Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / drivers / net / ethernet / sfc / nic.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "regs.h"
22 #include "io.h"
23 #include "workarounds.h"
24
25 /**************************************************************************
26 *
27 * Configurable values
28 *
29 **************************************************************************
30 */
31
32 /* This is set to 16 for a good reason. In summary, if larger than
33 * 16, the descriptor cache holds more than a default socket
34 * buffer's worth of packets (for UDP we can only have at most one
35 * socket buffer's worth outstanding). This combined with the fact
36 * that we only get 1 TX event per descriptor cache means the NIC
37 * goes idle.
38 */
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
41
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
44
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47 * disable it.
48 */
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
51
52 /* Depth of RX flush request fifo */
53 #define EFX_RX_FLUSH_COUNT 4
54
55 /* Driver generated events */
56 #define _EFX_CHANNEL_MAGIC_TEST 0x000101
57 #define _EFX_CHANNEL_MAGIC_FILL 0x000102
58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
60
61 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
62 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
63
64 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
65 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
67 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
68 efx_rx_queue_index(_rx_queue))
69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
70 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
71 efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
73 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
74 (_tx_queue)->queue)
75
76 static void efx_magic_event(struct efx_channel *channel, u32 magic);
77
78 /**************************************************************************
79 *
80 * Solarstorm hardware access
81 *
82 **************************************************************************/
83
84 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
85 unsigned int index)
86 {
87 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
88 value, index);
89 }
90
91 /* Read the current event from the event queue */
92 static inline efx_qword_t *efx_event(struct efx_channel *channel,
93 unsigned int index)
94 {
95 return ((efx_qword_t *) (channel->eventq.addr)) +
96 (index & channel->eventq_mask);
97 }
98
99 /* See if an event is present
100 *
101 * We check both the high and low dword of the event for all ones. We
102 * wrote all ones when we cleared the event, and no valid event can
103 * have all ones in either its high or low dwords. This approach is
104 * robust against reordering.
105 *
106 * Note that using a single 64-bit comparison is incorrect; even
107 * though the CPU read will be atomic, the DMA write may not be.
108 */
109 static inline int efx_event_present(efx_qword_t *event)
110 {
111 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
112 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
113 }
114
115 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
116 const efx_oword_t *mask)
117 {
118 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
119 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
120 }
121
122 int efx_nic_test_registers(struct efx_nic *efx,
123 const struct efx_nic_register_test *regs,
124 size_t n_regs)
125 {
126 unsigned address = 0, i, j;
127 efx_oword_t mask, imask, original, reg, buf;
128
129 for (i = 0; i < n_regs; ++i) {
130 address = regs[i].address;
131 mask = imask = regs[i].mask;
132 EFX_INVERT_OWORD(imask);
133
134 efx_reado(efx, &original, address);
135
136 /* bit sweep on and off */
137 for (j = 0; j < 128; j++) {
138 if (!EFX_EXTRACT_OWORD32(mask, j, j))
139 continue;
140
141 /* Test this testable bit can be set in isolation */
142 EFX_AND_OWORD(reg, original, mask);
143 EFX_SET_OWORD32(reg, j, j, 1);
144
145 efx_writeo(efx, &reg, address);
146 efx_reado(efx, &buf, address);
147
148 if (efx_masked_compare_oword(&reg, &buf, &mask))
149 goto fail;
150
151 /* Test this testable bit can be cleared in isolation */
152 EFX_OR_OWORD(reg, original, mask);
153 EFX_SET_OWORD32(reg, j, j, 0);
154
155 efx_writeo(efx, &reg, address);
156 efx_reado(efx, &buf, address);
157
158 if (efx_masked_compare_oword(&reg, &buf, &mask))
159 goto fail;
160 }
161
162 efx_writeo(efx, &original, address);
163 }
164
165 return 0;
166
167 fail:
168 netif_err(efx, hw, efx->net_dev,
169 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
170 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
171 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
172 return -EIO;
173 }
174
175 /**************************************************************************
176 *
177 * Special buffer handling
178 * Special buffers are used for event queues and the TX and RX
179 * descriptor rings.
180 *
181 *************************************************************************/
182
183 /*
184 * Initialise a special buffer
185 *
186 * This will define a buffer (previously allocated via
187 * efx_alloc_special_buffer()) in the buffer table, allowing
188 * it to be used for event queues, descriptor rings etc.
189 */
190 static void
191 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
192 {
193 efx_qword_t buf_desc;
194 unsigned int index;
195 dma_addr_t dma_addr;
196 int i;
197
198 EFX_BUG_ON_PARANOID(!buffer->addr);
199
200 /* Write buffer descriptors to NIC */
201 for (i = 0; i < buffer->entries; i++) {
202 index = buffer->index + i;
203 dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
204 netif_dbg(efx, probe, efx->net_dev,
205 "mapping special buffer %d at %llx\n",
206 index, (unsigned long long)dma_addr);
207 EFX_POPULATE_QWORD_3(buf_desc,
208 FRF_AZ_BUF_ADR_REGION, 0,
209 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
210 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
211 efx_write_buf_tbl(efx, &buf_desc, index);
212 }
213 }
214
215 /* Unmaps a buffer and clears the buffer table entries */
216 static void
217 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
218 {
219 efx_oword_t buf_tbl_upd;
220 unsigned int start = buffer->index;
221 unsigned int end = (buffer->index + buffer->entries - 1);
222
223 if (!buffer->entries)
224 return;
225
226 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
227 buffer->index, buffer->index + buffer->entries - 1);
228
229 EFX_POPULATE_OWORD_4(buf_tbl_upd,
230 FRF_AZ_BUF_UPD_CMD, 0,
231 FRF_AZ_BUF_CLR_CMD, 1,
232 FRF_AZ_BUF_CLR_END_ID, end,
233 FRF_AZ_BUF_CLR_START_ID, start);
234 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
235 }
236
237 /*
238 * Allocate a new special buffer
239 *
240 * This allocates memory for a new buffer, clears it and allocates a
241 * new buffer ID range. It does not write into the buffer table.
242 *
243 * This call will allocate 4KB buffers, since 8KB buffers can't be
244 * used for event queues and descriptor rings.
245 */
246 static int efx_alloc_special_buffer(struct efx_nic *efx,
247 struct efx_special_buffer *buffer,
248 unsigned int len)
249 {
250 len = ALIGN(len, EFX_BUF_SIZE);
251
252 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
253 &buffer->dma_addr, GFP_KERNEL);
254 if (!buffer->addr)
255 return -ENOMEM;
256 buffer->len = len;
257 buffer->entries = len / EFX_BUF_SIZE;
258 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
259
260 /* Select new buffer ID */
261 buffer->index = efx->next_buffer_table;
262 efx->next_buffer_table += buffer->entries;
263 #ifdef CONFIG_SFC_SRIOV
264 BUG_ON(efx_sriov_enabled(efx) &&
265 efx->vf_buftbl_base < efx->next_buffer_table);
266 #endif
267
268 netif_dbg(efx, probe, efx->net_dev,
269 "allocating special buffers %d-%d at %llx+%x "
270 "(virt %p phys %llx)\n", buffer->index,
271 buffer->index + buffer->entries - 1,
272 (u64)buffer->dma_addr, len,
273 buffer->addr, (u64)virt_to_phys(buffer->addr));
274
275 return 0;
276 }
277
278 static void
279 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
280 {
281 if (!buffer->addr)
282 return;
283
284 netif_dbg(efx, hw, efx->net_dev,
285 "deallocating special buffers %d-%d at %llx+%x "
286 "(virt %p phys %llx)\n", buffer->index,
287 buffer->index + buffer->entries - 1,
288 (u64)buffer->dma_addr, buffer->len,
289 buffer->addr, (u64)virt_to_phys(buffer->addr));
290
291 dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
292 buffer->dma_addr);
293 buffer->addr = NULL;
294 buffer->entries = 0;
295 }
296
297 /**************************************************************************
298 *
299 * Generic buffer handling
300 * These buffers are used for interrupt status, MAC stats, etc.
301 *
302 **************************************************************************/
303
304 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
305 unsigned int len)
306 {
307 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
308 &buffer->dma_addr,
309 GFP_ATOMIC | __GFP_ZERO);
310 if (!buffer->addr)
311 return -ENOMEM;
312 buffer->len = len;
313 return 0;
314 }
315
316 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
317 {
318 if (buffer->addr) {
319 dma_free_coherent(&efx->pci_dev->dev, buffer->len,
320 buffer->addr, buffer->dma_addr);
321 buffer->addr = NULL;
322 }
323 }
324
325 /**************************************************************************
326 *
327 * TX path
328 *
329 **************************************************************************/
330
331 /* Returns a pointer to the specified transmit descriptor in the TX
332 * descriptor queue belonging to the specified channel.
333 */
334 static inline efx_qword_t *
335 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
336 {
337 return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
338 }
339
340 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
341 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
342 {
343 unsigned write_ptr;
344 efx_dword_t reg;
345
346 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
347 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
348 efx_writed_page(tx_queue->efx, &reg,
349 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
350 }
351
352 /* Write pointer and first descriptor for TX descriptor ring */
353 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
354 const efx_qword_t *txd)
355 {
356 unsigned write_ptr;
357 efx_oword_t reg;
358
359 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
360 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
361
362 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
363 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
364 FRF_AZ_TX_DESC_WPTR, write_ptr);
365 reg.qword[0] = *txd;
366 efx_writeo_page(tx_queue->efx, &reg,
367 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
368 }
369
370 static inline bool
371 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
372 {
373 unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
374
375 if (empty_read_count == 0)
376 return false;
377
378 tx_queue->empty_read_count = 0;
379 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0
380 && tx_queue->write_count - write_count == 1;
381 }
382
383 /* For each entry inserted into the software descriptor ring, create a
384 * descriptor in the hardware TX descriptor ring (in host memory), and
385 * write a doorbell.
386 */
387 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
388 {
389
390 struct efx_tx_buffer *buffer;
391 efx_qword_t *txd;
392 unsigned write_ptr;
393 unsigned old_write_count = tx_queue->write_count;
394
395 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
396
397 do {
398 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
399 buffer = &tx_queue->buffer[write_ptr];
400 txd = efx_tx_desc(tx_queue, write_ptr);
401 ++tx_queue->write_count;
402
403 /* Create TX descriptor ring entry */
404 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
405 EFX_POPULATE_QWORD_4(*txd,
406 FSF_AZ_TX_KER_CONT,
407 buffer->flags & EFX_TX_BUF_CONT,
408 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
409 FSF_AZ_TX_KER_BUF_REGION, 0,
410 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
411 } while (tx_queue->write_count != tx_queue->insert_count);
412
413 wmb(); /* Ensure descriptors are written before they are fetched */
414
415 if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
416 txd = efx_tx_desc(tx_queue,
417 old_write_count & tx_queue->ptr_mask);
418 efx_push_tx_desc(tx_queue, txd);
419 ++tx_queue->pushes;
420 } else {
421 efx_notify_tx_desc(tx_queue);
422 }
423 }
424
425 /* Allocate hardware resources for a TX queue */
426 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
427 {
428 struct efx_nic *efx = tx_queue->efx;
429 unsigned entries;
430
431 entries = tx_queue->ptr_mask + 1;
432 return efx_alloc_special_buffer(efx, &tx_queue->txd,
433 entries * sizeof(efx_qword_t));
434 }
435
436 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
437 {
438 struct efx_nic *efx = tx_queue->efx;
439 efx_oword_t reg;
440
441 /* Pin TX descriptor ring */
442 efx_init_special_buffer(efx, &tx_queue->txd);
443
444 /* Push TX descriptor ring to card */
445 EFX_POPULATE_OWORD_10(reg,
446 FRF_AZ_TX_DESCQ_EN, 1,
447 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
448 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
449 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
450 FRF_AZ_TX_DESCQ_EVQ_ID,
451 tx_queue->channel->channel,
452 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
453 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
454 FRF_AZ_TX_DESCQ_SIZE,
455 __ffs(tx_queue->txd.entries),
456 FRF_AZ_TX_DESCQ_TYPE, 0,
457 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
458
459 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
460 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
461 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
462 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
463 !csum);
464 }
465
466 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
467 tx_queue->queue);
468
469 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
470 /* Only 128 bits in this register */
471 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
472
473 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
474 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
475 __clear_bit_le(tx_queue->queue, &reg);
476 else
477 __set_bit_le(tx_queue->queue, &reg);
478 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
479 }
480
481 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
482 EFX_POPULATE_OWORD_1(reg,
483 FRF_BZ_TX_PACE,
484 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
485 FFE_BZ_TX_PACE_OFF :
486 FFE_BZ_TX_PACE_RESERVED);
487 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
488 tx_queue->queue);
489 }
490 }
491
492 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
493 {
494 struct efx_nic *efx = tx_queue->efx;
495 efx_oword_t tx_flush_descq;
496
497 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
498 atomic_set(&tx_queue->flush_outstanding, 1);
499
500 EFX_POPULATE_OWORD_2(tx_flush_descq,
501 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
502 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
503 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
504 }
505
506 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
507 {
508 struct efx_nic *efx = tx_queue->efx;
509 efx_oword_t tx_desc_ptr;
510
511 /* Remove TX descriptor ring from card */
512 EFX_ZERO_OWORD(tx_desc_ptr);
513 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
514 tx_queue->queue);
515
516 /* Unpin TX descriptor ring */
517 efx_fini_special_buffer(efx, &tx_queue->txd);
518 }
519
520 /* Free buffers backing TX queue */
521 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
522 {
523 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
524 }
525
526 /**************************************************************************
527 *
528 * RX path
529 *
530 **************************************************************************/
531
532 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
533 static inline efx_qword_t *
534 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
535 {
536 return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
537 }
538
539 /* This creates an entry in the RX descriptor queue */
540 static inline void
541 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
542 {
543 struct efx_rx_buffer *rx_buf;
544 efx_qword_t *rxd;
545
546 rxd = efx_rx_desc(rx_queue, index);
547 rx_buf = efx_rx_buffer(rx_queue, index);
548 EFX_POPULATE_QWORD_3(*rxd,
549 FSF_AZ_RX_KER_BUF_SIZE,
550 rx_buf->len -
551 rx_queue->efx->type->rx_buffer_padding,
552 FSF_AZ_RX_KER_BUF_REGION, 0,
553 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
554 }
555
556 /* This writes to the RX_DESC_WPTR register for the specified receive
557 * descriptor ring.
558 */
559 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
560 {
561 struct efx_nic *efx = rx_queue->efx;
562 efx_dword_t reg;
563 unsigned write_ptr;
564
565 while (rx_queue->notified_count != rx_queue->added_count) {
566 efx_build_rx_desc(
567 rx_queue,
568 rx_queue->notified_count & rx_queue->ptr_mask);
569 ++rx_queue->notified_count;
570 }
571
572 wmb();
573 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
574 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
575 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
576 efx_rx_queue_index(rx_queue));
577 }
578
579 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
580 {
581 struct efx_nic *efx = rx_queue->efx;
582 unsigned entries;
583
584 entries = rx_queue->ptr_mask + 1;
585 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
586 entries * sizeof(efx_qword_t));
587 }
588
589 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
590 {
591 efx_oword_t rx_desc_ptr;
592 struct efx_nic *efx = rx_queue->efx;
593 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
594 bool iscsi_digest_en = is_b0;
595 bool jumbo_en;
596
597 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
598 * DMA to continue after a PCIe page boundary (and scattering
599 * is not possible). In Falcon B0 and Siena, it enables
600 * scatter.
601 */
602 jumbo_en = !is_b0 || efx->rx_scatter;
603
604 netif_dbg(efx, hw, efx->net_dev,
605 "RX queue %d ring in special buffers %d-%d\n",
606 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
607 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
608
609 rx_queue->scatter_n = 0;
610
611 /* Pin RX descriptor ring */
612 efx_init_special_buffer(efx, &rx_queue->rxd);
613
614 /* Push RX descriptor ring to card */
615 EFX_POPULATE_OWORD_10(rx_desc_ptr,
616 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
617 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
618 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
619 FRF_AZ_RX_DESCQ_EVQ_ID,
620 efx_rx_queue_channel(rx_queue)->channel,
621 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
622 FRF_AZ_RX_DESCQ_LABEL,
623 efx_rx_queue_index(rx_queue),
624 FRF_AZ_RX_DESCQ_SIZE,
625 __ffs(rx_queue->rxd.entries),
626 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
627 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
628 FRF_AZ_RX_DESCQ_EN, 1);
629 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
630 efx_rx_queue_index(rx_queue));
631 }
632
633 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
634 {
635 struct efx_nic *efx = rx_queue->efx;
636 efx_oword_t rx_flush_descq;
637
638 EFX_POPULATE_OWORD_2(rx_flush_descq,
639 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
640 FRF_AZ_RX_FLUSH_DESCQ,
641 efx_rx_queue_index(rx_queue));
642 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
643 }
644
645 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
646 {
647 efx_oword_t rx_desc_ptr;
648 struct efx_nic *efx = rx_queue->efx;
649
650 /* Remove RX descriptor ring from card */
651 EFX_ZERO_OWORD(rx_desc_ptr);
652 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
653 efx_rx_queue_index(rx_queue));
654
655 /* Unpin RX descriptor ring */
656 efx_fini_special_buffer(efx, &rx_queue->rxd);
657 }
658
659 /* Free buffers backing RX queue */
660 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
661 {
662 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
663 }
664
665 /**************************************************************************
666 *
667 * Flush handling
668 *
669 **************************************************************************/
670
671 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
672 * or more RX flushes can be kicked off.
673 */
674 static bool efx_flush_wake(struct efx_nic *efx)
675 {
676 /* Ensure that all updates are visible to efx_nic_flush_queues() */
677 smp_mb();
678
679 return (atomic_read(&efx->drain_pending) == 0 ||
680 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
681 && atomic_read(&efx->rxq_flush_pending) > 0));
682 }
683
684 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
685 {
686 bool i = true;
687 efx_oword_t txd_ptr_tbl;
688 struct efx_channel *channel;
689 struct efx_tx_queue *tx_queue;
690
691 efx_for_each_channel(channel, efx) {
692 efx_for_each_channel_tx_queue(tx_queue, channel) {
693 efx_reado_table(efx, &txd_ptr_tbl,
694 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
695 if (EFX_OWORD_FIELD(txd_ptr_tbl,
696 FRF_AZ_TX_DESCQ_FLUSH) ||
697 EFX_OWORD_FIELD(txd_ptr_tbl,
698 FRF_AZ_TX_DESCQ_EN)) {
699 netif_dbg(efx, hw, efx->net_dev,
700 "flush did not complete on TXQ %d\n",
701 tx_queue->queue);
702 i = false;
703 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
704 1, 0)) {
705 /* The flush is complete, but we didn't
706 * receive a flush completion event
707 */
708 netif_dbg(efx, hw, efx->net_dev,
709 "flush complete on TXQ %d, so drain "
710 "the queue\n", tx_queue->queue);
711 /* Don't need to increment drain_pending as it
712 * has already been incremented for the queues
713 * which did not drain
714 */
715 efx_magic_event(channel,
716 EFX_CHANNEL_MAGIC_TX_DRAIN(
717 tx_queue));
718 }
719 }
720 }
721
722 return i;
723 }
724
725 /* Flush all the transmit queues, and continue flushing receive queues until
726 * they're all flushed. Wait for the DRAIN events to be recieved so that there
727 * are no more RX and TX events left on any channel. */
728 int efx_nic_flush_queues(struct efx_nic *efx)
729 {
730 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
731 struct efx_channel *channel;
732 struct efx_rx_queue *rx_queue;
733 struct efx_tx_queue *tx_queue;
734 int rc = 0;
735
736 efx->type->prepare_flush(efx);
737
738 efx_for_each_channel(channel, efx) {
739 efx_for_each_channel_tx_queue(tx_queue, channel) {
740 atomic_inc(&efx->drain_pending);
741 efx_flush_tx_queue(tx_queue);
742 }
743 efx_for_each_channel_rx_queue(rx_queue, channel) {
744 atomic_inc(&efx->drain_pending);
745 rx_queue->flush_pending = true;
746 atomic_inc(&efx->rxq_flush_pending);
747 }
748 }
749
750 while (timeout && atomic_read(&efx->drain_pending) > 0) {
751 /* If SRIOV is enabled, then offload receive queue flushing to
752 * the firmware (though we will still have to poll for
753 * completion). If that fails, fall back to the old scheme.
754 */
755 if (efx_sriov_enabled(efx)) {
756 rc = efx_mcdi_flush_rxqs(efx);
757 if (!rc)
758 goto wait;
759 }
760
761 /* The hardware supports four concurrent rx flushes, each of
762 * which may need to be retried if there is an outstanding
763 * descriptor fetch
764 */
765 efx_for_each_channel(channel, efx) {
766 efx_for_each_channel_rx_queue(rx_queue, channel) {
767 if (atomic_read(&efx->rxq_flush_outstanding) >=
768 EFX_RX_FLUSH_COUNT)
769 break;
770
771 if (rx_queue->flush_pending) {
772 rx_queue->flush_pending = false;
773 atomic_dec(&efx->rxq_flush_pending);
774 atomic_inc(&efx->rxq_flush_outstanding);
775 efx_flush_rx_queue(rx_queue);
776 }
777 }
778 }
779
780 wait:
781 timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
782 timeout);
783 }
784
785 if (atomic_read(&efx->drain_pending) &&
786 !efx_check_tx_flush_complete(efx)) {
787 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
788 "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
789 atomic_read(&efx->rxq_flush_outstanding),
790 atomic_read(&efx->rxq_flush_pending));
791 rc = -ETIMEDOUT;
792
793 atomic_set(&efx->drain_pending, 0);
794 atomic_set(&efx->rxq_flush_pending, 0);
795 atomic_set(&efx->rxq_flush_outstanding, 0);
796 }
797
798 efx->type->finish_flush(efx);
799
800 return rc;
801 }
802
803 /**************************************************************************
804 *
805 * Event queue processing
806 * Event queues are processed by per-channel tasklets.
807 *
808 **************************************************************************/
809
810 /* Update a channel's event queue's read pointer (RPTR) register
811 *
812 * This writes the EVQ_RPTR_REG register for the specified channel's
813 * event queue.
814 */
815 void efx_nic_eventq_read_ack(struct efx_channel *channel)
816 {
817 efx_dword_t reg;
818 struct efx_nic *efx = channel->efx;
819
820 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
821 channel->eventq_read_ptr & channel->eventq_mask);
822
823 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
824 * of 4 bytes, but it is really 16 bytes just like later revisions.
825 */
826 efx_writed(efx, &reg,
827 efx->type->evq_rptr_tbl_base +
828 FR_BZ_EVQ_RPTR_STEP * channel->channel);
829 }
830
831 /* Use HW to insert a SW defined event */
832 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
833 efx_qword_t *event)
834 {
835 efx_oword_t drv_ev_reg;
836
837 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
838 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
839 drv_ev_reg.u32[0] = event->u32[0];
840 drv_ev_reg.u32[1] = event->u32[1];
841 drv_ev_reg.u32[2] = 0;
842 drv_ev_reg.u32[3] = 0;
843 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
844 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
845 }
846
847 static void efx_magic_event(struct efx_channel *channel, u32 magic)
848 {
849 efx_qword_t event;
850
851 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
852 FSE_AZ_EV_CODE_DRV_GEN_EV,
853 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
854 efx_generate_event(channel->efx, channel->channel, &event);
855 }
856
857 /* Handle a transmit completion event
858 *
859 * The NIC batches TX completion events; the message we receive is of
860 * the form "complete all TX events up to this index".
861 */
862 static int
863 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
864 {
865 unsigned int tx_ev_desc_ptr;
866 unsigned int tx_ev_q_label;
867 struct efx_tx_queue *tx_queue;
868 struct efx_nic *efx = channel->efx;
869 int tx_packets = 0;
870
871 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
872 return 0;
873
874 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
875 /* Transmit completion */
876 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
877 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
878 tx_queue = efx_channel_get_tx_queue(
879 channel, tx_ev_q_label % EFX_TXQ_TYPES);
880 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
881 tx_queue->ptr_mask);
882 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
883 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
884 /* Rewrite the FIFO write pointer */
885 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
886 tx_queue = efx_channel_get_tx_queue(
887 channel, tx_ev_q_label % EFX_TXQ_TYPES);
888
889 netif_tx_lock(efx->net_dev);
890 efx_notify_tx_desc(tx_queue);
891 netif_tx_unlock(efx->net_dev);
892 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
893 EFX_WORKAROUND_10727(efx)) {
894 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
895 } else {
896 netif_err(efx, tx_err, efx->net_dev,
897 "channel %d unexpected TX event "
898 EFX_QWORD_FMT"\n", channel->channel,
899 EFX_QWORD_VAL(*event));
900 }
901
902 return tx_packets;
903 }
904
905 /* Detect errors included in the rx_evt_pkt_ok bit. */
906 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
907 const efx_qword_t *event)
908 {
909 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
910 struct efx_nic *efx = rx_queue->efx;
911 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
912 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
913 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
914 bool rx_ev_other_err, rx_ev_pause_frm;
915 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
916 unsigned rx_ev_pkt_type;
917
918 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
919 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
920 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
921 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
922 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
923 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
924 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
925 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
926 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
927 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
928 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
929 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
930 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
931 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
932 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
933
934 /* Every error apart from tobe_disc and pause_frm */
935 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
936 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
937 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
938
939 /* Count errors that are not in MAC stats. Ignore expected
940 * checksum errors during self-test. */
941 if (rx_ev_frm_trunc)
942 ++channel->n_rx_frm_trunc;
943 else if (rx_ev_tobe_disc)
944 ++channel->n_rx_tobe_disc;
945 else if (!efx->loopback_selftest) {
946 if (rx_ev_ip_hdr_chksum_err)
947 ++channel->n_rx_ip_hdr_chksum_err;
948 else if (rx_ev_tcp_udp_chksum_err)
949 ++channel->n_rx_tcp_udp_chksum_err;
950 }
951
952 /* TOBE_DISC is expected on unicast mismatches; don't print out an
953 * error message. FRM_TRUNC indicates RXDP dropped the packet due
954 * to a FIFO overflow.
955 */
956 #ifdef DEBUG
957 if (rx_ev_other_err && net_ratelimit()) {
958 netif_dbg(efx, rx_err, efx->net_dev,
959 " RX queue %d unexpected RX event "
960 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
961 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
962 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
963 rx_ev_ip_hdr_chksum_err ?
964 " [IP_HDR_CHKSUM_ERR]" : "",
965 rx_ev_tcp_udp_chksum_err ?
966 " [TCP_UDP_CHKSUM_ERR]" : "",
967 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
968 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
969 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
970 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
971 rx_ev_pause_frm ? " [PAUSE]" : "");
972 }
973 #endif
974
975 /* The frame must be discarded if any of these are true. */
976 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
977 rx_ev_tobe_disc | rx_ev_pause_frm) ?
978 EFX_RX_PKT_DISCARD : 0;
979 }
980
981 /* Handle receive events that are not in-order. Return true if this
982 * can be handled as a partial packet discard, false if it's more
983 * serious.
984 */
985 static bool
986 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
987 {
988 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
989 struct efx_nic *efx = rx_queue->efx;
990 unsigned expected, dropped;
991
992 if (rx_queue->scatter_n &&
993 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
994 rx_queue->ptr_mask)) {
995 ++channel->n_rx_nodesc_trunc;
996 return true;
997 }
998
999 expected = rx_queue->removed_count & rx_queue->ptr_mask;
1000 dropped = (index - expected) & rx_queue->ptr_mask;
1001 netif_info(efx, rx_err, efx->net_dev,
1002 "dropped %d events (index=%d expected=%d)\n",
1003 dropped, index, expected);
1004
1005 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
1006 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1007 return false;
1008 }
1009
1010 /* Handle a packet received event
1011 *
1012 * The NIC gives a "discard" flag if it's a unicast packet with the
1013 * wrong destination address
1014 * Also "is multicast" and "matches multicast filter" flags can be used to
1015 * discard non-matching multicast packets.
1016 */
1017 static void
1018 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
1019 {
1020 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
1021 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
1022 unsigned expected_ptr;
1023 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
1024 u16 flags;
1025 struct efx_rx_queue *rx_queue;
1026 struct efx_nic *efx = channel->efx;
1027
1028 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1029 return;
1030
1031 rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
1032 rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1033 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1034 channel->channel);
1035
1036 rx_queue = efx_channel_get_rx_queue(channel);
1037
1038 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1039 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1040 rx_queue->ptr_mask);
1041
1042 /* Check for partial drops and other errors */
1043 if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1044 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1045 if (rx_ev_desc_ptr != expected_ptr &&
1046 !efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1047 return;
1048
1049 /* Discard all pending fragments */
1050 if (rx_queue->scatter_n) {
1051 efx_rx_packet(
1052 rx_queue,
1053 rx_queue->removed_count & rx_queue->ptr_mask,
1054 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1055 rx_queue->removed_count += rx_queue->scatter_n;
1056 rx_queue->scatter_n = 0;
1057 }
1058
1059 /* Return if there is no new fragment */
1060 if (rx_ev_desc_ptr != expected_ptr)
1061 return;
1062
1063 /* Discard new fragment if not SOP */
1064 if (!rx_ev_sop) {
1065 efx_rx_packet(
1066 rx_queue,
1067 rx_queue->removed_count & rx_queue->ptr_mask,
1068 1, 0, EFX_RX_PKT_DISCARD);
1069 ++rx_queue->removed_count;
1070 return;
1071 }
1072 }
1073
1074 ++rx_queue->scatter_n;
1075 if (rx_ev_cont)
1076 return;
1077
1078 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1079 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1080 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1081
1082 if (likely(rx_ev_pkt_ok)) {
1083 /* If packet is marked as OK and packet type is TCP/IP or
1084 * UDP/IP, then we can rely on the hardware checksum.
1085 */
1086 flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
1087 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
1088 EFX_RX_PKT_CSUMMED : 0;
1089 } else {
1090 flags = efx_handle_rx_not_ok(rx_queue, event);
1091 }
1092
1093 /* Detect multicast packets that didn't match the filter */
1094 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1095 if (rx_ev_mcast_pkt) {
1096 unsigned int rx_ev_mcast_hash_match =
1097 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1098
1099 if (unlikely(!rx_ev_mcast_hash_match)) {
1100 ++channel->n_rx_mcast_mismatch;
1101 flags |= EFX_RX_PKT_DISCARD;
1102 }
1103 }
1104
1105 channel->irq_mod_score += 2;
1106
1107 /* Handle received packet */
1108 efx_rx_packet(rx_queue,
1109 rx_queue->removed_count & rx_queue->ptr_mask,
1110 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1111 rx_queue->removed_count += rx_queue->scatter_n;
1112 rx_queue->scatter_n = 0;
1113 }
1114
1115 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1116 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1117 * of all transmit completions.
1118 */
1119 static void
1120 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1121 {
1122 struct efx_tx_queue *tx_queue;
1123 int qid;
1124
1125 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1126 if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1127 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1128 qid % EFX_TXQ_TYPES);
1129 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1130 efx_magic_event(tx_queue->channel,
1131 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1132 }
1133 }
1134 }
1135
1136 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1137 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1138 * the RX queue back to the mask of RX queues in need of flushing.
1139 */
1140 static void
1141 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1142 {
1143 struct efx_channel *channel;
1144 struct efx_rx_queue *rx_queue;
1145 int qid;
1146 bool failed;
1147
1148 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1149 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1150 if (qid >= efx->n_channels)
1151 return;
1152 channel = efx_get_channel(efx, qid);
1153 if (!efx_channel_has_rx_queue(channel))
1154 return;
1155 rx_queue = efx_channel_get_rx_queue(channel);
1156
1157 if (failed) {
1158 netif_info(efx, hw, efx->net_dev,
1159 "RXQ %d flush retry\n", qid);
1160 rx_queue->flush_pending = true;
1161 atomic_inc(&efx->rxq_flush_pending);
1162 } else {
1163 efx_magic_event(efx_rx_queue_channel(rx_queue),
1164 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1165 }
1166 atomic_dec(&efx->rxq_flush_outstanding);
1167 if (efx_flush_wake(efx))
1168 wake_up(&efx->flush_wq);
1169 }
1170
1171 static void
1172 efx_handle_drain_event(struct efx_channel *channel)
1173 {
1174 struct efx_nic *efx = channel->efx;
1175
1176 WARN_ON(atomic_read(&efx->drain_pending) == 0);
1177 atomic_dec(&efx->drain_pending);
1178 if (efx_flush_wake(efx))
1179 wake_up(&efx->flush_wq);
1180 }
1181
1182 static void
1183 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1184 {
1185 struct efx_nic *efx = channel->efx;
1186 struct efx_rx_queue *rx_queue =
1187 efx_channel_has_rx_queue(channel) ?
1188 efx_channel_get_rx_queue(channel) : NULL;
1189 unsigned magic, code;
1190
1191 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1192 code = _EFX_CHANNEL_MAGIC_CODE(magic);
1193
1194 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1195 channel->event_test_cpu = raw_smp_processor_id();
1196 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1197 /* The queue must be empty, so we won't receive any rx
1198 * events, so efx_process_channel() won't refill the
1199 * queue. Refill it here */
1200 efx_fast_push_rx_descriptors(rx_queue);
1201 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1202 rx_queue->enabled = false;
1203 efx_handle_drain_event(channel);
1204 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1205 efx_handle_drain_event(channel);
1206 } else {
1207 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1208 "generated event "EFX_QWORD_FMT"\n",
1209 channel->channel, EFX_QWORD_VAL(*event));
1210 }
1211 }
1212
1213 static void
1214 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1215 {
1216 struct efx_nic *efx = channel->efx;
1217 unsigned int ev_sub_code;
1218 unsigned int ev_sub_data;
1219
1220 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1221 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1222
1223 switch (ev_sub_code) {
1224 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1225 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1226 channel->channel, ev_sub_data);
1227 efx_handle_tx_flush_done(efx, event);
1228 efx_sriov_tx_flush_done(efx, event);
1229 break;
1230 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1231 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1232 channel->channel, ev_sub_data);
1233 efx_handle_rx_flush_done(efx, event);
1234 efx_sriov_rx_flush_done(efx, event);
1235 break;
1236 case FSE_AZ_EVQ_INIT_DONE_EV:
1237 netif_dbg(efx, hw, efx->net_dev,
1238 "channel %d EVQ %d initialised\n",
1239 channel->channel, ev_sub_data);
1240 break;
1241 case FSE_AZ_SRM_UPD_DONE_EV:
1242 netif_vdbg(efx, hw, efx->net_dev,
1243 "channel %d SRAM update done\n", channel->channel);
1244 break;
1245 case FSE_AZ_WAKE_UP_EV:
1246 netif_vdbg(efx, hw, efx->net_dev,
1247 "channel %d RXQ %d wakeup event\n",
1248 channel->channel, ev_sub_data);
1249 break;
1250 case FSE_AZ_TIMER_EV:
1251 netif_vdbg(efx, hw, efx->net_dev,
1252 "channel %d RX queue %d timer expired\n",
1253 channel->channel, ev_sub_data);
1254 break;
1255 case FSE_AA_RX_RECOVER_EV:
1256 netif_err(efx, rx_err, efx->net_dev,
1257 "channel %d seen DRIVER RX_RESET event. "
1258 "Resetting.\n", channel->channel);
1259 atomic_inc(&efx->rx_reset);
1260 efx_schedule_reset(efx,
1261 EFX_WORKAROUND_6555(efx) ?
1262 RESET_TYPE_RX_RECOVERY :
1263 RESET_TYPE_DISABLE);
1264 break;
1265 case FSE_BZ_RX_DSC_ERROR_EV:
1266 if (ev_sub_data < EFX_VI_BASE) {
1267 netif_err(efx, rx_err, efx->net_dev,
1268 "RX DMA Q %d reports descriptor fetch error."
1269 " RX Q %d is disabled.\n", ev_sub_data,
1270 ev_sub_data);
1271 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1272 } else
1273 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1274 break;
1275 case FSE_BZ_TX_DSC_ERROR_EV:
1276 if (ev_sub_data < EFX_VI_BASE) {
1277 netif_err(efx, tx_err, efx->net_dev,
1278 "TX DMA Q %d reports descriptor fetch error."
1279 " TX Q %d is disabled.\n", ev_sub_data,
1280 ev_sub_data);
1281 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1282 } else
1283 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1284 break;
1285 default:
1286 netif_vdbg(efx, hw, efx->net_dev,
1287 "channel %d unknown driver event code %d "
1288 "data %04x\n", channel->channel, ev_sub_code,
1289 ev_sub_data);
1290 break;
1291 }
1292 }
1293
1294 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1295 {
1296 struct efx_nic *efx = channel->efx;
1297 unsigned int read_ptr;
1298 efx_qword_t event, *p_event;
1299 int ev_code;
1300 int tx_packets = 0;
1301 int spent = 0;
1302
1303 read_ptr = channel->eventq_read_ptr;
1304
1305 for (;;) {
1306 p_event = efx_event(channel, read_ptr);
1307 event = *p_event;
1308
1309 if (!efx_event_present(&event))
1310 /* End of events */
1311 break;
1312
1313 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1314 "channel %d event is "EFX_QWORD_FMT"\n",
1315 channel->channel, EFX_QWORD_VAL(event));
1316
1317 /* Clear this event by marking it all ones */
1318 EFX_SET_QWORD(*p_event);
1319
1320 ++read_ptr;
1321
1322 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1323
1324 switch (ev_code) {
1325 case FSE_AZ_EV_CODE_RX_EV:
1326 efx_handle_rx_event(channel, &event);
1327 if (++spent == budget)
1328 goto out;
1329 break;
1330 case FSE_AZ_EV_CODE_TX_EV:
1331 tx_packets += efx_handle_tx_event(channel, &event);
1332 if (tx_packets > efx->txq_entries) {
1333 spent = budget;
1334 goto out;
1335 }
1336 break;
1337 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1338 efx_handle_generated_event(channel, &event);
1339 break;
1340 case FSE_AZ_EV_CODE_DRIVER_EV:
1341 efx_handle_driver_event(channel, &event);
1342 break;
1343 case FSE_CZ_EV_CODE_USER_EV:
1344 efx_sriov_event(channel, &event);
1345 break;
1346 case FSE_CZ_EV_CODE_MCDI_EV:
1347 efx_mcdi_process_event(channel, &event);
1348 break;
1349 case FSE_AZ_EV_CODE_GLOBAL_EV:
1350 if (efx->type->handle_global_event &&
1351 efx->type->handle_global_event(channel, &event))
1352 break;
1353 /* else fall through */
1354 default:
1355 netif_err(channel->efx, hw, channel->efx->net_dev,
1356 "channel %d unknown event type %d (data "
1357 EFX_QWORD_FMT ")\n", channel->channel,
1358 ev_code, EFX_QWORD_VAL(event));
1359 }
1360 }
1361
1362 out:
1363 channel->eventq_read_ptr = read_ptr;
1364 return spent;
1365 }
1366
1367 /* Check whether an event is present in the eventq at the current
1368 * read pointer. Only useful for self-test.
1369 */
1370 bool efx_nic_event_present(struct efx_channel *channel)
1371 {
1372 return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1373 }
1374
1375 /* Allocate buffer table entries for event queue */
1376 int efx_nic_probe_eventq(struct efx_channel *channel)
1377 {
1378 struct efx_nic *efx = channel->efx;
1379 unsigned entries;
1380
1381 entries = channel->eventq_mask + 1;
1382 return efx_alloc_special_buffer(efx, &channel->eventq,
1383 entries * sizeof(efx_qword_t));
1384 }
1385
1386 void efx_nic_init_eventq(struct efx_channel *channel)
1387 {
1388 efx_oword_t reg;
1389 struct efx_nic *efx = channel->efx;
1390
1391 netif_dbg(efx, hw, efx->net_dev,
1392 "channel %d event queue in special buffers %d-%d\n",
1393 channel->channel, channel->eventq.index,
1394 channel->eventq.index + channel->eventq.entries - 1);
1395
1396 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1397 EFX_POPULATE_OWORD_3(reg,
1398 FRF_CZ_TIMER_Q_EN, 1,
1399 FRF_CZ_HOST_NOTIFY_MODE, 0,
1400 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1401 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1402 }
1403
1404 /* Pin event queue buffer */
1405 efx_init_special_buffer(efx, &channel->eventq);
1406
1407 /* Fill event queue with all ones (i.e. empty events) */
1408 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1409
1410 /* Push event queue to card */
1411 EFX_POPULATE_OWORD_3(reg,
1412 FRF_AZ_EVQ_EN, 1,
1413 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1414 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1415 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1416 channel->channel);
1417
1418 efx->type->push_irq_moderation(channel);
1419 }
1420
1421 void efx_nic_fini_eventq(struct efx_channel *channel)
1422 {
1423 efx_oword_t reg;
1424 struct efx_nic *efx = channel->efx;
1425
1426 /* Remove event queue from card */
1427 EFX_ZERO_OWORD(reg);
1428 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1429 channel->channel);
1430 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1431 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1432
1433 /* Unpin event queue */
1434 efx_fini_special_buffer(efx, &channel->eventq);
1435 }
1436
1437 /* Free buffers backing event queue */
1438 void efx_nic_remove_eventq(struct efx_channel *channel)
1439 {
1440 efx_free_special_buffer(channel->efx, &channel->eventq);
1441 }
1442
1443
1444 void efx_nic_event_test_start(struct efx_channel *channel)
1445 {
1446 channel->event_test_cpu = -1;
1447 smp_wmb();
1448 efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1449 }
1450
1451 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1452 {
1453 efx_magic_event(efx_rx_queue_channel(rx_queue),
1454 EFX_CHANNEL_MAGIC_FILL(rx_queue));
1455 }
1456
1457 /**************************************************************************
1458 *
1459 * Hardware interrupts
1460 * The hardware interrupt handler does very little work; all the event
1461 * queue processing is carried out by per-channel tasklets.
1462 *
1463 **************************************************************************/
1464
1465 /* Enable/disable/generate interrupts */
1466 static inline void efx_nic_interrupts(struct efx_nic *efx,
1467 bool enabled, bool force)
1468 {
1469 efx_oword_t int_en_reg_ker;
1470
1471 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1472 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1473 FRF_AZ_KER_INT_KER, force,
1474 FRF_AZ_DRV_INT_EN_KER, enabled);
1475 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1476 }
1477
1478 void efx_nic_enable_interrupts(struct efx_nic *efx)
1479 {
1480 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1481 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1482
1483 efx_nic_interrupts(efx, true, false);
1484 }
1485
1486 void efx_nic_disable_interrupts(struct efx_nic *efx)
1487 {
1488 /* Disable interrupts */
1489 efx_nic_interrupts(efx, false, false);
1490 }
1491
1492 /* Generate a test interrupt
1493 * Interrupt must already have been enabled, otherwise nasty things
1494 * may happen.
1495 */
1496 void efx_nic_irq_test_start(struct efx_nic *efx)
1497 {
1498 efx->last_irq_cpu = -1;
1499 smp_wmb();
1500 efx_nic_interrupts(efx, true, true);
1501 }
1502
1503 /* Process a fatal interrupt
1504 * Disable bus mastering ASAP and schedule a reset
1505 */
1506 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1507 {
1508 struct falcon_nic_data *nic_data = efx->nic_data;
1509 efx_oword_t *int_ker = efx->irq_status.addr;
1510 efx_oword_t fatal_intr;
1511 int error, mem_perr;
1512
1513 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1514 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1515
1516 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1517 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1518 EFX_OWORD_VAL(fatal_intr),
1519 error ? "disabling bus mastering" : "no recognised error");
1520
1521 /* If this is a memory parity error dump which blocks are offending */
1522 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1523 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1524 if (mem_perr) {
1525 efx_oword_t reg;
1526 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1527 netif_err(efx, hw, efx->net_dev,
1528 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1529 EFX_OWORD_VAL(reg));
1530 }
1531
1532 /* Disable both devices */
1533 pci_clear_master(efx->pci_dev);
1534 if (efx_nic_is_dual_func(efx))
1535 pci_clear_master(nic_data->pci_dev2);
1536 efx_nic_disable_interrupts(efx);
1537
1538 /* Count errors and reset or disable the NIC accordingly */
1539 if (efx->int_error_count == 0 ||
1540 time_after(jiffies, efx->int_error_expire)) {
1541 efx->int_error_count = 0;
1542 efx->int_error_expire =
1543 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1544 }
1545 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1546 netif_err(efx, hw, efx->net_dev,
1547 "SYSTEM ERROR - reset scheduled\n");
1548 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1549 } else {
1550 netif_err(efx, hw, efx->net_dev,
1551 "SYSTEM ERROR - max number of errors seen."
1552 "NIC will be disabled\n");
1553 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1554 }
1555
1556 return IRQ_HANDLED;
1557 }
1558
1559 /* Handle a legacy interrupt
1560 * Acknowledges the interrupt and schedule event queue processing.
1561 */
1562 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1563 {
1564 struct efx_nic *efx = dev_id;
1565 efx_oword_t *int_ker = efx->irq_status.addr;
1566 irqreturn_t result = IRQ_NONE;
1567 struct efx_channel *channel;
1568 efx_dword_t reg;
1569 u32 queues;
1570 int syserr;
1571
1572 /* Could this be ours? If interrupts are disabled then the
1573 * channel state may not be valid.
1574 */
1575 if (!efx->legacy_irq_enabled)
1576 return result;
1577
1578 /* Read the ISR which also ACKs the interrupts */
1579 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1580 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1581
1582 /* Handle non-event-queue sources */
1583 if (queues & (1U << efx->irq_level)) {
1584 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1585 if (unlikely(syserr))
1586 return efx_nic_fatal_interrupt(efx);
1587 efx->last_irq_cpu = raw_smp_processor_id();
1588 }
1589
1590 if (queues != 0) {
1591 if (EFX_WORKAROUND_15783(efx))
1592 efx->irq_zero_count = 0;
1593
1594 /* Schedule processing of any interrupting queues */
1595 efx_for_each_channel(channel, efx) {
1596 if (queues & 1)
1597 efx_schedule_channel_irq(channel);
1598 queues >>= 1;
1599 }
1600 result = IRQ_HANDLED;
1601
1602 } else if (EFX_WORKAROUND_15783(efx)) {
1603 efx_qword_t *event;
1604
1605 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1606 * because this might be a shared interrupt. */
1607 if (efx->irq_zero_count++ == 0)
1608 result = IRQ_HANDLED;
1609
1610 /* Ensure we schedule or rearm all event queues */
1611 efx_for_each_channel(channel, efx) {
1612 event = efx_event(channel, channel->eventq_read_ptr);
1613 if (efx_event_present(event))
1614 efx_schedule_channel_irq(channel);
1615 else
1616 efx_nic_eventq_read_ack(channel);
1617 }
1618 }
1619
1620 if (result == IRQ_HANDLED)
1621 netif_vdbg(efx, intr, efx->net_dev,
1622 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1623 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1624
1625 return result;
1626 }
1627
1628 /* Handle an MSI interrupt
1629 *
1630 * Handle an MSI hardware interrupt. This routine schedules event
1631 * queue processing. No interrupt acknowledgement cycle is necessary.
1632 * Also, we never need to check that the interrupt is for us, since
1633 * MSI interrupts cannot be shared.
1634 */
1635 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1636 {
1637 struct efx_channel *channel = *(struct efx_channel **)dev_id;
1638 struct efx_nic *efx = channel->efx;
1639 efx_oword_t *int_ker = efx->irq_status.addr;
1640 int syserr;
1641
1642 netif_vdbg(efx, intr, efx->net_dev,
1643 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1644 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1645
1646 /* Handle non-event-queue sources */
1647 if (channel->channel == efx->irq_level) {
1648 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1649 if (unlikely(syserr))
1650 return efx_nic_fatal_interrupt(efx);
1651 efx->last_irq_cpu = raw_smp_processor_id();
1652 }
1653
1654 /* Schedule processing of the channel */
1655 efx_schedule_channel_irq(channel);
1656
1657 return IRQ_HANDLED;
1658 }
1659
1660
1661 /* Setup RSS indirection table.
1662 * This maps from the hash value of the packet to RXQ
1663 */
1664 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1665 {
1666 size_t i = 0;
1667 efx_dword_t dword;
1668
1669 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1670 return;
1671
1672 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1673 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1674
1675 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1676 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1677 efx->rx_indir_table[i]);
1678 efx_writed(efx, &dword,
1679 FR_BZ_RX_INDIRECTION_TBL +
1680 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1681 }
1682 }
1683
1684 /* Hook interrupt handler(s)
1685 * Try MSI and then legacy interrupts.
1686 */
1687 int efx_nic_init_interrupt(struct efx_nic *efx)
1688 {
1689 struct efx_channel *channel;
1690 int rc;
1691
1692 if (!EFX_INT_MODE_USE_MSI(efx)) {
1693 irq_handler_t handler;
1694 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1695 handler = efx_legacy_interrupt;
1696 else
1697 handler = falcon_legacy_interrupt_a1;
1698
1699 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1700 efx->name, efx);
1701 if (rc) {
1702 netif_err(efx, drv, efx->net_dev,
1703 "failed to hook legacy IRQ %d\n",
1704 efx->pci_dev->irq);
1705 goto fail1;
1706 }
1707 return 0;
1708 }
1709
1710 /* Hook MSI or MSI-X interrupt */
1711 efx_for_each_channel(channel, efx) {
1712 rc = request_irq(channel->irq, efx_msi_interrupt,
1713 IRQF_PROBE_SHARED, /* Not shared */
1714 efx->channel_name[channel->channel],
1715 &efx->channel[channel->channel]);
1716 if (rc) {
1717 netif_err(efx, drv, efx->net_dev,
1718 "failed to hook IRQ %d\n", channel->irq);
1719 goto fail2;
1720 }
1721 }
1722
1723 return 0;
1724
1725 fail2:
1726 efx_for_each_channel(channel, efx)
1727 free_irq(channel->irq, &efx->channel[channel->channel]);
1728 fail1:
1729 return rc;
1730 }
1731
1732 void efx_nic_fini_interrupt(struct efx_nic *efx)
1733 {
1734 struct efx_channel *channel;
1735 efx_oword_t reg;
1736
1737 /* Disable MSI/MSI-X interrupts */
1738 efx_for_each_channel(channel, efx) {
1739 if (channel->irq)
1740 free_irq(channel->irq, &efx->channel[channel->channel]);
1741 }
1742
1743 /* ACK legacy interrupt */
1744 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1745 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1746 else
1747 falcon_irq_ack_a1(efx);
1748
1749 /* Disable legacy interrupt */
1750 if (efx->legacy_irq)
1751 free_irq(efx->legacy_irq, efx);
1752 }
1753
1754 /* Looks at available SRAM resources and works out how many queues we
1755 * can support, and where things like descriptor caches should live.
1756 *
1757 * SRAM is split up as follows:
1758 * 0 buftbl entries for channels
1759 * efx->vf_buftbl_base buftbl entries for SR-IOV
1760 * efx->rx_dc_base RX descriptor caches
1761 * efx->tx_dc_base TX descriptor caches
1762 */
1763 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1764 {
1765 unsigned vi_count, buftbl_min;
1766
1767 /* Account for the buffer table entries backing the datapath channels
1768 * and the descriptor caches for those channels.
1769 */
1770 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1771 efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1772 efx->n_channels * EFX_MAX_EVQ_SIZE)
1773 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1774 vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1775
1776 #ifdef CONFIG_SFC_SRIOV
1777 if (efx_sriov_wanted(efx)) {
1778 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1779
1780 efx->vf_buftbl_base = buftbl_min;
1781
1782 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1783 vi_count = max(vi_count, EFX_VI_BASE);
1784 buftbl_free = (sram_lim_qw - buftbl_min -
1785 vi_count * vi_dc_entries);
1786
1787 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1788 efx_vf_size(efx));
1789 vf_limit = min(buftbl_free / entries_per_vf,
1790 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1791
1792 if (efx->vf_count > vf_limit) {
1793 netif_err(efx, probe, efx->net_dev,
1794 "Reducing VF count from from %d to %d\n",
1795 efx->vf_count, vf_limit);
1796 efx->vf_count = vf_limit;
1797 }
1798 vi_count += efx->vf_count * efx_vf_size(efx);
1799 }
1800 #endif
1801
1802 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1803 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1804 }
1805
1806 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1807 {
1808 efx_oword_t altera_build;
1809 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1810 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1811 }
1812
1813 void efx_nic_init_common(struct efx_nic *efx)
1814 {
1815 efx_oword_t temp;
1816
1817 /* Set positions of descriptor caches in SRAM. */
1818 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1819 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1820 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1821 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1822
1823 /* Set TX descriptor cache size. */
1824 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1825 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1826 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1827
1828 /* Set RX descriptor cache size. Set low watermark to size-8, as
1829 * this allows most efficient prefetching.
1830 */
1831 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1832 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1833 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1834 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1835 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1836
1837 /* Program INT_KER address */
1838 EFX_POPULATE_OWORD_2(temp,
1839 FRF_AZ_NORM_INT_VEC_DIS_KER,
1840 EFX_INT_MODE_USE_MSI(efx),
1841 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1842 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1843
1844 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1845 /* Use an interrupt level unused by event queues */
1846 efx->irq_level = 0x1f;
1847 else
1848 /* Use a valid MSI-X vector */
1849 efx->irq_level = 0;
1850
1851 /* Enable all the genuinely fatal interrupts. (They are still
1852 * masked by the overall interrupt mask, controlled by
1853 * falcon_interrupts()).
1854 *
1855 * Note: All other fatal interrupts are enabled
1856 */
1857 EFX_POPULATE_OWORD_3(temp,
1858 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1859 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1860 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1861 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1862 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1863 EFX_INVERT_OWORD(temp);
1864 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1865
1866 efx_nic_push_rx_indir_table(efx);
1867
1868 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1869 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1870 */
1871 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1872 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1873 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1874 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1875 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1876 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1877 /* Enable SW_EV to inherit in char driver - assume harmless here */
1878 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1879 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1880 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1881 /* Disable hardware watchdog which can misfire */
1882 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1883 /* Squash TX of packets of 16 bytes or less */
1884 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1885 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1886 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1887
1888 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1889 EFX_POPULATE_OWORD_4(temp,
1890 /* Default values */
1891 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1892 FRF_BZ_TX_PACE_SB_AF, 0xb,
1893 FRF_BZ_TX_PACE_FB_BASE, 0,
1894 /* Allow large pace values in the
1895 * fast bin. */
1896 FRF_BZ_TX_PACE_BIN_TH,
1897 FFE_BZ_TX_PACE_RESERVED);
1898 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1899 }
1900 }
1901
1902 /* Register dump */
1903
1904 #define REGISTER_REVISION_A 1
1905 #define REGISTER_REVISION_B 2
1906 #define REGISTER_REVISION_C 3
1907 #define REGISTER_REVISION_Z 3 /* latest revision */
1908
1909 struct efx_nic_reg {
1910 u32 offset:24;
1911 u32 min_revision:2, max_revision:2;
1912 };
1913
1914 #define REGISTER(name, min_rev, max_rev) { \
1915 FR_ ## min_rev ## max_rev ## _ ## name, \
1916 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1917 }
1918 #define REGISTER_AA(name) REGISTER(name, A, A)
1919 #define REGISTER_AB(name) REGISTER(name, A, B)
1920 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1921 #define REGISTER_BB(name) REGISTER(name, B, B)
1922 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1923 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1924
1925 static const struct efx_nic_reg efx_nic_regs[] = {
1926 REGISTER_AZ(ADR_REGION),
1927 REGISTER_AZ(INT_EN_KER),
1928 REGISTER_BZ(INT_EN_CHAR),
1929 REGISTER_AZ(INT_ADR_KER),
1930 REGISTER_BZ(INT_ADR_CHAR),
1931 /* INT_ACK_KER is WO */
1932 /* INT_ISR0 is RC */
1933 REGISTER_AZ(HW_INIT),
1934 REGISTER_CZ(USR_EV_CFG),
1935 REGISTER_AB(EE_SPI_HCMD),
1936 REGISTER_AB(EE_SPI_HADR),
1937 REGISTER_AB(EE_SPI_HDATA),
1938 REGISTER_AB(EE_BASE_PAGE),
1939 REGISTER_AB(EE_VPD_CFG0),
1940 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1941 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1942 /* PCIE_CORE_INDIRECT is indirect */
1943 REGISTER_AB(NIC_STAT),
1944 REGISTER_AB(GPIO_CTL),
1945 REGISTER_AB(GLB_CTL),
1946 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1947 REGISTER_BZ(DP_CTRL),
1948 REGISTER_AZ(MEM_STAT),
1949 REGISTER_AZ(CS_DEBUG),
1950 REGISTER_AZ(ALTERA_BUILD),
1951 REGISTER_AZ(CSR_SPARE),
1952 REGISTER_AB(PCIE_SD_CTL0123),
1953 REGISTER_AB(PCIE_SD_CTL45),
1954 REGISTER_AB(PCIE_PCS_CTL_STAT),
1955 /* DEBUG_DATA_OUT is not used */
1956 /* DRV_EV is WO */
1957 REGISTER_AZ(EVQ_CTL),
1958 REGISTER_AZ(EVQ_CNT1),
1959 REGISTER_AZ(EVQ_CNT2),
1960 REGISTER_AZ(BUF_TBL_CFG),
1961 REGISTER_AZ(SRM_RX_DC_CFG),
1962 REGISTER_AZ(SRM_TX_DC_CFG),
1963 REGISTER_AZ(SRM_CFG),
1964 /* BUF_TBL_UPD is WO */
1965 REGISTER_AZ(SRM_UPD_EVQ),
1966 REGISTER_AZ(SRAM_PARITY),
1967 REGISTER_AZ(RX_CFG),
1968 REGISTER_BZ(RX_FILTER_CTL),
1969 /* RX_FLUSH_DESCQ is WO */
1970 REGISTER_AZ(RX_DC_CFG),
1971 REGISTER_AZ(RX_DC_PF_WM),
1972 REGISTER_BZ(RX_RSS_TKEY),
1973 /* RX_NODESC_DROP is RC */
1974 REGISTER_AA(RX_SELF_RST),
1975 /* RX_DEBUG, RX_PUSH_DROP are not used */
1976 REGISTER_CZ(RX_RSS_IPV6_REG1),
1977 REGISTER_CZ(RX_RSS_IPV6_REG2),
1978 REGISTER_CZ(RX_RSS_IPV6_REG3),
1979 /* TX_FLUSH_DESCQ is WO */
1980 REGISTER_AZ(TX_DC_CFG),
1981 REGISTER_AA(TX_CHKSM_CFG),
1982 REGISTER_AZ(TX_CFG),
1983 /* TX_PUSH_DROP is not used */
1984 REGISTER_AZ(TX_RESERVED),
1985 REGISTER_BZ(TX_PACE),
1986 /* TX_PACE_DROP_QID is RC */
1987 REGISTER_BB(TX_VLAN),
1988 REGISTER_BZ(TX_IPFIL_PORTEN),
1989 REGISTER_AB(MD_TXD),
1990 REGISTER_AB(MD_RXD),
1991 REGISTER_AB(MD_CS),
1992 REGISTER_AB(MD_PHY_ADR),
1993 REGISTER_AB(MD_ID),
1994 /* MD_STAT is RC */
1995 REGISTER_AB(MAC_STAT_DMA),
1996 REGISTER_AB(MAC_CTRL),
1997 REGISTER_BB(GEN_MODE),
1998 REGISTER_AB(MAC_MC_HASH_REG0),
1999 REGISTER_AB(MAC_MC_HASH_REG1),
2000 REGISTER_AB(GM_CFG1),
2001 REGISTER_AB(GM_CFG2),
2002 /* GM_IPG and GM_HD are not used */
2003 REGISTER_AB(GM_MAX_FLEN),
2004 /* GM_TEST is not used */
2005 REGISTER_AB(GM_ADR1),
2006 REGISTER_AB(GM_ADR2),
2007 REGISTER_AB(GMF_CFG0),
2008 REGISTER_AB(GMF_CFG1),
2009 REGISTER_AB(GMF_CFG2),
2010 REGISTER_AB(GMF_CFG3),
2011 REGISTER_AB(GMF_CFG4),
2012 REGISTER_AB(GMF_CFG5),
2013 REGISTER_BB(TX_SRC_MAC_CTL),
2014 REGISTER_AB(XM_ADR_LO),
2015 REGISTER_AB(XM_ADR_HI),
2016 REGISTER_AB(XM_GLB_CFG),
2017 REGISTER_AB(XM_TX_CFG),
2018 REGISTER_AB(XM_RX_CFG),
2019 REGISTER_AB(XM_MGT_INT_MASK),
2020 REGISTER_AB(XM_FC),
2021 REGISTER_AB(XM_PAUSE_TIME),
2022 REGISTER_AB(XM_TX_PARAM),
2023 REGISTER_AB(XM_RX_PARAM),
2024 /* XM_MGT_INT_MSK (note no 'A') is RC */
2025 REGISTER_AB(XX_PWR_RST),
2026 REGISTER_AB(XX_SD_CTL),
2027 REGISTER_AB(XX_TXDRV_CTL),
2028 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
2029 /* XX_CORE_STAT is partly RC */
2030 };
2031
2032 struct efx_nic_reg_table {
2033 u32 offset:24;
2034 u32 min_revision:2, max_revision:2;
2035 u32 step:6, rows:21;
2036 };
2037
2038 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
2039 offset, \
2040 REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
2041 step, rows \
2042 }
2043 #define REGISTER_TABLE(name, min_rev, max_rev) \
2044 REGISTER_TABLE_DIMENSIONS( \
2045 name, FR_ ## min_rev ## max_rev ## _ ## name, \
2046 min_rev, max_rev, \
2047 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
2048 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
2049 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
2050 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
2051 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
2052 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
2053 #define REGISTER_TABLE_BB_CZ(name) \
2054 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
2055 FR_BZ_ ## name ## _STEP, \
2056 FR_BB_ ## name ## _ROWS), \
2057 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
2058 FR_BZ_ ## name ## _STEP, \
2059 FR_CZ_ ## name ## _ROWS)
2060 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
2061
2062 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
2063 /* DRIVER is not used */
2064 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
2065 REGISTER_TABLE_BB(TX_IPFIL_TBL),
2066 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
2067 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
2068 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
2069 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
2070 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
2071 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
2072 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
2073 /* We can't reasonably read all of the buffer table (up to 8MB!).
2074 * However this driver will only use a few entries. Reading
2075 * 1K entries allows for some expansion of queue count and
2076 * size before we need to change the version. */
2077 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
2078 A, A, 8, 1024),
2079 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
2080 B, Z, 8, 1024),
2081 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
2082 REGISTER_TABLE_BB_CZ(TIMER_TBL),
2083 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
2084 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
2085 /* TX_FILTER_TBL0 is huge and not used by this driver */
2086 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
2087 REGISTER_TABLE_CZ(MC_TREG_SMEM),
2088 /* MSIX_PBA_TABLE is not mapped */
2089 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
2090 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
2091 };
2092
2093 size_t efx_nic_get_regs_len(struct efx_nic *efx)
2094 {
2095 const struct efx_nic_reg *reg;
2096 const struct efx_nic_reg_table *table;
2097 size_t len = 0;
2098
2099 for (reg = efx_nic_regs;
2100 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2101 reg++)
2102 if (efx->type->revision >= reg->min_revision &&
2103 efx->type->revision <= reg->max_revision)
2104 len += sizeof(efx_oword_t);
2105
2106 for (table = efx_nic_reg_tables;
2107 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2108 table++)
2109 if (efx->type->revision >= table->min_revision &&
2110 efx->type->revision <= table->max_revision)
2111 len += table->rows * min_t(size_t, table->step, 16);
2112
2113 return len;
2114 }
2115
2116 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2117 {
2118 const struct efx_nic_reg *reg;
2119 const struct efx_nic_reg_table *table;
2120
2121 for (reg = efx_nic_regs;
2122 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2123 reg++) {
2124 if (efx->type->revision >= reg->min_revision &&
2125 efx->type->revision <= reg->max_revision) {
2126 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2127 buf += sizeof(efx_oword_t);
2128 }
2129 }
2130
2131 for (table = efx_nic_reg_tables;
2132 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2133 table++) {
2134 size_t size, i;
2135
2136 if (!(efx->type->revision >= table->min_revision &&
2137 efx->type->revision <= table->max_revision))
2138 continue;
2139
2140 size = min_t(size_t, table->step, 16);
2141
2142 for (i = 0; i < table->rows; i++) {
2143 switch (table->step) {
2144 case 4: /* 32-bit SRAM */
2145 efx_readd(efx, buf, table->offset + 4 * i);
2146 break;
2147 case 8: /* 64-bit SRAM */
2148 efx_sram_readq(efx,
2149 efx->membase + table->offset,
2150 buf, i);
2151 break;
2152 case 16: /* 128-bit-readable register */
2153 efx_reado_table(efx, buf, table->offset, i);
2154 break;
2155 case 32: /* 128-bit register, interleaved */
2156 efx_reado_table(efx, buf, table->offset, 2 * i);
2157 break;
2158 default:
2159 WARN_ON(1);
2160 return;
2161 }
2162 buf += size;
2163 }
2164 }
2165 }
This page took 0.075227 seconds and 5 git commands to generate.