sfc: Generalise event generation to cover VF-owned event queues
[deliverable/linux.git] / drivers / net / ethernet / sfc / net_driver.h
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 /* Common definitions for all Efx net driver code */
12
13 #ifndef EFX_NET_DRIVER_H
14 #define EFX_NET_DRIVER_H
15
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/if_vlan.h>
20 #include <linux/timer.h>
21 #include <linux/mdio.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/workqueue.h>
27 #include <linux/vmalloc.h>
28 #include <linux/i2c.h>
29
30 #include "enum.h"
31 #include "bitfield.h"
32
33 /**************************************************************************
34 *
35 * Build definitions
36 *
37 **************************************************************************/
38
39 #define EFX_DRIVER_VERSION "3.1"
40
41 #ifdef DEBUG
42 #define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
43 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
44 #else
45 #define EFX_BUG_ON_PARANOID(x) do {} while (0)
46 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
47 #endif
48
49 /**************************************************************************
50 *
51 * Efx data structures
52 *
53 **************************************************************************/
54
55 #define EFX_MAX_CHANNELS 32
56 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
57
58 /* Checksum generation is a per-queue option in hardware, so each
59 * queue visible to the networking core is backed by two hardware TX
60 * queues. */
61 #define EFX_MAX_TX_TC 2
62 #define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
63 #define EFX_TXQ_TYPE_OFFLOAD 1 /* flag */
64 #define EFX_TXQ_TYPE_HIGHPRI 2 /* flag */
65 #define EFX_TXQ_TYPES 4
66 #define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
67
68 /**
69 * struct efx_special_buffer - An Efx special buffer
70 * @addr: CPU base address of the buffer
71 * @dma_addr: DMA base address of the buffer
72 * @len: Buffer length, in bytes
73 * @index: Buffer index within controller;s buffer table
74 * @entries: Number of buffer table entries
75 *
76 * Special buffers are used for the event queues and the TX and RX
77 * descriptor queues for each channel. They are *not* used for the
78 * actual transmit and receive buffers.
79 */
80 struct efx_special_buffer {
81 void *addr;
82 dma_addr_t dma_addr;
83 unsigned int len;
84 int index;
85 int entries;
86 };
87
88 /**
89 * struct efx_tx_buffer - An Efx TX buffer
90 * @skb: The associated socket buffer.
91 * Set only on the final fragment of a packet; %NULL for all other
92 * fragments. When this fragment completes, then we can free this
93 * skb.
94 * @tsoh: The associated TSO header structure, or %NULL if this
95 * buffer is not a TSO header.
96 * @dma_addr: DMA address of the fragment.
97 * @len: Length of this fragment.
98 * This field is zero when the queue slot is empty.
99 * @continuation: True if this fragment is not the end of a packet.
100 * @unmap_single: True if pci_unmap_single should be used.
101 * @unmap_len: Length of this fragment to unmap
102 */
103 struct efx_tx_buffer {
104 const struct sk_buff *skb;
105 struct efx_tso_header *tsoh;
106 dma_addr_t dma_addr;
107 unsigned short len;
108 bool continuation;
109 bool unmap_single;
110 unsigned short unmap_len;
111 };
112
113 /**
114 * struct efx_tx_queue - An Efx TX queue
115 *
116 * This is a ring buffer of TX fragments.
117 * Since the TX completion path always executes on the same
118 * CPU and the xmit path can operate on different CPUs,
119 * performance is increased by ensuring that the completion
120 * path and the xmit path operate on different cache lines.
121 * This is particularly important if the xmit path is always
122 * executing on one CPU which is different from the completion
123 * path. There is also a cache line for members which are
124 * read but not written on the fast path.
125 *
126 * @efx: The associated Efx NIC
127 * @queue: DMA queue number
128 * @channel: The associated channel
129 * @core_txq: The networking core TX queue structure
130 * @buffer: The software buffer ring
131 * @txd: The hardware descriptor ring
132 * @ptr_mask: The size of the ring minus 1.
133 * @initialised: Has hardware queue been initialised?
134 * @read_count: Current read pointer.
135 * This is the number of buffers that have been removed from both rings.
136 * @old_write_count: The value of @write_count when last checked.
137 * This is here for performance reasons. The xmit path will
138 * only get the up-to-date value of @write_count if this
139 * variable indicates that the queue is empty. This is to
140 * avoid cache-line ping-pong between the xmit path and the
141 * completion path.
142 * @insert_count: Current insert pointer
143 * This is the number of buffers that have been added to the
144 * software ring.
145 * @write_count: Current write pointer
146 * This is the number of buffers that have been added to the
147 * hardware ring.
148 * @old_read_count: The value of read_count when last checked.
149 * This is here for performance reasons. The xmit path will
150 * only get the up-to-date value of read_count if this
151 * variable indicates that the queue is full. This is to
152 * avoid cache-line ping-pong between the xmit path and the
153 * completion path.
154 * @tso_headers_free: A list of TSO headers allocated for this TX queue
155 * that are not in use, and so available for new TSO sends. The list
156 * is protected by the TX queue lock.
157 * @tso_bursts: Number of times TSO xmit invoked by kernel
158 * @tso_long_headers: Number of packets with headers too long for standard
159 * blocks
160 * @tso_packets: Number of packets via the TSO xmit path
161 * @pushes: Number of times the TX push feature has been used
162 * @empty_read_count: If the completion path has seen the queue as empty
163 * and the transmission path has not yet checked this, the value of
164 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
165 */
166 struct efx_tx_queue {
167 /* Members which don't change on the fast path */
168 struct efx_nic *efx ____cacheline_aligned_in_smp;
169 unsigned queue;
170 struct efx_channel *channel;
171 struct netdev_queue *core_txq;
172 struct efx_tx_buffer *buffer;
173 struct efx_special_buffer txd;
174 unsigned int ptr_mask;
175 bool initialised;
176
177 /* Members used mainly on the completion path */
178 unsigned int read_count ____cacheline_aligned_in_smp;
179 unsigned int old_write_count;
180
181 /* Members used only on the xmit path */
182 unsigned int insert_count ____cacheline_aligned_in_smp;
183 unsigned int write_count;
184 unsigned int old_read_count;
185 struct efx_tso_header *tso_headers_free;
186 unsigned int tso_bursts;
187 unsigned int tso_long_headers;
188 unsigned int tso_packets;
189 unsigned int pushes;
190
191 /* Members shared between paths and sometimes updated */
192 unsigned int empty_read_count ____cacheline_aligned_in_smp;
193 #define EFX_EMPTY_COUNT_VALID 0x80000000
194 };
195
196 /**
197 * struct efx_rx_buffer - An Efx RX data buffer
198 * @dma_addr: DMA base address of the buffer
199 * @skb: The associated socket buffer. Valid iff !(@flags & %EFX_RX_BUF_PAGE).
200 * Will be %NULL if the buffer slot is currently free.
201 * @page: The associated page buffer. Valif iff @flags & %EFX_RX_BUF_PAGE.
202 * Will be %NULL if the buffer slot is currently free.
203 * @len: Buffer length, in bytes.
204 * @flags: Flags for buffer and packet state.
205 */
206 struct efx_rx_buffer {
207 dma_addr_t dma_addr;
208 union {
209 struct sk_buff *skb;
210 struct page *page;
211 } u;
212 unsigned int len;
213 u16 flags;
214 };
215 #define EFX_RX_BUF_PAGE 0x0001
216 #define EFX_RX_PKT_CSUMMED 0x0002
217 #define EFX_RX_PKT_DISCARD 0x0004
218
219 /**
220 * struct efx_rx_page_state - Page-based rx buffer state
221 *
222 * Inserted at the start of every page allocated for receive buffers.
223 * Used to facilitate sharing dma mappings between recycled rx buffers
224 * and those passed up to the kernel.
225 *
226 * @refcnt: Number of struct efx_rx_buffer's referencing this page.
227 * When refcnt falls to zero, the page is unmapped for dma
228 * @dma_addr: The dma address of this page.
229 */
230 struct efx_rx_page_state {
231 unsigned refcnt;
232 dma_addr_t dma_addr;
233
234 unsigned int __pad[0] ____cacheline_aligned;
235 };
236
237 /**
238 * struct efx_rx_queue - An Efx RX queue
239 * @efx: The associated Efx NIC
240 * @buffer: The software buffer ring
241 * @rxd: The hardware descriptor ring
242 * @ptr_mask: The size of the ring minus 1.
243 * @enabled: Receive queue enabled indicator.
244 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
245 * @rxq_flush_pending.
246 * @added_count: Number of buffers added to the receive queue.
247 * @notified_count: Number of buffers given to NIC (<= @added_count).
248 * @removed_count: Number of buffers removed from the receive queue.
249 * @max_fill: RX descriptor maximum fill level (<= ring size)
250 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
251 * (<= @max_fill)
252 * @fast_fill_limit: The level to which a fast fill will fill
253 * (@fast_fill_trigger <= @fast_fill_limit <= @max_fill)
254 * @min_fill: RX descriptor minimum non-zero fill level.
255 * This records the minimum fill level observed when a ring
256 * refill was triggered.
257 * @alloc_page_count: RX allocation strategy counter.
258 * @alloc_skb_count: RX allocation strategy counter.
259 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
260 */
261 struct efx_rx_queue {
262 struct efx_nic *efx;
263 struct efx_rx_buffer *buffer;
264 struct efx_special_buffer rxd;
265 unsigned int ptr_mask;
266 bool enabled;
267 bool flush_pending;
268
269 int added_count;
270 int notified_count;
271 int removed_count;
272 unsigned int max_fill;
273 unsigned int fast_fill_trigger;
274 unsigned int fast_fill_limit;
275 unsigned int min_fill;
276 unsigned int min_overfill;
277 unsigned int alloc_page_count;
278 unsigned int alloc_skb_count;
279 struct timer_list slow_fill;
280 unsigned int slow_fill_count;
281 };
282
283 /**
284 * struct efx_buffer - An Efx general-purpose buffer
285 * @addr: host base address of the buffer
286 * @dma_addr: DMA base address of the buffer
287 * @len: Buffer length, in bytes
288 *
289 * The NIC uses these buffers for its interrupt status registers and
290 * MAC stats dumps.
291 */
292 struct efx_buffer {
293 void *addr;
294 dma_addr_t dma_addr;
295 unsigned int len;
296 };
297
298
299 enum efx_rx_alloc_method {
300 RX_ALLOC_METHOD_AUTO = 0,
301 RX_ALLOC_METHOD_SKB = 1,
302 RX_ALLOC_METHOD_PAGE = 2,
303 };
304
305 /**
306 * struct efx_channel - An Efx channel
307 *
308 * A channel comprises an event queue, at least one TX queue, at least
309 * one RX queue, and an associated tasklet for processing the event
310 * queue.
311 *
312 * @efx: Associated Efx NIC
313 * @channel: Channel instance number
314 * @enabled: Channel enabled indicator
315 * @irq: IRQ number (MSI and MSI-X only)
316 * @irq_moderation: IRQ moderation value (in hardware ticks)
317 * @napi_dev: Net device used with NAPI
318 * @napi_str: NAPI control structure
319 * @work_pending: Is work pending via NAPI?
320 * @eventq: Event queue buffer
321 * @eventq_mask: Event queue pointer mask
322 * @eventq_read_ptr: Event queue read pointer
323 * @last_eventq_read_ptr: Last event queue read pointer value.
324 * @last_irq_cpu: Last CPU to handle interrupt for this channel
325 * @irq_count: Number of IRQs since last adaptive moderation decision
326 * @irq_mod_score: IRQ moderation score
327 * @rx_alloc_level: Watermark based heuristic counter for pushing descriptors
328 * and diagnostic counters
329 * @rx_alloc_push_pages: RX allocation method currently in use for pushing
330 * descriptors
331 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
332 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
333 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
334 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
335 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
336 * @n_rx_overlength: Count of RX_OVERLENGTH errors
337 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
338 * @rx_queue: RX queue for this channel
339 * @tx_queue: TX queues for this channel
340 */
341 struct efx_channel {
342 struct efx_nic *efx;
343 int channel;
344 bool enabled;
345 int irq;
346 unsigned int irq_moderation;
347 struct net_device *napi_dev;
348 struct napi_struct napi_str;
349 bool work_pending;
350 struct efx_special_buffer eventq;
351 unsigned int eventq_mask;
352 unsigned int eventq_read_ptr;
353 unsigned int last_eventq_read_ptr;
354
355 int last_irq_cpu;
356 unsigned int irq_count;
357 unsigned int irq_mod_score;
358 #ifdef CONFIG_RFS_ACCEL
359 unsigned int rfs_filters_added;
360 #endif
361
362 int rx_alloc_level;
363 int rx_alloc_push_pages;
364
365 unsigned n_rx_tobe_disc;
366 unsigned n_rx_ip_hdr_chksum_err;
367 unsigned n_rx_tcp_udp_chksum_err;
368 unsigned n_rx_mcast_mismatch;
369 unsigned n_rx_frm_trunc;
370 unsigned n_rx_overlength;
371 unsigned n_skbuff_leaks;
372
373 /* Used to pipeline received packets in order to optimise memory
374 * access with prefetches.
375 */
376 struct efx_rx_buffer *rx_pkt;
377
378 struct efx_rx_queue rx_queue;
379 struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
380 };
381
382 enum efx_led_mode {
383 EFX_LED_OFF = 0,
384 EFX_LED_ON = 1,
385 EFX_LED_DEFAULT = 2
386 };
387
388 #define STRING_TABLE_LOOKUP(val, member) \
389 ((val) < member ## _max) ? member ## _names[val] : "(invalid)"
390
391 extern const char *const efx_loopback_mode_names[];
392 extern const unsigned int efx_loopback_mode_max;
393 #define LOOPBACK_MODE(efx) \
394 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
395
396 extern const char *const efx_reset_type_names[];
397 extern const unsigned int efx_reset_type_max;
398 #define RESET_TYPE(type) \
399 STRING_TABLE_LOOKUP(type, efx_reset_type)
400
401 enum efx_int_mode {
402 /* Be careful if altering to correct macro below */
403 EFX_INT_MODE_MSIX = 0,
404 EFX_INT_MODE_MSI = 1,
405 EFX_INT_MODE_LEGACY = 2,
406 EFX_INT_MODE_MAX /* Insert any new items before this */
407 };
408 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
409
410 enum nic_state {
411 STATE_INIT = 0,
412 STATE_RUNNING = 1,
413 STATE_FINI = 2,
414 STATE_DISABLED = 3,
415 STATE_MAX,
416 };
417
418 /*
419 * Alignment of page-allocated RX buffers
420 *
421 * Controls the number of bytes inserted at the start of an RX buffer.
422 * This is the equivalent of NET_IP_ALIGN [which controls the alignment
423 * of the skb->head for hardware DMA].
424 */
425 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
426 #define EFX_PAGE_IP_ALIGN 0
427 #else
428 #define EFX_PAGE_IP_ALIGN NET_IP_ALIGN
429 #endif
430
431 /*
432 * Alignment of the skb->head which wraps a page-allocated RX buffer
433 *
434 * The skb allocated to wrap an rx_buffer can have this alignment. Since
435 * the data is memcpy'd from the rx_buf, it does not need to be equal to
436 * EFX_PAGE_IP_ALIGN.
437 */
438 #define EFX_PAGE_SKB_ALIGN 2
439
440 /* Forward declaration */
441 struct efx_nic;
442
443 /* Pseudo bit-mask flow control field */
444 #define EFX_FC_RX FLOW_CTRL_RX
445 #define EFX_FC_TX FLOW_CTRL_TX
446 #define EFX_FC_AUTO 4
447
448 /**
449 * struct efx_link_state - Current state of the link
450 * @up: Link is up
451 * @fd: Link is full-duplex
452 * @fc: Actual flow control flags
453 * @speed: Link speed (Mbps)
454 */
455 struct efx_link_state {
456 bool up;
457 bool fd;
458 u8 fc;
459 unsigned int speed;
460 };
461
462 static inline bool efx_link_state_equal(const struct efx_link_state *left,
463 const struct efx_link_state *right)
464 {
465 return left->up == right->up && left->fd == right->fd &&
466 left->fc == right->fc && left->speed == right->speed;
467 }
468
469 /**
470 * struct efx_phy_operations - Efx PHY operations table
471 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
472 * efx->loopback_modes.
473 * @init: Initialise PHY
474 * @fini: Shut down PHY
475 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
476 * @poll: Update @link_state and report whether it changed.
477 * Serialised by the mac_lock.
478 * @get_settings: Get ethtool settings. Serialised by the mac_lock.
479 * @set_settings: Set ethtool settings. Serialised by the mac_lock.
480 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
481 * (only needed where AN bit is set in mmds)
482 * @test_alive: Test that PHY is 'alive' (online)
483 * @test_name: Get the name of a PHY-specific test/result
484 * @run_tests: Run tests and record results as appropriate (offline).
485 * Flags are the ethtool tests flags.
486 */
487 struct efx_phy_operations {
488 int (*probe) (struct efx_nic *efx);
489 int (*init) (struct efx_nic *efx);
490 void (*fini) (struct efx_nic *efx);
491 void (*remove) (struct efx_nic *efx);
492 int (*reconfigure) (struct efx_nic *efx);
493 bool (*poll) (struct efx_nic *efx);
494 void (*get_settings) (struct efx_nic *efx,
495 struct ethtool_cmd *ecmd);
496 int (*set_settings) (struct efx_nic *efx,
497 struct ethtool_cmd *ecmd);
498 void (*set_npage_adv) (struct efx_nic *efx, u32);
499 int (*test_alive) (struct efx_nic *efx);
500 const char *(*test_name) (struct efx_nic *efx, unsigned int index);
501 int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
502 };
503
504 /**
505 * @enum efx_phy_mode - PHY operating mode flags
506 * @PHY_MODE_NORMAL: on and should pass traffic
507 * @PHY_MODE_TX_DISABLED: on with TX disabled
508 * @PHY_MODE_LOW_POWER: set to low power through MDIO
509 * @PHY_MODE_OFF: switched off through external control
510 * @PHY_MODE_SPECIAL: on but will not pass traffic
511 */
512 enum efx_phy_mode {
513 PHY_MODE_NORMAL = 0,
514 PHY_MODE_TX_DISABLED = 1,
515 PHY_MODE_LOW_POWER = 2,
516 PHY_MODE_OFF = 4,
517 PHY_MODE_SPECIAL = 8,
518 };
519
520 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
521 {
522 return !!(mode & ~PHY_MODE_TX_DISABLED);
523 }
524
525 /*
526 * Efx extended statistics
527 *
528 * Not all statistics are provided by all supported MACs. The purpose
529 * is this structure is to contain the raw statistics provided by each
530 * MAC.
531 */
532 struct efx_mac_stats {
533 u64 tx_bytes;
534 u64 tx_good_bytes;
535 u64 tx_bad_bytes;
536 u64 tx_packets;
537 u64 tx_bad;
538 u64 tx_pause;
539 u64 tx_control;
540 u64 tx_unicast;
541 u64 tx_multicast;
542 u64 tx_broadcast;
543 u64 tx_lt64;
544 u64 tx_64;
545 u64 tx_65_to_127;
546 u64 tx_128_to_255;
547 u64 tx_256_to_511;
548 u64 tx_512_to_1023;
549 u64 tx_1024_to_15xx;
550 u64 tx_15xx_to_jumbo;
551 u64 tx_gtjumbo;
552 u64 tx_collision;
553 u64 tx_single_collision;
554 u64 tx_multiple_collision;
555 u64 tx_excessive_collision;
556 u64 tx_deferred;
557 u64 tx_late_collision;
558 u64 tx_excessive_deferred;
559 u64 tx_non_tcpudp;
560 u64 tx_mac_src_error;
561 u64 tx_ip_src_error;
562 u64 rx_bytes;
563 u64 rx_good_bytes;
564 u64 rx_bad_bytes;
565 u64 rx_packets;
566 u64 rx_good;
567 u64 rx_bad;
568 u64 rx_pause;
569 u64 rx_control;
570 u64 rx_unicast;
571 u64 rx_multicast;
572 u64 rx_broadcast;
573 u64 rx_lt64;
574 u64 rx_64;
575 u64 rx_65_to_127;
576 u64 rx_128_to_255;
577 u64 rx_256_to_511;
578 u64 rx_512_to_1023;
579 u64 rx_1024_to_15xx;
580 u64 rx_15xx_to_jumbo;
581 u64 rx_gtjumbo;
582 u64 rx_bad_lt64;
583 u64 rx_bad_64_to_15xx;
584 u64 rx_bad_15xx_to_jumbo;
585 u64 rx_bad_gtjumbo;
586 u64 rx_overflow;
587 u64 rx_missed;
588 u64 rx_false_carrier;
589 u64 rx_symbol_error;
590 u64 rx_align_error;
591 u64 rx_length_error;
592 u64 rx_internal_error;
593 u64 rx_good_lt64;
594 };
595
596 /* Number of bits used in a multicast filter hash address */
597 #define EFX_MCAST_HASH_BITS 8
598
599 /* Number of (single-bit) entries in a multicast filter hash */
600 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
601
602 /* An Efx multicast filter hash */
603 union efx_multicast_hash {
604 u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
605 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
606 };
607
608 struct efx_filter_state;
609
610 /**
611 * struct efx_nic - an Efx NIC
612 * @name: Device name (net device name or bus id before net device registered)
613 * @pci_dev: The PCI device
614 * @type: Controller type attributes
615 * @legacy_irq: IRQ number
616 * @legacy_irq_enabled: Are IRQs enabled on NIC (INT_EN_KER register)?
617 * @workqueue: Workqueue for port reconfigures and the HW monitor.
618 * Work items do not hold and must not acquire RTNL.
619 * @workqueue_name: Name of workqueue
620 * @reset_work: Scheduled reset workitem
621 * @membase_phys: Memory BAR value as physical address
622 * @membase: Memory BAR value
623 * @interrupt_mode: Interrupt mode
624 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
625 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
626 * @irq_rx_moderation: IRQ moderation time for RX event queues
627 * @msg_enable: Log message enable flags
628 * @state: Device state flag. Serialised by the rtnl_lock.
629 * @reset_pending: Bitmask for pending resets
630 * @tx_queue: TX DMA queues
631 * @rx_queue: RX DMA queues
632 * @channel: Channels
633 * @channel_name: Names for channels and their IRQs
634 * @rxq_entries: Size of receive queues requested by user.
635 * @txq_entries: Size of transmit queues requested by user.
636 * @next_buffer_table: First available buffer table id
637 * @n_channels: Number of channels in use
638 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
639 * @n_tx_channels: Number of channels used for TX
640 * @rx_buffer_len: RX buffer length
641 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
642 * @rx_hash_key: Toeplitz hash key for RSS
643 * @rx_indir_table: Indirection table for RSS
644 * @int_error_count: Number of internal errors seen recently
645 * @int_error_expire: Time at which error count will be expired
646 * @irq_status: Interrupt status buffer
647 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
648 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
649 * @mtd_list: List of MTDs attached to the NIC
650 * @nic_data: Hardware dependent state
651 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
652 * efx_monitor() and efx_reconfigure_port()
653 * @port_enabled: Port enabled indicator.
654 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
655 * efx_mac_work() with kernel interfaces. Safe to read under any
656 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
657 * be held to modify it.
658 * @port_initialized: Port initialized?
659 * @net_dev: Operating system network device. Consider holding the rtnl lock
660 * @stats_buffer: DMA buffer for statistics
661 * @phy_type: PHY type
662 * @phy_op: PHY interface
663 * @phy_data: PHY private data (including PHY-specific stats)
664 * @mdio: PHY MDIO interface
665 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
666 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
667 * @link_advertising: Autonegotiation advertising flags
668 * @link_state: Current state of the link
669 * @n_link_state_changes: Number of times the link has changed state
670 * @promiscuous: Promiscuous flag. Protected by netif_tx_lock.
671 * @multicast_hash: Multicast hash table
672 * @wanted_fc: Wanted flow control flags
673 * @mac_work: Work item for changing MAC promiscuity and multicast hash
674 * @loopback_mode: Loopback status
675 * @loopback_modes: Supported loopback mode bitmask
676 * @loopback_selftest: Offline self-test private state
677 * @drain_pending: Count of RX and TX queues that haven't been flushed and drained.
678 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
679 * Decremented when the efx_flush_rx_queue() is called.
680 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
681 * completed (either success or failure). Not used when MCDI is used to
682 * flush receive queues.
683 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
684 * @monitor_work: Hardware monitor workitem
685 * @biu_lock: BIU (bus interface unit) lock
686 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This
687 * field is used by efx_test_interrupts() to verify that an
688 * interrupt has occurred.
689 * @n_rx_nodesc_drop_cnt: RX no descriptor drop count
690 * @mac_stats: MAC statistics. These include all statistics the MACs
691 * can provide. Generic code converts these into a standard
692 * &struct net_device_stats.
693 * @stats_lock: Statistics update lock. Serialises statistics fetches
694 * and access to @mac_stats.
695 *
696 * This is stored in the private area of the &struct net_device.
697 */
698 struct efx_nic {
699 /* The following fields should be written very rarely */
700
701 char name[IFNAMSIZ];
702 struct pci_dev *pci_dev;
703 const struct efx_nic_type *type;
704 int legacy_irq;
705 bool legacy_irq_enabled;
706 struct workqueue_struct *workqueue;
707 char workqueue_name[16];
708 struct work_struct reset_work;
709 resource_size_t membase_phys;
710 void __iomem *membase;
711
712 enum efx_int_mode interrupt_mode;
713 unsigned int timer_quantum_ns;
714 bool irq_rx_adaptive;
715 unsigned int irq_rx_moderation;
716 u32 msg_enable;
717
718 enum nic_state state;
719 unsigned long reset_pending;
720
721 struct efx_channel *channel[EFX_MAX_CHANNELS];
722 char channel_name[EFX_MAX_CHANNELS][IFNAMSIZ + 6];
723
724 unsigned rxq_entries;
725 unsigned txq_entries;
726 unsigned next_buffer_table;
727 unsigned n_channels;
728 unsigned n_rx_channels;
729 unsigned tx_channel_offset;
730 unsigned n_tx_channels;
731 unsigned int rx_buffer_len;
732 unsigned int rx_buffer_order;
733 u8 rx_hash_key[40];
734 u32 rx_indir_table[128];
735
736 unsigned int_error_count;
737 unsigned long int_error_expire;
738
739 struct efx_buffer irq_status;
740 unsigned irq_zero_count;
741 unsigned irq_level;
742
743 #ifdef CONFIG_SFC_MTD
744 struct list_head mtd_list;
745 #endif
746
747 void *nic_data;
748
749 struct mutex mac_lock;
750 struct work_struct mac_work;
751 bool port_enabled;
752
753 bool port_initialized;
754 struct net_device *net_dev;
755
756 struct efx_buffer stats_buffer;
757
758 unsigned int phy_type;
759 const struct efx_phy_operations *phy_op;
760 void *phy_data;
761 struct mdio_if_info mdio;
762 unsigned int mdio_bus;
763 enum efx_phy_mode phy_mode;
764
765 u32 link_advertising;
766 struct efx_link_state link_state;
767 unsigned int n_link_state_changes;
768
769 bool promiscuous;
770 union efx_multicast_hash multicast_hash;
771 u8 wanted_fc;
772
773 atomic_t rx_reset;
774 enum efx_loopback_mode loopback_mode;
775 u64 loopback_modes;
776
777 void *loopback_selftest;
778
779 struct efx_filter_state *filter_state;
780
781 atomic_t drain_pending;
782 atomic_t rxq_flush_pending;
783 atomic_t rxq_flush_outstanding;
784 wait_queue_head_t flush_wq;
785
786 /* The following fields may be written more often */
787
788 struct delayed_work monitor_work ____cacheline_aligned_in_smp;
789 spinlock_t biu_lock;
790 int last_irq_cpu;
791 unsigned n_rx_nodesc_drop_cnt;
792 struct efx_mac_stats mac_stats;
793 spinlock_t stats_lock;
794 };
795
796 static inline int efx_dev_registered(struct efx_nic *efx)
797 {
798 return efx->net_dev->reg_state == NETREG_REGISTERED;
799 }
800
801 static inline unsigned int efx_port_num(struct efx_nic *efx)
802 {
803 return efx->net_dev->dev_id;
804 }
805
806 /**
807 * struct efx_nic_type - Efx device type definition
808 * @probe: Probe the controller
809 * @remove: Free resources allocated by probe()
810 * @init: Initialise the controller
811 * @fini: Shut down the controller
812 * @monitor: Periodic function for polling link state and hardware monitor
813 * @map_reset_reason: Map ethtool reset reason to a reset method
814 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
815 * @reset: Reset the controller hardware and possibly the PHY. This will
816 * be called while the controller is uninitialised.
817 * @probe_port: Probe the MAC and PHY
818 * @remove_port: Free resources allocated by probe_port()
819 * @handle_global_event: Handle a "global" event (may be %NULL)
820 * @prepare_flush: Prepare the hardware for flushing the DMA queues
821 * @update_stats: Update statistics not provided by event handling
822 * @start_stats: Start the regular fetching of statistics
823 * @stop_stats: Stop the regular fetching of statistics
824 * @set_id_led: Set state of identifying LED or revert to automatic function
825 * @push_irq_moderation: Apply interrupt moderation value
826 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
827 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
828 * to the hardware. Serialised by the mac_lock.
829 * @check_mac_fault: Check MAC fault state. True if fault present.
830 * @get_wol: Get WoL configuration from driver state
831 * @set_wol: Push WoL configuration to the NIC
832 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
833 * @test_registers: Test read/write functionality of control registers
834 * @test_nvram: Test validity of NVRAM contents
835 * @revision: Hardware architecture revision
836 * @mem_map_size: Memory BAR mapped size
837 * @txd_ptr_tbl_base: TX descriptor ring base address
838 * @rxd_ptr_tbl_base: RX descriptor ring base address
839 * @buf_tbl_base: Buffer table base address
840 * @evq_ptr_tbl_base: Event queue pointer table base address
841 * @evq_rptr_tbl_base: Event queue read-pointer table base address
842 * @max_dma_mask: Maximum possible DMA mask
843 * @rx_buffer_hash_size: Size of hash at start of RX buffer
844 * @rx_buffer_padding: Size of padding at end of RX buffer
845 * @max_interrupt_mode: Highest capability interrupt mode supported
846 * from &enum efx_init_mode.
847 * @phys_addr_channels: Number of channels with physically addressed
848 * descriptors
849 * @timer_period_max: Maximum period of interrupt timer (in ticks)
850 * @tx_dc_base: Base address in SRAM of TX queue descriptor caches
851 * @rx_dc_base: Base address in SRAM of RX queue descriptor caches
852 * @offload_features: net_device feature flags for protocol offload
853 * features implemented in hardware
854 */
855 struct efx_nic_type {
856 int (*probe)(struct efx_nic *efx);
857 void (*remove)(struct efx_nic *efx);
858 int (*init)(struct efx_nic *efx);
859 void (*fini)(struct efx_nic *efx);
860 void (*monitor)(struct efx_nic *efx);
861 enum reset_type (*map_reset_reason)(enum reset_type reason);
862 int (*map_reset_flags)(u32 *flags);
863 int (*reset)(struct efx_nic *efx, enum reset_type method);
864 int (*probe_port)(struct efx_nic *efx);
865 void (*remove_port)(struct efx_nic *efx);
866 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
867 void (*prepare_flush)(struct efx_nic *efx);
868 void (*update_stats)(struct efx_nic *efx);
869 void (*start_stats)(struct efx_nic *efx);
870 void (*stop_stats)(struct efx_nic *efx);
871 void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
872 void (*push_irq_moderation)(struct efx_channel *channel);
873 int (*reconfigure_port)(struct efx_nic *efx);
874 int (*reconfigure_mac)(struct efx_nic *efx);
875 bool (*check_mac_fault)(struct efx_nic *efx);
876 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
877 int (*set_wol)(struct efx_nic *efx, u32 type);
878 void (*resume_wol)(struct efx_nic *efx);
879 int (*test_registers)(struct efx_nic *efx);
880 int (*test_nvram)(struct efx_nic *efx);
881
882 int revision;
883 unsigned int mem_map_size;
884 unsigned int txd_ptr_tbl_base;
885 unsigned int rxd_ptr_tbl_base;
886 unsigned int buf_tbl_base;
887 unsigned int evq_ptr_tbl_base;
888 unsigned int evq_rptr_tbl_base;
889 u64 max_dma_mask;
890 unsigned int rx_buffer_hash_size;
891 unsigned int rx_buffer_padding;
892 unsigned int max_interrupt_mode;
893 unsigned int phys_addr_channels;
894 unsigned int timer_period_max;
895 unsigned int tx_dc_base;
896 unsigned int rx_dc_base;
897 netdev_features_t offload_features;
898 };
899
900 /**************************************************************************
901 *
902 * Prototypes and inline functions
903 *
904 *************************************************************************/
905
906 static inline struct efx_channel *
907 efx_get_channel(struct efx_nic *efx, unsigned index)
908 {
909 EFX_BUG_ON_PARANOID(index >= efx->n_channels);
910 return efx->channel[index];
911 }
912
913 /* Iterate over all used channels */
914 #define efx_for_each_channel(_channel, _efx) \
915 for (_channel = (_efx)->channel[0]; \
916 _channel; \
917 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \
918 (_efx)->channel[_channel->channel + 1] : NULL)
919
920 static inline struct efx_tx_queue *
921 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
922 {
923 EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
924 type >= EFX_TXQ_TYPES);
925 return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
926 }
927
928 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
929 {
930 return channel->channel - channel->efx->tx_channel_offset <
931 channel->efx->n_tx_channels;
932 }
933
934 static inline struct efx_tx_queue *
935 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
936 {
937 EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
938 type >= EFX_TXQ_TYPES);
939 return &channel->tx_queue[type];
940 }
941
942 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
943 {
944 return !(tx_queue->efx->net_dev->num_tc < 2 &&
945 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
946 }
947
948 /* Iterate over all TX queues belonging to a channel */
949 #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \
950 if (!efx_channel_has_tx_queues(_channel)) \
951 ; \
952 else \
953 for (_tx_queue = (_channel)->tx_queue; \
954 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
955 efx_tx_queue_used(_tx_queue); \
956 _tx_queue++)
957
958 /* Iterate over all possible TX queues belonging to a channel */
959 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel) \
960 for (_tx_queue = (_channel)->tx_queue; \
961 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES; \
962 _tx_queue++)
963
964 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
965 {
966 return channel->channel < channel->efx->n_rx_channels;
967 }
968
969 static inline struct efx_rx_queue *
970 efx_channel_get_rx_queue(struct efx_channel *channel)
971 {
972 EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
973 return &channel->rx_queue;
974 }
975
976 /* Iterate over all RX queues belonging to a channel */
977 #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \
978 if (!efx_channel_has_rx_queue(_channel)) \
979 ; \
980 else \
981 for (_rx_queue = &(_channel)->rx_queue; \
982 _rx_queue; \
983 _rx_queue = NULL)
984
985 static inline struct efx_channel *
986 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
987 {
988 return container_of(rx_queue, struct efx_channel, rx_queue);
989 }
990
991 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
992 {
993 return efx_rx_queue_channel(rx_queue)->channel;
994 }
995
996 /* Returns a pointer to the specified receive buffer in the RX
997 * descriptor queue.
998 */
999 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1000 unsigned int index)
1001 {
1002 return &rx_queue->buffer[index];
1003 }
1004
1005 /* Set bit in a little-endian bitfield */
1006 static inline void set_bit_le(unsigned nr, unsigned char *addr)
1007 {
1008 addr[nr / 8] |= (1 << (nr % 8));
1009 }
1010
1011 /* Clear bit in a little-endian bitfield */
1012 static inline void clear_bit_le(unsigned nr, unsigned char *addr)
1013 {
1014 addr[nr / 8] &= ~(1 << (nr % 8));
1015 }
1016
1017
1018 /**
1019 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1020 *
1021 * This calculates the maximum frame length that will be used for a
1022 * given MTU. The frame length will be equal to the MTU plus a
1023 * constant amount of header space and padding. This is the quantity
1024 * that the net driver will program into the MAC as the maximum frame
1025 * length.
1026 *
1027 * The 10G MAC requires 8-byte alignment on the frame
1028 * length, so we round up to the nearest 8.
1029 *
1030 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1031 * XGMII cycle). If the frame length reaches the maximum value in the
1032 * same cycle, the XMAC can miss the IPG altogether. We work around
1033 * this by adding a further 16 bytes.
1034 */
1035 #define EFX_MAX_FRAME_LEN(mtu) \
1036 ((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16)
1037
1038
1039 #endif /* EFX_NET_DRIVER_H */
This page took 0.066268 seconds and 6 git commands to generate.