net/mlx5_core: Print resource number on QP/SRQ async events
[deliverable/linux.git] / drivers / net / ethernet / sfc / tx.c
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include <linux/cache.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "io.h"
24 #include "nic.h"
25 #include "workarounds.h"
26 #include "ef10_regs.h"
27
28 #ifdef EFX_USE_PIO
29
30 #define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
31 #define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
32 unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
33
34 #endif /* EFX_USE_PIO */
35
36 static inline unsigned int
37 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
38 {
39 return tx_queue->insert_count & tx_queue->ptr_mask;
40 }
41
42 static inline struct efx_tx_buffer *
43 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
44 {
45 return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
46 }
47
48 static inline struct efx_tx_buffer *
49 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
50 {
51 struct efx_tx_buffer *buffer =
52 __efx_tx_queue_get_insert_buffer(tx_queue);
53
54 EFX_BUG_ON_PARANOID(buffer->len);
55 EFX_BUG_ON_PARANOID(buffer->flags);
56 EFX_BUG_ON_PARANOID(buffer->unmap_len);
57
58 return buffer;
59 }
60
61 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
62 struct efx_tx_buffer *buffer,
63 unsigned int *pkts_compl,
64 unsigned int *bytes_compl)
65 {
66 if (buffer->unmap_len) {
67 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
68 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
69 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
70 dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
71 DMA_TO_DEVICE);
72 else
73 dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
74 DMA_TO_DEVICE);
75 buffer->unmap_len = 0;
76 }
77
78 if (buffer->flags & EFX_TX_BUF_SKB) {
79 (*pkts_compl)++;
80 (*bytes_compl) += buffer->skb->len;
81 dev_consume_skb_any((struct sk_buff *)buffer->skb);
82 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
83 "TX queue %d transmission id %x complete\n",
84 tx_queue->queue, tx_queue->read_count);
85 } else if (buffer->flags & EFX_TX_BUF_HEAP) {
86 kfree(buffer->heap_buf);
87 }
88
89 buffer->len = 0;
90 buffer->flags = 0;
91 }
92
93 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
94 struct sk_buff *skb);
95
96 static inline unsigned
97 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
98 {
99 /* Depending on the NIC revision, we can use descriptor
100 * lengths up to 8K or 8K-1. However, since PCI Express
101 * devices must split read requests at 4K boundaries, there is
102 * little benefit from using descriptors that cross those
103 * boundaries and we keep things simple by not doing so.
104 */
105 unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
106
107 /* Work around hardware bug for unaligned buffers. */
108 if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
109 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
110
111 return len;
112 }
113
114 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
115 {
116 /* Header and payload descriptor for each output segment, plus
117 * one for every input fragment boundary within a segment
118 */
119 unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
120
121 /* Possibly one more per segment for the alignment workaround,
122 * or for option descriptors
123 */
124 if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
125 max_descs += EFX_TSO_MAX_SEGS;
126
127 /* Possibly more for PCIe page boundaries within input fragments */
128 if (PAGE_SIZE > EFX_PAGE_SIZE)
129 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
130 DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
131
132 return max_descs;
133 }
134
135 static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
136 {
137 /* We need to consider both queues that the net core sees as one */
138 struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
139 struct efx_nic *efx = txq1->efx;
140 unsigned int fill_level;
141
142 fill_level = max(txq1->insert_count - txq1->old_read_count,
143 txq2->insert_count - txq2->old_read_count);
144 if (likely(fill_level < efx->txq_stop_thresh))
145 return;
146
147 /* We used the stale old_read_count above, which gives us a
148 * pessimistic estimate of the fill level (which may even
149 * validly be >= efx->txq_entries). Now try again using
150 * read_count (more likely to be a cache miss).
151 *
152 * If we read read_count and then conditionally stop the
153 * queue, it is possible for the completion path to race with
154 * us and complete all outstanding descriptors in the middle,
155 * after which there will be no more completions to wake it.
156 * Therefore we stop the queue first, then read read_count
157 * (with a memory barrier to ensure the ordering), then
158 * restart the queue if the fill level turns out to be low
159 * enough.
160 */
161 netif_tx_stop_queue(txq1->core_txq);
162 smp_mb();
163 txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
164 txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
165
166 fill_level = max(txq1->insert_count - txq1->old_read_count,
167 txq2->insert_count - txq2->old_read_count);
168 EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
169 if (likely(fill_level < efx->txq_stop_thresh)) {
170 smp_mb();
171 if (likely(!efx->loopback_selftest))
172 netif_tx_start_queue(txq1->core_txq);
173 }
174 }
175
176 #ifdef EFX_USE_PIO
177
178 struct efx_short_copy_buffer {
179 int used;
180 u8 buf[L1_CACHE_BYTES];
181 };
182
183 /* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
184 * Advances piobuf pointer. Leaves additional data in the copy buffer.
185 */
186 static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
187 u8 *data, int len,
188 struct efx_short_copy_buffer *copy_buf)
189 {
190 int block_len = len & ~(sizeof(copy_buf->buf) - 1);
191
192 __iowrite64_copy(*piobuf, data, block_len >> 3);
193 *piobuf += block_len;
194 len -= block_len;
195
196 if (len) {
197 data += block_len;
198 BUG_ON(copy_buf->used);
199 BUG_ON(len > sizeof(copy_buf->buf));
200 memcpy(copy_buf->buf, data, len);
201 copy_buf->used = len;
202 }
203 }
204
205 /* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
206 * Advances piobuf pointer. Leaves additional data in the copy buffer.
207 */
208 static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
209 u8 *data, int len,
210 struct efx_short_copy_buffer *copy_buf)
211 {
212 if (copy_buf->used) {
213 /* if the copy buffer is partially full, fill it up and write */
214 int copy_to_buf =
215 min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
216
217 memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
218 copy_buf->used += copy_to_buf;
219
220 /* if we didn't fill it up then we're done for now */
221 if (copy_buf->used < sizeof(copy_buf->buf))
222 return;
223
224 __iowrite64_copy(*piobuf, copy_buf->buf,
225 sizeof(copy_buf->buf) >> 3);
226 *piobuf += sizeof(copy_buf->buf);
227 data += copy_to_buf;
228 len -= copy_to_buf;
229 copy_buf->used = 0;
230 }
231
232 efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
233 }
234
235 static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
236 struct efx_short_copy_buffer *copy_buf)
237 {
238 /* if there's anything in it, write the whole buffer, including junk */
239 if (copy_buf->used)
240 __iowrite64_copy(piobuf, copy_buf->buf,
241 sizeof(copy_buf->buf) >> 3);
242 }
243
244 /* Traverse skb structure and copy fragments in to PIO buffer.
245 * Advances piobuf pointer.
246 */
247 static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
248 u8 __iomem **piobuf,
249 struct efx_short_copy_buffer *copy_buf)
250 {
251 int i;
252
253 efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
254 copy_buf);
255
256 for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
257 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
258 u8 *vaddr;
259
260 vaddr = kmap_atomic(skb_frag_page(f));
261
262 efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
263 skb_frag_size(f), copy_buf);
264 kunmap_atomic(vaddr);
265 }
266
267 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
268 }
269
270 static struct efx_tx_buffer *
271 efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
272 {
273 struct efx_tx_buffer *buffer =
274 efx_tx_queue_get_insert_buffer(tx_queue);
275 u8 __iomem *piobuf = tx_queue->piobuf;
276
277 /* Copy to PIO buffer. Ensure the writes are padded to the end
278 * of a cache line, as this is required for write-combining to be
279 * effective on at least x86.
280 */
281
282 if (skb_shinfo(skb)->nr_frags) {
283 /* The size of the copy buffer will ensure all writes
284 * are the size of a cache line.
285 */
286 struct efx_short_copy_buffer copy_buf;
287
288 copy_buf.used = 0;
289
290 efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
291 &piobuf, &copy_buf);
292 efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
293 } else {
294 /* Pad the write to the size of a cache line.
295 * We can do this because we know the skb_shared_info sruct is
296 * after the source, and the destination buffer is big enough.
297 */
298 BUILD_BUG_ON(L1_CACHE_BYTES >
299 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
300 __iowrite64_copy(tx_queue->piobuf, skb->data,
301 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
302 }
303
304 EFX_POPULATE_QWORD_5(buffer->option,
305 ESF_DZ_TX_DESC_IS_OPT, 1,
306 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
307 ESF_DZ_TX_PIO_CONT, 0,
308 ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
309 ESF_DZ_TX_PIO_BUF_ADDR,
310 tx_queue->piobuf_offset);
311 ++tx_queue->pio_packets;
312 ++tx_queue->insert_count;
313 return buffer;
314 }
315 #endif /* EFX_USE_PIO */
316
317 /*
318 * Add a socket buffer to a TX queue
319 *
320 * This maps all fragments of a socket buffer for DMA and adds them to
321 * the TX queue. The queue's insert pointer will be incremented by
322 * the number of fragments in the socket buffer.
323 *
324 * If any DMA mapping fails, any mapped fragments will be unmapped,
325 * the queue's insert pointer will be restored to its original value.
326 *
327 * This function is split out from efx_hard_start_xmit to allow the
328 * loopback test to direct packets via specific TX queues.
329 *
330 * Returns NETDEV_TX_OK.
331 * You must hold netif_tx_lock() to call this function.
332 */
333 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
334 {
335 struct efx_nic *efx = tx_queue->efx;
336 struct device *dma_dev = &efx->pci_dev->dev;
337 struct efx_tx_buffer *buffer;
338 unsigned int old_insert_count = tx_queue->insert_count;
339 skb_frag_t *fragment;
340 unsigned int len, unmap_len = 0;
341 dma_addr_t dma_addr, unmap_addr = 0;
342 unsigned int dma_len;
343 unsigned short dma_flags;
344 int i = 0;
345
346 if (skb_shinfo(skb)->gso_size)
347 return efx_enqueue_skb_tso(tx_queue, skb);
348
349 /* Get size of the initial fragment */
350 len = skb_headlen(skb);
351
352 /* Pad if necessary */
353 if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
354 EFX_BUG_ON_PARANOID(skb->data_len);
355 len = 32 + 1;
356 if (skb_pad(skb, len - skb->len))
357 return NETDEV_TX_OK;
358 }
359
360 /* Consider using PIO for short packets */
361 #ifdef EFX_USE_PIO
362 if (skb->len <= efx_piobuf_size && !skb->xmit_more &&
363 efx_nic_may_tx_pio(tx_queue)) {
364 buffer = efx_enqueue_skb_pio(tx_queue, skb);
365 dma_flags = EFX_TX_BUF_OPTION;
366 goto finish_packet;
367 }
368 #endif
369
370 /* Map for DMA. Use dma_map_single rather than dma_map_page
371 * since this is more efficient on machines with sparse
372 * memory.
373 */
374 dma_flags = EFX_TX_BUF_MAP_SINGLE;
375 dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
376
377 /* Process all fragments */
378 while (1) {
379 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
380 goto dma_err;
381
382 /* Store fields for marking in the per-fragment final
383 * descriptor */
384 unmap_len = len;
385 unmap_addr = dma_addr;
386
387 /* Add to TX queue, splitting across DMA boundaries */
388 do {
389 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
390
391 dma_len = efx_max_tx_len(efx, dma_addr);
392 if (likely(dma_len >= len))
393 dma_len = len;
394
395 /* Fill out per descriptor fields */
396 buffer->len = dma_len;
397 buffer->dma_addr = dma_addr;
398 buffer->flags = EFX_TX_BUF_CONT;
399 len -= dma_len;
400 dma_addr += dma_len;
401 ++tx_queue->insert_count;
402 } while (len);
403
404 /* Transfer ownership of the unmapping to the final buffer */
405 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
406 buffer->unmap_len = unmap_len;
407 buffer->dma_offset = buffer->dma_addr - unmap_addr;
408 unmap_len = 0;
409
410 /* Get address and size of next fragment */
411 if (i >= skb_shinfo(skb)->nr_frags)
412 break;
413 fragment = &skb_shinfo(skb)->frags[i];
414 len = skb_frag_size(fragment);
415 i++;
416 /* Map for DMA */
417 dma_flags = 0;
418 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
419 DMA_TO_DEVICE);
420 }
421
422 /* Transfer ownership of the skb to the final buffer */
423 #ifdef EFX_USE_PIO
424 finish_packet:
425 #endif
426 buffer->skb = skb;
427 buffer->flags = EFX_TX_BUF_SKB | dma_flags;
428
429 netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
430
431 efx_tx_maybe_stop_queue(tx_queue);
432
433 /* Pass off to hardware */
434 if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq))
435 efx_nic_push_buffers(tx_queue);
436
437 tx_queue->tx_packets++;
438
439 return NETDEV_TX_OK;
440
441 dma_err:
442 netif_err(efx, tx_err, efx->net_dev,
443 " TX queue %d could not map skb with %d bytes %d "
444 "fragments for DMA\n", tx_queue->queue, skb->len,
445 skb_shinfo(skb)->nr_frags + 1);
446
447 /* Mark the packet as transmitted, and free the SKB ourselves */
448 dev_kfree_skb_any(skb);
449
450 /* Work backwards until we hit the original insert pointer value */
451 while (tx_queue->insert_count != old_insert_count) {
452 unsigned int pkts_compl = 0, bytes_compl = 0;
453 --tx_queue->insert_count;
454 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
455 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
456 }
457
458 /* Free the fragment we were mid-way through pushing */
459 if (unmap_len) {
460 if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
461 dma_unmap_single(dma_dev, unmap_addr, unmap_len,
462 DMA_TO_DEVICE);
463 else
464 dma_unmap_page(dma_dev, unmap_addr, unmap_len,
465 DMA_TO_DEVICE);
466 }
467
468 return NETDEV_TX_OK;
469 }
470
471 /* Remove packets from the TX queue
472 *
473 * This removes packets from the TX queue, up to and including the
474 * specified index.
475 */
476 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
477 unsigned int index,
478 unsigned int *pkts_compl,
479 unsigned int *bytes_compl)
480 {
481 struct efx_nic *efx = tx_queue->efx;
482 unsigned int stop_index, read_ptr;
483
484 stop_index = (index + 1) & tx_queue->ptr_mask;
485 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
486
487 while (read_ptr != stop_index) {
488 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
489
490 if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
491 unlikely(buffer->len == 0)) {
492 netif_err(efx, tx_err, efx->net_dev,
493 "TX queue %d spurious TX completion id %x\n",
494 tx_queue->queue, read_ptr);
495 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
496 return;
497 }
498
499 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
500
501 ++tx_queue->read_count;
502 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
503 }
504 }
505
506 /* Initiate a packet transmission. We use one channel per CPU
507 * (sharing when we have more CPUs than channels). On Falcon, the TX
508 * completion events will be directed back to the CPU that transmitted
509 * the packet, which should be cache-efficient.
510 *
511 * Context: non-blocking.
512 * Note that returning anything other than NETDEV_TX_OK will cause the
513 * OS to free the skb.
514 */
515 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
516 struct net_device *net_dev)
517 {
518 struct efx_nic *efx = netdev_priv(net_dev);
519 struct efx_tx_queue *tx_queue;
520 unsigned index, type;
521
522 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
523
524 /* PTP "event" packet */
525 if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
526 unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
527 return efx_ptp_tx(efx, skb);
528 }
529
530 index = skb_get_queue_mapping(skb);
531 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
532 if (index >= efx->n_tx_channels) {
533 index -= efx->n_tx_channels;
534 type |= EFX_TXQ_TYPE_HIGHPRI;
535 }
536 tx_queue = efx_get_tx_queue(efx, index, type);
537
538 return efx_enqueue_skb(tx_queue, skb);
539 }
540
541 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
542 {
543 struct efx_nic *efx = tx_queue->efx;
544
545 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
546 tx_queue->core_txq =
547 netdev_get_tx_queue(efx->net_dev,
548 tx_queue->queue / EFX_TXQ_TYPES +
549 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
550 efx->n_tx_channels : 0));
551 }
552
553 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
554 {
555 struct efx_nic *efx = netdev_priv(net_dev);
556 struct efx_channel *channel;
557 struct efx_tx_queue *tx_queue;
558 unsigned tc;
559 int rc;
560
561 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
562 return -EINVAL;
563
564 if (num_tc == net_dev->num_tc)
565 return 0;
566
567 for (tc = 0; tc < num_tc; tc++) {
568 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
569 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
570 }
571
572 if (num_tc > net_dev->num_tc) {
573 /* Initialise high-priority queues as necessary */
574 efx_for_each_channel(channel, efx) {
575 efx_for_each_possible_channel_tx_queue(tx_queue,
576 channel) {
577 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
578 continue;
579 if (!tx_queue->buffer) {
580 rc = efx_probe_tx_queue(tx_queue);
581 if (rc)
582 return rc;
583 }
584 if (!tx_queue->initialised)
585 efx_init_tx_queue(tx_queue);
586 efx_init_tx_queue_core_txq(tx_queue);
587 }
588 }
589 } else {
590 /* Reduce number of classes before number of queues */
591 net_dev->num_tc = num_tc;
592 }
593
594 rc = netif_set_real_num_tx_queues(net_dev,
595 max_t(int, num_tc, 1) *
596 efx->n_tx_channels);
597 if (rc)
598 return rc;
599
600 /* Do not destroy high-priority queues when they become
601 * unused. We would have to flush them first, and it is
602 * fairly difficult to flush a subset of TX queues. Leave
603 * it to efx_fini_channels().
604 */
605
606 net_dev->num_tc = num_tc;
607 return 0;
608 }
609
610 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
611 {
612 unsigned fill_level;
613 struct efx_nic *efx = tx_queue->efx;
614 struct efx_tx_queue *txq2;
615 unsigned int pkts_compl = 0, bytes_compl = 0;
616
617 EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
618
619 efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
620 netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
621
622 if (pkts_compl > 1)
623 ++tx_queue->merge_events;
624
625 /* See if we need to restart the netif queue. This memory
626 * barrier ensures that we write read_count (inside
627 * efx_dequeue_buffers()) before reading the queue status.
628 */
629 smp_mb();
630 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
631 likely(efx->port_enabled) &&
632 likely(netif_device_present(efx->net_dev))) {
633 txq2 = efx_tx_queue_partner(tx_queue);
634 fill_level = max(tx_queue->insert_count - tx_queue->read_count,
635 txq2->insert_count - txq2->read_count);
636 if (fill_level <= efx->txq_wake_thresh)
637 netif_tx_wake_queue(tx_queue->core_txq);
638 }
639
640 /* Check whether the hardware queue is now empty */
641 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
642 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
643 if (tx_queue->read_count == tx_queue->old_write_count) {
644 smp_mb();
645 tx_queue->empty_read_count =
646 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
647 }
648 }
649 }
650
651 /* Size of page-based TSO header buffers. Larger blocks must be
652 * allocated from the heap.
653 */
654 #define TSOH_STD_SIZE 128
655 #define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE)
656
657 /* At most half the descriptors in the queue at any time will refer to
658 * a TSO header buffer, since they must always be followed by a
659 * payload descriptor referring to an skb.
660 */
661 static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
662 {
663 return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
664 }
665
666 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
667 {
668 struct efx_nic *efx = tx_queue->efx;
669 unsigned int entries;
670 int rc;
671
672 /* Create the smallest power-of-two aligned ring */
673 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
674 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
675 tx_queue->ptr_mask = entries - 1;
676
677 netif_dbg(efx, probe, efx->net_dev,
678 "creating TX queue %d size %#x mask %#x\n",
679 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
680
681 /* Allocate software ring */
682 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
683 GFP_KERNEL);
684 if (!tx_queue->buffer)
685 return -ENOMEM;
686
687 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
688 tx_queue->tsoh_page =
689 kcalloc(efx_tsoh_page_count(tx_queue),
690 sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
691 if (!tx_queue->tsoh_page) {
692 rc = -ENOMEM;
693 goto fail1;
694 }
695 }
696
697 /* Allocate hardware ring */
698 rc = efx_nic_probe_tx(tx_queue);
699 if (rc)
700 goto fail2;
701
702 return 0;
703
704 fail2:
705 kfree(tx_queue->tsoh_page);
706 tx_queue->tsoh_page = NULL;
707 fail1:
708 kfree(tx_queue->buffer);
709 tx_queue->buffer = NULL;
710 return rc;
711 }
712
713 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
714 {
715 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
716 "initialising TX queue %d\n", tx_queue->queue);
717
718 tx_queue->insert_count = 0;
719 tx_queue->write_count = 0;
720 tx_queue->old_write_count = 0;
721 tx_queue->read_count = 0;
722 tx_queue->old_read_count = 0;
723 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
724
725 /* Set up TX descriptor ring */
726 efx_nic_init_tx(tx_queue);
727
728 tx_queue->initialised = true;
729 }
730
731 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
732 {
733 struct efx_tx_buffer *buffer;
734
735 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
736 "shutting down TX queue %d\n", tx_queue->queue);
737
738 if (!tx_queue->buffer)
739 return;
740
741 /* Free any buffers left in the ring */
742 while (tx_queue->read_count != tx_queue->write_count) {
743 unsigned int pkts_compl = 0, bytes_compl = 0;
744 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
745 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
746
747 ++tx_queue->read_count;
748 }
749 netdev_tx_reset_queue(tx_queue->core_txq);
750 }
751
752 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
753 {
754 int i;
755
756 if (!tx_queue->buffer)
757 return;
758
759 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
760 "destroying TX queue %d\n", tx_queue->queue);
761 efx_nic_remove_tx(tx_queue);
762
763 if (tx_queue->tsoh_page) {
764 for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
765 efx_nic_free_buffer(tx_queue->efx,
766 &tx_queue->tsoh_page[i]);
767 kfree(tx_queue->tsoh_page);
768 tx_queue->tsoh_page = NULL;
769 }
770
771 kfree(tx_queue->buffer);
772 tx_queue->buffer = NULL;
773 }
774
775
776 /* Efx TCP segmentation acceleration.
777 *
778 * Why? Because by doing it here in the driver we can go significantly
779 * faster than the GSO.
780 *
781 * Requires TX checksum offload support.
782 */
783
784 #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
785
786 /**
787 * struct tso_state - TSO state for an SKB
788 * @out_len: Remaining length in current segment
789 * @seqnum: Current sequence number
790 * @ipv4_id: Current IPv4 ID, host endian
791 * @packet_space: Remaining space in current packet
792 * @dma_addr: DMA address of current position
793 * @in_len: Remaining length in current SKB fragment
794 * @unmap_len: Length of SKB fragment
795 * @unmap_addr: DMA address of SKB fragment
796 * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
797 * @protocol: Network protocol (after any VLAN header)
798 * @ip_off: Offset of IP header
799 * @tcp_off: Offset of TCP header
800 * @header_len: Number of bytes of header
801 * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
802 * @header_dma_addr: Header DMA address, when using option descriptors
803 * @header_unmap_len: Header DMA mapped length, or 0 if not using option
804 * descriptors
805 *
806 * The state used during segmentation. It is put into this data structure
807 * just to make it easy to pass into inline functions.
808 */
809 struct tso_state {
810 /* Output position */
811 unsigned out_len;
812 unsigned seqnum;
813 u16 ipv4_id;
814 unsigned packet_space;
815
816 /* Input position */
817 dma_addr_t dma_addr;
818 unsigned in_len;
819 unsigned unmap_len;
820 dma_addr_t unmap_addr;
821 unsigned short dma_flags;
822
823 __be16 protocol;
824 unsigned int ip_off;
825 unsigned int tcp_off;
826 unsigned header_len;
827 unsigned int ip_base_len;
828 dma_addr_t header_dma_addr;
829 unsigned int header_unmap_len;
830 };
831
832
833 /*
834 * Verify that our various assumptions about sk_buffs and the conditions
835 * under which TSO will be attempted hold true. Return the protocol number.
836 */
837 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
838 {
839 __be16 protocol = skb->protocol;
840
841 EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
842 protocol);
843 if (protocol == htons(ETH_P_8021Q)) {
844 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
845 protocol = veh->h_vlan_encapsulated_proto;
846 }
847
848 if (protocol == htons(ETH_P_IP)) {
849 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
850 } else {
851 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
852 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
853 }
854 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
855 + (tcp_hdr(skb)->doff << 2u)) >
856 skb_headlen(skb));
857
858 return protocol;
859 }
860
861 static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
862 struct efx_tx_buffer *buffer, unsigned int len)
863 {
864 u8 *result;
865
866 EFX_BUG_ON_PARANOID(buffer->len);
867 EFX_BUG_ON_PARANOID(buffer->flags);
868 EFX_BUG_ON_PARANOID(buffer->unmap_len);
869
870 if (likely(len <= TSOH_STD_SIZE - NET_IP_ALIGN)) {
871 unsigned index =
872 (tx_queue->insert_count & tx_queue->ptr_mask) / 2;
873 struct efx_buffer *page_buf =
874 &tx_queue->tsoh_page[index / TSOH_PER_PAGE];
875 unsigned offset =
876 TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + NET_IP_ALIGN;
877
878 if (unlikely(!page_buf->addr) &&
879 efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
880 GFP_ATOMIC))
881 return NULL;
882
883 result = (u8 *)page_buf->addr + offset;
884 buffer->dma_addr = page_buf->dma_addr + offset;
885 buffer->flags = EFX_TX_BUF_CONT;
886 } else {
887 tx_queue->tso_long_headers++;
888
889 buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
890 if (unlikely(!buffer->heap_buf))
891 return NULL;
892 result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
893 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
894 }
895
896 buffer->len = len;
897
898 return result;
899 }
900
901 /**
902 * efx_tx_queue_insert - push descriptors onto the TX queue
903 * @tx_queue: Efx TX queue
904 * @dma_addr: DMA address of fragment
905 * @len: Length of fragment
906 * @final_buffer: The final buffer inserted into the queue
907 *
908 * Push descriptors onto the TX queue.
909 */
910 static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
911 dma_addr_t dma_addr, unsigned len,
912 struct efx_tx_buffer **final_buffer)
913 {
914 struct efx_tx_buffer *buffer;
915 struct efx_nic *efx = tx_queue->efx;
916 unsigned dma_len;
917
918 EFX_BUG_ON_PARANOID(len <= 0);
919
920 while (1) {
921 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
922 ++tx_queue->insert_count;
923
924 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
925 tx_queue->read_count >=
926 efx->txq_entries);
927
928 buffer->dma_addr = dma_addr;
929
930 dma_len = efx_max_tx_len(efx, dma_addr);
931
932 /* If there is enough space to send then do so */
933 if (dma_len >= len)
934 break;
935
936 buffer->len = dma_len;
937 buffer->flags = EFX_TX_BUF_CONT;
938 dma_addr += dma_len;
939 len -= dma_len;
940 }
941
942 EFX_BUG_ON_PARANOID(!len);
943 buffer->len = len;
944 *final_buffer = buffer;
945 }
946
947
948 /*
949 * Put a TSO header into the TX queue.
950 *
951 * This is special-cased because we know that it is small enough to fit in
952 * a single fragment, and we know it doesn't cross a page boundary. It
953 * also allows us to not worry about end-of-packet etc.
954 */
955 static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
956 struct efx_tx_buffer *buffer, u8 *header)
957 {
958 if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
959 buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
960 header, buffer->len,
961 DMA_TO_DEVICE);
962 if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
963 buffer->dma_addr))) {
964 kfree(buffer->heap_buf);
965 buffer->len = 0;
966 buffer->flags = 0;
967 return -ENOMEM;
968 }
969 buffer->unmap_len = buffer->len;
970 buffer->dma_offset = 0;
971 buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
972 }
973
974 ++tx_queue->insert_count;
975 return 0;
976 }
977
978
979 /* Remove buffers put into a tx_queue. None of the buffers must have
980 * an skb attached.
981 */
982 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
983 unsigned int insert_count)
984 {
985 struct efx_tx_buffer *buffer;
986
987 /* Work backwards until we hit the original insert pointer value */
988 while (tx_queue->insert_count != insert_count) {
989 --tx_queue->insert_count;
990 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
991 efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
992 }
993 }
994
995
996 /* Parse the SKB header and initialise state. */
997 static int tso_start(struct tso_state *st, struct efx_nic *efx,
998 const struct sk_buff *skb)
999 {
1000 bool use_opt_desc = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1001 struct device *dma_dev = &efx->pci_dev->dev;
1002 unsigned int header_len, in_len;
1003 dma_addr_t dma_addr;
1004
1005 st->ip_off = skb_network_header(skb) - skb->data;
1006 st->tcp_off = skb_transport_header(skb) - skb->data;
1007 header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
1008 in_len = skb_headlen(skb) - header_len;
1009 st->header_len = header_len;
1010 st->in_len = in_len;
1011 if (st->protocol == htons(ETH_P_IP)) {
1012 st->ip_base_len = st->header_len - st->ip_off;
1013 st->ipv4_id = ntohs(ip_hdr(skb)->id);
1014 } else {
1015 st->ip_base_len = st->header_len - st->tcp_off;
1016 st->ipv4_id = 0;
1017 }
1018 st->seqnum = ntohl(tcp_hdr(skb)->seq);
1019
1020 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
1021 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
1022 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
1023
1024 st->out_len = skb->len - header_len;
1025
1026 if (!use_opt_desc) {
1027 st->header_unmap_len = 0;
1028
1029 if (likely(in_len == 0)) {
1030 st->dma_flags = 0;
1031 st->unmap_len = 0;
1032 return 0;
1033 }
1034
1035 dma_addr = dma_map_single(dma_dev, skb->data + header_len,
1036 in_len, DMA_TO_DEVICE);
1037 st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
1038 st->dma_addr = dma_addr;
1039 st->unmap_addr = dma_addr;
1040 st->unmap_len = in_len;
1041 } else {
1042 dma_addr = dma_map_single(dma_dev, skb->data,
1043 skb_headlen(skb), DMA_TO_DEVICE);
1044 st->header_dma_addr = dma_addr;
1045 st->header_unmap_len = skb_headlen(skb);
1046 st->dma_flags = 0;
1047 st->dma_addr = dma_addr + header_len;
1048 st->unmap_len = 0;
1049 }
1050
1051 return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
1052 }
1053
1054 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
1055 skb_frag_t *frag)
1056 {
1057 st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
1058 skb_frag_size(frag), DMA_TO_DEVICE);
1059 if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
1060 st->dma_flags = 0;
1061 st->unmap_len = skb_frag_size(frag);
1062 st->in_len = skb_frag_size(frag);
1063 st->dma_addr = st->unmap_addr;
1064 return 0;
1065 }
1066 return -ENOMEM;
1067 }
1068
1069
1070 /**
1071 * tso_fill_packet_with_fragment - form descriptors for the current fragment
1072 * @tx_queue: Efx TX queue
1073 * @skb: Socket buffer
1074 * @st: TSO state
1075 *
1076 * Form descriptors for the current fragment, until we reach the end
1077 * of fragment or end-of-packet.
1078 */
1079 static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
1080 const struct sk_buff *skb,
1081 struct tso_state *st)
1082 {
1083 struct efx_tx_buffer *buffer;
1084 int n;
1085
1086 if (st->in_len == 0)
1087 return;
1088 if (st->packet_space == 0)
1089 return;
1090
1091 EFX_BUG_ON_PARANOID(st->in_len <= 0);
1092 EFX_BUG_ON_PARANOID(st->packet_space <= 0);
1093
1094 n = min(st->in_len, st->packet_space);
1095
1096 st->packet_space -= n;
1097 st->out_len -= n;
1098 st->in_len -= n;
1099
1100 efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1101
1102 if (st->out_len == 0) {
1103 /* Transfer ownership of the skb */
1104 buffer->skb = skb;
1105 buffer->flags = EFX_TX_BUF_SKB;
1106 } else if (st->packet_space != 0) {
1107 buffer->flags = EFX_TX_BUF_CONT;
1108 }
1109
1110 if (st->in_len == 0) {
1111 /* Transfer ownership of the DMA mapping */
1112 buffer->unmap_len = st->unmap_len;
1113 buffer->dma_offset = buffer->unmap_len - buffer->len;
1114 buffer->flags |= st->dma_flags;
1115 st->unmap_len = 0;
1116 }
1117
1118 st->dma_addr += n;
1119 }
1120
1121
1122 /**
1123 * tso_start_new_packet - generate a new header and prepare for the new packet
1124 * @tx_queue: Efx TX queue
1125 * @skb: Socket buffer
1126 * @st: TSO state
1127 *
1128 * Generate a new header and prepare for the new packet. Return 0 on
1129 * success, or -%ENOMEM if failed to alloc header.
1130 */
1131 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1132 const struct sk_buff *skb,
1133 struct tso_state *st)
1134 {
1135 struct efx_tx_buffer *buffer =
1136 efx_tx_queue_get_insert_buffer(tx_queue);
1137 bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
1138 u8 tcp_flags_clear;
1139
1140 if (!is_last) {
1141 st->packet_space = skb_shinfo(skb)->gso_size;
1142 tcp_flags_clear = 0x09; /* mask out FIN and PSH */
1143 } else {
1144 st->packet_space = st->out_len;
1145 tcp_flags_clear = 0x00;
1146 }
1147
1148 if (!st->header_unmap_len) {
1149 /* Allocate and insert a DMA-mapped header buffer. */
1150 struct tcphdr *tsoh_th;
1151 unsigned ip_length;
1152 u8 *header;
1153 int rc;
1154
1155 header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
1156 if (!header)
1157 return -ENOMEM;
1158
1159 tsoh_th = (struct tcphdr *)(header + st->tcp_off);
1160
1161 /* Copy and update the headers. */
1162 memcpy(header, skb->data, st->header_len);
1163
1164 tsoh_th->seq = htonl(st->seqnum);
1165 ((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
1166
1167 ip_length = st->ip_base_len + st->packet_space;
1168
1169 if (st->protocol == htons(ETH_P_IP)) {
1170 struct iphdr *tsoh_iph =
1171 (struct iphdr *)(header + st->ip_off);
1172
1173 tsoh_iph->tot_len = htons(ip_length);
1174 tsoh_iph->id = htons(st->ipv4_id);
1175 } else {
1176 struct ipv6hdr *tsoh_iph =
1177 (struct ipv6hdr *)(header + st->ip_off);
1178
1179 tsoh_iph->payload_len = htons(ip_length);
1180 }
1181
1182 rc = efx_tso_put_header(tx_queue, buffer, header);
1183 if (unlikely(rc))
1184 return rc;
1185 } else {
1186 /* Send the original headers with a TSO option descriptor
1187 * in front
1188 */
1189 u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
1190
1191 buffer->flags = EFX_TX_BUF_OPTION;
1192 buffer->len = 0;
1193 buffer->unmap_len = 0;
1194 EFX_POPULATE_QWORD_5(buffer->option,
1195 ESF_DZ_TX_DESC_IS_OPT, 1,
1196 ESF_DZ_TX_OPTION_TYPE,
1197 ESE_DZ_TX_OPTION_DESC_TSO,
1198 ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
1199 ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
1200 ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
1201 ++tx_queue->insert_count;
1202
1203 /* We mapped the headers in tso_start(). Unmap them
1204 * when the last segment is completed.
1205 */
1206 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
1207 buffer->dma_addr = st->header_dma_addr;
1208 buffer->len = st->header_len;
1209 if (is_last) {
1210 buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
1211 buffer->unmap_len = st->header_unmap_len;
1212 buffer->dma_offset = 0;
1213 /* Ensure we only unmap them once in case of a
1214 * later DMA mapping error and rollback
1215 */
1216 st->header_unmap_len = 0;
1217 } else {
1218 buffer->flags = EFX_TX_BUF_CONT;
1219 buffer->unmap_len = 0;
1220 }
1221 ++tx_queue->insert_count;
1222 }
1223
1224 st->seqnum += skb_shinfo(skb)->gso_size;
1225
1226 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1227 ++st->ipv4_id;
1228
1229 ++tx_queue->tso_packets;
1230
1231 ++tx_queue->tx_packets;
1232
1233 return 0;
1234 }
1235
1236
1237 /**
1238 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1239 * @tx_queue: Efx TX queue
1240 * @skb: Socket buffer
1241 *
1242 * Context: You must hold netif_tx_lock() to call this function.
1243 *
1244 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1245 * @skb was not enqueued. In all cases @skb is consumed. Return
1246 * %NETDEV_TX_OK.
1247 */
1248 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1249 struct sk_buff *skb)
1250 {
1251 struct efx_nic *efx = tx_queue->efx;
1252 unsigned int old_insert_count = tx_queue->insert_count;
1253 int frag_i, rc;
1254 struct tso_state state;
1255
1256 /* Find the packet protocol and sanity-check it */
1257 state.protocol = efx_tso_check_protocol(skb);
1258
1259 rc = tso_start(&state, efx, skb);
1260 if (rc)
1261 goto mem_err;
1262
1263 if (likely(state.in_len == 0)) {
1264 /* Grab the first payload fragment. */
1265 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1266 frag_i = 0;
1267 rc = tso_get_fragment(&state, efx,
1268 skb_shinfo(skb)->frags + frag_i);
1269 if (rc)
1270 goto mem_err;
1271 } else {
1272 /* Payload starts in the header area. */
1273 frag_i = -1;
1274 }
1275
1276 if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1277 goto mem_err;
1278
1279 while (1) {
1280 tso_fill_packet_with_fragment(tx_queue, skb, &state);
1281
1282 /* Move onto the next fragment? */
1283 if (state.in_len == 0) {
1284 if (++frag_i >= skb_shinfo(skb)->nr_frags)
1285 /* End of payload reached. */
1286 break;
1287 rc = tso_get_fragment(&state, efx,
1288 skb_shinfo(skb)->frags + frag_i);
1289 if (rc)
1290 goto mem_err;
1291 }
1292
1293 /* Start at new packet? */
1294 if (state.packet_space == 0 &&
1295 tso_start_new_packet(tx_queue, skb, &state) < 0)
1296 goto mem_err;
1297 }
1298
1299 netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1300
1301 efx_tx_maybe_stop_queue(tx_queue);
1302
1303 /* Pass off to hardware */
1304 if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq))
1305 efx_nic_push_buffers(tx_queue);
1306
1307 tx_queue->tso_bursts++;
1308 return NETDEV_TX_OK;
1309
1310 mem_err:
1311 netif_err(efx, tx_err, efx->net_dev,
1312 "Out of memory for TSO headers, or DMA mapping error\n");
1313 dev_kfree_skb_any(skb);
1314
1315 /* Free the DMA mapping we were in the process of writing out */
1316 if (state.unmap_len) {
1317 if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
1318 dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
1319 state.unmap_len, DMA_TO_DEVICE);
1320 else
1321 dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
1322 state.unmap_len, DMA_TO_DEVICE);
1323 }
1324
1325 /* Free the header DMA mapping, if using option descriptors */
1326 if (state.header_unmap_len)
1327 dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
1328 state.header_unmap_len, DMA_TO_DEVICE);
1329
1330 efx_enqueue_unwind(tx_queue, old_insert_count);
1331 return NETDEV_TX_OK;
1332 }
This page took 0.091924 seconds and 5 git commands to generate.