sfc: Prepare for RX scatter on EF10
[deliverable/linux.git] / drivers / net / ethernet / sfc / siena_sriov.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2010-2011 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9 #include <linux/pci.h>
10 #include <linux/module.h>
11 #include "net_driver.h"
12 #include "efx.h"
13 #include "nic.h"
14 #include "io.h"
15 #include "mcdi.h"
16 #include "filter.h"
17 #include "mcdi_pcol.h"
18 #include "farch_regs.h"
19 #include "vfdi.h"
20
21 /* Number of longs required to track all the VIs in a VF */
22 #define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)
23
24 /* Maximum number of RX queues supported */
25 #define VF_MAX_RX_QUEUES 63
26
27 /**
28 * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
29 * @VF_TX_FILTER_OFF: Disabled
30 * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
31 * 2 TX queues allowed per VF.
32 * @VF_TX_FILTER_ON: Enabled
33 */
34 enum efx_vf_tx_filter_mode {
35 VF_TX_FILTER_OFF,
36 VF_TX_FILTER_AUTO,
37 VF_TX_FILTER_ON,
38 };
39
40 /**
41 * struct efx_vf - Back-end resource and protocol state for a PCI VF
42 * @efx: The Efx NIC owning this VF
43 * @pci_rid: The PCI requester ID for this VF
44 * @pci_name: The PCI name (formatted address) of this VF
45 * @index: Index of VF within its port and PF.
46 * @req: VFDI incoming request work item. Incoming USR_EV events are received
47 * by the NAPI handler, but must be handled by executing MCDI requests
48 * inside a work item.
49 * @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
50 * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
51 * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
52 * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
53 * @status_lock
54 * @busy: VFDI request queued to be processed or being processed. Receiving
55 * a VFDI request when @busy is set is an error condition.
56 * @buf: Incoming VFDI requests are DMA from the VF into this buffer.
57 * @buftbl_base: Buffer table entries for this VF start at this index.
58 * @rx_filtering: Receive filtering has been requested by the VF driver.
59 * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
60 * @rx_filter_qid: VF relative qid for RX filter requested by VF.
61 * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
62 * @tx_filter_mode: Transmit MAC filtering mode.
63 * @tx_filter_id: Transmit MAC filter ID.
64 * @addr: The MAC address and outer vlan tag of the VF.
65 * @status_addr: VF DMA address of page for &struct vfdi_status updates.
66 * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
67 * @peer_page_addrs and @peer_page_count from simultaneous
68 * updates by the VM and consumption by
69 * efx_sriov_update_vf_addr()
70 * @peer_page_addrs: Pointer to an array of guest pages for local addresses.
71 * @peer_page_count: Number of entries in @peer_page_count.
72 * @evq0_addrs: Array of guest pages backing evq0.
73 * @evq0_count: Number of entries in @evq0_addrs.
74 * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
75 * to wait for flush completions.
76 * @txq_lock: Mutex for TX queue allocation.
77 * @txq_mask: Mask of initialized transmit queues.
78 * @txq_count: Number of initialized transmit queues.
79 * @rxq_mask: Mask of initialized receive queues.
80 * @rxq_count: Number of initialized receive queues.
81 * @rxq_retry_mask: Mask or receive queues that need to be flushed again
82 * due to flush failure.
83 * @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
84 * @reset_work: Work item to schedule a VF reset.
85 */
86 struct efx_vf {
87 struct efx_nic *efx;
88 unsigned int pci_rid;
89 char pci_name[13]; /* dddd:bb:dd.f */
90 unsigned int index;
91 struct work_struct req;
92 u64 req_addr;
93 int req_type;
94 unsigned req_seqno;
95 unsigned msg_seqno;
96 bool busy;
97 struct efx_buffer buf;
98 unsigned buftbl_base;
99 bool rx_filtering;
100 enum efx_filter_flags rx_filter_flags;
101 unsigned rx_filter_qid;
102 int rx_filter_id;
103 enum efx_vf_tx_filter_mode tx_filter_mode;
104 int tx_filter_id;
105 struct vfdi_endpoint addr;
106 u64 status_addr;
107 struct mutex status_lock;
108 u64 *peer_page_addrs;
109 unsigned peer_page_count;
110 u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
111 EFX_BUF_SIZE];
112 unsigned evq0_count;
113 wait_queue_head_t flush_waitq;
114 struct mutex txq_lock;
115 unsigned long txq_mask[VI_MASK_LENGTH];
116 unsigned txq_count;
117 unsigned long rxq_mask[VI_MASK_LENGTH];
118 unsigned rxq_count;
119 unsigned long rxq_retry_mask[VI_MASK_LENGTH];
120 atomic_t rxq_retry_count;
121 struct work_struct reset_work;
122 };
123
124 struct efx_memcpy_req {
125 unsigned int from_rid;
126 void *from_buf;
127 u64 from_addr;
128 unsigned int to_rid;
129 u64 to_addr;
130 unsigned length;
131 };
132
133 /**
134 * struct efx_local_addr - A MAC address on the vswitch without a VF.
135 *
136 * Siena does not have a switch, so VFs can't transmit data to each
137 * other. Instead the VFs must be made aware of the local addresses
138 * on the vswitch, so that they can arrange for an alternative
139 * software datapath to be used.
140 *
141 * @link: List head for insertion into efx->local_addr_list.
142 * @addr: Ethernet address
143 */
144 struct efx_local_addr {
145 struct list_head link;
146 u8 addr[ETH_ALEN];
147 };
148
149 /**
150 * struct efx_endpoint_page - Page of vfdi_endpoint structures
151 *
152 * @link: List head for insertion into efx->local_page_list.
153 * @ptr: Pointer to page.
154 * @addr: DMA address of page.
155 */
156 struct efx_endpoint_page {
157 struct list_head link;
158 void *ptr;
159 dma_addr_t addr;
160 };
161
162 /* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
163 #define EFX_BUFTBL_TXQ_BASE(_vf, _qid) \
164 ((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
165 #define EFX_BUFTBL_RXQ_BASE(_vf, _qid) \
166 (EFX_BUFTBL_TXQ_BASE(_vf, _qid) + \
167 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
168 #define EFX_BUFTBL_EVQ_BASE(_vf, _qid) \
169 (EFX_BUFTBL_TXQ_BASE(_vf, _qid) + \
170 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
171
172 #define EFX_FIELD_MASK(_field) \
173 ((1 << _field ## _WIDTH) - 1)
174
175 /* VFs can only use this many transmit channels */
176 static unsigned int vf_max_tx_channels = 2;
177 module_param(vf_max_tx_channels, uint, 0444);
178 MODULE_PARM_DESC(vf_max_tx_channels,
179 "Limit the number of TX channels VFs can use");
180
181 static int max_vfs = -1;
182 module_param(max_vfs, int, 0444);
183 MODULE_PARM_DESC(max_vfs,
184 "Reduce the number of VFs initialized by the driver");
185
186 /* Workqueue used by VFDI communication. We can't use the global
187 * workqueue because it may be running the VF driver's probe()
188 * routine, which will be blocked there waiting for a VFDI response.
189 */
190 static struct workqueue_struct *vfdi_workqueue;
191
192 static unsigned abs_index(struct efx_vf *vf, unsigned index)
193 {
194 return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
195 }
196
197 static int efx_sriov_cmd(struct efx_nic *efx, bool enable,
198 unsigned *vi_scale_out, unsigned *vf_total_out)
199 {
200 MCDI_DECLARE_BUF(inbuf, MC_CMD_SRIOV_IN_LEN);
201 MCDI_DECLARE_BUF(outbuf, MC_CMD_SRIOV_OUT_LEN);
202 unsigned vi_scale, vf_total;
203 size_t outlen;
204 int rc;
205
206 MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
207 MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
208 MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);
209
210 rc = efx_mcdi_rpc(efx, MC_CMD_SRIOV, inbuf, MC_CMD_SRIOV_IN_LEN,
211 outbuf, MC_CMD_SRIOV_OUT_LEN, &outlen);
212 if (rc)
213 return rc;
214 if (outlen < MC_CMD_SRIOV_OUT_LEN)
215 return -EIO;
216
217 vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
218 vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
219 if (vi_scale > EFX_VI_SCALE_MAX)
220 return -EOPNOTSUPP;
221
222 if (vi_scale_out)
223 *vi_scale_out = vi_scale;
224 if (vf_total_out)
225 *vf_total_out = vf_total;
226
227 return 0;
228 }
229
230 static void efx_sriov_usrev(struct efx_nic *efx, bool enabled)
231 {
232 efx_oword_t reg;
233
234 EFX_POPULATE_OWORD_2(reg,
235 FRF_CZ_USREV_DIS, enabled ? 0 : 1,
236 FRF_CZ_DFLT_EVQ, efx->vfdi_channel->channel);
237 efx_writeo(efx, &reg, FR_CZ_USR_EV_CFG);
238 }
239
240 static int efx_sriov_memcpy(struct efx_nic *efx, struct efx_memcpy_req *req,
241 unsigned int count)
242 {
243 MCDI_DECLARE_BUF(inbuf, MCDI_CTL_SDU_LEN_MAX_V1);
244 MCDI_DECLARE_STRUCT_PTR(record);
245 unsigned int index, used;
246 u64 from_addr;
247 u32 from_rid;
248 int rc;
249
250 mb(); /* Finish writing source/reading dest before DMA starts */
251
252 if (WARN_ON(count > MC_CMD_MEMCPY_IN_RECORD_MAXNUM))
253 return -ENOBUFS;
254 used = MC_CMD_MEMCPY_IN_LEN(count);
255
256 for (index = 0; index < count; index++) {
257 record = MCDI_ARRAY_STRUCT_PTR(inbuf, MEMCPY_IN_RECORD, index);
258 MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_NUM_RECORDS,
259 count);
260 MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
261 req->to_rid);
262 MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR,
263 req->to_addr);
264 if (req->from_buf == NULL) {
265 from_rid = req->from_rid;
266 from_addr = req->from_addr;
267 } else {
268 if (WARN_ON(used + req->length >
269 MCDI_CTL_SDU_LEN_MAX_V1)) {
270 rc = -ENOBUFS;
271 goto out;
272 }
273
274 from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
275 from_addr = used;
276 memcpy(_MCDI_PTR(inbuf, used), req->from_buf,
277 req->length);
278 used += req->length;
279 }
280
281 MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
282 MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR,
283 from_addr);
284 MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
285 req->length);
286
287 ++req;
288 }
289
290 rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
291 out:
292 mb(); /* Don't write source/read dest before DMA is complete */
293
294 return rc;
295 }
296
297 /* The TX filter is entirely controlled by this driver, and is modified
298 * underneath the feet of the VF
299 */
300 static void efx_sriov_reset_tx_filter(struct efx_vf *vf)
301 {
302 struct efx_nic *efx = vf->efx;
303 struct efx_filter_spec filter;
304 u16 vlan;
305 int rc;
306
307 if (vf->tx_filter_id != -1) {
308 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
309 vf->tx_filter_id);
310 netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
311 vf->pci_name, vf->tx_filter_id);
312 vf->tx_filter_id = -1;
313 }
314
315 if (is_zero_ether_addr(vf->addr.mac_addr))
316 return;
317
318 /* Turn on TX filtering automatically if not explicitly
319 * enabled or disabled.
320 */
321 if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
322 vf->tx_filter_mode = VF_TX_FILTER_ON;
323
324 vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
325 efx_filter_init_tx(&filter, abs_index(vf, 0));
326 rc = efx_filter_set_eth_local(&filter,
327 vlan ? vlan : EFX_FILTER_VID_UNSPEC,
328 vf->addr.mac_addr);
329 BUG_ON(rc);
330
331 rc = efx_filter_insert_filter(efx, &filter, true);
332 if (rc < 0) {
333 netif_warn(efx, hw, efx->net_dev,
334 "Unable to migrate tx filter for vf %s\n",
335 vf->pci_name);
336 } else {
337 netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
338 vf->pci_name, rc);
339 vf->tx_filter_id = rc;
340 }
341 }
342
343 /* The RX filter is managed here on behalf of the VF driver */
344 static void efx_sriov_reset_rx_filter(struct efx_vf *vf)
345 {
346 struct efx_nic *efx = vf->efx;
347 struct efx_filter_spec filter;
348 u16 vlan;
349 int rc;
350
351 if (vf->rx_filter_id != -1) {
352 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
353 vf->rx_filter_id);
354 netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
355 vf->pci_name, vf->rx_filter_id);
356 vf->rx_filter_id = -1;
357 }
358
359 if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
360 return;
361
362 vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
363 efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
364 vf->rx_filter_flags,
365 abs_index(vf, vf->rx_filter_qid));
366 rc = efx_filter_set_eth_local(&filter,
367 vlan ? vlan : EFX_FILTER_VID_UNSPEC,
368 vf->addr.mac_addr);
369 BUG_ON(rc);
370
371 rc = efx_filter_insert_filter(efx, &filter, true);
372 if (rc < 0) {
373 netif_warn(efx, hw, efx->net_dev,
374 "Unable to insert rx filter for vf %s\n",
375 vf->pci_name);
376 } else {
377 netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
378 vf->pci_name, rc);
379 vf->rx_filter_id = rc;
380 }
381 }
382
383 static void __efx_sriov_update_vf_addr(struct efx_vf *vf)
384 {
385 efx_sriov_reset_tx_filter(vf);
386 efx_sriov_reset_rx_filter(vf);
387 queue_work(vfdi_workqueue, &vf->efx->peer_work);
388 }
389
390 /* Push the peer list to this VF. The caller must hold status_lock to interlock
391 * with VFDI requests, and they must be serialised against manipulation of
392 * local_page_list, either by acquiring local_lock or by running from
393 * efx_sriov_peer_work()
394 */
395 static void __efx_sriov_push_vf_status(struct efx_vf *vf)
396 {
397 struct efx_nic *efx = vf->efx;
398 struct vfdi_status *status = efx->vfdi_status.addr;
399 struct efx_memcpy_req copy[4];
400 struct efx_endpoint_page *epp;
401 unsigned int pos, count;
402 unsigned data_offset;
403 efx_qword_t event;
404
405 WARN_ON(!mutex_is_locked(&vf->status_lock));
406 WARN_ON(!vf->status_addr);
407
408 status->local = vf->addr;
409 status->generation_end = ++status->generation_start;
410
411 memset(copy, '\0', sizeof(copy));
412 /* Write generation_start */
413 copy[0].from_buf = &status->generation_start;
414 copy[0].to_rid = vf->pci_rid;
415 copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
416 generation_start);
417 copy[0].length = sizeof(status->generation_start);
418 /* DMA the rest of the structure (excluding the generations). This
419 * assumes that the non-generation portion of vfdi_status is in
420 * one chunk starting at the version member.
421 */
422 data_offset = offsetof(struct vfdi_status, version);
423 copy[1].from_rid = efx->pci_dev->devfn;
424 copy[1].from_addr = efx->vfdi_status.dma_addr + data_offset;
425 copy[1].to_rid = vf->pci_rid;
426 copy[1].to_addr = vf->status_addr + data_offset;
427 copy[1].length = status->length - data_offset;
428
429 /* Copy the peer pages */
430 pos = 2;
431 count = 0;
432 list_for_each_entry(epp, &efx->local_page_list, link) {
433 if (count == vf->peer_page_count) {
434 /* The VF driver will know they need to provide more
435 * pages because peer_addr_count is too large.
436 */
437 break;
438 }
439 copy[pos].from_buf = NULL;
440 copy[pos].from_rid = efx->pci_dev->devfn;
441 copy[pos].from_addr = epp->addr;
442 copy[pos].to_rid = vf->pci_rid;
443 copy[pos].to_addr = vf->peer_page_addrs[count];
444 copy[pos].length = EFX_PAGE_SIZE;
445
446 if (++pos == ARRAY_SIZE(copy)) {
447 efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
448 pos = 0;
449 }
450 ++count;
451 }
452
453 /* Write generation_end */
454 copy[pos].from_buf = &status->generation_end;
455 copy[pos].to_rid = vf->pci_rid;
456 copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
457 generation_end);
458 copy[pos].length = sizeof(status->generation_end);
459 efx_sriov_memcpy(efx, copy, pos + 1);
460
461 /* Notify the guest */
462 EFX_POPULATE_QWORD_3(event,
463 FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
464 VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
465 VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
466 ++vf->msg_seqno;
467 efx_farch_generate_event(efx,
468 EFX_VI_BASE + vf->index * efx_vf_size(efx),
469 &event);
470 }
471
472 static void efx_sriov_bufs(struct efx_nic *efx, unsigned offset,
473 u64 *addr, unsigned count)
474 {
475 efx_qword_t buf;
476 unsigned pos;
477
478 for (pos = 0; pos < count; ++pos) {
479 EFX_POPULATE_QWORD_3(buf,
480 FRF_AZ_BUF_ADR_REGION, 0,
481 FRF_AZ_BUF_ADR_FBUF,
482 addr ? addr[pos] >> 12 : 0,
483 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
484 efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
485 &buf, offset + pos);
486 }
487 }
488
489 static bool bad_vf_index(struct efx_nic *efx, unsigned index)
490 {
491 return index >= efx_vf_size(efx);
492 }
493
494 static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
495 {
496 unsigned max_buf_count = max_entry_count *
497 sizeof(efx_qword_t) / EFX_BUF_SIZE;
498
499 return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
500 }
501
502 /* Check that VI specified by per-port index belongs to a VF.
503 * Optionally set VF index and VI index within the VF.
504 */
505 static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
506 struct efx_vf **vf_out, unsigned *rel_index_out)
507 {
508 unsigned vf_i;
509
510 if (abs_index < EFX_VI_BASE)
511 return true;
512 vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
513 if (vf_i >= efx->vf_init_count)
514 return true;
515
516 if (vf_out)
517 *vf_out = efx->vf + vf_i;
518 if (rel_index_out)
519 *rel_index_out = abs_index % efx_vf_size(efx);
520 return false;
521 }
522
523 static int efx_vfdi_init_evq(struct efx_vf *vf)
524 {
525 struct efx_nic *efx = vf->efx;
526 struct vfdi_req *req = vf->buf.addr;
527 unsigned vf_evq = req->u.init_evq.index;
528 unsigned buf_count = req->u.init_evq.buf_count;
529 unsigned abs_evq = abs_index(vf, vf_evq);
530 unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
531 efx_oword_t reg;
532
533 if (bad_vf_index(efx, vf_evq) ||
534 bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
535 if (net_ratelimit())
536 netif_err(efx, hw, efx->net_dev,
537 "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
538 vf->pci_name, vf_evq, buf_count);
539 return VFDI_RC_EINVAL;
540 }
541
542 efx_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);
543
544 EFX_POPULATE_OWORD_3(reg,
545 FRF_CZ_TIMER_Q_EN, 1,
546 FRF_CZ_HOST_NOTIFY_MODE, 0,
547 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
548 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
549 EFX_POPULATE_OWORD_3(reg,
550 FRF_AZ_EVQ_EN, 1,
551 FRF_AZ_EVQ_SIZE, __ffs(buf_count),
552 FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
553 efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
554
555 if (vf_evq == 0) {
556 memcpy(vf->evq0_addrs, req->u.init_evq.addr,
557 buf_count * sizeof(u64));
558 vf->evq0_count = buf_count;
559 }
560
561 return VFDI_RC_SUCCESS;
562 }
563
564 static int efx_vfdi_init_rxq(struct efx_vf *vf)
565 {
566 struct efx_nic *efx = vf->efx;
567 struct vfdi_req *req = vf->buf.addr;
568 unsigned vf_rxq = req->u.init_rxq.index;
569 unsigned vf_evq = req->u.init_rxq.evq;
570 unsigned buf_count = req->u.init_rxq.buf_count;
571 unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
572 unsigned label;
573 efx_oword_t reg;
574
575 if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
576 vf_rxq >= VF_MAX_RX_QUEUES ||
577 bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
578 if (net_ratelimit())
579 netif_err(efx, hw, efx->net_dev,
580 "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
581 "buf_count %d\n", vf->pci_name, vf_rxq,
582 vf_evq, buf_count);
583 return VFDI_RC_EINVAL;
584 }
585 if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
586 ++vf->rxq_count;
587 efx_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);
588
589 label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
590 EFX_POPULATE_OWORD_6(reg,
591 FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
592 FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
593 FRF_AZ_RX_DESCQ_LABEL, label,
594 FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
595 FRF_AZ_RX_DESCQ_JUMBO,
596 !!(req->u.init_rxq.flags &
597 VFDI_RXQ_FLAG_SCATTER_EN),
598 FRF_AZ_RX_DESCQ_EN, 1);
599 efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
600 abs_index(vf, vf_rxq));
601
602 return VFDI_RC_SUCCESS;
603 }
604
605 static int efx_vfdi_init_txq(struct efx_vf *vf)
606 {
607 struct efx_nic *efx = vf->efx;
608 struct vfdi_req *req = vf->buf.addr;
609 unsigned vf_txq = req->u.init_txq.index;
610 unsigned vf_evq = req->u.init_txq.evq;
611 unsigned buf_count = req->u.init_txq.buf_count;
612 unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
613 unsigned label, eth_filt_en;
614 efx_oword_t reg;
615
616 if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
617 vf_txq >= vf_max_tx_channels ||
618 bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
619 if (net_ratelimit())
620 netif_err(efx, hw, efx->net_dev,
621 "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
622 "buf_count %d\n", vf->pci_name, vf_txq,
623 vf_evq, buf_count);
624 return VFDI_RC_EINVAL;
625 }
626
627 mutex_lock(&vf->txq_lock);
628 if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
629 ++vf->txq_count;
630 mutex_unlock(&vf->txq_lock);
631 efx_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);
632
633 eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;
634
635 label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
636 EFX_POPULATE_OWORD_8(reg,
637 FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
638 FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
639 FRF_AZ_TX_DESCQ_EN, 1,
640 FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
641 FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
642 FRF_AZ_TX_DESCQ_LABEL, label,
643 FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
644 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
645 efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
646 abs_index(vf, vf_txq));
647
648 return VFDI_RC_SUCCESS;
649 }
650
651 /* Returns true when efx_vfdi_fini_all_queues should wake */
652 static bool efx_vfdi_flush_wake(struct efx_vf *vf)
653 {
654 /* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
655 smp_mb();
656
657 return (!vf->txq_count && !vf->rxq_count) ||
658 atomic_read(&vf->rxq_retry_count);
659 }
660
661 static void efx_vfdi_flush_clear(struct efx_vf *vf)
662 {
663 memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
664 vf->txq_count = 0;
665 memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
666 vf->rxq_count = 0;
667 memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
668 atomic_set(&vf->rxq_retry_count, 0);
669 }
670
671 static int efx_vfdi_fini_all_queues(struct efx_vf *vf)
672 {
673 struct efx_nic *efx = vf->efx;
674 efx_oword_t reg;
675 unsigned count = efx_vf_size(efx);
676 unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
677 unsigned timeout = HZ;
678 unsigned index, rxqs_count;
679 MCDI_DECLARE_BUF(inbuf, MC_CMD_FLUSH_RX_QUEUES_IN_LENMAX);
680 int rc;
681
682 BUILD_BUG_ON(VF_MAX_RX_QUEUES >
683 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
684
685 rtnl_lock();
686 siena_prepare_flush(efx);
687 rtnl_unlock();
688
689 /* Flush all the initialized queues */
690 rxqs_count = 0;
691 for (index = 0; index < count; ++index) {
692 if (test_bit(index, vf->txq_mask)) {
693 EFX_POPULATE_OWORD_2(reg,
694 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
695 FRF_AZ_TX_FLUSH_DESCQ,
696 vf_offset + index);
697 efx_writeo(efx, &reg, FR_AZ_TX_FLUSH_DESCQ);
698 }
699 if (test_bit(index, vf->rxq_mask)) {
700 MCDI_SET_ARRAY_DWORD(
701 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
702 rxqs_count, vf_offset + index);
703 rxqs_count++;
704 }
705 }
706
707 atomic_set(&vf->rxq_retry_count, 0);
708 while (timeout && (vf->rxq_count || vf->txq_count)) {
709 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
710 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(rxqs_count),
711 NULL, 0, NULL);
712 WARN_ON(rc < 0);
713
714 timeout = wait_event_timeout(vf->flush_waitq,
715 efx_vfdi_flush_wake(vf),
716 timeout);
717 rxqs_count = 0;
718 for (index = 0; index < count; ++index) {
719 if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
720 atomic_dec(&vf->rxq_retry_count);
721 MCDI_SET_ARRAY_DWORD(
722 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
723 rxqs_count, vf_offset + index);
724 rxqs_count++;
725 }
726 }
727 }
728
729 rtnl_lock();
730 siena_finish_flush(efx);
731 rtnl_unlock();
732
733 /* Irrespective of success/failure, fini the queues */
734 EFX_ZERO_OWORD(reg);
735 for (index = 0; index < count; ++index) {
736 efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
737 vf_offset + index);
738 efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
739 vf_offset + index);
740 efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL,
741 vf_offset + index);
742 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL,
743 vf_offset + index);
744 }
745 efx_sriov_bufs(efx, vf->buftbl_base, NULL,
746 EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
747 efx_vfdi_flush_clear(vf);
748
749 vf->evq0_count = 0;
750
751 return timeout ? 0 : VFDI_RC_ETIMEDOUT;
752 }
753
754 static int efx_vfdi_insert_filter(struct efx_vf *vf)
755 {
756 struct efx_nic *efx = vf->efx;
757 struct vfdi_req *req = vf->buf.addr;
758 unsigned vf_rxq = req->u.mac_filter.rxq;
759 unsigned flags;
760
761 if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
762 if (net_ratelimit())
763 netif_err(efx, hw, efx->net_dev,
764 "ERROR: Invalid INSERT_FILTER from %s: rxq %d "
765 "flags 0x%x\n", vf->pci_name, vf_rxq,
766 req->u.mac_filter.flags);
767 return VFDI_RC_EINVAL;
768 }
769
770 flags = 0;
771 if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
772 flags |= EFX_FILTER_FLAG_RX_RSS;
773 if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
774 flags |= EFX_FILTER_FLAG_RX_SCATTER;
775 vf->rx_filter_flags = flags;
776 vf->rx_filter_qid = vf_rxq;
777 vf->rx_filtering = true;
778
779 efx_sriov_reset_rx_filter(vf);
780 queue_work(vfdi_workqueue, &efx->peer_work);
781
782 return VFDI_RC_SUCCESS;
783 }
784
785 static int efx_vfdi_remove_all_filters(struct efx_vf *vf)
786 {
787 vf->rx_filtering = false;
788 efx_sriov_reset_rx_filter(vf);
789 queue_work(vfdi_workqueue, &vf->efx->peer_work);
790
791 return VFDI_RC_SUCCESS;
792 }
793
794 static int efx_vfdi_set_status_page(struct efx_vf *vf)
795 {
796 struct efx_nic *efx = vf->efx;
797 struct vfdi_req *req = vf->buf.addr;
798 u64 page_count = req->u.set_status_page.peer_page_count;
799 u64 max_page_count =
800 (EFX_PAGE_SIZE -
801 offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
802 / sizeof(req->u.set_status_page.peer_page_addr[0]);
803
804 if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
805 if (net_ratelimit())
806 netif_err(efx, hw, efx->net_dev,
807 "ERROR: Invalid SET_STATUS_PAGE from %s\n",
808 vf->pci_name);
809 return VFDI_RC_EINVAL;
810 }
811
812 mutex_lock(&efx->local_lock);
813 mutex_lock(&vf->status_lock);
814 vf->status_addr = req->u.set_status_page.dma_addr;
815
816 kfree(vf->peer_page_addrs);
817 vf->peer_page_addrs = NULL;
818 vf->peer_page_count = 0;
819
820 if (page_count) {
821 vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
822 GFP_KERNEL);
823 if (vf->peer_page_addrs) {
824 memcpy(vf->peer_page_addrs,
825 req->u.set_status_page.peer_page_addr,
826 page_count * sizeof(u64));
827 vf->peer_page_count = page_count;
828 }
829 }
830
831 __efx_sriov_push_vf_status(vf);
832 mutex_unlock(&vf->status_lock);
833 mutex_unlock(&efx->local_lock);
834
835 return VFDI_RC_SUCCESS;
836 }
837
838 static int efx_vfdi_clear_status_page(struct efx_vf *vf)
839 {
840 mutex_lock(&vf->status_lock);
841 vf->status_addr = 0;
842 mutex_unlock(&vf->status_lock);
843
844 return VFDI_RC_SUCCESS;
845 }
846
847 typedef int (*efx_vfdi_op_t)(struct efx_vf *vf);
848
849 static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
850 [VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
851 [VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
852 [VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
853 [VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
854 [VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
855 [VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
856 [VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
857 [VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
858 };
859
860 static void efx_sriov_vfdi(struct work_struct *work)
861 {
862 struct efx_vf *vf = container_of(work, struct efx_vf, req);
863 struct efx_nic *efx = vf->efx;
864 struct vfdi_req *req = vf->buf.addr;
865 struct efx_memcpy_req copy[2];
866 int rc;
867
868 /* Copy this page into the local address space */
869 memset(copy, '\0', sizeof(copy));
870 copy[0].from_rid = vf->pci_rid;
871 copy[0].from_addr = vf->req_addr;
872 copy[0].to_rid = efx->pci_dev->devfn;
873 copy[0].to_addr = vf->buf.dma_addr;
874 copy[0].length = EFX_PAGE_SIZE;
875 rc = efx_sriov_memcpy(efx, copy, 1);
876 if (rc) {
877 /* If we can't get the request, we can't reply to the caller */
878 if (net_ratelimit())
879 netif_err(efx, hw, efx->net_dev,
880 "ERROR: Unable to fetch VFDI request from %s rc %d\n",
881 vf->pci_name, -rc);
882 vf->busy = false;
883 return;
884 }
885
886 if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
887 rc = vfdi_ops[req->op](vf);
888 if (rc == 0) {
889 netif_dbg(efx, hw, efx->net_dev,
890 "vfdi request %d from %s ok\n",
891 req->op, vf->pci_name);
892 }
893 } else {
894 netif_dbg(efx, hw, efx->net_dev,
895 "ERROR: Unrecognised request %d from VF %s addr "
896 "%llx\n", req->op, vf->pci_name,
897 (unsigned long long)vf->req_addr);
898 rc = VFDI_RC_EOPNOTSUPP;
899 }
900
901 /* Allow subsequent VF requests */
902 vf->busy = false;
903 smp_wmb();
904
905 /* Respond to the request */
906 req->rc = rc;
907 req->op = VFDI_OP_RESPONSE;
908
909 memset(copy, '\0', sizeof(copy));
910 copy[0].from_buf = &req->rc;
911 copy[0].to_rid = vf->pci_rid;
912 copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
913 copy[0].length = sizeof(req->rc);
914 copy[1].from_buf = &req->op;
915 copy[1].to_rid = vf->pci_rid;
916 copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
917 copy[1].length = sizeof(req->op);
918
919 (void) efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
920 }
921
922
923
924 /* After a reset the event queues inside the guests no longer exist. Fill the
925 * event ring in guest memory with VFDI reset events, then (re-initialise) the
926 * event queue to raise an interrupt. The guest driver will then recover.
927 */
928 static void efx_sriov_reset_vf(struct efx_vf *vf, struct efx_buffer *buffer)
929 {
930 struct efx_nic *efx = vf->efx;
931 struct efx_memcpy_req copy_req[4];
932 efx_qword_t event;
933 unsigned int pos, count, k, buftbl, abs_evq;
934 efx_oword_t reg;
935 efx_dword_t ptr;
936 int rc;
937
938 BUG_ON(buffer->len != EFX_PAGE_SIZE);
939
940 if (!vf->evq0_count)
941 return;
942 BUG_ON(vf->evq0_count & (vf->evq0_count - 1));
943
944 mutex_lock(&vf->status_lock);
945 EFX_POPULATE_QWORD_3(event,
946 FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
947 VFDI_EV_SEQ, vf->msg_seqno,
948 VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
949 vf->msg_seqno++;
950 for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
951 memcpy(buffer->addr + pos, &event, sizeof(event));
952
953 for (pos = 0; pos < vf->evq0_count; pos += count) {
954 count = min_t(unsigned, vf->evq0_count - pos,
955 ARRAY_SIZE(copy_req));
956 for (k = 0; k < count; k++) {
957 copy_req[k].from_buf = NULL;
958 copy_req[k].from_rid = efx->pci_dev->devfn;
959 copy_req[k].from_addr = buffer->dma_addr;
960 copy_req[k].to_rid = vf->pci_rid;
961 copy_req[k].to_addr = vf->evq0_addrs[pos + k];
962 copy_req[k].length = EFX_PAGE_SIZE;
963 }
964 rc = efx_sriov_memcpy(efx, copy_req, count);
965 if (rc) {
966 if (net_ratelimit())
967 netif_err(efx, hw, efx->net_dev,
968 "ERROR: Unable to notify %s of reset"
969 ": %d\n", vf->pci_name, -rc);
970 break;
971 }
972 }
973
974 /* Reinitialise, arm and trigger evq0 */
975 abs_evq = abs_index(vf, 0);
976 buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
977 efx_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);
978
979 EFX_POPULATE_OWORD_3(reg,
980 FRF_CZ_TIMER_Q_EN, 1,
981 FRF_CZ_HOST_NOTIFY_MODE, 0,
982 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
983 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
984 EFX_POPULATE_OWORD_3(reg,
985 FRF_AZ_EVQ_EN, 1,
986 FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
987 FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
988 efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
989 EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
990 efx_writed(efx, &ptr, FR_BZ_EVQ_RPTR + FR_BZ_EVQ_RPTR_STEP * abs_evq);
991
992 mutex_unlock(&vf->status_lock);
993 }
994
995 static void efx_sriov_reset_vf_work(struct work_struct *work)
996 {
997 struct efx_vf *vf = container_of(work, struct efx_vf, req);
998 struct efx_nic *efx = vf->efx;
999 struct efx_buffer buf;
1000
1001 if (!efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO)) {
1002 efx_sriov_reset_vf(vf, &buf);
1003 efx_nic_free_buffer(efx, &buf);
1004 }
1005 }
1006
1007 static void efx_sriov_handle_no_channel(struct efx_nic *efx)
1008 {
1009 netif_err(efx, drv, efx->net_dev,
1010 "ERROR: IOV requires MSI-X and 1 additional interrupt"
1011 "vector. IOV disabled\n");
1012 efx->vf_count = 0;
1013 }
1014
1015 static int efx_sriov_probe_channel(struct efx_channel *channel)
1016 {
1017 channel->efx->vfdi_channel = channel;
1018 return 0;
1019 }
1020
1021 static void
1022 efx_sriov_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
1023 {
1024 snprintf(buf, len, "%s-iov", channel->efx->name);
1025 }
1026
1027 static const struct efx_channel_type efx_sriov_channel_type = {
1028 .handle_no_channel = efx_sriov_handle_no_channel,
1029 .pre_probe = efx_sriov_probe_channel,
1030 .post_remove = efx_channel_dummy_op_void,
1031 .get_name = efx_sriov_get_channel_name,
1032 /* no copy operation; channel must not be reallocated */
1033 .keep_eventq = true,
1034 };
1035
1036 void efx_sriov_probe(struct efx_nic *efx)
1037 {
1038 unsigned count;
1039
1040 if (!max_vfs)
1041 return;
1042
1043 if (efx_sriov_cmd(efx, false, &efx->vi_scale, &count))
1044 return;
1045 if (count > 0 && count > max_vfs)
1046 count = max_vfs;
1047
1048 /* efx_nic_dimension_resources() will reduce vf_count as appopriate */
1049 efx->vf_count = count;
1050
1051 efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_sriov_channel_type;
1052 }
1053
1054 /* Copy the list of individual addresses into the vfdi_status.peers
1055 * array and auxillary pages, protected by %local_lock. Drop that lock
1056 * and then broadcast the address list to every VF.
1057 */
1058 static void efx_sriov_peer_work(struct work_struct *data)
1059 {
1060 struct efx_nic *efx = container_of(data, struct efx_nic, peer_work);
1061 struct vfdi_status *vfdi_status = efx->vfdi_status.addr;
1062 struct efx_vf *vf;
1063 struct efx_local_addr *local_addr;
1064 struct vfdi_endpoint *peer;
1065 struct efx_endpoint_page *epp;
1066 struct list_head pages;
1067 unsigned int peer_space;
1068 unsigned int peer_count;
1069 unsigned int pos;
1070
1071 mutex_lock(&efx->local_lock);
1072
1073 /* Move the existing peer pages off %local_page_list */
1074 INIT_LIST_HEAD(&pages);
1075 list_splice_tail_init(&efx->local_page_list, &pages);
1076
1077 /* Populate the VF addresses starting from entry 1 (entry 0 is
1078 * the PF address)
1079 */
1080 peer = vfdi_status->peers + 1;
1081 peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
1082 peer_count = 1;
1083 for (pos = 0; pos < efx->vf_count; ++pos) {
1084 vf = efx->vf + pos;
1085
1086 mutex_lock(&vf->status_lock);
1087 if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
1088 *peer++ = vf->addr;
1089 ++peer_count;
1090 --peer_space;
1091 BUG_ON(peer_space == 0);
1092 }
1093 mutex_unlock(&vf->status_lock);
1094 }
1095
1096 /* Fill the remaining addresses */
1097 list_for_each_entry(local_addr, &efx->local_addr_list, link) {
1098 memcpy(peer->mac_addr, local_addr->addr, ETH_ALEN);
1099 peer->tci = 0;
1100 ++peer;
1101 ++peer_count;
1102 if (--peer_space == 0) {
1103 if (list_empty(&pages)) {
1104 epp = kmalloc(sizeof(*epp), GFP_KERNEL);
1105 if (!epp)
1106 break;
1107 epp->ptr = dma_alloc_coherent(
1108 &efx->pci_dev->dev, EFX_PAGE_SIZE,
1109 &epp->addr, GFP_KERNEL);
1110 if (!epp->ptr) {
1111 kfree(epp);
1112 break;
1113 }
1114 } else {
1115 epp = list_first_entry(
1116 &pages, struct efx_endpoint_page, link);
1117 list_del(&epp->link);
1118 }
1119
1120 list_add_tail(&epp->link, &efx->local_page_list);
1121 peer = (struct vfdi_endpoint *)epp->ptr;
1122 peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
1123 }
1124 }
1125 vfdi_status->peer_count = peer_count;
1126 mutex_unlock(&efx->local_lock);
1127
1128 /* Free any now unused endpoint pages */
1129 while (!list_empty(&pages)) {
1130 epp = list_first_entry(
1131 &pages, struct efx_endpoint_page, link);
1132 list_del(&epp->link);
1133 dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1134 epp->ptr, epp->addr);
1135 kfree(epp);
1136 }
1137
1138 /* Finally, push the pages */
1139 for (pos = 0; pos < efx->vf_count; ++pos) {
1140 vf = efx->vf + pos;
1141
1142 mutex_lock(&vf->status_lock);
1143 if (vf->status_addr)
1144 __efx_sriov_push_vf_status(vf);
1145 mutex_unlock(&vf->status_lock);
1146 }
1147 }
1148
1149 static void efx_sriov_free_local(struct efx_nic *efx)
1150 {
1151 struct efx_local_addr *local_addr;
1152 struct efx_endpoint_page *epp;
1153
1154 while (!list_empty(&efx->local_addr_list)) {
1155 local_addr = list_first_entry(&efx->local_addr_list,
1156 struct efx_local_addr, link);
1157 list_del(&local_addr->link);
1158 kfree(local_addr);
1159 }
1160
1161 while (!list_empty(&efx->local_page_list)) {
1162 epp = list_first_entry(&efx->local_page_list,
1163 struct efx_endpoint_page, link);
1164 list_del(&epp->link);
1165 dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1166 epp->ptr, epp->addr);
1167 kfree(epp);
1168 }
1169 }
1170
1171 static int efx_sriov_vf_alloc(struct efx_nic *efx)
1172 {
1173 unsigned index;
1174 struct efx_vf *vf;
1175
1176 efx->vf = kzalloc(sizeof(struct efx_vf) * efx->vf_count, GFP_KERNEL);
1177 if (!efx->vf)
1178 return -ENOMEM;
1179
1180 for (index = 0; index < efx->vf_count; ++index) {
1181 vf = efx->vf + index;
1182
1183 vf->efx = efx;
1184 vf->index = index;
1185 vf->rx_filter_id = -1;
1186 vf->tx_filter_mode = VF_TX_FILTER_AUTO;
1187 vf->tx_filter_id = -1;
1188 INIT_WORK(&vf->req, efx_sriov_vfdi);
1189 INIT_WORK(&vf->reset_work, efx_sriov_reset_vf_work);
1190 init_waitqueue_head(&vf->flush_waitq);
1191 mutex_init(&vf->status_lock);
1192 mutex_init(&vf->txq_lock);
1193 }
1194
1195 return 0;
1196 }
1197
1198 static void efx_sriov_vfs_fini(struct efx_nic *efx)
1199 {
1200 struct efx_vf *vf;
1201 unsigned int pos;
1202
1203 for (pos = 0; pos < efx->vf_count; ++pos) {
1204 vf = efx->vf + pos;
1205
1206 efx_nic_free_buffer(efx, &vf->buf);
1207 kfree(vf->peer_page_addrs);
1208 vf->peer_page_addrs = NULL;
1209 vf->peer_page_count = 0;
1210
1211 vf->evq0_count = 0;
1212 }
1213 }
1214
1215 static int efx_sriov_vfs_init(struct efx_nic *efx)
1216 {
1217 struct pci_dev *pci_dev = efx->pci_dev;
1218 unsigned index, devfn, sriov, buftbl_base;
1219 u16 offset, stride;
1220 struct efx_vf *vf;
1221 int rc;
1222
1223 sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
1224 if (!sriov)
1225 return -ENOENT;
1226
1227 pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
1228 pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);
1229
1230 buftbl_base = efx->vf_buftbl_base;
1231 devfn = pci_dev->devfn + offset;
1232 for (index = 0; index < efx->vf_count; ++index) {
1233 vf = efx->vf + index;
1234
1235 /* Reserve buffer entries */
1236 vf->buftbl_base = buftbl_base;
1237 buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);
1238
1239 vf->pci_rid = devfn;
1240 snprintf(vf->pci_name, sizeof(vf->pci_name),
1241 "%04x:%02x:%02x.%d",
1242 pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
1243 PCI_SLOT(devfn), PCI_FUNC(devfn));
1244
1245 rc = efx_nic_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE,
1246 GFP_KERNEL);
1247 if (rc)
1248 goto fail;
1249
1250 devfn += stride;
1251 }
1252
1253 return 0;
1254
1255 fail:
1256 efx_sriov_vfs_fini(efx);
1257 return rc;
1258 }
1259
1260 int efx_sriov_init(struct efx_nic *efx)
1261 {
1262 struct net_device *net_dev = efx->net_dev;
1263 struct vfdi_status *vfdi_status;
1264 int rc;
1265
1266 /* Ensure there's room for vf_channel */
1267 BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
1268 /* Ensure that VI_BASE is aligned on VI_SCALE */
1269 BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));
1270
1271 if (efx->vf_count == 0)
1272 return 0;
1273
1274 rc = efx_sriov_cmd(efx, true, NULL, NULL);
1275 if (rc)
1276 goto fail_cmd;
1277
1278 rc = efx_nic_alloc_buffer(efx, &efx->vfdi_status, sizeof(*vfdi_status),
1279 GFP_KERNEL);
1280 if (rc)
1281 goto fail_status;
1282 vfdi_status = efx->vfdi_status.addr;
1283 memset(vfdi_status, 0, sizeof(*vfdi_status));
1284 vfdi_status->version = 1;
1285 vfdi_status->length = sizeof(*vfdi_status);
1286 vfdi_status->max_tx_channels = vf_max_tx_channels;
1287 vfdi_status->vi_scale = efx->vi_scale;
1288 vfdi_status->rss_rxq_count = efx->rss_spread;
1289 vfdi_status->peer_count = 1 + efx->vf_count;
1290 vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;
1291
1292 rc = efx_sriov_vf_alloc(efx);
1293 if (rc)
1294 goto fail_alloc;
1295
1296 mutex_init(&efx->local_lock);
1297 INIT_WORK(&efx->peer_work, efx_sriov_peer_work);
1298 INIT_LIST_HEAD(&efx->local_addr_list);
1299 INIT_LIST_HEAD(&efx->local_page_list);
1300
1301 rc = efx_sriov_vfs_init(efx);
1302 if (rc)
1303 goto fail_vfs;
1304
1305 rtnl_lock();
1306 memcpy(vfdi_status->peers[0].mac_addr,
1307 net_dev->dev_addr, ETH_ALEN);
1308 efx->vf_init_count = efx->vf_count;
1309 rtnl_unlock();
1310
1311 efx_sriov_usrev(efx, true);
1312
1313 /* At this point we must be ready to accept VFDI requests */
1314
1315 rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
1316 if (rc)
1317 goto fail_pci;
1318
1319 netif_info(efx, probe, net_dev,
1320 "enabled SR-IOV for %d VFs, %d VI per VF\n",
1321 efx->vf_count, efx_vf_size(efx));
1322 return 0;
1323
1324 fail_pci:
1325 efx_sriov_usrev(efx, false);
1326 rtnl_lock();
1327 efx->vf_init_count = 0;
1328 rtnl_unlock();
1329 efx_sriov_vfs_fini(efx);
1330 fail_vfs:
1331 cancel_work_sync(&efx->peer_work);
1332 efx_sriov_free_local(efx);
1333 kfree(efx->vf);
1334 fail_alloc:
1335 efx_nic_free_buffer(efx, &efx->vfdi_status);
1336 fail_status:
1337 efx_sriov_cmd(efx, false, NULL, NULL);
1338 fail_cmd:
1339 return rc;
1340 }
1341
1342 void efx_sriov_fini(struct efx_nic *efx)
1343 {
1344 struct efx_vf *vf;
1345 unsigned int pos;
1346
1347 if (efx->vf_init_count == 0)
1348 return;
1349
1350 /* Disable all interfaces to reconfiguration */
1351 BUG_ON(efx->vfdi_channel->enabled);
1352 efx_sriov_usrev(efx, false);
1353 rtnl_lock();
1354 efx->vf_init_count = 0;
1355 rtnl_unlock();
1356
1357 /* Flush all reconfiguration work */
1358 for (pos = 0; pos < efx->vf_count; ++pos) {
1359 vf = efx->vf + pos;
1360 cancel_work_sync(&vf->req);
1361 cancel_work_sync(&vf->reset_work);
1362 }
1363 cancel_work_sync(&efx->peer_work);
1364
1365 pci_disable_sriov(efx->pci_dev);
1366
1367 /* Tear down back-end state */
1368 efx_sriov_vfs_fini(efx);
1369 efx_sriov_free_local(efx);
1370 kfree(efx->vf);
1371 efx_nic_free_buffer(efx, &efx->vfdi_status);
1372 efx_sriov_cmd(efx, false, NULL, NULL);
1373 }
1374
1375 void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event)
1376 {
1377 struct efx_nic *efx = channel->efx;
1378 struct efx_vf *vf;
1379 unsigned qid, seq, type, data;
1380
1381 qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);
1382
1383 /* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
1384 BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
1385 seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
1386 type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
1387 data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);
1388
1389 netif_vdbg(efx, hw, efx->net_dev,
1390 "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
1391 qid, seq, type, data);
1392
1393 if (map_vi_index(efx, qid, &vf, NULL))
1394 return;
1395 if (vf->busy)
1396 goto error;
1397
1398 if (type == VFDI_EV_TYPE_REQ_WORD0) {
1399 /* Resynchronise */
1400 vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1401 vf->req_seqno = seq + 1;
1402 vf->req_addr = 0;
1403 } else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
1404 goto error;
1405
1406 switch (vf->req_type) {
1407 case VFDI_EV_TYPE_REQ_WORD0:
1408 case VFDI_EV_TYPE_REQ_WORD1:
1409 case VFDI_EV_TYPE_REQ_WORD2:
1410 vf->req_addr |= (u64)data << (vf->req_type << 4);
1411 ++vf->req_type;
1412 return;
1413
1414 case VFDI_EV_TYPE_REQ_WORD3:
1415 vf->req_addr |= (u64)data << 48;
1416 vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1417 vf->busy = true;
1418 queue_work(vfdi_workqueue, &vf->req);
1419 return;
1420 }
1421
1422 error:
1423 if (net_ratelimit())
1424 netif_err(efx, hw, efx->net_dev,
1425 "ERROR: Screaming VFDI request from %s\n",
1426 vf->pci_name);
1427 /* Reset the request and sequence number */
1428 vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1429 vf->req_seqno = seq + 1;
1430 }
1431
1432 void efx_sriov_flr(struct efx_nic *efx, unsigned vf_i)
1433 {
1434 struct efx_vf *vf;
1435
1436 if (vf_i > efx->vf_init_count)
1437 return;
1438 vf = efx->vf + vf_i;
1439 netif_info(efx, hw, efx->net_dev,
1440 "FLR on VF %s\n", vf->pci_name);
1441
1442 vf->status_addr = 0;
1443 efx_vfdi_remove_all_filters(vf);
1444 efx_vfdi_flush_clear(vf);
1445
1446 vf->evq0_count = 0;
1447 }
1448
1449 void efx_sriov_mac_address_changed(struct efx_nic *efx)
1450 {
1451 struct vfdi_status *vfdi_status = efx->vfdi_status.addr;
1452
1453 if (!efx->vf_init_count)
1454 return;
1455 memcpy(vfdi_status->peers[0].mac_addr,
1456 efx->net_dev->dev_addr, ETH_ALEN);
1457 queue_work(vfdi_workqueue, &efx->peer_work);
1458 }
1459
1460 void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1461 {
1462 struct efx_vf *vf;
1463 unsigned queue, qid;
1464
1465 queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1466 if (map_vi_index(efx, queue, &vf, &qid))
1467 return;
1468 /* Ignore flush completions triggered by an FLR */
1469 if (!test_bit(qid, vf->txq_mask))
1470 return;
1471
1472 __clear_bit(qid, vf->txq_mask);
1473 --vf->txq_count;
1474
1475 if (efx_vfdi_flush_wake(vf))
1476 wake_up(&vf->flush_waitq);
1477 }
1478
1479 void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1480 {
1481 struct efx_vf *vf;
1482 unsigned ev_failed, queue, qid;
1483
1484 queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1485 ev_failed = EFX_QWORD_FIELD(*event,
1486 FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1487 if (map_vi_index(efx, queue, &vf, &qid))
1488 return;
1489 if (!test_bit(qid, vf->rxq_mask))
1490 return;
1491
1492 if (ev_failed) {
1493 set_bit(qid, vf->rxq_retry_mask);
1494 atomic_inc(&vf->rxq_retry_count);
1495 } else {
1496 __clear_bit(qid, vf->rxq_mask);
1497 --vf->rxq_count;
1498 }
1499 if (efx_vfdi_flush_wake(vf))
1500 wake_up(&vf->flush_waitq);
1501 }
1502
1503 /* Called from napi. Schedule the reset work item */
1504 void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
1505 {
1506 struct efx_vf *vf;
1507 unsigned int rel;
1508
1509 if (map_vi_index(efx, dmaq, &vf, &rel))
1510 return;
1511
1512 if (net_ratelimit())
1513 netif_err(efx, hw, efx->net_dev,
1514 "VF %d DMA Q %d reports descriptor fetch error.\n",
1515 vf->index, rel);
1516 queue_work(vfdi_workqueue, &vf->reset_work);
1517 }
1518
1519 /* Reset all VFs */
1520 void efx_sriov_reset(struct efx_nic *efx)
1521 {
1522 unsigned int vf_i;
1523 struct efx_buffer buf;
1524 struct efx_vf *vf;
1525
1526 ASSERT_RTNL();
1527
1528 if (efx->vf_init_count == 0)
1529 return;
1530
1531 efx_sriov_usrev(efx, true);
1532 (void)efx_sriov_cmd(efx, true, NULL, NULL);
1533
1534 if (efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO))
1535 return;
1536
1537 for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
1538 vf = efx->vf + vf_i;
1539 efx_sriov_reset_vf(vf, &buf);
1540 }
1541
1542 efx_nic_free_buffer(efx, &buf);
1543 }
1544
1545 int efx_init_sriov(void)
1546 {
1547 /* A single threaded workqueue is sufficient. efx_sriov_vfdi() and
1548 * efx_sriov_peer_work() spend almost all their time sleeping for
1549 * MCDI to complete anyway
1550 */
1551 vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
1552 if (!vfdi_workqueue)
1553 return -ENOMEM;
1554
1555 return 0;
1556 }
1557
1558 void efx_fini_sriov(void)
1559 {
1560 destroy_workqueue(vfdi_workqueue);
1561 }
1562
1563 int efx_sriov_set_vf_mac(struct net_device *net_dev, int vf_i, u8 *mac)
1564 {
1565 struct efx_nic *efx = netdev_priv(net_dev);
1566 struct efx_vf *vf;
1567
1568 if (vf_i >= efx->vf_init_count)
1569 return -EINVAL;
1570 vf = efx->vf + vf_i;
1571
1572 mutex_lock(&vf->status_lock);
1573 memcpy(vf->addr.mac_addr, mac, ETH_ALEN);
1574 __efx_sriov_update_vf_addr(vf);
1575 mutex_unlock(&vf->status_lock);
1576
1577 return 0;
1578 }
1579
1580 int efx_sriov_set_vf_vlan(struct net_device *net_dev, int vf_i,
1581 u16 vlan, u8 qos)
1582 {
1583 struct efx_nic *efx = netdev_priv(net_dev);
1584 struct efx_vf *vf;
1585 u16 tci;
1586
1587 if (vf_i >= efx->vf_init_count)
1588 return -EINVAL;
1589 vf = efx->vf + vf_i;
1590
1591 mutex_lock(&vf->status_lock);
1592 tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
1593 vf->addr.tci = htons(tci);
1594 __efx_sriov_update_vf_addr(vf);
1595 mutex_unlock(&vf->status_lock);
1596
1597 return 0;
1598 }
1599
1600 int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf_i,
1601 bool spoofchk)
1602 {
1603 struct efx_nic *efx = netdev_priv(net_dev);
1604 struct efx_vf *vf;
1605 int rc;
1606
1607 if (vf_i >= efx->vf_init_count)
1608 return -EINVAL;
1609 vf = efx->vf + vf_i;
1610
1611 mutex_lock(&vf->txq_lock);
1612 if (vf->txq_count == 0) {
1613 vf->tx_filter_mode =
1614 spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
1615 rc = 0;
1616 } else {
1617 /* This cannot be changed while TX queues are running */
1618 rc = -EBUSY;
1619 }
1620 mutex_unlock(&vf->txq_lock);
1621 return rc;
1622 }
1623
1624 int efx_sriov_get_vf_config(struct net_device *net_dev, int vf_i,
1625 struct ifla_vf_info *ivi)
1626 {
1627 struct efx_nic *efx = netdev_priv(net_dev);
1628 struct efx_vf *vf;
1629 u16 tci;
1630
1631 if (vf_i >= efx->vf_init_count)
1632 return -EINVAL;
1633 vf = efx->vf + vf_i;
1634
1635 ivi->vf = vf_i;
1636 memcpy(ivi->mac, vf->addr.mac_addr, ETH_ALEN);
1637 ivi->tx_rate = 0;
1638 tci = ntohs(vf->addr.tci);
1639 ivi->vlan = tci & VLAN_VID_MASK;
1640 ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
1641 ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;
1642
1643 return 0;
1644 }
1645
This page took 0.081774 seconds and 5 git commands to generate.