sfc: Add GFP flags to efx_nic_alloc_buffer() and make most callers allow blocking
[deliverable/linux.git] / drivers / net / ethernet / sfc / ptp.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2011 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10 /* Theory of operation:
11 *
12 * PTP support is assisted by firmware running on the MC, which provides
13 * the hardware timestamping capabilities. Both transmitted and received
14 * PTP event packets are queued onto internal queues for subsequent processing;
15 * this is because the MC operations are relatively long and would block
16 * block NAPI/interrupt operation.
17 *
18 * Receive event processing:
19 * The event contains the packet's UUID and sequence number, together
20 * with the hardware timestamp. The PTP receive packet queue is searched
21 * for this UUID/sequence number and, if found, put on a pending queue.
22 * Packets not matching are delivered without timestamps (MCDI events will
23 * always arrive after the actual packet).
24 * It is important for the operation of the PTP protocol that the ordering
25 * of packets between the event and general port is maintained.
26 *
27 * Work queue processing:
28 * If work waiting, synchronise host/hardware time
29 *
30 * Transmit: send packet through MC, which returns the transmission time
31 * that is converted to an appropriate timestamp.
32 *
33 * Receive: the packet's reception time is converted to an appropriate
34 * timestamp.
35 */
36 #include <linux/ip.h>
37 #include <linux/udp.h>
38 #include <linux/time.h>
39 #include <linux/ktime.h>
40 #include <linux/module.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/pps_kernel.h>
43 #include <linux/ptp_clock_kernel.h>
44 #include "net_driver.h"
45 #include "efx.h"
46 #include "mcdi.h"
47 #include "mcdi_pcol.h"
48 #include "io.h"
49 #include "regs.h"
50 #include "nic.h"
51
52 /* Maximum number of events expected to make up a PTP event */
53 #define MAX_EVENT_FRAGS 3
54
55 /* Maximum delay, ms, to begin synchronisation */
56 #define MAX_SYNCHRONISE_WAIT_MS 2
57
58 /* How long, at most, to spend synchronising */
59 #define SYNCHRONISE_PERIOD_NS 250000
60
61 /* How often to update the shared memory time */
62 #define SYNCHRONISATION_GRANULARITY_NS 200
63
64 /* Minimum permitted length of a (corrected) synchronisation time */
65 #define MIN_SYNCHRONISATION_NS 120
66
67 /* Maximum permitted length of a (corrected) synchronisation time */
68 #define MAX_SYNCHRONISATION_NS 1000
69
70 /* How many (MC) receive events that can be queued */
71 #define MAX_RECEIVE_EVENTS 8
72
73 /* Length of (modified) moving average. */
74 #define AVERAGE_LENGTH 16
75
76 /* How long an unmatched event or packet can be held */
77 #define PKT_EVENT_LIFETIME_MS 10
78
79 /* Offsets into PTP packet for identification. These offsets are from the
80 * start of the IP header, not the MAC header. Note that neither PTP V1 nor
81 * PTP V2 permit the use of IPV4 options.
82 */
83 #define PTP_DPORT_OFFSET 22
84
85 #define PTP_V1_VERSION_LENGTH 2
86 #define PTP_V1_VERSION_OFFSET 28
87
88 #define PTP_V1_UUID_LENGTH 6
89 #define PTP_V1_UUID_OFFSET 50
90
91 #define PTP_V1_SEQUENCE_LENGTH 2
92 #define PTP_V1_SEQUENCE_OFFSET 58
93
94 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
95 * includes IP header.
96 */
97 #define PTP_V1_MIN_LENGTH 64
98
99 #define PTP_V2_VERSION_LENGTH 1
100 #define PTP_V2_VERSION_OFFSET 29
101
102 #define PTP_V2_UUID_LENGTH 8
103 #define PTP_V2_UUID_OFFSET 48
104
105 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
106 * the MC only captures the last six bytes of the clock identity. These values
107 * reflect those, not the ones used in the standard. The standard permits
108 * mapping of V1 UUIDs to V2 UUIDs with these same values.
109 */
110 #define PTP_V2_MC_UUID_LENGTH 6
111 #define PTP_V2_MC_UUID_OFFSET 50
112
113 #define PTP_V2_SEQUENCE_LENGTH 2
114 #define PTP_V2_SEQUENCE_OFFSET 58
115
116 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
117 * includes IP header.
118 */
119 #define PTP_V2_MIN_LENGTH 63
120
121 #define PTP_MIN_LENGTH 63
122
123 #define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
124 #define PTP_EVENT_PORT 319
125 #define PTP_GENERAL_PORT 320
126
127 /* Annoyingly the format of the version numbers are different between
128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
129 */
130 #define PTP_VERSION_V1 1
131
132 #define PTP_VERSION_V2 2
133 #define PTP_VERSION_V2_MASK 0x0f
134
135 enum ptp_packet_state {
136 PTP_PACKET_STATE_UNMATCHED = 0,
137 PTP_PACKET_STATE_MATCHED,
138 PTP_PACKET_STATE_TIMED_OUT,
139 PTP_PACKET_STATE_MATCH_UNWANTED
140 };
141
142 /* NIC synchronised with single word of time only comprising
143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
144 */
145 #define MC_NANOSECOND_BITS 30
146 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
147 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
148
149 /* Maximum parts-per-billion adjustment that is acceptable */
150 #define MAX_PPB 1000000
151
152 /* Number of bits required to hold the above */
153 #define MAX_PPB_BITS 20
154
155 /* Number of extra bits allowed when calculating fractional ns.
156 * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
157 * be less than 63.
158 */
159 #define PPB_EXTRA_BITS 2
160
161 /* Precalculate scale word to avoid long long division at runtime */
162 #define PPB_SCALE_WORD ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
163 MAX_PPB_BITS)) / 1000000000LL)
164
165 #define PTP_SYNC_ATTEMPTS 4
166
167 /**
168 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
169 * @words: UUID and (partial) sequence number
170 * @expiry: Time after which the packet should be delivered irrespective of
171 * event arrival.
172 * @state: The state of the packet - whether it is ready for processing or
173 * whether that is of no interest.
174 */
175 struct efx_ptp_match {
176 u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
177 unsigned long expiry;
178 enum ptp_packet_state state;
179 };
180
181 /**
182 * struct efx_ptp_event_rx - A PTP receive event (from MC)
183 * @seq0: First part of (PTP) UUID
184 * @seq1: Second part of (PTP) UUID and sequence number
185 * @hwtimestamp: Event timestamp
186 */
187 struct efx_ptp_event_rx {
188 struct list_head link;
189 u32 seq0;
190 u32 seq1;
191 ktime_t hwtimestamp;
192 unsigned long expiry;
193 };
194
195 /**
196 * struct efx_ptp_timeset - Synchronisation between host and MC
197 * @host_start: Host time immediately before hardware timestamp taken
198 * @seconds: Hardware timestamp, seconds
199 * @nanoseconds: Hardware timestamp, nanoseconds
200 * @host_end: Host time immediately after hardware timestamp taken
201 * @waitns: Number of nanoseconds between hardware timestamp being read and
202 * host end time being seen
203 * @window: Difference of host_end and host_start
204 * @valid: Whether this timeset is valid
205 */
206 struct efx_ptp_timeset {
207 u32 host_start;
208 u32 seconds;
209 u32 nanoseconds;
210 u32 host_end;
211 u32 waitns;
212 u32 window; /* Derived: end - start, allowing for wrap */
213 };
214
215 /**
216 * struct efx_ptp_data - Precision Time Protocol (PTP) state
217 * @channel: The PTP channel
218 * @rxq: Receive queue (awaiting timestamps)
219 * @txq: Transmit queue
220 * @evt_list: List of MC receive events awaiting packets
221 * @evt_free_list: List of free events
222 * @evt_lock: Lock for manipulating evt_list and evt_free_list
223 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
224 * @workwq: Work queue for processing pending PTP operations
225 * @work: Work task
226 * @reset_required: A serious error has occurred and the PTP task needs to be
227 * reset (disable, enable).
228 * @rxfilter_event: Receive filter when operating
229 * @rxfilter_general: Receive filter when operating
230 * @config: Current timestamp configuration
231 * @enabled: PTP operation enabled
232 * @mode: Mode in which PTP operating (PTP version)
233 * @evt_frags: Partly assembled PTP events
234 * @evt_frag_idx: Current fragment number
235 * @evt_code: Last event code
236 * @start: Address at which MC indicates ready for synchronisation
237 * @host_time_pps: Host time at last PPS
238 * @last_sync_ns: Last number of nanoseconds between readings when synchronising
239 * @base_sync_ns: Number of nanoseconds for last synchronisation.
240 * @base_sync_valid: Whether base_sync_time is valid.
241 * @current_adjfreq: Current ppb adjustment.
242 * @phc_clock: Pointer to registered phc device
243 * @phc_clock_info: Registration structure for phc device
244 * @pps_work: pps work task for handling pps events
245 * @pps_workwq: pps work queue
246 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
247 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
248 * allocations in main data path).
249 * @debug_ptp_dir: PTP debugfs directory
250 * @missed_rx_sync: Number of packets received without syncrhonisation.
251 * @good_syncs: Number of successful synchronisations.
252 * @no_time_syncs: Number of synchronisations with no good times.
253 * @bad_sync_durations: Number of synchronisations with bad durations.
254 * @bad_syncs: Number of failed synchronisations.
255 * @last_sync_time: Number of nanoseconds for last synchronisation.
256 * @sync_timeouts: Number of synchronisation timeouts
257 * @fast_syncs: Number of synchronisations requiring short delay
258 * @min_sync_delta: Minimum time between event and synchronisation
259 * @max_sync_delta: Maximum time between event and synchronisation
260 * @average_sync_delta: Average time between event and synchronisation.
261 * Modified moving average.
262 * @last_sync_delta: Last time between event and synchronisation
263 * @mc_stats: Context value for MC statistics
264 * @timeset: Last set of synchronisation statistics.
265 */
266 struct efx_ptp_data {
267 struct efx_channel *channel;
268 struct sk_buff_head rxq;
269 struct sk_buff_head txq;
270 struct list_head evt_list;
271 struct list_head evt_free_list;
272 spinlock_t evt_lock;
273 struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
274 struct workqueue_struct *workwq;
275 struct work_struct work;
276 bool reset_required;
277 u32 rxfilter_event;
278 u32 rxfilter_general;
279 bool rxfilter_installed;
280 struct hwtstamp_config config;
281 bool enabled;
282 unsigned int mode;
283 efx_qword_t evt_frags[MAX_EVENT_FRAGS];
284 int evt_frag_idx;
285 int evt_code;
286 struct efx_buffer start;
287 struct pps_event_time host_time_pps;
288 unsigned last_sync_ns;
289 unsigned base_sync_ns;
290 bool base_sync_valid;
291 s64 current_adjfreq;
292 struct ptp_clock *phc_clock;
293 struct ptp_clock_info phc_clock_info;
294 struct work_struct pps_work;
295 struct workqueue_struct *pps_workwq;
296 bool nic_ts_enabled;
297 MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
298 struct efx_ptp_timeset
299 timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
300 };
301
302 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
303 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
304 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts);
305 static int efx_phc_settime(struct ptp_clock_info *ptp,
306 const struct timespec *e_ts);
307 static int efx_phc_enable(struct ptp_clock_info *ptp,
308 struct ptp_clock_request *request, int on);
309
310 /* Enable MCDI PTP support. */
311 static int efx_ptp_enable(struct efx_nic *efx)
312 {
313 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
314
315 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
316 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
317 efx->ptp_data->channel->channel);
318 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
319
320 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
321 NULL, 0, NULL);
322 }
323
324 /* Disable MCDI PTP support.
325 *
326 * Note that this function should never rely on the presence of ptp_data -
327 * may be called before that exists.
328 */
329 static int efx_ptp_disable(struct efx_nic *efx)
330 {
331 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
332
333 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
334 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
335 NULL, 0, NULL);
336 }
337
338 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
339 {
340 struct sk_buff *skb;
341
342 while ((skb = skb_dequeue(q))) {
343 local_bh_disable();
344 netif_receive_skb(skb);
345 local_bh_enable();
346 }
347 }
348
349 static void efx_ptp_handle_no_channel(struct efx_nic *efx)
350 {
351 netif_err(efx, drv, efx->net_dev,
352 "ERROR: PTP requires MSI-X and 1 additional interrupt"
353 "vector. PTP disabled\n");
354 }
355
356 /* Repeatedly send the host time to the MC which will capture the hardware
357 * time.
358 */
359 static void efx_ptp_send_times(struct efx_nic *efx,
360 struct pps_event_time *last_time)
361 {
362 struct pps_event_time now;
363 struct timespec limit;
364 struct efx_ptp_data *ptp = efx->ptp_data;
365 struct timespec start;
366 int *mc_running = ptp->start.addr;
367
368 pps_get_ts(&now);
369 start = now.ts_real;
370 limit = now.ts_real;
371 timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
372
373 /* Write host time for specified period or until MC is done */
374 while ((timespec_compare(&now.ts_real, &limit) < 0) &&
375 ACCESS_ONCE(*mc_running)) {
376 struct timespec update_time;
377 unsigned int host_time;
378
379 /* Don't update continuously to avoid saturating the PCIe bus */
380 update_time = now.ts_real;
381 timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
382 do {
383 pps_get_ts(&now);
384 } while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
385 ACCESS_ONCE(*mc_running));
386
387 /* Synchronise NIC with single word of time only */
388 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
389 now.ts_real.tv_nsec);
390 /* Update host time in NIC memory */
391 _efx_writed(efx, cpu_to_le32(host_time),
392 FR_CZ_MC_TREG_SMEM + MC_SMEM_P0_PTP_TIME_OFST);
393 }
394 *last_time = now;
395 }
396
397 /* Read a timeset from the MC's results and partial process. */
398 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
399 struct efx_ptp_timeset *timeset)
400 {
401 unsigned start_ns, end_ns;
402
403 timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
404 timeset->seconds = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_SECONDS);
405 timeset->nanoseconds = MCDI_DWORD(data,
406 PTP_OUT_SYNCHRONIZE_NANOSECONDS);
407 timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
408 timeset->waitns = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
409
410 /* Ignore seconds */
411 start_ns = timeset->host_start & MC_NANOSECOND_MASK;
412 end_ns = timeset->host_end & MC_NANOSECOND_MASK;
413 /* Allow for rollover */
414 if (end_ns < start_ns)
415 end_ns += NSEC_PER_SEC;
416 /* Determine duration of operation */
417 timeset->window = end_ns - start_ns;
418 }
419
420 /* Process times received from MC.
421 *
422 * Extract times from returned results, and establish the minimum value
423 * seen. The minimum value represents the "best" possible time and events
424 * too much greater than this are rejected - the machine is, perhaps, too
425 * busy. A number of readings are taken so that, hopefully, at least one good
426 * synchronisation will be seen in the results.
427 */
428 static int
429 efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
430 size_t response_length,
431 const struct pps_event_time *last_time)
432 {
433 unsigned number_readings =
434 MCDI_VAR_ARRAY_LEN(response_length,
435 PTP_OUT_SYNCHRONIZE_TIMESET);
436 unsigned i;
437 unsigned total;
438 unsigned ngood = 0;
439 unsigned last_good = 0;
440 struct efx_ptp_data *ptp = efx->ptp_data;
441 u32 last_sec;
442 u32 start_sec;
443 struct timespec delta;
444
445 if (number_readings == 0)
446 return -EAGAIN;
447
448 /* Read the set of results and increment stats for any results that
449 * appera to be erroneous.
450 */
451 for (i = 0; i < number_readings; i++) {
452 efx_ptp_read_timeset(
453 MCDI_ARRAY_STRUCT_PTR(synch_buf,
454 PTP_OUT_SYNCHRONIZE_TIMESET, i),
455 &ptp->timeset[i]);
456 }
457
458 /* Find the last good host-MC synchronization result. The MC times
459 * when it finishes reading the host time so the corrected window time
460 * should be fairly constant for a given platform.
461 */
462 total = 0;
463 for (i = 0; i < number_readings; i++)
464 if (ptp->timeset[i].window > ptp->timeset[i].waitns) {
465 unsigned win;
466
467 win = ptp->timeset[i].window - ptp->timeset[i].waitns;
468 if (win >= MIN_SYNCHRONISATION_NS &&
469 win < MAX_SYNCHRONISATION_NS) {
470 total += ptp->timeset[i].window;
471 ngood++;
472 last_good = i;
473 }
474 }
475
476 if (ngood == 0) {
477 netif_warn(efx, drv, efx->net_dev,
478 "PTP no suitable synchronisations %dns\n",
479 ptp->base_sync_ns);
480 return -EAGAIN;
481 }
482
483 /* Average minimum this synchronisation */
484 ptp->last_sync_ns = DIV_ROUND_UP(total, ngood);
485 if (!ptp->base_sync_valid || (ptp->last_sync_ns < ptp->base_sync_ns)) {
486 ptp->base_sync_valid = true;
487 ptp->base_sync_ns = ptp->last_sync_ns;
488 }
489
490 /* Calculate delay from actual PPS to last_time */
491 delta.tv_nsec =
492 ptp->timeset[last_good].nanoseconds +
493 last_time->ts_real.tv_nsec -
494 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
495
496 /* It is possible that the seconds rolled over between taking
497 * the start reading and the last value written by the host. The
498 * timescales are such that a gap of more than one second is never
499 * expected.
500 */
501 start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
502 last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
503 if (start_sec != last_sec) {
504 if (((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
505 netif_warn(efx, hw, efx->net_dev,
506 "PTP bad synchronisation seconds\n");
507 return -EAGAIN;
508 } else {
509 delta.tv_sec = 1;
510 }
511 } else {
512 delta.tv_sec = 0;
513 }
514
515 ptp->host_time_pps = *last_time;
516 pps_sub_ts(&ptp->host_time_pps, delta);
517
518 return 0;
519 }
520
521 /* Synchronize times between the host and the MC */
522 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
523 {
524 struct efx_ptp_data *ptp = efx->ptp_data;
525 MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
526 size_t response_length;
527 int rc;
528 unsigned long timeout;
529 struct pps_event_time last_time = {};
530 unsigned int loops = 0;
531 int *start = ptp->start.addr;
532
533 MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
534 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
535 num_readings);
536 MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
537 ptp->start.dma_addr);
538
539 /* Clear flag that signals MC ready */
540 ACCESS_ONCE(*start) = 0;
541 efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
542 MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
543
544 /* Wait for start from MCDI (or timeout) */
545 timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
546 while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
547 udelay(20); /* Usually start MCDI execution quickly */
548 loops++;
549 }
550
551 if (ACCESS_ONCE(*start))
552 efx_ptp_send_times(efx, &last_time);
553
554 /* Collect results */
555 rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
556 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
557 synch_buf, sizeof(synch_buf),
558 &response_length);
559 if (rc == 0)
560 rc = efx_ptp_process_times(efx, synch_buf, response_length,
561 &last_time);
562
563 return rc;
564 }
565
566 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
567 static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
568 {
569 struct efx_ptp_data *ptp_data = efx->ptp_data;
570 struct skb_shared_hwtstamps timestamps;
571 int rc = -EIO;
572 MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
573 size_t len;
574
575 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
576 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
577 if (skb_shinfo(skb)->nr_frags != 0) {
578 rc = skb_linearize(skb);
579 if (rc != 0)
580 goto fail;
581 }
582
583 if (skb->ip_summed == CHECKSUM_PARTIAL) {
584 rc = skb_checksum_help(skb);
585 if (rc != 0)
586 goto fail;
587 }
588 skb_copy_from_linear_data(skb,
589 MCDI_PTR(ptp_data->txbuf,
590 PTP_IN_TRANSMIT_PACKET),
591 skb->len);
592 rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
593 ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
594 txtime, sizeof(txtime), &len);
595 if (rc != 0)
596 goto fail;
597
598 memset(&timestamps, 0, sizeof(timestamps));
599 timestamps.hwtstamp = ktime_set(
600 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_SECONDS),
601 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_NANOSECONDS));
602
603 skb_tstamp_tx(skb, &timestamps);
604
605 rc = 0;
606
607 fail:
608 dev_kfree_skb(skb);
609
610 return rc;
611 }
612
613 static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
614 {
615 struct efx_ptp_data *ptp = efx->ptp_data;
616 struct list_head *cursor;
617 struct list_head *next;
618
619 /* Drop time-expired events */
620 spin_lock_bh(&ptp->evt_lock);
621 if (!list_empty(&ptp->evt_list)) {
622 list_for_each_safe(cursor, next, &ptp->evt_list) {
623 struct efx_ptp_event_rx *evt;
624
625 evt = list_entry(cursor, struct efx_ptp_event_rx,
626 link);
627 if (time_after(jiffies, evt->expiry)) {
628 list_move(&evt->link, &ptp->evt_free_list);
629 netif_warn(efx, hw, efx->net_dev,
630 "PTP rx event dropped\n");
631 }
632 }
633 }
634 spin_unlock_bh(&ptp->evt_lock);
635 }
636
637 static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
638 struct sk_buff *skb)
639 {
640 struct efx_ptp_data *ptp = efx->ptp_data;
641 bool evts_waiting;
642 struct list_head *cursor;
643 struct list_head *next;
644 struct efx_ptp_match *match;
645 enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
646
647 spin_lock_bh(&ptp->evt_lock);
648 evts_waiting = !list_empty(&ptp->evt_list);
649 spin_unlock_bh(&ptp->evt_lock);
650
651 if (!evts_waiting)
652 return PTP_PACKET_STATE_UNMATCHED;
653
654 match = (struct efx_ptp_match *)skb->cb;
655 /* Look for a matching timestamp in the event queue */
656 spin_lock_bh(&ptp->evt_lock);
657 list_for_each_safe(cursor, next, &ptp->evt_list) {
658 struct efx_ptp_event_rx *evt;
659
660 evt = list_entry(cursor, struct efx_ptp_event_rx, link);
661 if ((evt->seq0 == match->words[0]) &&
662 (evt->seq1 == match->words[1])) {
663 struct skb_shared_hwtstamps *timestamps;
664
665 /* Match - add in hardware timestamp */
666 timestamps = skb_hwtstamps(skb);
667 timestamps->hwtstamp = evt->hwtimestamp;
668
669 match->state = PTP_PACKET_STATE_MATCHED;
670 rc = PTP_PACKET_STATE_MATCHED;
671 list_move(&evt->link, &ptp->evt_free_list);
672 break;
673 }
674 }
675 spin_unlock_bh(&ptp->evt_lock);
676
677 return rc;
678 }
679
680 /* Process any queued receive events and corresponding packets
681 *
682 * q is returned with all the packets that are ready for delivery.
683 * true is returned if at least one of those packets requires
684 * synchronisation.
685 */
686 static bool efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
687 {
688 struct efx_ptp_data *ptp = efx->ptp_data;
689 bool rc = false;
690 struct sk_buff *skb;
691
692 while ((skb = skb_dequeue(&ptp->rxq))) {
693 struct efx_ptp_match *match;
694
695 match = (struct efx_ptp_match *)skb->cb;
696 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
697 __skb_queue_tail(q, skb);
698 } else if (efx_ptp_match_rx(efx, skb) ==
699 PTP_PACKET_STATE_MATCHED) {
700 rc = true;
701 __skb_queue_tail(q, skb);
702 } else if (time_after(jiffies, match->expiry)) {
703 match->state = PTP_PACKET_STATE_TIMED_OUT;
704 netif_warn(efx, rx_err, efx->net_dev,
705 "PTP packet - no timestamp seen\n");
706 __skb_queue_tail(q, skb);
707 } else {
708 /* Replace unprocessed entry and stop */
709 skb_queue_head(&ptp->rxq, skb);
710 break;
711 }
712 }
713
714 return rc;
715 }
716
717 /* Complete processing of a received packet */
718 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
719 {
720 local_bh_disable();
721 netif_receive_skb(skb);
722 local_bh_enable();
723 }
724
725 static int efx_ptp_start(struct efx_nic *efx)
726 {
727 struct efx_ptp_data *ptp = efx->ptp_data;
728 struct efx_filter_spec rxfilter;
729 int rc;
730
731 ptp->reset_required = false;
732
733 /* Must filter on both event and general ports to ensure
734 * that there is no packet re-ordering.
735 */
736 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
737 efx_rx_queue_index(
738 efx_channel_get_rx_queue(ptp->channel)));
739 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
740 htonl(PTP_ADDRESS),
741 htons(PTP_EVENT_PORT));
742 if (rc != 0)
743 return rc;
744
745 rc = efx_filter_insert_filter(efx, &rxfilter, true);
746 if (rc < 0)
747 return rc;
748 ptp->rxfilter_event = rc;
749
750 efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
751 efx_rx_queue_index(
752 efx_channel_get_rx_queue(ptp->channel)));
753 rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
754 htonl(PTP_ADDRESS),
755 htons(PTP_GENERAL_PORT));
756 if (rc != 0)
757 goto fail;
758
759 rc = efx_filter_insert_filter(efx, &rxfilter, true);
760 if (rc < 0)
761 goto fail;
762 ptp->rxfilter_general = rc;
763
764 rc = efx_ptp_enable(efx);
765 if (rc != 0)
766 goto fail2;
767
768 ptp->evt_frag_idx = 0;
769 ptp->current_adjfreq = 0;
770 ptp->rxfilter_installed = true;
771
772 return 0;
773
774 fail2:
775 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
776 ptp->rxfilter_general);
777 fail:
778 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
779 ptp->rxfilter_event);
780
781 return rc;
782 }
783
784 static int efx_ptp_stop(struct efx_nic *efx)
785 {
786 struct efx_ptp_data *ptp = efx->ptp_data;
787 int rc = efx_ptp_disable(efx);
788 struct list_head *cursor;
789 struct list_head *next;
790
791 if (ptp->rxfilter_installed) {
792 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
793 ptp->rxfilter_general);
794 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
795 ptp->rxfilter_event);
796 ptp->rxfilter_installed = false;
797 }
798
799 /* Make sure RX packets are really delivered */
800 efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
801 skb_queue_purge(&efx->ptp_data->txq);
802
803 /* Drop any pending receive events */
804 spin_lock_bh(&efx->ptp_data->evt_lock);
805 list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
806 list_move(cursor, &efx->ptp_data->evt_free_list);
807 }
808 spin_unlock_bh(&efx->ptp_data->evt_lock);
809
810 return rc;
811 }
812
813 static void efx_ptp_pps_worker(struct work_struct *work)
814 {
815 struct efx_ptp_data *ptp =
816 container_of(work, struct efx_ptp_data, pps_work);
817 struct efx_nic *efx = ptp->channel->efx;
818 struct ptp_clock_event ptp_evt;
819
820 if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
821 return;
822
823 ptp_evt.type = PTP_CLOCK_PPSUSR;
824 ptp_evt.pps_times = ptp->host_time_pps;
825 ptp_clock_event(ptp->phc_clock, &ptp_evt);
826 }
827
828 /* Process any pending transmissions and timestamp any received packets.
829 */
830 static void efx_ptp_worker(struct work_struct *work)
831 {
832 struct efx_ptp_data *ptp_data =
833 container_of(work, struct efx_ptp_data, work);
834 struct efx_nic *efx = ptp_data->channel->efx;
835 struct sk_buff *skb;
836 struct sk_buff_head tempq;
837
838 if (ptp_data->reset_required) {
839 efx_ptp_stop(efx);
840 efx_ptp_start(efx);
841 return;
842 }
843
844 efx_ptp_drop_time_expired_events(efx);
845
846 __skb_queue_head_init(&tempq);
847 if (efx_ptp_process_events(efx, &tempq) ||
848 !skb_queue_empty(&ptp_data->txq)) {
849
850 while ((skb = skb_dequeue(&ptp_data->txq)))
851 efx_ptp_xmit_skb(efx, skb);
852 }
853
854 while ((skb = __skb_dequeue(&tempq)))
855 efx_ptp_process_rx(efx, skb);
856 }
857
858 /* Initialise PTP channel and state.
859 *
860 * Setting core_index to zero causes the queue to be initialised and doesn't
861 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
862 */
863 static int efx_ptp_probe_channel(struct efx_channel *channel)
864 {
865 struct efx_nic *efx = channel->efx;
866 struct efx_ptp_data *ptp;
867 int rc = 0;
868 unsigned int pos;
869
870 channel->irq_moderation = 0;
871 channel->rx_queue.core_index = 0;
872
873 ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
874 efx->ptp_data = ptp;
875 if (!efx->ptp_data)
876 return -ENOMEM;
877
878 rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
879 if (rc != 0)
880 goto fail1;
881
882 ptp->channel = channel;
883 skb_queue_head_init(&ptp->rxq);
884 skb_queue_head_init(&ptp->txq);
885 ptp->workwq = create_singlethread_workqueue("sfc_ptp");
886 if (!ptp->workwq) {
887 rc = -ENOMEM;
888 goto fail2;
889 }
890
891 INIT_WORK(&ptp->work, efx_ptp_worker);
892 ptp->config.flags = 0;
893 ptp->config.tx_type = HWTSTAMP_TX_OFF;
894 ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
895 INIT_LIST_HEAD(&ptp->evt_list);
896 INIT_LIST_HEAD(&ptp->evt_free_list);
897 spin_lock_init(&ptp->evt_lock);
898 for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
899 list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
900
901 ptp->phc_clock_info.owner = THIS_MODULE;
902 snprintf(ptp->phc_clock_info.name,
903 sizeof(ptp->phc_clock_info.name),
904 "%pm", efx->net_dev->perm_addr);
905 ptp->phc_clock_info.max_adj = MAX_PPB;
906 ptp->phc_clock_info.n_alarm = 0;
907 ptp->phc_clock_info.n_ext_ts = 0;
908 ptp->phc_clock_info.n_per_out = 0;
909 ptp->phc_clock_info.pps = 1;
910 ptp->phc_clock_info.adjfreq = efx_phc_adjfreq;
911 ptp->phc_clock_info.adjtime = efx_phc_adjtime;
912 ptp->phc_clock_info.gettime = efx_phc_gettime;
913 ptp->phc_clock_info.settime = efx_phc_settime;
914 ptp->phc_clock_info.enable = efx_phc_enable;
915
916 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
917 &efx->pci_dev->dev);
918 if (IS_ERR(ptp->phc_clock)) {
919 rc = PTR_ERR(ptp->phc_clock);
920 goto fail3;
921 }
922
923 INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
924 ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
925 if (!ptp->pps_workwq) {
926 rc = -ENOMEM;
927 goto fail4;
928 }
929 ptp->nic_ts_enabled = false;
930
931 return 0;
932 fail4:
933 ptp_clock_unregister(efx->ptp_data->phc_clock);
934
935 fail3:
936 destroy_workqueue(efx->ptp_data->workwq);
937
938 fail2:
939 efx_nic_free_buffer(efx, &ptp->start);
940
941 fail1:
942 kfree(efx->ptp_data);
943 efx->ptp_data = NULL;
944
945 return rc;
946 }
947
948 static void efx_ptp_remove_channel(struct efx_channel *channel)
949 {
950 struct efx_nic *efx = channel->efx;
951
952 if (!efx->ptp_data)
953 return;
954
955 (void)efx_ptp_disable(channel->efx);
956
957 cancel_work_sync(&efx->ptp_data->work);
958 cancel_work_sync(&efx->ptp_data->pps_work);
959
960 skb_queue_purge(&efx->ptp_data->rxq);
961 skb_queue_purge(&efx->ptp_data->txq);
962
963 ptp_clock_unregister(efx->ptp_data->phc_clock);
964
965 destroy_workqueue(efx->ptp_data->workwq);
966 destroy_workqueue(efx->ptp_data->pps_workwq);
967
968 efx_nic_free_buffer(efx, &efx->ptp_data->start);
969 kfree(efx->ptp_data);
970 }
971
972 static void efx_ptp_get_channel_name(struct efx_channel *channel,
973 char *buf, size_t len)
974 {
975 snprintf(buf, len, "%s-ptp", channel->efx->name);
976 }
977
978 /* Determine whether this packet should be processed by the PTP module
979 * or transmitted conventionally.
980 */
981 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
982 {
983 return efx->ptp_data &&
984 efx->ptp_data->enabled &&
985 skb->len >= PTP_MIN_LENGTH &&
986 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
987 likely(skb->protocol == htons(ETH_P_IP)) &&
988 ip_hdr(skb)->protocol == IPPROTO_UDP &&
989 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
990 }
991
992 /* Receive a PTP packet. Packets are queued until the arrival of
993 * the receive timestamp from the MC - this will probably occur after the
994 * packet arrival because of the processing in the MC.
995 */
996 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
997 {
998 struct efx_nic *efx = channel->efx;
999 struct efx_ptp_data *ptp = efx->ptp_data;
1000 struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1001 u8 *match_data_012, *match_data_345;
1002 unsigned int version;
1003
1004 match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1005
1006 /* Correct version? */
1007 if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1008 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1009 return false;
1010 }
1011 version = ntohs(*(__be16 *)&skb->data[PTP_V1_VERSION_OFFSET]);
1012 if (version != PTP_VERSION_V1) {
1013 return false;
1014 }
1015
1016 /* PTP V1 uses all six bytes of the UUID to match the packet
1017 * to the timestamp
1018 */
1019 match_data_012 = skb->data + PTP_V1_UUID_OFFSET;
1020 match_data_345 = skb->data + PTP_V1_UUID_OFFSET + 3;
1021 } else {
1022 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1023 return false;
1024 }
1025 version = skb->data[PTP_V2_VERSION_OFFSET];
1026 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1027 return false;
1028 }
1029
1030 /* The original V2 implementation uses bytes 2-7 of
1031 * the UUID to match the packet to the timestamp. This
1032 * discards two of the bytes of the MAC address used
1033 * to create the UUID (SF bug 33070). The PTP V2
1034 * enhanced mode fixes this issue and uses bytes 0-2
1035 * and byte 5-7 of the UUID.
1036 */
1037 match_data_345 = skb->data + PTP_V2_UUID_OFFSET + 5;
1038 if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1039 match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 2;
1040 } else {
1041 match_data_012 = skb->data + PTP_V2_UUID_OFFSET + 0;
1042 BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1043 }
1044 }
1045
1046 /* Does this packet require timestamping? */
1047 if (ntohs(*(__be16 *)&skb->data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1048 struct skb_shared_hwtstamps *timestamps;
1049
1050 match->state = PTP_PACKET_STATE_UNMATCHED;
1051
1052 /* Clear all timestamps held: filled in later */
1053 timestamps = skb_hwtstamps(skb);
1054 memset(timestamps, 0, sizeof(*timestamps));
1055
1056 /* We expect the sequence number to be in the same position in
1057 * the packet for PTP V1 and V2
1058 */
1059 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1060 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1061
1062 /* Extract UUID/Sequence information */
1063 match->words[0] = (match_data_012[0] |
1064 (match_data_012[1] << 8) |
1065 (match_data_012[2] << 16) |
1066 (match_data_345[0] << 24));
1067 match->words[1] = (match_data_345[1] |
1068 (match_data_345[2] << 8) |
1069 (skb->data[PTP_V1_SEQUENCE_OFFSET +
1070 PTP_V1_SEQUENCE_LENGTH - 1] <<
1071 16));
1072 } else {
1073 match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1074 }
1075
1076 skb_queue_tail(&ptp->rxq, skb);
1077 queue_work(ptp->workwq, &ptp->work);
1078
1079 return true;
1080 }
1081
1082 /* Transmit a PTP packet. This has to be transmitted by the MC
1083 * itself, through an MCDI call. MCDI calls aren't permitted
1084 * in the transmit path so defer the actual transmission to a suitable worker.
1085 */
1086 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1087 {
1088 struct efx_ptp_data *ptp = efx->ptp_data;
1089
1090 skb_queue_tail(&ptp->txq, skb);
1091
1092 if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1093 (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1094 efx_xmit_hwtstamp_pending(skb);
1095 queue_work(ptp->workwq, &ptp->work);
1096
1097 return NETDEV_TX_OK;
1098 }
1099
1100 static int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1101 unsigned int new_mode)
1102 {
1103 if ((enable_wanted != efx->ptp_data->enabled) ||
1104 (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1105 int rc;
1106
1107 if (enable_wanted) {
1108 /* Change of mode requires disable */
1109 if (efx->ptp_data->enabled &&
1110 (efx->ptp_data->mode != new_mode)) {
1111 efx->ptp_data->enabled = false;
1112 rc = efx_ptp_stop(efx);
1113 if (rc != 0)
1114 return rc;
1115 }
1116
1117 /* Set new operating mode and establish
1118 * baseline synchronisation, which must
1119 * succeed.
1120 */
1121 efx->ptp_data->mode = new_mode;
1122 rc = efx_ptp_start(efx);
1123 if (rc == 0) {
1124 rc = efx_ptp_synchronize(efx,
1125 PTP_SYNC_ATTEMPTS * 2);
1126 if (rc != 0)
1127 efx_ptp_stop(efx);
1128 }
1129 } else {
1130 rc = efx_ptp_stop(efx);
1131 }
1132
1133 if (rc != 0)
1134 return rc;
1135
1136 efx->ptp_data->enabled = enable_wanted;
1137 }
1138
1139 return 0;
1140 }
1141
1142 static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1143 {
1144 bool enable_wanted = false;
1145 unsigned int new_mode;
1146 int rc;
1147
1148 if (init->flags)
1149 return -EINVAL;
1150
1151 if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1152 (init->tx_type != HWTSTAMP_TX_ON))
1153 return -ERANGE;
1154
1155 new_mode = efx->ptp_data->mode;
1156 /* Determine whether any PTP HW operations are required */
1157 switch (init->rx_filter) {
1158 case HWTSTAMP_FILTER_NONE:
1159 break;
1160 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1161 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1162 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1163 init->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1164 new_mode = MC_CMD_PTP_MODE_V1;
1165 enable_wanted = true;
1166 break;
1167 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1168 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1169 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1170 /* Although these three are accepted only IPV4 packets will be
1171 * timestamped
1172 */
1173 init->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
1174 new_mode = MC_CMD_PTP_MODE_V2_ENHANCED;
1175 enable_wanted = true;
1176 break;
1177 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1178 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1179 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1180 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1181 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1182 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1183 /* Non-IP + IPv6 timestamping not supported */
1184 return -ERANGE;
1185 break;
1186 default:
1187 return -ERANGE;
1188 }
1189
1190 if (init->tx_type != HWTSTAMP_TX_OFF)
1191 enable_wanted = true;
1192
1193 /* Old versions of the firmware do not support the improved
1194 * UUID filtering option (SF bug 33070). If the firmware does
1195 * not accept the enhanced mode, fall back to the standard PTP
1196 * v2 UUID filtering.
1197 */
1198 rc = efx_ptp_change_mode(efx, enable_wanted, new_mode);
1199 if ((rc != 0) && (new_mode == MC_CMD_PTP_MODE_V2_ENHANCED))
1200 rc = efx_ptp_change_mode(efx, enable_wanted, MC_CMD_PTP_MODE_V2);
1201 if (rc != 0)
1202 return rc;
1203
1204 efx->ptp_data->config = *init;
1205
1206 return 0;
1207 }
1208
1209 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1210 {
1211 struct efx_ptp_data *ptp = efx->ptp_data;
1212
1213 if (!ptp)
1214 return;
1215
1216 ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1217 SOF_TIMESTAMPING_RX_HARDWARE |
1218 SOF_TIMESTAMPING_RAW_HARDWARE);
1219 ts_info->phc_index = ptp_clock_index(ptp->phc_clock);
1220 ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1221 ts_info->rx_filters = (1 << HWTSTAMP_FILTER_NONE |
1222 1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT |
1223 1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC |
1224 1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ |
1225 1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT |
1226 1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC |
1227 1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ);
1228 }
1229
1230 int efx_ptp_ioctl(struct efx_nic *efx, struct ifreq *ifr, int cmd)
1231 {
1232 struct hwtstamp_config config;
1233 int rc;
1234
1235 /* Not a PTP enabled port */
1236 if (!efx->ptp_data)
1237 return -EOPNOTSUPP;
1238
1239 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1240 return -EFAULT;
1241
1242 rc = efx_ptp_ts_init(efx, &config);
1243 if (rc != 0)
1244 return rc;
1245
1246 return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1247 ? -EFAULT : 0;
1248 }
1249
1250 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1251 {
1252 struct efx_ptp_data *ptp = efx->ptp_data;
1253
1254 netif_err(efx, hw, efx->net_dev,
1255 "PTP unexpected event length: got %d expected %d\n",
1256 ptp->evt_frag_idx, expected_frag_len);
1257 ptp->reset_required = true;
1258 queue_work(ptp->workwq, &ptp->work);
1259 }
1260
1261 /* Process a completed receive event. Put it on the event queue and
1262 * start worker thread. This is required because event and their
1263 * correspoding packets may come in either order.
1264 */
1265 static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1266 {
1267 struct efx_ptp_event_rx *evt = NULL;
1268
1269 if (ptp->evt_frag_idx != 3) {
1270 ptp_event_failure(efx, 3);
1271 return;
1272 }
1273
1274 spin_lock_bh(&ptp->evt_lock);
1275 if (!list_empty(&ptp->evt_free_list)) {
1276 evt = list_first_entry(&ptp->evt_free_list,
1277 struct efx_ptp_event_rx, link);
1278 list_del(&evt->link);
1279
1280 evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1281 evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1282 MCDI_EVENT_SRC) |
1283 (EFX_QWORD_FIELD(ptp->evt_frags[1],
1284 MCDI_EVENT_SRC) << 8) |
1285 (EFX_QWORD_FIELD(ptp->evt_frags[0],
1286 MCDI_EVENT_SRC) << 16));
1287 evt->hwtimestamp = ktime_set(
1288 EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1289 EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA));
1290 evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1291 list_add_tail(&evt->link, &ptp->evt_list);
1292
1293 queue_work(ptp->workwq, &ptp->work);
1294 } else {
1295 netif_err(efx, rx_err, efx->net_dev, "No free PTP event");
1296 }
1297 spin_unlock_bh(&ptp->evt_lock);
1298 }
1299
1300 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1301 {
1302 int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1303 if (ptp->evt_frag_idx != 1) {
1304 ptp_event_failure(efx, 1);
1305 return;
1306 }
1307
1308 netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1309 }
1310
1311 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1312 {
1313 if (ptp->nic_ts_enabled)
1314 queue_work(ptp->pps_workwq, &ptp->pps_work);
1315 }
1316
1317 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1318 {
1319 struct efx_ptp_data *ptp = efx->ptp_data;
1320 int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1321
1322 if (!ptp->enabled)
1323 return;
1324
1325 if (ptp->evt_frag_idx == 0) {
1326 ptp->evt_code = code;
1327 } else if (ptp->evt_code != code) {
1328 netif_err(efx, hw, efx->net_dev,
1329 "PTP out of sequence event %d\n", code);
1330 ptp->evt_frag_idx = 0;
1331 }
1332
1333 ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1334 if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1335 /* Process resulting event */
1336 switch (code) {
1337 case MCDI_EVENT_CODE_PTP_RX:
1338 ptp_event_rx(efx, ptp);
1339 break;
1340 case MCDI_EVENT_CODE_PTP_FAULT:
1341 ptp_event_fault(efx, ptp);
1342 break;
1343 case MCDI_EVENT_CODE_PTP_PPS:
1344 ptp_event_pps(efx, ptp);
1345 break;
1346 default:
1347 netif_err(efx, hw, efx->net_dev,
1348 "PTP unknown event %d\n", code);
1349 break;
1350 }
1351 ptp->evt_frag_idx = 0;
1352 } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1353 netif_err(efx, hw, efx->net_dev,
1354 "PTP too many event fragments\n");
1355 ptp->evt_frag_idx = 0;
1356 }
1357 }
1358
1359 static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
1360 {
1361 struct efx_ptp_data *ptp_data = container_of(ptp,
1362 struct efx_ptp_data,
1363 phc_clock_info);
1364 struct efx_nic *efx = ptp_data->channel->efx;
1365 MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
1366 s64 adjustment_ns;
1367 int rc;
1368
1369 if (delta > MAX_PPB)
1370 delta = MAX_PPB;
1371 else if (delta < -MAX_PPB)
1372 delta = -MAX_PPB;
1373
1374 /* Convert ppb to fixed point ns. */
1375 adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
1376 (PPB_EXTRA_BITS + MAX_PPB_BITS));
1377
1378 MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1379 MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
1380 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
1381 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
1382 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
1383 NULL, 0, NULL);
1384 if (rc != 0)
1385 return rc;
1386
1387 ptp_data->current_adjfreq = delta;
1388 return 0;
1389 }
1390
1391 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
1392 {
1393 struct efx_ptp_data *ptp_data = container_of(ptp,
1394 struct efx_ptp_data,
1395 phc_clock_info);
1396 struct efx_nic *efx = ptp_data->channel->efx;
1397 struct timespec delta_ts = ns_to_timespec(delta);
1398 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
1399
1400 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1401 MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, 0);
1402 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_SECONDS, (u32)delta_ts.tv_sec);
1403 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_NANOSECONDS, (u32)delta_ts.tv_nsec);
1404 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1405 NULL, 0, NULL);
1406 }
1407
1408 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
1409 {
1410 struct efx_ptp_data *ptp_data = container_of(ptp,
1411 struct efx_ptp_data,
1412 phc_clock_info);
1413 struct efx_nic *efx = ptp_data->channel->efx;
1414 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
1415 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
1416 int rc;
1417
1418 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
1419
1420 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1421 outbuf, sizeof(outbuf), NULL);
1422 if (rc != 0)
1423 return rc;
1424
1425 ts->tv_sec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_SECONDS);
1426 ts->tv_nsec = MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_NANOSECONDS);
1427 return 0;
1428 }
1429
1430 static int efx_phc_settime(struct ptp_clock_info *ptp,
1431 const struct timespec *e_ts)
1432 {
1433 /* Get the current NIC time, efx_phc_gettime.
1434 * Subtract from the desired time to get the offset
1435 * call efx_phc_adjtime with the offset
1436 */
1437 int rc;
1438 struct timespec time_now;
1439 struct timespec delta;
1440
1441 rc = efx_phc_gettime(ptp, &time_now);
1442 if (rc != 0)
1443 return rc;
1444
1445 delta = timespec_sub(*e_ts, time_now);
1446
1447 rc = efx_phc_adjtime(ptp, timespec_to_ns(&delta));
1448 if (rc != 0)
1449 return rc;
1450
1451 return 0;
1452 }
1453
1454 static int efx_phc_enable(struct ptp_clock_info *ptp,
1455 struct ptp_clock_request *request,
1456 int enable)
1457 {
1458 struct efx_ptp_data *ptp_data = container_of(ptp,
1459 struct efx_ptp_data,
1460 phc_clock_info);
1461 if (request->type != PTP_CLK_REQ_PPS)
1462 return -EOPNOTSUPP;
1463
1464 ptp_data->nic_ts_enabled = !!enable;
1465 return 0;
1466 }
1467
1468 static const struct efx_channel_type efx_ptp_channel_type = {
1469 .handle_no_channel = efx_ptp_handle_no_channel,
1470 .pre_probe = efx_ptp_probe_channel,
1471 .post_remove = efx_ptp_remove_channel,
1472 .get_name = efx_ptp_get_channel_name,
1473 /* no copy operation; there is no need to reallocate this channel */
1474 .receive_skb = efx_ptp_rx,
1475 .keep_eventq = false,
1476 };
1477
1478 void efx_ptp_probe(struct efx_nic *efx)
1479 {
1480 /* Check whether PTP is implemented on this NIC. The DISABLE
1481 * operation will succeed if and only if it is implemented.
1482 */
1483 if (efx_ptp_disable(efx) == 0)
1484 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
1485 &efx_ptp_channel_type;
1486 }
This page took 0.063768 seconds and 6 git commands to generate.