ARM: common: edma: Fix xbar mapping
[deliverable/linux.git] / drivers / net / ethernet / sfc / net_driver.h
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 /* Common definitions for all Efx net driver code */
12
13 #ifndef EFX_NET_DRIVER_H
14 #define EFX_NET_DRIVER_H
15
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/if_vlan.h>
20 #include <linux/timer.h>
21 #include <linux/mdio.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/workqueue.h>
27 #include <linux/mutex.h>
28 #include <linux/vmalloc.h>
29 #include <linux/i2c.h>
30 #include <linux/mtd/mtd.h>
31
32 #include "enum.h"
33 #include "bitfield.h"
34 #include "filter.h"
35
36 /**************************************************************************
37 *
38 * Build definitions
39 *
40 **************************************************************************/
41
42 #define EFX_DRIVER_VERSION "4.0"
43
44 #ifdef DEBUG
45 #define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
46 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
47 #else
48 #define EFX_BUG_ON_PARANOID(x) do {} while (0)
49 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
50 #endif
51
52 /**************************************************************************
53 *
54 * Efx data structures
55 *
56 **************************************************************************/
57
58 #define EFX_MAX_CHANNELS 32U
59 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
60 #define EFX_EXTRA_CHANNEL_IOV 0
61 #define EFX_EXTRA_CHANNEL_PTP 1
62 #define EFX_MAX_EXTRA_CHANNELS 2U
63
64 /* Checksum generation is a per-queue option in hardware, so each
65 * queue visible to the networking core is backed by two hardware TX
66 * queues. */
67 #define EFX_MAX_TX_TC 2
68 #define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
69 #define EFX_TXQ_TYPE_OFFLOAD 1 /* flag */
70 #define EFX_TXQ_TYPE_HIGHPRI 2 /* flag */
71 #define EFX_TXQ_TYPES 4
72 #define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
73
74 /* Maximum possible MTU the driver supports */
75 #define EFX_MAX_MTU (9 * 1024)
76
77 /* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page,
78 * and should be a multiple of the cache line size.
79 */
80 #define EFX_RX_USR_BUF_SIZE (2048 - 256)
81
82 /* If possible, we should ensure cache line alignment at start and end
83 * of every buffer. Otherwise, we just need to ensure 4-byte
84 * alignment of the network header.
85 */
86 #if NET_IP_ALIGN == 0
87 #define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES
88 #else
89 #define EFX_RX_BUF_ALIGNMENT 4
90 #endif
91
92 /* Forward declare Precision Time Protocol (PTP) support structure. */
93 struct efx_ptp_data;
94 struct hwtstamp_config;
95
96 struct efx_self_tests;
97
98 /**
99 * struct efx_buffer - A general-purpose DMA buffer
100 * @addr: host base address of the buffer
101 * @dma_addr: DMA base address of the buffer
102 * @len: Buffer length, in bytes
103 *
104 * The NIC uses these buffers for its interrupt status registers and
105 * MAC stats dumps.
106 */
107 struct efx_buffer {
108 void *addr;
109 dma_addr_t dma_addr;
110 unsigned int len;
111 };
112
113 /**
114 * struct efx_special_buffer - DMA buffer entered into buffer table
115 * @buf: Standard &struct efx_buffer
116 * @index: Buffer index within controller;s buffer table
117 * @entries: Number of buffer table entries
118 *
119 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
120 * Event and descriptor rings are addressed via one or more buffer
121 * table entries (and so can be physically non-contiguous, although we
122 * currently do not take advantage of that). On Falcon and Siena we
123 * have to take care of allocating and initialising the entries
124 * ourselves. On later hardware this is managed by the firmware and
125 * @index and @entries are left as 0.
126 */
127 struct efx_special_buffer {
128 struct efx_buffer buf;
129 unsigned int index;
130 unsigned int entries;
131 };
132
133 /**
134 * struct efx_tx_buffer - buffer state for a TX descriptor
135 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
136 * freed when descriptor completes
137 * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be
138 * freed when descriptor completes.
139 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
140 * @dma_addr: DMA address of the fragment.
141 * @flags: Flags for allocation and DMA mapping type
142 * @len: Length of this fragment.
143 * This field is zero when the queue slot is empty.
144 * @unmap_len: Length of this fragment to unmap
145 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
146 * Only valid if @unmap_len != 0.
147 */
148 struct efx_tx_buffer {
149 union {
150 const struct sk_buff *skb;
151 void *heap_buf;
152 };
153 union {
154 efx_qword_t option;
155 dma_addr_t dma_addr;
156 };
157 unsigned short flags;
158 unsigned short len;
159 unsigned short unmap_len;
160 unsigned short dma_offset;
161 };
162 #define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */
163 #define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */
164 #define EFX_TX_BUF_HEAP 4 /* buffer was allocated with kmalloc() */
165 #define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */
166 #define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */
167
168 /**
169 * struct efx_tx_queue - An Efx TX queue
170 *
171 * This is a ring buffer of TX fragments.
172 * Since the TX completion path always executes on the same
173 * CPU and the xmit path can operate on different CPUs,
174 * performance is increased by ensuring that the completion
175 * path and the xmit path operate on different cache lines.
176 * This is particularly important if the xmit path is always
177 * executing on one CPU which is different from the completion
178 * path. There is also a cache line for members which are
179 * read but not written on the fast path.
180 *
181 * @efx: The associated Efx NIC
182 * @queue: DMA queue number
183 * @channel: The associated channel
184 * @core_txq: The networking core TX queue structure
185 * @buffer: The software buffer ring
186 * @tsoh_page: Array of pages of TSO header buffers
187 * @txd: The hardware descriptor ring
188 * @ptr_mask: The size of the ring minus 1.
189 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
190 * Size of the region is efx_piobuf_size.
191 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
192 * @initialised: Has hardware queue been initialised?
193 * @read_count: Current read pointer.
194 * This is the number of buffers that have been removed from both rings.
195 * @old_write_count: The value of @write_count when last checked.
196 * This is here for performance reasons. The xmit path will
197 * only get the up-to-date value of @write_count if this
198 * variable indicates that the queue is empty. This is to
199 * avoid cache-line ping-pong between the xmit path and the
200 * completion path.
201 * @merge_events: Number of TX merged completion events
202 * @insert_count: Current insert pointer
203 * This is the number of buffers that have been added to the
204 * software ring.
205 * @write_count: Current write pointer
206 * This is the number of buffers that have been added to the
207 * hardware ring.
208 * @old_read_count: The value of read_count when last checked.
209 * This is here for performance reasons. The xmit path will
210 * only get the up-to-date value of read_count if this
211 * variable indicates that the queue is full. This is to
212 * avoid cache-line ping-pong between the xmit path and the
213 * completion path.
214 * @tso_bursts: Number of times TSO xmit invoked by kernel
215 * @tso_long_headers: Number of packets with headers too long for standard
216 * blocks
217 * @tso_packets: Number of packets via the TSO xmit path
218 * @pushes: Number of times the TX push feature has been used
219 * @pio_packets: Number of times the TX PIO feature has been used
220 * @empty_read_count: If the completion path has seen the queue as empty
221 * and the transmission path has not yet checked this, the value of
222 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
223 */
224 struct efx_tx_queue {
225 /* Members which don't change on the fast path */
226 struct efx_nic *efx ____cacheline_aligned_in_smp;
227 unsigned queue;
228 struct efx_channel *channel;
229 struct netdev_queue *core_txq;
230 struct efx_tx_buffer *buffer;
231 struct efx_buffer *tsoh_page;
232 struct efx_special_buffer txd;
233 unsigned int ptr_mask;
234 void __iomem *piobuf;
235 unsigned int piobuf_offset;
236 bool initialised;
237
238 /* Members used mainly on the completion path */
239 unsigned int read_count ____cacheline_aligned_in_smp;
240 unsigned int old_write_count;
241 unsigned int merge_events;
242
243 /* Members used only on the xmit path */
244 unsigned int insert_count ____cacheline_aligned_in_smp;
245 unsigned int write_count;
246 unsigned int old_read_count;
247 unsigned int tso_bursts;
248 unsigned int tso_long_headers;
249 unsigned int tso_packets;
250 unsigned int pushes;
251 unsigned int pio_packets;
252
253 /* Members shared between paths and sometimes updated */
254 unsigned int empty_read_count ____cacheline_aligned_in_smp;
255 #define EFX_EMPTY_COUNT_VALID 0x80000000
256 atomic_t flush_outstanding;
257 };
258
259 /**
260 * struct efx_rx_buffer - An Efx RX data buffer
261 * @dma_addr: DMA base address of the buffer
262 * @page: The associated page buffer.
263 * Will be %NULL if the buffer slot is currently free.
264 * @page_offset: If pending: offset in @page of DMA base address.
265 * If completed: offset in @page of Ethernet header.
266 * @len: If pending: length for DMA descriptor.
267 * If completed: received length, excluding hash prefix.
268 * @flags: Flags for buffer and packet state. These are only set on the
269 * first buffer of a scattered packet.
270 */
271 struct efx_rx_buffer {
272 dma_addr_t dma_addr;
273 struct page *page;
274 u16 page_offset;
275 u16 len;
276 u16 flags;
277 };
278 #define EFX_RX_BUF_LAST_IN_PAGE 0x0001
279 #define EFX_RX_PKT_CSUMMED 0x0002
280 #define EFX_RX_PKT_DISCARD 0x0004
281 #define EFX_RX_PKT_TCP 0x0040
282 #define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */
283
284 /**
285 * struct efx_rx_page_state - Page-based rx buffer state
286 *
287 * Inserted at the start of every page allocated for receive buffers.
288 * Used to facilitate sharing dma mappings between recycled rx buffers
289 * and those passed up to the kernel.
290 *
291 * @dma_addr: The dma address of this page.
292 */
293 struct efx_rx_page_state {
294 dma_addr_t dma_addr;
295
296 unsigned int __pad[0] ____cacheline_aligned;
297 };
298
299 /**
300 * struct efx_rx_queue - An Efx RX queue
301 * @efx: The associated Efx NIC
302 * @core_index: Index of network core RX queue. Will be >= 0 iff this
303 * is associated with a real RX queue.
304 * @buffer: The software buffer ring
305 * @rxd: The hardware descriptor ring
306 * @ptr_mask: The size of the ring minus 1.
307 * @refill_enabled: Enable refill whenever fill level is low
308 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
309 * @rxq_flush_pending.
310 * @added_count: Number of buffers added to the receive queue.
311 * @notified_count: Number of buffers given to NIC (<= @added_count).
312 * @removed_count: Number of buffers removed from the receive queue.
313 * @scatter_n: Used by NIC specific receive code.
314 * @scatter_len: Used by NIC specific receive code.
315 * @page_ring: The ring to store DMA mapped pages for reuse.
316 * @page_add: Counter to calculate the write pointer for the recycle ring.
317 * @page_remove: Counter to calculate the read pointer for the recycle ring.
318 * @page_recycle_count: The number of pages that have been recycled.
319 * @page_recycle_failed: The number of pages that couldn't be recycled because
320 * the kernel still held a reference to them.
321 * @page_recycle_full: The number of pages that were released because the
322 * recycle ring was full.
323 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
324 * @max_fill: RX descriptor maximum fill level (<= ring size)
325 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
326 * (<= @max_fill)
327 * @min_fill: RX descriptor minimum non-zero fill level.
328 * This records the minimum fill level observed when a ring
329 * refill was triggered.
330 * @recycle_count: RX buffer recycle counter.
331 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
332 */
333 struct efx_rx_queue {
334 struct efx_nic *efx;
335 int core_index;
336 struct efx_rx_buffer *buffer;
337 struct efx_special_buffer rxd;
338 unsigned int ptr_mask;
339 bool refill_enabled;
340 bool flush_pending;
341
342 unsigned int added_count;
343 unsigned int notified_count;
344 unsigned int removed_count;
345 unsigned int scatter_n;
346 unsigned int scatter_len;
347 struct page **page_ring;
348 unsigned int page_add;
349 unsigned int page_remove;
350 unsigned int page_recycle_count;
351 unsigned int page_recycle_failed;
352 unsigned int page_recycle_full;
353 unsigned int page_ptr_mask;
354 unsigned int max_fill;
355 unsigned int fast_fill_trigger;
356 unsigned int min_fill;
357 unsigned int min_overfill;
358 unsigned int recycle_count;
359 struct timer_list slow_fill;
360 unsigned int slow_fill_count;
361 };
362
363 enum efx_sync_events_state {
364 SYNC_EVENTS_DISABLED = 0,
365 SYNC_EVENTS_QUIESCENT,
366 SYNC_EVENTS_REQUESTED,
367 SYNC_EVENTS_VALID,
368 };
369
370 /**
371 * struct efx_channel - An Efx channel
372 *
373 * A channel comprises an event queue, at least one TX queue, at least
374 * one RX queue, and an associated tasklet for processing the event
375 * queue.
376 *
377 * @efx: Associated Efx NIC
378 * @channel: Channel instance number
379 * @type: Channel type definition
380 * @eventq_init: Event queue initialised flag
381 * @enabled: Channel enabled indicator
382 * @irq: IRQ number (MSI and MSI-X only)
383 * @irq_moderation: IRQ moderation value (in hardware ticks)
384 * @napi_dev: Net device used with NAPI
385 * @napi_str: NAPI control structure
386 * @eventq: Event queue buffer
387 * @eventq_mask: Event queue pointer mask
388 * @eventq_read_ptr: Event queue read pointer
389 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
390 * @irq_count: Number of IRQs since last adaptive moderation decision
391 * @irq_mod_score: IRQ moderation score
392 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
393 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
394 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
395 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
396 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
397 * @n_rx_overlength: Count of RX_OVERLENGTH errors
398 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
399 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
400 * lack of descriptors
401 * @n_rx_merge_events: Number of RX merged completion events
402 * @n_rx_merge_packets: Number of RX packets completed by merged events
403 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
404 * __efx_rx_packet(), or zero if there is none
405 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
406 * by __efx_rx_packet(), if @rx_pkt_n_frags != 0
407 * @rx_queue: RX queue for this channel
408 * @tx_queue: TX queues for this channel
409 * @sync_events_state: Current state of sync events on this channel
410 * @sync_timestamp_major: Major part of the last ptp sync event
411 * @sync_timestamp_minor: Minor part of the last ptp sync event
412 */
413 struct efx_channel {
414 struct efx_nic *efx;
415 int channel;
416 const struct efx_channel_type *type;
417 bool eventq_init;
418 bool enabled;
419 int irq;
420 unsigned int irq_moderation;
421 struct net_device *napi_dev;
422 struct napi_struct napi_str;
423 struct efx_special_buffer eventq;
424 unsigned int eventq_mask;
425 unsigned int eventq_read_ptr;
426 int event_test_cpu;
427
428 unsigned int irq_count;
429 unsigned int irq_mod_score;
430 #ifdef CONFIG_RFS_ACCEL
431 unsigned int rfs_filters_added;
432 #endif
433
434 unsigned n_rx_tobe_disc;
435 unsigned n_rx_ip_hdr_chksum_err;
436 unsigned n_rx_tcp_udp_chksum_err;
437 unsigned n_rx_mcast_mismatch;
438 unsigned n_rx_frm_trunc;
439 unsigned n_rx_overlength;
440 unsigned n_skbuff_leaks;
441 unsigned int n_rx_nodesc_trunc;
442 unsigned int n_rx_merge_events;
443 unsigned int n_rx_merge_packets;
444
445 unsigned int rx_pkt_n_frags;
446 unsigned int rx_pkt_index;
447
448 struct efx_rx_queue rx_queue;
449 struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
450
451 enum efx_sync_events_state sync_events_state;
452 u32 sync_timestamp_major;
453 u32 sync_timestamp_minor;
454 };
455
456 /**
457 * struct efx_msi_context - Context for each MSI
458 * @efx: The associated NIC
459 * @index: Index of the channel/IRQ
460 * @name: Name of the channel/IRQ
461 *
462 * Unlike &struct efx_channel, this is never reallocated and is always
463 * safe for the IRQ handler to access.
464 */
465 struct efx_msi_context {
466 struct efx_nic *efx;
467 unsigned int index;
468 char name[IFNAMSIZ + 6];
469 };
470
471 /**
472 * struct efx_channel_type - distinguishes traffic and extra channels
473 * @handle_no_channel: Handle failure to allocate an extra channel
474 * @pre_probe: Set up extra state prior to initialisation
475 * @post_remove: Tear down extra state after finalisation, if allocated.
476 * May be called on channels that have not been probed.
477 * @get_name: Generate the channel's name (used for its IRQ handler)
478 * @copy: Copy the channel state prior to reallocation. May be %NULL if
479 * reallocation is not supported.
480 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
481 * @keep_eventq: Flag for whether event queue should be kept initialised
482 * while the device is stopped
483 */
484 struct efx_channel_type {
485 void (*handle_no_channel)(struct efx_nic *);
486 int (*pre_probe)(struct efx_channel *);
487 void (*post_remove)(struct efx_channel *);
488 void (*get_name)(struct efx_channel *, char *buf, size_t len);
489 struct efx_channel *(*copy)(const struct efx_channel *);
490 bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
491 bool keep_eventq;
492 };
493
494 enum efx_led_mode {
495 EFX_LED_OFF = 0,
496 EFX_LED_ON = 1,
497 EFX_LED_DEFAULT = 2
498 };
499
500 #define STRING_TABLE_LOOKUP(val, member) \
501 ((val) < member ## _max) ? member ## _names[val] : "(invalid)"
502
503 extern const char *const efx_loopback_mode_names[];
504 extern const unsigned int efx_loopback_mode_max;
505 #define LOOPBACK_MODE(efx) \
506 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
507
508 extern const char *const efx_reset_type_names[];
509 extern const unsigned int efx_reset_type_max;
510 #define RESET_TYPE(type) \
511 STRING_TABLE_LOOKUP(type, efx_reset_type)
512
513 enum efx_int_mode {
514 /* Be careful if altering to correct macro below */
515 EFX_INT_MODE_MSIX = 0,
516 EFX_INT_MODE_MSI = 1,
517 EFX_INT_MODE_LEGACY = 2,
518 EFX_INT_MODE_MAX /* Insert any new items before this */
519 };
520 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
521
522 enum nic_state {
523 STATE_UNINIT = 0, /* device being probed/removed or is frozen */
524 STATE_READY = 1, /* hardware ready and netdev registered */
525 STATE_DISABLED = 2, /* device disabled due to hardware errors */
526 STATE_RECOVERY = 3, /* device recovering from PCI error */
527 };
528
529 /* Forward declaration */
530 struct efx_nic;
531
532 /* Pseudo bit-mask flow control field */
533 #define EFX_FC_RX FLOW_CTRL_RX
534 #define EFX_FC_TX FLOW_CTRL_TX
535 #define EFX_FC_AUTO 4
536
537 /**
538 * struct efx_link_state - Current state of the link
539 * @up: Link is up
540 * @fd: Link is full-duplex
541 * @fc: Actual flow control flags
542 * @speed: Link speed (Mbps)
543 */
544 struct efx_link_state {
545 bool up;
546 bool fd;
547 u8 fc;
548 unsigned int speed;
549 };
550
551 static inline bool efx_link_state_equal(const struct efx_link_state *left,
552 const struct efx_link_state *right)
553 {
554 return left->up == right->up && left->fd == right->fd &&
555 left->fc == right->fc && left->speed == right->speed;
556 }
557
558 /**
559 * struct efx_phy_operations - Efx PHY operations table
560 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
561 * efx->loopback_modes.
562 * @init: Initialise PHY
563 * @fini: Shut down PHY
564 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
565 * @poll: Update @link_state and report whether it changed.
566 * Serialised by the mac_lock.
567 * @get_settings: Get ethtool settings. Serialised by the mac_lock.
568 * @set_settings: Set ethtool settings. Serialised by the mac_lock.
569 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
570 * (only needed where AN bit is set in mmds)
571 * @test_alive: Test that PHY is 'alive' (online)
572 * @test_name: Get the name of a PHY-specific test/result
573 * @run_tests: Run tests and record results as appropriate (offline).
574 * Flags are the ethtool tests flags.
575 */
576 struct efx_phy_operations {
577 int (*probe) (struct efx_nic *efx);
578 int (*init) (struct efx_nic *efx);
579 void (*fini) (struct efx_nic *efx);
580 void (*remove) (struct efx_nic *efx);
581 int (*reconfigure) (struct efx_nic *efx);
582 bool (*poll) (struct efx_nic *efx);
583 void (*get_settings) (struct efx_nic *efx,
584 struct ethtool_cmd *ecmd);
585 int (*set_settings) (struct efx_nic *efx,
586 struct ethtool_cmd *ecmd);
587 void (*set_npage_adv) (struct efx_nic *efx, u32);
588 int (*test_alive) (struct efx_nic *efx);
589 const char *(*test_name) (struct efx_nic *efx, unsigned int index);
590 int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
591 int (*get_module_eeprom) (struct efx_nic *efx,
592 struct ethtool_eeprom *ee,
593 u8 *data);
594 int (*get_module_info) (struct efx_nic *efx,
595 struct ethtool_modinfo *modinfo);
596 };
597
598 /**
599 * enum efx_phy_mode - PHY operating mode flags
600 * @PHY_MODE_NORMAL: on and should pass traffic
601 * @PHY_MODE_TX_DISABLED: on with TX disabled
602 * @PHY_MODE_LOW_POWER: set to low power through MDIO
603 * @PHY_MODE_OFF: switched off through external control
604 * @PHY_MODE_SPECIAL: on but will not pass traffic
605 */
606 enum efx_phy_mode {
607 PHY_MODE_NORMAL = 0,
608 PHY_MODE_TX_DISABLED = 1,
609 PHY_MODE_LOW_POWER = 2,
610 PHY_MODE_OFF = 4,
611 PHY_MODE_SPECIAL = 8,
612 };
613
614 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
615 {
616 return !!(mode & ~PHY_MODE_TX_DISABLED);
617 }
618
619 /**
620 * struct efx_hw_stat_desc - Description of a hardware statistic
621 * @name: Name of the statistic as visible through ethtool, or %NULL if
622 * it should not be exposed
623 * @dma_width: Width in bits (0 for non-DMA statistics)
624 * @offset: Offset within stats (ignored for non-DMA statistics)
625 */
626 struct efx_hw_stat_desc {
627 const char *name;
628 u16 dma_width;
629 u16 offset;
630 };
631
632 /* Number of bits used in a multicast filter hash address */
633 #define EFX_MCAST_HASH_BITS 8
634
635 /* Number of (single-bit) entries in a multicast filter hash */
636 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
637
638 /* An Efx multicast filter hash */
639 union efx_multicast_hash {
640 u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
641 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
642 };
643
644 struct efx_vf;
645 struct vfdi_status;
646
647 /**
648 * struct efx_nic - an Efx NIC
649 * @name: Device name (net device name or bus id before net device registered)
650 * @pci_dev: The PCI device
651 * @node: List node for maintaning primary/secondary function lists
652 * @primary: &struct efx_nic instance for the primary function of this
653 * controller. May be the same structure, and may be %NULL if no
654 * primary function is bound. Serialised by rtnl_lock.
655 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
656 * functions of the controller, if this is for the primary function.
657 * Serialised by rtnl_lock.
658 * @type: Controller type attributes
659 * @legacy_irq: IRQ number
660 * @workqueue: Workqueue for port reconfigures and the HW monitor.
661 * Work items do not hold and must not acquire RTNL.
662 * @workqueue_name: Name of workqueue
663 * @reset_work: Scheduled reset workitem
664 * @membase_phys: Memory BAR value as physical address
665 * @membase: Memory BAR value
666 * @interrupt_mode: Interrupt mode
667 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
668 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
669 * @irq_rx_moderation: IRQ moderation time for RX event queues
670 * @msg_enable: Log message enable flags
671 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
672 * @reset_pending: Bitmask for pending resets
673 * @tx_queue: TX DMA queues
674 * @rx_queue: RX DMA queues
675 * @channel: Channels
676 * @msi_context: Context for each MSI
677 * @extra_channel_types: Types of extra (non-traffic) channels that
678 * should be allocated for this NIC
679 * @rxq_entries: Size of receive queues requested by user.
680 * @txq_entries: Size of transmit queues requested by user.
681 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
682 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
683 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
684 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
685 * @sram_lim_qw: Qword address limit of SRAM
686 * @next_buffer_table: First available buffer table id
687 * @n_channels: Number of channels in use
688 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
689 * @n_tx_channels: Number of channels used for TX
690 * @rx_ip_align: RX DMA address offset to have IP header aligned in
691 * in accordance with NET_IP_ALIGN
692 * @rx_dma_len: Current maximum RX DMA length
693 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
694 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
695 * for use in sk_buff::truesize
696 * @rx_prefix_size: Size of RX prefix before packet data
697 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
698 * (valid only if @rx_prefix_size != 0; always negative)
699 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
700 * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
701 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
702 * (valid only if channel->sync_timestamps_enabled; always negative)
703 * @rx_hash_key: Toeplitz hash key for RSS
704 * @rx_indir_table: Indirection table for RSS
705 * @rx_scatter: Scatter mode enabled for receives
706 * @int_error_count: Number of internal errors seen recently
707 * @int_error_expire: Time at which error count will be expired
708 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
709 * acknowledge but do nothing else.
710 * @irq_status: Interrupt status buffer
711 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
712 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
713 * @selftest_work: Work item for asynchronous self-test
714 * @mtd_list: List of MTDs attached to the NIC
715 * @nic_data: Hardware dependent state
716 * @mcdi: Management-Controller-to-Driver Interface state
717 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
718 * efx_monitor() and efx_reconfigure_port()
719 * @port_enabled: Port enabled indicator.
720 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
721 * efx_mac_work() with kernel interfaces. Safe to read under any
722 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
723 * be held to modify it.
724 * @port_initialized: Port initialized?
725 * @net_dev: Operating system network device. Consider holding the rtnl lock
726 * @stats_buffer: DMA buffer for statistics
727 * @phy_type: PHY type
728 * @phy_op: PHY interface
729 * @phy_data: PHY private data (including PHY-specific stats)
730 * @mdio: PHY MDIO interface
731 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
732 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
733 * @link_advertising: Autonegotiation advertising flags
734 * @link_state: Current state of the link
735 * @n_link_state_changes: Number of times the link has changed state
736 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
737 * Protected by @mac_lock.
738 * @multicast_hash: Multicast hash table for Falcon-arch.
739 * Protected by @mac_lock.
740 * @wanted_fc: Wanted flow control flags
741 * @fc_disable: When non-zero flow control is disabled. Typically used to
742 * ensure that network back pressure doesn't delay dma queue flushes.
743 * Serialised by the rtnl lock.
744 * @mac_work: Work item for changing MAC promiscuity and multicast hash
745 * @loopback_mode: Loopback status
746 * @loopback_modes: Supported loopback mode bitmask
747 * @loopback_selftest: Offline self-test private state
748 * @filter_lock: Filter table lock
749 * @filter_state: Architecture-dependent filter table state
750 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
751 * indexed by filter ID
752 * @rps_expire_index: Next index to check for expiry in @rps_flow_id
753 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
754 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
755 * Decremented when the efx_flush_rx_queue() is called.
756 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
757 * completed (either success or failure). Not used when MCDI is used to
758 * flush receive queues.
759 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
760 * @vf: Array of &struct efx_vf objects.
761 * @vf_count: Number of VFs intended to be enabled.
762 * @vf_init_count: Number of VFs that have been fully initialised.
763 * @vi_scale: log2 number of vnics per VF.
764 * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
765 * @vfdi_status: Common VFDI status page to be dmad to VF address space.
766 * @local_addr_list: List of local addresses. Protected by %local_lock.
767 * @local_page_list: List of DMA addressable pages used to broadcast
768 * %local_addr_list. Protected by %local_lock.
769 * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
770 * @peer_work: Work item to broadcast peer addresses to VMs.
771 * @ptp_data: PTP state data
772 * @vpd_sn: Serial number read from VPD
773 * @monitor_work: Hardware monitor workitem
774 * @biu_lock: BIU (bus interface unit) lock
775 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This
776 * field is used by efx_test_interrupts() to verify that an
777 * interrupt has occurred.
778 * @stats_lock: Statistics update lock. Must be held when calling
779 * efx_nic_type::{update,start,stop}_stats.
780 *
781 * This is stored in the private area of the &struct net_device.
782 */
783 struct efx_nic {
784 /* The following fields should be written very rarely */
785
786 char name[IFNAMSIZ];
787 struct list_head node;
788 struct efx_nic *primary;
789 struct list_head secondary_list;
790 struct pci_dev *pci_dev;
791 unsigned int port_num;
792 const struct efx_nic_type *type;
793 int legacy_irq;
794 bool eeh_disabled_legacy_irq;
795 struct workqueue_struct *workqueue;
796 char workqueue_name[16];
797 struct work_struct reset_work;
798 resource_size_t membase_phys;
799 void __iomem *membase;
800
801 enum efx_int_mode interrupt_mode;
802 unsigned int timer_quantum_ns;
803 bool irq_rx_adaptive;
804 unsigned int irq_rx_moderation;
805 u32 msg_enable;
806
807 enum nic_state state;
808 unsigned long reset_pending;
809
810 struct efx_channel *channel[EFX_MAX_CHANNELS];
811 struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
812 const struct efx_channel_type *
813 extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
814
815 unsigned rxq_entries;
816 unsigned txq_entries;
817 unsigned int txq_stop_thresh;
818 unsigned int txq_wake_thresh;
819
820 unsigned tx_dc_base;
821 unsigned rx_dc_base;
822 unsigned sram_lim_qw;
823 unsigned next_buffer_table;
824
825 unsigned int max_channels;
826 unsigned n_channels;
827 unsigned n_rx_channels;
828 unsigned rss_spread;
829 unsigned tx_channel_offset;
830 unsigned n_tx_channels;
831 unsigned int rx_ip_align;
832 unsigned int rx_dma_len;
833 unsigned int rx_buffer_order;
834 unsigned int rx_buffer_truesize;
835 unsigned int rx_page_buf_step;
836 unsigned int rx_bufs_per_page;
837 unsigned int rx_pages_per_batch;
838 unsigned int rx_prefix_size;
839 int rx_packet_hash_offset;
840 int rx_packet_len_offset;
841 int rx_packet_ts_offset;
842 u8 rx_hash_key[40];
843 u32 rx_indir_table[128];
844 bool rx_scatter;
845
846 unsigned int_error_count;
847 unsigned long int_error_expire;
848
849 bool irq_soft_enabled;
850 struct efx_buffer irq_status;
851 unsigned irq_zero_count;
852 unsigned irq_level;
853 struct delayed_work selftest_work;
854
855 #ifdef CONFIG_SFC_MTD
856 struct list_head mtd_list;
857 #endif
858
859 void *nic_data;
860 struct efx_mcdi_data *mcdi;
861
862 struct mutex mac_lock;
863 struct work_struct mac_work;
864 bool port_enabled;
865
866 bool mc_bist_for_other_fn;
867 bool port_initialized;
868 struct net_device *net_dev;
869
870 struct efx_buffer stats_buffer;
871 u64 rx_nodesc_drops_total;
872 u64 rx_nodesc_drops_while_down;
873 bool rx_nodesc_drops_prev_state;
874
875 unsigned int phy_type;
876 const struct efx_phy_operations *phy_op;
877 void *phy_data;
878 struct mdio_if_info mdio;
879 unsigned int mdio_bus;
880 enum efx_phy_mode phy_mode;
881
882 u32 link_advertising;
883 struct efx_link_state link_state;
884 unsigned int n_link_state_changes;
885
886 bool unicast_filter;
887 union efx_multicast_hash multicast_hash;
888 u8 wanted_fc;
889 unsigned fc_disable;
890
891 atomic_t rx_reset;
892 enum efx_loopback_mode loopback_mode;
893 u64 loopback_modes;
894
895 void *loopback_selftest;
896
897 spinlock_t filter_lock;
898 void *filter_state;
899 #ifdef CONFIG_RFS_ACCEL
900 u32 *rps_flow_id;
901 unsigned int rps_expire_index;
902 #endif
903
904 atomic_t active_queues;
905 atomic_t rxq_flush_pending;
906 atomic_t rxq_flush_outstanding;
907 wait_queue_head_t flush_wq;
908
909 #ifdef CONFIG_SFC_SRIOV
910 struct efx_channel *vfdi_channel;
911 struct efx_vf *vf;
912 unsigned vf_count;
913 unsigned vf_init_count;
914 unsigned vi_scale;
915 unsigned vf_buftbl_base;
916 struct efx_buffer vfdi_status;
917 struct list_head local_addr_list;
918 struct list_head local_page_list;
919 struct mutex local_lock;
920 struct work_struct peer_work;
921 #endif
922
923 struct efx_ptp_data *ptp_data;
924
925 char *vpd_sn;
926
927 /* The following fields may be written more often */
928
929 struct delayed_work monitor_work ____cacheline_aligned_in_smp;
930 spinlock_t biu_lock;
931 int last_irq_cpu;
932 spinlock_t stats_lock;
933 };
934
935 static inline int efx_dev_registered(struct efx_nic *efx)
936 {
937 return efx->net_dev->reg_state == NETREG_REGISTERED;
938 }
939
940 static inline unsigned int efx_port_num(struct efx_nic *efx)
941 {
942 return efx->port_num;
943 }
944
945 struct efx_mtd_partition {
946 struct list_head node;
947 struct mtd_info mtd;
948 const char *dev_type_name;
949 const char *type_name;
950 char name[IFNAMSIZ + 20];
951 };
952
953 /**
954 * struct efx_nic_type - Efx device type definition
955 * @mem_map_size: Get memory BAR mapped size
956 * @probe: Probe the controller
957 * @remove: Free resources allocated by probe()
958 * @init: Initialise the controller
959 * @dimension_resources: Dimension controller resources (buffer table,
960 * and VIs once the available interrupt resources are clear)
961 * @fini: Shut down the controller
962 * @monitor: Periodic function for polling link state and hardware monitor
963 * @map_reset_reason: Map ethtool reset reason to a reset method
964 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
965 * @reset: Reset the controller hardware and possibly the PHY. This will
966 * be called while the controller is uninitialised.
967 * @probe_port: Probe the MAC and PHY
968 * @remove_port: Free resources allocated by probe_port()
969 * @handle_global_event: Handle a "global" event (may be %NULL)
970 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
971 * @prepare_flush: Prepare the hardware for flushing the DMA queues
972 * (for Falcon architecture)
973 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
974 * architecture)
975 * @describe_stats: Describe statistics for ethtool
976 * @update_stats: Update statistics not provided by event handling.
977 * Either argument may be %NULL.
978 * @start_stats: Start the regular fetching of statistics
979 * @pull_stats: Pull stats from the NIC and wait until they arrive.
980 * @stop_stats: Stop the regular fetching of statistics
981 * @set_id_led: Set state of identifying LED or revert to automatic function
982 * @push_irq_moderation: Apply interrupt moderation value
983 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
984 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
985 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
986 * to the hardware. Serialised by the mac_lock.
987 * @check_mac_fault: Check MAC fault state. True if fault present.
988 * @get_wol: Get WoL configuration from driver state
989 * @set_wol: Push WoL configuration to the NIC
990 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
991 * @test_chip: Test registers. May use efx_farch_test_registers(), and is
992 * expected to reset the NIC.
993 * @test_nvram: Test validity of NVRAM contents
994 * @mcdi_request: Send an MCDI request with the given header and SDU.
995 * The SDU length may be any value from 0 up to the protocol-
996 * defined maximum, but its buffer will be padded to a multiple
997 * of 4 bytes.
998 * @mcdi_poll_response: Test whether an MCDI response is available.
999 * @mcdi_read_response: Read the MCDI response PDU. The offset will
1000 * be a multiple of 4. The length may not be, but the buffer
1001 * will be padded so it is safe to round up.
1002 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so,
1003 * return an appropriate error code for aborting any current
1004 * request; otherwise return 0.
1005 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must
1006 * be separately enabled after this.
1007 * @irq_test_generate: Generate a test IRQ
1008 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event
1009 * queue must be separately disabled before this.
1010 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is
1011 * a pointer to the &struct efx_msi_context for the channel.
1012 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument
1013 * is a pointer to the &struct efx_nic.
1014 * @tx_probe: Allocate resources for TX queue
1015 * @tx_init: Initialise TX queue on the NIC
1016 * @tx_remove: Free resources for TX queue
1017 * @tx_write: Write TX descriptors and doorbell
1018 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1019 * @rx_probe: Allocate resources for RX queue
1020 * @rx_init: Initialise RX queue on the NIC
1021 * @rx_remove: Free resources for RX queue
1022 * @rx_write: Write RX descriptors and doorbell
1023 * @rx_defer_refill: Generate a refill reminder event
1024 * @ev_probe: Allocate resources for event queue
1025 * @ev_init: Initialise event queue on the NIC
1026 * @ev_fini: Deinitialise event queue on the NIC
1027 * @ev_remove: Free resources for event queue
1028 * @ev_process: Process events for a queue, up to the given NAPI quota
1029 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1030 * @ev_test_generate: Generate a test event
1031 * @filter_table_probe: Probe filter capabilities and set up filter software state
1032 * @filter_table_restore: Restore filters removed from hardware
1033 * @filter_table_remove: Remove filters from hardware and tear down software state
1034 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1035 * @filter_insert: add or replace a filter
1036 * @filter_remove_safe: remove a filter by ID, carefully
1037 * @filter_get_safe: retrieve a filter by ID, carefully
1038 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1039 * equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1040 * @filter_count_rx_used: Get the number of filters in use at a given priority
1041 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1042 * @filter_get_rx_ids: Get list of RX filters at a given priority
1043 * @filter_rfs_insert: Add or replace a filter for RFS. This must be
1044 * atomic. The hardware change may be asynchronous but should
1045 * not be delayed for long. It may fail if this can't be done
1046 * atomically.
1047 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1048 * This must check whether the specified table entry is used by RFS
1049 * and that rps_may_expire_flow() returns true for it.
1050 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1051 * using efx_mtd_add()
1052 * @mtd_rename: Set an MTD partition name using the net device name
1053 * @mtd_read: Read from an MTD partition
1054 * @mtd_erase: Erase part of an MTD partition
1055 * @mtd_write: Write to an MTD partition
1056 * @mtd_sync: Wait for write-back to complete on MTD partition. This
1057 * also notifies the driver that a writer has finished using this
1058 * partition.
1059 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1060 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1061 * timestamping, possibly only temporarily for the purposes of a reset.
1062 * @ptp_set_ts_config: Set hardware timestamp configuration. The flags
1063 * and tx_type will already have been validated but this operation
1064 * must validate and update rx_filter.
1065 * @revision: Hardware architecture revision
1066 * @txd_ptr_tbl_base: TX descriptor ring base address
1067 * @rxd_ptr_tbl_base: RX descriptor ring base address
1068 * @buf_tbl_base: Buffer table base address
1069 * @evq_ptr_tbl_base: Event queue pointer table base address
1070 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1071 * @max_dma_mask: Maximum possible DMA mask
1072 * @rx_prefix_size: Size of RX prefix before packet data
1073 * @rx_hash_offset: Offset of RX flow hash within prefix
1074 * @rx_ts_offset: Offset of timestamp within prefix
1075 * @rx_buffer_padding: Size of padding at end of RX packet
1076 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1077 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1078 * @max_interrupt_mode: Highest capability interrupt mode supported
1079 * from &enum efx_init_mode.
1080 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1081 * @offload_features: net_device feature flags for protocol offload
1082 * features implemented in hardware
1083 * @mcdi_max_ver: Maximum MCDI version supported
1084 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1085 */
1086 struct efx_nic_type {
1087 unsigned int (*mem_map_size)(struct efx_nic *efx);
1088 int (*probe)(struct efx_nic *efx);
1089 void (*remove)(struct efx_nic *efx);
1090 int (*init)(struct efx_nic *efx);
1091 int (*dimension_resources)(struct efx_nic *efx);
1092 void (*fini)(struct efx_nic *efx);
1093 void (*monitor)(struct efx_nic *efx);
1094 enum reset_type (*map_reset_reason)(enum reset_type reason);
1095 int (*map_reset_flags)(u32 *flags);
1096 int (*reset)(struct efx_nic *efx, enum reset_type method);
1097 int (*probe_port)(struct efx_nic *efx);
1098 void (*remove_port)(struct efx_nic *efx);
1099 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1100 int (*fini_dmaq)(struct efx_nic *efx);
1101 void (*prepare_flush)(struct efx_nic *efx);
1102 void (*finish_flush)(struct efx_nic *efx);
1103 size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1104 size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1105 struct rtnl_link_stats64 *core_stats);
1106 void (*start_stats)(struct efx_nic *efx);
1107 void (*pull_stats)(struct efx_nic *efx);
1108 void (*stop_stats)(struct efx_nic *efx);
1109 void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1110 void (*push_irq_moderation)(struct efx_channel *channel);
1111 int (*reconfigure_port)(struct efx_nic *efx);
1112 void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1113 int (*reconfigure_mac)(struct efx_nic *efx);
1114 bool (*check_mac_fault)(struct efx_nic *efx);
1115 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1116 int (*set_wol)(struct efx_nic *efx, u32 type);
1117 void (*resume_wol)(struct efx_nic *efx);
1118 int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1119 int (*test_nvram)(struct efx_nic *efx);
1120 void (*mcdi_request)(struct efx_nic *efx,
1121 const efx_dword_t *hdr, size_t hdr_len,
1122 const efx_dword_t *sdu, size_t sdu_len);
1123 bool (*mcdi_poll_response)(struct efx_nic *efx);
1124 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1125 size_t pdu_offset, size_t pdu_len);
1126 int (*mcdi_poll_reboot)(struct efx_nic *efx);
1127 void (*irq_enable_master)(struct efx_nic *efx);
1128 void (*irq_test_generate)(struct efx_nic *efx);
1129 void (*irq_disable_non_ev)(struct efx_nic *efx);
1130 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1131 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1132 int (*tx_probe)(struct efx_tx_queue *tx_queue);
1133 void (*tx_init)(struct efx_tx_queue *tx_queue);
1134 void (*tx_remove)(struct efx_tx_queue *tx_queue);
1135 void (*tx_write)(struct efx_tx_queue *tx_queue);
1136 void (*rx_push_rss_config)(struct efx_nic *efx);
1137 int (*rx_probe)(struct efx_rx_queue *rx_queue);
1138 void (*rx_init)(struct efx_rx_queue *rx_queue);
1139 void (*rx_remove)(struct efx_rx_queue *rx_queue);
1140 void (*rx_write)(struct efx_rx_queue *rx_queue);
1141 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1142 int (*ev_probe)(struct efx_channel *channel);
1143 int (*ev_init)(struct efx_channel *channel);
1144 void (*ev_fini)(struct efx_channel *channel);
1145 void (*ev_remove)(struct efx_channel *channel);
1146 int (*ev_process)(struct efx_channel *channel, int quota);
1147 void (*ev_read_ack)(struct efx_channel *channel);
1148 void (*ev_test_generate)(struct efx_channel *channel);
1149 int (*filter_table_probe)(struct efx_nic *efx);
1150 void (*filter_table_restore)(struct efx_nic *efx);
1151 void (*filter_table_remove)(struct efx_nic *efx);
1152 void (*filter_update_rx_scatter)(struct efx_nic *efx);
1153 s32 (*filter_insert)(struct efx_nic *efx,
1154 struct efx_filter_spec *spec, bool replace);
1155 int (*filter_remove_safe)(struct efx_nic *efx,
1156 enum efx_filter_priority priority,
1157 u32 filter_id);
1158 int (*filter_get_safe)(struct efx_nic *efx,
1159 enum efx_filter_priority priority,
1160 u32 filter_id, struct efx_filter_spec *);
1161 int (*filter_clear_rx)(struct efx_nic *efx,
1162 enum efx_filter_priority priority);
1163 u32 (*filter_count_rx_used)(struct efx_nic *efx,
1164 enum efx_filter_priority priority);
1165 u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1166 s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1167 enum efx_filter_priority priority,
1168 u32 *buf, u32 size);
1169 #ifdef CONFIG_RFS_ACCEL
1170 s32 (*filter_rfs_insert)(struct efx_nic *efx,
1171 struct efx_filter_spec *spec);
1172 bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1173 unsigned int index);
1174 #endif
1175 #ifdef CONFIG_SFC_MTD
1176 int (*mtd_probe)(struct efx_nic *efx);
1177 void (*mtd_rename)(struct efx_mtd_partition *part);
1178 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1179 size_t *retlen, u8 *buffer);
1180 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1181 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1182 size_t *retlen, const u8 *buffer);
1183 int (*mtd_sync)(struct mtd_info *mtd);
1184 #endif
1185 void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1186 int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1187 int (*ptp_set_ts_config)(struct efx_nic *efx,
1188 struct hwtstamp_config *init);
1189
1190 int revision;
1191 unsigned int txd_ptr_tbl_base;
1192 unsigned int rxd_ptr_tbl_base;
1193 unsigned int buf_tbl_base;
1194 unsigned int evq_ptr_tbl_base;
1195 unsigned int evq_rptr_tbl_base;
1196 u64 max_dma_mask;
1197 unsigned int rx_prefix_size;
1198 unsigned int rx_hash_offset;
1199 unsigned int rx_ts_offset;
1200 unsigned int rx_buffer_padding;
1201 bool can_rx_scatter;
1202 bool always_rx_scatter;
1203 unsigned int max_interrupt_mode;
1204 unsigned int timer_period_max;
1205 netdev_features_t offload_features;
1206 int mcdi_max_ver;
1207 unsigned int max_rx_ip_filters;
1208 u32 hwtstamp_filters;
1209 };
1210
1211 /**************************************************************************
1212 *
1213 * Prototypes and inline functions
1214 *
1215 *************************************************************************/
1216
1217 static inline struct efx_channel *
1218 efx_get_channel(struct efx_nic *efx, unsigned index)
1219 {
1220 EFX_BUG_ON_PARANOID(index >= efx->n_channels);
1221 return efx->channel[index];
1222 }
1223
1224 /* Iterate over all used channels */
1225 #define efx_for_each_channel(_channel, _efx) \
1226 for (_channel = (_efx)->channel[0]; \
1227 _channel; \
1228 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \
1229 (_efx)->channel[_channel->channel + 1] : NULL)
1230
1231 /* Iterate over all used channels in reverse */
1232 #define efx_for_each_channel_rev(_channel, _efx) \
1233 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \
1234 _channel; \
1235 _channel = _channel->channel ? \
1236 (_efx)->channel[_channel->channel - 1] : NULL)
1237
1238 static inline struct efx_tx_queue *
1239 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1240 {
1241 EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1242 type >= EFX_TXQ_TYPES);
1243 return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1244 }
1245
1246 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1247 {
1248 return channel->channel - channel->efx->tx_channel_offset <
1249 channel->efx->n_tx_channels;
1250 }
1251
1252 static inline struct efx_tx_queue *
1253 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1254 {
1255 EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
1256 type >= EFX_TXQ_TYPES);
1257 return &channel->tx_queue[type];
1258 }
1259
1260 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1261 {
1262 return !(tx_queue->efx->net_dev->num_tc < 2 &&
1263 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1264 }
1265
1266 /* Iterate over all TX queues belonging to a channel */
1267 #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \
1268 if (!efx_channel_has_tx_queues(_channel)) \
1269 ; \
1270 else \
1271 for (_tx_queue = (_channel)->tx_queue; \
1272 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1273 efx_tx_queue_used(_tx_queue); \
1274 _tx_queue++)
1275
1276 /* Iterate over all possible TX queues belonging to a channel */
1277 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel) \
1278 if (!efx_channel_has_tx_queues(_channel)) \
1279 ; \
1280 else \
1281 for (_tx_queue = (_channel)->tx_queue; \
1282 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES; \
1283 _tx_queue++)
1284
1285 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1286 {
1287 return channel->rx_queue.core_index >= 0;
1288 }
1289
1290 static inline struct efx_rx_queue *
1291 efx_channel_get_rx_queue(struct efx_channel *channel)
1292 {
1293 EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
1294 return &channel->rx_queue;
1295 }
1296
1297 /* Iterate over all RX queues belonging to a channel */
1298 #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \
1299 if (!efx_channel_has_rx_queue(_channel)) \
1300 ; \
1301 else \
1302 for (_rx_queue = &(_channel)->rx_queue; \
1303 _rx_queue; \
1304 _rx_queue = NULL)
1305
1306 static inline struct efx_channel *
1307 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1308 {
1309 return container_of(rx_queue, struct efx_channel, rx_queue);
1310 }
1311
1312 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1313 {
1314 return efx_rx_queue_channel(rx_queue)->channel;
1315 }
1316
1317 /* Returns a pointer to the specified receive buffer in the RX
1318 * descriptor queue.
1319 */
1320 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1321 unsigned int index)
1322 {
1323 return &rx_queue->buffer[index];
1324 }
1325
1326 /**
1327 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1328 *
1329 * This calculates the maximum frame length that will be used for a
1330 * given MTU. The frame length will be equal to the MTU plus a
1331 * constant amount of header space and padding. This is the quantity
1332 * that the net driver will program into the MAC as the maximum frame
1333 * length.
1334 *
1335 * The 10G MAC requires 8-byte alignment on the frame
1336 * length, so we round up to the nearest 8.
1337 *
1338 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1339 * XGMII cycle). If the frame length reaches the maximum value in the
1340 * same cycle, the XMAC can miss the IPG altogether. We work around
1341 * this by adding a further 16 bytes.
1342 */
1343 #define EFX_MAX_FRAME_LEN(mtu) \
1344 ((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16)
1345
1346 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1347 {
1348 return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1349 }
1350 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1351 {
1352 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1353 }
1354
1355 #endif /* EFX_NET_DRIVER_H */
This page took 0.058588 seconds and 5 git commands to generate.