net/mlx5_core: Print resource number on QP/SRQ async events
[deliverable/linux.git] / drivers / net / ethernet / sfc / rx.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/ipv6.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/prefetch.h>
19 #include <linux/moduleparam.h>
20 #include <linux/iommu.h>
21 #include <net/ip.h>
22 #include <net/checksum.h>
23 #include "net_driver.h"
24 #include "efx.h"
25 #include "filter.h"
26 #include "nic.h"
27 #include "selftest.h"
28 #include "workarounds.h"
29
30 /* Preferred number of descriptors to fill at once */
31 #define EFX_RX_PREFERRED_BATCH 8U
32
33 /* Number of RX buffers to recycle pages for. When creating the RX page recycle
34 * ring, this number is divided by the number of buffers per page to calculate
35 * the number of pages to store in the RX page recycle ring.
36 */
37 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
38 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
39
40 /* Size of buffer allocated for skb header area. */
41 #define EFX_SKB_HEADERS 128u
42
43 /* This is the percentage fill level below which new RX descriptors
44 * will be added to the RX descriptor ring.
45 */
46 static unsigned int rx_refill_threshold;
47
48 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
49 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
50 EFX_RX_USR_BUF_SIZE)
51
52 /*
53 * RX maximum head room required.
54 *
55 * This must be at least 1 to prevent overflow, plus one packet-worth
56 * to allow pipelined receives.
57 */
58 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
59
60 static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
61 {
62 return page_address(buf->page) + buf->page_offset;
63 }
64
65 static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh)
66 {
67 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
68 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
69 #else
70 const u8 *data = eh + efx->rx_packet_hash_offset;
71 return (u32)data[0] |
72 (u32)data[1] << 8 |
73 (u32)data[2] << 16 |
74 (u32)data[3] << 24;
75 #endif
76 }
77
78 static inline struct efx_rx_buffer *
79 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
80 {
81 if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
82 return efx_rx_buffer(rx_queue, 0);
83 else
84 return rx_buf + 1;
85 }
86
87 static inline void efx_sync_rx_buffer(struct efx_nic *efx,
88 struct efx_rx_buffer *rx_buf,
89 unsigned int len)
90 {
91 dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
92 DMA_FROM_DEVICE);
93 }
94
95 void efx_rx_config_page_split(struct efx_nic *efx)
96 {
97 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align,
98 EFX_RX_BUF_ALIGNMENT);
99 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
100 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
101 efx->rx_page_buf_step);
102 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
103 efx->rx_bufs_per_page;
104 efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
105 efx->rx_bufs_per_page);
106 }
107
108 /* Check the RX page recycle ring for a page that can be reused. */
109 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
110 {
111 struct efx_nic *efx = rx_queue->efx;
112 struct page *page;
113 struct efx_rx_page_state *state;
114 unsigned index;
115
116 index = rx_queue->page_remove & rx_queue->page_ptr_mask;
117 page = rx_queue->page_ring[index];
118 if (page == NULL)
119 return NULL;
120
121 rx_queue->page_ring[index] = NULL;
122 /* page_remove cannot exceed page_add. */
123 if (rx_queue->page_remove != rx_queue->page_add)
124 ++rx_queue->page_remove;
125
126 /* If page_count is 1 then we hold the only reference to this page. */
127 if (page_count(page) == 1) {
128 ++rx_queue->page_recycle_count;
129 return page;
130 } else {
131 state = page_address(page);
132 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
133 PAGE_SIZE << efx->rx_buffer_order,
134 DMA_FROM_DEVICE);
135 put_page(page);
136 ++rx_queue->page_recycle_failed;
137 }
138
139 return NULL;
140 }
141
142 /**
143 * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
144 *
145 * @rx_queue: Efx RX queue
146 *
147 * This allocates a batch of pages, maps them for DMA, and populates
148 * struct efx_rx_buffers for each one. Return a negative error code or
149 * 0 on success. If a single page can be used for multiple buffers,
150 * then the page will either be inserted fully, or not at all.
151 */
152 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
153 {
154 struct efx_nic *efx = rx_queue->efx;
155 struct efx_rx_buffer *rx_buf;
156 struct page *page;
157 unsigned int page_offset;
158 struct efx_rx_page_state *state;
159 dma_addr_t dma_addr;
160 unsigned index, count;
161
162 count = 0;
163 do {
164 page = efx_reuse_page(rx_queue);
165 if (page == NULL) {
166 page = alloc_pages(__GFP_COLD | __GFP_COMP |
167 (atomic ? GFP_ATOMIC : GFP_KERNEL),
168 efx->rx_buffer_order);
169 if (unlikely(page == NULL))
170 return -ENOMEM;
171 dma_addr =
172 dma_map_page(&efx->pci_dev->dev, page, 0,
173 PAGE_SIZE << efx->rx_buffer_order,
174 DMA_FROM_DEVICE);
175 if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
176 dma_addr))) {
177 __free_pages(page, efx->rx_buffer_order);
178 return -EIO;
179 }
180 state = page_address(page);
181 state->dma_addr = dma_addr;
182 } else {
183 state = page_address(page);
184 dma_addr = state->dma_addr;
185 }
186
187 dma_addr += sizeof(struct efx_rx_page_state);
188 page_offset = sizeof(struct efx_rx_page_state);
189
190 do {
191 index = rx_queue->added_count & rx_queue->ptr_mask;
192 rx_buf = efx_rx_buffer(rx_queue, index);
193 rx_buf->dma_addr = dma_addr + efx->rx_ip_align;
194 rx_buf->page = page;
195 rx_buf->page_offset = page_offset + efx->rx_ip_align;
196 rx_buf->len = efx->rx_dma_len;
197 rx_buf->flags = 0;
198 ++rx_queue->added_count;
199 get_page(page);
200 dma_addr += efx->rx_page_buf_step;
201 page_offset += efx->rx_page_buf_step;
202 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
203
204 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
205 } while (++count < efx->rx_pages_per_batch);
206
207 return 0;
208 }
209
210 /* Unmap a DMA-mapped page. This function is only called for the final RX
211 * buffer in a page.
212 */
213 static void efx_unmap_rx_buffer(struct efx_nic *efx,
214 struct efx_rx_buffer *rx_buf)
215 {
216 struct page *page = rx_buf->page;
217
218 if (page) {
219 struct efx_rx_page_state *state = page_address(page);
220 dma_unmap_page(&efx->pci_dev->dev,
221 state->dma_addr,
222 PAGE_SIZE << efx->rx_buffer_order,
223 DMA_FROM_DEVICE);
224 }
225 }
226
227 static void efx_free_rx_buffer(struct efx_rx_buffer *rx_buf)
228 {
229 if (rx_buf->page) {
230 put_page(rx_buf->page);
231 rx_buf->page = NULL;
232 }
233 }
234
235 /* Attempt to recycle the page if there is an RX recycle ring; the page can
236 * only be added if this is the final RX buffer, to prevent pages being used in
237 * the descriptor ring and appearing in the recycle ring simultaneously.
238 */
239 static void efx_recycle_rx_page(struct efx_channel *channel,
240 struct efx_rx_buffer *rx_buf)
241 {
242 struct page *page = rx_buf->page;
243 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
244 struct efx_nic *efx = rx_queue->efx;
245 unsigned index;
246
247 /* Only recycle the page after processing the final buffer. */
248 if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
249 return;
250
251 index = rx_queue->page_add & rx_queue->page_ptr_mask;
252 if (rx_queue->page_ring[index] == NULL) {
253 unsigned read_index = rx_queue->page_remove &
254 rx_queue->page_ptr_mask;
255
256 /* The next slot in the recycle ring is available, but
257 * increment page_remove if the read pointer currently
258 * points here.
259 */
260 if (read_index == index)
261 ++rx_queue->page_remove;
262 rx_queue->page_ring[index] = page;
263 ++rx_queue->page_add;
264 return;
265 }
266 ++rx_queue->page_recycle_full;
267 efx_unmap_rx_buffer(efx, rx_buf);
268 put_page(rx_buf->page);
269 }
270
271 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
272 struct efx_rx_buffer *rx_buf)
273 {
274 /* Release the page reference we hold for the buffer. */
275 if (rx_buf->page)
276 put_page(rx_buf->page);
277
278 /* If this is the last buffer in a page, unmap and free it. */
279 if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
280 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
281 efx_free_rx_buffer(rx_buf);
282 }
283 rx_buf->page = NULL;
284 }
285
286 /* Recycle the pages that are used by buffers that have just been received. */
287 static void efx_recycle_rx_pages(struct efx_channel *channel,
288 struct efx_rx_buffer *rx_buf,
289 unsigned int n_frags)
290 {
291 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
292
293 do {
294 efx_recycle_rx_page(channel, rx_buf);
295 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
296 } while (--n_frags);
297 }
298
299 static void efx_discard_rx_packet(struct efx_channel *channel,
300 struct efx_rx_buffer *rx_buf,
301 unsigned int n_frags)
302 {
303 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
304
305 efx_recycle_rx_pages(channel, rx_buf, n_frags);
306
307 do {
308 efx_free_rx_buffer(rx_buf);
309 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
310 } while (--n_frags);
311 }
312
313 /**
314 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
315 * @rx_queue: RX descriptor queue
316 *
317 * This will aim to fill the RX descriptor queue up to
318 * @rx_queue->@max_fill. If there is insufficient atomic
319 * memory to do so, a slow fill will be scheduled.
320 *
321 * The caller must provide serialisation (none is used here). In practise,
322 * this means this function must run from the NAPI handler, or be called
323 * when NAPI is disabled.
324 */
325 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
326 {
327 struct efx_nic *efx = rx_queue->efx;
328 unsigned int fill_level, batch_size;
329 int space, rc = 0;
330
331 if (!rx_queue->refill_enabled)
332 return;
333
334 /* Calculate current fill level, and exit if we don't need to fill */
335 fill_level = (rx_queue->added_count - rx_queue->removed_count);
336 EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
337 if (fill_level >= rx_queue->fast_fill_trigger)
338 goto out;
339
340 /* Record minimum fill level */
341 if (unlikely(fill_level < rx_queue->min_fill)) {
342 if (fill_level)
343 rx_queue->min_fill = fill_level;
344 }
345
346 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
347 space = rx_queue->max_fill - fill_level;
348 EFX_BUG_ON_PARANOID(space < batch_size);
349
350 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
351 "RX queue %d fast-filling descriptor ring from"
352 " level %d to level %d\n",
353 efx_rx_queue_index(rx_queue), fill_level,
354 rx_queue->max_fill);
355
356
357 do {
358 rc = efx_init_rx_buffers(rx_queue, atomic);
359 if (unlikely(rc)) {
360 /* Ensure that we don't leave the rx queue empty */
361 if (rx_queue->added_count == rx_queue->removed_count)
362 efx_schedule_slow_fill(rx_queue);
363 goto out;
364 }
365 } while ((space -= batch_size) >= batch_size);
366
367 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
368 "RX queue %d fast-filled descriptor ring "
369 "to level %d\n", efx_rx_queue_index(rx_queue),
370 rx_queue->added_count - rx_queue->removed_count);
371
372 out:
373 if (rx_queue->notified_count != rx_queue->added_count)
374 efx_nic_notify_rx_desc(rx_queue);
375 }
376
377 void efx_rx_slow_fill(unsigned long context)
378 {
379 struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
380
381 /* Post an event to cause NAPI to run and refill the queue */
382 efx_nic_generate_fill_event(rx_queue);
383 ++rx_queue->slow_fill_count;
384 }
385
386 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
387 struct efx_rx_buffer *rx_buf,
388 int len)
389 {
390 struct efx_nic *efx = rx_queue->efx;
391 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
392
393 if (likely(len <= max_len))
394 return;
395
396 /* The packet must be discarded, but this is only a fatal error
397 * if the caller indicated it was
398 */
399 rx_buf->flags |= EFX_RX_PKT_DISCARD;
400
401 if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
402 if (net_ratelimit())
403 netif_err(efx, rx_err, efx->net_dev,
404 " RX queue %d seriously overlength "
405 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
406 efx_rx_queue_index(rx_queue), len, max_len,
407 efx->type->rx_buffer_padding);
408 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
409 } else {
410 if (net_ratelimit())
411 netif_err(efx, rx_err, efx->net_dev,
412 " RX queue %d overlength RX event "
413 "(0x%x > 0x%x)\n",
414 efx_rx_queue_index(rx_queue), len, max_len);
415 }
416
417 efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
418 }
419
420 /* Pass a received packet up through GRO. GRO can handle pages
421 * regardless of checksum state and skbs with a good checksum.
422 */
423 static void
424 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
425 unsigned int n_frags, u8 *eh)
426 {
427 struct napi_struct *napi = &channel->napi_str;
428 gro_result_t gro_result;
429 struct efx_nic *efx = channel->efx;
430 struct sk_buff *skb;
431
432 skb = napi_get_frags(napi);
433 if (unlikely(!skb)) {
434 while (n_frags--) {
435 put_page(rx_buf->page);
436 rx_buf->page = NULL;
437 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
438 }
439 return;
440 }
441
442 if (efx->net_dev->features & NETIF_F_RXHASH)
443 skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
444 PKT_HASH_TYPE_L3);
445 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
446 CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
447
448 for (;;) {
449 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
450 rx_buf->page, rx_buf->page_offset,
451 rx_buf->len);
452 rx_buf->page = NULL;
453 skb->len += rx_buf->len;
454 if (skb_shinfo(skb)->nr_frags == n_frags)
455 break;
456
457 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
458 }
459
460 skb->data_len = skb->len;
461 skb->truesize += n_frags * efx->rx_buffer_truesize;
462
463 skb_record_rx_queue(skb, channel->rx_queue.core_index);
464
465 skb_mark_napi_id(skb, &channel->napi_str);
466 gro_result = napi_gro_frags(napi);
467 if (gro_result != GRO_DROP)
468 channel->irq_mod_score += 2;
469 }
470
471 /* Allocate and construct an SKB around page fragments */
472 static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
473 struct efx_rx_buffer *rx_buf,
474 unsigned int n_frags,
475 u8 *eh, int hdr_len)
476 {
477 struct efx_nic *efx = channel->efx;
478 struct sk_buff *skb;
479
480 /* Allocate an SKB to store the headers */
481 skb = netdev_alloc_skb(efx->net_dev,
482 efx->rx_ip_align + efx->rx_prefix_size +
483 hdr_len);
484 if (unlikely(skb == NULL)) {
485 atomic_inc(&efx->n_rx_noskb_drops);
486 return NULL;
487 }
488
489 EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
490
491 memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size,
492 efx->rx_prefix_size + hdr_len);
493 skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size);
494 __skb_put(skb, hdr_len);
495
496 /* Append the remaining page(s) onto the frag list */
497 if (rx_buf->len > hdr_len) {
498 rx_buf->page_offset += hdr_len;
499 rx_buf->len -= hdr_len;
500
501 for (;;) {
502 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
503 rx_buf->page, rx_buf->page_offset,
504 rx_buf->len);
505 rx_buf->page = NULL;
506 skb->len += rx_buf->len;
507 skb->data_len += rx_buf->len;
508 if (skb_shinfo(skb)->nr_frags == n_frags)
509 break;
510
511 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
512 }
513 } else {
514 __free_pages(rx_buf->page, efx->rx_buffer_order);
515 rx_buf->page = NULL;
516 n_frags = 0;
517 }
518
519 skb->truesize += n_frags * efx->rx_buffer_truesize;
520
521 /* Move past the ethernet header */
522 skb->protocol = eth_type_trans(skb, efx->net_dev);
523
524 skb_mark_napi_id(skb, &channel->napi_str);
525
526 return skb;
527 }
528
529 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
530 unsigned int n_frags, unsigned int len, u16 flags)
531 {
532 struct efx_nic *efx = rx_queue->efx;
533 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
534 struct efx_rx_buffer *rx_buf;
535
536 rx_queue->rx_packets++;
537
538 rx_buf = efx_rx_buffer(rx_queue, index);
539 rx_buf->flags |= flags;
540
541 /* Validate the number of fragments and completed length */
542 if (n_frags == 1) {
543 if (!(flags & EFX_RX_PKT_PREFIX_LEN))
544 efx_rx_packet__check_len(rx_queue, rx_buf, len);
545 } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
546 unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
547 unlikely(len > n_frags * efx->rx_dma_len) ||
548 unlikely(!efx->rx_scatter)) {
549 /* If this isn't an explicit discard request, either
550 * the hardware or the driver is broken.
551 */
552 WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
553 rx_buf->flags |= EFX_RX_PKT_DISCARD;
554 }
555
556 netif_vdbg(efx, rx_status, efx->net_dev,
557 "RX queue %d received ids %x-%x len %d %s%s\n",
558 efx_rx_queue_index(rx_queue), index,
559 (index + n_frags - 1) & rx_queue->ptr_mask, len,
560 (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
561 (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
562
563 /* Discard packet, if instructed to do so. Process the
564 * previous receive first.
565 */
566 if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
567 efx_rx_flush_packet(channel);
568 efx_discard_rx_packet(channel, rx_buf, n_frags);
569 return;
570 }
571
572 if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN))
573 rx_buf->len = len;
574
575 /* Release and/or sync the DMA mapping - assumes all RX buffers
576 * consumed in-order per RX queue.
577 */
578 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
579
580 /* Prefetch nice and early so data will (hopefully) be in cache by
581 * the time we look at it.
582 */
583 prefetch(efx_rx_buf_va(rx_buf));
584
585 rx_buf->page_offset += efx->rx_prefix_size;
586 rx_buf->len -= efx->rx_prefix_size;
587
588 if (n_frags > 1) {
589 /* Release/sync DMA mapping for additional fragments.
590 * Fix length for last fragment.
591 */
592 unsigned int tail_frags = n_frags - 1;
593
594 for (;;) {
595 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
596 if (--tail_frags == 0)
597 break;
598 efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
599 }
600 rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
601 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
602 }
603
604 /* All fragments have been DMA-synced, so recycle pages. */
605 rx_buf = efx_rx_buffer(rx_queue, index);
606 efx_recycle_rx_pages(channel, rx_buf, n_frags);
607
608 /* Pipeline receives so that we give time for packet headers to be
609 * prefetched into cache.
610 */
611 efx_rx_flush_packet(channel);
612 channel->rx_pkt_n_frags = n_frags;
613 channel->rx_pkt_index = index;
614 }
615
616 static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
617 struct efx_rx_buffer *rx_buf,
618 unsigned int n_frags)
619 {
620 struct sk_buff *skb;
621 u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
622
623 skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
624 if (unlikely(skb == NULL)) {
625 efx_free_rx_buffer(rx_buf);
626 return;
627 }
628 skb_record_rx_queue(skb, channel->rx_queue.core_index);
629
630 /* Set the SKB flags */
631 skb_checksum_none_assert(skb);
632 if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED))
633 skb->ip_summed = CHECKSUM_UNNECESSARY;
634
635 efx_rx_skb_attach_timestamp(channel, skb);
636
637 if (channel->type->receive_skb)
638 if (channel->type->receive_skb(channel, skb))
639 return;
640
641 /* Pass the packet up */
642 netif_receive_skb(skb);
643 }
644
645 /* Handle a received packet. Second half: Touches packet payload. */
646 void __efx_rx_packet(struct efx_channel *channel)
647 {
648 struct efx_nic *efx = channel->efx;
649 struct efx_rx_buffer *rx_buf =
650 efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
651 u8 *eh = efx_rx_buf_va(rx_buf);
652
653 /* Read length from the prefix if necessary. This already
654 * excludes the length of the prefix itself.
655 */
656 if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN)
657 rx_buf->len = le16_to_cpup((__le16 *)
658 (eh + efx->rx_packet_len_offset));
659
660 /* If we're in loopback test, then pass the packet directly to the
661 * loopback layer, and free the rx_buf here
662 */
663 if (unlikely(efx->loopback_selftest)) {
664 efx_loopback_rx_packet(efx, eh, rx_buf->len);
665 efx_free_rx_buffer(rx_buf);
666 goto out;
667 }
668
669 if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
670 rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
671
672 if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb &&
673 !efx_channel_busy_polling(channel))
674 efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
675 else
676 efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
677 out:
678 channel->rx_pkt_n_frags = 0;
679 }
680
681 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
682 {
683 struct efx_nic *efx = rx_queue->efx;
684 unsigned int entries;
685 int rc;
686
687 /* Create the smallest power-of-two aligned ring */
688 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
689 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
690 rx_queue->ptr_mask = entries - 1;
691
692 netif_dbg(efx, probe, efx->net_dev,
693 "creating RX queue %d size %#x mask %#x\n",
694 efx_rx_queue_index(rx_queue), efx->rxq_entries,
695 rx_queue->ptr_mask);
696
697 /* Allocate RX buffers */
698 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
699 GFP_KERNEL);
700 if (!rx_queue->buffer)
701 return -ENOMEM;
702
703 rc = efx_nic_probe_rx(rx_queue);
704 if (rc) {
705 kfree(rx_queue->buffer);
706 rx_queue->buffer = NULL;
707 }
708
709 return rc;
710 }
711
712 static void efx_init_rx_recycle_ring(struct efx_nic *efx,
713 struct efx_rx_queue *rx_queue)
714 {
715 unsigned int bufs_in_recycle_ring, page_ring_size;
716
717 /* Set the RX recycle ring size */
718 #ifdef CONFIG_PPC64
719 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
720 #else
721 if (iommu_present(&pci_bus_type))
722 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
723 else
724 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
725 #endif /* CONFIG_PPC64 */
726
727 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
728 efx->rx_bufs_per_page);
729 rx_queue->page_ring = kcalloc(page_ring_size,
730 sizeof(*rx_queue->page_ring), GFP_KERNEL);
731 rx_queue->page_ptr_mask = page_ring_size - 1;
732 }
733
734 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
735 {
736 struct efx_nic *efx = rx_queue->efx;
737 unsigned int max_fill, trigger, max_trigger;
738
739 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
740 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
741
742 /* Initialise ptr fields */
743 rx_queue->added_count = 0;
744 rx_queue->notified_count = 0;
745 rx_queue->removed_count = 0;
746 rx_queue->min_fill = -1U;
747 efx_init_rx_recycle_ring(efx, rx_queue);
748
749 rx_queue->page_remove = 0;
750 rx_queue->page_add = rx_queue->page_ptr_mask + 1;
751 rx_queue->page_recycle_count = 0;
752 rx_queue->page_recycle_failed = 0;
753 rx_queue->page_recycle_full = 0;
754
755 /* Initialise limit fields */
756 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
757 max_trigger =
758 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
759 if (rx_refill_threshold != 0) {
760 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
761 if (trigger > max_trigger)
762 trigger = max_trigger;
763 } else {
764 trigger = max_trigger;
765 }
766
767 rx_queue->max_fill = max_fill;
768 rx_queue->fast_fill_trigger = trigger;
769 rx_queue->refill_enabled = true;
770
771 /* Set up RX descriptor ring */
772 efx_nic_init_rx(rx_queue);
773 }
774
775 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
776 {
777 int i;
778 struct efx_nic *efx = rx_queue->efx;
779 struct efx_rx_buffer *rx_buf;
780
781 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
782 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
783
784 del_timer_sync(&rx_queue->slow_fill);
785
786 /* Release RX buffers from the current read ptr to the write ptr */
787 if (rx_queue->buffer) {
788 for (i = rx_queue->removed_count; i < rx_queue->added_count;
789 i++) {
790 unsigned index = i & rx_queue->ptr_mask;
791 rx_buf = efx_rx_buffer(rx_queue, index);
792 efx_fini_rx_buffer(rx_queue, rx_buf);
793 }
794 }
795
796 /* Unmap and release the pages in the recycle ring. Remove the ring. */
797 for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
798 struct page *page = rx_queue->page_ring[i];
799 struct efx_rx_page_state *state;
800
801 if (page == NULL)
802 continue;
803
804 state = page_address(page);
805 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
806 PAGE_SIZE << efx->rx_buffer_order,
807 DMA_FROM_DEVICE);
808 put_page(page);
809 }
810 kfree(rx_queue->page_ring);
811 rx_queue->page_ring = NULL;
812 }
813
814 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
815 {
816 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
817 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
818
819 efx_nic_remove_rx(rx_queue);
820
821 kfree(rx_queue->buffer);
822 rx_queue->buffer = NULL;
823 }
824
825
826 module_param(rx_refill_threshold, uint, 0444);
827 MODULE_PARM_DESC(rx_refill_threshold,
828 "RX descriptor ring refill threshold (%)");
829
830 #ifdef CONFIG_RFS_ACCEL
831
832 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
833 u16 rxq_index, u32 flow_id)
834 {
835 struct efx_nic *efx = netdev_priv(net_dev);
836 struct efx_channel *channel;
837 struct efx_filter_spec spec;
838 const __be16 *ports;
839 __be16 ether_type;
840 int nhoff;
841 int rc;
842
843 /* The core RPS/RFS code has already parsed and validated
844 * VLAN, IP and transport headers. We assume they are in the
845 * header area.
846 */
847
848 if (skb->protocol == htons(ETH_P_8021Q)) {
849 const struct vlan_hdr *vh =
850 (const struct vlan_hdr *)skb->data;
851
852 /* We can't filter on the IP 5-tuple and the vlan
853 * together, so just strip the vlan header and filter
854 * on the IP part.
855 */
856 EFX_BUG_ON_PARANOID(skb_headlen(skb) < sizeof(*vh));
857 ether_type = vh->h_vlan_encapsulated_proto;
858 nhoff = sizeof(struct vlan_hdr);
859 } else {
860 ether_type = skb->protocol;
861 nhoff = 0;
862 }
863
864 if (ether_type != htons(ETH_P_IP) && ether_type != htons(ETH_P_IPV6))
865 return -EPROTONOSUPPORT;
866
867 efx_filter_init_rx(&spec, EFX_FILTER_PRI_HINT,
868 efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
869 rxq_index);
870 spec.match_flags =
871 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
872 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
873 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
874 spec.ether_type = ether_type;
875
876 if (ether_type == htons(ETH_P_IP)) {
877 const struct iphdr *ip =
878 (const struct iphdr *)(skb->data + nhoff);
879
880 EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + sizeof(*ip));
881 if (ip_is_fragment(ip))
882 return -EPROTONOSUPPORT;
883 spec.ip_proto = ip->protocol;
884 spec.rem_host[0] = ip->saddr;
885 spec.loc_host[0] = ip->daddr;
886 EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + 4 * ip->ihl + 4);
887 ports = (const __be16 *)(skb->data + nhoff + 4 * ip->ihl);
888 } else {
889 const struct ipv6hdr *ip6 =
890 (const struct ipv6hdr *)(skb->data + nhoff);
891
892 EFX_BUG_ON_PARANOID(skb_headlen(skb) <
893 nhoff + sizeof(*ip6) + 4);
894 spec.ip_proto = ip6->nexthdr;
895 memcpy(spec.rem_host, &ip6->saddr, sizeof(ip6->saddr));
896 memcpy(spec.loc_host, &ip6->daddr, sizeof(ip6->daddr));
897 ports = (const __be16 *)(ip6 + 1);
898 }
899
900 spec.rem_port = ports[0];
901 spec.loc_port = ports[1];
902
903 rc = efx->type->filter_rfs_insert(efx, &spec);
904 if (rc < 0)
905 return rc;
906
907 /* Remember this so we can check whether to expire the filter later */
908 efx->rps_flow_id[rc] = flow_id;
909 channel = efx_get_channel(efx, skb_get_rx_queue(skb));
910 ++channel->rfs_filters_added;
911
912 if (ether_type == htons(ETH_P_IP))
913 netif_info(efx, rx_status, efx->net_dev,
914 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n",
915 (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
916 spec.rem_host, ntohs(ports[0]), spec.loc_host,
917 ntohs(ports[1]), rxq_index, flow_id, rc);
918 else
919 netif_info(efx, rx_status, efx->net_dev,
920 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d]\n",
921 (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
922 spec.rem_host, ntohs(ports[0]), spec.loc_host,
923 ntohs(ports[1]), rxq_index, flow_id, rc);
924
925 return rc;
926 }
927
928 bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota)
929 {
930 bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
931 unsigned int index, size;
932 u32 flow_id;
933
934 if (!spin_trylock_bh(&efx->filter_lock))
935 return false;
936
937 expire_one = efx->type->filter_rfs_expire_one;
938 index = efx->rps_expire_index;
939 size = efx->type->max_rx_ip_filters;
940 while (quota--) {
941 flow_id = efx->rps_flow_id[index];
942 if (expire_one(efx, flow_id, index))
943 netif_info(efx, rx_status, efx->net_dev,
944 "expired filter %d [flow %u]\n",
945 index, flow_id);
946 if (++index == size)
947 index = 0;
948 }
949 efx->rps_expire_index = index;
950
951 spin_unlock_bh(&efx->filter_lock);
952 return true;
953 }
954
955 #endif /* CONFIG_RFS_ACCEL */
956
957 /**
958 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
959 * @spec: Specification to test
960 *
961 * Return: %true if the specification is a non-drop RX filter that
962 * matches a local MAC address I/G bit value of 1 or matches a local
963 * IPv4 or IPv6 address value in the respective multicast address
964 * range. Otherwise %false.
965 */
966 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
967 {
968 if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
969 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
970 return false;
971
972 if (spec->match_flags &
973 (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
974 is_multicast_ether_addr(spec->loc_mac))
975 return true;
976
977 if ((spec->match_flags &
978 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
979 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
980 if (spec->ether_type == htons(ETH_P_IP) &&
981 ipv4_is_multicast(spec->loc_host[0]))
982 return true;
983 if (spec->ether_type == htons(ETH_P_IPV6) &&
984 ((const u8 *)spec->loc_host)[0] == 0xff)
985 return true;
986 }
987
988 return false;
989 }
This page took 0.074929 seconds and 5 git commands to generate.