sfc: Support for byte queue limits
[deliverable/linux.git] / drivers / net / ethernet / sfc / tx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2010 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24
25 /*
26 * TX descriptor ring full threshold
27 *
28 * The tx_queue descriptor ring fill-level must fall below this value
29 * before we restart the netif queue
30 */
31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
32
33 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
34 struct efx_tx_buffer *buffer,
35 unsigned int *pkts_compl,
36 unsigned int *bytes_compl)
37 {
38 if (buffer->unmap_len) {
39 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
40 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
41 buffer->unmap_len);
42 if (buffer->unmap_single)
43 pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
44 PCI_DMA_TODEVICE);
45 else
46 pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
47 PCI_DMA_TODEVICE);
48 buffer->unmap_len = 0;
49 buffer->unmap_single = false;
50 }
51
52 if (buffer->skb) {
53 (*pkts_compl)++;
54 (*bytes_compl) += buffer->skb->len;
55 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
56 buffer->skb = NULL;
57 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
58 "TX queue %d transmission id %x complete\n",
59 tx_queue->queue, tx_queue->read_count);
60 }
61 }
62
63 /**
64 * struct efx_tso_header - a DMA mapped buffer for packet headers
65 * @next: Linked list of free ones.
66 * The list is protected by the TX queue lock.
67 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
68 * @dma_addr: The DMA address of the header below.
69 *
70 * This controls the memory used for a TSO header. Use TSOH_DATA()
71 * to find the packet header data. Use TSOH_SIZE() to calculate the
72 * total size required for a given packet header length. TSO headers
73 * in the free list are exactly %TSOH_STD_SIZE bytes in size.
74 */
75 struct efx_tso_header {
76 union {
77 struct efx_tso_header *next;
78 size_t unmap_len;
79 };
80 dma_addr_t dma_addr;
81 };
82
83 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
84 struct sk_buff *skb);
85 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
86 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
87 struct efx_tso_header *tsoh);
88
89 static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
90 struct efx_tx_buffer *buffer)
91 {
92 if (buffer->tsoh) {
93 if (likely(!buffer->tsoh->unmap_len)) {
94 buffer->tsoh->next = tx_queue->tso_headers_free;
95 tx_queue->tso_headers_free = buffer->tsoh;
96 } else {
97 efx_tsoh_heap_free(tx_queue, buffer->tsoh);
98 }
99 buffer->tsoh = NULL;
100 }
101 }
102
103
104 static inline unsigned
105 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
106 {
107 /* Depending on the NIC revision, we can use descriptor
108 * lengths up to 8K or 8K-1. However, since PCI Express
109 * devices must split read requests at 4K boundaries, there is
110 * little benefit from using descriptors that cross those
111 * boundaries and we keep things simple by not doing so.
112 */
113 unsigned len = (~dma_addr & 0xfff) + 1;
114
115 /* Work around hardware bug for unaligned buffers. */
116 if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
117 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
118
119 return len;
120 }
121
122 /*
123 * Add a socket buffer to a TX queue
124 *
125 * This maps all fragments of a socket buffer for DMA and adds them to
126 * the TX queue. The queue's insert pointer will be incremented by
127 * the number of fragments in the socket buffer.
128 *
129 * If any DMA mapping fails, any mapped fragments will be unmapped,
130 * the queue's insert pointer will be restored to its original value.
131 *
132 * This function is split out from efx_hard_start_xmit to allow the
133 * loopback test to direct packets via specific TX queues.
134 *
135 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
136 * You must hold netif_tx_lock() to call this function.
137 */
138 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
139 {
140 struct efx_nic *efx = tx_queue->efx;
141 struct pci_dev *pci_dev = efx->pci_dev;
142 struct efx_tx_buffer *buffer;
143 skb_frag_t *fragment;
144 unsigned int len, unmap_len = 0, fill_level, insert_ptr;
145 dma_addr_t dma_addr, unmap_addr = 0;
146 unsigned int dma_len;
147 bool unmap_single;
148 int q_space, i = 0;
149 netdev_tx_t rc = NETDEV_TX_OK;
150
151 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
152
153 if (skb_shinfo(skb)->gso_size)
154 return efx_enqueue_skb_tso(tx_queue, skb);
155
156 /* Get size of the initial fragment */
157 len = skb_headlen(skb);
158
159 /* Pad if necessary */
160 if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
161 EFX_BUG_ON_PARANOID(skb->data_len);
162 len = 32 + 1;
163 if (skb_pad(skb, len - skb->len))
164 return NETDEV_TX_OK;
165 }
166
167 fill_level = tx_queue->insert_count - tx_queue->old_read_count;
168 q_space = efx->txq_entries - 1 - fill_level;
169
170 /* Map for DMA. Use pci_map_single rather than pci_map_page
171 * since this is more efficient on machines with sparse
172 * memory.
173 */
174 unmap_single = true;
175 dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
176
177 /* Process all fragments */
178 while (1) {
179 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
180 goto pci_err;
181
182 /* Store fields for marking in the per-fragment final
183 * descriptor */
184 unmap_len = len;
185 unmap_addr = dma_addr;
186
187 /* Add to TX queue, splitting across DMA boundaries */
188 do {
189 if (unlikely(q_space-- <= 0)) {
190 /* It might be that completions have
191 * happened since the xmit path last
192 * checked. Update the xmit path's
193 * copy of read_count.
194 */
195 netif_tx_stop_queue(tx_queue->core_txq);
196 /* This memory barrier protects the
197 * change of queue state from the access
198 * of read_count. */
199 smp_mb();
200 tx_queue->old_read_count =
201 ACCESS_ONCE(tx_queue->read_count);
202 fill_level = (tx_queue->insert_count
203 - tx_queue->old_read_count);
204 q_space = efx->txq_entries - 1 - fill_level;
205 if (unlikely(q_space-- <= 0)) {
206 rc = NETDEV_TX_BUSY;
207 goto unwind;
208 }
209 smp_mb();
210 if (likely(!efx->loopback_selftest))
211 netif_tx_start_queue(
212 tx_queue->core_txq);
213 }
214
215 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
216 buffer = &tx_queue->buffer[insert_ptr];
217 efx_tsoh_free(tx_queue, buffer);
218 EFX_BUG_ON_PARANOID(buffer->tsoh);
219 EFX_BUG_ON_PARANOID(buffer->skb);
220 EFX_BUG_ON_PARANOID(buffer->len);
221 EFX_BUG_ON_PARANOID(!buffer->continuation);
222 EFX_BUG_ON_PARANOID(buffer->unmap_len);
223
224 dma_len = efx_max_tx_len(efx, dma_addr);
225 if (likely(dma_len >= len))
226 dma_len = len;
227
228 /* Fill out per descriptor fields */
229 buffer->len = dma_len;
230 buffer->dma_addr = dma_addr;
231 len -= dma_len;
232 dma_addr += dma_len;
233 ++tx_queue->insert_count;
234 } while (len);
235
236 /* Transfer ownership of the unmapping to the final buffer */
237 buffer->unmap_single = unmap_single;
238 buffer->unmap_len = unmap_len;
239 unmap_len = 0;
240
241 /* Get address and size of next fragment */
242 if (i >= skb_shinfo(skb)->nr_frags)
243 break;
244 fragment = &skb_shinfo(skb)->frags[i];
245 len = skb_frag_size(fragment);
246 i++;
247 /* Map for DMA */
248 unmap_single = false;
249 dma_addr = skb_frag_dma_map(&pci_dev->dev, fragment, 0, len,
250 DMA_TO_DEVICE);
251 }
252
253 /* Transfer ownership of the skb to the final buffer */
254 buffer->skb = skb;
255 buffer->continuation = false;
256
257 netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
258
259 /* Pass off to hardware */
260 efx_nic_push_buffers(tx_queue);
261
262 return NETDEV_TX_OK;
263
264 pci_err:
265 netif_err(efx, tx_err, efx->net_dev,
266 " TX queue %d could not map skb with %d bytes %d "
267 "fragments for DMA\n", tx_queue->queue, skb->len,
268 skb_shinfo(skb)->nr_frags + 1);
269
270 /* Mark the packet as transmitted, and free the SKB ourselves */
271 dev_kfree_skb_any(skb);
272
273 unwind:
274 /* Work backwards until we hit the original insert pointer value */
275 while (tx_queue->insert_count != tx_queue->write_count) {
276 unsigned int pkts_compl = 0, bytes_compl = 0;
277 --tx_queue->insert_count;
278 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
279 buffer = &tx_queue->buffer[insert_ptr];
280 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
281 buffer->len = 0;
282 }
283
284 /* Free the fragment we were mid-way through pushing */
285 if (unmap_len) {
286 if (unmap_single)
287 pci_unmap_single(pci_dev, unmap_addr, unmap_len,
288 PCI_DMA_TODEVICE);
289 else
290 pci_unmap_page(pci_dev, unmap_addr, unmap_len,
291 PCI_DMA_TODEVICE);
292 }
293
294 return rc;
295 }
296
297 /* Remove packets from the TX queue
298 *
299 * This removes packets from the TX queue, up to and including the
300 * specified index.
301 */
302 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
303 unsigned int index,
304 unsigned int *pkts_compl,
305 unsigned int *bytes_compl)
306 {
307 struct efx_nic *efx = tx_queue->efx;
308 unsigned int stop_index, read_ptr;
309
310 stop_index = (index + 1) & tx_queue->ptr_mask;
311 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
312
313 while (read_ptr != stop_index) {
314 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
315 if (unlikely(buffer->len == 0)) {
316 netif_err(efx, tx_err, efx->net_dev,
317 "TX queue %d spurious TX completion id %x\n",
318 tx_queue->queue, read_ptr);
319 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
320 return;
321 }
322
323 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
324 buffer->continuation = true;
325 buffer->len = 0;
326
327 ++tx_queue->read_count;
328 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
329 }
330 }
331
332 /* Initiate a packet transmission. We use one channel per CPU
333 * (sharing when we have more CPUs than channels). On Falcon, the TX
334 * completion events will be directed back to the CPU that transmitted
335 * the packet, which should be cache-efficient.
336 *
337 * Context: non-blocking.
338 * Note that returning anything other than NETDEV_TX_OK will cause the
339 * OS to free the skb.
340 */
341 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
342 struct net_device *net_dev)
343 {
344 struct efx_nic *efx = netdev_priv(net_dev);
345 struct efx_tx_queue *tx_queue;
346 unsigned index, type;
347
348 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
349
350 index = skb_get_queue_mapping(skb);
351 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
352 if (index >= efx->n_tx_channels) {
353 index -= efx->n_tx_channels;
354 type |= EFX_TXQ_TYPE_HIGHPRI;
355 }
356 tx_queue = efx_get_tx_queue(efx, index, type);
357
358 return efx_enqueue_skb(tx_queue, skb);
359 }
360
361 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
362 {
363 struct efx_nic *efx = tx_queue->efx;
364
365 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
366 tx_queue->core_txq =
367 netdev_get_tx_queue(efx->net_dev,
368 tx_queue->queue / EFX_TXQ_TYPES +
369 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
370 efx->n_tx_channels : 0));
371 }
372
373 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
374 {
375 struct efx_nic *efx = netdev_priv(net_dev);
376 struct efx_channel *channel;
377 struct efx_tx_queue *tx_queue;
378 unsigned tc;
379 int rc;
380
381 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
382 return -EINVAL;
383
384 if (num_tc == net_dev->num_tc)
385 return 0;
386
387 for (tc = 0; tc < num_tc; tc++) {
388 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
389 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
390 }
391
392 if (num_tc > net_dev->num_tc) {
393 /* Initialise high-priority queues as necessary */
394 efx_for_each_channel(channel, efx) {
395 efx_for_each_possible_channel_tx_queue(tx_queue,
396 channel) {
397 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
398 continue;
399 if (!tx_queue->buffer) {
400 rc = efx_probe_tx_queue(tx_queue);
401 if (rc)
402 return rc;
403 }
404 if (!tx_queue->initialised)
405 efx_init_tx_queue(tx_queue);
406 efx_init_tx_queue_core_txq(tx_queue);
407 }
408 }
409 } else {
410 /* Reduce number of classes before number of queues */
411 net_dev->num_tc = num_tc;
412 }
413
414 rc = netif_set_real_num_tx_queues(net_dev,
415 max_t(int, num_tc, 1) *
416 efx->n_tx_channels);
417 if (rc)
418 return rc;
419
420 /* Do not destroy high-priority queues when they become
421 * unused. We would have to flush them first, and it is
422 * fairly difficult to flush a subset of TX queues. Leave
423 * it to efx_fini_channels().
424 */
425
426 net_dev->num_tc = num_tc;
427 return 0;
428 }
429
430 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
431 {
432 unsigned fill_level;
433 struct efx_nic *efx = tx_queue->efx;
434 unsigned int pkts_compl = 0, bytes_compl = 0;
435
436 EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
437
438 efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
439 netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
440
441 /* See if we need to restart the netif queue. This barrier
442 * separates the update of read_count from the test of the
443 * queue state. */
444 smp_mb();
445 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
446 likely(efx->port_enabled) &&
447 likely(netif_device_present(efx->net_dev))) {
448 fill_level = tx_queue->insert_count - tx_queue->read_count;
449 if (fill_level < EFX_TXQ_THRESHOLD(efx)) {
450 EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
451 netif_tx_wake_queue(tx_queue->core_txq);
452 }
453 }
454
455 /* Check whether the hardware queue is now empty */
456 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
457 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
458 if (tx_queue->read_count == tx_queue->old_write_count) {
459 smp_mb();
460 tx_queue->empty_read_count =
461 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
462 }
463 }
464 }
465
466 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
467 {
468 struct efx_nic *efx = tx_queue->efx;
469 unsigned int entries;
470 int i, rc;
471
472 /* Create the smallest power-of-two aligned ring */
473 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
474 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
475 tx_queue->ptr_mask = entries - 1;
476
477 netif_dbg(efx, probe, efx->net_dev,
478 "creating TX queue %d size %#x mask %#x\n",
479 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
480
481 /* Allocate software ring */
482 tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer),
483 GFP_KERNEL);
484 if (!tx_queue->buffer)
485 return -ENOMEM;
486 for (i = 0; i <= tx_queue->ptr_mask; ++i)
487 tx_queue->buffer[i].continuation = true;
488
489 /* Allocate hardware ring */
490 rc = efx_nic_probe_tx(tx_queue);
491 if (rc)
492 goto fail;
493
494 return 0;
495
496 fail:
497 kfree(tx_queue->buffer);
498 tx_queue->buffer = NULL;
499 return rc;
500 }
501
502 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
503 {
504 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
505 "initialising TX queue %d\n", tx_queue->queue);
506
507 tx_queue->insert_count = 0;
508 tx_queue->write_count = 0;
509 tx_queue->old_write_count = 0;
510 tx_queue->read_count = 0;
511 tx_queue->old_read_count = 0;
512 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
513
514 /* Set up TX descriptor ring */
515 efx_nic_init_tx(tx_queue);
516
517 tx_queue->initialised = true;
518 }
519
520 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
521 {
522 struct efx_tx_buffer *buffer;
523
524 if (!tx_queue->buffer)
525 return;
526
527 /* Free any buffers left in the ring */
528 while (tx_queue->read_count != tx_queue->write_count) {
529 unsigned int pkts_compl = 0, bytes_compl = 0;
530 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
531 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
532 buffer->continuation = true;
533 buffer->len = 0;
534
535 ++tx_queue->read_count;
536 }
537 netdev_tx_reset_queue(tx_queue->core_txq);
538 }
539
540 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
541 {
542 if (!tx_queue->initialised)
543 return;
544
545 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
546 "shutting down TX queue %d\n", tx_queue->queue);
547
548 tx_queue->initialised = false;
549
550 /* Flush TX queue, remove descriptor ring */
551 efx_nic_fini_tx(tx_queue);
552
553 efx_release_tx_buffers(tx_queue);
554
555 /* Free up TSO header cache */
556 efx_fini_tso(tx_queue);
557 }
558
559 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
560 {
561 if (!tx_queue->buffer)
562 return;
563
564 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
565 "destroying TX queue %d\n", tx_queue->queue);
566 efx_nic_remove_tx(tx_queue);
567
568 kfree(tx_queue->buffer);
569 tx_queue->buffer = NULL;
570 }
571
572
573 /* Efx TCP segmentation acceleration.
574 *
575 * Why? Because by doing it here in the driver we can go significantly
576 * faster than the GSO.
577 *
578 * Requires TX checksum offload support.
579 */
580
581 /* Number of bytes inserted at the start of a TSO header buffer,
582 * similar to NET_IP_ALIGN.
583 */
584 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
585 #define TSOH_OFFSET 0
586 #else
587 #define TSOH_OFFSET NET_IP_ALIGN
588 #endif
589
590 #define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET)
591
592 /* Total size of struct efx_tso_header, buffer and padding */
593 #define TSOH_SIZE(hdr_len) \
594 (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
595
596 /* Size of blocks on free list. Larger blocks must be allocated from
597 * the heap.
598 */
599 #define TSOH_STD_SIZE 128
600
601 #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
602 #define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data)
603 #define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data)
604 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
605 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
606
607 /**
608 * struct tso_state - TSO state for an SKB
609 * @out_len: Remaining length in current segment
610 * @seqnum: Current sequence number
611 * @ipv4_id: Current IPv4 ID, host endian
612 * @packet_space: Remaining space in current packet
613 * @dma_addr: DMA address of current position
614 * @in_len: Remaining length in current SKB fragment
615 * @unmap_len: Length of SKB fragment
616 * @unmap_addr: DMA address of SKB fragment
617 * @unmap_single: DMA single vs page mapping flag
618 * @protocol: Network protocol (after any VLAN header)
619 * @header_len: Number of bytes of header
620 * @full_packet_size: Number of bytes to put in each outgoing segment
621 *
622 * The state used during segmentation. It is put into this data structure
623 * just to make it easy to pass into inline functions.
624 */
625 struct tso_state {
626 /* Output position */
627 unsigned out_len;
628 unsigned seqnum;
629 unsigned ipv4_id;
630 unsigned packet_space;
631
632 /* Input position */
633 dma_addr_t dma_addr;
634 unsigned in_len;
635 unsigned unmap_len;
636 dma_addr_t unmap_addr;
637 bool unmap_single;
638
639 __be16 protocol;
640 unsigned header_len;
641 int full_packet_size;
642 };
643
644
645 /*
646 * Verify that our various assumptions about sk_buffs and the conditions
647 * under which TSO will be attempted hold true. Return the protocol number.
648 */
649 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
650 {
651 __be16 protocol = skb->protocol;
652
653 EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
654 protocol);
655 if (protocol == htons(ETH_P_8021Q)) {
656 /* Find the encapsulated protocol; reset network header
657 * and transport header based on that. */
658 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
659 protocol = veh->h_vlan_encapsulated_proto;
660 skb_set_network_header(skb, sizeof(*veh));
661 if (protocol == htons(ETH_P_IP))
662 skb_set_transport_header(skb, sizeof(*veh) +
663 4 * ip_hdr(skb)->ihl);
664 else if (protocol == htons(ETH_P_IPV6))
665 skb_set_transport_header(skb, sizeof(*veh) +
666 sizeof(struct ipv6hdr));
667 }
668
669 if (protocol == htons(ETH_P_IP)) {
670 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
671 } else {
672 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
673 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
674 }
675 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
676 + (tcp_hdr(skb)->doff << 2u)) >
677 skb_headlen(skb));
678
679 return protocol;
680 }
681
682
683 /*
684 * Allocate a page worth of efx_tso_header structures, and string them
685 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
686 */
687 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
688 {
689
690 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
691 struct efx_tso_header *tsoh;
692 dma_addr_t dma_addr;
693 u8 *base_kva, *kva;
694
695 base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
696 if (base_kva == NULL) {
697 netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
698 "Unable to allocate page for TSO headers\n");
699 return -ENOMEM;
700 }
701
702 /* pci_alloc_consistent() allocates pages. */
703 EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
704
705 for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
706 tsoh = (struct efx_tso_header *)kva;
707 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
708 tsoh->next = tx_queue->tso_headers_free;
709 tx_queue->tso_headers_free = tsoh;
710 }
711
712 return 0;
713 }
714
715
716 /* Free up a TSO header, and all others in the same page. */
717 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
718 struct efx_tso_header *tsoh,
719 struct pci_dev *pci_dev)
720 {
721 struct efx_tso_header **p;
722 unsigned long base_kva;
723 dma_addr_t base_dma;
724
725 base_kva = (unsigned long)tsoh & PAGE_MASK;
726 base_dma = tsoh->dma_addr & PAGE_MASK;
727
728 p = &tx_queue->tso_headers_free;
729 while (*p != NULL) {
730 if (((unsigned long)*p & PAGE_MASK) == base_kva)
731 *p = (*p)->next;
732 else
733 p = &(*p)->next;
734 }
735
736 pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
737 }
738
739 static struct efx_tso_header *
740 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
741 {
742 struct efx_tso_header *tsoh;
743
744 tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
745 if (unlikely(!tsoh))
746 return NULL;
747
748 tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
749 TSOH_BUFFER(tsoh), header_len,
750 PCI_DMA_TODEVICE);
751 if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
752 tsoh->dma_addr))) {
753 kfree(tsoh);
754 return NULL;
755 }
756
757 tsoh->unmap_len = header_len;
758 return tsoh;
759 }
760
761 static void
762 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
763 {
764 pci_unmap_single(tx_queue->efx->pci_dev,
765 tsoh->dma_addr, tsoh->unmap_len,
766 PCI_DMA_TODEVICE);
767 kfree(tsoh);
768 }
769
770 /**
771 * efx_tx_queue_insert - push descriptors onto the TX queue
772 * @tx_queue: Efx TX queue
773 * @dma_addr: DMA address of fragment
774 * @len: Length of fragment
775 * @final_buffer: The final buffer inserted into the queue
776 *
777 * Push descriptors onto the TX queue. Return 0 on success or 1 if
778 * @tx_queue full.
779 */
780 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
781 dma_addr_t dma_addr, unsigned len,
782 struct efx_tx_buffer **final_buffer)
783 {
784 struct efx_tx_buffer *buffer;
785 struct efx_nic *efx = tx_queue->efx;
786 unsigned dma_len, fill_level, insert_ptr;
787 int q_space;
788
789 EFX_BUG_ON_PARANOID(len <= 0);
790
791 fill_level = tx_queue->insert_count - tx_queue->old_read_count;
792 /* -1 as there is no way to represent all descriptors used */
793 q_space = efx->txq_entries - 1 - fill_level;
794
795 while (1) {
796 if (unlikely(q_space-- <= 0)) {
797 /* It might be that completions have happened
798 * since the xmit path last checked. Update
799 * the xmit path's copy of read_count.
800 */
801 netif_tx_stop_queue(tx_queue->core_txq);
802 /* This memory barrier protects the change of
803 * queue state from the access of read_count. */
804 smp_mb();
805 tx_queue->old_read_count =
806 ACCESS_ONCE(tx_queue->read_count);
807 fill_level = (tx_queue->insert_count
808 - tx_queue->old_read_count);
809 q_space = efx->txq_entries - 1 - fill_level;
810 if (unlikely(q_space-- <= 0)) {
811 *final_buffer = NULL;
812 return 1;
813 }
814 smp_mb();
815 netif_tx_start_queue(tx_queue->core_txq);
816 }
817
818 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
819 buffer = &tx_queue->buffer[insert_ptr];
820 ++tx_queue->insert_count;
821
822 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
823 tx_queue->read_count >=
824 efx->txq_entries);
825
826 efx_tsoh_free(tx_queue, buffer);
827 EFX_BUG_ON_PARANOID(buffer->len);
828 EFX_BUG_ON_PARANOID(buffer->unmap_len);
829 EFX_BUG_ON_PARANOID(buffer->skb);
830 EFX_BUG_ON_PARANOID(!buffer->continuation);
831 EFX_BUG_ON_PARANOID(buffer->tsoh);
832
833 buffer->dma_addr = dma_addr;
834
835 dma_len = efx_max_tx_len(efx, dma_addr);
836
837 /* If there is enough space to send then do so */
838 if (dma_len >= len)
839 break;
840
841 buffer->len = dma_len; /* Don't set the other members */
842 dma_addr += dma_len;
843 len -= dma_len;
844 }
845
846 EFX_BUG_ON_PARANOID(!len);
847 buffer->len = len;
848 *final_buffer = buffer;
849 return 0;
850 }
851
852
853 /*
854 * Put a TSO header into the TX queue.
855 *
856 * This is special-cased because we know that it is small enough to fit in
857 * a single fragment, and we know it doesn't cross a page boundary. It
858 * also allows us to not worry about end-of-packet etc.
859 */
860 static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
861 struct efx_tso_header *tsoh, unsigned len)
862 {
863 struct efx_tx_buffer *buffer;
864
865 buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
866 efx_tsoh_free(tx_queue, buffer);
867 EFX_BUG_ON_PARANOID(buffer->len);
868 EFX_BUG_ON_PARANOID(buffer->unmap_len);
869 EFX_BUG_ON_PARANOID(buffer->skb);
870 EFX_BUG_ON_PARANOID(!buffer->continuation);
871 EFX_BUG_ON_PARANOID(buffer->tsoh);
872 buffer->len = len;
873 buffer->dma_addr = tsoh->dma_addr;
874 buffer->tsoh = tsoh;
875
876 ++tx_queue->insert_count;
877 }
878
879
880 /* Remove descriptors put into a tx_queue. */
881 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
882 {
883 struct efx_tx_buffer *buffer;
884 dma_addr_t unmap_addr;
885
886 /* Work backwards until we hit the original insert pointer value */
887 while (tx_queue->insert_count != tx_queue->write_count) {
888 --tx_queue->insert_count;
889 buffer = &tx_queue->buffer[tx_queue->insert_count &
890 tx_queue->ptr_mask];
891 efx_tsoh_free(tx_queue, buffer);
892 EFX_BUG_ON_PARANOID(buffer->skb);
893 if (buffer->unmap_len) {
894 unmap_addr = (buffer->dma_addr + buffer->len -
895 buffer->unmap_len);
896 if (buffer->unmap_single)
897 pci_unmap_single(tx_queue->efx->pci_dev,
898 unmap_addr, buffer->unmap_len,
899 PCI_DMA_TODEVICE);
900 else
901 pci_unmap_page(tx_queue->efx->pci_dev,
902 unmap_addr, buffer->unmap_len,
903 PCI_DMA_TODEVICE);
904 buffer->unmap_len = 0;
905 }
906 buffer->len = 0;
907 buffer->continuation = true;
908 }
909 }
910
911
912 /* Parse the SKB header and initialise state. */
913 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
914 {
915 /* All ethernet/IP/TCP headers combined size is TCP header size
916 * plus offset of TCP header relative to start of packet.
917 */
918 st->header_len = ((tcp_hdr(skb)->doff << 2u)
919 + PTR_DIFF(tcp_hdr(skb), skb->data));
920 st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
921
922 if (st->protocol == htons(ETH_P_IP))
923 st->ipv4_id = ntohs(ip_hdr(skb)->id);
924 else
925 st->ipv4_id = 0;
926 st->seqnum = ntohl(tcp_hdr(skb)->seq);
927
928 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
929 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
930 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
931
932 st->packet_space = st->full_packet_size;
933 st->out_len = skb->len - st->header_len;
934 st->unmap_len = 0;
935 st->unmap_single = false;
936 }
937
938 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
939 skb_frag_t *frag)
940 {
941 st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
942 skb_frag_size(frag), DMA_TO_DEVICE);
943 if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
944 st->unmap_single = false;
945 st->unmap_len = skb_frag_size(frag);
946 st->in_len = skb_frag_size(frag);
947 st->dma_addr = st->unmap_addr;
948 return 0;
949 }
950 return -ENOMEM;
951 }
952
953 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
954 const struct sk_buff *skb)
955 {
956 int hl = st->header_len;
957 int len = skb_headlen(skb) - hl;
958
959 st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
960 len, PCI_DMA_TODEVICE);
961 if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
962 st->unmap_single = true;
963 st->unmap_len = len;
964 st->in_len = len;
965 st->dma_addr = st->unmap_addr;
966 return 0;
967 }
968 return -ENOMEM;
969 }
970
971
972 /**
973 * tso_fill_packet_with_fragment - form descriptors for the current fragment
974 * @tx_queue: Efx TX queue
975 * @skb: Socket buffer
976 * @st: TSO state
977 *
978 * Form descriptors for the current fragment, until we reach the end
979 * of fragment or end-of-packet. Return 0 on success, 1 if not enough
980 * space in @tx_queue.
981 */
982 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
983 const struct sk_buff *skb,
984 struct tso_state *st)
985 {
986 struct efx_tx_buffer *buffer;
987 int n, end_of_packet, rc;
988
989 if (st->in_len == 0)
990 return 0;
991 if (st->packet_space == 0)
992 return 0;
993
994 EFX_BUG_ON_PARANOID(st->in_len <= 0);
995 EFX_BUG_ON_PARANOID(st->packet_space <= 0);
996
997 n = min(st->in_len, st->packet_space);
998
999 st->packet_space -= n;
1000 st->out_len -= n;
1001 st->in_len -= n;
1002
1003 rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
1004 if (likely(rc == 0)) {
1005 if (st->out_len == 0)
1006 /* Transfer ownership of the skb */
1007 buffer->skb = skb;
1008
1009 end_of_packet = st->out_len == 0 || st->packet_space == 0;
1010 buffer->continuation = !end_of_packet;
1011
1012 if (st->in_len == 0) {
1013 /* Transfer ownership of the pci mapping */
1014 buffer->unmap_len = st->unmap_len;
1015 buffer->unmap_single = st->unmap_single;
1016 st->unmap_len = 0;
1017 }
1018 }
1019
1020 st->dma_addr += n;
1021 return rc;
1022 }
1023
1024
1025 /**
1026 * tso_start_new_packet - generate a new header and prepare for the new packet
1027 * @tx_queue: Efx TX queue
1028 * @skb: Socket buffer
1029 * @st: TSO state
1030 *
1031 * Generate a new header and prepare for the new packet. Return 0 on
1032 * success, or -1 if failed to alloc header.
1033 */
1034 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1035 const struct sk_buff *skb,
1036 struct tso_state *st)
1037 {
1038 struct efx_tso_header *tsoh;
1039 struct tcphdr *tsoh_th;
1040 unsigned ip_length;
1041 u8 *header;
1042
1043 /* Allocate a DMA-mapped header buffer. */
1044 if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
1045 if (tx_queue->tso_headers_free == NULL) {
1046 if (efx_tsoh_block_alloc(tx_queue))
1047 return -1;
1048 }
1049 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
1050 tsoh = tx_queue->tso_headers_free;
1051 tx_queue->tso_headers_free = tsoh->next;
1052 tsoh->unmap_len = 0;
1053 } else {
1054 tx_queue->tso_long_headers++;
1055 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
1056 if (unlikely(!tsoh))
1057 return -1;
1058 }
1059
1060 header = TSOH_BUFFER(tsoh);
1061 tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
1062
1063 /* Copy and update the headers. */
1064 memcpy(header, skb->data, st->header_len);
1065
1066 tsoh_th->seq = htonl(st->seqnum);
1067 st->seqnum += skb_shinfo(skb)->gso_size;
1068 if (st->out_len > skb_shinfo(skb)->gso_size) {
1069 /* This packet will not finish the TSO burst. */
1070 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1071 tsoh_th->fin = 0;
1072 tsoh_th->psh = 0;
1073 } else {
1074 /* This packet will be the last in the TSO burst. */
1075 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1076 tsoh_th->fin = tcp_hdr(skb)->fin;
1077 tsoh_th->psh = tcp_hdr(skb)->psh;
1078 }
1079
1080 if (st->protocol == htons(ETH_P_IP)) {
1081 struct iphdr *tsoh_iph =
1082 (struct iphdr *)(header + SKB_IPV4_OFF(skb));
1083
1084 tsoh_iph->tot_len = htons(ip_length);
1085
1086 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1087 tsoh_iph->id = htons(st->ipv4_id);
1088 st->ipv4_id++;
1089 } else {
1090 struct ipv6hdr *tsoh_iph =
1091 (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1092
1093 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1094 }
1095
1096 st->packet_space = skb_shinfo(skb)->gso_size;
1097 ++tx_queue->tso_packets;
1098
1099 /* Form a descriptor for this header. */
1100 efx_tso_put_header(tx_queue, tsoh, st->header_len);
1101
1102 return 0;
1103 }
1104
1105
1106 /**
1107 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1108 * @tx_queue: Efx TX queue
1109 * @skb: Socket buffer
1110 *
1111 * Context: You must hold netif_tx_lock() to call this function.
1112 *
1113 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1114 * @skb was not enqueued. In all cases @skb is consumed. Return
1115 * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1116 */
1117 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1118 struct sk_buff *skb)
1119 {
1120 struct efx_nic *efx = tx_queue->efx;
1121 int frag_i, rc, rc2 = NETDEV_TX_OK;
1122 struct tso_state state;
1123
1124 /* Find the packet protocol and sanity-check it */
1125 state.protocol = efx_tso_check_protocol(skb);
1126
1127 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1128
1129 tso_start(&state, skb);
1130
1131 /* Assume that skb header area contains exactly the headers, and
1132 * all payload is in the frag list.
1133 */
1134 if (skb_headlen(skb) == state.header_len) {
1135 /* Grab the first payload fragment. */
1136 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1137 frag_i = 0;
1138 rc = tso_get_fragment(&state, efx,
1139 skb_shinfo(skb)->frags + frag_i);
1140 if (rc)
1141 goto mem_err;
1142 } else {
1143 rc = tso_get_head_fragment(&state, efx, skb);
1144 if (rc)
1145 goto mem_err;
1146 frag_i = -1;
1147 }
1148
1149 if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1150 goto mem_err;
1151
1152 while (1) {
1153 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1154 if (unlikely(rc)) {
1155 rc2 = NETDEV_TX_BUSY;
1156 goto unwind;
1157 }
1158
1159 /* Move onto the next fragment? */
1160 if (state.in_len == 0) {
1161 if (++frag_i >= skb_shinfo(skb)->nr_frags)
1162 /* End of payload reached. */
1163 break;
1164 rc = tso_get_fragment(&state, efx,
1165 skb_shinfo(skb)->frags + frag_i);
1166 if (rc)
1167 goto mem_err;
1168 }
1169
1170 /* Start at new packet? */
1171 if (state.packet_space == 0 &&
1172 tso_start_new_packet(tx_queue, skb, &state) < 0)
1173 goto mem_err;
1174 }
1175
1176 /* Pass off to hardware */
1177 efx_nic_push_buffers(tx_queue);
1178
1179 netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
1180
1181 tx_queue->tso_bursts++;
1182 return NETDEV_TX_OK;
1183
1184 mem_err:
1185 netif_err(efx, tx_err, efx->net_dev,
1186 "Out of memory for TSO headers, or PCI mapping error\n");
1187 dev_kfree_skb_any(skb);
1188
1189 unwind:
1190 /* Free the DMA mapping we were in the process of writing out */
1191 if (state.unmap_len) {
1192 if (state.unmap_single)
1193 pci_unmap_single(efx->pci_dev, state.unmap_addr,
1194 state.unmap_len, PCI_DMA_TODEVICE);
1195 else
1196 pci_unmap_page(efx->pci_dev, state.unmap_addr,
1197 state.unmap_len, PCI_DMA_TODEVICE);
1198 }
1199
1200 efx_enqueue_unwind(tx_queue);
1201 return rc2;
1202 }
1203
1204
1205 /*
1206 * Free up all TSO datastructures associated with tx_queue. This
1207 * routine should be called only once the tx_queue is both empty and
1208 * will no longer be used.
1209 */
1210 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1211 {
1212 unsigned i;
1213
1214 if (tx_queue->buffer) {
1215 for (i = 0; i <= tx_queue->ptr_mask; ++i)
1216 efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1217 }
1218
1219 while (tx_queue->tso_headers_free != NULL)
1220 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1221 tx_queue->efx->pci_dev);
1222 }
This page took 0.072033 seconds and 5 git commands to generate.