sfc: Remove more left-overs from Falcon GMAC support
[deliverable/linux.git] / drivers / net / ethernet / sfc / nic.h
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #ifndef EFX_NIC_H
12 #define EFX_NIC_H
13
14 #include <linux/net_tstamp.h>
15 #include <linux/i2c-algo-bit.h>
16 #include "net_driver.h"
17 #include "efx.h"
18 #include "mcdi.h"
19
20 /*
21 * Falcon hardware control
22 */
23
24 enum {
25 EFX_REV_FALCON_A0 = 0,
26 EFX_REV_FALCON_A1 = 1,
27 EFX_REV_FALCON_B0 = 2,
28 EFX_REV_SIENA_A0 = 3,
29 };
30
31 static inline int efx_nic_rev(struct efx_nic *efx)
32 {
33 return efx->type->revision;
34 }
35
36 extern u32 efx_farch_fpga_ver(struct efx_nic *efx);
37
38 /* NIC has two interlinked PCI functions for the same port. */
39 static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
40 {
41 return efx_nic_rev(efx) < EFX_REV_FALCON_B0;
42 }
43
44 /* Read the current event from the event queue */
45 static inline efx_qword_t *efx_event(struct efx_channel *channel,
46 unsigned int index)
47 {
48 return ((efx_qword_t *) (channel->eventq.buf.addr)) +
49 (index & channel->eventq_mask);
50 }
51
52 /* See if an event is present
53 *
54 * We check both the high and low dword of the event for all ones. We
55 * wrote all ones when we cleared the event, and no valid event can
56 * have all ones in either its high or low dwords. This approach is
57 * robust against reordering.
58 *
59 * Note that using a single 64-bit comparison is incorrect; even
60 * though the CPU read will be atomic, the DMA write may not be.
61 */
62 static inline int efx_event_present(efx_qword_t *event)
63 {
64 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
65 EFX_DWORD_IS_ALL_ONES(event->dword[1]));
66 }
67
68 /* Returns a pointer to the specified transmit descriptor in the TX
69 * descriptor queue belonging to the specified channel.
70 */
71 static inline efx_qword_t *
72 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
73 {
74 return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
75 }
76
77 /* Decide whether to push a TX descriptor to the NIC vs merely writing
78 * the doorbell. This can reduce latency when we are adding a single
79 * descriptor to an empty queue, but is otherwise pointless. Further,
80 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
81 * triggered if we don't check this.
82 */
83 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
84 unsigned int write_count)
85 {
86 unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
87
88 if (empty_read_count == 0)
89 return false;
90
91 tx_queue->empty_read_count = 0;
92 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0
93 && tx_queue->write_count - write_count == 1;
94 }
95
96 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
97 static inline efx_qword_t *
98 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
99 {
100 return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
101 }
102
103 enum {
104 PHY_TYPE_NONE = 0,
105 PHY_TYPE_TXC43128 = 1,
106 PHY_TYPE_88E1111 = 2,
107 PHY_TYPE_SFX7101 = 3,
108 PHY_TYPE_QT2022C2 = 4,
109 PHY_TYPE_PM8358 = 6,
110 PHY_TYPE_SFT9001A = 8,
111 PHY_TYPE_QT2025C = 9,
112 PHY_TYPE_SFT9001B = 10,
113 };
114
115 #define FALCON_XMAC_LOOPBACKS \
116 ((1 << LOOPBACK_XGMII) | \
117 (1 << LOOPBACK_XGXS) | \
118 (1 << LOOPBACK_XAUI))
119
120 /* Alignment of PCIe DMA boundaries (4KB) */
121 #define EFX_PAGE_SIZE 4096
122 /* Size and alignment of buffer table entries (same) */
123 #define EFX_BUF_SIZE EFX_PAGE_SIZE
124
125 /**
126 * struct falcon_board_type - board operations and type information
127 * @id: Board type id, as found in NVRAM
128 * @init: Allocate resources and initialise peripheral hardware
129 * @init_phy: Do board-specific PHY initialisation
130 * @fini: Shut down hardware and free resources
131 * @set_id_led: Set state of identifying LED or revert to automatic function
132 * @monitor: Board-specific health check function
133 */
134 struct falcon_board_type {
135 u8 id;
136 int (*init) (struct efx_nic *nic);
137 void (*init_phy) (struct efx_nic *efx);
138 void (*fini) (struct efx_nic *nic);
139 void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode);
140 int (*monitor) (struct efx_nic *nic);
141 };
142
143 /**
144 * struct falcon_board - board information
145 * @type: Type of board
146 * @major: Major rev. ('A', 'B' ...)
147 * @minor: Minor rev. (0, 1, ...)
148 * @i2c_adap: I2C adapter for on-board peripherals
149 * @i2c_data: Data for bit-banging algorithm
150 * @hwmon_client: I2C client for hardware monitor
151 * @ioexp_client: I2C client for power/port control
152 */
153 struct falcon_board {
154 const struct falcon_board_type *type;
155 int major;
156 int minor;
157 struct i2c_adapter i2c_adap;
158 struct i2c_algo_bit_data i2c_data;
159 struct i2c_client *hwmon_client, *ioexp_client;
160 };
161
162 /**
163 * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
164 * @device_id: Controller's id for the device
165 * @size: Size (in bytes)
166 * @addr_len: Number of address bytes in read/write commands
167 * @munge_address: Flag whether addresses should be munged.
168 * Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
169 * use bit 3 of the command byte as address bit A8, rather
170 * than having a two-byte address. If this flag is set, then
171 * commands should be munged in this way.
172 * @erase_command: Erase command (or 0 if sector erase not needed).
173 * @erase_size: Erase sector size (in bytes)
174 * Erase commands affect sectors with this size and alignment.
175 * This must be a power of two.
176 * @block_size: Write block size (in bytes).
177 * Write commands are limited to blocks with this size and alignment.
178 */
179 struct falcon_spi_device {
180 int device_id;
181 unsigned int size;
182 unsigned int addr_len;
183 unsigned int munge_address:1;
184 u8 erase_command;
185 unsigned int erase_size;
186 unsigned int block_size;
187 };
188
189 static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
190 {
191 return spi->size != 0;
192 }
193
194 /**
195 * struct falcon_nic_data - Falcon NIC state
196 * @pci_dev2: Secondary function of Falcon A
197 * @board: Board state and functions
198 * @stats_disable_count: Nest count for disabling statistics fetches
199 * @stats_pending: Is there a pending DMA of MAC statistics.
200 * @stats_timer: A timer for regularly fetching MAC statistics.
201 * @spi_flash: SPI flash device
202 * @spi_eeprom: SPI EEPROM device
203 * @spi_lock: SPI bus lock
204 * @mdio_lock: MDIO bus lock
205 * @xmac_poll_required: XMAC link state needs polling
206 */
207 struct falcon_nic_data {
208 struct pci_dev *pci_dev2;
209 struct falcon_board board;
210 unsigned int stats_disable_count;
211 bool stats_pending;
212 struct timer_list stats_timer;
213 struct falcon_spi_device spi_flash;
214 struct falcon_spi_device spi_eeprom;
215 struct mutex spi_lock;
216 struct mutex mdio_lock;
217 bool xmac_poll_required;
218 };
219
220 static inline struct falcon_board *falcon_board(struct efx_nic *efx)
221 {
222 struct falcon_nic_data *data = efx->nic_data;
223 return &data->board;
224 }
225
226 /**
227 * struct siena_nic_data - Siena NIC state
228 * @wol_filter_id: Wake-on-LAN packet filter id
229 */
230 struct siena_nic_data {
231 int wol_filter_id;
232 };
233
234 /*
235 * On the SFC9000 family each port is associated with 1 PCI physical
236 * function (PF) handled by sfc and a configurable number of virtual
237 * functions (VFs) that may be handled by some other driver, often in
238 * a VM guest. The queue pointer registers are mapped in both PF and
239 * VF BARs such that an 8K region provides access to a single RX, TX
240 * and event queue (collectively a Virtual Interface, VI or VNIC).
241 *
242 * The PF has access to all 1024 VIs while VFs are mapped to VIs
243 * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered
244 * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE).
245 * The number of VIs and the VI_SCALE value are configurable but must
246 * be established at boot time by firmware.
247 */
248
249 /* Maximum VI_SCALE parameter supported by Siena */
250 #define EFX_VI_SCALE_MAX 6
251 /* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX),
252 * so this is the smallest allowed value. */
253 #define EFX_VI_BASE 128U
254 /* Maximum number of VFs allowed */
255 #define EFX_VF_COUNT_MAX 127
256 /* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */
257 #define EFX_MAX_VF_EVQ_SIZE 8192UL
258 /* The number of buffer table entries reserved for each VI on a VF */
259 #define EFX_VF_BUFTBL_PER_VI \
260 ((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) * \
261 sizeof(efx_qword_t) / EFX_BUF_SIZE)
262
263 #ifdef CONFIG_SFC_SRIOV
264
265 static inline bool efx_sriov_wanted(struct efx_nic *efx)
266 {
267 return efx->vf_count != 0;
268 }
269 static inline bool efx_sriov_enabled(struct efx_nic *efx)
270 {
271 return efx->vf_init_count != 0;
272 }
273 static inline unsigned int efx_vf_size(struct efx_nic *efx)
274 {
275 return 1 << efx->vi_scale;
276 }
277
278 extern int efx_init_sriov(void);
279 extern void efx_sriov_probe(struct efx_nic *efx);
280 extern int efx_sriov_init(struct efx_nic *efx);
281 extern void efx_sriov_mac_address_changed(struct efx_nic *efx);
282 extern void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event);
283 extern void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event);
284 extern void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event);
285 extern void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq);
286 extern void efx_sriov_flr(struct efx_nic *efx, unsigned flr);
287 extern void efx_sriov_reset(struct efx_nic *efx);
288 extern void efx_sriov_fini(struct efx_nic *efx);
289 extern void efx_fini_sriov(void);
290
291 #else
292
293 static inline bool efx_sriov_wanted(struct efx_nic *efx) { return false; }
294 static inline bool efx_sriov_enabled(struct efx_nic *efx) { return false; }
295 static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; }
296
297 static inline int efx_init_sriov(void) { return 0; }
298 static inline void efx_sriov_probe(struct efx_nic *efx) {}
299 static inline int efx_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
300 static inline void efx_sriov_mac_address_changed(struct efx_nic *efx) {}
301 static inline void efx_sriov_tx_flush_done(struct efx_nic *efx,
302 efx_qword_t *event) {}
303 static inline void efx_sriov_rx_flush_done(struct efx_nic *efx,
304 efx_qword_t *event) {}
305 static inline void efx_sriov_event(struct efx_channel *channel,
306 efx_qword_t *event) {}
307 static inline void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) {}
308 static inline void efx_sriov_flr(struct efx_nic *efx, unsigned flr) {}
309 static inline void efx_sriov_reset(struct efx_nic *efx) {}
310 static inline void efx_sriov_fini(struct efx_nic *efx) {}
311 static inline void efx_fini_sriov(void) {}
312
313 #endif
314
315 extern int efx_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac);
316 extern int efx_sriov_set_vf_vlan(struct net_device *dev, int vf,
317 u16 vlan, u8 qos);
318 extern int efx_sriov_get_vf_config(struct net_device *dev, int vf,
319 struct ifla_vf_info *ivf);
320 extern int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf,
321 bool spoofchk);
322
323 struct ethtool_ts_info;
324 extern void efx_ptp_probe(struct efx_nic *efx);
325 extern int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd);
326 extern void efx_ptp_get_ts_info(struct efx_nic *efx,
327 struct ethtool_ts_info *ts_info);
328 extern bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
329 extern int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
330 extern void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
331
332 extern const struct efx_nic_type falcon_a1_nic_type;
333 extern const struct efx_nic_type falcon_b0_nic_type;
334 extern const struct efx_nic_type siena_a0_nic_type;
335
336 /**************************************************************************
337 *
338 * Externs
339 *
340 **************************************************************************
341 */
342
343 extern int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
344
345 /* TX data path */
346 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
347 {
348 return tx_queue->efx->type->tx_probe(tx_queue);
349 }
350 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
351 {
352 tx_queue->efx->type->tx_init(tx_queue);
353 }
354 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
355 {
356 tx_queue->efx->type->tx_remove(tx_queue);
357 }
358 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
359 {
360 tx_queue->efx->type->tx_write(tx_queue);
361 }
362
363 /* RX data path */
364 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
365 {
366 return rx_queue->efx->type->rx_probe(rx_queue);
367 }
368 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
369 {
370 rx_queue->efx->type->rx_init(rx_queue);
371 }
372 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
373 {
374 rx_queue->efx->type->rx_remove(rx_queue);
375 }
376 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
377 {
378 rx_queue->efx->type->rx_write(rx_queue);
379 }
380 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
381 {
382 rx_queue->efx->type->rx_defer_refill(rx_queue);
383 }
384
385 /* Event data path */
386 static inline int efx_nic_probe_eventq(struct efx_channel *channel)
387 {
388 return channel->efx->type->ev_probe(channel);
389 }
390 static inline void efx_nic_init_eventq(struct efx_channel *channel)
391 {
392 channel->efx->type->ev_init(channel);
393 }
394 static inline void efx_nic_fini_eventq(struct efx_channel *channel)
395 {
396 channel->efx->type->ev_fini(channel);
397 }
398 static inline void efx_nic_remove_eventq(struct efx_channel *channel)
399 {
400 channel->efx->type->ev_remove(channel);
401 }
402 static inline int
403 efx_nic_process_eventq(struct efx_channel *channel, int quota)
404 {
405 return channel->efx->type->ev_process(channel, quota);
406 }
407 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
408 {
409 channel->efx->type->ev_read_ack(channel);
410 }
411 extern void efx_nic_event_test_start(struct efx_channel *channel);
412
413 /* Falcon/Siena queue operations */
414 extern int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
415 extern void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
416 extern void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
417 extern void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
418 extern void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
419 extern int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
420 extern void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
421 extern void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
422 extern void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
423 extern void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
424 extern void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
425 extern int efx_farch_ev_probe(struct efx_channel *channel);
426 extern void efx_farch_ev_init(struct efx_channel *channel);
427 extern void efx_farch_ev_fini(struct efx_channel *channel);
428 extern void efx_farch_ev_remove(struct efx_channel *channel);
429 extern int efx_farch_ev_process(struct efx_channel *channel, int quota);
430 extern void efx_farch_ev_read_ack(struct efx_channel *channel);
431 extern void efx_farch_ev_test_generate(struct efx_channel *channel);
432
433 /* Falcon/Siena filter operations */
434 extern int efx_farch_filter_table_probe(struct efx_nic *efx);
435 extern void efx_farch_filter_table_restore(struct efx_nic *efx);
436 extern void efx_farch_filter_table_remove(struct efx_nic *efx);
437 extern void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
438 extern s32 efx_farch_filter_insert(struct efx_nic *efx,
439 struct efx_filter_spec *spec, bool replace);
440 extern int efx_farch_filter_remove_safe(struct efx_nic *efx,
441 enum efx_filter_priority priority,
442 u32 filter_id);
443 extern int efx_farch_filter_get_safe(struct efx_nic *efx,
444 enum efx_filter_priority priority,
445 u32 filter_id, struct efx_filter_spec *);
446 extern void efx_farch_filter_clear_rx(struct efx_nic *efx,
447 enum efx_filter_priority priority);
448 extern u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
449 enum efx_filter_priority priority);
450 extern u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
451 extern s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
452 enum efx_filter_priority priority,
453 u32 *buf, u32 size);
454 #ifdef CONFIG_RFS_ACCEL
455 extern s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
456 struct efx_filter_spec *spec);
457 extern bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
458 unsigned int index);
459 #endif
460 extern void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
461
462 extern bool efx_nic_event_present(struct efx_channel *channel);
463
464 /* Some statistics are computed as A - B where A and B each increase
465 * linearly with some hardware counter(s) and the counters are read
466 * asynchronously. If the counters contributing to B are always read
467 * after those contributing to A, the computed value may be lower than
468 * the true value by some variable amount, and may decrease between
469 * subsequent computations.
470 *
471 * We should never allow statistics to decrease or to exceed the true
472 * value. Since the computed value will never be greater than the
473 * true value, we can achieve this by only storing the computed value
474 * when it increases.
475 */
476 static inline void efx_update_diff_stat(u64 *stat, u64 diff)
477 {
478 if ((s64)(diff - *stat) > 0)
479 *stat = diff;
480 }
481
482 /* Interrupts */
483 extern int efx_nic_init_interrupt(struct efx_nic *efx);
484 extern void efx_nic_irq_test_start(struct efx_nic *efx);
485 extern void efx_nic_fini_interrupt(struct efx_nic *efx);
486
487 /* Falcon/Siena interrupts */
488 extern void efx_farch_irq_enable_master(struct efx_nic *efx);
489 extern void efx_farch_irq_test_generate(struct efx_nic *efx);
490 extern void efx_farch_irq_disable_master(struct efx_nic *efx);
491 extern irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
492 extern irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
493 extern irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
494
495 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
496 {
497 return ACCESS_ONCE(channel->event_test_cpu);
498 }
499 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
500 {
501 return ACCESS_ONCE(efx->last_irq_cpu);
502 }
503
504 /* Global Resources */
505 extern int efx_nic_flush_queues(struct efx_nic *efx);
506 extern void siena_prepare_flush(struct efx_nic *efx);
507 extern int efx_farch_fini_dmaq(struct efx_nic *efx);
508 extern void siena_finish_flush(struct efx_nic *efx);
509 extern void falcon_start_nic_stats(struct efx_nic *efx);
510 extern void falcon_stop_nic_stats(struct efx_nic *efx);
511 extern int falcon_reset_xaui(struct efx_nic *efx);
512 extern void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
513 extern void efx_farch_init_common(struct efx_nic *efx);
514 static inline void efx_nic_push_rx_indir_table(struct efx_nic *efx)
515 {
516 efx->type->rx_push_indir_table(efx);
517 }
518 extern void efx_farch_rx_push_indir_table(struct efx_nic *efx);
519
520 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
521 unsigned int len, gfp_t gfp_flags);
522 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
523
524 /* Tests */
525 struct efx_farch_register_test {
526 unsigned address;
527 efx_oword_t mask;
528 };
529 extern int efx_farch_test_registers(struct efx_nic *efx,
530 const struct efx_farch_register_test *regs,
531 size_t n_regs);
532
533 extern size_t efx_nic_get_regs_len(struct efx_nic *efx);
534 extern void efx_nic_get_regs(struct efx_nic *efx, void *buf);
535
536 #define EFX_MAX_FLUSH_TIME 5000
537
538 extern void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
539 efx_qword_t *event);
540
541 #endif /* EFX_NIC_H */
This page took 0.042811 seconds and 6 git commands to generate.