int filter_idx;
2597 struct efx_farch_filter_spec *spec;
2598 int rc;
2599
2600 table_id = efx_farch_filter_id_table_id(filter_id);
2601 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2602 return -ENOENT;
2603 table = &state->table[table_id];
2604
2605 filter_idx = efx_farch_filter_id_index(filter_id);
2606 if (filter_idx >= table->size)
2607 return -ENOENT;
2608 spec = &table->spec[filter_idx];
2609
2610 spin_lock_bh(&efx->filter_lock);
2611 rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2612 spin_unlock_bh(&efx->filter_lock);
2613
2614 return rc;
2615 }
2616
2617 int efx_farch_filter_get_safe(struct efx_nic *efx,
2618 enum efx_filter_priority priority,
2619 u32 filter_id, struct efx_filter_spec *spec_buf)
2620 {
2621 struct efx_farch_filter_state *state = efx->filter_state;
2622 enum efx_farch_filter_table_id table_id;
2623 struct efx_farch_filter_table *table;
2624 struct efx_farch_filter_spec *spec;
2625 unsigned int filter_idx;
2626 int rc;
2627
2628 table_id = efx_farch_filter_id_table_id(filter_id);
2629 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2630 return -ENOENT;
2631 table = &state->table[table_id];
2632
2633 filter_idx = efx_farch_filter_id_index(filter_id);
2634 if (filter_idx >= table->size)
2635 return -ENOENT;
2636 spec = &table->spec[filter_idx];
2637
2638 spin_lock_bh(&efx->filter_lock);
2639
2640 if (test_bit(filter_idx, table->used_bitmap) &&
2641 spec->priority == priority) {
2642 efx_farch_filter_to_gen_spec(spec_buf, spec);
2643 rc = 0;
2644 } else {
2645 rc = -ENOENT;
2646 }
2647
2648 spin_unlock_bh(&efx->filter_lock);
2649
2650 return rc;
2651 }
2652
2653 static void
2654 efx_farch_filter_table_clear(struct efx_nic *efx,
2655 enum efx_farch_filter_table_id table_id,
2656 enum efx_filter_priority priority)
2657 {
2658 struct efx_farch_filter_state *state = efx->filter_state;
2659 struct efx_farch_filter_table *table = &state->table[table_id];
2660 unsigned int filter_idx;
2661
2662 spin_lock_bh(&efx->filter_lock);
2663 for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2664 if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2665 efx_farch_filter_remove(efx, table,
2666 filter_idx, priority);
2667 }
2668 spin_unlock_bh(&efx->filter_lock);
2669 }
2670
2671 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2672 enum efx_filter_priority priority)
2673 {
2674 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2675 priority);
2676 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2677 priority);
2678 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2679 priority);
2680 return 0;
2681 }
2682
2683 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2684 enum efx_filter_priority priority)
2685 {
2686 struct efx_farch_filter_state *state = efx->filter_state;
2687 enum efx_farch_filter_table_id table_id;
2688 struct efx_farch_filter_table *table;
2689 unsigned int filter_idx;
2690 u32 count = 0;
2691
2692 spin_lock_bh(&efx->filter_lock);
2693
2694 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2695 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2696 table_id++) {
2697 table = &state->table[table_id];
2698 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2699 if (test_bit(filter_idx, table->used_bitmap) &&
2700 table->spec[filter_idx].priority == priority)
2701 ++count;
2702 }
2703 }
2704
2705 spin_unlock_bh(&efx->filter_lock);
2706
2707 return count;
2708 }
2709
2710 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2711 enum efx_filter_priority priority,
2712 u32 *buf, u32 size)
2713 {
2714 struct efx_farch_filter_state *state = efx->filter_state;
2715 enum efx_farch_filter_table_id table_id;
2716 struct efx_farch_filter_table *table;
2717 unsigned int filter_idx;
2718 s32 count = 0;
2719
2720 spin_lock_bh(&efx->filter_lock);
2721
2722 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2723 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2724 table_id++) {
2725 table = &state->table[table_id];
2726 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2727 if (test_bit(filter_idx, table->used_bitmap) &&
2728 table->spec[filter_idx].priority == priority) {
2729 if (count == size) {
2730 count = -EMSGSIZE;
2731 goto out;
2732 }
2733 buf[count++] = efx_farch_filter_make_id(
2734 &table->spec[filter_idx], filter_idx);
2735 }
2736 }
2737 }
2738 out:
2739 spin_unlock_bh(&efx->filter_lock);
2740
2741 return count;
2742 }
2743
2744 /* Restore filter stater after reset */
2745 void efx_farch_filter_table_restore(struct efx_nic *efx)
2746 {
2747 struct efx_farch_filter_state *state = efx->filter_state;
2748 enum efx_farch_filter_table_id table_id;
2749 struct efx_farch_filter_table *table;
2750 efx_oword_t filter;
2751 unsigned int filter_idx;
2752
2753 spin_lock_bh(&efx->filter_lock);
2754
2755 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2756 table = &state->table[table_id];
2757
2758 /* Check whether this is a regular register table */
2759 if (table->step == 0)
2760 continue;
2761
2762 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2763 if (!test_bit(filter_idx, table->used_bitmap))
2764 continue;
2765 efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2766 efx_writeo(efx, &filter,
2767 table->offset + table->step * filter_idx);
2768 }
2769 }
2770
2771 efx_farch_filter_push_rx_config(efx);
2772 efx_farch_filter_push_tx_limits(efx);
2773
2774 spin_unlock_bh(&efx->filter_lock);
2775 }
2776
2777 void efx_farch_filter_table_remove(struct efx_nic *efx)
2778 {
2779 struct efx_farch_filter_state *state = efx->filter_state;
2780 enum efx_farch_filter_table_id table_id;
2781
2782 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2783 kfree(state->table[table_id].used_bitmap);
2784 vfree(state->table[table_id].spec);
2785 }
2786 kfree(state);
2787 }
2788
2789 int efx_farch_filter_table_probe(struct efx_nic *efx)
2790 {
2791 struct efx_farch_filter_state *state;
2792 struct efx_farch_filter_table *table;
2793 unsigned table_id;
2794
2795 state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2796 if (!state)
2797 return -ENOMEM;
2798 efx->filter_state = state;
2799
2800 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2801 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2802 table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2803 table->offset = FR_BZ_RX_FILTER_TBL0;
2804 table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2805 table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2806 }
2807
2808 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2809 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2810 table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2811 table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2812 table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2813 table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2814
2815 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2816 table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2817 table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2818
2819 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2820 table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2821 table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2822 table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2823 table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2824 }
2825
2826 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2827 table = &state->table[table_id];
2828 if (table->size == 0)
2829 continue;
2830 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2831 sizeof(unsigned long),
2832 GFP_KERNEL);
2833 if (!table->used_bitmap)
2834 goto fail;
2835 table->spec = vzalloc(table->size * sizeof(*table->spec));
2836 if (!table->spec)
2837 goto fail;
2838 }
2839
2840 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2841 if (table->size) {
2842 /* RX default filters must always exist */
2843 struct efx_farch_filter_spec *spec;
2844 unsigned i;
2845
2846 for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2847 spec = &table->spec[i];
2848 spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2849 efx_farch_filter_init_rx_auto(efx, spec);
2850 __set_bit(i, table->used_bitmap);
2851 }
2852 }
2853
2854 efx_farch_filter_push_rx_config(efx);
2855
2856 return 0;
2857
2858 fail:
2859 efx_farch_filter_table_remove(efx);
2860 return -ENOMEM;
2861 }
2862
2863 /* Update scatter enable flags for filters pointing to our own RX queues */
2864 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2865 {
2866 struct efx_farch_filter_state *state = efx->filter_state;
2867 enum efx_farch_filter_table_id table_id;
2868 struct efx_farch_filter_table *table;
2869 efx_oword_t filter;
2870 unsigned int filter_idx;
2871
2872 spin_lock_bh(&efx->filter_lock);
2873
2874 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2875 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2876 table_id++) {
2877 table = &state->table[table_id];
2878
2879 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2880 if (!test_bit(filter_idx, table->used_bitmap) ||
2881 table->spec[filter_idx].dmaq_id >=
2882 efx->n_rx_channels)
2883 continue;
2884
2885 if (efx->rx_scatter)
2886 table->spec[filter_idx].flags |=
2887 EFX_FILTER_FLAG_RX_SCATTER;
2888 else
2889 table->spec[filter_idx].flags &=
2890 ~EFX_FILTER_FLAG_RX_SCATTER;
2891
2892 if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2893 /* Pushed by efx_farch_filter_push_rx_config() */
2894 continue;
2895
2896 efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2897 efx_writeo(efx, &filter,
2898 table->offset + table->step * filter_idx);
2899 }
2900 }
2901
2902 efx_farch_filter_push_rx_config(efx);
2903
2904 spin_unlock_bh(&efx->filter_lock);
2905 }
2906
2907 #ifdef CONFIG_RFS_ACCEL
2908
2909 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2910 struct efx_filter_spec *gen_spec)
2911 {
2912 return efx_farch_filter_insert(efx, gen_spec, true);
2913 }
2914
2915 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2916 unsigned int index)
2917 {
2918 struct efx_farch_filter_state *state = efx->filter_state;
2919 struct efx_farch_filter_table *table =
2920 &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2921
2922 if (test_bit(index, table->used_bitmap) &&
2923 table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2924 rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2925 flow_id, index)) {
2926 efx_farch_filter_table_clear_entry(efx, table, index);
2927 return true;
2928 }
2929
2930 return false;
2931 }
2932
2933 #endif /* CONFIG_RFS_ACCEL */
2934
2935 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2936 {
2937 struct net_device *net_dev = efx->net_dev;
2938 struct netdev_hw_addr *ha;
2939 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2940 u32 crc;
2941 int bit;
2942
2943 if (!efx_dev_registered(efx))
2944 return;
2945
2946 netif_addr_lock_bh(net_dev);
2947
2948 efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2949
2950 /* Build multicast hash table */
2951 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2952 memset(mc_hash, 0xff, sizeof(*mc_hash));
2953 } else {
2954 memset(mc_hash, 0x00, sizeof(*mc_hash));
2955 netdev_for_each_mc_addr(ha, net_dev) {
2956 crc = ether_crc_le(ETH_ALEN, ha->addr);
2957 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2958 __set_bit_le(bit, mc_hash);
2959 }
2960
2961 /* Broadcast packets go through the multicast hash filter.
2962 * ether_crc_le() of the broadcast address is 0xbe2612ff
2963 * so we always add bit 0xff to the mask.
2964 */
2965 __set_bit_le(0xff, mc_hash);
2966 }
2967
2968 netif_addr_unlock_bh(net_dev);
2969 }
This page took 0.179207 seconds and 5 git commands to generate.