Merge remote-tracking branch 'kbuild/for-next'
[deliverable/linux.git] / drivers / net / ethernet / sfc / farch.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "sriov.h"
24 #include "siena_sriov.h"
25 #include "io.h"
26 #include "workarounds.h"
27
28 /* Falcon-architecture (SFC4000 and SFC9000-family) support */
29
30 /**************************************************************************
31 *
32 * Configurable values
33 *
34 **************************************************************************
35 */
36
37 /* This is set to 16 for a good reason. In summary, if larger than
38 * 16, the descriptor cache holds more than a default socket
39 * buffer's worth of packets (for UDP we can only have at most one
40 * socket buffer's worth outstanding). This combined with the fact
41 * that we only get 1 TX event per descriptor cache means the NIC
42 * goes idle.
43 */
44 #define TX_DC_ENTRIES 16
45 #define TX_DC_ENTRIES_ORDER 1
46
47 #define RX_DC_ENTRIES 64
48 #define RX_DC_ENTRIES_ORDER 3
49
50 /* If EFX_MAX_INT_ERRORS internal errors occur within
51 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
52 * disable it.
53 */
54 #define EFX_INT_ERROR_EXPIRE 3600
55 #define EFX_MAX_INT_ERRORS 5
56
57 /* Depth of RX flush request fifo */
58 #define EFX_RX_FLUSH_COUNT 4
59
60 /* Driver generated events */
61 #define _EFX_CHANNEL_MAGIC_TEST 0x000101
62 #define _EFX_CHANNEL_MAGIC_FILL 0x000102
63 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
64 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
65
66 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
67 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
68
69 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
71 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
72 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
73 efx_rx_queue_index(_rx_queue))
74 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
75 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
76 efx_rx_queue_index(_rx_queue))
77 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
78 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
79 (_tx_queue)->queue)
80
81 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
82
83 /**************************************************************************
84 *
85 * Hardware access
86 *
87 **************************************************************************/
88
89 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
90 unsigned int index)
91 {
92 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
93 value, index);
94 }
95
96 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
97 const efx_oword_t *mask)
98 {
99 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
100 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
101 }
102
103 int efx_farch_test_registers(struct efx_nic *efx,
104 const struct efx_farch_register_test *regs,
105 size_t n_regs)
106 {
107 unsigned address = 0;
108 int i, j;
109 efx_oword_t mask, imask, original, reg, buf;
110
111 for (i = 0; i < n_regs; ++i) {
112 address = regs[i].address;
113 mask = imask = regs[i].mask;
114 EFX_INVERT_OWORD(imask);
115
116 efx_reado(efx, &original, address);
117
118 /* bit sweep on and off */
119 for (j = 0; j < 128; j++) {
120 if (!EFX_EXTRACT_OWORD32(mask, j, j))
121 continue;
122
123 /* Test this testable bit can be set in isolation */
124 EFX_AND_OWORD(reg, original, mask);
125 EFX_SET_OWORD32(reg, j, j, 1);
126
127 efx_writeo(efx, &reg, address);
128 efx_reado(efx, &buf, address);
129
130 if (efx_masked_compare_oword(&reg, &buf, &mask))
131 goto fail;
132
133 /* Test this testable bit can be cleared in isolation */
134 EFX_OR_OWORD(reg, original, mask);
135 EFX_SET_OWORD32(reg, j, j, 0);
136
137 efx_writeo(efx, &reg, address);
138 efx_reado(efx, &buf, address);
139
140 if (efx_masked_compare_oword(&reg, &buf, &mask))
141 goto fail;
142 }
143
144 efx_writeo(efx, &original, address);
145 }
146
147 return 0;
148
149 fail:
150 netif_err(efx, hw, efx->net_dev,
151 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
152 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
153 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
154 return -EIO;
155 }
156
157 /**************************************************************************
158 *
159 * Special buffer handling
160 * Special buffers are used for event queues and the TX and RX
161 * descriptor rings.
162 *
163 *************************************************************************/
164
165 /*
166 * Initialise a special buffer
167 *
168 * This will define a buffer (previously allocated via
169 * efx_alloc_special_buffer()) in the buffer table, allowing
170 * it to be used for event queues, descriptor rings etc.
171 */
172 static void
173 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
174 {
175 efx_qword_t buf_desc;
176 unsigned int index;
177 dma_addr_t dma_addr;
178 int i;
179
180 EFX_BUG_ON_PARANOID(!buffer->buf.addr);
181
182 /* Write buffer descriptors to NIC */
183 for (i = 0; i < buffer->entries; i++) {
184 index = buffer->index + i;
185 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
186 netif_dbg(efx, probe, efx->net_dev,
187 "mapping special buffer %d at %llx\n",
188 index, (unsigned long long)dma_addr);
189 EFX_POPULATE_QWORD_3(buf_desc,
190 FRF_AZ_BUF_ADR_REGION, 0,
191 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
192 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
193 efx_write_buf_tbl(efx, &buf_desc, index);
194 }
195 }
196
197 /* Unmaps a buffer and clears the buffer table entries */
198 static void
199 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
200 {
201 efx_oword_t buf_tbl_upd;
202 unsigned int start = buffer->index;
203 unsigned int end = (buffer->index + buffer->entries - 1);
204
205 if (!buffer->entries)
206 return;
207
208 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
209 buffer->index, buffer->index + buffer->entries - 1);
210
211 EFX_POPULATE_OWORD_4(buf_tbl_upd,
212 FRF_AZ_BUF_UPD_CMD, 0,
213 FRF_AZ_BUF_CLR_CMD, 1,
214 FRF_AZ_BUF_CLR_END_ID, end,
215 FRF_AZ_BUF_CLR_START_ID, start);
216 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
217 }
218
219 /*
220 * Allocate a new special buffer
221 *
222 * This allocates memory for a new buffer, clears it and allocates a
223 * new buffer ID range. It does not write into the buffer table.
224 *
225 * This call will allocate 4KB buffers, since 8KB buffers can't be
226 * used for event queues and descriptor rings.
227 */
228 static int efx_alloc_special_buffer(struct efx_nic *efx,
229 struct efx_special_buffer *buffer,
230 unsigned int len)
231 {
232 #ifdef CONFIG_SFC_SRIOV
233 struct siena_nic_data *nic_data = efx->nic_data;
234 #endif
235 len = ALIGN(len, EFX_BUF_SIZE);
236
237 if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
238 return -ENOMEM;
239 buffer->entries = len / EFX_BUF_SIZE;
240 BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
241
242 /* Select new buffer ID */
243 buffer->index = efx->next_buffer_table;
244 efx->next_buffer_table += buffer->entries;
245 #ifdef CONFIG_SFC_SRIOV
246 BUG_ON(efx_siena_sriov_enabled(efx) &&
247 nic_data->vf_buftbl_base < efx->next_buffer_table);
248 #endif
249
250 netif_dbg(efx, probe, efx->net_dev,
251 "allocating special buffers %d-%d at %llx+%x "
252 "(virt %p phys %llx)\n", buffer->index,
253 buffer->index + buffer->entries - 1,
254 (u64)buffer->buf.dma_addr, len,
255 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
256
257 return 0;
258 }
259
260 static void
261 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
262 {
263 if (!buffer->buf.addr)
264 return;
265
266 netif_dbg(efx, hw, efx->net_dev,
267 "deallocating special buffers %d-%d at %llx+%x "
268 "(virt %p phys %llx)\n", buffer->index,
269 buffer->index + buffer->entries - 1,
270 (u64)buffer->buf.dma_addr, buffer->buf.len,
271 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
272
273 efx_nic_free_buffer(efx, &buffer->buf);
274 buffer->entries = 0;
275 }
276
277 /**************************************************************************
278 *
279 * TX path
280 *
281 **************************************************************************/
282
283 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
284 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
285 {
286 unsigned write_ptr;
287 efx_dword_t reg;
288
289 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
290 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
291 efx_writed_page(tx_queue->efx, &reg,
292 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
293 }
294
295 /* Write pointer and first descriptor for TX descriptor ring */
296 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
297 const efx_qword_t *txd)
298 {
299 unsigned write_ptr;
300 efx_oword_t reg;
301
302 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
303 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
304
305 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
306 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
307 FRF_AZ_TX_DESC_WPTR, write_ptr);
308 reg.qword[0] = *txd;
309 efx_writeo_page(tx_queue->efx, &reg,
310 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
311 }
312
313
314 /* For each entry inserted into the software descriptor ring, create a
315 * descriptor in the hardware TX descriptor ring (in host memory), and
316 * write a doorbell.
317 */
318 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
319 {
320 struct efx_tx_buffer *buffer;
321 efx_qword_t *txd;
322 unsigned write_ptr;
323 unsigned old_write_count = tx_queue->write_count;
324
325 tx_queue->xmit_more_available = false;
326 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
327 return;
328
329 do {
330 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
331 buffer = &tx_queue->buffer[write_ptr];
332 txd = efx_tx_desc(tx_queue, write_ptr);
333 ++tx_queue->write_count;
334
335 EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
336
337 /* Create TX descriptor ring entry */
338 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
339 EFX_POPULATE_QWORD_4(*txd,
340 FSF_AZ_TX_KER_CONT,
341 buffer->flags & EFX_TX_BUF_CONT,
342 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
343 FSF_AZ_TX_KER_BUF_REGION, 0,
344 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
345 } while (tx_queue->write_count != tx_queue->insert_count);
346
347 wmb(); /* Ensure descriptors are written before they are fetched */
348
349 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
350 txd = efx_tx_desc(tx_queue,
351 old_write_count & tx_queue->ptr_mask);
352 efx_farch_push_tx_desc(tx_queue, txd);
353 ++tx_queue->pushes;
354 } else {
355 efx_farch_notify_tx_desc(tx_queue);
356 }
357 }
358
359 /* Allocate hardware resources for a TX queue */
360 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
361 {
362 struct efx_nic *efx = tx_queue->efx;
363 unsigned entries;
364
365 entries = tx_queue->ptr_mask + 1;
366 return efx_alloc_special_buffer(efx, &tx_queue->txd,
367 entries * sizeof(efx_qword_t));
368 }
369
370 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
371 {
372 struct efx_nic *efx = tx_queue->efx;
373 efx_oword_t reg;
374
375 /* Pin TX descriptor ring */
376 efx_init_special_buffer(efx, &tx_queue->txd);
377
378 /* Push TX descriptor ring to card */
379 EFX_POPULATE_OWORD_10(reg,
380 FRF_AZ_TX_DESCQ_EN, 1,
381 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
382 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
383 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
384 FRF_AZ_TX_DESCQ_EVQ_ID,
385 tx_queue->channel->channel,
386 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
387 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
388 FRF_AZ_TX_DESCQ_SIZE,
389 __ffs(tx_queue->txd.entries),
390 FRF_AZ_TX_DESCQ_TYPE, 0,
391 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
392
393 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
394 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
395 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
396 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
397 !csum);
398 }
399
400 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
401 tx_queue->queue);
402
403 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
404 /* Only 128 bits in this register */
405 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
406
407 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
408 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
409 __clear_bit_le(tx_queue->queue, &reg);
410 else
411 __set_bit_le(tx_queue->queue, &reg);
412 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
413 }
414
415 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
416 EFX_POPULATE_OWORD_1(reg,
417 FRF_BZ_TX_PACE,
418 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
419 FFE_BZ_TX_PACE_OFF :
420 FFE_BZ_TX_PACE_RESERVED);
421 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
422 tx_queue->queue);
423 }
424 }
425
426 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
427 {
428 struct efx_nic *efx = tx_queue->efx;
429 efx_oword_t tx_flush_descq;
430
431 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
432 atomic_set(&tx_queue->flush_outstanding, 1);
433
434 EFX_POPULATE_OWORD_2(tx_flush_descq,
435 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
436 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
437 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
438 }
439
440 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
441 {
442 struct efx_nic *efx = tx_queue->efx;
443 efx_oword_t tx_desc_ptr;
444
445 /* Remove TX descriptor ring from card */
446 EFX_ZERO_OWORD(tx_desc_ptr);
447 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
448 tx_queue->queue);
449
450 /* Unpin TX descriptor ring */
451 efx_fini_special_buffer(efx, &tx_queue->txd);
452 }
453
454 /* Free buffers backing TX queue */
455 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
456 {
457 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
458 }
459
460 /**************************************************************************
461 *
462 * RX path
463 *
464 **************************************************************************/
465
466 /* This creates an entry in the RX descriptor queue */
467 static inline void
468 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
469 {
470 struct efx_rx_buffer *rx_buf;
471 efx_qword_t *rxd;
472
473 rxd = efx_rx_desc(rx_queue, index);
474 rx_buf = efx_rx_buffer(rx_queue, index);
475 EFX_POPULATE_QWORD_3(*rxd,
476 FSF_AZ_RX_KER_BUF_SIZE,
477 rx_buf->len -
478 rx_queue->efx->type->rx_buffer_padding,
479 FSF_AZ_RX_KER_BUF_REGION, 0,
480 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
481 }
482
483 /* This writes to the RX_DESC_WPTR register for the specified receive
484 * descriptor ring.
485 */
486 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
487 {
488 struct efx_nic *efx = rx_queue->efx;
489 efx_dword_t reg;
490 unsigned write_ptr;
491
492 while (rx_queue->notified_count != rx_queue->added_count) {
493 efx_farch_build_rx_desc(
494 rx_queue,
495 rx_queue->notified_count & rx_queue->ptr_mask);
496 ++rx_queue->notified_count;
497 }
498
499 wmb();
500 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
501 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
502 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
503 efx_rx_queue_index(rx_queue));
504 }
505
506 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
507 {
508 struct efx_nic *efx = rx_queue->efx;
509 unsigned entries;
510
511 entries = rx_queue->ptr_mask + 1;
512 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
513 entries * sizeof(efx_qword_t));
514 }
515
516 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
517 {
518 efx_oword_t rx_desc_ptr;
519 struct efx_nic *efx = rx_queue->efx;
520 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
521 bool iscsi_digest_en = is_b0;
522 bool jumbo_en;
523
524 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
525 * DMA to continue after a PCIe page boundary (and scattering
526 * is not possible). In Falcon B0 and Siena, it enables
527 * scatter.
528 */
529 jumbo_en = !is_b0 || efx->rx_scatter;
530
531 netif_dbg(efx, hw, efx->net_dev,
532 "RX queue %d ring in special buffers %d-%d\n",
533 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
534 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
535
536 rx_queue->scatter_n = 0;
537
538 /* Pin RX descriptor ring */
539 efx_init_special_buffer(efx, &rx_queue->rxd);
540
541 /* Push RX descriptor ring to card */
542 EFX_POPULATE_OWORD_10(rx_desc_ptr,
543 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
544 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
545 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
546 FRF_AZ_RX_DESCQ_EVQ_ID,
547 efx_rx_queue_channel(rx_queue)->channel,
548 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
549 FRF_AZ_RX_DESCQ_LABEL,
550 efx_rx_queue_index(rx_queue),
551 FRF_AZ_RX_DESCQ_SIZE,
552 __ffs(rx_queue->rxd.entries),
553 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
554 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
555 FRF_AZ_RX_DESCQ_EN, 1);
556 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
557 efx_rx_queue_index(rx_queue));
558 }
559
560 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
561 {
562 struct efx_nic *efx = rx_queue->efx;
563 efx_oword_t rx_flush_descq;
564
565 EFX_POPULATE_OWORD_2(rx_flush_descq,
566 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
567 FRF_AZ_RX_FLUSH_DESCQ,
568 efx_rx_queue_index(rx_queue));
569 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
570 }
571
572 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
573 {
574 efx_oword_t rx_desc_ptr;
575 struct efx_nic *efx = rx_queue->efx;
576
577 /* Remove RX descriptor ring from card */
578 EFX_ZERO_OWORD(rx_desc_ptr);
579 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
580 efx_rx_queue_index(rx_queue));
581
582 /* Unpin RX descriptor ring */
583 efx_fini_special_buffer(efx, &rx_queue->rxd);
584 }
585
586 /* Free buffers backing RX queue */
587 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
588 {
589 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
590 }
591
592 /**************************************************************************
593 *
594 * Flush handling
595 *
596 **************************************************************************/
597
598 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
599 * or more RX flushes can be kicked off.
600 */
601 static bool efx_farch_flush_wake(struct efx_nic *efx)
602 {
603 /* Ensure that all updates are visible to efx_farch_flush_queues() */
604 smp_mb();
605
606 return (atomic_read(&efx->active_queues) == 0 ||
607 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
608 && atomic_read(&efx->rxq_flush_pending) > 0));
609 }
610
611 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
612 {
613 bool i = true;
614 efx_oword_t txd_ptr_tbl;
615 struct efx_channel *channel;
616 struct efx_tx_queue *tx_queue;
617
618 efx_for_each_channel(channel, efx) {
619 efx_for_each_channel_tx_queue(tx_queue, channel) {
620 efx_reado_table(efx, &txd_ptr_tbl,
621 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
622 if (EFX_OWORD_FIELD(txd_ptr_tbl,
623 FRF_AZ_TX_DESCQ_FLUSH) ||
624 EFX_OWORD_FIELD(txd_ptr_tbl,
625 FRF_AZ_TX_DESCQ_EN)) {
626 netif_dbg(efx, hw, efx->net_dev,
627 "flush did not complete on TXQ %d\n",
628 tx_queue->queue);
629 i = false;
630 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
631 1, 0)) {
632 /* The flush is complete, but we didn't
633 * receive a flush completion event
634 */
635 netif_dbg(efx, hw, efx->net_dev,
636 "flush complete on TXQ %d, so drain "
637 "the queue\n", tx_queue->queue);
638 /* Don't need to increment active_queues as it
639 * has already been incremented for the queues
640 * which did not drain
641 */
642 efx_farch_magic_event(channel,
643 EFX_CHANNEL_MAGIC_TX_DRAIN(
644 tx_queue));
645 }
646 }
647 }
648
649 return i;
650 }
651
652 /* Flush all the transmit queues, and continue flushing receive queues until
653 * they're all flushed. Wait for the DRAIN events to be received so that there
654 * are no more RX and TX events left on any channel. */
655 static int efx_farch_do_flush(struct efx_nic *efx)
656 {
657 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
658 struct efx_channel *channel;
659 struct efx_rx_queue *rx_queue;
660 struct efx_tx_queue *tx_queue;
661 int rc = 0;
662
663 efx_for_each_channel(channel, efx) {
664 efx_for_each_channel_tx_queue(tx_queue, channel) {
665 efx_farch_flush_tx_queue(tx_queue);
666 }
667 efx_for_each_channel_rx_queue(rx_queue, channel) {
668 rx_queue->flush_pending = true;
669 atomic_inc(&efx->rxq_flush_pending);
670 }
671 }
672
673 while (timeout && atomic_read(&efx->active_queues) > 0) {
674 /* If SRIOV is enabled, then offload receive queue flushing to
675 * the firmware (though we will still have to poll for
676 * completion). If that fails, fall back to the old scheme.
677 */
678 if (efx_siena_sriov_enabled(efx)) {
679 rc = efx_mcdi_flush_rxqs(efx);
680 if (!rc)
681 goto wait;
682 }
683
684 /* The hardware supports four concurrent rx flushes, each of
685 * which may need to be retried if there is an outstanding
686 * descriptor fetch
687 */
688 efx_for_each_channel(channel, efx) {
689 efx_for_each_channel_rx_queue(rx_queue, channel) {
690 if (atomic_read(&efx->rxq_flush_outstanding) >=
691 EFX_RX_FLUSH_COUNT)
692 break;
693
694 if (rx_queue->flush_pending) {
695 rx_queue->flush_pending = false;
696 atomic_dec(&efx->rxq_flush_pending);
697 atomic_inc(&efx->rxq_flush_outstanding);
698 efx_farch_flush_rx_queue(rx_queue);
699 }
700 }
701 }
702
703 wait:
704 timeout = wait_event_timeout(efx->flush_wq,
705 efx_farch_flush_wake(efx),
706 timeout);
707 }
708
709 if (atomic_read(&efx->active_queues) &&
710 !efx_check_tx_flush_complete(efx)) {
711 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
712 "(rx %d+%d)\n", atomic_read(&efx->active_queues),
713 atomic_read(&efx->rxq_flush_outstanding),
714 atomic_read(&efx->rxq_flush_pending));
715 rc = -ETIMEDOUT;
716
717 atomic_set(&efx->active_queues, 0);
718 atomic_set(&efx->rxq_flush_pending, 0);
719 atomic_set(&efx->rxq_flush_outstanding, 0);
720 }
721
722 return rc;
723 }
724
725 int efx_farch_fini_dmaq(struct efx_nic *efx)
726 {
727 struct efx_channel *channel;
728 struct efx_tx_queue *tx_queue;
729 struct efx_rx_queue *rx_queue;
730 int rc = 0;
731
732 /* Do not attempt to write to the NIC during EEH recovery */
733 if (efx->state != STATE_RECOVERY) {
734 /* Only perform flush if DMA is enabled */
735 if (efx->pci_dev->is_busmaster) {
736 efx->type->prepare_flush(efx);
737 rc = efx_farch_do_flush(efx);
738 efx->type->finish_flush(efx);
739 }
740
741 efx_for_each_channel(channel, efx) {
742 efx_for_each_channel_rx_queue(rx_queue, channel)
743 efx_farch_rx_fini(rx_queue);
744 efx_for_each_channel_tx_queue(tx_queue, channel)
745 efx_farch_tx_fini(tx_queue);
746 }
747 }
748
749 return rc;
750 }
751
752 /* Reset queue and flush accounting after FLR
753 *
754 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
755 * mastering was disabled), in which case we don't receive (RXQ) flush
756 * completion events. This means that efx->rxq_flush_outstanding remained at 4
757 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
758 * events were received, and we didn't go through efx_check_tx_flush_complete())
759 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
760 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
761 * for batched flush requests; and the efx->active_queues gets messed up because
762 * we keep incrementing for the newly initialised queues, but it never went to
763 * zero previously. Then we get a timeout every time we try to restart the
764 * queues, as it doesn't go back to zero when we should be flushing the queues.
765 */
766 void efx_farch_finish_flr(struct efx_nic *efx)
767 {
768 atomic_set(&efx->rxq_flush_pending, 0);
769 atomic_set(&efx->rxq_flush_outstanding, 0);
770 atomic_set(&efx->active_queues, 0);
771 }
772
773
774 /**************************************************************************
775 *
776 * Event queue processing
777 * Event queues are processed by per-channel tasklets.
778 *
779 **************************************************************************/
780
781 /* Update a channel's event queue's read pointer (RPTR) register
782 *
783 * This writes the EVQ_RPTR_REG register for the specified channel's
784 * event queue.
785 */
786 void efx_farch_ev_read_ack(struct efx_channel *channel)
787 {
788 efx_dword_t reg;
789 struct efx_nic *efx = channel->efx;
790
791 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
792 channel->eventq_read_ptr & channel->eventq_mask);
793
794 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
795 * of 4 bytes, but it is really 16 bytes just like later revisions.
796 */
797 efx_writed(efx, &reg,
798 efx->type->evq_rptr_tbl_base +
799 FR_BZ_EVQ_RPTR_STEP * channel->channel);
800 }
801
802 /* Use HW to insert a SW defined event */
803 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
804 efx_qword_t *event)
805 {
806 efx_oword_t drv_ev_reg;
807
808 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
809 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
810 drv_ev_reg.u32[0] = event->u32[0];
811 drv_ev_reg.u32[1] = event->u32[1];
812 drv_ev_reg.u32[2] = 0;
813 drv_ev_reg.u32[3] = 0;
814 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
815 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
816 }
817
818 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
819 {
820 efx_qword_t event;
821
822 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
823 FSE_AZ_EV_CODE_DRV_GEN_EV,
824 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
825 efx_farch_generate_event(channel->efx, channel->channel, &event);
826 }
827
828 /* Handle a transmit completion event
829 *
830 * The NIC batches TX completion events; the message we receive is of
831 * the form "complete all TX events up to this index".
832 */
833 static int
834 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
835 {
836 unsigned int tx_ev_desc_ptr;
837 unsigned int tx_ev_q_label;
838 struct efx_tx_queue *tx_queue;
839 struct efx_nic *efx = channel->efx;
840 int tx_packets = 0;
841
842 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
843 return 0;
844
845 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
846 /* Transmit completion */
847 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
848 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
849 tx_queue = efx_channel_get_tx_queue(
850 channel, tx_ev_q_label % EFX_TXQ_TYPES);
851 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
852 tx_queue->ptr_mask);
853 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
854 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
855 /* Rewrite the FIFO write pointer */
856 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
857 tx_queue = efx_channel_get_tx_queue(
858 channel, tx_ev_q_label % EFX_TXQ_TYPES);
859
860 netif_tx_lock(efx->net_dev);
861 efx_farch_notify_tx_desc(tx_queue);
862 netif_tx_unlock(efx->net_dev);
863 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
864 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
865 } else {
866 netif_err(efx, tx_err, efx->net_dev,
867 "channel %d unexpected TX event "
868 EFX_QWORD_FMT"\n", channel->channel,
869 EFX_QWORD_VAL(*event));
870 }
871
872 return tx_packets;
873 }
874
875 /* Detect errors included in the rx_evt_pkt_ok bit. */
876 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
877 const efx_qword_t *event)
878 {
879 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
880 struct efx_nic *efx = rx_queue->efx;
881 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
882 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
883 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
884 bool rx_ev_other_err, rx_ev_pause_frm;
885 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
886 unsigned rx_ev_pkt_type;
887
888 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
889 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
890 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
891 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
892 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
893 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
894 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
895 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
896 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
897 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
898 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
899 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
900 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
901 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
902 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
903
904 /* Every error apart from tobe_disc and pause_frm */
905 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
906 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
907 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
908
909 /* Count errors that are not in MAC stats. Ignore expected
910 * checksum errors during self-test. */
911 if (rx_ev_frm_trunc)
912 ++channel->n_rx_frm_trunc;
913 else if (rx_ev_tobe_disc)
914 ++channel->n_rx_tobe_disc;
915 else if (!efx->loopback_selftest) {
916 if (rx_ev_ip_hdr_chksum_err)
917 ++channel->n_rx_ip_hdr_chksum_err;
918 else if (rx_ev_tcp_udp_chksum_err)
919 ++channel->n_rx_tcp_udp_chksum_err;
920 }
921
922 /* TOBE_DISC is expected on unicast mismatches; don't print out an
923 * error message. FRM_TRUNC indicates RXDP dropped the packet due
924 * to a FIFO overflow.
925 */
926 #ifdef DEBUG
927 if (rx_ev_other_err && net_ratelimit()) {
928 netif_dbg(efx, rx_err, efx->net_dev,
929 " RX queue %d unexpected RX event "
930 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
931 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
932 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
933 rx_ev_ip_hdr_chksum_err ?
934 " [IP_HDR_CHKSUM_ERR]" : "",
935 rx_ev_tcp_udp_chksum_err ?
936 " [TCP_UDP_CHKSUM_ERR]" : "",
937 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
938 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
939 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
940 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
941 rx_ev_pause_frm ? " [PAUSE]" : "");
942 }
943 #endif
944
945 /* The frame must be discarded if any of these are true. */
946 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
947 rx_ev_tobe_disc | rx_ev_pause_frm) ?
948 EFX_RX_PKT_DISCARD : 0;
949 }
950
951 /* Handle receive events that are not in-order. Return true if this
952 * can be handled as a partial packet discard, false if it's more
953 * serious.
954 */
955 static bool
956 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
957 {
958 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
959 struct efx_nic *efx = rx_queue->efx;
960 unsigned expected, dropped;
961
962 if (rx_queue->scatter_n &&
963 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
964 rx_queue->ptr_mask)) {
965 ++channel->n_rx_nodesc_trunc;
966 return true;
967 }
968
969 expected = rx_queue->removed_count & rx_queue->ptr_mask;
970 dropped = (index - expected) & rx_queue->ptr_mask;
971 netif_info(efx, rx_err, efx->net_dev,
972 "dropped %d events (index=%d expected=%d)\n",
973 dropped, index, expected);
974
975 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
976 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
977 return false;
978 }
979
980 /* Handle a packet received event
981 *
982 * The NIC gives a "discard" flag if it's a unicast packet with the
983 * wrong destination address
984 * Also "is multicast" and "matches multicast filter" flags can be used to
985 * discard non-matching multicast packets.
986 */
987 static void
988 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
989 {
990 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
991 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
992 unsigned expected_ptr;
993 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
994 u16 flags;
995 struct efx_rx_queue *rx_queue;
996 struct efx_nic *efx = channel->efx;
997
998 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
999 return;
1000
1001 rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
1002 rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1003 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1004 channel->channel);
1005
1006 rx_queue = efx_channel_get_rx_queue(channel);
1007
1008 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1009 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1010 rx_queue->ptr_mask);
1011
1012 /* Check for partial drops and other errors */
1013 if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1014 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1015 if (rx_ev_desc_ptr != expected_ptr &&
1016 !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1017 return;
1018
1019 /* Discard all pending fragments */
1020 if (rx_queue->scatter_n) {
1021 efx_rx_packet(
1022 rx_queue,
1023 rx_queue->removed_count & rx_queue->ptr_mask,
1024 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1025 rx_queue->removed_count += rx_queue->scatter_n;
1026 rx_queue->scatter_n = 0;
1027 }
1028
1029 /* Return if there is no new fragment */
1030 if (rx_ev_desc_ptr != expected_ptr)
1031 return;
1032
1033 /* Discard new fragment if not SOP */
1034 if (!rx_ev_sop) {
1035 efx_rx_packet(
1036 rx_queue,
1037 rx_queue->removed_count & rx_queue->ptr_mask,
1038 1, 0, EFX_RX_PKT_DISCARD);
1039 ++rx_queue->removed_count;
1040 return;
1041 }
1042 }
1043
1044 ++rx_queue->scatter_n;
1045 if (rx_ev_cont)
1046 return;
1047
1048 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1049 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1050 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1051
1052 if (likely(rx_ev_pkt_ok)) {
1053 /* If packet is marked as OK then we can rely on the
1054 * hardware checksum and classification.
1055 */
1056 flags = 0;
1057 switch (rx_ev_hdr_type) {
1058 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1059 flags |= EFX_RX_PKT_TCP;
1060 /* fall through */
1061 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1062 flags |= EFX_RX_PKT_CSUMMED;
1063 /* fall through */
1064 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1065 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1066 break;
1067 }
1068 } else {
1069 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1070 }
1071
1072 /* Detect multicast packets that didn't match the filter */
1073 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1074 if (rx_ev_mcast_pkt) {
1075 unsigned int rx_ev_mcast_hash_match =
1076 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1077
1078 if (unlikely(!rx_ev_mcast_hash_match)) {
1079 ++channel->n_rx_mcast_mismatch;
1080 flags |= EFX_RX_PKT_DISCARD;
1081 }
1082 }
1083
1084 channel->irq_mod_score += 2;
1085
1086 /* Handle received packet */
1087 efx_rx_packet(rx_queue,
1088 rx_queue->removed_count & rx_queue->ptr_mask,
1089 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1090 rx_queue->removed_count += rx_queue->scatter_n;
1091 rx_queue->scatter_n = 0;
1092 }
1093
1094 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1095 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1096 * of all transmit completions.
1097 */
1098 static void
1099 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1100 {
1101 struct efx_tx_queue *tx_queue;
1102 int qid;
1103
1104 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1105 if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1106 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1107 qid % EFX_TXQ_TYPES);
1108 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1109 efx_farch_magic_event(tx_queue->channel,
1110 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1111 }
1112 }
1113 }
1114
1115 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1116 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1117 * the RX queue back to the mask of RX queues in need of flushing.
1118 */
1119 static void
1120 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1121 {
1122 struct efx_channel *channel;
1123 struct efx_rx_queue *rx_queue;
1124 int qid;
1125 bool failed;
1126
1127 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1128 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1129 if (qid >= efx->n_channels)
1130 return;
1131 channel = efx_get_channel(efx, qid);
1132 if (!efx_channel_has_rx_queue(channel))
1133 return;
1134 rx_queue = efx_channel_get_rx_queue(channel);
1135
1136 if (failed) {
1137 netif_info(efx, hw, efx->net_dev,
1138 "RXQ %d flush retry\n", qid);
1139 rx_queue->flush_pending = true;
1140 atomic_inc(&efx->rxq_flush_pending);
1141 } else {
1142 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1143 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1144 }
1145 atomic_dec(&efx->rxq_flush_outstanding);
1146 if (efx_farch_flush_wake(efx))
1147 wake_up(&efx->flush_wq);
1148 }
1149
1150 static void
1151 efx_farch_handle_drain_event(struct efx_channel *channel)
1152 {
1153 struct efx_nic *efx = channel->efx;
1154
1155 WARN_ON(atomic_read(&efx->active_queues) == 0);
1156 atomic_dec(&efx->active_queues);
1157 if (efx_farch_flush_wake(efx))
1158 wake_up(&efx->flush_wq);
1159 }
1160
1161 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1162 efx_qword_t *event)
1163 {
1164 struct efx_nic *efx = channel->efx;
1165 struct efx_rx_queue *rx_queue =
1166 efx_channel_has_rx_queue(channel) ?
1167 efx_channel_get_rx_queue(channel) : NULL;
1168 unsigned magic, code;
1169
1170 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1171 code = _EFX_CHANNEL_MAGIC_CODE(magic);
1172
1173 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1174 channel->event_test_cpu = raw_smp_processor_id();
1175 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1176 /* The queue must be empty, so we won't receive any rx
1177 * events, so efx_process_channel() won't refill the
1178 * queue. Refill it here */
1179 efx_fast_push_rx_descriptors(rx_queue, true);
1180 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1181 efx_farch_handle_drain_event(channel);
1182 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1183 efx_farch_handle_drain_event(channel);
1184 } else {
1185 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1186 "generated event "EFX_QWORD_FMT"\n",
1187 channel->channel, EFX_QWORD_VAL(*event));
1188 }
1189 }
1190
1191 static void
1192 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1193 {
1194 struct efx_nic *efx = channel->efx;
1195 unsigned int ev_sub_code;
1196 unsigned int ev_sub_data;
1197
1198 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1199 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1200
1201 switch (ev_sub_code) {
1202 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1203 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1204 channel->channel, ev_sub_data);
1205 efx_farch_handle_tx_flush_done(efx, event);
1206 #ifdef CONFIG_SFC_SRIOV
1207 efx_siena_sriov_tx_flush_done(efx, event);
1208 #endif
1209 break;
1210 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1211 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1212 channel->channel, ev_sub_data);
1213 efx_farch_handle_rx_flush_done(efx, event);
1214 #ifdef CONFIG_SFC_SRIOV
1215 efx_siena_sriov_rx_flush_done(efx, event);
1216 #endif
1217 break;
1218 case FSE_AZ_EVQ_INIT_DONE_EV:
1219 netif_dbg(efx, hw, efx->net_dev,
1220 "channel %d EVQ %d initialised\n",
1221 channel->channel, ev_sub_data);
1222 break;
1223 case FSE_AZ_SRM_UPD_DONE_EV:
1224 netif_vdbg(efx, hw, efx->net_dev,
1225 "channel %d SRAM update done\n", channel->channel);
1226 break;
1227 case FSE_AZ_WAKE_UP_EV:
1228 netif_vdbg(efx, hw, efx->net_dev,
1229 "channel %d RXQ %d wakeup event\n",
1230 channel->channel, ev_sub_data);
1231 break;
1232 case FSE_AZ_TIMER_EV:
1233 netif_vdbg(efx, hw, efx->net_dev,
1234 "channel %d RX queue %d timer expired\n",
1235 channel->channel, ev_sub_data);
1236 break;
1237 case FSE_AA_RX_RECOVER_EV:
1238 netif_err(efx, rx_err, efx->net_dev,
1239 "channel %d seen DRIVER RX_RESET event. "
1240 "Resetting.\n", channel->channel);
1241 atomic_inc(&efx->rx_reset);
1242 efx_schedule_reset(efx,
1243 EFX_WORKAROUND_6555(efx) ?
1244 RESET_TYPE_RX_RECOVERY :
1245 RESET_TYPE_DISABLE);
1246 break;
1247 case FSE_BZ_RX_DSC_ERROR_EV:
1248 if (ev_sub_data < EFX_VI_BASE) {
1249 netif_err(efx, rx_err, efx->net_dev,
1250 "RX DMA Q %d reports descriptor fetch error."
1251 " RX Q %d is disabled.\n", ev_sub_data,
1252 ev_sub_data);
1253 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1254 }
1255 #ifdef CONFIG_SFC_SRIOV
1256 else
1257 efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1258 #endif
1259 break;
1260 case FSE_BZ_TX_DSC_ERROR_EV:
1261 if (ev_sub_data < EFX_VI_BASE) {
1262 netif_err(efx, tx_err, efx->net_dev,
1263 "TX DMA Q %d reports descriptor fetch error."
1264 " TX Q %d is disabled.\n", ev_sub_data,
1265 ev_sub_data);
1266 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1267 }
1268 #ifdef CONFIG_SFC_SRIOV
1269 else
1270 efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1271 #endif
1272 break;
1273 default:
1274 netif_vdbg(efx, hw, efx->net_dev,
1275 "channel %d unknown driver event code %d "
1276 "data %04x\n", channel->channel, ev_sub_code,
1277 ev_sub_data);
1278 break;
1279 }
1280 }
1281
1282 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1283 {
1284 struct efx_nic *efx = channel->efx;
1285 unsigned int read_ptr;
1286 efx_qword_t event, *p_event;
1287 int ev_code;
1288 int tx_packets = 0;
1289 int spent = 0;
1290
1291 if (budget <= 0)
1292 return spent;
1293
1294 read_ptr = channel->eventq_read_ptr;
1295
1296 for (;;) {
1297 p_event = efx_event(channel, read_ptr);
1298 event = *p_event;
1299
1300 if (!efx_event_present(&event))
1301 /* End of events */
1302 break;
1303
1304 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1305 "channel %d event is "EFX_QWORD_FMT"\n",
1306 channel->channel, EFX_QWORD_VAL(event));
1307
1308 /* Clear this event by marking it all ones */
1309 EFX_SET_QWORD(*p_event);
1310
1311 ++read_ptr;
1312
1313 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1314
1315 switch (ev_code) {
1316 case FSE_AZ_EV_CODE_RX_EV:
1317 efx_farch_handle_rx_event(channel, &event);
1318 if (++spent == budget)
1319 goto out;
1320 break;
1321 case FSE_AZ_EV_CODE_TX_EV:
1322 tx_packets += efx_farch_handle_tx_event(channel,
1323 &event);
1324 if (tx_packets > efx->txq_entries) {
1325 spent = budget;
1326 goto out;
1327 }
1328 break;
1329 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1330 efx_farch_handle_generated_event(channel, &event);
1331 break;
1332 case FSE_AZ_EV_CODE_DRIVER_EV:
1333 efx_farch_handle_driver_event(channel, &event);
1334 break;
1335 #ifdef CONFIG_SFC_SRIOV
1336 case FSE_CZ_EV_CODE_USER_EV:
1337 efx_siena_sriov_event(channel, &event);
1338 break;
1339 #endif
1340 case FSE_CZ_EV_CODE_MCDI_EV:
1341 efx_mcdi_process_event(channel, &event);
1342 break;
1343 case FSE_AZ_EV_CODE_GLOBAL_EV:
1344 if (efx->type->handle_global_event &&
1345 efx->type->handle_global_event(channel, &event))
1346 break;
1347 /* else fall through */
1348 default:
1349 netif_err(channel->efx, hw, channel->efx->net_dev,
1350 "channel %d unknown event type %d (data "
1351 EFX_QWORD_FMT ")\n", channel->channel,
1352 ev_code, EFX_QWORD_VAL(event));
1353 }
1354 }
1355
1356 out:
1357 channel->eventq_read_ptr = read_ptr;
1358 return spent;
1359 }
1360
1361 /* Allocate buffer table entries for event queue */
1362 int efx_farch_ev_probe(struct efx_channel *channel)
1363 {
1364 struct efx_nic *efx = channel->efx;
1365 unsigned entries;
1366
1367 entries = channel->eventq_mask + 1;
1368 return efx_alloc_special_buffer(efx, &channel->eventq,
1369 entries * sizeof(efx_qword_t));
1370 }
1371
1372 int efx_farch_ev_init(struct efx_channel *channel)
1373 {
1374 efx_oword_t reg;
1375 struct efx_nic *efx = channel->efx;
1376
1377 netif_dbg(efx, hw, efx->net_dev,
1378 "channel %d event queue in special buffers %d-%d\n",
1379 channel->channel, channel->eventq.index,
1380 channel->eventq.index + channel->eventq.entries - 1);
1381
1382 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1383 EFX_POPULATE_OWORD_3(reg,
1384 FRF_CZ_TIMER_Q_EN, 1,
1385 FRF_CZ_HOST_NOTIFY_MODE, 0,
1386 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1387 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1388 }
1389
1390 /* Pin event queue buffer */
1391 efx_init_special_buffer(efx, &channel->eventq);
1392
1393 /* Fill event queue with all ones (i.e. empty events) */
1394 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1395
1396 /* Push event queue to card */
1397 EFX_POPULATE_OWORD_3(reg,
1398 FRF_AZ_EVQ_EN, 1,
1399 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1400 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1401 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1402 channel->channel);
1403
1404 return 0;
1405 }
1406
1407 void efx_farch_ev_fini(struct efx_channel *channel)
1408 {
1409 efx_oword_t reg;
1410 struct efx_nic *efx = channel->efx;
1411
1412 /* Remove event queue from card */
1413 EFX_ZERO_OWORD(reg);
1414 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1415 channel->channel);
1416 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1417 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1418
1419 /* Unpin event queue */
1420 efx_fini_special_buffer(efx, &channel->eventq);
1421 }
1422
1423 /* Free buffers backing event queue */
1424 void efx_farch_ev_remove(struct efx_channel *channel)
1425 {
1426 efx_free_special_buffer(channel->efx, &channel->eventq);
1427 }
1428
1429
1430 void efx_farch_ev_test_generate(struct efx_channel *channel)
1431 {
1432 efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1433 }
1434
1435 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1436 {
1437 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1438 EFX_CHANNEL_MAGIC_FILL(rx_queue));
1439 }
1440
1441 /**************************************************************************
1442 *
1443 * Hardware interrupts
1444 * The hardware interrupt handler does very little work; all the event
1445 * queue processing is carried out by per-channel tasklets.
1446 *
1447 **************************************************************************/
1448
1449 /* Enable/disable/generate interrupts */
1450 static inline void efx_farch_interrupts(struct efx_nic *efx,
1451 bool enabled, bool force)
1452 {
1453 efx_oword_t int_en_reg_ker;
1454
1455 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1456 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1457 FRF_AZ_KER_INT_KER, force,
1458 FRF_AZ_DRV_INT_EN_KER, enabled);
1459 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1460 }
1461
1462 void efx_farch_irq_enable_master(struct efx_nic *efx)
1463 {
1464 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1465 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1466
1467 efx_farch_interrupts(efx, true, false);
1468 }
1469
1470 void efx_farch_irq_disable_master(struct efx_nic *efx)
1471 {
1472 /* Disable interrupts */
1473 efx_farch_interrupts(efx, false, false);
1474 }
1475
1476 /* Generate a test interrupt
1477 * Interrupt must already have been enabled, otherwise nasty things
1478 * may happen.
1479 */
1480 int efx_farch_irq_test_generate(struct efx_nic *efx)
1481 {
1482 efx_farch_interrupts(efx, true, true);
1483 return 0;
1484 }
1485
1486 /* Process a fatal interrupt
1487 * Disable bus mastering ASAP and schedule a reset
1488 */
1489 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1490 {
1491 struct falcon_nic_data *nic_data = efx->nic_data;
1492 efx_oword_t *int_ker = efx->irq_status.addr;
1493 efx_oword_t fatal_intr;
1494 int error, mem_perr;
1495
1496 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1497 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1498
1499 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1500 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1501 EFX_OWORD_VAL(fatal_intr),
1502 error ? "disabling bus mastering" : "no recognised error");
1503
1504 /* If this is a memory parity error dump which blocks are offending */
1505 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1506 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1507 if (mem_perr) {
1508 efx_oword_t reg;
1509 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1510 netif_err(efx, hw, efx->net_dev,
1511 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1512 EFX_OWORD_VAL(reg));
1513 }
1514
1515 /* Disable both devices */
1516 pci_clear_master(efx->pci_dev);
1517 if (efx_nic_is_dual_func(efx))
1518 pci_clear_master(nic_data->pci_dev2);
1519 efx_farch_irq_disable_master(efx);
1520
1521 /* Count errors and reset or disable the NIC accordingly */
1522 if (efx->int_error_count == 0 ||
1523 time_after(jiffies, efx->int_error_expire)) {
1524 efx->int_error_count = 0;
1525 efx->int_error_expire =
1526 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1527 }
1528 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1529 netif_err(efx, hw, efx->net_dev,
1530 "SYSTEM ERROR - reset scheduled\n");
1531 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1532 } else {
1533 netif_err(efx, hw, efx->net_dev,
1534 "SYSTEM ERROR - max number of errors seen."
1535 "NIC will be disabled\n");
1536 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1537 }
1538
1539 return IRQ_HANDLED;
1540 }
1541
1542 /* Handle a legacy interrupt
1543 * Acknowledges the interrupt and schedule event queue processing.
1544 */
1545 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1546 {
1547 struct efx_nic *efx = dev_id;
1548 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1549 efx_oword_t *int_ker = efx->irq_status.addr;
1550 irqreturn_t result = IRQ_NONE;
1551 struct efx_channel *channel;
1552 efx_dword_t reg;
1553 u32 queues;
1554 int syserr;
1555
1556 /* Read the ISR which also ACKs the interrupts */
1557 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1558 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1559
1560 /* Legacy interrupts are disabled too late by the EEH kernel
1561 * code. Disable them earlier.
1562 * If an EEH error occurred, the read will have returned all ones.
1563 */
1564 if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1565 !efx->eeh_disabled_legacy_irq) {
1566 disable_irq_nosync(efx->legacy_irq);
1567 efx->eeh_disabled_legacy_irq = true;
1568 }
1569
1570 /* Handle non-event-queue sources */
1571 if (queues & (1U << efx->irq_level) && soft_enabled) {
1572 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1573 if (unlikely(syserr))
1574 return efx_farch_fatal_interrupt(efx);
1575 efx->last_irq_cpu = raw_smp_processor_id();
1576 }
1577
1578 if (queues != 0) {
1579 efx->irq_zero_count = 0;
1580
1581 /* Schedule processing of any interrupting queues */
1582 if (likely(soft_enabled)) {
1583 efx_for_each_channel(channel, efx) {
1584 if (queues & 1)
1585 efx_schedule_channel_irq(channel);
1586 queues >>= 1;
1587 }
1588 }
1589 result = IRQ_HANDLED;
1590
1591 } else {
1592 efx_qword_t *event;
1593
1594 /* Legacy ISR read can return zero once (SF bug 15783) */
1595
1596 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1597 * because this might be a shared interrupt. */
1598 if (efx->irq_zero_count++ == 0)
1599 result = IRQ_HANDLED;
1600
1601 /* Ensure we schedule or rearm all event queues */
1602 if (likely(soft_enabled)) {
1603 efx_for_each_channel(channel, efx) {
1604 event = efx_event(channel,
1605 channel->eventq_read_ptr);
1606 if (efx_event_present(event))
1607 efx_schedule_channel_irq(channel);
1608 else
1609 efx_farch_ev_read_ack(channel);
1610 }
1611 }
1612 }
1613
1614 if (result == IRQ_HANDLED)
1615 netif_vdbg(efx, intr, efx->net_dev,
1616 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1617 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1618
1619 return result;
1620 }
1621
1622 /* Handle an MSI interrupt
1623 *
1624 * Handle an MSI hardware interrupt. This routine schedules event
1625 * queue processing. No interrupt acknowledgement cycle is necessary.
1626 * Also, we never need to check that the interrupt is for us, since
1627 * MSI interrupts cannot be shared.
1628 */
1629 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1630 {
1631 struct efx_msi_context *context = dev_id;
1632 struct efx_nic *efx = context->efx;
1633 efx_oword_t *int_ker = efx->irq_status.addr;
1634 int syserr;
1635
1636 netif_vdbg(efx, intr, efx->net_dev,
1637 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1638 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1639
1640 if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1641 return IRQ_HANDLED;
1642
1643 /* Handle non-event-queue sources */
1644 if (context->index == efx->irq_level) {
1645 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1646 if (unlikely(syserr))
1647 return efx_farch_fatal_interrupt(efx);
1648 efx->last_irq_cpu = raw_smp_processor_id();
1649 }
1650
1651 /* Schedule processing of the channel */
1652 efx_schedule_channel_irq(efx->channel[context->index]);
1653
1654 return IRQ_HANDLED;
1655 }
1656
1657 /* Setup RSS indirection table.
1658 * This maps from the hash value of the packet to RXQ
1659 */
1660 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1661 {
1662 size_t i = 0;
1663 efx_dword_t dword;
1664
1665 BUG_ON(efx_nic_rev(efx) < EFX_REV_FALCON_B0);
1666
1667 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1668 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1669
1670 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1671 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1672 efx->rx_indir_table[i]);
1673 efx_writed(efx, &dword,
1674 FR_BZ_RX_INDIRECTION_TBL +
1675 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1676 }
1677 }
1678
1679 /* Looks at available SRAM resources and works out how many queues we
1680 * can support, and where things like descriptor caches should live.
1681 *
1682 * SRAM is split up as follows:
1683 * 0 buftbl entries for channels
1684 * efx->vf_buftbl_base buftbl entries for SR-IOV
1685 * efx->rx_dc_base RX descriptor caches
1686 * efx->tx_dc_base TX descriptor caches
1687 */
1688 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1689 {
1690 unsigned vi_count, buftbl_min;
1691
1692 #ifdef CONFIG_SFC_SRIOV
1693 struct siena_nic_data *nic_data = efx->nic_data;
1694 #endif
1695
1696 /* Account for the buffer table entries backing the datapath channels
1697 * and the descriptor caches for those channels.
1698 */
1699 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1700 efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1701 efx->n_channels * EFX_MAX_EVQ_SIZE)
1702 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1703 vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1704
1705 #ifdef CONFIG_SFC_SRIOV
1706 if (efx->type->sriov_wanted) {
1707 if (efx->type->sriov_wanted(efx)) {
1708 unsigned vi_dc_entries, buftbl_free;
1709 unsigned entries_per_vf, vf_limit;
1710
1711 nic_data->vf_buftbl_base = buftbl_min;
1712
1713 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1714 vi_count = max(vi_count, EFX_VI_BASE);
1715 buftbl_free = (sram_lim_qw - buftbl_min -
1716 vi_count * vi_dc_entries);
1717
1718 entries_per_vf = ((vi_dc_entries +
1719 EFX_VF_BUFTBL_PER_VI) *
1720 efx_vf_size(efx));
1721 vf_limit = min(buftbl_free / entries_per_vf,
1722 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1723
1724 if (efx->vf_count > vf_limit) {
1725 netif_err(efx, probe, efx->net_dev,
1726 "Reducing VF count from from %d to %d\n",
1727 efx->vf_count, vf_limit);
1728 efx->vf_count = vf_limit;
1729 }
1730 vi_count += efx->vf_count * efx_vf_size(efx);
1731 }
1732 }
1733 #endif
1734
1735 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1736 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1737 }
1738
1739 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1740 {
1741 efx_oword_t altera_build;
1742 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1743 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1744 }
1745
1746 void efx_farch_init_common(struct efx_nic *efx)
1747 {
1748 efx_oword_t temp;
1749
1750 /* Set positions of descriptor caches in SRAM. */
1751 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1752 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1753 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1754 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1755
1756 /* Set TX descriptor cache size. */
1757 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1758 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1759 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1760
1761 /* Set RX descriptor cache size. Set low watermark to size-8, as
1762 * this allows most efficient prefetching.
1763 */
1764 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1765 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1766 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1767 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1768 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1769
1770 /* Program INT_KER address */
1771 EFX_POPULATE_OWORD_2(temp,
1772 FRF_AZ_NORM_INT_VEC_DIS_KER,
1773 EFX_INT_MODE_USE_MSI(efx),
1774 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1775 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1776
1777 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1778 /* Use an interrupt level unused by event queues */
1779 efx->irq_level = 0x1f;
1780 else
1781 /* Use a valid MSI-X vector */
1782 efx->irq_level = 0;
1783
1784 /* Enable all the genuinely fatal interrupts. (They are still
1785 * masked by the overall interrupt mask, controlled by
1786 * falcon_interrupts()).
1787 *
1788 * Note: All other fatal interrupts are enabled
1789 */
1790 EFX_POPULATE_OWORD_3(temp,
1791 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1792 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1793 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1794 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1795 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1796 EFX_INVERT_OWORD(temp);
1797 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1798
1799 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1800 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1801 */
1802 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1803 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1804 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1805 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1806 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1807 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1808 /* Enable SW_EV to inherit in char driver - assume harmless here */
1809 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1810 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1811 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1812 /* Disable hardware watchdog which can misfire */
1813 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1814 /* Squash TX of packets of 16 bytes or less */
1815 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1816 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1817 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1818
1819 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1820 EFX_POPULATE_OWORD_4(temp,
1821 /* Default values */
1822 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1823 FRF_BZ_TX_PACE_SB_AF, 0xb,
1824 FRF_BZ_TX_PACE_FB_BASE, 0,
1825 /* Allow large pace values in the
1826 * fast bin. */
1827 FRF_BZ_TX_PACE_BIN_TH,
1828 FFE_BZ_TX_PACE_RESERVED);
1829 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1830 }
1831 }
1832
1833 /**************************************************************************
1834 *
1835 * Filter tables
1836 *
1837 **************************************************************************
1838 */
1839
1840 /* "Fudge factors" - difference between programmed value and actual depth.
1841 * Due to pipelined implementation we need to program H/W with a value that
1842 * is larger than the hop limit we want.
1843 */
1844 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1845 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1846
1847 /* Hard maximum search limit. Hardware will time-out beyond 200-something.
1848 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1849 * table is full.
1850 */
1851 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1852
1853 /* Don't try very hard to find space for performance hints, as this is
1854 * counter-productive. */
1855 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1856
1857 enum efx_farch_filter_type {
1858 EFX_FARCH_FILTER_TCP_FULL = 0,
1859 EFX_FARCH_FILTER_TCP_WILD,
1860 EFX_FARCH_FILTER_UDP_FULL,
1861 EFX_FARCH_FILTER_UDP_WILD,
1862 EFX_FARCH_FILTER_MAC_FULL = 4,
1863 EFX_FARCH_FILTER_MAC_WILD,
1864 EFX_FARCH_FILTER_UC_DEF = 8,
1865 EFX_FARCH_FILTER_MC_DEF,
1866 EFX_FARCH_FILTER_TYPE_COUNT, /* number of specific types */
1867 };
1868
1869 enum efx_farch_filter_table_id {
1870 EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1871 EFX_FARCH_FILTER_TABLE_RX_MAC,
1872 EFX_FARCH_FILTER_TABLE_RX_DEF,
1873 EFX_FARCH_FILTER_TABLE_TX_MAC,
1874 EFX_FARCH_FILTER_TABLE_COUNT,
1875 };
1876
1877 enum efx_farch_filter_index {
1878 EFX_FARCH_FILTER_INDEX_UC_DEF,
1879 EFX_FARCH_FILTER_INDEX_MC_DEF,
1880 EFX_FARCH_FILTER_SIZE_RX_DEF,
1881 };
1882
1883 struct efx_farch_filter_spec {
1884 u8 type:4;
1885 u8 priority:4;
1886 u8 flags;
1887 u16 dmaq_id;
1888 u32 data[3];
1889 };
1890
1891 struct efx_farch_filter_table {
1892 enum efx_farch_filter_table_id id;
1893 u32 offset; /* address of table relative to BAR */
1894 unsigned size; /* number of entries */
1895 unsigned step; /* step between entries */
1896 unsigned used; /* number currently used */
1897 unsigned long *used_bitmap;
1898 struct efx_farch_filter_spec *spec;
1899 unsigned search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1900 };
1901
1902 struct efx_farch_filter_state {
1903 struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1904 };
1905
1906 static void
1907 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1908 struct efx_farch_filter_table *table,
1909 unsigned int filter_idx);
1910
1911 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1912 * key derived from the n-tuple. The initial LFSR state is 0xffff. */
1913 static u16 efx_farch_filter_hash(u32 key)
1914 {
1915 u16 tmp;
1916
1917 /* First 16 rounds */
1918 tmp = 0x1fff ^ key >> 16;
1919 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1920 tmp = tmp ^ tmp >> 9;
1921 /* Last 16 rounds */
1922 tmp = tmp ^ tmp << 13 ^ key;
1923 tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1924 return tmp ^ tmp >> 9;
1925 }
1926
1927 /* To allow for hash collisions, filter search continues at these
1928 * increments from the first possible entry selected by the hash. */
1929 static u16 efx_farch_filter_increment(u32 key)
1930 {
1931 return key * 2 - 1;
1932 }
1933
1934 static enum efx_farch_filter_table_id
1935 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1936 {
1937 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1938 (EFX_FARCH_FILTER_TCP_FULL >> 2));
1939 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1940 (EFX_FARCH_FILTER_TCP_WILD >> 2));
1941 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1942 (EFX_FARCH_FILTER_UDP_FULL >> 2));
1943 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1944 (EFX_FARCH_FILTER_UDP_WILD >> 2));
1945 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1946 (EFX_FARCH_FILTER_MAC_FULL >> 2));
1947 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1948 (EFX_FARCH_FILTER_MAC_WILD >> 2));
1949 BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1950 EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1951 return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1952 }
1953
1954 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1955 {
1956 struct efx_farch_filter_state *state = efx->filter_state;
1957 struct efx_farch_filter_table *table;
1958 efx_oword_t filter_ctl;
1959
1960 efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1961
1962 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1963 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1964 table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1965 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1966 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1967 table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1968 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1969 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1970 table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1971 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1972 EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1973 table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1974 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1975
1976 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1977 if (table->size) {
1978 EFX_SET_OWORD_FIELD(
1979 filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1980 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1981 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1982 EFX_SET_OWORD_FIELD(
1983 filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1984 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1985 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1986 }
1987
1988 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1989 if (table->size) {
1990 EFX_SET_OWORD_FIELD(
1991 filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1992 table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1993 EFX_SET_OWORD_FIELD(
1994 filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1995 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1996 EFX_FILTER_FLAG_RX_RSS));
1997 EFX_SET_OWORD_FIELD(
1998 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1999 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
2000 EFX_SET_OWORD_FIELD(
2001 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
2002 !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
2003 EFX_FILTER_FLAG_RX_RSS));
2004
2005 /* There is a single bit to enable RX scatter for all
2006 * unmatched packets. Only set it if scatter is
2007 * enabled in both filter specs.
2008 */
2009 EFX_SET_OWORD_FIELD(
2010 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2011 !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
2012 table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
2013 EFX_FILTER_FLAG_RX_SCATTER));
2014 } else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2015 /* We don't expose 'default' filters because unmatched
2016 * packets always go to the queue number found in the
2017 * RSS table. But we still need to set the RX scatter
2018 * bit here.
2019 */
2020 EFX_SET_OWORD_FIELD(
2021 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2022 efx->rx_scatter);
2023 }
2024
2025 efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2026 }
2027
2028 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2029 {
2030 struct efx_farch_filter_state *state = efx->filter_state;
2031 struct efx_farch_filter_table *table;
2032 efx_oword_t tx_cfg;
2033
2034 efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2035
2036 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2037 if (table->size) {
2038 EFX_SET_OWORD_FIELD(
2039 tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2040 table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2041 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2042 EFX_SET_OWORD_FIELD(
2043 tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2044 table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2045 EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2046 }
2047
2048 efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2049 }
2050
2051 static int
2052 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2053 const struct efx_filter_spec *gen_spec)
2054 {
2055 bool is_full = false;
2056
2057 if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2058 gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2059 return -EINVAL;
2060
2061 spec->priority = gen_spec->priority;
2062 spec->flags = gen_spec->flags;
2063 spec->dmaq_id = gen_spec->dmaq_id;
2064
2065 switch (gen_spec->match_flags) {
2066 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2067 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2068 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2069 is_full = true;
2070 /* fall through */
2071 case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2072 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2073 __be32 rhost, host1, host2;
2074 __be16 rport, port1, port2;
2075
2076 EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2077
2078 if (gen_spec->ether_type != htons(ETH_P_IP))
2079 return -EPROTONOSUPPORT;
2080 if (gen_spec->loc_port == 0 ||
2081 (is_full && gen_spec->rem_port == 0))
2082 return -EADDRNOTAVAIL;
2083 switch (gen_spec->ip_proto) {
2084 case IPPROTO_TCP:
2085 spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2086 EFX_FARCH_FILTER_TCP_WILD);
2087 break;
2088 case IPPROTO_UDP:
2089 spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2090 EFX_FARCH_FILTER_UDP_WILD);
2091 break;
2092 default:
2093 return -EPROTONOSUPPORT;
2094 }
2095
2096 /* Filter is constructed in terms of source and destination,
2097 * with the odd wrinkle that the ports are swapped in a UDP
2098 * wildcard filter. We need to convert from local and remote
2099 * (= zero for wildcard) addresses.
2100 */
2101 rhost = is_full ? gen_spec->rem_host[0] : 0;
2102 rport = is_full ? gen_spec->rem_port : 0;
2103 host1 = rhost;
2104 host2 = gen_spec->loc_host[0];
2105 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2106 port1 = gen_spec->loc_port;
2107 port2 = rport;
2108 } else {
2109 port1 = rport;
2110 port2 = gen_spec->loc_port;
2111 }
2112 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2113 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2114 spec->data[2] = ntohl(host2);
2115
2116 break;
2117 }
2118
2119 case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2120 is_full = true;
2121 /* fall through */
2122 case EFX_FILTER_MATCH_LOC_MAC:
2123 spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2124 EFX_FARCH_FILTER_MAC_WILD);
2125 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2126 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2127 gen_spec->loc_mac[3] << 16 |
2128 gen_spec->loc_mac[4] << 8 |
2129 gen_spec->loc_mac[5]);
2130 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2131 gen_spec->loc_mac[1]);
2132 break;
2133
2134 case EFX_FILTER_MATCH_LOC_MAC_IG:
2135 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2136 EFX_FARCH_FILTER_MC_DEF :
2137 EFX_FARCH_FILTER_UC_DEF);
2138 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2139 break;
2140
2141 default:
2142 return -EPROTONOSUPPORT;
2143 }
2144
2145 return 0;
2146 }
2147
2148 static void
2149 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2150 const struct efx_farch_filter_spec *spec)
2151 {
2152 bool is_full = false;
2153
2154 /* *gen_spec should be completely initialised, to be consistent
2155 * with efx_filter_init_{rx,tx}() and in case we want to copy
2156 * it back to userland.
2157 */
2158 memset(gen_spec, 0, sizeof(*gen_spec));
2159
2160 gen_spec->priority = spec->priority;
2161 gen_spec->flags = spec->flags;
2162 gen_spec->dmaq_id = spec->dmaq_id;
2163
2164 switch (spec->type) {
2165 case EFX_FARCH_FILTER_TCP_FULL:
2166 case EFX_FARCH_FILTER_UDP_FULL:
2167 is_full = true;
2168 /* fall through */
2169 case EFX_FARCH_FILTER_TCP_WILD:
2170 case EFX_FARCH_FILTER_UDP_WILD: {
2171 __be32 host1, host2;
2172 __be16 port1, port2;
2173
2174 gen_spec->match_flags =
2175 EFX_FILTER_MATCH_ETHER_TYPE |
2176 EFX_FILTER_MATCH_IP_PROTO |
2177 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2178 if (is_full)
2179 gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2180 EFX_FILTER_MATCH_REM_PORT);
2181 gen_spec->ether_type = htons(ETH_P_IP);
2182 gen_spec->ip_proto =
2183 (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2184 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2185 IPPROTO_TCP : IPPROTO_UDP;
2186
2187 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2188 port1 = htons(spec->data[0]);
2189 host2 = htonl(spec->data[2]);
2190 port2 = htons(spec->data[1] >> 16);
2191 if (spec->flags & EFX_FILTER_FLAG_TX) {
2192 gen_spec->loc_host[0] = host1;
2193 gen_spec->rem_host[0] = host2;
2194 } else {
2195 gen_spec->loc_host[0] = host2;
2196 gen_spec->rem_host[0] = host1;
2197 }
2198 if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2199 (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2200 gen_spec->loc_port = port1;
2201 gen_spec->rem_port = port2;
2202 } else {
2203 gen_spec->loc_port = port2;
2204 gen_spec->rem_port = port1;
2205 }
2206
2207 break;
2208 }
2209
2210 case EFX_FARCH_FILTER_MAC_FULL:
2211 is_full = true;
2212 /* fall through */
2213 case EFX_FARCH_FILTER_MAC_WILD:
2214 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2215 if (is_full)
2216 gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2217 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2218 gen_spec->loc_mac[1] = spec->data[2];
2219 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2220 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2221 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2222 gen_spec->loc_mac[5] = spec->data[1];
2223 gen_spec->outer_vid = htons(spec->data[0]);
2224 break;
2225
2226 case EFX_FARCH_FILTER_UC_DEF:
2227 case EFX_FARCH_FILTER_MC_DEF:
2228 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2229 gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2230 break;
2231
2232 default:
2233 WARN_ON(1);
2234 break;
2235 }
2236 }
2237
2238 static void
2239 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2240 struct efx_farch_filter_spec *spec)
2241 {
2242 /* If there's only one channel then disable RSS for non VF
2243 * traffic, thereby allowing VFs to use RSS when the PF can't.
2244 */
2245 spec->priority = EFX_FILTER_PRI_AUTO;
2246 spec->flags = (EFX_FILTER_FLAG_RX |
2247 (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2248 (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2249 spec->dmaq_id = 0;
2250 }
2251
2252 /* Build a filter entry and return its n-tuple key. */
2253 static u32 efx_farch_filter_build(efx_oword_t *filter,
2254 struct efx_farch_filter_spec *spec)
2255 {
2256 u32 data3;
2257
2258 switch (efx_farch_filter_spec_table_id(spec)) {
2259 case EFX_FARCH_FILTER_TABLE_RX_IP: {
2260 bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2261 spec->type == EFX_FARCH_FILTER_UDP_WILD);
2262 EFX_POPULATE_OWORD_7(
2263 *filter,
2264 FRF_BZ_RSS_EN,
2265 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2266 FRF_BZ_SCATTER_EN,
2267 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2268 FRF_BZ_TCP_UDP, is_udp,
2269 FRF_BZ_RXQ_ID, spec->dmaq_id,
2270 EFX_DWORD_2, spec->data[2],
2271 EFX_DWORD_1, spec->data[1],
2272 EFX_DWORD_0, spec->data[0]);
2273 data3 = is_udp;
2274 break;
2275 }
2276
2277 case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2278 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2279 EFX_POPULATE_OWORD_7(
2280 *filter,
2281 FRF_CZ_RMFT_RSS_EN,
2282 !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2283 FRF_CZ_RMFT_SCATTER_EN,
2284 !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2285 FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2286 FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2287 FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2288 FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2289 FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2290 data3 = is_wild;
2291 break;
2292 }
2293
2294 case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2295 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2296 EFX_POPULATE_OWORD_5(*filter,
2297 FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2298 FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2299 FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2300 FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2301 FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2302 data3 = is_wild | spec->dmaq_id << 1;
2303 break;
2304 }
2305
2306 default:
2307 BUG();
2308 }
2309
2310 return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2311 }
2312
2313 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2314 const struct efx_farch_filter_spec *right)
2315 {
2316 if (left->type != right->type ||
2317 memcmp(left->data, right->data, sizeof(left->data)))
2318 return false;
2319
2320 if (left->flags & EFX_FILTER_FLAG_TX &&
2321 left->dmaq_id != right->dmaq_id)
2322 return false;
2323
2324 return true;
2325 }
2326
2327 /*
2328 * Construct/deconstruct external filter IDs. At least the RX filter
2329 * IDs must be ordered by matching priority, for RX NFC semantics.
2330 *
2331 * Deconstruction needs to be robust against invalid IDs so that
2332 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2333 * accept user-provided IDs.
2334 */
2335
2336 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT 5
2337
2338 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2339 [EFX_FARCH_FILTER_TCP_FULL] = 0,
2340 [EFX_FARCH_FILTER_UDP_FULL] = 0,
2341 [EFX_FARCH_FILTER_TCP_WILD] = 1,
2342 [EFX_FARCH_FILTER_UDP_WILD] = 1,
2343 [EFX_FARCH_FILTER_MAC_FULL] = 2,
2344 [EFX_FARCH_FILTER_MAC_WILD] = 3,
2345 [EFX_FARCH_FILTER_UC_DEF] = 4,
2346 [EFX_FARCH_FILTER_MC_DEF] = 4,
2347 };
2348
2349 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2350 EFX_FARCH_FILTER_TABLE_RX_IP, /* RX match pri 0 */
2351 EFX_FARCH_FILTER_TABLE_RX_IP,
2352 EFX_FARCH_FILTER_TABLE_RX_MAC,
2353 EFX_FARCH_FILTER_TABLE_RX_MAC,
2354 EFX_FARCH_FILTER_TABLE_RX_DEF, /* RX match pri 4 */
2355 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 0 */
2356 EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 1 */
2357 };
2358
2359 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2360 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2361
2362 static inline u32
2363 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2364 unsigned int index)
2365 {
2366 unsigned int range;
2367
2368 range = efx_farch_filter_type_match_pri[spec->type];
2369 if (!(spec->flags & EFX_FILTER_FLAG_RX))
2370 range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2371
2372 return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2373 }
2374
2375 static inline enum efx_farch_filter_table_id
2376 efx_farch_filter_id_table_id(u32 id)
2377 {
2378 unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2379
2380 if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2381 return efx_farch_filter_range_table[range];
2382 else
2383 return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2384 }
2385
2386 static inline unsigned int efx_farch_filter_id_index(u32 id)
2387 {
2388 return id & EFX_FARCH_FILTER_INDEX_MASK;
2389 }
2390
2391 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2392 {
2393 struct efx_farch_filter_state *state = efx->filter_state;
2394 unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2395 enum efx_farch_filter_table_id table_id;
2396
2397 do {
2398 table_id = efx_farch_filter_range_table[range];
2399 if (state->table[table_id].size != 0)
2400 return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2401 state->table[table_id].size;
2402 } while (range--);
2403
2404 return 0;
2405 }
2406
2407 s32 efx_farch_filter_insert(struct efx_nic *efx,
2408 struct efx_filter_spec *gen_spec,
2409 bool replace_equal)
2410 {
2411 struct efx_farch_filter_state *state = efx->filter_state;
2412 struct efx_farch_filter_table *table;
2413 struct efx_farch_filter_spec spec;
2414 efx_oword_t filter;
2415 int rep_index, ins_index;
2416 unsigned int depth = 0;
2417 int rc;
2418
2419 rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2420 if (rc)
2421 return rc;
2422
2423 table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2424 if (table->size == 0)
2425 return -EINVAL;
2426
2427 netif_vdbg(efx, hw, efx->net_dev,
2428 "%s: type %d search_limit=%d", __func__, spec.type,
2429 table->search_limit[spec.type]);
2430
2431 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2432 /* One filter spec per type */
2433 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2434 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2435 EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2436 rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2437 ins_index = rep_index;
2438
2439 spin_lock_bh(&efx->filter_lock);
2440 } else {
2441 /* Search concurrently for
2442 * (1) a filter to be replaced (rep_index): any filter
2443 * with the same match values, up to the current
2444 * search depth for this type, and
2445 * (2) the insertion point (ins_index): (1) or any
2446 * free slot before it or up to the maximum search
2447 * depth for this priority
2448 * We fail if we cannot find (2).
2449 *
2450 * We can stop once either
2451 * (a) we find (1), in which case we have definitely
2452 * found (2) as well; or
2453 * (b) we have searched exhaustively for (1), and have
2454 * either found (2) or searched exhaustively for it
2455 */
2456 u32 key = efx_farch_filter_build(&filter, &spec);
2457 unsigned int hash = efx_farch_filter_hash(key);
2458 unsigned int incr = efx_farch_filter_increment(key);
2459 unsigned int max_rep_depth = table->search_limit[spec.type];
2460 unsigned int max_ins_depth =
2461 spec.priority <= EFX_FILTER_PRI_HINT ?
2462 EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2463 EFX_FARCH_FILTER_CTL_SRCH_MAX;
2464 unsigned int i = hash & (table->size - 1);
2465
2466 ins_index = -1;
2467 depth = 1;
2468
2469 spin_lock_bh(&efx->filter_lock);
2470
2471 for (;;) {
2472 if (!test_bit(i, table->used_bitmap)) {
2473 if (ins_index < 0)
2474 ins_index = i;
2475 } else if (efx_farch_filter_equal(&spec,
2476 &table->spec[i])) {
2477 /* Case (a) */
2478 if (ins_index < 0)
2479 ins_index = i;
2480 rep_index = i;
2481 break;
2482 }
2483
2484 if (depth >= max_rep_depth &&
2485 (ins_index >= 0 || depth >= max_ins_depth)) {
2486 /* Case (b) */
2487 if (ins_index < 0) {
2488 rc = -EBUSY;
2489 goto out;
2490 }
2491 rep_index = -1;
2492 break;
2493 }
2494
2495 i = (i + incr) & (table->size - 1);
2496 ++depth;
2497 }
2498 }
2499
2500 /* If we found a filter to be replaced, check whether we
2501 * should do so
2502 */
2503 if (rep_index >= 0) {
2504 struct efx_farch_filter_spec *saved_spec =
2505 &table->spec[rep_index];
2506
2507 if (spec.priority == saved_spec->priority && !replace_equal) {
2508 rc = -EEXIST;
2509 goto out;
2510 }
2511 if (spec.priority < saved_spec->priority) {
2512 rc = -EPERM;
2513 goto out;
2514 }
2515 if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2516 saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2517 spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2518 }
2519
2520 /* Insert the filter */
2521 if (ins_index != rep_index) {
2522 __set_bit(ins_index, table->used_bitmap);
2523 ++table->used;
2524 }
2525 table->spec[ins_index] = spec;
2526
2527 if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2528 efx_farch_filter_push_rx_config(efx);
2529 } else {
2530 if (table->search_limit[spec.type] < depth) {
2531 table->search_limit[spec.type] = depth;
2532 if (spec.flags & EFX_FILTER_FLAG_TX)
2533 efx_farch_filter_push_tx_limits(efx);
2534 else
2535 efx_farch_filter_push_rx_config(efx);
2536 }
2537
2538 efx_writeo(efx, &filter,
2539 table->offset + table->step * ins_index);
2540
2541 /* If we were able to replace a filter by inserting
2542 * at a lower depth, clear the replaced filter
2543 */
2544 if (ins_index != rep_index && rep_index >= 0)
2545 efx_farch_filter_table_clear_entry(efx, table,
2546 rep_index);
2547 }
2548
2549 netif_vdbg(efx, hw, efx->net_dev,
2550 "%s: filter type %d index %d rxq %u set",
2551 __func__, spec.type, ins_index, spec.dmaq_id);
2552 rc = efx_farch_filter_make_id(&spec, ins_index);
2553
2554 out:
2555 spin_unlock_bh(&efx->filter_lock);
2556 return rc;
2557 }
2558
2559 static void
2560 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2561 struct efx_farch_filter_table *table,
2562 unsigned int filter_idx)
2563 {
2564 static efx_oword_t filter;
2565
2566 EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2567 BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2568
2569 __clear_bit(filter_idx, table->used_bitmap);
2570 --table->used;
2571 memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2572
2573 efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2574
2575 /* If this filter required a greater search depth than
2576 * any other, the search limit for its type can now be
2577 * decreased. However, it is hard to determine that
2578 * unless the table has become completely empty - in
2579 * which case, all its search limits can be set to 0.
2580 */
2581 if (unlikely(table->used == 0)) {
2582 memset(table->search_limit, 0, sizeof(table->search_limit));
2583 if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2584 efx_farch_filter_push_tx_limits(efx);
2585 else
2586 efx_farch_filter_push_rx_config(efx);
2587 }
2588 }
2589
2590 static int efx_farch_filter_remove(struct efx_nic *efx,
2591 struct efx_farch_filter_table *table,
2592 unsigned int filter_idx,
2593 enum efx_filter_priority priority)
2594 {
2595 struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2596
2597 if (!test_bit(filter_idx, table->used_bitmap) ||
2598 spec->priority != priority)
2599 return -ENOENT;
2600
2601 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2602 efx_farch_filter_init_rx_auto(efx, spec);
2603 efx_farch_filter_push_rx_config(efx);
2604 } else {
2605 efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2606 }
2607
2608 return 0;
2609 }
2610
2611 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2612 enum efx_filter_priority priority,
2613 u32 filter_id)
2614 {
2615 struct efx_farch_filter_state *state = efx->filter_state;
2616 enum efx_farch_filter_table_id table_id;
2617 struct efx_farch_filter_table *table;
2618 unsigned int filter_idx;
2619 struct efx_farch_filter_spec *spec;
2620 int rc;
2621
2622 table_id = efx_farch_filter_id_table_id(filter_id);
2623 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2624 return -ENOENT;
2625 table = &state->table[table_id];
2626
2627 filter_idx = efx_farch_filter_id_index(filter_id);
2628 if (filter_idx >= table->size)
2629 return -ENOENT;
2630 spec = &table->spec[filter_idx];
2631
2632 spin_lock_bh(&efx->filter_lock);
2633 rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2634 spin_unlock_bh(&efx->filter_lock);
2635
2636 return rc;
2637 }
2638
2639 int efx_farch_filter_get_safe(struct efx_nic *efx,
2640 enum efx_filter_priority priority,
2641 u32 filter_id, struct efx_filter_spec *spec_buf)
2642 {
2643 struct efx_farch_filter_state *state = efx->filter_state;
2644 enum efx_farch_filter_table_id table_id;
2645 struct efx_farch_filter_table *table;
2646 struct efx_farch_filter_spec *spec;
2647 unsigned int filter_idx;
2648 int rc;
2649
2650 table_id = efx_farch_filter_id_table_id(filter_id);
2651 if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2652 return -ENOENT;
2653 table = &state->table[table_id];
2654
2655 filter_idx = efx_farch_filter_id_index(filter_id);
2656 if (filter_idx >= table->size)
2657 return -ENOENT;
2658 spec = &table->spec[filter_idx];
2659
2660 spin_lock_bh(&efx->filter_lock);
2661
2662 if (test_bit(filter_idx, table->used_bitmap) &&
2663 spec->priority == priority) {
2664 efx_farch_filter_to_gen_spec(spec_buf, spec);
2665 rc = 0;
2666 } else {
2667 rc = -ENOENT;
2668 }
2669
2670 spin_unlock_bh(&efx->filter_lock);
2671
2672 return rc;
2673 }
2674
2675 static void
2676 efx_farch_filter_table_clear(struct efx_nic *efx,
2677 enum efx_farch_filter_table_id table_id,
2678 enum efx_filter_priority priority)
2679 {
2680 struct efx_farch_filter_state *state = efx->filter_state;
2681 struct efx_farch_filter_table *table = &state->table[table_id];
2682 unsigned int filter_idx;
2683
2684 spin_lock_bh(&efx->filter_lock);
2685 for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2686 if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2687 efx_farch_filter_remove(efx, table,
2688 filter_idx, priority);
2689 }
2690 spin_unlock_bh(&efx->filter_lock);
2691 }
2692
2693 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2694 enum efx_filter_priority priority)
2695 {
2696 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2697 priority);
2698 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2699 priority);
2700 efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2701 priority);
2702 return 0;
2703 }
2704
2705 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2706 enum efx_filter_priority priority)
2707 {
2708 struct efx_farch_filter_state *state = efx->filter_state;
2709 enum efx_farch_filter_table_id table_id;
2710 struct efx_farch_filter_table *table;
2711 unsigned int filter_idx;
2712 u32 count = 0;
2713
2714 spin_lock_bh(&efx->filter_lock);
2715
2716 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2717 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2718 table_id++) {
2719 table = &state->table[table_id];
2720 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2721 if (test_bit(filter_idx, table->used_bitmap) &&
2722 table->spec[filter_idx].priority == priority)
2723 ++count;
2724 }
2725 }
2726
2727 spin_unlock_bh(&efx->filter_lock);
2728
2729 return count;
2730 }
2731
2732 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2733 enum efx_filter_priority priority,
2734 u32 *buf, u32 size)
2735 {
2736 struct efx_farch_filter_state *state = efx->filter_state;
2737 enum efx_farch_filter_table_id table_id;
2738 struct efx_farch_filter_table *table;
2739 unsigned int filter_idx;
2740 s32 count = 0;
2741
2742 spin_lock_bh(&efx->filter_lock);
2743
2744 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2745 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2746 table_id++) {
2747 table = &state->table[table_id];
2748 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2749 if (test_bit(filter_idx, table->used_bitmap) &&
2750 table->spec[filter_idx].priority == priority) {
2751 if (count == size) {
2752 count = -EMSGSIZE;
2753 goto out;
2754 }
2755 buf[count++] = efx_farch_filter_make_id(
2756 &table->spec[filter_idx], filter_idx);
2757 }
2758 }
2759 }
2760 out:
2761 spin_unlock_bh(&efx->filter_lock);
2762
2763 return count;
2764 }
2765
2766 /* Restore filter stater after reset */
2767 void efx_farch_filter_table_restore(struct efx_nic *efx)
2768 {
2769 struct efx_farch_filter_state *state = efx->filter_state;
2770 enum efx_farch_filter_table_id table_id;
2771 struct efx_farch_filter_table *table;
2772 efx_oword_t filter;
2773 unsigned int filter_idx;
2774
2775 spin_lock_bh(&efx->filter_lock);
2776
2777 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2778 table = &state->table[table_id];
2779
2780 /* Check whether this is a regular register table */
2781 if (table->step == 0)
2782 continue;
2783
2784 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2785 if (!test_bit(filter_idx, table->used_bitmap))
2786 continue;
2787 efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2788 efx_writeo(efx, &filter,
2789 table->offset + table->step * filter_idx);
2790 }
2791 }
2792
2793 efx_farch_filter_push_rx_config(efx);
2794 efx_farch_filter_push_tx_limits(efx);
2795
2796 spin_unlock_bh(&efx->filter_lock);
2797 }
2798
2799 void efx_farch_filter_table_remove(struct efx_nic *efx)
2800 {
2801 struct efx_farch_filter_state *state = efx->filter_state;
2802 enum efx_farch_filter_table_id table_id;
2803
2804 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2805 kfree(state->table[table_id].used_bitmap);
2806 vfree(state->table[table_id].spec);
2807 }
2808 kfree(state);
2809 }
2810
2811 int efx_farch_filter_table_probe(struct efx_nic *efx)
2812 {
2813 struct efx_farch_filter_state *state;
2814 struct efx_farch_filter_table *table;
2815 unsigned table_id;
2816
2817 state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2818 if (!state)
2819 return -ENOMEM;
2820 efx->filter_state = state;
2821
2822 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2823 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2824 table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2825 table->offset = FR_BZ_RX_FILTER_TBL0;
2826 table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2827 table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2828 }
2829
2830 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2831 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2832 table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2833 table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2834 table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2835 table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2836
2837 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2838 table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2839 table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2840
2841 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2842 table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2843 table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2844 table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2845 table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2846 }
2847
2848 for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2849 table = &state->table[table_id];
2850 if (table->size == 0)
2851 continue;
2852 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2853 sizeof(unsigned long),
2854 GFP_KERNEL);
2855 if (!table->used_bitmap)
2856 goto fail;
2857 table->spec = vzalloc(table->size * sizeof(*table->spec));
2858 if (!table->spec)
2859 goto fail;
2860 }
2861
2862 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2863 if (table->size) {
2864 /* RX default filters must always exist */
2865 struct efx_farch_filter_spec *spec;
2866 unsigned i;
2867
2868 for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2869 spec = &table->spec[i];
2870 spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2871 efx_farch_filter_init_rx_auto(efx, spec);
2872 __set_bit(i, table->used_bitmap);
2873 }
2874 }
2875
2876 efx_farch_filter_push_rx_config(efx);
2877
2878 return 0;
2879
2880 fail:
2881 efx_farch_filter_table_remove(efx);
2882 return -ENOMEM;
2883 }
2884
2885 /* Update scatter enable flags for filters pointing to our own RX queues */
2886 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2887 {
2888 struct efx_farch_filter_state *state = efx->filter_state;
2889 enum efx_farch_filter_table_id table_id;
2890 struct efx_farch_filter_table *table;
2891 efx_oword_t filter;
2892 unsigned int filter_idx;
2893
2894 spin_lock_bh(&efx->filter_lock);
2895
2896 for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2897 table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2898 table_id++) {
2899 table = &state->table[table_id];
2900
2901 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2902 if (!test_bit(filter_idx, table->used_bitmap) ||
2903 table->spec[filter_idx].dmaq_id >=
2904 efx->n_rx_channels)
2905 continue;
2906
2907 if (efx->rx_scatter)
2908 table->spec[filter_idx].flags |=
2909 EFX_FILTER_FLAG_RX_SCATTER;
2910 else
2911 table->spec[filter_idx].flags &=
2912 ~EFX_FILTER_FLAG_RX_SCATTER;
2913
2914 if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2915 /* Pushed by efx_farch_filter_push_rx_config() */
2916 continue;
2917
2918 efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2919 efx_writeo(efx, &filter,
2920 table->offset + table->step * filter_idx);
2921 }
2922 }
2923
2924 efx_farch_filter_push_rx_config(efx);
2925
2926 spin_unlock_bh(&efx->filter_lock);
2927 }
2928
2929 #ifdef CONFIG_RFS_ACCEL
2930
2931 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2932 struct efx_filter_spec *gen_spec)
2933 {
2934 return efx_farch_filter_insert(efx, gen_spec, true);
2935 }
2936
2937 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2938 unsigned int index)
2939 {
2940 struct efx_farch_filter_state *state = efx->filter_state;
2941 struct efx_farch_filter_table *table =
2942 &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2943
2944 if (test_bit(index, table->used_bitmap) &&
2945 table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2946 rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2947 flow_id, index)) {
2948 efx_farch_filter_table_clear_entry(efx, table, index);
2949 return true;
2950 }
2951
2952 return false;
2953 }
2954
2955 #endif /* CONFIG_RFS_ACCEL */
2956
2957 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2958 {
2959 struct net_device *net_dev = efx->net_dev;
2960 struct netdev_hw_addr *ha;
2961 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2962 u32 crc;
2963 int bit;
2964
2965 if (!efx_dev_registered(efx))
2966 return;
2967
2968 netif_addr_lock_bh(net_dev);
2969
2970 efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2971
2972 /* Build multicast hash table */
2973 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2974 memset(mc_hash, 0xff, sizeof(*mc_hash));
2975 } else {
2976 memset(mc_hash, 0x00, sizeof(*mc_hash));
2977 netdev_for_each_mc_addr(ha, net_dev) {
2978 crc = ether_crc_le(ETH_ALEN, ha->addr);
2979 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2980 __set_bit_le(bit, mc_hash);
2981 }
2982
2983 /* Broadcast packets go through the multicast hash filter.
2984 * ether_crc_le() of the broadcast address is 0xbe2612ff
2985 * so we always add bit 0xff to the mask.
2986 */
2987 __set_bit_le(0xff, mc_hash);
2988 }
2989
2990 netif_addr_unlock_bh(net_dev);
2991 }
This page took 0.092418 seconds and 6 git commands to generate.