Merge branch 'fixes' of git://git.linaro.org/people/rmk/linux-arm
[deliverable/linux.git] / drivers / net / ethernet / sfc / nic.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/cpu_rmap.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "regs.h"
23 #include "io.h"
24 #include "workarounds.h"
25
26 /**************************************************************************
27 *
28 * Configurable values
29 *
30 **************************************************************************
31 */
32
33 /* This is set to 16 for a good reason. In summary, if larger than
34 * 16, the descriptor cache holds more than a default socket
35 * buffer's worth of packets (for UDP we can only have at most one
36 * socket buffer's worth outstanding). This combined with the fact
37 * that we only get 1 TX event per descriptor cache means the NIC
38 * goes idle.
39 */
40 #define TX_DC_ENTRIES 16
41 #define TX_DC_ENTRIES_ORDER 1
42
43 #define RX_DC_ENTRIES 64
44 #define RX_DC_ENTRIES_ORDER 3
45
46 /* If EFX_MAX_INT_ERRORS internal errors occur within
47 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
48 * disable it.
49 */
50 #define EFX_INT_ERROR_EXPIRE 3600
51 #define EFX_MAX_INT_ERRORS 5
52
53 /* Depth of RX flush request fifo */
54 #define EFX_RX_FLUSH_COUNT 4
55
56 /* Driver generated events */
57 #define _EFX_CHANNEL_MAGIC_TEST 0x000101
58 #define _EFX_CHANNEL_MAGIC_FILL 0x000102
59 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
60 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
61
62 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
63 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
64
65 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
66 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
67 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
68 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
69 efx_rx_queue_index(_rx_queue))
70 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
71 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
72 efx_rx_queue_index(_rx_queue))
73 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
74 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
75 (_tx_queue)->queue)
76
77 static void efx_magic_event(struct efx_channel *channel, u32 magic);
78
79 /**************************************************************************
80 *
81 * Solarstorm hardware access
82 *
83 **************************************************************************/
84
85 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
86 unsigned int index)
87 {
88 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
89 value, index);
90 }
91
92 /* Read the current event from the event queue */
93 static inline efx_qword_t *efx_event(struct efx_channel *channel,
94 unsigned int index)
95 {
96 return ((efx_qword_t *) (channel->eventq.addr)) +
97 (index & channel->eventq_mask);
98 }
99
100 /* See if an event is present
101 *
102 * We check both the high and low dword of the event for all ones. We
103 * wrote all ones when we cleared the event, and no valid event can
104 * have all ones in either its high or low dwords. This approach is
105 * robust against reordering.
106 *
107 * Note that using a single 64-bit comparison is incorrect; even
108 * though the CPU read will be atomic, the DMA write may not be.
109 */
110 static inline int efx_event_present(efx_qword_t *event)
111 {
112 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
113 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
114 }
115
116 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
117 const efx_oword_t *mask)
118 {
119 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
120 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
121 }
122
123 int efx_nic_test_registers(struct efx_nic *efx,
124 const struct efx_nic_register_test *regs,
125 size_t n_regs)
126 {
127 unsigned address = 0, i, j;
128 efx_oword_t mask, imask, original, reg, buf;
129
130 for (i = 0; i < n_regs; ++i) {
131 address = regs[i].address;
132 mask = imask = regs[i].mask;
133 EFX_INVERT_OWORD(imask);
134
135 efx_reado(efx, &original, address);
136
137 /* bit sweep on and off */
138 for (j = 0; j < 128; j++) {
139 if (!EFX_EXTRACT_OWORD32(mask, j, j))
140 continue;
141
142 /* Test this testable bit can be set in isolation */
143 EFX_AND_OWORD(reg, original, mask);
144 EFX_SET_OWORD32(reg, j, j, 1);
145
146 efx_writeo(efx, &reg, address);
147 efx_reado(efx, &buf, address);
148
149 if (efx_masked_compare_oword(&reg, &buf, &mask))
150 goto fail;
151
152 /* Test this testable bit can be cleared in isolation */
153 EFX_OR_OWORD(reg, original, mask);
154 EFX_SET_OWORD32(reg, j, j, 0);
155
156 efx_writeo(efx, &reg, address);
157 efx_reado(efx, &buf, address);
158
159 if (efx_masked_compare_oword(&reg, &buf, &mask))
160 goto fail;
161 }
162
163 efx_writeo(efx, &original, address);
164 }
165
166 return 0;
167
168 fail:
169 netif_err(efx, hw, efx->net_dev,
170 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
171 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
172 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
173 return -EIO;
174 }
175
176 /**************************************************************************
177 *
178 * Special buffer handling
179 * Special buffers are used for event queues and the TX and RX
180 * descriptor rings.
181 *
182 *************************************************************************/
183
184 /*
185 * Initialise a special buffer
186 *
187 * This will define a buffer (previously allocated via
188 * efx_alloc_special_buffer()) in the buffer table, allowing
189 * it to be used for event queues, descriptor rings etc.
190 */
191 static void
192 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
193 {
194 efx_qword_t buf_desc;
195 unsigned int index;
196 dma_addr_t dma_addr;
197 int i;
198
199 EFX_BUG_ON_PARANOID(!buffer->addr);
200
201 /* Write buffer descriptors to NIC */
202 for (i = 0; i < buffer->entries; i++) {
203 index = buffer->index + i;
204 dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
205 netif_dbg(efx, probe, efx->net_dev,
206 "mapping special buffer %d at %llx\n",
207 index, (unsigned long long)dma_addr);
208 EFX_POPULATE_QWORD_3(buf_desc,
209 FRF_AZ_BUF_ADR_REGION, 0,
210 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
211 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
212 efx_write_buf_tbl(efx, &buf_desc, index);
213 }
214 }
215
216 /* Unmaps a buffer and clears the buffer table entries */
217 static void
218 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
219 {
220 efx_oword_t buf_tbl_upd;
221 unsigned int start = buffer->index;
222 unsigned int end = (buffer->index + buffer->entries - 1);
223
224 if (!buffer->entries)
225 return;
226
227 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
228 buffer->index, buffer->index + buffer->entries - 1);
229
230 EFX_POPULATE_OWORD_4(buf_tbl_upd,
231 FRF_AZ_BUF_UPD_CMD, 0,
232 FRF_AZ_BUF_CLR_CMD, 1,
233 FRF_AZ_BUF_CLR_END_ID, end,
234 FRF_AZ_BUF_CLR_START_ID, start);
235 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
236 }
237
238 /*
239 * Allocate a new special buffer
240 *
241 * This allocates memory for a new buffer, clears it and allocates a
242 * new buffer ID range. It does not write into the buffer table.
243 *
244 * This call will allocate 4KB buffers, since 8KB buffers can't be
245 * used for event queues and descriptor rings.
246 */
247 static int efx_alloc_special_buffer(struct efx_nic *efx,
248 struct efx_special_buffer *buffer,
249 unsigned int len)
250 {
251 len = ALIGN(len, EFX_BUF_SIZE);
252
253 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
254 &buffer->dma_addr, GFP_KERNEL);
255 if (!buffer->addr)
256 return -ENOMEM;
257 buffer->len = len;
258 buffer->entries = len / EFX_BUF_SIZE;
259 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
260
261 /* Select new buffer ID */
262 buffer->index = efx->next_buffer_table;
263 efx->next_buffer_table += buffer->entries;
264 #ifdef CONFIG_SFC_SRIOV
265 BUG_ON(efx_sriov_enabled(efx) &&
266 efx->vf_buftbl_base < efx->next_buffer_table);
267 #endif
268
269 netif_dbg(efx, probe, efx->net_dev,
270 "allocating special buffers %d-%d at %llx+%x "
271 "(virt %p phys %llx)\n", buffer->index,
272 buffer->index + buffer->entries - 1,
273 (u64)buffer->dma_addr, len,
274 buffer->addr, (u64)virt_to_phys(buffer->addr));
275
276 return 0;
277 }
278
279 static void
280 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
281 {
282 if (!buffer->addr)
283 return;
284
285 netif_dbg(efx, hw, efx->net_dev,
286 "deallocating special buffers %d-%d at %llx+%x "
287 "(virt %p phys %llx)\n", buffer->index,
288 buffer->index + buffer->entries - 1,
289 (u64)buffer->dma_addr, buffer->len,
290 buffer->addr, (u64)virt_to_phys(buffer->addr));
291
292 dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
293 buffer->dma_addr);
294 buffer->addr = NULL;
295 buffer->entries = 0;
296 }
297
298 /**************************************************************************
299 *
300 * Generic buffer handling
301 * These buffers are used for interrupt status, MAC stats, etc.
302 *
303 **************************************************************************/
304
305 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
306 unsigned int len)
307 {
308 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
309 &buffer->dma_addr,
310 GFP_ATOMIC | __GFP_ZERO);
311 if (!buffer->addr)
312 return -ENOMEM;
313 buffer->len = len;
314 return 0;
315 }
316
317 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
318 {
319 if (buffer->addr) {
320 dma_free_coherent(&efx->pci_dev->dev, buffer->len,
321 buffer->addr, buffer->dma_addr);
322 buffer->addr = NULL;
323 }
324 }
325
326 /**************************************************************************
327 *
328 * TX path
329 *
330 **************************************************************************/
331
332 /* Returns a pointer to the specified transmit descriptor in the TX
333 * descriptor queue belonging to the specified channel.
334 */
335 static inline efx_qword_t *
336 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
337 {
338 return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
339 }
340
341 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
342 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
343 {
344 unsigned write_ptr;
345 efx_dword_t reg;
346
347 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
348 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
349 efx_writed_page(tx_queue->efx, &reg,
350 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
351 }
352
353 /* Write pointer and first descriptor for TX descriptor ring */
354 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
355 const efx_qword_t *txd)
356 {
357 unsigned write_ptr;
358 efx_oword_t reg;
359
360 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
361 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
362
363 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
364 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
365 FRF_AZ_TX_DESC_WPTR, write_ptr);
366 reg.qword[0] = *txd;
367 efx_writeo_page(tx_queue->efx, &reg,
368 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
369 }
370
371 static inline bool
372 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
373 {
374 unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
375
376 if (empty_read_count == 0)
377 return false;
378
379 tx_queue->empty_read_count = 0;
380 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0
381 && tx_queue->write_count - write_count == 1;
382 }
383
384 /* For each entry inserted into the software descriptor ring, create a
385 * descriptor in the hardware TX descriptor ring (in host memory), and
386 * write a doorbell.
387 */
388 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
389 {
390
391 struct efx_tx_buffer *buffer;
392 efx_qword_t *txd;
393 unsigned write_ptr;
394 unsigned old_write_count = tx_queue->write_count;
395
396 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
397
398 do {
399 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
400 buffer = &tx_queue->buffer[write_ptr];
401 txd = efx_tx_desc(tx_queue, write_ptr);
402 ++tx_queue->write_count;
403
404 /* Create TX descriptor ring entry */
405 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
406 EFX_POPULATE_QWORD_4(*txd,
407 FSF_AZ_TX_KER_CONT,
408 buffer->flags & EFX_TX_BUF_CONT,
409 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
410 FSF_AZ_TX_KER_BUF_REGION, 0,
411 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
412 } while (tx_queue->write_count != tx_queue->insert_count);
413
414 wmb(); /* Ensure descriptors are written before they are fetched */
415
416 if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
417 txd = efx_tx_desc(tx_queue,
418 old_write_count & tx_queue->ptr_mask);
419 efx_push_tx_desc(tx_queue, txd);
420 ++tx_queue->pushes;
421 } else {
422 efx_notify_tx_desc(tx_queue);
423 }
424 }
425
426 /* Allocate hardware resources for a TX queue */
427 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
428 {
429 struct efx_nic *efx = tx_queue->efx;
430 unsigned entries;
431
432 entries = tx_queue->ptr_mask + 1;
433 return efx_alloc_special_buffer(efx, &tx_queue->txd,
434 entries * sizeof(efx_qword_t));
435 }
436
437 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
438 {
439 struct efx_nic *efx = tx_queue->efx;
440 efx_oword_t reg;
441
442 /* Pin TX descriptor ring */
443 efx_init_special_buffer(efx, &tx_queue->txd);
444
445 /* Push TX descriptor ring to card */
446 EFX_POPULATE_OWORD_10(reg,
447 FRF_AZ_TX_DESCQ_EN, 1,
448 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
449 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
450 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
451 FRF_AZ_TX_DESCQ_EVQ_ID,
452 tx_queue->channel->channel,
453 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
454 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
455 FRF_AZ_TX_DESCQ_SIZE,
456 __ffs(tx_queue->txd.entries),
457 FRF_AZ_TX_DESCQ_TYPE, 0,
458 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
459
460 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
461 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
462 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
463 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
464 !csum);
465 }
466
467 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
468 tx_queue->queue);
469
470 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
471 /* Only 128 bits in this register */
472 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
473
474 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
475 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
476 __clear_bit_le(tx_queue->queue, &reg);
477 else
478 __set_bit_le(tx_queue->queue, &reg);
479 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
480 }
481
482 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
483 EFX_POPULATE_OWORD_1(reg,
484 FRF_BZ_TX_PACE,
485 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
486 FFE_BZ_TX_PACE_OFF :
487 FFE_BZ_TX_PACE_RESERVED);
488 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
489 tx_queue->queue);
490 }
491 }
492
493 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
494 {
495 struct efx_nic *efx = tx_queue->efx;
496 efx_oword_t tx_flush_descq;
497
498 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
499 atomic_set(&tx_queue->flush_outstanding, 1);
500
501 EFX_POPULATE_OWORD_2(tx_flush_descq,
502 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
503 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
504 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
505 }
506
507 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
508 {
509 struct efx_nic *efx = tx_queue->efx;
510 efx_oword_t tx_desc_ptr;
511
512 /* Remove TX descriptor ring from card */
513 EFX_ZERO_OWORD(tx_desc_ptr);
514 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
515 tx_queue->queue);
516
517 /* Unpin TX descriptor ring */
518 efx_fini_special_buffer(efx, &tx_queue->txd);
519 }
520
521 /* Free buffers backing TX queue */
522 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
523 {
524 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
525 }
526
527 /**************************************************************************
528 *
529 * RX path
530 *
531 **************************************************************************/
532
533 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
534 static inline efx_qword_t *
535 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
536 {
537 return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
538 }
539
540 /* This creates an entry in the RX descriptor queue */
541 static inline void
542 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
543 {
544 struct efx_rx_buffer *rx_buf;
545 efx_qword_t *rxd;
546
547 rxd = efx_rx_desc(rx_queue, index);
548 rx_buf = efx_rx_buffer(rx_queue, index);
549 EFX_POPULATE_QWORD_3(*rxd,
550 FSF_AZ_RX_KER_BUF_SIZE,
551 rx_buf->len -
552 rx_queue->efx->type->rx_buffer_padding,
553 FSF_AZ_RX_KER_BUF_REGION, 0,
554 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
555 }
556
557 /* This writes to the RX_DESC_WPTR register for the specified receive
558 * descriptor ring.
559 */
560 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
561 {
562 struct efx_nic *efx = rx_queue->efx;
563 efx_dword_t reg;
564 unsigned write_ptr;
565
566 while (rx_queue->notified_count != rx_queue->added_count) {
567 efx_build_rx_desc(
568 rx_queue,
569 rx_queue->notified_count & rx_queue->ptr_mask);
570 ++rx_queue->notified_count;
571 }
572
573 wmb();
574 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
575 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
576 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
577 efx_rx_queue_index(rx_queue));
578 }
579
580 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
581 {
582 struct efx_nic *efx = rx_queue->efx;
583 unsigned entries;
584
585 entries = rx_queue->ptr_mask + 1;
586 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
587 entries * sizeof(efx_qword_t));
588 }
589
590 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
591 {
592 efx_oword_t rx_desc_ptr;
593 struct efx_nic *efx = rx_queue->efx;
594 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
595 bool iscsi_digest_en = is_b0;
596 bool jumbo_en;
597
598 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
599 * DMA to continue after a PCIe page boundary (and scattering
600 * is not possible). In Falcon B0 and Siena, it enables
601 * scatter.
602 */
603 jumbo_en = !is_b0 || efx->rx_scatter;
604
605 netif_dbg(efx, hw, efx->net_dev,
606 "RX queue %d ring in special buffers %d-%d\n",
607 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
608 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
609
610 rx_queue->scatter_n = 0;
611
612 /* Pin RX descriptor ring */
613 efx_init_special_buffer(efx, &rx_queue->rxd);
614
615 /* Push RX descriptor ring to card */
616 EFX_POPULATE_OWORD_10(rx_desc_ptr,
617 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
618 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
619 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
620 FRF_AZ_RX_DESCQ_EVQ_ID,
621 efx_rx_queue_channel(rx_queue)->channel,
622 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
623 FRF_AZ_RX_DESCQ_LABEL,
624 efx_rx_queue_index(rx_queue),
625 FRF_AZ_RX_DESCQ_SIZE,
626 __ffs(rx_queue->rxd.entries),
627 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
628 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
629 FRF_AZ_RX_DESCQ_EN, 1);
630 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
631 efx_rx_queue_index(rx_queue));
632 }
633
634 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
635 {
636 struct efx_nic *efx = rx_queue->efx;
637 efx_oword_t rx_flush_descq;
638
639 EFX_POPULATE_OWORD_2(rx_flush_descq,
640 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
641 FRF_AZ_RX_FLUSH_DESCQ,
642 efx_rx_queue_index(rx_queue));
643 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
644 }
645
646 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
647 {
648 efx_oword_t rx_desc_ptr;
649 struct efx_nic *efx = rx_queue->efx;
650
651 /* Remove RX descriptor ring from card */
652 EFX_ZERO_OWORD(rx_desc_ptr);
653 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
654 efx_rx_queue_index(rx_queue));
655
656 /* Unpin RX descriptor ring */
657 efx_fini_special_buffer(efx, &rx_queue->rxd);
658 }
659
660 /* Free buffers backing RX queue */
661 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
662 {
663 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
664 }
665
666 /**************************************************************************
667 *
668 * Flush handling
669 *
670 **************************************************************************/
671
672 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
673 * or more RX flushes can be kicked off.
674 */
675 static bool efx_flush_wake(struct efx_nic *efx)
676 {
677 /* Ensure that all updates are visible to efx_nic_flush_queues() */
678 smp_mb();
679
680 return (atomic_read(&efx->drain_pending) == 0 ||
681 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
682 && atomic_read(&efx->rxq_flush_pending) > 0));
683 }
684
685 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
686 {
687 bool i = true;
688 efx_oword_t txd_ptr_tbl;
689 struct efx_channel *channel;
690 struct efx_tx_queue *tx_queue;
691
692 efx_for_each_channel(channel, efx) {
693 efx_for_each_channel_tx_queue(tx_queue, channel) {
694 efx_reado_table(efx, &txd_ptr_tbl,
695 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
696 if (EFX_OWORD_FIELD(txd_ptr_tbl,
697 FRF_AZ_TX_DESCQ_FLUSH) ||
698 EFX_OWORD_FIELD(txd_ptr_tbl,
699 FRF_AZ_TX_DESCQ_EN)) {
700 netif_dbg(efx, hw, efx->net_dev,
701 "flush did not complete on TXQ %d\n",
702 tx_queue->queue);
703 i = false;
704 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
705 1, 0)) {
706 /* The flush is complete, but we didn't
707 * receive a flush completion event
708 */
709 netif_dbg(efx, hw, efx->net_dev,
710 "flush complete on TXQ %d, so drain "
711 "the queue\n", tx_queue->queue);
712 /* Don't need to increment drain_pending as it
713 * has already been incremented for the queues
714 * which did not drain
715 */
716 efx_magic_event(channel,
717 EFX_CHANNEL_MAGIC_TX_DRAIN(
718 tx_queue));
719 }
720 }
721 }
722
723 return i;
724 }
725
726 /* Flush all the transmit queues, and continue flushing receive queues until
727 * they're all flushed. Wait for the DRAIN events to be recieved so that there
728 * are no more RX and TX events left on any channel. */
729 int efx_nic_flush_queues(struct efx_nic *efx)
730 {
731 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
732 struct efx_channel *channel;
733 struct efx_rx_queue *rx_queue;
734 struct efx_tx_queue *tx_queue;
735 int rc = 0;
736
737 efx->type->prepare_flush(efx);
738
739 efx_for_each_channel(channel, efx) {
740 efx_for_each_channel_tx_queue(tx_queue, channel) {
741 atomic_inc(&efx->drain_pending);
742 efx_flush_tx_queue(tx_queue);
743 }
744 efx_for_each_channel_rx_queue(rx_queue, channel) {
745 atomic_inc(&efx->drain_pending);
746 rx_queue->flush_pending = true;
747 atomic_inc(&efx->rxq_flush_pending);
748 }
749 }
750
751 while (timeout && atomic_read(&efx->drain_pending) > 0) {
752 /* If SRIOV is enabled, then offload receive queue flushing to
753 * the firmware (though we will still have to poll for
754 * completion). If that fails, fall back to the old scheme.
755 */
756 if (efx_sriov_enabled(efx)) {
757 rc = efx_mcdi_flush_rxqs(efx);
758 if (!rc)
759 goto wait;
760 }
761
762 /* The hardware supports four concurrent rx flushes, each of
763 * which may need to be retried if there is an outstanding
764 * descriptor fetch
765 */
766 efx_for_each_channel(channel, efx) {
767 efx_for_each_channel_rx_queue(rx_queue, channel) {
768 if (atomic_read(&efx->rxq_flush_outstanding) >=
769 EFX_RX_FLUSH_COUNT)
770 break;
771
772 if (rx_queue->flush_pending) {
773 rx_queue->flush_pending = false;
774 atomic_dec(&efx->rxq_flush_pending);
775 atomic_inc(&efx->rxq_flush_outstanding);
776 efx_flush_rx_queue(rx_queue);
777 }
778 }
779 }
780
781 wait:
782 timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
783 timeout);
784 }
785
786 if (atomic_read(&efx->drain_pending) &&
787 !efx_check_tx_flush_complete(efx)) {
788 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
789 "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
790 atomic_read(&efx->rxq_flush_outstanding),
791 atomic_read(&efx->rxq_flush_pending));
792 rc = -ETIMEDOUT;
793
794 atomic_set(&efx->drain_pending, 0);
795 atomic_set(&efx->rxq_flush_pending, 0);
796 atomic_set(&efx->rxq_flush_outstanding, 0);
797 }
798
799 efx->type->finish_flush(efx);
800
801 return rc;
802 }
803
804 /**************************************************************************
805 *
806 * Event queue processing
807 * Event queues are processed by per-channel tasklets.
808 *
809 **************************************************************************/
810
811 /* Update a channel's event queue's read pointer (RPTR) register
812 *
813 * This writes the EVQ_RPTR_REG register for the specified channel's
814 * event queue.
815 */
816 void efx_nic_eventq_read_ack(struct efx_channel *channel)
817 {
818 efx_dword_t reg;
819 struct efx_nic *efx = channel->efx;
820
821 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
822 channel->eventq_read_ptr & channel->eventq_mask);
823
824 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
825 * of 4 bytes, but it is really 16 bytes just like later revisions.
826 */
827 efx_writed(efx, &reg,
828 efx->type->evq_rptr_tbl_base +
829 FR_BZ_EVQ_RPTR_STEP * channel->channel);
830 }
831
832 /* Use HW to insert a SW defined event */
833 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
834 efx_qword_t *event)
835 {
836 efx_oword_t drv_ev_reg;
837
838 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
839 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
840 drv_ev_reg.u32[0] = event->u32[0];
841 drv_ev_reg.u32[1] = event->u32[1];
842 drv_ev_reg.u32[2] = 0;
843 drv_ev_reg.u32[3] = 0;
844 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
845 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
846 }
847
848 static void efx_magic_event(struct efx_channel *channel, u32 magic)
849 {
850 efx_qword_t event;
851
852 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
853 FSE_AZ_EV_CODE_DRV_GEN_EV,
854 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
855 efx_generate_event(channel->efx, channel->channel, &event);
856 }
857
858 /* Handle a transmit completion event
859 *
860 * The NIC batches TX completion events; the message we receive is of
861 * the form "complete all TX events up to this index".
862 */
863 static int
864 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
865 {
866 unsigned int tx_ev_desc_ptr;
867 unsigned int tx_ev_q_label;
868 struct efx_tx_queue *tx_queue;
869 struct efx_nic *efx = channel->efx;
870 int tx_packets = 0;
871
872 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
873 return 0;
874
875 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
876 /* Transmit completion */
877 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
878 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
879 tx_queue = efx_channel_get_tx_queue(
880 channel, tx_ev_q_label % EFX_TXQ_TYPES);
881 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
882 tx_queue->ptr_mask);
883 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
884 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
885 /* Rewrite the FIFO write pointer */
886 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
887 tx_queue = efx_channel_get_tx_queue(
888 channel, tx_ev_q_label % EFX_TXQ_TYPES);
889
890 netif_tx_lock(efx->net_dev);
891 efx_notify_tx_desc(tx_queue);
892 netif_tx_unlock(efx->net_dev);
893 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
894 EFX_WORKAROUND_10727(efx)) {
895 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
896 } else {
897 netif_err(efx, tx_err, efx->net_dev,
898 "channel %d unexpected TX event "
899 EFX_QWORD_FMT"\n", channel->channel,
900 EFX_QWORD_VAL(*event));
901 }
902
903 return tx_packets;
904 }
905
906 /* Detect errors included in the rx_evt_pkt_ok bit. */
907 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
908 const efx_qword_t *event)
909 {
910 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
911 struct efx_nic *efx = rx_queue->efx;
912 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
913 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
914 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
915 bool rx_ev_other_err, rx_ev_pause_frm;
916 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
917 unsigned rx_ev_pkt_type;
918
919 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
920 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
921 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
922 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
923 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
924 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
925 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
926 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
927 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
928 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
929 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
930 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
931 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
932 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
933 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
934
935 /* Every error apart from tobe_disc and pause_frm */
936 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
937 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
938 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
939
940 /* Count errors that are not in MAC stats. Ignore expected
941 * checksum errors during self-test. */
942 if (rx_ev_frm_trunc)
943 ++channel->n_rx_frm_trunc;
944 else if (rx_ev_tobe_disc)
945 ++channel->n_rx_tobe_disc;
946 else if (!efx->loopback_selftest) {
947 if (rx_ev_ip_hdr_chksum_err)
948 ++channel->n_rx_ip_hdr_chksum_err;
949 else if (rx_ev_tcp_udp_chksum_err)
950 ++channel->n_rx_tcp_udp_chksum_err;
951 }
952
953 /* TOBE_DISC is expected on unicast mismatches; don't print out an
954 * error message. FRM_TRUNC indicates RXDP dropped the packet due
955 * to a FIFO overflow.
956 */
957 #ifdef DEBUG
958 if (rx_ev_other_err && net_ratelimit()) {
959 netif_dbg(efx, rx_err, efx->net_dev,
960 " RX queue %d unexpected RX event "
961 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
962 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
963 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
964 rx_ev_ip_hdr_chksum_err ?
965 " [IP_HDR_CHKSUM_ERR]" : "",
966 rx_ev_tcp_udp_chksum_err ?
967 " [TCP_UDP_CHKSUM_ERR]" : "",
968 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
969 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
970 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
971 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
972 rx_ev_pause_frm ? " [PAUSE]" : "");
973 }
974 #endif
975
976 /* The frame must be discarded if any of these are true. */
977 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
978 rx_ev_tobe_disc | rx_ev_pause_frm) ?
979 EFX_RX_PKT_DISCARD : 0;
980 }
981
982 /* Handle receive events that are not in-order. Return true if this
983 * can be handled as a partial packet discard, false if it's more
984 * serious.
985 */
986 static bool
987 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
988 {
989 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
990 struct efx_nic *efx = rx_queue->efx;
991 unsigned expected, dropped;
992
993 if (rx_queue->scatter_n &&
994 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
995 rx_queue->ptr_mask)) {
996 ++channel->n_rx_nodesc_trunc;
997 return true;
998 }
999
1000 expected = rx_queue->removed_count & rx_queue->ptr_mask;
1001 dropped = (index - expected) & rx_queue->ptr_mask;
1002 netif_info(efx, rx_err, efx->net_dev,
1003 "dropped %d events (index=%d expected=%d)\n",
1004 dropped, index, expected);
1005
1006 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
1007 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1008 return false;
1009 }
1010
1011 /* Handle a packet received event
1012 *
1013 * The NIC gives a "discard" flag if it's a unicast packet with the
1014 * wrong destination address
1015 * Also "is multicast" and "matches multicast filter" flags can be used to
1016 * discard non-matching multicast packets.
1017 */
1018 static void
1019 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
1020 {
1021 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
1022 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
1023 unsigned expected_ptr;
1024 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
1025 u16 flags;
1026 struct efx_rx_queue *rx_queue;
1027 struct efx_nic *efx = channel->efx;
1028
1029 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1030 return;
1031
1032 rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
1033 rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1034 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1035 channel->channel);
1036
1037 rx_queue = efx_channel_get_rx_queue(channel);
1038
1039 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1040 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1041 rx_queue->ptr_mask);
1042
1043 /* Check for partial drops and other errors */
1044 if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1045 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1046 if (rx_ev_desc_ptr != expected_ptr &&
1047 !efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1048 return;
1049
1050 /* Discard all pending fragments */
1051 if (rx_queue->scatter_n) {
1052 efx_rx_packet(
1053 rx_queue,
1054 rx_queue->removed_count & rx_queue->ptr_mask,
1055 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1056 rx_queue->removed_count += rx_queue->scatter_n;
1057 rx_queue->scatter_n = 0;
1058 }
1059
1060 /* Return if there is no new fragment */
1061 if (rx_ev_desc_ptr != expected_ptr)
1062 return;
1063
1064 /* Discard new fragment if not SOP */
1065 if (!rx_ev_sop) {
1066 efx_rx_packet(
1067 rx_queue,
1068 rx_queue->removed_count & rx_queue->ptr_mask,
1069 1, 0, EFX_RX_PKT_DISCARD);
1070 ++rx_queue->removed_count;
1071 return;
1072 }
1073 }
1074
1075 ++rx_queue->scatter_n;
1076 if (rx_ev_cont)
1077 return;
1078
1079 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1080 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1081 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1082
1083 if (likely(rx_ev_pkt_ok)) {
1084 /* If packet is marked as OK then we can rely on the
1085 * hardware checksum and classification.
1086 */
1087 flags = 0;
1088 switch (rx_ev_hdr_type) {
1089 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1090 flags |= EFX_RX_PKT_TCP;
1091 /* fall through */
1092 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1093 flags |= EFX_RX_PKT_CSUMMED;
1094 /* fall through */
1095 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1096 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1097 break;
1098 }
1099 } else {
1100 flags = efx_handle_rx_not_ok(rx_queue, event);
1101 }
1102
1103 /* Detect multicast packets that didn't match the filter */
1104 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1105 if (rx_ev_mcast_pkt) {
1106 unsigned int rx_ev_mcast_hash_match =
1107 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1108
1109 if (unlikely(!rx_ev_mcast_hash_match)) {
1110 ++channel->n_rx_mcast_mismatch;
1111 flags |= EFX_RX_PKT_DISCARD;
1112 }
1113 }
1114
1115 channel->irq_mod_score += 2;
1116
1117 /* Handle received packet */
1118 efx_rx_packet(rx_queue,
1119 rx_queue->removed_count & rx_queue->ptr_mask,
1120 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1121 rx_queue->removed_count += rx_queue->scatter_n;
1122 rx_queue->scatter_n = 0;
1123 }
1124
1125 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1126 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1127 * of all transmit completions.
1128 */
1129 static void
1130 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1131 {
1132 struct efx_tx_queue *tx_queue;
1133 int qid;
1134
1135 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1136 if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1137 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1138 qid % EFX_TXQ_TYPES);
1139 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1140 efx_magic_event(tx_queue->channel,
1141 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1142 }
1143 }
1144 }
1145
1146 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1147 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1148 * the RX queue back to the mask of RX queues in need of flushing.
1149 */
1150 static void
1151 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1152 {
1153 struct efx_channel *channel;
1154 struct efx_rx_queue *rx_queue;
1155 int qid;
1156 bool failed;
1157
1158 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1159 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1160 if (qid >= efx->n_channels)
1161 return;
1162 channel = efx_get_channel(efx, qid);
1163 if (!efx_channel_has_rx_queue(channel))
1164 return;
1165 rx_queue = efx_channel_get_rx_queue(channel);
1166
1167 if (failed) {
1168 netif_info(efx, hw, efx->net_dev,
1169 "RXQ %d flush retry\n", qid);
1170 rx_queue->flush_pending = true;
1171 atomic_inc(&efx->rxq_flush_pending);
1172 } else {
1173 efx_magic_event(efx_rx_queue_channel(rx_queue),
1174 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1175 }
1176 atomic_dec(&efx->rxq_flush_outstanding);
1177 if (efx_flush_wake(efx))
1178 wake_up(&efx->flush_wq);
1179 }
1180
1181 static void
1182 efx_handle_drain_event(struct efx_channel *channel)
1183 {
1184 struct efx_nic *efx = channel->efx;
1185
1186 WARN_ON(atomic_read(&efx->drain_pending) == 0);
1187 atomic_dec(&efx->drain_pending);
1188 if (efx_flush_wake(efx))
1189 wake_up(&efx->flush_wq);
1190 }
1191
1192 static void
1193 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1194 {
1195 struct efx_nic *efx = channel->efx;
1196 struct efx_rx_queue *rx_queue =
1197 efx_channel_has_rx_queue(channel) ?
1198 efx_channel_get_rx_queue(channel) : NULL;
1199 unsigned magic, code;
1200
1201 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1202 code = _EFX_CHANNEL_MAGIC_CODE(magic);
1203
1204 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1205 channel->event_test_cpu = raw_smp_processor_id();
1206 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1207 /* The queue must be empty, so we won't receive any rx
1208 * events, so efx_process_channel() won't refill the
1209 * queue. Refill it here */
1210 efx_fast_push_rx_descriptors(rx_queue);
1211 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1212 rx_queue->enabled = false;
1213 efx_handle_drain_event(channel);
1214 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1215 efx_handle_drain_event(channel);
1216 } else {
1217 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1218 "generated event "EFX_QWORD_FMT"\n",
1219 channel->channel, EFX_QWORD_VAL(*event));
1220 }
1221 }
1222
1223 static void
1224 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1225 {
1226 struct efx_nic *efx = channel->efx;
1227 unsigned int ev_sub_code;
1228 unsigned int ev_sub_data;
1229
1230 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1231 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1232
1233 switch (ev_sub_code) {
1234 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1235 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1236 channel->channel, ev_sub_data);
1237 efx_handle_tx_flush_done(efx, event);
1238 efx_sriov_tx_flush_done(efx, event);
1239 break;
1240 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1241 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1242 channel->channel, ev_sub_data);
1243 efx_handle_rx_flush_done(efx, event);
1244 efx_sriov_rx_flush_done(efx, event);
1245 break;
1246 case FSE_AZ_EVQ_INIT_DONE_EV:
1247 netif_dbg(efx, hw, efx->net_dev,
1248 "channel %d EVQ %d initialised\n",
1249 channel->channel, ev_sub_data);
1250 break;
1251 case FSE_AZ_SRM_UPD_DONE_EV:
1252 netif_vdbg(efx, hw, efx->net_dev,
1253 "channel %d SRAM update done\n", channel->channel);
1254 break;
1255 case FSE_AZ_WAKE_UP_EV:
1256 netif_vdbg(efx, hw, efx->net_dev,
1257 "channel %d RXQ %d wakeup event\n",
1258 channel->channel, ev_sub_data);
1259 break;
1260 case FSE_AZ_TIMER_EV:
1261 netif_vdbg(efx, hw, efx->net_dev,
1262 "channel %d RX queue %d timer expired\n",
1263 channel->channel, ev_sub_data);
1264 break;
1265 case FSE_AA_RX_RECOVER_EV:
1266 netif_err(efx, rx_err, efx->net_dev,
1267 "channel %d seen DRIVER RX_RESET event. "
1268 "Resetting.\n", channel->channel);
1269 atomic_inc(&efx->rx_reset);
1270 efx_schedule_reset(efx,
1271 EFX_WORKAROUND_6555(efx) ?
1272 RESET_TYPE_RX_RECOVERY :
1273 RESET_TYPE_DISABLE);
1274 break;
1275 case FSE_BZ_RX_DSC_ERROR_EV:
1276 if (ev_sub_data < EFX_VI_BASE) {
1277 netif_err(efx, rx_err, efx->net_dev,
1278 "RX DMA Q %d reports descriptor fetch error."
1279 " RX Q %d is disabled.\n", ev_sub_data,
1280 ev_sub_data);
1281 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1282 } else
1283 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1284 break;
1285 case FSE_BZ_TX_DSC_ERROR_EV:
1286 if (ev_sub_data < EFX_VI_BASE) {
1287 netif_err(efx, tx_err, efx->net_dev,
1288 "TX DMA Q %d reports descriptor fetch error."
1289 " TX Q %d is disabled.\n", ev_sub_data,
1290 ev_sub_data);
1291 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1292 } else
1293 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1294 break;
1295 default:
1296 netif_vdbg(efx, hw, efx->net_dev,
1297 "channel %d unknown driver event code %d "
1298 "data %04x\n", channel->channel, ev_sub_code,
1299 ev_sub_data);
1300 break;
1301 }
1302 }
1303
1304 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1305 {
1306 struct efx_nic *efx = channel->efx;
1307 unsigned int read_ptr;
1308 efx_qword_t event, *p_event;
1309 int ev_code;
1310 int tx_packets = 0;
1311 int spent = 0;
1312
1313 read_ptr = channel->eventq_read_ptr;
1314
1315 for (;;) {
1316 p_event = efx_event(channel, read_ptr);
1317 event = *p_event;
1318
1319 if (!efx_event_present(&event))
1320 /* End of events */
1321 break;
1322
1323 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1324 "channel %d event is "EFX_QWORD_FMT"\n",
1325 channel->channel, EFX_QWORD_VAL(event));
1326
1327 /* Clear this event by marking it all ones */
1328 EFX_SET_QWORD(*p_event);
1329
1330 ++read_ptr;
1331
1332 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1333
1334 switch (ev_code) {
1335 case FSE_AZ_EV_CODE_RX_EV:
1336 efx_handle_rx_event(channel, &event);
1337 if (++spent == budget)
1338 goto out;
1339 break;
1340 case FSE_AZ_EV_CODE_TX_EV:
1341 tx_packets += efx_handle_tx_event(channel, &event);
1342 if (tx_packets > efx->txq_entries) {
1343 spent = budget;
1344 goto out;
1345 }
1346 break;
1347 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1348 efx_handle_generated_event(channel, &event);
1349 break;
1350 case FSE_AZ_EV_CODE_DRIVER_EV:
1351 efx_handle_driver_event(channel, &event);
1352 break;
1353 case FSE_CZ_EV_CODE_USER_EV:
1354 efx_sriov_event(channel, &event);
1355 break;
1356 case FSE_CZ_EV_CODE_MCDI_EV:
1357 efx_mcdi_process_event(channel, &event);
1358 break;
1359 case FSE_AZ_EV_CODE_GLOBAL_EV:
1360 if (efx->type->handle_global_event &&
1361 efx->type->handle_global_event(channel, &event))
1362 break;
1363 /* else fall through */
1364 default:
1365 netif_err(channel->efx, hw, channel->efx->net_dev,
1366 "channel %d unknown event type %d (data "
1367 EFX_QWORD_FMT ")\n", channel->channel,
1368 ev_code, EFX_QWORD_VAL(event));
1369 }
1370 }
1371
1372 out:
1373 channel->eventq_read_ptr = read_ptr;
1374 return spent;
1375 }
1376
1377 /* Check whether an event is present in the eventq at the current
1378 * read pointer. Only useful for self-test.
1379 */
1380 bool efx_nic_event_present(struct efx_channel *channel)
1381 {
1382 return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1383 }
1384
1385 /* Allocate buffer table entries for event queue */
1386 int efx_nic_probe_eventq(struct efx_channel *channel)
1387 {
1388 struct efx_nic *efx = channel->efx;
1389 unsigned entries;
1390
1391 entries = channel->eventq_mask + 1;
1392 return efx_alloc_special_buffer(efx, &channel->eventq,
1393 entries * sizeof(efx_qword_t));
1394 }
1395
1396 void efx_nic_init_eventq(struct efx_channel *channel)
1397 {
1398 efx_oword_t reg;
1399 struct efx_nic *efx = channel->efx;
1400
1401 netif_dbg(efx, hw, efx->net_dev,
1402 "channel %d event queue in special buffers %d-%d\n",
1403 channel->channel, channel->eventq.index,
1404 channel->eventq.index + channel->eventq.entries - 1);
1405
1406 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1407 EFX_POPULATE_OWORD_3(reg,
1408 FRF_CZ_TIMER_Q_EN, 1,
1409 FRF_CZ_HOST_NOTIFY_MODE, 0,
1410 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1411 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1412 }
1413
1414 /* Pin event queue buffer */
1415 efx_init_special_buffer(efx, &channel->eventq);
1416
1417 /* Fill event queue with all ones (i.e. empty events) */
1418 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1419
1420 /* Push event queue to card */
1421 EFX_POPULATE_OWORD_3(reg,
1422 FRF_AZ_EVQ_EN, 1,
1423 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1424 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1425 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1426 channel->channel);
1427
1428 efx->type->push_irq_moderation(channel);
1429 }
1430
1431 void efx_nic_fini_eventq(struct efx_channel *channel)
1432 {
1433 efx_oword_t reg;
1434 struct efx_nic *efx = channel->efx;
1435
1436 /* Remove event queue from card */
1437 EFX_ZERO_OWORD(reg);
1438 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1439 channel->channel);
1440 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1441 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1442
1443 /* Unpin event queue */
1444 efx_fini_special_buffer(efx, &channel->eventq);
1445 }
1446
1447 /* Free buffers backing event queue */
1448 void efx_nic_remove_eventq(struct efx_channel *channel)
1449 {
1450 efx_free_special_buffer(channel->efx, &channel->eventq);
1451 }
1452
1453
1454 void efx_nic_event_test_start(struct efx_channel *channel)
1455 {
1456 channel->event_test_cpu = -1;
1457 smp_wmb();
1458 efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1459 }
1460
1461 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1462 {
1463 efx_magic_event(efx_rx_queue_channel(rx_queue),
1464 EFX_CHANNEL_MAGIC_FILL(rx_queue));
1465 }
1466
1467 /**************************************************************************
1468 *
1469 * Hardware interrupts
1470 * The hardware interrupt handler does very little work; all the event
1471 * queue processing is carried out by per-channel tasklets.
1472 *
1473 **************************************************************************/
1474
1475 /* Enable/disable/generate interrupts */
1476 static inline void efx_nic_interrupts(struct efx_nic *efx,
1477 bool enabled, bool force)
1478 {
1479 efx_oword_t int_en_reg_ker;
1480
1481 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1482 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1483 FRF_AZ_KER_INT_KER, force,
1484 FRF_AZ_DRV_INT_EN_KER, enabled);
1485 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1486 }
1487
1488 void efx_nic_enable_interrupts(struct efx_nic *efx)
1489 {
1490 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1491 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1492
1493 efx_nic_interrupts(efx, true, false);
1494 }
1495
1496 void efx_nic_disable_interrupts(struct efx_nic *efx)
1497 {
1498 /* Disable interrupts */
1499 efx_nic_interrupts(efx, false, false);
1500 }
1501
1502 /* Generate a test interrupt
1503 * Interrupt must already have been enabled, otherwise nasty things
1504 * may happen.
1505 */
1506 void efx_nic_irq_test_start(struct efx_nic *efx)
1507 {
1508 efx->last_irq_cpu = -1;
1509 smp_wmb();
1510 efx_nic_interrupts(efx, true, true);
1511 }
1512
1513 /* Process a fatal interrupt
1514 * Disable bus mastering ASAP and schedule a reset
1515 */
1516 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1517 {
1518 struct falcon_nic_data *nic_data = efx->nic_data;
1519 efx_oword_t *int_ker = efx->irq_status.addr;
1520 efx_oword_t fatal_intr;
1521 int error, mem_perr;
1522
1523 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1524 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1525
1526 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1527 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1528 EFX_OWORD_VAL(fatal_intr),
1529 error ? "disabling bus mastering" : "no recognised error");
1530
1531 /* If this is a memory parity error dump which blocks are offending */
1532 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1533 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1534 if (mem_perr) {
1535 efx_oword_t reg;
1536 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1537 netif_err(efx, hw, efx->net_dev,
1538 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1539 EFX_OWORD_VAL(reg));
1540 }
1541
1542 /* Disable both devices */
1543 pci_clear_master(efx->pci_dev);
1544 if (efx_nic_is_dual_func(efx))
1545 pci_clear_master(nic_data->pci_dev2);
1546 efx_nic_disable_interrupts(efx);
1547
1548 /* Count errors and reset or disable the NIC accordingly */
1549 if (efx->int_error_count == 0 ||
1550 time_after(jiffies, efx->int_error_expire)) {
1551 efx->int_error_count = 0;
1552 efx->int_error_expire =
1553 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1554 }
1555 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1556 netif_err(efx, hw, efx->net_dev,
1557 "SYSTEM ERROR - reset scheduled\n");
1558 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1559 } else {
1560 netif_err(efx, hw, efx->net_dev,
1561 "SYSTEM ERROR - max number of errors seen."
1562 "NIC will be disabled\n");
1563 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1564 }
1565
1566 return IRQ_HANDLED;
1567 }
1568
1569 /* Handle a legacy interrupt
1570 * Acknowledges the interrupt and schedule event queue processing.
1571 */
1572 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1573 {
1574 struct efx_nic *efx = dev_id;
1575 efx_oword_t *int_ker = efx->irq_status.addr;
1576 irqreturn_t result = IRQ_NONE;
1577 struct efx_channel *channel;
1578 efx_dword_t reg;
1579 u32 queues;
1580 int syserr;
1581
1582 /* Could this be ours? If interrupts are disabled then the
1583 * channel state may not be valid.
1584 */
1585 if (!efx->legacy_irq_enabled)
1586 return result;
1587
1588 /* Read the ISR which also ACKs the interrupts */
1589 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1590 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1591
1592 /* Legacy interrupts are disabled too late by the EEH kernel
1593 * code. Disable them earlier.
1594 * If an EEH error occurred, the read will have returned all ones.
1595 */
1596 if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1597 !efx->eeh_disabled_legacy_irq) {
1598 disable_irq_nosync(efx->legacy_irq);
1599 efx->eeh_disabled_legacy_irq = true;
1600 }
1601
1602 /* Handle non-event-queue sources */
1603 if (queues & (1U << efx->irq_level)) {
1604 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1605 if (unlikely(syserr))
1606 return efx_nic_fatal_interrupt(efx);
1607 efx->last_irq_cpu = raw_smp_processor_id();
1608 }
1609
1610 if (queues != 0) {
1611 if (EFX_WORKAROUND_15783(efx))
1612 efx->irq_zero_count = 0;
1613
1614 /* Schedule processing of any interrupting queues */
1615 efx_for_each_channel(channel, efx) {
1616 if (queues & 1)
1617 efx_schedule_channel_irq(channel);
1618 queues >>= 1;
1619 }
1620 result = IRQ_HANDLED;
1621
1622 } else if (EFX_WORKAROUND_15783(efx)) {
1623 efx_qword_t *event;
1624
1625 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1626 * because this might be a shared interrupt. */
1627 if (efx->irq_zero_count++ == 0)
1628 result = IRQ_HANDLED;
1629
1630 /* Ensure we schedule or rearm all event queues */
1631 efx_for_each_channel(channel, efx) {
1632 event = efx_event(channel, channel->eventq_read_ptr);
1633 if (efx_event_present(event))
1634 efx_schedule_channel_irq(channel);
1635 else
1636 efx_nic_eventq_read_ack(channel);
1637 }
1638 }
1639
1640 if (result == IRQ_HANDLED)
1641 netif_vdbg(efx, intr, efx->net_dev,
1642 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1643 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1644
1645 return result;
1646 }
1647
1648 /* Handle an MSI interrupt
1649 *
1650 * Handle an MSI hardware interrupt. This routine schedules event
1651 * queue processing. No interrupt acknowledgement cycle is necessary.
1652 * Also, we never need to check that the interrupt is for us, since
1653 * MSI interrupts cannot be shared.
1654 */
1655 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1656 {
1657 struct efx_channel *channel = *(struct efx_channel **)dev_id;
1658 struct efx_nic *efx = channel->efx;
1659 efx_oword_t *int_ker = efx->irq_status.addr;
1660 int syserr;
1661
1662 netif_vdbg(efx, intr, efx->net_dev,
1663 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1664 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1665
1666 /* Handle non-event-queue sources */
1667 if (channel->channel == efx->irq_level) {
1668 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1669 if (unlikely(syserr))
1670 return efx_nic_fatal_interrupt(efx);
1671 efx->last_irq_cpu = raw_smp_processor_id();
1672 }
1673
1674 /* Schedule processing of the channel */
1675 efx_schedule_channel_irq(channel);
1676
1677 return IRQ_HANDLED;
1678 }
1679
1680
1681 /* Setup RSS indirection table.
1682 * This maps from the hash value of the packet to RXQ
1683 */
1684 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1685 {
1686 size_t i = 0;
1687 efx_dword_t dword;
1688
1689 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1690 return;
1691
1692 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1693 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1694
1695 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1696 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1697 efx->rx_indir_table[i]);
1698 efx_writed(efx, &dword,
1699 FR_BZ_RX_INDIRECTION_TBL +
1700 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1701 }
1702 }
1703
1704 /* Hook interrupt handler(s)
1705 * Try MSI and then legacy interrupts.
1706 */
1707 int efx_nic_init_interrupt(struct efx_nic *efx)
1708 {
1709 struct efx_channel *channel;
1710 unsigned int n_irqs;
1711 int rc;
1712
1713 if (!EFX_INT_MODE_USE_MSI(efx)) {
1714 irq_handler_t handler;
1715 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1716 handler = efx_legacy_interrupt;
1717 else
1718 handler = falcon_legacy_interrupt_a1;
1719
1720 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1721 efx->name, efx);
1722 if (rc) {
1723 netif_err(efx, drv, efx->net_dev,
1724 "failed to hook legacy IRQ %d\n",
1725 efx->pci_dev->irq);
1726 goto fail1;
1727 }
1728 return 0;
1729 }
1730
1731 #ifdef CONFIG_RFS_ACCEL
1732 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1733 efx->net_dev->rx_cpu_rmap =
1734 alloc_irq_cpu_rmap(efx->n_rx_channels);
1735 if (!efx->net_dev->rx_cpu_rmap) {
1736 rc = -ENOMEM;
1737 goto fail1;
1738 }
1739 }
1740 #endif
1741
1742 /* Hook MSI or MSI-X interrupt */
1743 n_irqs = 0;
1744 efx_for_each_channel(channel, efx) {
1745 rc = request_irq(channel->irq, efx_msi_interrupt,
1746 IRQF_PROBE_SHARED, /* Not shared */
1747 efx->channel_name[channel->channel],
1748 &efx->channel[channel->channel]);
1749 if (rc) {
1750 netif_err(efx, drv, efx->net_dev,
1751 "failed to hook IRQ %d\n", channel->irq);
1752 goto fail2;
1753 }
1754 ++n_irqs;
1755
1756 #ifdef CONFIG_RFS_ACCEL
1757 if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
1758 channel->channel < efx->n_rx_channels) {
1759 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1760 channel->irq);
1761 if (rc)
1762 goto fail2;
1763 }
1764 #endif
1765 }
1766
1767 return 0;
1768
1769 fail2:
1770 #ifdef CONFIG_RFS_ACCEL
1771 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1772 efx->net_dev->rx_cpu_rmap = NULL;
1773 #endif
1774 efx_for_each_channel(channel, efx) {
1775 if (n_irqs-- == 0)
1776 break;
1777 free_irq(channel->irq, &efx->channel[channel->channel]);
1778 }
1779 fail1:
1780 return rc;
1781 }
1782
1783 void efx_nic_fini_interrupt(struct efx_nic *efx)
1784 {
1785 struct efx_channel *channel;
1786 efx_oword_t reg;
1787
1788 #ifdef CONFIG_RFS_ACCEL
1789 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1790 efx->net_dev->rx_cpu_rmap = NULL;
1791 #endif
1792
1793 /* Disable MSI/MSI-X interrupts */
1794 efx_for_each_channel(channel, efx)
1795 free_irq(channel->irq, &efx->channel[channel->channel]);
1796
1797 /* ACK legacy interrupt */
1798 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1799 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1800 else
1801 falcon_irq_ack_a1(efx);
1802
1803 /* Disable legacy interrupt */
1804 if (efx->legacy_irq)
1805 free_irq(efx->legacy_irq, efx);
1806 }
1807
1808 /* Looks at available SRAM resources and works out how many queues we
1809 * can support, and where things like descriptor caches should live.
1810 *
1811 * SRAM is split up as follows:
1812 * 0 buftbl entries for channels
1813 * efx->vf_buftbl_base buftbl entries for SR-IOV
1814 * efx->rx_dc_base RX descriptor caches
1815 * efx->tx_dc_base TX descriptor caches
1816 */
1817 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1818 {
1819 unsigned vi_count, buftbl_min;
1820
1821 /* Account for the buffer table entries backing the datapath channels
1822 * and the descriptor caches for those channels.
1823 */
1824 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1825 efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1826 efx->n_channels * EFX_MAX_EVQ_SIZE)
1827 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1828 vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1829
1830 #ifdef CONFIG_SFC_SRIOV
1831 if (efx_sriov_wanted(efx)) {
1832 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1833
1834 efx->vf_buftbl_base = buftbl_min;
1835
1836 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1837 vi_count = max(vi_count, EFX_VI_BASE);
1838 buftbl_free = (sram_lim_qw - buftbl_min -
1839 vi_count * vi_dc_entries);
1840
1841 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1842 efx_vf_size(efx));
1843 vf_limit = min(buftbl_free / entries_per_vf,
1844 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1845
1846 if (efx->vf_count > vf_limit) {
1847 netif_err(efx, probe, efx->net_dev,
1848 "Reducing VF count from from %d to %d\n",
1849 efx->vf_count, vf_limit);
1850 efx->vf_count = vf_limit;
1851 }
1852 vi_count += efx->vf_count * efx_vf_size(efx);
1853 }
1854 #endif
1855
1856 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1857 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1858 }
1859
1860 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1861 {
1862 efx_oword_t altera_build;
1863 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1864 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1865 }
1866
1867 void efx_nic_init_common(struct efx_nic *efx)
1868 {
1869 efx_oword_t temp;
1870
1871 /* Set positions of descriptor caches in SRAM. */
1872 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1873 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1874 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1875 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1876
1877 /* Set TX descriptor cache size. */
1878 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1879 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1880 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1881
1882 /* Set RX descriptor cache size. Set low watermark to size-8, as
1883 * this allows most efficient prefetching.
1884 */
1885 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1886 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1887 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1888 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1889 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1890
1891 /* Program INT_KER address */
1892 EFX_POPULATE_OWORD_2(temp,
1893 FRF_AZ_NORM_INT_VEC_DIS_KER,
1894 EFX_INT_MODE_USE_MSI(efx),
1895 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1896 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1897
1898 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1899 /* Use an interrupt level unused by event queues */
1900 efx->irq_level = 0x1f;
1901 else
1902 /* Use a valid MSI-X vector */
1903 efx->irq_level = 0;
1904
1905 /* Enable all the genuinely fatal interrupts. (They are still
1906 * masked by the overall interrupt mask, controlled by
1907 * falcon_interrupts()).
1908 *
1909 * Note: All other fatal interrupts are enabled
1910 */
1911 EFX_POPULATE_OWORD_3(temp,
1912 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1913 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1914 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1915 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1916 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1917 EFX_INVERT_OWORD(temp);
1918 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1919
1920 efx_nic_push_rx_indir_table(efx);
1921
1922 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1923 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1924 */
1925 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1926 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1927 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1928 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1929 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1930 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1931 /* Enable SW_EV to inherit in char driver - assume harmless here */
1932 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1933 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1934 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1935 /* Disable hardware watchdog which can misfire */
1936 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1937 /* Squash TX of packets of 16 bytes or less */
1938 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1939 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1940 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1941
1942 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1943 EFX_POPULATE_OWORD_4(temp,
1944 /* Default values */
1945 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1946 FRF_BZ_TX_PACE_SB_AF, 0xb,
1947 FRF_BZ_TX_PACE_FB_BASE, 0,
1948 /* Allow large pace values in the
1949 * fast bin. */
1950 FRF_BZ_TX_PACE_BIN_TH,
1951 FFE_BZ_TX_PACE_RESERVED);
1952 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1953 }
1954 }
1955
1956 /* Register dump */
1957
1958 #define REGISTER_REVISION_A 1
1959 #define REGISTER_REVISION_B 2
1960 #define REGISTER_REVISION_C 3
1961 #define REGISTER_REVISION_Z 3 /* latest revision */
1962
1963 struct efx_nic_reg {
1964 u32 offset:24;
1965 u32 min_revision:2, max_revision:2;
1966 };
1967
1968 #define REGISTER(name, min_rev, max_rev) { \
1969 FR_ ## min_rev ## max_rev ## _ ## name, \
1970 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1971 }
1972 #define REGISTER_AA(name) REGISTER(name, A, A)
1973 #define REGISTER_AB(name) REGISTER(name, A, B)
1974 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1975 #define REGISTER_BB(name) REGISTER(name, B, B)
1976 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1977 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1978
1979 static const struct efx_nic_reg efx_nic_regs[] = {
1980 REGISTER_AZ(ADR_REGION),
1981 REGISTER_AZ(INT_EN_KER),
1982 REGISTER_BZ(INT_EN_CHAR),
1983 REGISTER_AZ(INT_ADR_KER),
1984 REGISTER_BZ(INT_ADR_CHAR),
1985 /* INT_ACK_KER is WO */
1986 /* INT_ISR0 is RC */
1987 REGISTER_AZ(HW_INIT),
1988 REGISTER_CZ(USR_EV_CFG),
1989 REGISTER_AB(EE_SPI_HCMD),
1990 REGISTER_AB(EE_SPI_HADR),
1991 REGISTER_AB(EE_SPI_HDATA),
1992 REGISTER_AB(EE_BASE_PAGE),
1993 REGISTER_AB(EE_VPD_CFG0),
1994 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1995 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1996 /* PCIE_CORE_INDIRECT is indirect */
1997 REGISTER_AB(NIC_STAT),
1998 REGISTER_AB(GPIO_CTL),
1999 REGISTER_AB(GLB_CTL),
2000 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
2001 REGISTER_BZ(DP_CTRL),
2002 REGISTER_AZ(MEM_STAT),
2003 REGISTER_AZ(CS_DEBUG),
2004 REGISTER_AZ(ALTERA_BUILD),
2005 REGISTER_AZ(CSR_SPARE),
2006 REGISTER_AB(PCIE_SD_CTL0123),
2007 REGISTER_AB(PCIE_SD_CTL45),
2008 REGISTER_AB(PCIE_PCS_CTL_STAT),
2009 /* DEBUG_DATA_OUT is not used */
2010 /* DRV_EV is WO */
2011 REGISTER_AZ(EVQ_CTL),
2012 REGISTER_AZ(EVQ_CNT1),
2013 REGISTER_AZ(EVQ_CNT2),
2014 REGISTER_AZ(BUF_TBL_CFG),
2015 REGISTER_AZ(SRM_RX_DC_CFG),
2016 REGISTER_AZ(SRM_TX_DC_CFG),
2017 REGISTER_AZ(SRM_CFG),
2018 /* BUF_TBL_UPD is WO */
2019 REGISTER_AZ(SRM_UPD_EVQ),
2020 REGISTER_AZ(SRAM_PARITY),
2021 REGISTER_AZ(RX_CFG),
2022 REGISTER_BZ(RX_FILTER_CTL),
2023 /* RX_FLUSH_DESCQ is WO */
2024 REGISTER_AZ(RX_DC_CFG),
2025 REGISTER_AZ(RX_DC_PF_WM),
2026 REGISTER_BZ(RX_RSS_TKEY),
2027 /* RX_NODESC_DROP is RC */
2028 REGISTER_AA(RX_SELF_RST),
2029 /* RX_DEBUG, RX_PUSH_DROP are not used */
2030 REGISTER_CZ(RX_RSS_IPV6_REG1),
2031 REGISTER_CZ(RX_RSS_IPV6_REG2),
2032 REGISTER_CZ(RX_RSS_IPV6_REG3),
2033 /* TX_FLUSH_DESCQ is WO */
2034 REGISTER_AZ(TX_DC_CFG),
2035 REGISTER_AA(TX_CHKSM_CFG),
2036 REGISTER_AZ(TX_CFG),
2037 /* TX_PUSH_DROP is not used */
2038 REGISTER_AZ(TX_RESERVED),
2039 REGISTER_BZ(TX_PACE),
2040 /* TX_PACE_DROP_QID is RC */
2041 REGISTER_BB(TX_VLAN),
2042 REGISTER_BZ(TX_IPFIL_PORTEN),
2043 REGISTER_AB(MD_TXD),
2044 REGISTER_AB(MD_RXD),
2045 REGISTER_AB(MD_CS),
2046 REGISTER_AB(MD_PHY_ADR),
2047 REGISTER_AB(MD_ID),
2048 /* MD_STAT is RC */
2049 REGISTER_AB(MAC_STAT_DMA),
2050 REGISTER_AB(MAC_CTRL),
2051 REGISTER_BB(GEN_MODE),
2052 REGISTER_AB(MAC_MC_HASH_REG0),
2053 REGISTER_AB(MAC_MC_HASH_REG1),
2054 REGISTER_AB(GM_CFG1),
2055 REGISTER_AB(GM_CFG2),
2056 /* GM_IPG and GM_HD are not used */
2057 REGISTER_AB(GM_MAX_FLEN),
2058 /* GM_TEST is not used */
2059 REGISTER_AB(GM_ADR1),
2060 REGISTER_AB(GM_ADR2),
2061 REGISTER_AB(GMF_CFG0),
2062 REGISTER_AB(GMF_CFG1),
2063 REGISTER_AB(GMF_CFG2),
2064 REGISTER_AB(GMF_CFG3),
2065 REGISTER_AB(GMF_CFG4),
2066 REGISTER_AB(GMF_CFG5),
2067 REGISTER_BB(TX_SRC_MAC_CTL),
2068 REGISTER_AB(XM_ADR_LO),
2069 REGISTER_AB(XM_ADR_HI),
2070 REGISTER_AB(XM_GLB_CFG),
2071 REGISTER_AB(XM_TX_CFG),
2072 REGISTER_AB(XM_RX_CFG),
2073 REGISTER_AB(XM_MGT_INT_MASK),
2074 REGISTER_AB(XM_FC),
2075 REGISTER_AB(XM_PAUSE_TIME),
2076 REGISTER_AB(XM_TX_PARAM),
2077 REGISTER_AB(XM_RX_PARAM),
2078 /* XM_MGT_INT_MSK (note no 'A') is RC */
2079 REGISTER_AB(XX_PWR_RST),
2080 REGISTER_AB(XX_SD_CTL),
2081 REGISTER_AB(XX_TXDRV_CTL),
2082 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
2083 /* XX_CORE_STAT is partly RC */
2084 };
2085
2086 struct efx_nic_reg_table {
2087 u32 offset:24;
2088 u32 min_revision:2, max_revision:2;
2089 u32 step:6, rows:21;
2090 };
2091
2092 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
2093 offset, \
2094 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
2095 step, rows \
2096 }
2097 #define REGISTER_TABLE(name, min_rev, max_rev) \
2098 REGISTER_TABLE_DIMENSIONS( \
2099 name, FR_ ## min_rev ## max_rev ## _ ## name, \
2100 min_rev, max_rev, \
2101 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
2102 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
2103 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
2104 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
2105 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
2106 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
2107 #define REGISTER_TABLE_BB_CZ(name) \
2108 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
2109 FR_BZ_ ## name ## _STEP, \
2110 FR_BB_ ## name ## _ROWS), \
2111 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
2112 FR_BZ_ ## name ## _STEP, \
2113 FR_CZ_ ## name ## _ROWS)
2114 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
2115
2116 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
2117 /* DRIVER is not used */
2118 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
2119 REGISTER_TABLE_BB(TX_IPFIL_TBL),
2120 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
2121 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
2122 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
2123 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
2124 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
2125 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
2126 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
2127 /* We can't reasonably read all of the buffer table (up to 8MB!).
2128 * However this driver will only use a few entries. Reading
2129 * 1K entries allows for some expansion of queue count and
2130 * size before we need to change the version. */
2131 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
2132 A, A, 8, 1024),
2133 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
2134 B, Z, 8, 1024),
2135 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
2136 REGISTER_TABLE_BB_CZ(TIMER_TBL),
2137 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
2138 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
2139 /* TX_FILTER_TBL0 is huge and not used by this driver */
2140 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
2141 REGISTER_TABLE_CZ(MC_TREG_SMEM),
2142 /* MSIX_PBA_TABLE is not mapped */
2143 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
2144 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
2145 };
2146
2147 size_t efx_nic_get_regs_len(struct efx_nic *efx)
2148 {
2149 const struct efx_nic_reg *reg;
2150 const struct efx_nic_reg_table *table;
2151 size_t len = 0;
2152
2153 for (reg = efx_nic_regs;
2154 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2155 reg++)
2156 if (efx->type->revision >= reg->min_revision &&
2157 efx->type->revision <= reg->max_revision)
2158 len += sizeof(efx_oword_t);
2159
2160 for (table = efx_nic_reg_tables;
2161 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2162 table++)
2163 if (efx->type->revision >= table->min_revision &&
2164 efx->type->revision <= table->max_revision)
2165 len += table->rows * min_t(size_t, table->step, 16);
2166
2167 return len;
2168 }
2169
2170 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2171 {
2172 const struct efx_nic_reg *reg;
2173 const struct efx_nic_reg_table *table;
2174
2175 for (reg = efx_nic_regs;
2176 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2177 reg++) {
2178 if (efx->type->revision >= reg->min_revision &&
2179 efx->type->revision <= reg->max_revision) {
2180 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2181 buf += sizeof(efx_oword_t);
2182 }
2183 }
2184
2185 for (table = efx_nic_reg_tables;
2186 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2187 table++) {
2188 size_t size, i;
2189
2190 if (!(efx->type->revision >= table->min_revision &&
2191 efx->type->revision <= table->max_revision))
2192 continue;
2193
2194 size = min_t(size_t, table->step, 16);
2195
2196 for (i = 0; i < table->rows; i++) {
2197 switch (table->step) {
2198 case 4: /* 32-bit SRAM */
2199 efx_readd(efx, buf, table->offset + 4 * i);
2200 break;
2201 case 8: /* 64-bit SRAM */
2202 efx_sram_readq(efx,
2203 efx->membase + table->offset,
2204 buf, i);
2205 break;
2206 case 16: /* 128-bit-readable register */
2207 efx_reado_table(efx, buf, table->offset, i);
2208 break;
2209 case 32: /* 128-bit register, interleaved */
2210 efx_reado_table(efx, buf, table->offset, 2 * i);
2211 break;
2212 default:
2213 WARN_ON(1);
2214 return;
2215 }
2216 buf += size;
2217 }
2218 }
2219 }
This page took 0.085216 seconds and 5 git commands to generate.