Merge branch 'next/cross-platform' of git://git.linaro.org/people/arnd/arm-soc
[deliverable/linux.git] / drivers / net / ethernet / sfc / tx.c
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2010 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24
25 /*
26 * TX descriptor ring full threshold
27 *
28 * The tx_queue descriptor ring fill-level must fall below this value
29 * before we restart the netif queue
30 */
31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
32
33 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
34 struct efx_tx_buffer *buffer)
35 {
36 if (buffer->unmap_len) {
37 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
38 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
39 buffer->unmap_len);
40 if (buffer->unmap_single)
41 pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
42 PCI_DMA_TODEVICE);
43 else
44 pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
45 PCI_DMA_TODEVICE);
46 buffer->unmap_len = 0;
47 buffer->unmap_single = false;
48 }
49
50 if (buffer->skb) {
51 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
52 buffer->skb = NULL;
53 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
54 "TX queue %d transmission id %x complete\n",
55 tx_queue->queue, tx_queue->read_count);
56 }
57 }
58
59 /**
60 * struct efx_tso_header - a DMA mapped buffer for packet headers
61 * @next: Linked list of free ones.
62 * The list is protected by the TX queue lock.
63 * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
64 * @dma_addr: The DMA address of the header below.
65 *
66 * This controls the memory used for a TSO header. Use TSOH_DATA()
67 * to find the packet header data. Use TSOH_SIZE() to calculate the
68 * total size required for a given packet header length. TSO headers
69 * in the free list are exactly %TSOH_STD_SIZE bytes in size.
70 */
71 struct efx_tso_header {
72 union {
73 struct efx_tso_header *next;
74 size_t unmap_len;
75 };
76 dma_addr_t dma_addr;
77 };
78
79 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
80 struct sk_buff *skb);
81 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
82 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
83 struct efx_tso_header *tsoh);
84
85 static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
86 struct efx_tx_buffer *buffer)
87 {
88 if (buffer->tsoh) {
89 if (likely(!buffer->tsoh->unmap_len)) {
90 buffer->tsoh->next = tx_queue->tso_headers_free;
91 tx_queue->tso_headers_free = buffer->tsoh;
92 } else {
93 efx_tsoh_heap_free(tx_queue, buffer->tsoh);
94 }
95 buffer->tsoh = NULL;
96 }
97 }
98
99
100 static inline unsigned
101 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
102 {
103 /* Depending on the NIC revision, we can use descriptor
104 * lengths up to 8K or 8K-1. However, since PCI Express
105 * devices must split read requests at 4K boundaries, there is
106 * little benefit from using descriptors that cross those
107 * boundaries and we keep things simple by not doing so.
108 */
109 unsigned len = (~dma_addr & 0xfff) + 1;
110
111 /* Work around hardware bug for unaligned buffers. */
112 if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
113 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
114
115 return len;
116 }
117
118 /*
119 * Add a socket buffer to a TX queue
120 *
121 * This maps all fragments of a socket buffer for DMA and adds them to
122 * the TX queue. The queue's insert pointer will be incremented by
123 * the number of fragments in the socket buffer.
124 *
125 * If any DMA mapping fails, any mapped fragments will be unmapped,
126 * the queue's insert pointer will be restored to its original value.
127 *
128 * This function is split out from efx_hard_start_xmit to allow the
129 * loopback test to direct packets via specific TX queues.
130 *
131 * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
132 * You must hold netif_tx_lock() to call this function.
133 */
134 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
135 {
136 struct efx_nic *efx = tx_queue->efx;
137 struct pci_dev *pci_dev = efx->pci_dev;
138 struct efx_tx_buffer *buffer;
139 skb_frag_t *fragment;
140 unsigned int len, unmap_len = 0, fill_level, insert_ptr;
141 dma_addr_t dma_addr, unmap_addr = 0;
142 unsigned int dma_len;
143 bool unmap_single;
144 int q_space, i = 0;
145 netdev_tx_t rc = NETDEV_TX_OK;
146
147 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
148
149 if (skb_shinfo(skb)->gso_size)
150 return efx_enqueue_skb_tso(tx_queue, skb);
151
152 /* Get size of the initial fragment */
153 len = skb_headlen(skb);
154
155 /* Pad if necessary */
156 if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
157 EFX_BUG_ON_PARANOID(skb->data_len);
158 len = 32 + 1;
159 if (skb_pad(skb, len - skb->len))
160 return NETDEV_TX_OK;
161 }
162
163 fill_level = tx_queue->insert_count - tx_queue->old_read_count;
164 q_space = efx->txq_entries - 1 - fill_level;
165
166 /* Map for DMA. Use pci_map_single rather than pci_map_page
167 * since this is more efficient on machines with sparse
168 * memory.
169 */
170 unmap_single = true;
171 dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
172
173 /* Process all fragments */
174 while (1) {
175 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
176 goto pci_err;
177
178 /* Store fields for marking in the per-fragment final
179 * descriptor */
180 unmap_len = len;
181 unmap_addr = dma_addr;
182
183 /* Add to TX queue, splitting across DMA boundaries */
184 do {
185 if (unlikely(q_space-- <= 0)) {
186 /* It might be that completions have
187 * happened since the xmit path last
188 * checked. Update the xmit path's
189 * copy of read_count.
190 */
191 netif_tx_stop_queue(tx_queue->core_txq);
192 /* This memory barrier protects the
193 * change of queue state from the access
194 * of read_count. */
195 smp_mb();
196 tx_queue->old_read_count =
197 ACCESS_ONCE(tx_queue->read_count);
198 fill_level = (tx_queue->insert_count
199 - tx_queue->old_read_count);
200 q_space = efx->txq_entries - 1 - fill_level;
201 if (unlikely(q_space-- <= 0)) {
202 rc = NETDEV_TX_BUSY;
203 goto unwind;
204 }
205 smp_mb();
206 if (likely(!efx->loopback_selftest))
207 netif_tx_start_queue(
208 tx_queue->core_txq);
209 }
210
211 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
212 buffer = &tx_queue->buffer[insert_ptr];
213 efx_tsoh_free(tx_queue, buffer);
214 EFX_BUG_ON_PARANOID(buffer->tsoh);
215 EFX_BUG_ON_PARANOID(buffer->skb);
216 EFX_BUG_ON_PARANOID(buffer->len);
217 EFX_BUG_ON_PARANOID(!buffer->continuation);
218 EFX_BUG_ON_PARANOID(buffer->unmap_len);
219
220 dma_len = efx_max_tx_len(efx, dma_addr);
221 if (likely(dma_len >= len))
222 dma_len = len;
223
224 /* Fill out per descriptor fields */
225 buffer->len = dma_len;
226 buffer->dma_addr = dma_addr;
227 len -= dma_len;
228 dma_addr += dma_len;
229 ++tx_queue->insert_count;
230 } while (len);
231
232 /* Transfer ownership of the unmapping to the final buffer */
233 buffer->unmap_single = unmap_single;
234 buffer->unmap_len = unmap_len;
235 unmap_len = 0;
236
237 /* Get address and size of next fragment */
238 if (i >= skb_shinfo(skb)->nr_frags)
239 break;
240 fragment = &skb_shinfo(skb)->frags[i];
241 len = skb_frag_size(fragment);
242 i++;
243 /* Map for DMA */
244 unmap_single = false;
245 dma_addr = skb_frag_dma_map(&pci_dev->dev, fragment, 0, len,
246 DMA_TO_DEVICE);
247 }
248
249 /* Transfer ownership of the skb to the final buffer */
250 buffer->skb = skb;
251 buffer->continuation = false;
252
253 /* Pass off to hardware */
254 efx_nic_push_buffers(tx_queue);
255
256 return NETDEV_TX_OK;
257
258 pci_err:
259 netif_err(efx, tx_err, efx->net_dev,
260 " TX queue %d could not map skb with %d bytes %d "
261 "fragments for DMA\n", tx_queue->queue, skb->len,
262 skb_shinfo(skb)->nr_frags + 1);
263
264 /* Mark the packet as transmitted, and free the SKB ourselves */
265 dev_kfree_skb_any(skb);
266
267 unwind:
268 /* Work backwards until we hit the original insert pointer value */
269 while (tx_queue->insert_count != tx_queue->write_count) {
270 --tx_queue->insert_count;
271 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
272 buffer = &tx_queue->buffer[insert_ptr];
273 efx_dequeue_buffer(tx_queue, buffer);
274 buffer->len = 0;
275 }
276
277 /* Free the fragment we were mid-way through pushing */
278 if (unmap_len) {
279 if (unmap_single)
280 pci_unmap_single(pci_dev, unmap_addr, unmap_len,
281 PCI_DMA_TODEVICE);
282 else
283 pci_unmap_page(pci_dev, unmap_addr, unmap_len,
284 PCI_DMA_TODEVICE);
285 }
286
287 return rc;
288 }
289
290 /* Remove packets from the TX queue
291 *
292 * This removes packets from the TX queue, up to and including the
293 * specified index.
294 */
295 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
296 unsigned int index)
297 {
298 struct efx_nic *efx = tx_queue->efx;
299 unsigned int stop_index, read_ptr;
300
301 stop_index = (index + 1) & tx_queue->ptr_mask;
302 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
303
304 while (read_ptr != stop_index) {
305 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
306 if (unlikely(buffer->len == 0)) {
307 netif_err(efx, tx_err, efx->net_dev,
308 "TX queue %d spurious TX completion id %x\n",
309 tx_queue->queue, read_ptr);
310 efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
311 return;
312 }
313
314 efx_dequeue_buffer(tx_queue, buffer);
315 buffer->continuation = true;
316 buffer->len = 0;
317
318 ++tx_queue->read_count;
319 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
320 }
321 }
322
323 /* Initiate a packet transmission. We use one channel per CPU
324 * (sharing when we have more CPUs than channels). On Falcon, the TX
325 * completion events will be directed back to the CPU that transmitted
326 * the packet, which should be cache-efficient.
327 *
328 * Context: non-blocking.
329 * Note that returning anything other than NETDEV_TX_OK will cause the
330 * OS to free the skb.
331 */
332 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
333 struct net_device *net_dev)
334 {
335 struct efx_nic *efx = netdev_priv(net_dev);
336 struct efx_tx_queue *tx_queue;
337 unsigned index, type;
338
339 EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
340
341 index = skb_get_queue_mapping(skb);
342 type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
343 if (index >= efx->n_tx_channels) {
344 index -= efx->n_tx_channels;
345 type |= EFX_TXQ_TYPE_HIGHPRI;
346 }
347 tx_queue = efx_get_tx_queue(efx, index, type);
348
349 return efx_enqueue_skb(tx_queue, skb);
350 }
351
352 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
353 {
354 struct efx_nic *efx = tx_queue->efx;
355
356 /* Must be inverse of queue lookup in efx_hard_start_xmit() */
357 tx_queue->core_txq =
358 netdev_get_tx_queue(efx->net_dev,
359 tx_queue->queue / EFX_TXQ_TYPES +
360 ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
361 efx->n_tx_channels : 0));
362 }
363
364 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
365 {
366 struct efx_nic *efx = netdev_priv(net_dev);
367 struct efx_channel *channel;
368 struct efx_tx_queue *tx_queue;
369 unsigned tc;
370 int rc;
371
372 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
373 return -EINVAL;
374
375 if (num_tc == net_dev->num_tc)
376 return 0;
377
378 for (tc = 0; tc < num_tc; tc++) {
379 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
380 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
381 }
382
383 if (num_tc > net_dev->num_tc) {
384 /* Initialise high-priority queues as necessary */
385 efx_for_each_channel(channel, efx) {
386 efx_for_each_possible_channel_tx_queue(tx_queue,
387 channel) {
388 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
389 continue;
390 if (!tx_queue->buffer) {
391 rc = efx_probe_tx_queue(tx_queue);
392 if (rc)
393 return rc;
394 }
395 if (!tx_queue->initialised)
396 efx_init_tx_queue(tx_queue);
397 efx_init_tx_queue_core_txq(tx_queue);
398 }
399 }
400 } else {
401 /* Reduce number of classes before number of queues */
402 net_dev->num_tc = num_tc;
403 }
404
405 rc = netif_set_real_num_tx_queues(net_dev,
406 max_t(int, num_tc, 1) *
407 efx->n_tx_channels);
408 if (rc)
409 return rc;
410
411 /* Do not destroy high-priority queues when they become
412 * unused. We would have to flush them first, and it is
413 * fairly difficult to flush a subset of TX queues. Leave
414 * it to efx_fini_channels().
415 */
416
417 net_dev->num_tc = num_tc;
418 return 0;
419 }
420
421 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
422 {
423 unsigned fill_level;
424 struct efx_nic *efx = tx_queue->efx;
425
426 EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
427
428 efx_dequeue_buffers(tx_queue, index);
429
430 /* See if we need to restart the netif queue. This barrier
431 * separates the update of read_count from the test of the
432 * queue state. */
433 smp_mb();
434 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
435 likely(efx->port_enabled) &&
436 likely(netif_device_present(efx->net_dev))) {
437 fill_level = tx_queue->insert_count - tx_queue->read_count;
438 if (fill_level < EFX_TXQ_THRESHOLD(efx)) {
439 EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
440 netif_tx_wake_queue(tx_queue->core_txq);
441 }
442 }
443
444 /* Check whether the hardware queue is now empty */
445 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
446 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
447 if (tx_queue->read_count == tx_queue->old_write_count) {
448 smp_mb();
449 tx_queue->empty_read_count =
450 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
451 }
452 }
453 }
454
455 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
456 {
457 struct efx_nic *efx = tx_queue->efx;
458 unsigned int entries;
459 int i, rc;
460
461 /* Create the smallest power-of-two aligned ring */
462 entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
463 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
464 tx_queue->ptr_mask = entries - 1;
465
466 netif_dbg(efx, probe, efx->net_dev,
467 "creating TX queue %d size %#x mask %#x\n",
468 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
469
470 /* Allocate software ring */
471 tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer),
472 GFP_KERNEL);
473 if (!tx_queue->buffer)
474 return -ENOMEM;
475 for (i = 0; i <= tx_queue->ptr_mask; ++i)
476 tx_queue->buffer[i].continuation = true;
477
478 /* Allocate hardware ring */
479 rc = efx_nic_probe_tx(tx_queue);
480 if (rc)
481 goto fail;
482
483 return 0;
484
485 fail:
486 kfree(tx_queue->buffer);
487 tx_queue->buffer = NULL;
488 return rc;
489 }
490
491 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
492 {
493 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
494 "initialising TX queue %d\n", tx_queue->queue);
495
496 tx_queue->insert_count = 0;
497 tx_queue->write_count = 0;
498 tx_queue->old_write_count = 0;
499 tx_queue->read_count = 0;
500 tx_queue->old_read_count = 0;
501 tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
502
503 /* Set up TX descriptor ring */
504 efx_nic_init_tx(tx_queue);
505
506 tx_queue->initialised = true;
507 }
508
509 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
510 {
511 struct efx_tx_buffer *buffer;
512
513 if (!tx_queue->buffer)
514 return;
515
516 /* Free any buffers left in the ring */
517 while (tx_queue->read_count != tx_queue->write_count) {
518 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
519 efx_dequeue_buffer(tx_queue, buffer);
520 buffer->continuation = true;
521 buffer->len = 0;
522
523 ++tx_queue->read_count;
524 }
525 }
526
527 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
528 {
529 if (!tx_queue->initialised)
530 return;
531
532 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
533 "shutting down TX queue %d\n", tx_queue->queue);
534
535 tx_queue->initialised = false;
536
537 /* Flush TX queue, remove descriptor ring */
538 efx_nic_fini_tx(tx_queue);
539
540 efx_release_tx_buffers(tx_queue);
541
542 /* Free up TSO header cache */
543 efx_fini_tso(tx_queue);
544 }
545
546 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
547 {
548 if (!tx_queue->buffer)
549 return;
550
551 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
552 "destroying TX queue %d\n", tx_queue->queue);
553 efx_nic_remove_tx(tx_queue);
554
555 kfree(tx_queue->buffer);
556 tx_queue->buffer = NULL;
557 }
558
559
560 /* Efx TCP segmentation acceleration.
561 *
562 * Why? Because by doing it here in the driver we can go significantly
563 * faster than the GSO.
564 *
565 * Requires TX checksum offload support.
566 */
567
568 /* Number of bytes inserted at the start of a TSO header buffer,
569 * similar to NET_IP_ALIGN.
570 */
571 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
572 #define TSOH_OFFSET 0
573 #else
574 #define TSOH_OFFSET NET_IP_ALIGN
575 #endif
576
577 #define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET)
578
579 /* Total size of struct efx_tso_header, buffer and padding */
580 #define TSOH_SIZE(hdr_len) \
581 (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
582
583 /* Size of blocks on free list. Larger blocks must be allocated from
584 * the heap.
585 */
586 #define TSOH_STD_SIZE 128
587
588 #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
589 #define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data)
590 #define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data)
591 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
592 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
593
594 /**
595 * struct tso_state - TSO state for an SKB
596 * @out_len: Remaining length in current segment
597 * @seqnum: Current sequence number
598 * @ipv4_id: Current IPv4 ID, host endian
599 * @packet_space: Remaining space in current packet
600 * @dma_addr: DMA address of current position
601 * @in_len: Remaining length in current SKB fragment
602 * @unmap_len: Length of SKB fragment
603 * @unmap_addr: DMA address of SKB fragment
604 * @unmap_single: DMA single vs page mapping flag
605 * @protocol: Network protocol (after any VLAN header)
606 * @header_len: Number of bytes of header
607 * @full_packet_size: Number of bytes to put in each outgoing segment
608 *
609 * The state used during segmentation. It is put into this data structure
610 * just to make it easy to pass into inline functions.
611 */
612 struct tso_state {
613 /* Output position */
614 unsigned out_len;
615 unsigned seqnum;
616 unsigned ipv4_id;
617 unsigned packet_space;
618
619 /* Input position */
620 dma_addr_t dma_addr;
621 unsigned in_len;
622 unsigned unmap_len;
623 dma_addr_t unmap_addr;
624 bool unmap_single;
625
626 __be16 protocol;
627 unsigned header_len;
628 int full_packet_size;
629 };
630
631
632 /*
633 * Verify that our various assumptions about sk_buffs and the conditions
634 * under which TSO will be attempted hold true. Return the protocol number.
635 */
636 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
637 {
638 __be16 protocol = skb->protocol;
639
640 EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
641 protocol);
642 if (protocol == htons(ETH_P_8021Q)) {
643 /* Find the encapsulated protocol; reset network header
644 * and transport header based on that. */
645 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
646 protocol = veh->h_vlan_encapsulated_proto;
647 skb_set_network_header(skb, sizeof(*veh));
648 if (protocol == htons(ETH_P_IP))
649 skb_set_transport_header(skb, sizeof(*veh) +
650 4 * ip_hdr(skb)->ihl);
651 else if (protocol == htons(ETH_P_IPV6))
652 skb_set_transport_header(skb, sizeof(*veh) +
653 sizeof(struct ipv6hdr));
654 }
655
656 if (protocol == htons(ETH_P_IP)) {
657 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
658 } else {
659 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
660 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
661 }
662 EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
663 + (tcp_hdr(skb)->doff << 2u)) >
664 skb_headlen(skb));
665
666 return protocol;
667 }
668
669
670 /*
671 * Allocate a page worth of efx_tso_header structures, and string them
672 * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
673 */
674 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
675 {
676
677 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
678 struct efx_tso_header *tsoh;
679 dma_addr_t dma_addr;
680 u8 *base_kva, *kva;
681
682 base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
683 if (base_kva == NULL) {
684 netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
685 "Unable to allocate page for TSO headers\n");
686 return -ENOMEM;
687 }
688
689 /* pci_alloc_consistent() allocates pages. */
690 EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
691
692 for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
693 tsoh = (struct efx_tso_header *)kva;
694 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
695 tsoh->next = tx_queue->tso_headers_free;
696 tx_queue->tso_headers_free = tsoh;
697 }
698
699 return 0;
700 }
701
702
703 /* Free up a TSO header, and all others in the same page. */
704 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
705 struct efx_tso_header *tsoh,
706 struct pci_dev *pci_dev)
707 {
708 struct efx_tso_header **p;
709 unsigned long base_kva;
710 dma_addr_t base_dma;
711
712 base_kva = (unsigned long)tsoh & PAGE_MASK;
713 base_dma = tsoh->dma_addr & PAGE_MASK;
714
715 p = &tx_queue->tso_headers_free;
716 while (*p != NULL) {
717 if (((unsigned long)*p & PAGE_MASK) == base_kva)
718 *p = (*p)->next;
719 else
720 p = &(*p)->next;
721 }
722
723 pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
724 }
725
726 static struct efx_tso_header *
727 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
728 {
729 struct efx_tso_header *tsoh;
730
731 tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
732 if (unlikely(!tsoh))
733 return NULL;
734
735 tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
736 TSOH_BUFFER(tsoh), header_len,
737 PCI_DMA_TODEVICE);
738 if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
739 tsoh->dma_addr))) {
740 kfree(tsoh);
741 return NULL;
742 }
743
744 tsoh->unmap_len = header_len;
745 return tsoh;
746 }
747
748 static void
749 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
750 {
751 pci_unmap_single(tx_queue->efx->pci_dev,
752 tsoh->dma_addr, tsoh->unmap_len,
753 PCI_DMA_TODEVICE);
754 kfree(tsoh);
755 }
756
757 /**
758 * efx_tx_queue_insert - push descriptors onto the TX queue
759 * @tx_queue: Efx TX queue
760 * @dma_addr: DMA address of fragment
761 * @len: Length of fragment
762 * @final_buffer: The final buffer inserted into the queue
763 *
764 * Push descriptors onto the TX queue. Return 0 on success or 1 if
765 * @tx_queue full.
766 */
767 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
768 dma_addr_t dma_addr, unsigned len,
769 struct efx_tx_buffer **final_buffer)
770 {
771 struct efx_tx_buffer *buffer;
772 struct efx_nic *efx = tx_queue->efx;
773 unsigned dma_len, fill_level, insert_ptr;
774 int q_space;
775
776 EFX_BUG_ON_PARANOID(len <= 0);
777
778 fill_level = tx_queue->insert_count - tx_queue->old_read_count;
779 /* -1 as there is no way to represent all descriptors used */
780 q_space = efx->txq_entries - 1 - fill_level;
781
782 while (1) {
783 if (unlikely(q_space-- <= 0)) {
784 /* It might be that completions have happened
785 * since the xmit path last checked. Update
786 * the xmit path's copy of read_count.
787 */
788 netif_tx_stop_queue(tx_queue->core_txq);
789 /* This memory barrier protects the change of
790 * queue state from the access of read_count. */
791 smp_mb();
792 tx_queue->old_read_count =
793 ACCESS_ONCE(tx_queue->read_count);
794 fill_level = (tx_queue->insert_count
795 - tx_queue->old_read_count);
796 q_space = efx->txq_entries - 1 - fill_level;
797 if (unlikely(q_space-- <= 0)) {
798 *final_buffer = NULL;
799 return 1;
800 }
801 smp_mb();
802 netif_tx_start_queue(tx_queue->core_txq);
803 }
804
805 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
806 buffer = &tx_queue->buffer[insert_ptr];
807 ++tx_queue->insert_count;
808
809 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
810 tx_queue->read_count >=
811 efx->txq_entries);
812
813 efx_tsoh_free(tx_queue, buffer);
814 EFX_BUG_ON_PARANOID(buffer->len);
815 EFX_BUG_ON_PARANOID(buffer->unmap_len);
816 EFX_BUG_ON_PARANOID(buffer->skb);
817 EFX_BUG_ON_PARANOID(!buffer->continuation);
818 EFX_BUG_ON_PARANOID(buffer->tsoh);
819
820 buffer->dma_addr = dma_addr;
821
822 dma_len = efx_max_tx_len(efx, dma_addr);
823
824 /* If there is enough space to send then do so */
825 if (dma_len >= len)
826 break;
827
828 buffer->len = dma_len; /* Don't set the other members */
829 dma_addr += dma_len;
830 len -= dma_len;
831 }
832
833 EFX_BUG_ON_PARANOID(!len);
834 buffer->len = len;
835 *final_buffer = buffer;
836 return 0;
837 }
838
839
840 /*
841 * Put a TSO header into the TX queue.
842 *
843 * This is special-cased because we know that it is small enough to fit in
844 * a single fragment, and we know it doesn't cross a page boundary. It
845 * also allows us to not worry about end-of-packet etc.
846 */
847 static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
848 struct efx_tso_header *tsoh, unsigned len)
849 {
850 struct efx_tx_buffer *buffer;
851
852 buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
853 efx_tsoh_free(tx_queue, buffer);
854 EFX_BUG_ON_PARANOID(buffer->len);
855 EFX_BUG_ON_PARANOID(buffer->unmap_len);
856 EFX_BUG_ON_PARANOID(buffer->skb);
857 EFX_BUG_ON_PARANOID(!buffer->continuation);
858 EFX_BUG_ON_PARANOID(buffer->tsoh);
859 buffer->len = len;
860 buffer->dma_addr = tsoh->dma_addr;
861 buffer->tsoh = tsoh;
862
863 ++tx_queue->insert_count;
864 }
865
866
867 /* Remove descriptors put into a tx_queue. */
868 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
869 {
870 struct efx_tx_buffer *buffer;
871 dma_addr_t unmap_addr;
872
873 /* Work backwards until we hit the original insert pointer value */
874 while (tx_queue->insert_count != tx_queue->write_count) {
875 --tx_queue->insert_count;
876 buffer = &tx_queue->buffer[tx_queue->insert_count &
877 tx_queue->ptr_mask];
878 efx_tsoh_free(tx_queue, buffer);
879 EFX_BUG_ON_PARANOID(buffer->skb);
880 if (buffer->unmap_len) {
881 unmap_addr = (buffer->dma_addr + buffer->len -
882 buffer->unmap_len);
883 if (buffer->unmap_single)
884 pci_unmap_single(tx_queue->efx->pci_dev,
885 unmap_addr, buffer->unmap_len,
886 PCI_DMA_TODEVICE);
887 else
888 pci_unmap_page(tx_queue->efx->pci_dev,
889 unmap_addr, buffer->unmap_len,
890 PCI_DMA_TODEVICE);
891 buffer->unmap_len = 0;
892 }
893 buffer->len = 0;
894 buffer->continuation = true;
895 }
896 }
897
898
899 /* Parse the SKB header and initialise state. */
900 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
901 {
902 /* All ethernet/IP/TCP headers combined size is TCP header size
903 * plus offset of TCP header relative to start of packet.
904 */
905 st->header_len = ((tcp_hdr(skb)->doff << 2u)
906 + PTR_DIFF(tcp_hdr(skb), skb->data));
907 st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
908
909 if (st->protocol == htons(ETH_P_IP))
910 st->ipv4_id = ntohs(ip_hdr(skb)->id);
911 else
912 st->ipv4_id = 0;
913 st->seqnum = ntohl(tcp_hdr(skb)->seq);
914
915 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
916 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
917 EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
918
919 st->packet_space = st->full_packet_size;
920 st->out_len = skb->len - st->header_len;
921 st->unmap_len = 0;
922 st->unmap_single = false;
923 }
924
925 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
926 skb_frag_t *frag)
927 {
928 st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
929 skb_frag_size(frag), DMA_TO_DEVICE);
930 if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
931 st->unmap_single = false;
932 st->unmap_len = skb_frag_size(frag);
933 st->in_len = skb_frag_size(frag);
934 st->dma_addr = st->unmap_addr;
935 return 0;
936 }
937 return -ENOMEM;
938 }
939
940 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
941 const struct sk_buff *skb)
942 {
943 int hl = st->header_len;
944 int len = skb_headlen(skb) - hl;
945
946 st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
947 len, PCI_DMA_TODEVICE);
948 if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
949 st->unmap_single = true;
950 st->unmap_len = len;
951 st->in_len = len;
952 st->dma_addr = st->unmap_addr;
953 return 0;
954 }
955 return -ENOMEM;
956 }
957
958
959 /**
960 * tso_fill_packet_with_fragment - form descriptors for the current fragment
961 * @tx_queue: Efx TX queue
962 * @skb: Socket buffer
963 * @st: TSO state
964 *
965 * Form descriptors for the current fragment, until we reach the end
966 * of fragment or end-of-packet. Return 0 on success, 1 if not enough
967 * space in @tx_queue.
968 */
969 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
970 const struct sk_buff *skb,
971 struct tso_state *st)
972 {
973 struct efx_tx_buffer *buffer;
974 int n, end_of_packet, rc;
975
976 if (st->in_len == 0)
977 return 0;
978 if (st->packet_space == 0)
979 return 0;
980
981 EFX_BUG_ON_PARANOID(st->in_len <= 0);
982 EFX_BUG_ON_PARANOID(st->packet_space <= 0);
983
984 n = min(st->in_len, st->packet_space);
985
986 st->packet_space -= n;
987 st->out_len -= n;
988 st->in_len -= n;
989
990 rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
991 if (likely(rc == 0)) {
992 if (st->out_len == 0)
993 /* Transfer ownership of the skb */
994 buffer->skb = skb;
995
996 end_of_packet = st->out_len == 0 || st->packet_space == 0;
997 buffer->continuation = !end_of_packet;
998
999 if (st->in_len == 0) {
1000 /* Transfer ownership of the pci mapping */
1001 buffer->unmap_len = st->unmap_len;
1002 buffer->unmap_single = st->unmap_single;
1003 st->unmap_len = 0;
1004 }
1005 }
1006
1007 st->dma_addr += n;
1008 return rc;
1009 }
1010
1011
1012 /**
1013 * tso_start_new_packet - generate a new header and prepare for the new packet
1014 * @tx_queue: Efx TX queue
1015 * @skb: Socket buffer
1016 * @st: TSO state
1017 *
1018 * Generate a new header and prepare for the new packet. Return 0 on
1019 * success, or -1 if failed to alloc header.
1020 */
1021 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1022 const struct sk_buff *skb,
1023 struct tso_state *st)
1024 {
1025 struct efx_tso_header *tsoh;
1026 struct tcphdr *tsoh_th;
1027 unsigned ip_length;
1028 u8 *header;
1029
1030 /* Allocate a DMA-mapped header buffer. */
1031 if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
1032 if (tx_queue->tso_headers_free == NULL) {
1033 if (efx_tsoh_block_alloc(tx_queue))
1034 return -1;
1035 }
1036 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
1037 tsoh = tx_queue->tso_headers_free;
1038 tx_queue->tso_headers_free = tsoh->next;
1039 tsoh->unmap_len = 0;
1040 } else {
1041 tx_queue->tso_long_headers++;
1042 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
1043 if (unlikely(!tsoh))
1044 return -1;
1045 }
1046
1047 header = TSOH_BUFFER(tsoh);
1048 tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
1049
1050 /* Copy and update the headers. */
1051 memcpy(header, skb->data, st->header_len);
1052
1053 tsoh_th->seq = htonl(st->seqnum);
1054 st->seqnum += skb_shinfo(skb)->gso_size;
1055 if (st->out_len > skb_shinfo(skb)->gso_size) {
1056 /* This packet will not finish the TSO burst. */
1057 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1058 tsoh_th->fin = 0;
1059 tsoh_th->psh = 0;
1060 } else {
1061 /* This packet will be the last in the TSO burst. */
1062 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1063 tsoh_th->fin = tcp_hdr(skb)->fin;
1064 tsoh_th->psh = tcp_hdr(skb)->psh;
1065 }
1066
1067 if (st->protocol == htons(ETH_P_IP)) {
1068 struct iphdr *tsoh_iph =
1069 (struct iphdr *)(header + SKB_IPV4_OFF(skb));
1070
1071 tsoh_iph->tot_len = htons(ip_length);
1072
1073 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1074 tsoh_iph->id = htons(st->ipv4_id);
1075 st->ipv4_id++;
1076 } else {
1077 struct ipv6hdr *tsoh_iph =
1078 (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1079
1080 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1081 }
1082
1083 st->packet_space = skb_shinfo(skb)->gso_size;
1084 ++tx_queue->tso_packets;
1085
1086 /* Form a descriptor for this header. */
1087 efx_tso_put_header(tx_queue, tsoh, st->header_len);
1088
1089 return 0;
1090 }
1091
1092
1093 /**
1094 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1095 * @tx_queue: Efx TX queue
1096 * @skb: Socket buffer
1097 *
1098 * Context: You must hold netif_tx_lock() to call this function.
1099 *
1100 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1101 * @skb was not enqueued. In all cases @skb is consumed. Return
1102 * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1103 */
1104 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1105 struct sk_buff *skb)
1106 {
1107 struct efx_nic *efx = tx_queue->efx;
1108 int frag_i, rc, rc2 = NETDEV_TX_OK;
1109 struct tso_state state;
1110
1111 /* Find the packet protocol and sanity-check it */
1112 state.protocol = efx_tso_check_protocol(skb);
1113
1114 EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1115
1116 tso_start(&state, skb);
1117
1118 /* Assume that skb header area contains exactly the headers, and
1119 * all payload is in the frag list.
1120 */
1121 if (skb_headlen(skb) == state.header_len) {
1122 /* Grab the first payload fragment. */
1123 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1124 frag_i = 0;
1125 rc = tso_get_fragment(&state, efx,
1126 skb_shinfo(skb)->frags + frag_i);
1127 if (rc)
1128 goto mem_err;
1129 } else {
1130 rc = tso_get_head_fragment(&state, efx, skb);
1131 if (rc)
1132 goto mem_err;
1133 frag_i = -1;
1134 }
1135
1136 if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1137 goto mem_err;
1138
1139 while (1) {
1140 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1141 if (unlikely(rc)) {
1142 rc2 = NETDEV_TX_BUSY;
1143 goto unwind;
1144 }
1145
1146 /* Move onto the next fragment? */
1147 if (state.in_len == 0) {
1148 if (++frag_i >= skb_shinfo(skb)->nr_frags)
1149 /* End of payload reached. */
1150 break;
1151 rc = tso_get_fragment(&state, efx,
1152 skb_shinfo(skb)->frags + frag_i);
1153 if (rc)
1154 goto mem_err;
1155 }
1156
1157 /* Start at new packet? */
1158 if (state.packet_space == 0 &&
1159 tso_start_new_packet(tx_queue, skb, &state) < 0)
1160 goto mem_err;
1161 }
1162
1163 /* Pass off to hardware */
1164 efx_nic_push_buffers(tx_queue);
1165
1166 tx_queue->tso_bursts++;
1167 return NETDEV_TX_OK;
1168
1169 mem_err:
1170 netif_err(efx, tx_err, efx->net_dev,
1171 "Out of memory for TSO headers, or PCI mapping error\n");
1172 dev_kfree_skb_any(skb);
1173
1174 unwind:
1175 /* Free the DMA mapping we were in the process of writing out */
1176 if (state.unmap_len) {
1177 if (state.unmap_single)
1178 pci_unmap_single(efx->pci_dev, state.unmap_addr,
1179 state.unmap_len, PCI_DMA_TODEVICE);
1180 else
1181 pci_unmap_page(efx->pci_dev, state.unmap_addr,
1182 state.unmap_len, PCI_DMA_TODEVICE);
1183 }
1184
1185 efx_enqueue_unwind(tx_queue);
1186 return rc2;
1187 }
1188
1189
1190 /*
1191 * Free up all TSO datastructures associated with tx_queue. This
1192 * routine should be called only once the tx_queue is both empty and
1193 * will no longer be used.
1194 */
1195 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1196 {
1197 unsigned i;
1198
1199 if (tx_queue->buffer) {
1200 for (i = 0; i <= tx_queue->ptr_mask; ++i)
1201 efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1202 }
1203
1204 while (tx_queue->tso_headers_free != NULL)
1205 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1206 tx_queue->efx->pci_dev);
1207 }
This page took 0.055302 seconds and 6 git commands to generate.