net: smc91x: use run-time configuration on all ARM machines
[deliverable/linux.git] / drivers / net / ethernet / smsc / smc91x.h
1 /*------------------------------------------------------------------------
2 . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
3 .
4 . Copyright (C) 1996 by Erik Stahlman
5 . Copyright (C) 2001 Standard Microsystems Corporation
6 . Developed by Simple Network Magic Corporation
7 . Copyright (C) 2003 Monta Vista Software, Inc.
8 . Unified SMC91x driver by Nicolas Pitre
9 .
10 . This program is free software; you can redistribute it and/or modify
11 . it under the terms of the GNU General Public License as published by
12 . the Free Software Foundation; either version 2 of the License, or
13 . (at your option) any later version.
14 .
15 . This program is distributed in the hope that it will be useful,
16 . but WITHOUT ANY WARRANTY; without even the implied warranty of
17 . MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 . GNU General Public License for more details.
19 .
20 . You should have received a copy of the GNU General Public License
21 . along with this program; if not, see <http://www.gnu.org/licenses/>.
22 .
23 . Information contained in this file was obtained from the LAN91C111
24 . manual from SMC. To get a copy, if you really want one, you can find
25 . information under www.smsc.com.
26 .
27 . Authors
28 . Erik Stahlman <erik@vt.edu>
29 . Daris A Nevil <dnevil@snmc.com>
30 . Nicolas Pitre <nico@fluxnic.net>
31 .
32 ---------------------------------------------------------------------------*/
33 #ifndef _SMC91X_H_
34 #define _SMC91X_H_
35
36 #include <linux/smc91x.h>
37
38 /*
39 * Define your architecture specific bus configuration parameters here.
40 */
41
42 #if defined(CONFIG_ARM)
43
44 #include <asm/mach-types.h>
45
46 /* Now the bus width is specified in the platform data
47 * pretend here to support all I/O access types
48 */
49 #define SMC_CAN_USE_8BIT 1
50 #define SMC_CAN_USE_16BIT 1
51 #define SMC_CAN_USE_32BIT 1
52 #define SMC_NOWAIT 1
53
54 #define SMC_IO_SHIFT (lp->io_shift)
55
56 #define SMC_inb(a, r) readb((a) + (r))
57 #define SMC_inw(a, r) readw((a) + (r))
58 #define SMC_inl(a, r) readl((a) + (r))
59 #define SMC_outb(v, a, r) writeb(v, (a) + (r))
60 #define SMC_outl(v, a, r) writel(v, (a) + (r))
61 #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
62 #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
63 #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
64 #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
65 #define SMC_IRQ_FLAGS (-1) /* from resource */
66
67 /* We actually can't write halfwords properly if not word aligned */
68 static inline void SMC_outw(u16 val, void __iomem *ioaddr, int reg)
69 {
70 if ((machine_is_mainstone() || machine_is_stargate2() ||
71 machine_is_pxa_idp()) && reg & 2) {
72 unsigned int v = val << 16;
73 v |= readl(ioaddr + (reg & ~2)) & 0xffff;
74 writel(v, ioaddr + (reg & ~2));
75 } else {
76 writew(val, ioaddr + reg);
77 }
78 }
79
80 #elif defined(CONFIG_SH_SH4202_MICRODEV)
81
82 #define SMC_CAN_USE_8BIT 0
83 #define SMC_CAN_USE_16BIT 1
84 #define SMC_CAN_USE_32BIT 0
85
86 #define SMC_inb(a, r) inb((a) + (r) - 0xa0000000)
87 #define SMC_inw(a, r) inw((a) + (r) - 0xa0000000)
88 #define SMC_inl(a, r) inl((a) + (r) - 0xa0000000)
89 #define SMC_outb(v, a, r) outb(v, (a) + (r) - 0xa0000000)
90 #define SMC_outw(v, a, r) outw(v, (a) + (r) - 0xa0000000)
91 #define SMC_outl(v, a, r) outl(v, (a) + (r) - 0xa0000000)
92 #define SMC_insl(a, r, p, l) insl((a) + (r) - 0xa0000000, p, l)
93 #define SMC_outsl(a, r, p, l) outsl((a) + (r) - 0xa0000000, p, l)
94 #define SMC_insw(a, r, p, l) insw((a) + (r) - 0xa0000000, p, l)
95 #define SMC_outsw(a, r, p, l) outsw((a) + (r) - 0xa0000000, p, l)
96
97 #define SMC_IRQ_FLAGS (0)
98
99 #elif defined(CONFIG_M32R)
100
101 #define SMC_CAN_USE_8BIT 0
102 #define SMC_CAN_USE_16BIT 1
103 #define SMC_CAN_USE_32BIT 0
104
105 #define SMC_inb(a, r) inb(((u32)a) + (r))
106 #define SMC_inw(a, r) inw(((u32)a) + (r))
107 #define SMC_outb(v, a, r) outb(v, ((u32)a) + (r))
108 #define SMC_outw(v, a, r) outw(v, ((u32)a) + (r))
109 #define SMC_insw(a, r, p, l) insw(((u32)a) + (r), p, l)
110 #define SMC_outsw(a, r, p, l) outsw(((u32)a) + (r), p, l)
111
112 #define SMC_IRQ_FLAGS (0)
113
114 #define RPC_LSA_DEFAULT RPC_LED_TX_RX
115 #define RPC_LSB_DEFAULT RPC_LED_100_10
116
117 #elif defined(CONFIG_MN10300)
118
119 /*
120 * MN10300/AM33 configuration
121 */
122
123 #include <unit/smc91111.h>
124
125 #elif defined(CONFIG_ATARI)
126
127 #define SMC_CAN_USE_8BIT 1
128 #define SMC_CAN_USE_16BIT 1
129 #define SMC_CAN_USE_32BIT 1
130 #define SMC_NOWAIT 1
131
132 #define SMC_inb(a, r) readb((a) + (r))
133 #define SMC_inw(a, r) readw((a) + (r))
134 #define SMC_inl(a, r) readl((a) + (r))
135 #define SMC_outb(v, a, r) writeb(v, (a) + (r))
136 #define SMC_outw(v, a, r) writew(v, (a) + (r))
137 #define SMC_outl(v, a, r) writel(v, (a) + (r))
138 #define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
139 #define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
140 #define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
141 #define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
142
143 #define RPC_LSA_DEFAULT RPC_LED_100_10
144 #define RPC_LSB_DEFAULT RPC_LED_TX_RX
145
146 #elif defined(CONFIG_COLDFIRE)
147
148 #define SMC_CAN_USE_8BIT 0
149 #define SMC_CAN_USE_16BIT 1
150 #define SMC_CAN_USE_32BIT 0
151 #define SMC_NOWAIT 1
152
153 static inline void mcf_insw(void *a, unsigned char *p, int l)
154 {
155 u16 *wp = (u16 *) p;
156 while (l-- > 0)
157 *wp++ = readw(a);
158 }
159
160 static inline void mcf_outsw(void *a, unsigned char *p, int l)
161 {
162 u16 *wp = (u16 *) p;
163 while (l-- > 0)
164 writew(*wp++, a);
165 }
166
167 #define SMC_inw(a, r) _swapw(readw((a) + (r)))
168 #define SMC_outw(v, a, r) writew(_swapw(v), (a) + (r))
169 #define SMC_insw(a, r, p, l) mcf_insw(a + r, p, l)
170 #define SMC_outsw(a, r, p, l) mcf_outsw(a + r, p, l)
171
172 #define SMC_IRQ_FLAGS 0
173
174 #else
175
176 /*
177 * Default configuration
178 */
179
180 #define SMC_CAN_USE_8BIT 1
181 #define SMC_CAN_USE_16BIT 1
182 #define SMC_CAN_USE_32BIT 1
183 #define SMC_NOWAIT 1
184
185 #define SMC_IO_SHIFT (lp->io_shift)
186
187 #define SMC_inb(a, r) ioread8((a) + (r))
188 #define SMC_inw(a, r) ioread16((a) + (r))
189 #define SMC_inl(a, r) ioread32((a) + (r))
190 #define SMC_outb(v, a, r) iowrite8(v, (a) + (r))
191 #define SMC_outw(v, a, r) iowrite16(v, (a) + (r))
192 #define SMC_outl(v, a, r) iowrite32(v, (a) + (r))
193 #define SMC_insw(a, r, p, l) ioread16_rep((a) + (r), p, l)
194 #define SMC_outsw(a, r, p, l) iowrite16_rep((a) + (r), p, l)
195 #define SMC_insl(a, r, p, l) ioread32_rep((a) + (r), p, l)
196 #define SMC_outsl(a, r, p, l) iowrite32_rep((a) + (r), p, l)
197
198 #define RPC_LSA_DEFAULT RPC_LED_100_10
199 #define RPC_LSB_DEFAULT RPC_LED_TX_RX
200
201 #endif
202
203
204 /* store this information for the driver.. */
205 struct smc_local {
206 /*
207 * If I have to wait until memory is available to send a
208 * packet, I will store the skbuff here, until I get the
209 * desired memory. Then, I'll send it out and free it.
210 */
211 struct sk_buff *pending_tx_skb;
212 struct tasklet_struct tx_task;
213
214 struct gpio_desc *power_gpio;
215 struct gpio_desc *reset_gpio;
216
217 /* version/revision of the SMC91x chip */
218 int version;
219
220 /* Contains the current active transmission mode */
221 int tcr_cur_mode;
222
223 /* Contains the current active receive mode */
224 int rcr_cur_mode;
225
226 /* Contains the current active receive/phy mode */
227 int rpc_cur_mode;
228 int ctl_rfduplx;
229 int ctl_rspeed;
230
231 u32 msg_enable;
232 u32 phy_type;
233 struct mii_if_info mii;
234
235 /* work queue */
236 struct work_struct phy_configure;
237 struct net_device *dev;
238 int work_pending;
239
240 spinlock_t lock;
241
242 #ifdef CONFIG_ARCH_PXA
243 /* DMA needs the physical address of the chip */
244 u_long physaddr;
245 struct device *device;
246 #endif
247 void __iomem *base;
248 void __iomem *datacs;
249
250 /* the low address lines on some platforms aren't connected... */
251 int io_shift;
252
253 struct smc91x_platdata cfg;
254 };
255
256 #define SMC_8BIT(p) ((p)->cfg.flags & SMC91X_USE_8BIT)
257 #define SMC_16BIT(p) ((p)->cfg.flags & SMC91X_USE_16BIT)
258 #define SMC_32BIT(p) ((p)->cfg.flags & SMC91X_USE_32BIT)
259
260 #ifdef CONFIG_ARCH_PXA
261 /*
262 * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
263 * always happening in irq context so no need to worry about races. TX is
264 * different and probably not worth it for that reason, and not as critical
265 * as RX which can overrun memory and lose packets.
266 */
267 #include <linux/dma-mapping.h>
268 #include <mach/dma.h>
269
270 #ifdef SMC_insl
271 #undef SMC_insl
272 #define SMC_insl(a, r, p, l) \
273 smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
274 static inline void
275 smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
276 u_char *buf, int len)
277 {
278 u_long physaddr = lp->physaddr;
279 dma_addr_t dmabuf;
280
281 /* fallback if no DMA available */
282 if (dma == (unsigned char)-1) {
283 readsl(ioaddr + reg, buf, len);
284 return;
285 }
286
287 /* 64 bit alignment is required for memory to memory DMA */
288 if ((long)buf & 4) {
289 *((u32 *)buf) = SMC_inl(ioaddr, reg);
290 buf += 4;
291 len--;
292 }
293
294 len *= 4;
295 dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
296 DCSR(dma) = DCSR_NODESC;
297 DTADR(dma) = dmabuf;
298 DSADR(dma) = physaddr + reg;
299 DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 |
300 DCMD_WIDTH4 | (DCMD_LENGTH & len));
301 DCSR(dma) = DCSR_NODESC | DCSR_RUN;
302 while (!(DCSR(dma) & DCSR_STOPSTATE))
303 cpu_relax();
304 DCSR(dma) = 0;
305 dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
306 }
307 #endif
308
309 #ifdef SMC_insw
310 #undef SMC_insw
311 #define SMC_insw(a, r, p, l) \
312 smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
313 static inline void
314 smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
315 u_char *buf, int len)
316 {
317 u_long physaddr = lp->physaddr;
318 dma_addr_t dmabuf;
319
320 /* fallback if no DMA available */
321 if (dma == (unsigned char)-1) {
322 readsw(ioaddr + reg, buf, len);
323 return;
324 }
325
326 /* 64 bit alignment is required for memory to memory DMA */
327 while ((long)buf & 6) {
328 *((u16 *)buf) = SMC_inw(ioaddr, reg);
329 buf += 2;
330 len--;
331 }
332
333 len *= 2;
334 dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
335 DCSR(dma) = DCSR_NODESC;
336 DTADR(dma) = dmabuf;
337 DSADR(dma) = physaddr + reg;
338 DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 |
339 DCMD_WIDTH2 | (DCMD_LENGTH & len));
340 DCSR(dma) = DCSR_NODESC | DCSR_RUN;
341 while (!(DCSR(dma) & DCSR_STOPSTATE))
342 cpu_relax();
343 DCSR(dma) = 0;
344 dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
345 }
346 #endif
347
348 static void
349 smc_pxa_dma_irq(int dma, void *dummy)
350 {
351 DCSR(dma) = 0;
352 }
353 #endif /* CONFIG_ARCH_PXA */
354
355
356 /*
357 * Everything a particular hardware setup needs should have been defined
358 * at this point. Add stubs for the undefined cases, mainly to avoid
359 * compilation warnings since they'll be optimized away, or to prevent buggy
360 * use of them.
361 */
362
363 #if ! SMC_CAN_USE_32BIT
364 #define SMC_inl(ioaddr, reg) ({ BUG(); 0; })
365 #define SMC_outl(x, ioaddr, reg) BUG()
366 #define SMC_insl(a, r, p, l) BUG()
367 #define SMC_outsl(a, r, p, l) BUG()
368 #endif
369
370 #if !defined(SMC_insl) || !defined(SMC_outsl)
371 #define SMC_insl(a, r, p, l) BUG()
372 #define SMC_outsl(a, r, p, l) BUG()
373 #endif
374
375 #if ! SMC_CAN_USE_16BIT
376
377 /*
378 * Any 16-bit access is performed with two 8-bit accesses if the hardware
379 * can't do it directly. Most registers are 16-bit so those are mandatory.
380 */
381 #define SMC_outw(x, ioaddr, reg) \
382 do { \
383 unsigned int __val16 = (x); \
384 SMC_outb( __val16, ioaddr, reg ); \
385 SMC_outb( __val16 >> 8, ioaddr, reg + (1 << SMC_IO_SHIFT));\
386 } while (0)
387 #define SMC_inw(ioaddr, reg) \
388 ({ \
389 unsigned int __val16; \
390 __val16 = SMC_inb( ioaddr, reg ); \
391 __val16 |= SMC_inb( ioaddr, reg + (1 << SMC_IO_SHIFT)) << 8; \
392 __val16; \
393 })
394
395 #define SMC_insw(a, r, p, l) BUG()
396 #define SMC_outsw(a, r, p, l) BUG()
397
398 #endif
399
400 #if !defined(SMC_insw) || !defined(SMC_outsw)
401 #define SMC_insw(a, r, p, l) BUG()
402 #define SMC_outsw(a, r, p, l) BUG()
403 #endif
404
405 #if ! SMC_CAN_USE_8BIT
406 #define SMC_inb(ioaddr, reg) ({ BUG(); 0; })
407 #define SMC_outb(x, ioaddr, reg) BUG()
408 #define SMC_insb(a, r, p, l) BUG()
409 #define SMC_outsb(a, r, p, l) BUG()
410 #endif
411
412 #if !defined(SMC_insb) || !defined(SMC_outsb)
413 #define SMC_insb(a, r, p, l) BUG()
414 #define SMC_outsb(a, r, p, l) BUG()
415 #endif
416
417 #ifndef SMC_CAN_USE_DATACS
418 #define SMC_CAN_USE_DATACS 0
419 #endif
420
421 #ifndef SMC_IO_SHIFT
422 #define SMC_IO_SHIFT 0
423 #endif
424
425 #ifndef SMC_IRQ_FLAGS
426 #define SMC_IRQ_FLAGS IRQF_TRIGGER_RISING
427 #endif
428
429 #ifndef SMC_INTERRUPT_PREAMBLE
430 #define SMC_INTERRUPT_PREAMBLE
431 #endif
432
433
434 /* Because of bank switching, the LAN91x uses only 16 I/O ports */
435 #define SMC_IO_EXTENT (16 << SMC_IO_SHIFT)
436 #define SMC_DATA_EXTENT (4)
437
438 /*
439 . Bank Select Register:
440 .
441 . yyyy yyyy 0000 00xx
442 . xx = bank number
443 . yyyy yyyy = 0x33, for identification purposes.
444 */
445 #define BANK_SELECT (14 << SMC_IO_SHIFT)
446
447
448 // Transmit Control Register
449 /* BANK 0 */
450 #define TCR_REG(lp) SMC_REG(lp, 0x0000, 0)
451 #define TCR_ENABLE 0x0001 // When 1 we can transmit
452 #define TCR_LOOP 0x0002 // Controls output pin LBK
453 #define TCR_FORCOL 0x0004 // When 1 will force a collision
454 #define TCR_PAD_EN 0x0080 // When 1 will pad tx frames < 64 bytes w/0
455 #define TCR_NOCRC 0x0100 // When 1 will not append CRC to tx frames
456 #define TCR_MON_CSN 0x0400 // When 1 tx monitors carrier
457 #define TCR_FDUPLX 0x0800 // When 1 enables full duplex operation
458 #define TCR_STP_SQET 0x1000 // When 1 stops tx if Signal Quality Error
459 #define TCR_EPH_LOOP 0x2000 // When 1 enables EPH block loopback
460 #define TCR_SWFDUP 0x8000 // When 1 enables Switched Full Duplex mode
461
462 #define TCR_CLEAR 0 /* do NOTHING */
463 /* the default settings for the TCR register : */
464 #define TCR_DEFAULT (TCR_ENABLE | TCR_PAD_EN)
465
466
467 // EPH Status Register
468 /* BANK 0 */
469 #define EPH_STATUS_REG(lp) SMC_REG(lp, 0x0002, 0)
470 #define ES_TX_SUC 0x0001 // Last TX was successful
471 #define ES_SNGL_COL 0x0002 // Single collision detected for last tx
472 #define ES_MUL_COL 0x0004 // Multiple collisions detected for last tx
473 #define ES_LTX_MULT 0x0008 // Last tx was a multicast
474 #define ES_16COL 0x0010 // 16 Collisions Reached
475 #define ES_SQET 0x0020 // Signal Quality Error Test
476 #define ES_LTXBRD 0x0040 // Last tx was a broadcast
477 #define ES_TXDEFR 0x0080 // Transmit Deferred
478 #define ES_LATCOL 0x0200 // Late collision detected on last tx
479 #define ES_LOSTCARR 0x0400 // Lost Carrier Sense
480 #define ES_EXC_DEF 0x0800 // Excessive Deferral
481 #define ES_CTR_ROL 0x1000 // Counter Roll Over indication
482 #define ES_LINK_OK 0x4000 // Driven by inverted value of nLNK pin
483 #define ES_TXUNRN 0x8000 // Tx Underrun
484
485
486 // Receive Control Register
487 /* BANK 0 */
488 #define RCR_REG(lp) SMC_REG(lp, 0x0004, 0)
489 #define RCR_RX_ABORT 0x0001 // Set if a rx frame was aborted
490 #define RCR_PRMS 0x0002 // Enable promiscuous mode
491 #define RCR_ALMUL 0x0004 // When set accepts all multicast frames
492 #define RCR_RXEN 0x0100 // IFF this is set, we can receive packets
493 #define RCR_STRIP_CRC 0x0200 // When set strips CRC from rx packets
494 #define RCR_ABORT_ENB 0x0200 // When set will abort rx on collision
495 #define RCR_FILT_CAR 0x0400 // When set filters leading 12 bit s of carrier
496 #define RCR_SOFTRST 0x8000 // resets the chip
497
498 /* the normal settings for the RCR register : */
499 #define RCR_DEFAULT (RCR_STRIP_CRC | RCR_RXEN)
500 #define RCR_CLEAR 0x0 // set it to a base state
501
502
503 // Counter Register
504 /* BANK 0 */
505 #define COUNTER_REG(lp) SMC_REG(lp, 0x0006, 0)
506
507
508 // Memory Information Register
509 /* BANK 0 */
510 #define MIR_REG(lp) SMC_REG(lp, 0x0008, 0)
511
512
513 // Receive/Phy Control Register
514 /* BANK 0 */
515 #define RPC_REG(lp) SMC_REG(lp, 0x000A, 0)
516 #define RPC_SPEED 0x2000 // When 1 PHY is in 100Mbps mode.
517 #define RPC_DPLX 0x1000 // When 1 PHY is in Full-Duplex Mode
518 #define RPC_ANEG 0x0800 // When 1 PHY is in Auto-Negotiate Mode
519 #define RPC_LSXA_SHFT 5 // Bits to shift LS2A,LS1A,LS0A to lsb
520 #define RPC_LSXB_SHFT 2 // Bits to get LS2B,LS1B,LS0B to lsb
521
522 #ifndef RPC_LSA_DEFAULT
523 #define RPC_LSA_DEFAULT RPC_LED_100
524 #endif
525 #ifndef RPC_LSB_DEFAULT
526 #define RPC_LSB_DEFAULT RPC_LED_FD
527 #endif
528
529 #define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX)
530
531
532 /* Bank 0 0x0C is reserved */
533
534 // Bank Select Register
535 /* All Banks */
536 #define BSR_REG 0x000E
537
538
539 // Configuration Reg
540 /* BANK 1 */
541 #define CONFIG_REG(lp) SMC_REG(lp, 0x0000, 1)
542 #define CONFIG_EXT_PHY 0x0200 // 1=external MII, 0=internal Phy
543 #define CONFIG_GPCNTRL 0x0400 // Inverse value drives pin nCNTRL
544 #define CONFIG_NO_WAIT 0x1000 // When 1 no extra wait states on ISA bus
545 #define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
546
547 // Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
548 #define CONFIG_DEFAULT (CONFIG_EPH_POWER_EN)
549
550
551 // Base Address Register
552 /* BANK 1 */
553 #define BASE_REG(lp) SMC_REG(lp, 0x0002, 1)
554
555
556 // Individual Address Registers
557 /* BANK 1 */
558 #define ADDR0_REG(lp) SMC_REG(lp, 0x0004, 1)
559 #define ADDR1_REG(lp) SMC_REG(lp, 0x0006, 1)
560 #define ADDR2_REG(lp) SMC_REG(lp, 0x0008, 1)
561
562
563 // General Purpose Register
564 /* BANK 1 */
565 #define GP_REG(lp) SMC_REG(lp, 0x000A, 1)
566
567
568 // Control Register
569 /* BANK 1 */
570 #define CTL_REG(lp) SMC_REG(lp, 0x000C, 1)
571 #define CTL_RCV_BAD 0x4000 // When 1 bad CRC packets are received
572 #define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
573 #define CTL_LE_ENABLE 0x0080 // When 1 enables Link Error interrupt
574 #define CTL_CR_ENABLE 0x0040 // When 1 enables Counter Rollover interrupt
575 #define CTL_TE_ENABLE 0x0020 // When 1 enables Transmit Error interrupt
576 #define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
577 #define CTL_RELOAD 0x0002 // When set reads EEPROM into registers
578 #define CTL_STORE 0x0001 // When set stores registers into EEPROM
579
580
581 // MMU Command Register
582 /* BANK 2 */
583 #define MMU_CMD_REG(lp) SMC_REG(lp, 0x0000, 2)
584 #define MC_BUSY 1 // When 1 the last release has not completed
585 #define MC_NOP (0<<5) // No Op
586 #define MC_ALLOC (1<<5) // OR with number of 256 byte packets
587 #define MC_RESET (2<<5) // Reset MMU to initial state
588 #define MC_REMOVE (3<<5) // Remove the current rx packet
589 #define MC_RELEASE (4<<5) // Remove and release the current rx packet
590 #define MC_FREEPKT (5<<5) // Release packet in PNR register
591 #define MC_ENQUEUE (6<<5) // Enqueue the packet for transmit
592 #define MC_RSTTXFIFO (7<<5) // Reset the TX FIFOs
593
594
595 // Packet Number Register
596 /* BANK 2 */
597 #define PN_REG(lp) SMC_REG(lp, 0x0002, 2)
598
599
600 // Allocation Result Register
601 /* BANK 2 */
602 #define AR_REG(lp) SMC_REG(lp, 0x0003, 2)
603 #define AR_FAILED 0x80 // Alocation Failed
604
605
606 // TX FIFO Ports Register
607 /* BANK 2 */
608 #define TXFIFO_REG(lp) SMC_REG(lp, 0x0004, 2)
609 #define TXFIFO_TEMPTY 0x80 // TX FIFO Empty
610
611 // RX FIFO Ports Register
612 /* BANK 2 */
613 #define RXFIFO_REG(lp) SMC_REG(lp, 0x0005, 2)
614 #define RXFIFO_REMPTY 0x80 // RX FIFO Empty
615
616 #define FIFO_REG(lp) SMC_REG(lp, 0x0004, 2)
617
618 // Pointer Register
619 /* BANK 2 */
620 #define PTR_REG(lp) SMC_REG(lp, 0x0006, 2)
621 #define PTR_RCV 0x8000 // 1=Receive area, 0=Transmit area
622 #define PTR_AUTOINC 0x4000 // Auto increment the pointer on each access
623 #define PTR_READ 0x2000 // When 1 the operation is a read
624
625
626 // Data Register
627 /* BANK 2 */
628 #define DATA_REG(lp) SMC_REG(lp, 0x0008, 2)
629
630
631 // Interrupt Status/Acknowledge Register
632 /* BANK 2 */
633 #define INT_REG(lp) SMC_REG(lp, 0x000C, 2)
634
635
636 // Interrupt Mask Register
637 /* BANK 2 */
638 #define IM_REG(lp) SMC_REG(lp, 0x000D, 2)
639 #define IM_MDINT 0x80 // PHY MI Register 18 Interrupt
640 #define IM_ERCV_INT 0x40 // Early Receive Interrupt
641 #define IM_EPH_INT 0x20 // Set by Ethernet Protocol Handler section
642 #define IM_RX_OVRN_INT 0x10 // Set by Receiver Overruns
643 #define IM_ALLOC_INT 0x08 // Set when allocation request is completed
644 #define IM_TX_EMPTY_INT 0x04 // Set if the TX FIFO goes empty
645 #define IM_TX_INT 0x02 // Transmit Interrupt
646 #define IM_RCV_INT 0x01 // Receive Interrupt
647
648
649 // Multicast Table Registers
650 /* BANK 3 */
651 #define MCAST_REG1(lp) SMC_REG(lp, 0x0000, 3)
652 #define MCAST_REG2(lp) SMC_REG(lp, 0x0002, 3)
653 #define MCAST_REG3(lp) SMC_REG(lp, 0x0004, 3)
654 #define MCAST_REG4(lp) SMC_REG(lp, 0x0006, 3)
655
656
657 // Management Interface Register (MII)
658 /* BANK 3 */
659 #define MII_REG(lp) SMC_REG(lp, 0x0008, 3)
660 #define MII_MSK_CRS100 0x4000 // Disables CRS100 detection during tx half dup
661 #define MII_MDOE 0x0008 // MII Output Enable
662 #define MII_MCLK 0x0004 // MII Clock, pin MDCLK
663 #define MII_MDI 0x0002 // MII Input, pin MDI
664 #define MII_MDO 0x0001 // MII Output, pin MDO
665
666
667 // Revision Register
668 /* BANK 3 */
669 /* ( hi: chip id low: rev # ) */
670 #define REV_REG(lp) SMC_REG(lp, 0x000A, 3)
671
672
673 // Early RCV Register
674 /* BANK 3 */
675 /* this is NOT on SMC9192 */
676 #define ERCV_REG(lp) SMC_REG(lp, 0x000C, 3)
677 #define ERCV_RCV_DISCRD 0x0080 // When 1 discards a packet being received
678 #define ERCV_THRESHOLD 0x001F // ERCV Threshold Mask
679
680
681 // External Register
682 /* BANK 7 */
683 #define EXT_REG(lp) SMC_REG(lp, 0x0000, 7)
684
685
686 #define CHIP_9192 3
687 #define CHIP_9194 4
688 #define CHIP_9195 5
689 #define CHIP_9196 6
690 #define CHIP_91100 7
691 #define CHIP_91100FD 8
692 #define CHIP_91111FD 9
693
694 static const char * chip_ids[ 16 ] = {
695 NULL, NULL, NULL,
696 /* 3 */ "SMC91C90/91C92",
697 /* 4 */ "SMC91C94",
698 /* 5 */ "SMC91C95",
699 /* 6 */ "SMC91C96",
700 /* 7 */ "SMC91C100",
701 /* 8 */ "SMC91C100FD",
702 /* 9 */ "SMC91C11xFD",
703 NULL, NULL, NULL,
704 NULL, NULL, NULL};
705
706
707 /*
708 . Receive status bits
709 */
710 #define RS_ALGNERR 0x8000
711 #define RS_BRODCAST 0x4000
712 #define RS_BADCRC 0x2000
713 #define RS_ODDFRAME 0x1000
714 #define RS_TOOLONG 0x0800
715 #define RS_TOOSHORT 0x0400
716 #define RS_MULTICAST 0x0001
717 #define RS_ERRORS (RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
718
719
720 /*
721 * PHY IDs
722 * LAN83C183 == LAN91C111 Internal PHY
723 */
724 #define PHY_LAN83C183 0x0016f840
725 #define PHY_LAN83C180 0x02821c50
726
727 /*
728 * PHY Register Addresses (LAN91C111 Internal PHY)
729 *
730 * Generic PHY registers can be found in <linux/mii.h>
731 *
732 * These phy registers are specific to our on-board phy.
733 */
734
735 // PHY Configuration Register 1
736 #define PHY_CFG1_REG 0x10
737 #define PHY_CFG1_LNKDIS 0x8000 // 1=Rx Link Detect Function disabled
738 #define PHY_CFG1_XMTDIS 0x4000 // 1=TP Transmitter Disabled
739 #define PHY_CFG1_XMTPDN 0x2000 // 1=TP Transmitter Powered Down
740 #define PHY_CFG1_BYPSCR 0x0400 // 1=Bypass scrambler/descrambler
741 #define PHY_CFG1_UNSCDS 0x0200 // 1=Unscramble Idle Reception Disable
742 #define PHY_CFG1_EQLZR 0x0100 // 1=Rx Equalizer Disabled
743 #define PHY_CFG1_CABLE 0x0080 // 1=STP(150ohm), 0=UTP(100ohm)
744 #define PHY_CFG1_RLVL0 0x0040 // 1=Rx Squelch level reduced by 4.5db
745 #define PHY_CFG1_TLVL_SHIFT 2 // Transmit Output Level Adjust
746 #define PHY_CFG1_TLVL_MASK 0x003C
747 #define PHY_CFG1_TRF_MASK 0x0003 // Transmitter Rise/Fall time
748
749
750 // PHY Configuration Register 2
751 #define PHY_CFG2_REG 0x11
752 #define PHY_CFG2_APOLDIS 0x0020 // 1=Auto Polarity Correction disabled
753 #define PHY_CFG2_JABDIS 0x0010 // 1=Jabber disabled
754 #define PHY_CFG2_MREG 0x0008 // 1=Multiple register access (MII mgt)
755 #define PHY_CFG2_INTMDIO 0x0004 // 1=Interrupt signaled with MDIO pulseo
756
757 // PHY Status Output (and Interrupt status) Register
758 #define PHY_INT_REG 0x12 // Status Output (Interrupt Status)
759 #define PHY_INT_INT 0x8000 // 1=bits have changed since last read
760 #define PHY_INT_LNKFAIL 0x4000 // 1=Link Not detected
761 #define PHY_INT_LOSSSYNC 0x2000 // 1=Descrambler has lost sync
762 #define PHY_INT_CWRD 0x1000 // 1=Invalid 4B5B code detected on rx
763 #define PHY_INT_SSD 0x0800 // 1=No Start Of Stream detected on rx
764 #define PHY_INT_ESD 0x0400 // 1=No End Of Stream detected on rx
765 #define PHY_INT_RPOL 0x0200 // 1=Reverse Polarity detected
766 #define PHY_INT_JAB 0x0100 // 1=Jabber detected
767 #define PHY_INT_SPDDET 0x0080 // 1=100Base-TX mode, 0=10Base-T mode
768 #define PHY_INT_DPLXDET 0x0040 // 1=Device in Full Duplex
769
770 // PHY Interrupt/Status Mask Register
771 #define PHY_MASK_REG 0x13 // Interrupt Mask
772 // Uses the same bit definitions as PHY_INT_REG
773
774
775 /*
776 * SMC91C96 ethernet config and status registers.
777 * These are in the "attribute" space.
778 */
779 #define ECOR 0x8000
780 #define ECOR_RESET 0x80
781 #define ECOR_LEVEL_IRQ 0x40
782 #define ECOR_WR_ATTRIB 0x04
783 #define ECOR_ENABLE 0x01
784
785 #define ECSR 0x8002
786 #define ECSR_IOIS8 0x20
787 #define ECSR_PWRDWN 0x04
788 #define ECSR_INT 0x02
789
790 #define ATTRIB_SIZE ((64*1024) << SMC_IO_SHIFT)
791
792
793 /*
794 * Macros to abstract register access according to the data bus
795 * capabilities. Please use those and not the in/out primitives.
796 * Note: the following macros do *not* select the bank -- this must
797 * be done separately as needed in the main code. The SMC_REG() macro
798 * only uses the bank argument for debugging purposes (when enabled).
799 *
800 * Note: despite inline functions being safer, everything leading to this
801 * should preferably be macros to let BUG() display the line number in
802 * the core source code since we're interested in the top call site
803 * not in any inline function location.
804 */
805
806 #if SMC_DEBUG > 0
807 #define SMC_REG(lp, reg, bank) \
808 ({ \
809 int __b = SMC_CURRENT_BANK(lp); \
810 if (unlikely((__b & ~0xf0) != (0x3300 | bank))) { \
811 pr_err("%s: bank reg screwed (0x%04x)\n", \
812 CARDNAME, __b); \
813 BUG(); \
814 } \
815 reg<<SMC_IO_SHIFT; \
816 })
817 #else
818 #define SMC_REG(lp, reg, bank) (reg<<SMC_IO_SHIFT)
819 #endif
820
821 /*
822 * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
823 * aligned to a 32 bit boundary. I tell you that does exist!
824 * Fortunately the affected register accesses can be easily worked around
825 * since we can write zeroes to the preceding 16 bits without adverse
826 * effects and use a 32-bit access.
827 *
828 * Enforce it on any 32-bit capable setup for now.
829 */
830 #define SMC_MUST_ALIGN_WRITE(lp) SMC_32BIT(lp)
831
832 #define SMC_GET_PN(lp) \
833 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, PN_REG(lp))) \
834 : (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF))
835
836 #define SMC_SET_PN(lp, x) \
837 do { \
838 if (SMC_MUST_ALIGN_WRITE(lp)) \
839 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2)); \
840 else if (SMC_8BIT(lp)) \
841 SMC_outb(x, ioaddr, PN_REG(lp)); \
842 else \
843 SMC_outw(x, ioaddr, PN_REG(lp)); \
844 } while (0)
845
846 #define SMC_GET_AR(lp) \
847 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, AR_REG(lp))) \
848 : (SMC_inw(ioaddr, PN_REG(lp)) >> 8))
849
850 #define SMC_GET_TXFIFO(lp) \
851 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, TXFIFO_REG(lp))) \
852 : (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF))
853
854 #define SMC_GET_RXFIFO(lp) \
855 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, RXFIFO_REG(lp))) \
856 : (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8))
857
858 #define SMC_GET_INT(lp) \
859 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, INT_REG(lp))) \
860 : (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF))
861
862 #define SMC_ACK_INT(lp, x) \
863 do { \
864 if (SMC_8BIT(lp)) \
865 SMC_outb(x, ioaddr, INT_REG(lp)); \
866 else { \
867 unsigned long __flags; \
868 int __mask; \
869 local_irq_save(__flags); \
870 __mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \
871 SMC_outw(__mask | (x), ioaddr, INT_REG(lp)); \
872 local_irq_restore(__flags); \
873 } \
874 } while (0)
875
876 #define SMC_GET_INT_MASK(lp) \
877 (SMC_8BIT(lp) ? (SMC_inb(ioaddr, IM_REG(lp))) \
878 : (SMC_inw(ioaddr, INT_REG(lp)) >> 8))
879
880 #define SMC_SET_INT_MASK(lp, x) \
881 do { \
882 if (SMC_8BIT(lp)) \
883 SMC_outb(x, ioaddr, IM_REG(lp)); \
884 else \
885 SMC_outw((x) << 8, ioaddr, INT_REG(lp)); \
886 } while (0)
887
888 #define SMC_CURRENT_BANK(lp) SMC_inw(ioaddr, BANK_SELECT)
889
890 #define SMC_SELECT_BANK(lp, x) \
891 do { \
892 if (SMC_MUST_ALIGN_WRITE(lp)) \
893 SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT); \
894 else \
895 SMC_outw(x, ioaddr, BANK_SELECT); \
896 } while (0)
897
898 #define SMC_GET_BASE(lp) SMC_inw(ioaddr, BASE_REG(lp))
899
900 #define SMC_SET_BASE(lp, x) SMC_outw(x, ioaddr, BASE_REG(lp))
901
902 #define SMC_GET_CONFIG(lp) SMC_inw(ioaddr, CONFIG_REG(lp))
903
904 #define SMC_SET_CONFIG(lp, x) SMC_outw(x, ioaddr, CONFIG_REG(lp))
905
906 #define SMC_GET_COUNTER(lp) SMC_inw(ioaddr, COUNTER_REG(lp))
907
908 #define SMC_GET_CTL(lp) SMC_inw(ioaddr, CTL_REG(lp))
909
910 #define SMC_SET_CTL(lp, x) SMC_outw(x, ioaddr, CTL_REG(lp))
911
912 #define SMC_GET_MII(lp) SMC_inw(ioaddr, MII_REG(lp))
913
914 #define SMC_GET_GP(lp) SMC_inw(ioaddr, GP_REG(lp))
915
916 #define SMC_SET_GP(lp, x) \
917 do { \
918 if (SMC_MUST_ALIGN_WRITE(lp)) \
919 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1)); \
920 else \
921 SMC_outw(x, ioaddr, GP_REG(lp)); \
922 } while (0)
923
924 #define SMC_SET_MII(lp, x) SMC_outw(x, ioaddr, MII_REG(lp))
925
926 #define SMC_GET_MIR(lp) SMC_inw(ioaddr, MIR_REG(lp))
927
928 #define SMC_SET_MIR(lp, x) SMC_outw(x, ioaddr, MIR_REG(lp))
929
930 #define SMC_GET_MMU_CMD(lp) SMC_inw(ioaddr, MMU_CMD_REG(lp))
931
932 #define SMC_SET_MMU_CMD(lp, x) SMC_outw(x, ioaddr, MMU_CMD_REG(lp))
933
934 #define SMC_GET_FIFO(lp) SMC_inw(ioaddr, FIFO_REG(lp))
935
936 #define SMC_GET_PTR(lp) SMC_inw(ioaddr, PTR_REG(lp))
937
938 #define SMC_SET_PTR(lp, x) \
939 do { \
940 if (SMC_MUST_ALIGN_WRITE(lp)) \
941 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2)); \
942 else \
943 SMC_outw(x, ioaddr, PTR_REG(lp)); \
944 } while (0)
945
946 #define SMC_GET_EPH_STATUS(lp) SMC_inw(ioaddr, EPH_STATUS_REG(lp))
947
948 #define SMC_GET_RCR(lp) SMC_inw(ioaddr, RCR_REG(lp))
949
950 #define SMC_SET_RCR(lp, x) SMC_outw(x, ioaddr, RCR_REG(lp))
951
952 #define SMC_GET_REV(lp) SMC_inw(ioaddr, REV_REG(lp))
953
954 #define SMC_GET_RPC(lp) SMC_inw(ioaddr, RPC_REG(lp))
955
956 #define SMC_SET_RPC(lp, x) \
957 do { \
958 if (SMC_MUST_ALIGN_WRITE(lp)) \
959 SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0)); \
960 else \
961 SMC_outw(x, ioaddr, RPC_REG(lp)); \
962 } while (0)
963
964 #define SMC_GET_TCR(lp) SMC_inw(ioaddr, TCR_REG(lp))
965
966 #define SMC_SET_TCR(lp, x) SMC_outw(x, ioaddr, TCR_REG(lp))
967
968 #ifndef SMC_GET_MAC_ADDR
969 #define SMC_GET_MAC_ADDR(lp, addr) \
970 do { \
971 unsigned int __v; \
972 __v = SMC_inw(ioaddr, ADDR0_REG(lp)); \
973 addr[0] = __v; addr[1] = __v >> 8; \
974 __v = SMC_inw(ioaddr, ADDR1_REG(lp)); \
975 addr[2] = __v; addr[3] = __v >> 8; \
976 __v = SMC_inw(ioaddr, ADDR2_REG(lp)); \
977 addr[4] = __v; addr[5] = __v >> 8; \
978 } while (0)
979 #endif
980
981 #define SMC_SET_MAC_ADDR(lp, addr) \
982 do { \
983 SMC_outw(addr[0]|(addr[1] << 8), ioaddr, ADDR0_REG(lp)); \
984 SMC_outw(addr[2]|(addr[3] << 8), ioaddr, ADDR1_REG(lp)); \
985 SMC_outw(addr[4]|(addr[5] << 8), ioaddr, ADDR2_REG(lp)); \
986 } while (0)
987
988 #define SMC_SET_MCAST(lp, x) \
989 do { \
990 const unsigned char *mt = (x); \
991 SMC_outw(mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \
992 SMC_outw(mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \
993 SMC_outw(mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \
994 SMC_outw(mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \
995 } while (0)
996
997 #define SMC_PUT_PKT_HDR(lp, status, length) \
998 do { \
999 if (SMC_32BIT(lp)) \
1000 SMC_outl((status) | (length)<<16, ioaddr, \
1001 DATA_REG(lp)); \
1002 else { \
1003 SMC_outw(status, ioaddr, DATA_REG(lp)); \
1004 SMC_outw(length, ioaddr, DATA_REG(lp)); \
1005 } \
1006 } while (0)
1007
1008 #define SMC_GET_PKT_HDR(lp, status, length) \
1009 do { \
1010 if (SMC_32BIT(lp)) { \
1011 unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \
1012 (status) = __val & 0xffff; \
1013 (length) = __val >> 16; \
1014 } else { \
1015 (status) = SMC_inw(ioaddr, DATA_REG(lp)); \
1016 (length) = SMC_inw(ioaddr, DATA_REG(lp)); \
1017 } \
1018 } while (0)
1019
1020 #define SMC_PUSH_DATA(lp, p, l) \
1021 do { \
1022 if (SMC_32BIT(lp)) { \
1023 void *__ptr = (p); \
1024 int __len = (l); \
1025 void __iomem *__ioaddr = ioaddr; \
1026 if (__len >= 2 && (unsigned long)__ptr & 2) { \
1027 __len -= 2; \
1028 SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1029 __ptr += 2; \
1030 } \
1031 if (SMC_CAN_USE_DATACS && lp->datacs) \
1032 __ioaddr = lp->datacs; \
1033 SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1034 if (__len & 2) { \
1035 __ptr += (__len & ~3); \
1036 SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1037 } \
1038 } else if (SMC_16BIT(lp)) \
1039 SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1); \
1040 else if (SMC_8BIT(lp)) \
1041 SMC_outsb(ioaddr, DATA_REG(lp), p, l); \
1042 } while (0)
1043
1044 #define SMC_PULL_DATA(lp, p, l) \
1045 do { \
1046 if (SMC_32BIT(lp)) { \
1047 void *__ptr = (p); \
1048 int __len = (l); \
1049 void __iomem *__ioaddr = ioaddr; \
1050 if ((unsigned long)__ptr & 2) { \
1051 /* \
1052 * We want 32bit alignment here. \
1053 * Since some buses perform a full \
1054 * 32bit fetch even for 16bit data \
1055 * we can't use SMC_inw() here. \
1056 * Back both source (on-chip) and \
1057 * destination pointers of 2 bytes. \
1058 * This is possible since the call to \
1059 * SMC_GET_PKT_HDR() already advanced \
1060 * the source pointer of 4 bytes, and \
1061 * the skb_reserve(skb, 2) advanced \
1062 * the destination pointer of 2 bytes. \
1063 */ \
1064 __ptr -= 2; \
1065 __len += 2; \
1066 SMC_SET_PTR(lp, \
1067 2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1068 } \
1069 if (SMC_CAN_USE_DATACS && lp->datacs) \
1070 __ioaddr = lp->datacs; \
1071 __len += 2; \
1072 SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1073 } else if (SMC_16BIT(lp)) \
1074 SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1); \
1075 else if (SMC_8BIT(lp)) \
1076 SMC_insb(ioaddr, DATA_REG(lp), p, l); \
1077 } while (0)
1078
1079 #endif /* _SMC91X_H_ */
This page took 0.054375 seconds and 5 git commands to generate.