Merge branch 'fixes' of git://git.linaro.org/people/rmk/linux-arm
[deliverable/linux.git] / drivers / net / ethernet / sfc / ptp.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2011 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10 /* Theory of operation:
11 *
12 * PTP support is assisted by firmware running on the MC, which provides
13 * the hardware timestamping capabilities. Both transmitted and received
14 * PTP event packets are queued onto internal queues for subsequent processing;
15 * this is because the MC operations are relatively long and would block
16 * block NAPI/interrupt operation.
17 *
18 * Receive event processing:
19 * The event contains the packet's UUID and sequence number, together
20 * with the hardware timestamp. The PTP receive packet queue is searched
21 * for this UUID/sequence number and, if found, put on a pending queue.
22 * Packets not matching are delivered without timestamps (MCDI events will
23 * always arrive after the actual packet).
24 * It is important for the operation of the PTP protocol that the ordering
25 * of packets between the event and general port is maintained.
26 *
27 * Work queue processing:
28 * If work waiting, synchronise host/hardware time
29 *
30 * Transmit: send packet through MC, which returns the transmission time
31 * that is converted to an appropriate timestamp.
32 *
33 * Receive: the packet's reception time is converted to an appropriate
34 * timestamp.
35 */
36 #include <linux/ip.h>
37 #include <linux/udp.h>
38 #include <linux/time.h>
39 #include <linux/ktime.h>
40 #include <linux/module.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/pps_kernel.h>
43 #include <linux/ptp_clock_kernel.h>
44 #include "net_driver.h"
45 #include "efx.h"
46 #include "mcdi.h"
47 #include "mcdi_pcol.h"
48 #include "io.h"
49 #include "regs.h"
50 #include "nic.h"
51
52 /* Maximum number of events expected to make up a PTP event */
53 #define MAX_EVENT_FRAGS 3
54
55 /* Maximum delay, ms, to begin synchronisation */
56 #define MAX_SYNCHRONISE_WAIT_MS 2
57
58 /* How long, at most, to spend synchronising */
59 #define SYNCHRONISE_PERIOD_NS 250000
60
61 /* How often to update the shared memory time */
62 #define SYNCHRONISATION_GRANULARITY_NS 200
63
64 /* Minimum permitted length of a (corrected) synchronisation time */
65 #define MIN_SYNCHRONISATION_NS 120
66
67 /* Maximum permitted length of a (corrected) synchronisation time */
68 #define MAX_SYNCHRONISATION_NS 1000
69
70 /* How many (MC) receive events that can be queued */
71 #define MAX_RECEIVE_EVENTS 8
72
73 /* Length of (modified) moving average. */
74 #define AVERAGE_LENGTH 16
75
76 /* How long an unmatched event or packet can be held */
77 #define PKT_EVENT_LIFETIME_MS 10
78
79 /* Offsets into PTP packet for identification. These offsets are from the
80 * start of the IP header, not the MAC header. Note that neither PTP V1 nor
81 * PTP V2 permit the use of IPV4 options.
82 */
83 #define PTP_DPORT_OFFSET 22
84
85 #define PTP_V1_VERSION_LENGTH 2
86 #define PTP_V1_VERSION_OFFSET 28
87
88 #define PTP_V1_UUID_LENGTH 6
89 #define PTP_V1_UUID_OFFSET 50
90
91 #define PTP_V1_SEQUENCE_LENGTH 2
92 #define PTP_V1_SEQUENCE_OFFSET 58
93
94 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
95 * includes IP header.
96 */
97 #define PTP_V1_MIN_LENGTH 64
98
99 #define PTP_V2_VERSION_LENGTH 1
100 #define PTP_V2_VERSION_OFFSET 29
101
102 #define PTP_V2_UUID_LENGTH 8
103 #define PTP_V2_UUID_OFFSET 48
104
105 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
106 * the MC only captures the last six bytes of the clock identity. These values
107 * reflect those, not the ones used in the standard. The standard permits
108 * mapping of V1 UUIDs to V2 UUIDs with these same values.
109 */
110 #define PTP_V2_MC_UUID_LENGTH 6
111 #define PTP_V2_MC_UUID_OFFSET 50
112
113 #define PTP_V2_SEQUENCE_LENGTH 2
114 #define PTP_V2_SEQUENCE_OFFSET 58
115
116 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
117 * includes IP header.
118 */
119 #define PTP_V2_MIN_LENGTH 63
120
121 #define PTP_MIN_LENGTH 63
122
123 #define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
124 #define PTP_EVENT_PORT 319
125 #define PTP_GENERAL_PORT 320
126
127 /* Annoyingly the format of the version numbers are different between
128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
129 */
130 #define PTP_VERSION_V1 1
131
132 #define PTP_VERSION_V2 2
133 #define PTP_VERSION_V2_MASK 0x0f
134
135 enum ptp_packet_state {
136 PTP_PACKET_STATE_UNMATCHED = 0,
137 PTP_PACKET_STATE_MATCHED,
138 PTP_PACKET_STATE_TIMED_OUT,
139 PTP_PACKET_STATE_MATCH_UNWANTED
140 };
141
142 /* NIC synchronised with single word of time only comprising
143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
144 */
145 #define MC_NANOSECOND_BITS 30
146 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
147 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
148
149 /* Maximum parts-per-billion adjustment that is acceptable */
150 #define MAX_PPB 1000000
151
152 /* Number of bits required to hold the above */
153 #define MAX_PPB_BITS 20
154
155 /* Number of extra bits allowed when calculating fractional ns.
156 * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
157 * be less than 63.
158 */
159 #define PPB_EXTRA_BITS 2
160
161 /* Precalculate scale word to avoid long long division at runtime */
162 #define PPB_SCALE_WORD ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
163 MAX_PPB_BITS)) / 1000000000LL)
164
165 #define PTP_SYNC_ATTEMPTS 4
166
167 /**
168 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
169 * @words: UUID and (partial) sequence number
170 * @expiry: Time after which the packet should be delivered irrespective of
171 * event arrival.
172 * @state: The state of the packet - whether it is ready for processing or
173 * whether that is of no interest.
174 */
175 struct efx_ptp_match {
176 u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
177 unsigned long expiry;
178 enum ptp_packet_state state;
179 };
180
181 /**
182 * struct efx_ptp_event_rx - A PTP receive event (from MC)
183 * @seq0: First part of (PTP) UUID
184 * @seq1: Second part of (PTP) UUID and sequence number
185 * @hwtimestamp: Event timestamp
186 */
187 struct efx_ptp_event_rx {
188 struct list_head link;
189 u32 seq0;
190 u32 seq1;
191 ktime_t hwtimestamp;
192 unsigned long expiry;
193 };
194
195 /**
196 * struct efx_ptp_timeset - Synchronisation between host and MC
197 * @host_start: Host time immediately before hardware timestamp taken
198 * @seconds: Hardware timestamp, seconds
199 * @nanoseconds: Hardware timestamp, nanoseconds
200 * @host_end: Host time immediately after hardware timestamp taken
201 * @waitns: Number of nanoseconds between hardware timestamp being read and
202 * host end time being seen
203 * @window: Difference of host_end and host_start
204 * @valid: Whether this timeset is valid
205 */
206 struct efx_ptp_timeset {
207 u32 host_start;
208 u32 seconds;
209 u32 nanoseconds;
210 u32 host_end;
211 u32 waitns;
212 u32 window; /* Derived: end - start, allowing for wrap */
213 };
214
215 /**
216 * struct efx_ptp_data - Precision Time Protocol (PTP) state
217 * @channel: The PTP channel
218 * @rxq: Receive queue (awaiting timestamps)
219 * @txq: Transmit queue
220 * @evt_list: List of MC receive events awaiting packets
221 * @evt_free_list: List of free events
222 * @evt_lock: Lock for manipulating evt_list and evt_free_list
223 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
224 * @workwq: Work queue for processing pending PTP operations
225 * @work: Work task
226 * @reset_required: A serious error has occurred and the PTP task needs to be
227 * reset (disable, enable).
228 * @rxfilter_event: Receive filter when operating
229 * @rxfilter_general: Receive filter when operating
230 * @config: Current timestamp configuration
231 * @enabled: PTP operation enabled
232 * @mode: Mode in which PTP operating (PTP version)
233 * @evt_frags: Partly assembled PTP events
234 * @evt_frag_idx: Current fragment number
235 * @evt_code: Last event code
236 * @start: Address at which MC indicates ready for synchronisation
237 * @host_time_pps: Host time at last PPS
238 * @last_sync_ns: Last number of nanoseconds between readings when synchronising
239 * @base_sync_ns: Number of nanoseconds for last synchronisation.
240 * @base_sync_valid: Whether base_sync_time is valid.
241 * @current_adjfreq: Current ppb adjustment.
242 * @phc_clock: Pointer to registered phc device
243 * @phc_clock_info: Registration structure for phc device
244 * @pps_work: pps work task for handling pps events
245 * @pps_workwq: pps work queue
246 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
247 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
248 * allocations in main data path).
249 * @debug_ptp_dir: PTP debugfs directory
250 * @missed_rx_sync: Number of packets received without syncrhonisation.
251 * @good_syncs: Number of successful synchronisations.
252 * @no_time_syncs: Number of synchronisations with no good times.
253 * @bad_sync_durations: Number of synchronisations with bad durations.
254 * @bad_syncs: Number of failed synchronisations.
255 * @last_sync_time: Number of nanoseconds for last synchronisation.
256 * @sync_timeouts: Number of synchronisation timeouts
257 * @fast_syncs: Number of synchronisations requiring short delay
258 * @min_sync_delta: Minimum time between event and synchronisation
259 * @max_sync_delta: Maximum time between event and synchronisation
260 * @average_sync_delta: Average time between event and synchronisation.
261 * Modified moving average.
262 * @last_sync_delta: Last time between event and synchronisation
263 * @mc_stats: Context value for MC statistics
264 * @timeset: Last set of synchronisation statistics.
265 */
266 struct efx_ptp_data {
267 struct efx_channel *channel;
268 struct sk_buff_head rxq;
269 struct sk_buff_head txq;
270 struct list_head evt_list;
271 struct list_head evt_free_list;
272 spinlock_t evt_lock;
273 struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
274 struct workqueue_struct *workwq;
275 struct work_struct work;
276 bool reset_required;
277 u32 rxfilter_event;
278 u32 rxfilter_general;
279 bool rxfilter_installed;
280 struct hwtstamp_config config;
281 bool enabled;
282 unsigned int mode;
283 efx_qword_t evt_frags[MAX_EVENT_FRAGS];
284 int evt_frag_idx;
285 int evt_code;
286 struct efx_buffer start;
287 struct pps_event_time host_time_pps;
288 unsigned last_sync_ns;
289 unsigned base_sync_ns;
290 bool base_sync_valid;
291 s64 current_adjfreq;
292 struct ptp_clock *phc_clock;
293 struct ptp_clock_info phc_clock_info;
294 struct work_struct pps_work;
295 struct workqueue_struct *pps_workwq;
296 bool nic_ts_enabled;
297 u8 txbuf[ALIGN(MC_CMD_PTP_IN_TRANSMIT_LEN(
298 MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM), 4)];
299 struct efx_ptp_timeset
300 timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
301 };
302
303 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
304 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
305 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts);
306 static int efx_phc_settime(struct ptp_clock_info *ptp,
307 const struct timespec *e_ts);
308 static int efx_phc_enable(struct ptp_clock_info *ptp,
309 struct ptp_clock_request *request, int on);
310
311 /* Enable MCDI PTP support. */
312 static int efx_ptp_enable(struct efx_nic *efx)
313 {
314 u8 inbuf[MC_CMD_PTP_IN_ENABLE_LEN];
315
316 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
317 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
318 efx->ptp_data->channel->channel);
319 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
320
321 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
322 NULL, 0, NULL);
323 }
324
325 /* Disable MCDI PTP support.
326 *
327 * Note that this function should never rely on the presence of ptp_data -
328 * may be called before that exists.
329 */
330 static int efx_ptp_disable(struct efx_nic *efx)
331 {
332 u8 inbuf[MC_CMD_PTP_IN_DISABLE_LEN];
333
334 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
335 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
336 NULL, 0, NULL);
337 }
338
339 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
340 {
341 struct sk_buff *skb;
342
343 while ((skb = skb_dequeue(q))) {
344 local_bh_disable();
345 netif_receive_skb(skb);
346 local_bh_enable();
347 }
348 }
349
350 static void efx_ptp_handle_no_channel(struct efx_nic *efx)
351 {
352 netif_err(efx, drv, efx->net_dev,
353 "ERROR: PTP requires MSI-X and 1 additional interrupt"
354 "vector. PTP disabled\n");
355 }
356
357 /* Repeatedly send the host time to the MC which will capture the hardware
358 * time.
359 */
360 static void efx_ptp_send_times(struct efx_nic *efx,
361 struct pps_event_time *last_time)
362 {
363 struct pps_event_time now;
364 struct timespec limit;
365 struct efx_ptp_data *ptp = efx->ptp_data;
366 struct timespec start;
367 int *mc_running = ptp->start.addr;
368
369 pps_get_ts(&now);
370 start = now.ts_real;
371 limit = now.ts_real;
372 timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
373
374 /* Write host time for specified period or until MC is done */
375 while ((timespec_compare(&now.ts_real, &limit) < 0) &&
376 ACCESS_ONCE(*mc_running)) {
377 struct timespec update_time;
378 unsigned int host_time;
379
380 /* Don't update continuously to avoid saturating the PCIe bus */
381 update_time = now.ts_real;
382 timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
383 do {
384 pps_get_ts(&now);
385 } while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
386 ACCESS_ONCE(*mc_running));
387
388 /* Synchronise NIC with single word of time only */
389 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
390 now.ts_real.tv_nsec);
391 /* Update host time in NIC memory */
392 _efx_writed(efx, cpu_to_le32(host_time),
393 FR_CZ_MC_TREG_SMEM + MC_SMEM_P0_PTP_TIME_OFST);
394 }
395 *last_time = now;
396 }
397
398 /* Read a timeset from the MC's results and partial process. */
399 static void efx_ptp_read_timeset(u8 *data, struct efx_ptp_timeset *timeset)
400 {
401 unsigned start_ns, end_ns;
402
403 timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
404 timeset->seconds = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_SECONDS);
405 timeset->nanoseconds = MCDI_DWORD(data,
406 PTP_OUT_SYNCHRONIZE_NANOSECONDS);
407 timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
408 timeset->waitns = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
409
410 /* Ignore seconds */
411 start_ns = timeset->host_start & MC_NANOSECOND_MASK;
412 end_ns = timeset->host_end & MC_NANOSECOND_MASK;
413 /* Allow for rollover */
414 if (end_ns < start_ns)
415 end_ns += NSEC_PER_SEC;
416 /* Determine duration of operation */
417 timeset->window = end_ns - start_ns;
418 }
419
420 /* Process times received from MC.
421 *
422 * Extract times from returned results, and establish the minimum value
423 * seen. The minimum value represents the "best" possible time and events
424 * too much greater than this are rejected - the machine is, perhaps, too
425 * busy. A number of readings are taken so that, hopefully, at least one good
426 * synchronisation will be seen in the results.
427 */
428 static int efx_ptp_process_times(struct efx_nic *efx, u8 *synch_buf,
429 size_t response_length,
430 const struct pps_event_time *last_time)
431 {
432 unsigned number_readings = (response_length /
433 MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_LEN);
434 unsigned i;
435 unsigned total;
436 unsigned ngood = 0;
437 unsigned last_good = 0;
438 struct efx_ptp_data *ptp = efx->ptp_data;
439 u32 last_sec;
440 u32 start_sec;
441 struct timespec delta;
442
443 if (number_readings == 0)
444 return -EAGAIN;
445
446 /* Read the set of results and increment stats for any results that
447 * appera to be erroneous.
448 */
449 for (i = 0; i < number_readings; i++) {
450 efx_ptp_read_timeset(synch_buf, &ptp->timeset[i]);
451 synch_buf += MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_LEN;
452 }
453
454 /* Find the last good host-MC synchronization result. The MC times
455 * when it finishes reading the host time so the corrected window time
456 * should be fairly constant for a given platform.
457 */
458 total = 0;
459 for (i = 0; i < number_readings; i++)
460 if (ptp->timeset[i].window > ptp->timeset[i].waitns) {
461 unsigned win;
462
463 win = ptp->timeset[i].window - ptp->timeset[i].waitns;
464 if (win >= MIN_SYNCHRONISATION_NS &&
465 win < MAX_SYNCHRONISATION_NS) {
466 total += ptp->timeset[i].window;
467 ngood++;
468 last_good = i;
469 }
470 }
471
472 if (ngood == 0) {
473 netif_warn(efx, drv, efx->net_dev,
474 "PTP no suitable synchronisations %dns\n",
475 ptp->base_sync_ns);
476 return -EAGAIN;
477 }
478
479 /* Average minimum this synchronisation */
480 ptp->last_sync_ns = DIV_ROUND_UP(total, ngood);
481 if (!ptp->base_sync_valid || (ptp->last_sync_ns < ptp->base_sync_ns)) {
482 ptp->base_sync_valid = true;
483 ptp->base_sync_ns = ptp->last_sync_ns;
484 }
485
486 /* Calculate delay from actual PPS to last_time */
487 delta.tv_nsec =
488 ptp->timeset[last_good].nanoseconds +
489 last_time->ts_real.tv_nsec -
490 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
491
492 /* It is possible that the seconds rolled over between taking
493 * the start reading and the last value written by the host. The
494 * timescales are such that a gap of more than one second is never
495 * expected.
496 */
497 start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
498 last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
499 if (start_sec != last_sec) {
500 if (((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
501 netif_warn(efx, hw, efx->net_dev,
502 "PTP bad synchronisation seconds\n");
503 return -EAGAIN;
504 } else {
505 delta.tv_sec = 1;
506 }
507 } else {
508 delta.tv_sec = 0;
509 }
510
511 ptp->host_time_pps = *last_time;
512 pps_sub_ts(&ptp->host_time_pps, delta);
513
514 return 0;
515 }
516
517 /* Synchronize times between the host and the MC */
518 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
519 {
520 struct efx_ptp_data *ptp = efx->ptp_data;
521 u8 synch_buf[MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX];
522 size_t response_length;
523 int rc;
524 unsigned long timeout;
525 struct pps_event_time last_time = {};
526 unsigned int loops = 0;
527 int *start = ptp->start.addr;
528
529 MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
530 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
531 num_readings);
532 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR_LO,
533 (u32)ptp->start.dma_addr);
534 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR_HI,
535 (u32)((u64)ptp->start.dma_addr >> 32));
536
537 /* Clear flag that signals MC ready */
538 ACCESS_ONCE(*start) = 0;
539 efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
540 MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
541
542 /* Wait for start from MCDI (or timeout) */
543 timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
544 while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
545 udelay(20); /* Usually start MCDI execution quickly */
546 loops++;
547 }
548
549 if (ACCESS_ONCE(*start))
550 efx_ptp_send_times(efx, &last_time);
551
552 /* Collect results */
553 rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
554 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
555 synch_buf, sizeof(synch_buf),
556 &response_length);
557 if (rc == 0)
558 rc = efx_ptp_process_times(efx, synch_buf, response_length,
559 &last_time);
560
561 return rc;
562 }
563
564 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
565 static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
566 {
567 u8 *txbuf = efx->ptp_data->txbuf;
568 struct skb_shared_hwtstamps timestamps;
569 int rc = -EIO;
570 /* MCDI driver requires word aligned lengths */
571 size_t len = ALIGN(MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), 4);
572 u8 txtime[MC_CMD_PTP_OUT_TRANSMIT_LEN];
573
574 MCDI_SET_DWORD(txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
575 MCDI_SET_DWORD(txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
576 if (skb_shinfo(skb)->nr_frags != 0) {
577 rc = skb_linearize(skb);
578 if (rc != 0)
579 goto fail;
580 }
581
582 if (skb->ip_summed == CHECKSUM_PARTIAL) {
583 rc = skb_checksum_help(skb);
584 if (rc != 0)
585 goto fail;
586 }
587 skb_copy_from_linear_data(skb,
588 &txbuf[MC_CMD_PTP_IN_TRANSMIT_PACKET_OFST],
589 len);
590 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, txbuf, len, txtime,
591 sizeof(txtime), &len);
592 if (rc != 0)
593 goto fail;
594
595 memset(&timestamps, 0, sizeof(timestamps));
596 timestamps.hwtstamp = ktime_set(
597 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_SECONDS),
598 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_NANOSECONDS));
599
600 skb_tstamp_tx(skb, &timestamps);
601
602 rc = 0;
603
604 fail:
605 dev_kfree_skb(skb);
606
607 return rc;
608 }
609
610 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
611 {
612 struct efx_ptp_data *ptp = efx->ptp_data;
613 struct list_head *cursor;
614 struct list_head *next;
615
616 /* Drop time-expired events */
617 spin_lock_bh(&ptp->evt_lock);
618 if (!list_empty(&ptp->evt_list)) {
619 list_for_each_safe(cursor, next, &ptp->evt_list) {
620 struct efx_ptp_event_rx *evt;
621
622 evt = list_entry(cursor, struct efx_ptp_event_rx,
623 link);
624 if (time_after(jiffies, evt->expiry)) {
625 list_move(&evt->link, &ptp->evt_free_list);
626 netif_warn(efx, hw, efx->net_dev,
627 "PTP rx event dropped\n");
628 }
629 }
630 }
631 spin_unlock_bh(&ptp->evt_lock);
632 }
633
634 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
635 struct sk_buff *skb)
636 {
637 struct efx_ptp_data *ptp = efx->ptp_data;
638 bool evts_waiting;
639 struct list_head *cursor;
640 struct list_head *next;
641 struct efx_ptp_match *match;
642 enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
643
644 spin_lock_bh(&ptp->evt_lock);
645 evts_waiting = !list_empty(&ptp->evt_list);
646 spin_unlock_bh(&ptp->evt_lock);
647
648 if (!evts_waiting)
649 return PTP_PACKET_STATE_UNMATCHED;
650
651 match = (struct efx_ptp_match *)skb->cb;
652 /* Look for a matching timestamp in the event queue */
653 spin_lock_bh(&ptp->evt_lock);
654 list_for_each_safe(cursor, next, &ptp->evt_list) {
655 struct efx_ptp_event_rx *evt;
656
657 evt = list_entry(cursor, struct efx_ptp_event_rx, link);
658 if ((evt->seq0 == match->words[0]) &&
659 (evt->seq1 == match->words[1])) {
660 struct skb_shared_hwtstamps *timestamps;
661
662 /* Match - add in hardware timestamp */
663 timestamps = skb_hwtstamps(skb);
664 timestamps->hwtstamp = evt->hwtimestamp;
665
666 match->state = PTP_PACKET_STATE_MATCHED;
667 rc = PTP_PACKET_STATE_MATCHED;
668 list_move(&evt->link, &ptp->evt_free_list);
669 break;
670 }
671 }
672 spin_unlock_bh(&ptp->evt_lock);
673
674 return rc;
675 }
676
677 /* Process any queued receive events and corresponding packets
678 *
679 * q is returned with all the packets that are ready for delivery.
680 * true is returned if at least one of those packets requires
681 * synchronisation.
682 */
683 static bool efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
684 {
685 struct efx_ptp_data *ptp = efx->ptp_data;
686 bool rc = false;
687 struct sk_buff *skb;
688
689 while ((skb = skb_dequeue(&ptp->rxq))) {
690 struct efx_ptp_match *match;
691
692 match = (struct efx_ptp_match *)skb->cb;
693 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
694 __skb_queue_tail(q, skb);
695 } else if (efx_ptp_match_rx(efx, skb) ==
696 PTP_PACKET_STATE_MATCHED) {
697 rc = true;
698 __skb_queue_tail(q, skb);
699 } else if (time_after(jiffies, match->expiry)) {
700 match->state = PTP_PACKET_STATE_TIMED_OUT;
701 netif_warn(efx, rx_err, efx->net_dev,
702 "PTP packet - no timestamp seen\n");
703 __skb_queue_tail(q, skb);
704 } else {
705 /* Replace unprocessed entry and stop */
706 skb_queue_head(&ptp->rxq, skb);
707 break;
708 }
709 }
710
711 return rc;
712 }
713
714 /* Complete processing of a received packet */
715 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
716 {
717 local_bh_disable();
718 netif_receive_skb(skb);
719 local_bh_enable();
720 }
721
722 static int efx_ptp_start(struct efx_nic *efx)
723 {
724 struct efx_ptp_data *ptp = efx->ptp_data;
725 struct efx_filter_spec rxfilter;
726 int rc;
727
728 ptp->reset_required = false;
729
730 /* Must filter on both event and general ports to ensure
731 * that there is no packet re-ordering.
732 */
733 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
734 efx_rx_queue_index(
735 efx_channel_get_rx_queue(ptp->channel)));
736 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
737 htonl(PTP_ADDRESS),
738 htons(PTP_EVENT_PORT));
739 if (rc != 0)
740 return rc;
741
742 rc = efx_filter_insert_filter(efx, &rxfilter, true);
743 if (rc < 0)
744 return rc;
745 ptp->rxfilter_event = rc;
746
747 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
748 efx_rx_queue_index(
749 efx_channel_get_rx_queue(ptp->channel)));
750 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
751 htonl(PTP_ADDRESS),
752 htons(PTP_GENERAL_PORT));
753 if (rc != 0)
754 goto fail;
755
756 rc = efx_filter_insert_filter(efx, &rxfilter, true);
757 if (rc < 0)
758 goto fail;
759 ptp->rxfilter_general = rc;
760
761 rc = efx_ptp_enable(efx);
762 if (rc != 0)
763 goto fail2;
764
765 ptp->evt_frag_idx = 0;
766 ptp->current_adjfreq = 0;
767 ptp->rxfilter_installed = true;
768
769 return 0;
770
771 fail2:
772 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
773 ptp->rxfilter_general);
774 fail:
775 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
776 ptp->rxfilter_event);
777
778 return rc;
779 }
780
781 static int efx_ptp_stop(struct efx_nic *efx)
782 {
783 struct efx_ptp_data *ptp = efx->ptp_data;
784 int rc = efx_ptp_disable(efx);
785 struct list_head *cursor;
786 struct list_head *next;
787
788 if (ptp->rxfilter_installed) {
789 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
790 ptp->rxfilter_general);
791 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
792 ptp->rxfilter_event);
793 ptp->rxfilter_installed = false;
794 }
795
796 /* Make sure RX packets are really delivered */
797 efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
798 skb_queue_purge(&efx->ptp_data->txq);
799
800 /* Drop any pending receive events */
801 spin_lock_bh(&efx->ptp_data->evt_lock);
802 list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
803 list_move(cursor, &efx->ptp_data->evt_free_list);
804 }
805 spin_unlock_bh(&efx->ptp_data->evt_lock);
806
807 return rc;
808 }
809
810 static void efx_ptp_pps_worker(struct work_struct *work)
811 {
812 struct efx_ptp_data *ptp =
813 container_of(work, struct efx_ptp_data, pps_work);
814 struct efx_nic *efx = ptp->channel->efx;
815 struct ptp_clock_event ptp_evt;
816
817 if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
818 return;
819
820 ptp_evt.type = PTP_CLOCK_PPSUSR;
821 ptp_evt.pps_times = ptp->host_time_pps;
822 ptp_clock_event(ptp->phc_clock, &ptp_evt);
823 }
824
825 /* Process any pending transmissions and timestamp any received packets.
826 */
827 static void efx_ptp_worker(struct work_struct *work)
828 {
829 struct efx_ptp_data *ptp_data =
830 container_of(work, struct efx_ptp_data, work);
831 struct efx_nic *efx = ptp_data->channel->efx;
832 struct sk_buff *skb;
833 struct sk_buff_head tempq;
834
835 if (ptp_data->reset_required) {
836 efx_ptp_stop(efx);
837 efx_ptp_start(efx);
838 return;
839 }
840
841 efx_ptp_drop_time_expired_events(efx);
842
843 __skb_queue_head_init(&tempq);
844 if (efx_ptp_process_events(efx, &tempq) ||
845 !skb_queue_empty(&ptp_data->txq)) {
846
847 while ((skb = skb_dequeue(&ptp_data->txq)))
848 efx_ptp_xmit_skb(efx, skb);
849 }
850
851 while ((skb = __skb_dequeue(&tempq)))
852 efx_ptp_process_rx(efx, skb);
853 }
854
855 /* Initialise PTP channel and state.
856 *
857 * Setting core_index to zero causes the queue to be initialised and doesn't
858 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
859 */
860 static int efx_ptp_probe_channel(struct efx_channel *channel)
861 {
862 struct efx_nic *efx = channel->efx;
863 struct efx_ptp_data *ptp;
864 int rc = 0;
865 unsigned int pos;
866
867 channel->irq_moderation = 0;
868 channel->rx_queue.core_index = 0;
869
870 ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
871 efx->ptp_data = ptp;
872 if (!efx->ptp_data)
873 return -ENOMEM;
874
875 rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int));
876 if (rc != 0)
877 goto fail1;
878
879 ptp->channel = channel;
880 skb_queue_head_init(&ptp->rxq);
881 skb_queue_head_init(&ptp->txq);
882 ptp->workwq = create_singlethread_workqueue("sfc_ptp");
883 if (!ptp->workwq) {
884 rc = -ENOMEM;
885 goto fail2;
886 }
887
888 INIT_WORK(&ptp->work, efx_ptp_worker);
889 ptp->config.flags = 0;
890 ptp->config.tx_type = HWTSTAMP_TX_OFF;
891 ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
892 INIT_LIST_HEAD(&ptp->evt_list);
893 INIT_LIST_HEAD(&ptp->evt_free_list);
894 spin_lock_init(&ptp->evt_lock);
895 for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
896 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
897
898 ptp->phc_clock_info.owner = THIS_MODULE;
899 snprintf(ptp->phc_clock_info.name,
900 sizeof(ptp->phc_clock_info.name),
901 "%pm", efx->net_dev->perm_addr);
902 ptp->phc_clock_info.max_adj = MAX_PPB;
903 ptp->phc_clock_info.n_alarm = 0;
904 ptp->phc_clock_info.n_ext_ts = 0;
905 ptp->phc_clock_info.n_per_out = 0;
906 ptp->phc_clock_info.pps = 1;
907 ptp->phc_clock_info.adjfreq = efx_phc_adjfreq;
908 ptp->phc_clock_info.adjtime = efx_phc_adjtime;
909 ptp->phc_clock_info.gettime = efx_phc_gettime;
910 ptp->phc_clock_info.settime = efx_phc_settime;
911 ptp->phc_clock_info.enable = efx_phc_enable;
912
913 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
914 &efx->pci_dev->dev);
915 if (IS_ERR(ptp->phc_clock)) {
916 rc = PTR_ERR(ptp->phc_clock);
917 goto fail3;
918 }
919
920 INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
921 ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
922 if (!ptp->pps_workwq) {
923 rc = -ENOMEM;
924 goto fail4;
925 }
926 ptp->nic_ts_enabled = false;
927
928 return 0;
929 fail4:
930 ptp_clock_unregister(efx->ptp_data->phc_clock);
931
932 fail3:
933 destroy_workqueue(efx->ptp_data->workwq);
934
935 fail2:
936 efx_nic_free_buffer(efx, &ptp->start);
937
938 fail1:
939 kfree(efx->ptp_data);
940 efx->ptp_data = NULL;
941
942 return rc;
943 }
944
945 static void efx_ptp_remove_channel(struct efx_channel *channel)
946 {
947 struct efx_nic *efx = channel->efx;
948
949 if (!efx->ptp_data)
950 return;
951
952 (void)efx_ptp_disable(channel->efx);
953
954 cancel_work_sync(&efx->ptp_data->work);
955 cancel_work_sync(&efx->ptp_data->pps_work);
956
957 skb_queue_purge(&efx->ptp_data->rxq);
958 skb_queue_purge(&efx->ptp_data->txq);
959
960 ptp_clock_unregister(efx->ptp_data->phc_clock);
961
962 destroy_workqueue(efx->ptp_data->workwq);
963 destroy_workqueue(efx->ptp_data->pps_workwq);
964
965 efx_nic_free_buffer(efx, &efx->ptp_data->start);
966 kfree(efx->ptp_data);
967 }
968
969 static void efx_ptp_get_channel_name(struct efx_channel *channel,
970 char *buf, size_t len)
971 {
972 snprintf(buf, len, "%s-ptp", channel->efx->name);
973 }
974
975 /* Determine whether this packet should be processed by the PTP module
976 * or transmitted conventionally.
977 */
978 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
979 {
980 return efx->ptp_data &&
981 efx->ptp_data->enabled &&
982 skb->len >= PTP_MIN_LENGTH &&
983 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
984 likely(skb->protocol == htons(ETH_P_IP)) &&
985 ip_hdr(skb)->protocol == IPPROTO_UDP &&
986 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
987 }
988
989 /* Receive a PTP packet. Packets are queued until the arrival of
990 * the receive timestamp from the MC - this will probably occur after the
991 * packet arrival because of the processing in the MC.
992 */
993 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
994 {
995 struct efx_nic *efx = channel->efx;
996 struct efx_ptp_data *ptp = efx->ptp_data;
997 struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
998 u8 *match_data_012, *match_data_345;
999 unsigned int version;
1000
1001 match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1002
1003 /* Correct version? */
1004 if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1005 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1006 return false;
1007 }
1008 version = ntohs(*(__be16 *)&skb->data[PTP_V1_VERSION_OFFSET]);
1009 if (version != PTP_VERSION_V1) {
1010 return false;
1011 }
1012
1013 /* PTP V1 uses all six bytes of the UUID to match the packet
1014 * to the timestamp
1015 */
1016 match_data_012 = skb->data + PTP_V1_UUID_OFFSET;
1017 match_data_345 = skb->data + PTP_V1_UUID_OFFSET + 3;
1018 } else {
1019 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1020 return false;
1021 }
1022 version = skb->data[PTP_V2_VERSION_OFFSET];
1023 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1024 return false;
1025 }
1026
1027 /* The original V2 implementation uses bytes 2-7 of
1028 * the UUID to match the packet to the timestamp. This
1029 * discards two of the bytes of the MAC address used
1030 * to create the UUID (SF bug 33070). The PTP V2
1031 * enhanced mode fixes this issue and uses bytes 0-2
1032 * and byte 5-7 of the UUID.
1033 */
1034 match_data_345 = skb->data + PTP_V2_UUID_OFFSET + 5;
1035 if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1036 match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 2;
1037 } else {
1038 match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 0;
1039 BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1040 }
1041 }
1042
1043 /* Does this packet require timestamping? */
1044 if (ntohs(*(__be16 *)&skb->data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1045 struct skb_shared_hwtstamps *timestamps;
1046
1047 match->state = PTP_PACKET_STATE_UNMATCHED;
1048
1049 /* Clear all timestamps held: filled in later */
1050 timestamps = skb_hwtstamps(skb);
1051 memset(timestamps, 0, sizeof(*timestamps));
1052
1053 /* We expect the sequence number to be in the same position in
1054 * the packet for PTP V1 and V2
1055 */
1056 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1057 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1058
1059 /* Extract UUID/Sequence information */
1060 match->words[0] = (match_data_012[0] |
1061 (match_data_012[1] << 8) |
1062 (match_data_012[2] << 16) |
1063 (match_data_345[0] << 24));
1064 match->words[1] = (match_data_345[1] |
1065 (match_data_345[2] << 8) |
1066 (skb->data[PTP_V1_SEQUENCE_OFFSET +
1067 PTP_V1_SEQUENCE_LENGTH - 1] <<
1068 16));
1069 } else {
1070 match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1071 }
1072
1073 skb_queue_tail(&ptp->rxq, skb);
1074 queue_work(ptp->workwq, &ptp->work);
1075
1076 return true;
1077 }
1078
1079 /* Transmit a PTP packet. This has to be transmitted by the MC
1080 * itself, through an MCDI call. MCDI calls aren't permitted
1081 * in the transmit path so defer the actual transmission to a suitable worker.
1082 */
1083 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1084 {
1085 struct efx_ptp_data *ptp = efx->ptp_data;
1086
1087 skb_queue_tail(&ptp->txq, skb);
1088
1089 if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1090 (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1091 efx_xmit_hwtstamp_pending(skb);
1092 queue_work(ptp->workwq, &ptp->work);
1093
1094 return NETDEV_TX_OK;
1095 }
1096
1097 static int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1098 unsigned int new_mode)
1099 {
1100 if ((enable_wanted != efx->ptp_data->enabled) ||
1101 (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1102 int rc;
1103
1104 if (enable_wanted) {
1105 /* Change of mode requires disable */
1106 if (efx->ptp_data->enabled &&
1107 (efx->ptp_data->mode != new_mode)) {
1108 efx->ptp_data->enabled = false;
1109 rc = efx_ptp_stop(efx);
1110 if (rc != 0)
1111 return rc;
1112 }
1113
1114 /* Set new operating mode and establish
1115 * baseline synchronisation, which must
1116 * succeed.
1117 */
1118 efx->ptp_data->mode = new_mode;
1119 rc = efx_ptp_start(efx);
1120 if (rc == 0) {
1121 rc = efx_ptp_synchronize(efx,
1122 PTP_SYNC_ATTEMPTS * 2);
1123 if (rc != 0)
1124 efx_ptp_stop(efx);
1125 }
1126 } else {
1127 rc = efx_ptp_stop(efx);
1128 }
1129
1130 if (rc != 0)
1131 return rc;
1132
1133 efx->ptp_data->enabled = enable_wanted;
1134 }
1135
1136 return 0;
1137 }
1138
1139 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1140 {
1141 bool enable_wanted = false;
1142 unsigned int new_mode;
1143 int rc;
1144
1145 if (init->flags)
1146 return -EINVAL;
1147
1148 if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1149 (init->tx_type != HWTSTAMP_TX_ON))
1150 return -ERANGE;
1151
1152 new_mode = efx->ptp_data->mode;
1153 /* Determine whether any PTP HW operations are required */
1154 switch (init->rx_filter) {
1155 case HWTSTAMP_FILTER_NONE:
1156 break;
1157 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1158 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1159 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1160 init->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1161 new_mode = MC_CMD_PTP_MODE_V1;
1162 enable_wanted = true;
1163 break;
1164 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1165 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1166 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1167 /* Although these three are accepted only IPV4 packets will be
1168 * timestamped
1169 */
1170 init->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
1171 new_mode = MC_CMD_PTP_MODE_V2_ENHANCED;
1172 enable_wanted = true;
1173 break;
1174 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1175 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1176 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1177 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1178 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1179 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1180 /* Non-IP + IPv6 timestamping not supported */
1181 return -ERANGE;
1182 break;
1183 default:
1184 return -ERANGE;
1185 }
1186
1187 if (init->tx_type != HWTSTAMP_TX_OFF)
1188 enable_wanted = true;
1189
1190 /* Old versions of the firmware do not support the improved
1191 * UUID filtering option (SF bug 33070). If the firmware does
1192 * not accept the enhanced mode, fall back to the standard PTP
1193 * v2 UUID filtering.
1194 */
1195 rc = efx_ptp_change_mode(efx, enable_wanted, new_mode);
1196 if ((rc != 0) && (new_mode == MC_CMD_PTP_MODE_V2_ENHANCED))
1197 rc = efx_ptp_change_mode(efx, enable_wanted, MC_CMD_PTP_MODE_V2);
1198 if (rc != 0)
1199 return rc;
1200
1201 efx->ptp_data->config = *init;
1202
1203 return 0;
1204 }
1205
1206 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1207 {
1208 struct efx_ptp_data *ptp = efx->ptp_data;
1209
1210 if (!ptp)
1211 return;
1212
1213 ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1214 SOF_TIMESTAMPING_RX_HARDWARE |
1215 SOF_TIMESTAMPING_RAW_HARDWARE);
1216 ts_info->phc_index = ptp_clock_index(ptp->phc_clock);
1217 ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1218 ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE |
1219 1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT |
1220 1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC |
1221 1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ |
1222 1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT |
1223 1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC |
1224 1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ);
1225 }
1226
1227 int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd)
1228 {
1229 struct hwtstamp_config config;
1230 int rc;
1231
1232 /* Not a PTP enabled port */
1233 if (!efx->ptp_data)
1234 return -EOPNOTSUPP;
1235
1236 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1237 return -EFAULT;
1238
1239 rc = efx_ptp_ts_init(efx, &config);
1240 if (rc != 0)
1241 return rc;
1242
1243 return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1244 ? -EFAULT : 0;
1245 }
1246
1247 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1248 {
1249 struct efx_ptp_data *ptp = efx->ptp_data;
1250
1251 netif_err(efx, hw, efx->net_dev,
1252 "PTP unexpected event length: got %d expected %d\n",
1253 ptp->evt_frag_idx, expected_frag_len);
1254 ptp->reset_required = true;
1255 queue_work(ptp->workwq, &ptp->work);
1256 }
1257
1258 /* Process a completed receive event. Put it on the event queue and
1259 * start worker thread. This is required because event and their
1260 * correspoding packets may come in either order.
1261 */
1262 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1263 {
1264 struct efx_ptp_event_rx *evt = NULL;
1265
1266 if (ptp->evt_frag_idx != 3) {
1267 ptp_event_failure(efx, 3);
1268 return;
1269 }
1270
1271 spin_lock_bh(&ptp->evt_lock);
1272 if (!list_empty(&ptp->evt_free_list)) {
1273 evt = list_first_entry(&ptp->evt_free_list,
1274 struct efx_ptp_event_rx, link);
1275 list_del(&evt->link);
1276
1277 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1278 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1279 MCDI_EVENT_SRC) |
1280 (EFX_QWORD_FIELD(ptp->evt_frags[1],
1281 MCDI_EVENT_SRC) << 8) |
1282 (EFX_QWORD_FIELD(ptp->evt_frags[0],
1283 MCDI_EVENT_SRC) << 16));
1284 evt->hwtimestamp = ktime_set(
1285 EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1286 EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA));
1287 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1288 list_add_tail(&evt->link, &ptp->evt_list);
1289
1290 queue_work(ptp->workwq, &ptp->work);
1291 } else {
1292 netif_err(efx, rx_err, efx->net_dev, "No free PTP event");
1293 }
1294 spin_unlock_bh(&ptp->evt_lock);
1295 }
1296
1297 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1298 {
1299 int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1300 if (ptp->evt_frag_idx != 1) {
1301 ptp_event_failure(efx, 1);
1302 return;
1303 }
1304
1305 netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1306 }
1307
1308 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1309 {
1310 if (ptp->nic_ts_enabled)
1311 queue_work(ptp->pps_workwq, &ptp->pps_work);
1312 }
1313
1314 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1315 {
1316 struct efx_ptp_data *ptp = efx->ptp_data;
1317 int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1318
1319 if (!ptp->enabled)
1320 return;
1321
1322 if (ptp->evt_frag_idx == 0) {
1323 ptp->evt_code = code;
1324 } else if (ptp->evt_code != code) {
1325 netif_err(efx, hw, efx->net_dev,
1326 "PTP out of sequence event %d\n", code);
1327 ptp->evt_frag_idx = 0;
1328 }
1329
1330 ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1331 if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1332 /* Process resulting event */
1333 switch (code) {
1334 case MCDI_EVENT_CODE_PTP_RX:
1335 ptp_event_rx(efx, ptp);
1336 break;
1337 case MCDI_EVENT_CODE_PTP_FAULT:
1338 ptp_event_fault(efx, ptp);
1339 break;
1340 case MCDI_EVENT_CODE_PTP_PPS:
1341 ptp_event_pps(efx, ptp);
1342 break;
1343 default:
1344 netif_err(efx, hw, efx->net_dev,
1345 "PTP unknown event %d\n", code);
1346 break;
1347 }
1348 ptp->evt_frag_idx = 0;
1349 } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1350 netif_err(efx, hw, efx->net_dev,
1351 "PTP too many event fragments\n");
1352 ptp->evt_frag_idx = 0;
1353 }
1354 }
1355
1356 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
1357 {
1358 struct efx_ptp_data *ptp_data = container_of(ptp,
1359 struct efx_ptp_data,
1360 phc_clock_info);
1361 struct efx_nic *efx = ptp_data->channel->efx;
1362 u8 inadj[MC_CMD_PTP_IN_ADJUST_LEN];
1363 s64 adjustment_ns;
1364 int rc;
1365
1366 if (delta > MAX_PPB)
1367 delta = MAX_PPB;
1368 else if (delta < -MAX_PPB)
1369 delta = -MAX_PPB;
1370
1371 /* Convert ppb to fixed point ns. */
1372 adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
1373 (PPB_EXTRA_BITS + MAX_PPB_BITS));
1374
1375 MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1376 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_FREQ_LO, (u32)adjustment_ns);
1377 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_FREQ_HI,
1378 (u32)(adjustment_ns >> 32));
1379 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
1380 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
1381 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
1382 NULL, 0, NULL);
1383 if (rc != 0)
1384 return rc;
1385
1386 ptp_data->current_adjfreq = delta;
1387 return 0;
1388 }
1389
1390 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
1391 {
1392 struct efx_ptp_data *ptp_data = container_of(ptp,
1393 struct efx_ptp_data,
1394 phc_clock_info);
1395 struct efx_nic *efx = ptp_data->channel->efx;
1396 struct timespec delta_ts = ns_to_timespec(delta);
1397 u8 inbuf[MC_CMD_PTP_IN_ADJUST_LEN];
1398
1399 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1400 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_FREQ_LO, 0);
1401 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_FREQ_HI, 0);
1402 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_SECONDS, (u32)delta_ts.tv_sec);
1403 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_NANOSECONDS, (u32)delta_ts.tv_nsec);
1404 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1405 NULL, 0, NULL);
1406 }
1407
1408 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
1409 {
1410 struct efx_ptp_data *ptp_data = container_of(ptp,
1411 struct efx_ptp_data,
1412 phc_clock_info);
1413 struct efx_nic *efx = ptp_data->channel->efx;
1414 u8 inbuf[MC_CMD_PTP_IN_READ_NIC_TIME_LEN];
1415 u8 outbuf[MC_CMD_PTP_OUT_READ_NIC_TIME_LEN];
1416 int rc;
1417
1418 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
1419
1420 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1421 outbuf, sizeof(outbuf), NULL);
1422 if (rc != 0)
1423 return rc;
1424
1425 ts->tv_sec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_SECONDS);
1426 ts->tv_nsec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_NANOSECONDS);
1427 return 0;
1428 }
1429
1430 static int efx_phc_settime(struct ptp_clock_info *ptp,
1431 const struct timespec *e_ts)
1432 {
1433 /* Get the current NIC time, efx_phc_gettime.
1434 * Subtract from the desired time to get the offset
1435 * call efx_phc_adjtime with the offset
1436 */
1437 int rc;
1438 struct timespec time_now;
1439 struct timespec delta;
1440
1441 rc = efx_phc_gettime(ptp, &time_now);
1442 if (rc != 0)
1443 return rc;
1444
1445 delta = timespec_sub(*e_ts, time_now);
1446
1447 rc = efx_phc_adjtime(ptp, timespec_to_ns(&delta));
1448 if (rc != 0)
1449 return rc;
1450
1451 return 0;
1452 }
1453
1454 static int efx_phc_enable(struct ptp_clock_info *ptp,
1455 struct ptp_clock_request *request,
1456 int enable)
1457 {
1458 struct efx_ptp_data *ptp_data = container_of(ptp,
1459 struct efx_ptp_data,
1460 phc_clock_info);
1461 if (request->type != PTP_CLK_REQ_PPS)
1462 return -EOPNOTSUPP;
1463
1464 ptp_data->nic_ts_enabled = !!enable;
1465 return 0;
1466 }
1467
1468 static const struct efx_channel_type efx_ptp_channel_type = {
1469 .handle_no_channel = efx_ptp_handle_no_channel,
1470 .pre_probe = efx_ptp_probe_channel,
1471 .post_remove = efx_ptp_remove_channel,
1472 .get_name = efx_ptp_get_channel_name,
1473 /* no copy operation; there is no need to reallocate this channel */
1474 .receive_skb = efx_ptp_rx,
1475 .keep_eventq = false,
1476 };
1477
1478 void efx_ptp_probe(struct efx_nic *efx)
1479 {
1480 /* Check whether PTP is implemented on this NIC. The DISABLE
1481 * operation will succeed if and only if it is implemented.
1482 */
1483 if (efx_ptp_disable(efx) == 0)
1484 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
1485 &efx_ptp_channel_type;
1486 }
This page took 0.064293 seconds and 5 git commands to generate.