net/mlx5_core: Print resource number on QP/SRQ async events
[deliverable/linux.git] / drivers / net / ethernet / sfc / nic.h
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #ifndef EFX_NIC_H
12 #define EFX_NIC_H
13
14 #include <linux/net_tstamp.h>
15 #include <linux/i2c-algo-bit.h>
16 #include "net_driver.h"
17 #include "efx.h"
18 #include "mcdi.h"
19
20 enum {
21 EFX_REV_FALCON_A0 = 0,
22 EFX_REV_FALCON_A1 = 1,
23 EFX_REV_FALCON_B0 = 2,
24 EFX_REV_SIENA_A0 = 3,
25 EFX_REV_HUNT_A0 = 4,
26 };
27
28 static inline int efx_nic_rev(struct efx_nic *efx)
29 {
30 return efx->type->revision;
31 }
32
33 u32 efx_farch_fpga_ver(struct efx_nic *efx);
34
35 /* NIC has two interlinked PCI functions for the same port. */
36 static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
37 {
38 return efx_nic_rev(efx) < EFX_REV_FALCON_B0;
39 }
40
41 /* Read the current event from the event queue */
42 static inline efx_qword_t *efx_event(struct efx_channel *channel,
43 unsigned int index)
44 {
45 return ((efx_qword_t *) (channel->eventq.buf.addr)) +
46 (index & channel->eventq_mask);
47 }
48
49 /* See if an event is present
50 *
51 * We check both the high and low dword of the event for all ones. We
52 * wrote all ones when we cleared the event, and no valid event can
53 * have all ones in either its high or low dwords. This approach is
54 * robust against reordering.
55 *
56 * Note that using a single 64-bit comparison is incorrect; even
57 * though the CPU read will be atomic, the DMA write may not be.
58 */
59 static inline int efx_event_present(efx_qword_t *event)
60 {
61 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
62 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
63 }
64
65 /* Returns a pointer to the specified transmit descriptor in the TX
66 * descriptor queue belonging to the specified channel.
67 */
68 static inline efx_qword_t *
69 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
70 {
71 return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
72 }
73
74 /* Get partner of a TX queue, seen as part of the same net core queue */
75 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
76 {
77 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
78 return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
79 else
80 return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
81 }
82
83 /* Report whether this TX queue would be empty for the given write_count.
84 * May return false negative.
85 */
86 static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
87 unsigned int write_count)
88 {
89 unsigned int empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
90
91 if (empty_read_count == 0)
92 return false;
93
94 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
95 }
96
97 /* Decide whether we can use TX PIO, ie. write packet data directly into
98 * a buffer on the device. This can reduce latency at the expense of
99 * throughput, so we only do this if both hardware and software TX rings
100 * are empty. This also ensures that only one packet at a time can be
101 * using the PIO buffer.
102 */
103 static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
104 {
105 struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
106 return tx_queue->piobuf &&
107 __efx_nic_tx_is_empty(tx_queue, tx_queue->insert_count) &&
108 __efx_nic_tx_is_empty(partner, partner->insert_count);
109 }
110
111 /* Decide whether to push a TX descriptor to the NIC vs merely writing
112 * the doorbell. This can reduce latency when we are adding a single
113 * descriptor to an empty queue, but is otherwise pointless. Further,
114 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
115 * triggered if we don't check this.
116 * We use the write_count used for the last doorbell push, to get the
117 * NIC's view of the tx queue.
118 */
119 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
120 unsigned int write_count)
121 {
122 bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
123
124 tx_queue->empty_read_count = 0;
125 return was_empty && tx_queue->write_count - write_count == 1;
126 }
127
128 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
129 static inline efx_qword_t *
130 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
131 {
132 return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
133 }
134
135 enum {
136 PHY_TYPE_NONE = 0,
137 PHY_TYPE_TXC43128 = 1,
138 PHY_TYPE_88E1111 = 2,
139 PHY_TYPE_SFX7101 = 3,
140 PHY_TYPE_QT2022C2 = 4,
141 PHY_TYPE_PM8358 = 6,
142 PHY_TYPE_SFT9001A = 8,
143 PHY_TYPE_QT2025C = 9,
144 PHY_TYPE_SFT9001B = 10,
145 };
146
147 #define FALCON_XMAC_LOOPBACKS \
148 ((1 << LOOPBACK_XGMII) | \
149 (1 << LOOPBACK_XGXS) | \
150 (1 << LOOPBACK_XAUI))
151
152 /* Alignment of PCIe DMA boundaries (4KB) */
153 #define EFX_PAGE_SIZE 4096
154 /* Size and alignment of buffer table entries (same) */
155 #define EFX_BUF_SIZE EFX_PAGE_SIZE
156
157 /* NIC-generic software stats */
158 enum {
159 GENERIC_STAT_rx_noskb_drops,
160 GENERIC_STAT_rx_nodesc_trunc,
161 GENERIC_STAT_COUNT
162 };
163
164 /**
165 * struct falcon_board_type - board operations and type information
166 * @id: Board type id, as found in NVRAM
167 * @init: Allocate resources and initialise peripheral hardware
168 * @init_phy: Do board-specific PHY initialisation
169 * @fini: Shut down hardware and free resources
170 * @set_id_led: Set state of identifying LED or revert to automatic function
171 * @monitor: Board-specific health check function
172 */
173 struct falcon_board_type {
174 u8 id;
175 int (*init) (struct efx_nic *nic);
176 void (*init_phy) (struct efx_nic *efx);
177 void (*fini) (struct efx_nic *nic);
178 void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode);
179 int (*monitor) (struct efx_nic *nic);
180 };
181
182 /**
183 * struct falcon_board - board information
184 * @type: Type of board
185 * @major: Major rev. ('A', 'B' ...)
186 * @minor: Minor rev. (0, 1, ...)
187 * @i2c_adap: I2C adapter for on-board peripherals
188 * @i2c_data: Data for bit-banging algorithm
189 * @hwmon_client: I2C client for hardware monitor
190 * @ioexp_client: I2C client for power/port control
191 */
192 struct falcon_board {
193 const struct falcon_board_type *type;
194 int major;
195 int minor;
196 struct i2c_adapter i2c_adap;
197 struct i2c_algo_bit_data i2c_data;
198 struct i2c_client *hwmon_client, *ioexp_client;
199 };
200
201 /**
202 * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
203 * @device_id: Controller's id for the device
204 * @size: Size (in bytes)
205 * @addr_len: Number of address bytes in read/write commands
206 * @munge_address: Flag whether addresses should be munged.
207 * Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
208 * use bit 3 of the command byte as address bit A8, rather
209 * than having a two-byte address. If this flag is set, then
210 * commands should be munged in this way.
211 * @erase_command: Erase command (or 0 if sector erase not needed).
212 * @erase_size: Erase sector size (in bytes)
213 * Erase commands affect sectors with this size and alignment.
214 * This must be a power of two.
215 * @block_size: Write block size (in bytes).
216 * Write commands are limited to blocks with this size and alignment.
217 */
218 struct falcon_spi_device {
219 int device_id;
220 unsigned int size;
221 unsigned int addr_len;
222 unsigned int munge_address:1;
223 u8 erase_command;
224 unsigned int erase_size;
225 unsigned int block_size;
226 };
227
228 static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
229 {
230 return spi->size != 0;
231 }
232
233 enum {
234 FALCON_STAT_tx_bytes = GENERIC_STAT_COUNT,
235 FALCON_STAT_tx_packets,
236 FALCON_STAT_tx_pause,
237 FALCON_STAT_tx_control,
238 FALCON_STAT_tx_unicast,
239 FALCON_STAT_tx_multicast,
240 FALCON_STAT_tx_broadcast,
241 FALCON_STAT_tx_lt64,
242 FALCON_STAT_tx_64,
243 FALCON_STAT_tx_65_to_127,
244 FALCON_STAT_tx_128_to_255,
245 FALCON_STAT_tx_256_to_511,
246 FALCON_STAT_tx_512_to_1023,
247 FALCON_STAT_tx_1024_to_15xx,
248 FALCON_STAT_tx_15xx_to_jumbo,
249 FALCON_STAT_tx_gtjumbo,
250 FALCON_STAT_tx_non_tcpudp,
251 FALCON_STAT_tx_mac_src_error,
252 FALCON_STAT_tx_ip_src_error,
253 FALCON_STAT_rx_bytes,
254 FALCON_STAT_rx_good_bytes,
255 FALCON_STAT_rx_bad_bytes,
256 FALCON_STAT_rx_packets,
257 FALCON_STAT_rx_good,
258 FALCON_STAT_rx_bad,
259 FALCON_STAT_rx_pause,
260 FALCON_STAT_rx_control,
261 FALCON_STAT_rx_unicast,
262 FALCON_STAT_rx_multicast,
263 FALCON_STAT_rx_broadcast,
264 FALCON_STAT_rx_lt64,
265 FALCON_STAT_rx_64,
266 FALCON_STAT_rx_65_to_127,
267 FALCON_STAT_rx_128_to_255,
268 FALCON_STAT_rx_256_to_511,
269 FALCON_STAT_rx_512_to_1023,
270 FALCON_STAT_rx_1024_to_15xx,
271 FALCON_STAT_rx_15xx_to_jumbo,
272 FALCON_STAT_rx_gtjumbo,
273 FALCON_STAT_rx_bad_lt64,
274 FALCON_STAT_rx_bad_gtjumbo,
275 FALCON_STAT_rx_overflow,
276 FALCON_STAT_rx_symbol_error,
277 FALCON_STAT_rx_align_error,
278 FALCON_STAT_rx_length_error,
279 FALCON_STAT_rx_internal_error,
280 FALCON_STAT_rx_nodesc_drop_cnt,
281 FALCON_STAT_COUNT
282 };
283
284 /**
285 * struct falcon_nic_data - Falcon NIC state
286 * @pci_dev2: Secondary function of Falcon A
287 * @board: Board state and functions
288 * @stats: Hardware statistics
289 * @stats_disable_count: Nest count for disabling statistics fetches
290 * @stats_pending: Is there a pending DMA of MAC statistics.
291 * @stats_timer: A timer for regularly fetching MAC statistics.
292 * @spi_flash: SPI flash device
293 * @spi_eeprom: SPI EEPROM device
294 * @spi_lock: SPI bus lock
295 * @mdio_lock: MDIO bus lock
296 * @xmac_poll_required: XMAC link state needs polling
297 */
298 struct falcon_nic_data {
299 struct pci_dev *pci_dev2;
300 struct falcon_board board;
301 u64 stats[FALCON_STAT_COUNT];
302 unsigned int stats_disable_count;
303 bool stats_pending;
304 struct timer_list stats_timer;
305 struct falcon_spi_device spi_flash;
306 struct falcon_spi_device spi_eeprom;
307 struct mutex spi_lock;
308 struct mutex mdio_lock;
309 bool xmac_poll_required;
310 };
311
312 static inline struct falcon_board *falcon_board(struct efx_nic *efx)
313 {
314 struct falcon_nic_data *data = efx->nic_data;
315 return &data->board;
316 }
317
318 enum {
319 SIENA_STAT_tx_bytes = GENERIC_STAT_COUNT,
320 SIENA_STAT_tx_good_bytes,
321 SIENA_STAT_tx_bad_bytes,
322 SIENA_STAT_tx_packets,
323 SIENA_STAT_tx_bad,
324 SIENA_STAT_tx_pause,
325 SIENA_STAT_tx_control,
326 SIENA_STAT_tx_unicast,
327 SIENA_STAT_tx_multicast,
328 SIENA_STAT_tx_broadcast,
329 SIENA_STAT_tx_lt64,
330 SIENA_STAT_tx_64,
331 SIENA_STAT_tx_65_to_127,
332 SIENA_STAT_tx_128_to_255,
333 SIENA_STAT_tx_256_to_511,
334 SIENA_STAT_tx_512_to_1023,
335 SIENA_STAT_tx_1024_to_15xx,
336 SIENA_STAT_tx_15xx_to_jumbo,
337 SIENA_STAT_tx_gtjumbo,
338 SIENA_STAT_tx_collision,
339 SIENA_STAT_tx_single_collision,
340 SIENA_STAT_tx_multiple_collision,
341 SIENA_STAT_tx_excessive_collision,
342 SIENA_STAT_tx_deferred,
343 SIENA_STAT_tx_late_collision,
344 SIENA_STAT_tx_excessive_deferred,
345 SIENA_STAT_tx_non_tcpudp,
346 SIENA_STAT_tx_mac_src_error,
347 SIENA_STAT_tx_ip_src_error,
348 SIENA_STAT_rx_bytes,
349 SIENA_STAT_rx_good_bytes,
350 SIENA_STAT_rx_bad_bytes,
351 SIENA_STAT_rx_packets,
352 SIENA_STAT_rx_good,
353 SIENA_STAT_rx_bad,
354 SIENA_STAT_rx_pause,
355 SIENA_STAT_rx_control,
356 SIENA_STAT_rx_unicast,
357 SIENA_STAT_rx_multicast,
358 SIENA_STAT_rx_broadcast,
359 SIENA_STAT_rx_lt64,
360 SIENA_STAT_rx_64,
361 SIENA_STAT_rx_65_to_127,
362 SIENA_STAT_rx_128_to_255,
363 SIENA_STAT_rx_256_to_511,
364 SIENA_STAT_rx_512_to_1023,
365 SIENA_STAT_rx_1024_to_15xx,
366 SIENA_STAT_rx_15xx_to_jumbo,
367 SIENA_STAT_rx_gtjumbo,
368 SIENA_STAT_rx_bad_gtjumbo,
369 SIENA_STAT_rx_overflow,
370 SIENA_STAT_rx_false_carrier,
371 SIENA_STAT_rx_symbol_error,
372 SIENA_STAT_rx_align_error,
373 SIENA_STAT_rx_length_error,
374 SIENA_STAT_rx_internal_error,
375 SIENA_STAT_rx_nodesc_drop_cnt,
376 SIENA_STAT_COUNT
377 };
378
379 /**
380 * struct siena_nic_data - Siena NIC state
381 * @efx: Pointer back to main interface structure
382 * @wol_filter_id: Wake-on-LAN packet filter id
383 * @stats: Hardware statistics
384 * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
385 * @vfdi_status: Common VFDI status page to be dmad to VF address space.
386 * @local_addr_list: List of local addresses. Protected by %local_lock.
387 * @local_page_list: List of DMA addressable pages used to broadcast
388 * %local_addr_list. Protected by %local_lock.
389 * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
390 * @peer_work: Work item to broadcast peer addresses to VMs.
391 */
392 struct siena_nic_data {
393 struct efx_nic *efx;
394 int wol_filter_id;
395 u64 stats[SIENA_STAT_COUNT];
396 #ifdef CONFIG_SFC_SRIOV
397 struct efx_channel *vfdi_channel;
398 unsigned vf_buftbl_base;
399 struct efx_buffer vfdi_status;
400 struct list_head local_addr_list;
401 struct list_head local_page_list;
402 struct mutex local_lock;
403 struct work_struct peer_work;
404 #endif
405 };
406
407 enum {
408 EF10_STAT_tx_bytes = GENERIC_STAT_COUNT,
409 EF10_STAT_tx_packets,
410 EF10_STAT_tx_pause,
411 EF10_STAT_tx_control,
412 EF10_STAT_tx_unicast,
413 EF10_STAT_tx_multicast,
414 EF10_STAT_tx_broadcast,
415 EF10_STAT_tx_lt64,
416 EF10_STAT_tx_64,
417 EF10_STAT_tx_65_to_127,
418 EF10_STAT_tx_128_to_255,
419 EF10_STAT_tx_256_to_511,
420 EF10_STAT_tx_512_to_1023,
421 EF10_STAT_tx_1024_to_15xx,
422 EF10_STAT_tx_15xx_to_jumbo,
423 EF10_STAT_rx_bytes,
424 EF10_STAT_rx_bytes_minus_good_bytes,
425 EF10_STAT_rx_good_bytes,
426 EF10_STAT_rx_bad_bytes,
427 EF10_STAT_rx_packets,
428 EF10_STAT_rx_good,
429 EF10_STAT_rx_bad,
430 EF10_STAT_rx_pause,
431 EF10_STAT_rx_control,
432 EF10_STAT_rx_unicast,
433 EF10_STAT_rx_multicast,
434 EF10_STAT_rx_broadcast,
435 EF10_STAT_rx_lt64,
436 EF10_STAT_rx_64,
437 EF10_STAT_rx_65_to_127,
438 EF10_STAT_rx_128_to_255,
439 EF10_STAT_rx_256_to_511,
440 EF10_STAT_rx_512_to_1023,
441 EF10_STAT_rx_1024_to_15xx,
442 EF10_STAT_rx_15xx_to_jumbo,
443 EF10_STAT_rx_gtjumbo,
444 EF10_STAT_rx_bad_gtjumbo,
445 EF10_STAT_rx_overflow,
446 EF10_STAT_rx_align_error,
447 EF10_STAT_rx_length_error,
448 EF10_STAT_rx_nodesc_drops,
449 EF10_STAT_rx_pm_trunc_bb_overflow,
450 EF10_STAT_rx_pm_discard_bb_overflow,
451 EF10_STAT_rx_pm_trunc_vfifo_full,
452 EF10_STAT_rx_pm_discard_vfifo_full,
453 EF10_STAT_rx_pm_trunc_qbb,
454 EF10_STAT_rx_pm_discard_qbb,
455 EF10_STAT_rx_pm_discard_mapping,
456 EF10_STAT_rx_dp_q_disabled_packets,
457 EF10_STAT_rx_dp_di_dropped_packets,
458 EF10_STAT_rx_dp_streaming_packets,
459 EF10_STAT_rx_dp_hlb_fetch,
460 EF10_STAT_rx_dp_hlb_wait,
461 EF10_STAT_COUNT
462 };
463
464 /* Maximum number of TX PIO buffers we may allocate to a function.
465 * This matches the total number of buffers on each SFC9100-family
466 * controller.
467 */
468 #define EF10_TX_PIOBUF_COUNT 16
469
470 /**
471 * struct efx_ef10_nic_data - EF10 architecture NIC state
472 * @mcdi_buf: DMA buffer for MCDI
473 * @warm_boot_count: Last seen MC warm boot count
474 * @vi_base: Absolute index of first VI in this function
475 * @n_allocated_vis: Number of VIs allocated to this function
476 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
477 * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
478 * @n_piobufs: Number of PIO buffers allocated to this function
479 * @wc_membase: Base address of write-combining mapping of the memory BAR
480 * @pio_write_base: Base address for writing PIO buffers
481 * @pio_write_vi_base: Relative VI number for @pio_write_base
482 * @piobuf_handle: Handle of each PIO buffer allocated
483 * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
484 * reboot
485 * @rx_rss_context: Firmware handle for our RSS context
486 * @stats: Hardware statistics
487 * @workaround_35388: Flag: firmware supports workaround for bug 35388
488 * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
489 * after MC reboot
490 * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
491 * %MC_CMD_GET_CAPABILITIES response)
492 */
493 struct efx_ef10_nic_data {
494 struct efx_buffer mcdi_buf;
495 u16 warm_boot_count;
496 unsigned int vi_base;
497 unsigned int n_allocated_vis;
498 bool must_realloc_vis;
499 bool must_restore_filters;
500 unsigned int n_piobufs;
501 void __iomem *wc_membase, *pio_write_base;
502 unsigned int pio_write_vi_base;
503 unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
504 bool must_restore_piobufs;
505 u32 rx_rss_context;
506 u64 stats[EF10_STAT_COUNT];
507 bool workaround_35388;
508 bool must_check_datapath_caps;
509 u32 datapath_caps;
510 };
511
512 /*
513 * On the SFC9000 family each port is associated with 1 PCI physical
514 * function (PF) handled by sfc and a configurable number of virtual
515 * functions (VFs) that may be handled by some other driver, often in
516 * a VM guest. The queue pointer registers are mapped in both PF and
517 * VF BARs such that an 8K region provides access to a single RX, TX
518 * and event queue (collectively a Virtual Interface, VI or VNIC).
519 *
520 * The PF has access to all 1024 VIs while VFs are mapped to VIs
521 * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered
522 * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE).
523 * The number of VIs and the VI_SCALE value are configurable but must
524 * be established at boot time by firmware.
525 */
526
527 /* Maximum VI_SCALE parameter supported by Siena */
528 #define EFX_VI_SCALE_MAX 6
529 /* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX),
530 * so this is the smallest allowed value. */
531 #define EFX_VI_BASE 128U
532 /* Maximum number of VFs allowed */
533 #define EFX_VF_COUNT_MAX 127
534 /* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */
535 #define EFX_MAX_VF_EVQ_SIZE 8192UL
536 /* The number of buffer table entries reserved for each VI on a VF */
537 #define EFX_VF_BUFTBL_PER_VI \
538 ((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) * \
539 sizeof(efx_qword_t) / EFX_BUF_SIZE)
540
541 #ifdef CONFIG_SFC_SRIOV
542
543 /* SIENA */
544 static inline bool efx_siena_sriov_wanted(struct efx_nic *efx)
545 {
546 return efx->vf_count != 0;
547 }
548
549 static inline bool efx_siena_sriov_enabled(struct efx_nic *efx)
550 {
551 return efx->vf_init_count != 0;
552 }
553
554 static inline unsigned int efx_vf_size(struct efx_nic *efx)
555 {
556 return 1 << efx->vi_scale;
557 }
558
559 int efx_init_sriov(void);
560 void efx_siena_sriov_probe(struct efx_nic *efx);
561 int efx_siena_sriov_init(struct efx_nic *efx);
562 void efx_siena_sriov_mac_address_changed(struct efx_nic *efx);
563 void efx_siena_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event);
564 void efx_siena_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event);
565 void efx_siena_sriov_event(struct efx_channel *channel, efx_qword_t *event);
566 void efx_siena_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq);
567 void efx_siena_sriov_flr(struct efx_nic *efx, unsigned flr);
568 void efx_siena_sriov_reset(struct efx_nic *efx);
569 void efx_siena_sriov_fini(struct efx_nic *efx);
570 void efx_fini_sriov(void);
571
572 /* EF10 */
573 static inline bool efx_ef10_sriov_wanted(struct efx_nic *efx) { return false; }
574 static inline int efx_ef10_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
575 static inline void efx_ef10_sriov_mac_address_changed(struct efx_nic *efx) {}
576 static inline void efx_ef10_sriov_reset(struct efx_nic *efx) {}
577 static inline void efx_ef10_sriov_fini(struct efx_nic *efx) {}
578
579 #else
580
581 /* SIENA */
582 static inline bool efx_siena_sriov_wanted(struct efx_nic *efx) { return false; }
583 static inline bool efx_siena_sriov_enabled(struct efx_nic *efx) { return false; }
584 static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; }
585 static inline int efx_init_sriov(void) { return 0; }
586 static inline void efx_siena_sriov_probe(struct efx_nic *efx) {}
587 static inline int efx_siena_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
588 static inline void efx_siena_sriov_mac_address_changed(struct efx_nic *efx) {}
589 static inline void efx_siena_sriov_tx_flush_done(struct efx_nic *efx,
590 efx_qword_t *event) {}
591 static inline void efx_siena_sriov_rx_flush_done(struct efx_nic *efx,
592 efx_qword_t *event) {}
593 static inline void efx_siena_sriov_event(struct efx_channel *channel,
594 efx_qword_t *event) {}
595 static inline void efx_siena_sriov_desc_fetch_err(struct efx_nic *efx,
596 unsigned dmaq) {}
597 static inline void efx_siena_sriov_flr(struct efx_nic *efx, unsigned flr) {}
598 static inline void efx_siena_sriov_reset(struct efx_nic *efx) {}
599 static inline void efx_siena_sriov_fini(struct efx_nic *efx) {}
600 static inline void efx_fini_sriov(void) {}
601
602 /* EF10 */
603 static inline bool efx_ef10_sriov_wanted(struct efx_nic *efx) { return false; }
604 static inline int efx_ef10_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
605 static inline void efx_ef10_sriov_mac_address_changed(struct efx_nic *efx) {}
606 static inline void efx_ef10_sriov_reset(struct efx_nic *efx) {}
607 static inline void efx_ef10_sriov_fini(struct efx_nic *efx) {}
608
609 #endif
610
611 /* FALCON */
612 static inline bool efx_falcon_sriov_wanted(struct efx_nic *efx) { return false; }
613 static inline int efx_falcon_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
614 static inline void efx_falcon_sriov_mac_address_changed(struct efx_nic *efx) {}
615 static inline void efx_falcon_sriov_reset(struct efx_nic *efx) {}
616 static inline void efx_falcon_sriov_fini(struct efx_nic *efx) {}
617
618 int efx_siena_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac);
619 int efx_siena_sriov_set_vf_vlan(struct net_device *dev, int vf,
620 u16 vlan, u8 qos);
621 int efx_siena_sriov_get_vf_config(struct net_device *dev, int vf,
622 struct ifla_vf_info *ivf);
623 int efx_siena_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf,
624 bool spoofchk);
625
626 struct ethtool_ts_info;
627 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
628 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
629 void efx_ptp_remove(struct efx_nic *efx);
630 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
631 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
632 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
633 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
634 int efx_ptp_get_mode(struct efx_nic *efx);
635 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
636 unsigned int new_mode);
637 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
638 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
639 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings);
640 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats);
641 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev);
642 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
643 struct sk_buff *skb);
644 static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel,
645 struct sk_buff *skb)
646 {
647 if (channel->sync_events_state == SYNC_EVENTS_VALID)
648 __efx_rx_skb_attach_timestamp(channel, skb);
649 }
650 void efx_ptp_start_datapath(struct efx_nic *efx);
651 void efx_ptp_stop_datapath(struct efx_nic *efx);
652
653 extern const struct efx_nic_type falcon_a1_nic_type;
654 extern const struct efx_nic_type falcon_b0_nic_type;
655 extern const struct efx_nic_type siena_a0_nic_type;
656 extern const struct efx_nic_type efx_hunt_a0_nic_type;
657
658 /**************************************************************************
659 *
660 * Externs
661 *
662 **************************************************************************
663 */
664
665 int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
666
667 /* TX data path */
668 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
669 {
670 return tx_queue->efx->type->tx_probe(tx_queue);
671 }
672 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
673 {
674 tx_queue->efx->type->tx_init(tx_queue);
675 }
676 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
677 {
678 tx_queue->efx->type->tx_remove(tx_queue);
679 }
680 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
681 {
682 tx_queue->efx->type->tx_write(tx_queue);
683 }
684
685 /* RX data path */
686 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
687 {
688 return rx_queue->efx->type->rx_probe(rx_queue);
689 }
690 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
691 {
692 rx_queue->efx->type->rx_init(rx_queue);
693 }
694 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
695 {
696 rx_queue->efx->type->rx_remove(rx_queue);
697 }
698 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
699 {
700 rx_queue->efx->type->rx_write(rx_queue);
701 }
702 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
703 {
704 rx_queue->efx->type->rx_defer_refill(rx_queue);
705 }
706
707 /* Event data path */
708 static inline int efx_nic_probe_eventq(struct efx_channel *channel)
709 {
710 return channel->efx->type->ev_probe(channel);
711 }
712 static inline int efx_nic_init_eventq(struct efx_channel *channel)
713 {
714 return channel->efx->type->ev_init(channel);
715 }
716 static inline void efx_nic_fini_eventq(struct efx_channel *channel)
717 {
718 channel->efx->type->ev_fini(channel);
719 }
720 static inline void efx_nic_remove_eventq(struct efx_channel *channel)
721 {
722 channel->efx->type->ev_remove(channel);
723 }
724 static inline int
725 efx_nic_process_eventq(struct efx_channel *channel, int quota)
726 {
727 return channel->efx->type->ev_process(channel, quota);
728 }
729 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
730 {
731 channel->efx->type->ev_read_ack(channel);
732 }
733 void efx_nic_event_test_start(struct efx_channel *channel);
734
735 /* Falcon/Siena queue operations */
736 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
737 void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
738 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
739 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
740 void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
741 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
742 void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
743 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
744 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
745 void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
746 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
747 int efx_farch_ev_probe(struct efx_channel *channel);
748 int efx_farch_ev_init(struct efx_channel *channel);
749 void efx_farch_ev_fini(struct efx_channel *channel);
750 void efx_farch_ev_remove(struct efx_channel *channel);
751 int efx_farch_ev_process(struct efx_channel *channel, int quota);
752 void efx_farch_ev_read_ack(struct efx_channel *channel);
753 void efx_farch_ev_test_generate(struct efx_channel *channel);
754
755 /* Falcon/Siena filter operations */
756 int efx_farch_filter_table_probe(struct efx_nic *efx);
757 void efx_farch_filter_table_restore(struct efx_nic *efx);
758 void efx_farch_filter_table_remove(struct efx_nic *efx);
759 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
760 s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
761 bool replace);
762 int efx_farch_filter_remove_safe(struct efx_nic *efx,
763 enum efx_filter_priority priority,
764 u32 filter_id);
765 int efx_farch_filter_get_safe(struct efx_nic *efx,
766 enum efx_filter_priority priority, u32 filter_id,
767 struct efx_filter_spec *);
768 int efx_farch_filter_clear_rx(struct efx_nic *efx,
769 enum efx_filter_priority priority);
770 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
771 enum efx_filter_priority priority);
772 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
773 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
774 enum efx_filter_priority priority, u32 *buf,
775 u32 size);
776 #ifdef CONFIG_RFS_ACCEL
777 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
778 struct efx_filter_spec *spec);
779 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
780 unsigned int index);
781 #endif
782 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
783
784 bool efx_nic_event_present(struct efx_channel *channel);
785
786 /* Some statistics are computed as A - B where A and B each increase
787 * linearly with some hardware counter(s) and the counters are read
788 * asynchronously. If the counters contributing to B are always read
789 * after those contributing to A, the computed value may be lower than
790 * the true value by some variable amount, and may decrease between
791 * subsequent computations.
792 *
793 * We should never allow statistics to decrease or to exceed the true
794 * value. Since the computed value will never be greater than the
795 * true value, we can achieve this by only storing the computed value
796 * when it increases.
797 */
798 static inline void efx_update_diff_stat(u64 *stat, u64 diff)
799 {
800 if ((s64)(diff - *stat) > 0)
801 *stat = diff;
802 }
803
804 /* Interrupts */
805 int efx_nic_init_interrupt(struct efx_nic *efx);
806 void efx_nic_irq_test_start(struct efx_nic *efx);
807 void efx_nic_fini_interrupt(struct efx_nic *efx);
808
809 /* Falcon/Siena interrupts */
810 void efx_farch_irq_enable_master(struct efx_nic *efx);
811 void efx_farch_irq_test_generate(struct efx_nic *efx);
812 void efx_farch_irq_disable_master(struct efx_nic *efx);
813 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
814 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
815 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
816
817 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
818 {
819 return ACCESS_ONCE(channel->event_test_cpu);
820 }
821 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
822 {
823 return ACCESS_ONCE(efx->last_irq_cpu);
824 }
825
826 /* Global Resources */
827 int efx_nic_flush_queues(struct efx_nic *efx);
828 void siena_prepare_flush(struct efx_nic *efx);
829 int efx_farch_fini_dmaq(struct efx_nic *efx);
830 void efx_farch_finish_flr(struct efx_nic *efx);
831 void siena_finish_flush(struct efx_nic *efx);
832 void falcon_start_nic_stats(struct efx_nic *efx);
833 void falcon_stop_nic_stats(struct efx_nic *efx);
834 int falcon_reset_xaui(struct efx_nic *efx);
835 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
836 void efx_farch_init_common(struct efx_nic *efx);
837 void efx_ef10_handle_drain_event(struct efx_nic *efx);
838 void efx_farch_rx_push_indir_table(struct efx_nic *efx);
839
840 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
841 unsigned int len, gfp_t gfp_flags);
842 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
843
844 /* Tests */
845 struct efx_farch_register_test {
846 unsigned address;
847 efx_oword_t mask;
848 };
849 int efx_farch_test_registers(struct efx_nic *efx,
850 const struct efx_farch_register_test *regs,
851 size_t n_regs);
852
853 size_t efx_nic_get_regs_len(struct efx_nic *efx);
854 void efx_nic_get_regs(struct efx_nic *efx, void *buf);
855
856 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
857 const unsigned long *mask, u8 *names);
858 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
859 const unsigned long *mask, u64 *stats,
860 const void *dma_buf, bool accumulate);
861 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
862
863 #define EFX_MAX_FLUSH_TIME 5000
864
865 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
866 efx_qword_t *event);
867
868 #endif /* EFX_NIC_H */
This page took 0.051749 seconds and 5 git commands to generate.