x86/mce: Handle Local MCE events
[deliverable/linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55
56 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
57
58 /* Module parameters */
59 #define TX_TIMEO 5000
60 static int watchdog = TX_TIMEO;
61 module_param(watchdog, int, S_IRUGO | S_IWUSR);
62 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
63
64 static int debug = -1;
65 module_param(debug, int, S_IRUGO | S_IWUSR);
66 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
67
68 static int phyaddr = -1;
69 module_param(phyaddr, int, S_IRUGO);
70 MODULE_PARM_DESC(phyaddr, "Physical device address");
71
72 #define DMA_TX_SIZE 256
73 static int dma_txsize = DMA_TX_SIZE;
74 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
75 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
76
77 #define DMA_RX_SIZE 256
78 static int dma_rxsize = DMA_RX_SIZE;
79 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
81
82 static int flow_ctrl = FLOW_OFF;
83 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
85
86 static int pause = PAUSE_TIME;
87 module_param(pause, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
89
90 #define TC_DEFAULT 64
91 static int tc = TC_DEFAULT;
92 module_param(tc, int, S_IRUGO | S_IWUSR);
93 MODULE_PARM_DESC(tc, "DMA threshold control value");
94
95 #define DEFAULT_BUFSIZE 1536
96 static int buf_sz = DEFAULT_BUFSIZE;
97 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
99
100 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
101 NETIF_MSG_LINK | NETIF_MSG_IFUP |
102 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
103
104 #define STMMAC_DEFAULT_LPI_TIMER 1000
105 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
106 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
108 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
109
110 /* By default the driver will use the ring mode to manage tx and rx descriptors
111 * but passing this value so user can force to use the chain instead of the ring
112 */
113 static unsigned int chain_mode;
114 module_param(chain_mode, int, S_IRUGO);
115 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
116
117 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
118
119 #ifdef CONFIG_DEBUG_FS
120 static int stmmac_init_fs(struct net_device *dev);
121 static void stmmac_exit_fs(void);
122 #endif
123
124 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
125
126 /**
127 * stmmac_verify_args - verify the driver parameters.
128 * Description: it checks the driver parameters and set a default in case of
129 * errors.
130 */
131 static void stmmac_verify_args(void)
132 {
133 if (unlikely(watchdog < 0))
134 watchdog = TX_TIMEO;
135 if (unlikely(dma_rxsize < 0))
136 dma_rxsize = DMA_RX_SIZE;
137 if (unlikely(dma_txsize < 0))
138 dma_txsize = DMA_TX_SIZE;
139 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
140 buf_sz = DEFAULT_BUFSIZE;
141 if (unlikely(flow_ctrl > 1))
142 flow_ctrl = FLOW_AUTO;
143 else if (likely(flow_ctrl < 0))
144 flow_ctrl = FLOW_OFF;
145 if (unlikely((pause < 0) || (pause > 0xffff)))
146 pause = PAUSE_TIME;
147 if (eee_timer < 0)
148 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
149 }
150
151 /**
152 * stmmac_clk_csr_set - dynamically set the MDC clock
153 * @priv: driver private structure
154 * Description: this is to dynamically set the MDC clock according to the csr
155 * clock input.
156 * Note:
157 * If a specific clk_csr value is passed from the platform
158 * this means that the CSR Clock Range selection cannot be
159 * changed at run-time and it is fixed (as reported in the driver
160 * documentation). Viceversa the driver will try to set the MDC
161 * clock dynamically according to the actual clock input.
162 */
163 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
164 {
165 u32 clk_rate;
166
167 clk_rate = clk_get_rate(priv->stmmac_clk);
168
169 /* Platform provided default clk_csr would be assumed valid
170 * for all other cases except for the below mentioned ones.
171 * For values higher than the IEEE 802.3 specified frequency
172 * we can not estimate the proper divider as it is not known
173 * the frequency of clk_csr_i. So we do not change the default
174 * divider.
175 */
176 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
177 if (clk_rate < CSR_F_35M)
178 priv->clk_csr = STMMAC_CSR_20_35M;
179 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
180 priv->clk_csr = STMMAC_CSR_35_60M;
181 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
182 priv->clk_csr = STMMAC_CSR_60_100M;
183 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
184 priv->clk_csr = STMMAC_CSR_100_150M;
185 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
186 priv->clk_csr = STMMAC_CSR_150_250M;
187 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
188 priv->clk_csr = STMMAC_CSR_250_300M;
189 }
190 }
191
192 static void print_pkt(unsigned char *buf, int len)
193 {
194 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
195 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
196 }
197
198 /* minimum number of free TX descriptors required to wake up TX process */
199 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
200
201 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
202 {
203 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
204 }
205
206 /**
207 * stmmac_hw_fix_mac_speed - callback for speed selection
208 * @priv: driver private structure
209 * Description: on some platforms (e.g. ST), some HW system configuraton
210 * registers have to be set according to the link speed negotiated.
211 */
212 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
213 {
214 struct phy_device *phydev = priv->phydev;
215
216 if (likely(priv->plat->fix_mac_speed))
217 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
218 }
219
220 /**
221 * stmmac_enable_eee_mode - check and enter in LPI mode
222 * @priv: driver private structure
223 * Description: this function is to verify and enter in LPI mode in case of
224 * EEE.
225 */
226 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
227 {
228 /* Check and enter in LPI mode */
229 if ((priv->dirty_tx == priv->cur_tx) &&
230 (priv->tx_path_in_lpi_mode == false))
231 priv->hw->mac->set_eee_mode(priv->hw);
232 }
233
234 /**
235 * stmmac_disable_eee_mode - disable and exit from LPI mode
236 * @priv: driver private structure
237 * Description: this function is to exit and disable EEE in case of
238 * LPI state is true. This is called by the xmit.
239 */
240 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
241 {
242 priv->hw->mac->reset_eee_mode(priv->hw);
243 del_timer_sync(&priv->eee_ctrl_timer);
244 priv->tx_path_in_lpi_mode = false;
245 }
246
247 /**
248 * stmmac_eee_ctrl_timer - EEE TX SW timer.
249 * @arg : data hook
250 * Description:
251 * if there is no data transfer and if we are not in LPI state,
252 * then MAC Transmitter can be moved to LPI state.
253 */
254 static void stmmac_eee_ctrl_timer(unsigned long arg)
255 {
256 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
257
258 stmmac_enable_eee_mode(priv);
259 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
260 }
261
262 /**
263 * stmmac_eee_init - init EEE
264 * @priv: driver private structure
265 * Description:
266 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
267 * can also manage EEE, this function enable the LPI state and start related
268 * timer.
269 */
270 bool stmmac_eee_init(struct stmmac_priv *priv)
271 {
272 char *phy_bus_name = priv->plat->phy_bus_name;
273 unsigned long flags;
274 bool ret = false;
275
276 /* Using PCS we cannot dial with the phy registers at this stage
277 * so we do not support extra feature like EEE.
278 */
279 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
280 (priv->pcs == STMMAC_PCS_RTBI))
281 goto out;
282
283 /* Never init EEE in case of a switch is attached */
284 if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
285 goto out;
286
287 /* MAC core supports the EEE feature. */
288 if (priv->dma_cap.eee) {
289 int tx_lpi_timer = priv->tx_lpi_timer;
290
291 /* Check if the PHY supports EEE */
292 if (phy_init_eee(priv->phydev, 1)) {
293 /* To manage at run-time if the EEE cannot be supported
294 * anymore (for example because the lp caps have been
295 * changed).
296 * In that case the driver disable own timers.
297 */
298 spin_lock_irqsave(&priv->lock, flags);
299 if (priv->eee_active) {
300 pr_debug("stmmac: disable EEE\n");
301 del_timer_sync(&priv->eee_ctrl_timer);
302 priv->hw->mac->set_eee_timer(priv->hw, 0,
303 tx_lpi_timer);
304 }
305 priv->eee_active = 0;
306 spin_unlock_irqrestore(&priv->lock, flags);
307 goto out;
308 }
309 /* Activate the EEE and start timers */
310 spin_lock_irqsave(&priv->lock, flags);
311 if (!priv->eee_active) {
312 priv->eee_active = 1;
313 setup_timer(&priv->eee_ctrl_timer,
314 stmmac_eee_ctrl_timer,
315 (unsigned long)priv);
316 mod_timer(&priv->eee_ctrl_timer,
317 STMMAC_LPI_T(eee_timer));
318
319 priv->hw->mac->set_eee_timer(priv->hw,
320 STMMAC_DEFAULT_LIT_LS,
321 tx_lpi_timer);
322 }
323 /* Set HW EEE according to the speed */
324 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
325
326 ret = true;
327 spin_unlock_irqrestore(&priv->lock, flags);
328
329 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
330 }
331 out:
332 return ret;
333 }
334
335 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
336 * @priv: driver private structure
337 * @entry : descriptor index to be used.
338 * @skb : the socket buffer
339 * Description :
340 * This function will read timestamp from the descriptor & pass it to stack.
341 * and also perform some sanity checks.
342 */
343 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
344 unsigned int entry, struct sk_buff *skb)
345 {
346 struct skb_shared_hwtstamps shhwtstamp;
347 u64 ns;
348 void *desc = NULL;
349
350 if (!priv->hwts_tx_en)
351 return;
352
353 /* exit if skb doesn't support hw tstamp */
354 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
355 return;
356
357 if (priv->adv_ts)
358 desc = (priv->dma_etx + entry);
359 else
360 desc = (priv->dma_tx + entry);
361
362 /* check tx tstamp status */
363 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
364 return;
365
366 /* get the valid tstamp */
367 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
368
369 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
370 shhwtstamp.hwtstamp = ns_to_ktime(ns);
371 /* pass tstamp to stack */
372 skb_tstamp_tx(skb, &shhwtstamp);
373
374 return;
375 }
376
377 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
378 * @priv: driver private structure
379 * @entry : descriptor index to be used.
380 * @skb : the socket buffer
381 * Description :
382 * This function will read received packet's timestamp from the descriptor
383 * and pass it to stack. It also perform some sanity checks.
384 */
385 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
386 unsigned int entry, struct sk_buff *skb)
387 {
388 struct skb_shared_hwtstamps *shhwtstamp = NULL;
389 u64 ns;
390 void *desc = NULL;
391
392 if (!priv->hwts_rx_en)
393 return;
394
395 if (priv->adv_ts)
396 desc = (priv->dma_erx + entry);
397 else
398 desc = (priv->dma_rx + entry);
399
400 /* exit if rx tstamp is not valid */
401 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
402 return;
403
404 /* get valid tstamp */
405 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
406 shhwtstamp = skb_hwtstamps(skb);
407 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
408 shhwtstamp->hwtstamp = ns_to_ktime(ns);
409 }
410
411 /**
412 * stmmac_hwtstamp_ioctl - control hardware timestamping.
413 * @dev: device pointer.
414 * @ifr: An IOCTL specefic structure, that can contain a pointer to
415 * a proprietary structure used to pass information to the driver.
416 * Description:
417 * This function configures the MAC to enable/disable both outgoing(TX)
418 * and incoming(RX) packets time stamping based on user input.
419 * Return Value:
420 * 0 on success and an appropriate -ve integer on failure.
421 */
422 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
423 {
424 struct stmmac_priv *priv = netdev_priv(dev);
425 struct hwtstamp_config config;
426 struct timespec now;
427 u64 temp = 0;
428 u32 ptp_v2 = 0;
429 u32 tstamp_all = 0;
430 u32 ptp_over_ipv4_udp = 0;
431 u32 ptp_over_ipv6_udp = 0;
432 u32 ptp_over_ethernet = 0;
433 u32 snap_type_sel = 0;
434 u32 ts_master_en = 0;
435 u32 ts_event_en = 0;
436 u32 value = 0;
437
438 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
439 netdev_alert(priv->dev, "No support for HW time stamping\n");
440 priv->hwts_tx_en = 0;
441 priv->hwts_rx_en = 0;
442
443 return -EOPNOTSUPP;
444 }
445
446 if (copy_from_user(&config, ifr->ifr_data,
447 sizeof(struct hwtstamp_config)))
448 return -EFAULT;
449
450 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
451 __func__, config.flags, config.tx_type, config.rx_filter);
452
453 /* reserved for future extensions */
454 if (config.flags)
455 return -EINVAL;
456
457 if (config.tx_type != HWTSTAMP_TX_OFF &&
458 config.tx_type != HWTSTAMP_TX_ON)
459 return -ERANGE;
460
461 if (priv->adv_ts) {
462 switch (config.rx_filter) {
463 case HWTSTAMP_FILTER_NONE:
464 /* time stamp no incoming packet at all */
465 config.rx_filter = HWTSTAMP_FILTER_NONE;
466 break;
467
468 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
469 /* PTP v1, UDP, any kind of event packet */
470 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
471 /* take time stamp for all event messages */
472 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
473
474 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
475 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
476 break;
477
478 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
479 /* PTP v1, UDP, Sync packet */
480 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
481 /* take time stamp for SYNC messages only */
482 ts_event_en = PTP_TCR_TSEVNTENA;
483
484 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
485 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
486 break;
487
488 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
489 /* PTP v1, UDP, Delay_req packet */
490 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
491 /* take time stamp for Delay_Req messages only */
492 ts_master_en = PTP_TCR_TSMSTRENA;
493 ts_event_en = PTP_TCR_TSEVNTENA;
494
495 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
496 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
497 break;
498
499 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
500 /* PTP v2, UDP, any kind of event packet */
501 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
502 ptp_v2 = PTP_TCR_TSVER2ENA;
503 /* take time stamp for all event messages */
504 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
505
506 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
507 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
508 break;
509
510 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
511 /* PTP v2, UDP, Sync packet */
512 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
513 ptp_v2 = PTP_TCR_TSVER2ENA;
514 /* take time stamp for SYNC messages only */
515 ts_event_en = PTP_TCR_TSEVNTENA;
516
517 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
518 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
519 break;
520
521 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
522 /* PTP v2, UDP, Delay_req packet */
523 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
524 ptp_v2 = PTP_TCR_TSVER2ENA;
525 /* take time stamp for Delay_Req messages only */
526 ts_master_en = PTP_TCR_TSMSTRENA;
527 ts_event_en = PTP_TCR_TSEVNTENA;
528
529 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
530 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
531 break;
532
533 case HWTSTAMP_FILTER_PTP_V2_EVENT:
534 /* PTP v2/802.AS1 any layer, any kind of event packet */
535 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
536 ptp_v2 = PTP_TCR_TSVER2ENA;
537 /* take time stamp for all event messages */
538 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
539
540 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
541 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
542 ptp_over_ethernet = PTP_TCR_TSIPENA;
543 break;
544
545 case HWTSTAMP_FILTER_PTP_V2_SYNC:
546 /* PTP v2/802.AS1, any layer, Sync packet */
547 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
548 ptp_v2 = PTP_TCR_TSVER2ENA;
549 /* take time stamp for SYNC messages only */
550 ts_event_en = PTP_TCR_TSEVNTENA;
551
552 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
553 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
554 ptp_over_ethernet = PTP_TCR_TSIPENA;
555 break;
556
557 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
558 /* PTP v2/802.AS1, any layer, Delay_req packet */
559 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
560 ptp_v2 = PTP_TCR_TSVER2ENA;
561 /* take time stamp for Delay_Req messages only */
562 ts_master_en = PTP_TCR_TSMSTRENA;
563 ts_event_en = PTP_TCR_TSEVNTENA;
564
565 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
566 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
567 ptp_over_ethernet = PTP_TCR_TSIPENA;
568 break;
569
570 case HWTSTAMP_FILTER_ALL:
571 /* time stamp any incoming packet */
572 config.rx_filter = HWTSTAMP_FILTER_ALL;
573 tstamp_all = PTP_TCR_TSENALL;
574 break;
575
576 default:
577 return -ERANGE;
578 }
579 } else {
580 switch (config.rx_filter) {
581 case HWTSTAMP_FILTER_NONE:
582 config.rx_filter = HWTSTAMP_FILTER_NONE;
583 break;
584 default:
585 /* PTP v1, UDP, any kind of event packet */
586 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
587 break;
588 }
589 }
590 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
591 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
592
593 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
594 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
595 else {
596 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
597 tstamp_all | ptp_v2 | ptp_over_ethernet |
598 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
599 ts_master_en | snap_type_sel);
600
601 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
602
603 /* program Sub Second Increment reg */
604 priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
605
606 /* calculate default added value:
607 * formula is :
608 * addend = (2^32)/freq_div_ratio;
609 * where, freq_div_ratio = clk_ptp_ref_i/50MHz
610 * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i;
611 * NOTE: clk_ptp_ref_i should be >= 50MHz to
612 * achieve 20ns accuracy.
613 *
614 * 2^x * y == (y << x), hence
615 * 2^32 * 50000000 ==> (50000000 << 32)
616 */
617 temp = (u64) (50000000ULL << 32);
618 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
619 priv->hw->ptp->config_addend(priv->ioaddr,
620 priv->default_addend);
621
622 /* initialize system time */
623 getnstimeofday(&now);
624 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
625 now.tv_nsec);
626 }
627
628 return copy_to_user(ifr->ifr_data, &config,
629 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
630 }
631
632 /**
633 * stmmac_init_ptp - init PTP
634 * @priv: driver private structure
635 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
636 * This is done by looking at the HW cap. register.
637 * This function also registers the ptp driver.
638 */
639 static int stmmac_init_ptp(struct stmmac_priv *priv)
640 {
641 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
642 return -EOPNOTSUPP;
643
644 /* Fall-back to main clock in case of no PTP ref is passed */
645 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
646 if (IS_ERR(priv->clk_ptp_ref)) {
647 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
648 priv->clk_ptp_ref = NULL;
649 } else {
650 clk_prepare_enable(priv->clk_ptp_ref);
651 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
652 }
653
654 priv->adv_ts = 0;
655 if (priv->dma_cap.atime_stamp && priv->extend_desc)
656 priv->adv_ts = 1;
657
658 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
659 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
660
661 if (netif_msg_hw(priv) && priv->adv_ts)
662 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
663
664 priv->hw->ptp = &stmmac_ptp;
665 priv->hwts_tx_en = 0;
666 priv->hwts_rx_en = 0;
667
668 return stmmac_ptp_register(priv);
669 }
670
671 static void stmmac_release_ptp(struct stmmac_priv *priv)
672 {
673 if (priv->clk_ptp_ref)
674 clk_disable_unprepare(priv->clk_ptp_ref);
675 stmmac_ptp_unregister(priv);
676 }
677
678 /**
679 * stmmac_adjust_link - adjusts the link parameters
680 * @dev: net device structure
681 * Description: this is the helper called by the physical abstraction layer
682 * drivers to communicate the phy link status. According the speed and duplex
683 * this driver can invoke registered glue-logic as well.
684 * It also invoke the eee initialization because it could happen when switch
685 * on different networks (that are eee capable).
686 */
687 static void stmmac_adjust_link(struct net_device *dev)
688 {
689 struct stmmac_priv *priv = netdev_priv(dev);
690 struct phy_device *phydev = priv->phydev;
691 unsigned long flags;
692 int new_state = 0;
693 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
694
695 if (phydev == NULL)
696 return;
697
698 spin_lock_irqsave(&priv->lock, flags);
699
700 if (phydev->link) {
701 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
702
703 /* Now we make sure that we can be in full duplex mode.
704 * If not, we operate in half-duplex mode. */
705 if (phydev->duplex != priv->oldduplex) {
706 new_state = 1;
707 if (!(phydev->duplex))
708 ctrl &= ~priv->hw->link.duplex;
709 else
710 ctrl |= priv->hw->link.duplex;
711 priv->oldduplex = phydev->duplex;
712 }
713 /* Flow Control operation */
714 if (phydev->pause)
715 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
716 fc, pause_time);
717
718 if (phydev->speed != priv->speed) {
719 new_state = 1;
720 switch (phydev->speed) {
721 case 1000:
722 if (likely(priv->plat->has_gmac))
723 ctrl &= ~priv->hw->link.port;
724 stmmac_hw_fix_mac_speed(priv);
725 break;
726 case 100:
727 case 10:
728 if (priv->plat->has_gmac) {
729 ctrl |= priv->hw->link.port;
730 if (phydev->speed == SPEED_100) {
731 ctrl |= priv->hw->link.speed;
732 } else {
733 ctrl &= ~(priv->hw->link.speed);
734 }
735 } else {
736 ctrl &= ~priv->hw->link.port;
737 }
738 stmmac_hw_fix_mac_speed(priv);
739 break;
740 default:
741 if (netif_msg_link(priv))
742 pr_warn("%s: Speed (%d) not 10/100\n",
743 dev->name, phydev->speed);
744 break;
745 }
746
747 priv->speed = phydev->speed;
748 }
749
750 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
751
752 if (!priv->oldlink) {
753 new_state = 1;
754 priv->oldlink = 1;
755 }
756 } else if (priv->oldlink) {
757 new_state = 1;
758 priv->oldlink = 0;
759 priv->speed = 0;
760 priv->oldduplex = -1;
761 }
762
763 if (new_state && netif_msg_link(priv))
764 phy_print_status(phydev);
765
766 spin_unlock_irqrestore(&priv->lock, flags);
767
768 /* At this stage, it could be needed to setup the EEE or adjust some
769 * MAC related HW registers.
770 */
771 priv->eee_enabled = stmmac_eee_init(priv);
772 }
773
774 /**
775 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
776 * @priv: driver private structure
777 * Description: this is to verify if the HW supports the PCS.
778 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
779 * configured for the TBI, RTBI, or SGMII PHY interface.
780 */
781 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
782 {
783 int interface = priv->plat->interface;
784
785 if (priv->dma_cap.pcs) {
786 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
787 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
788 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
789 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
790 pr_debug("STMMAC: PCS RGMII support enable\n");
791 priv->pcs = STMMAC_PCS_RGMII;
792 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
793 pr_debug("STMMAC: PCS SGMII support enable\n");
794 priv->pcs = STMMAC_PCS_SGMII;
795 }
796 }
797 }
798
799 /**
800 * stmmac_init_phy - PHY initialization
801 * @dev: net device structure
802 * Description: it initializes the driver's PHY state, and attaches the PHY
803 * to the mac driver.
804 * Return value:
805 * 0 on success
806 */
807 static int stmmac_init_phy(struct net_device *dev)
808 {
809 struct stmmac_priv *priv = netdev_priv(dev);
810 struct phy_device *phydev;
811 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
812 char bus_id[MII_BUS_ID_SIZE];
813 int interface = priv->plat->interface;
814 int max_speed = priv->plat->max_speed;
815 priv->oldlink = 0;
816 priv->speed = 0;
817 priv->oldduplex = -1;
818
819 if (priv->plat->phy_bus_name)
820 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
821 priv->plat->phy_bus_name, priv->plat->bus_id);
822 else
823 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
824 priv->plat->bus_id);
825
826 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
827 priv->plat->phy_addr);
828 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id_fmt);
829
830 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
831
832 if (IS_ERR(phydev)) {
833 pr_err("%s: Could not attach to PHY\n", dev->name);
834 return PTR_ERR(phydev);
835 }
836
837 /* Stop Advertising 1000BASE Capability if interface is not GMII */
838 if ((interface == PHY_INTERFACE_MODE_MII) ||
839 (interface == PHY_INTERFACE_MODE_RMII) ||
840 (max_speed < 1000 && max_speed > 0))
841 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
842 SUPPORTED_1000baseT_Full);
843
844 /*
845 * Broken HW is sometimes missing the pull-up resistor on the
846 * MDIO line, which results in reads to non-existent devices returning
847 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
848 * device as well.
849 * Note: phydev->phy_id is the result of reading the UID PHY registers.
850 */
851 if (phydev->phy_id == 0) {
852 phy_disconnect(phydev);
853 return -ENODEV;
854 }
855 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
856 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
857
858 priv->phydev = phydev;
859
860 return 0;
861 }
862
863 /**
864 * stmmac_display_ring - display ring
865 * @head: pointer to the head of the ring passed.
866 * @size: size of the ring.
867 * @extend_desc: to verify if extended descriptors are used.
868 * Description: display the control/status and buffer descriptors.
869 */
870 static void stmmac_display_ring(void *head, int size, int extend_desc)
871 {
872 int i;
873 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
874 struct dma_desc *p = (struct dma_desc *)head;
875
876 for (i = 0; i < size; i++) {
877 u64 x;
878 if (extend_desc) {
879 x = *(u64 *) ep;
880 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
881 i, (unsigned int)virt_to_phys(ep),
882 (unsigned int)x, (unsigned int)(x >> 32),
883 ep->basic.des2, ep->basic.des3);
884 ep++;
885 } else {
886 x = *(u64 *) p;
887 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
888 i, (unsigned int)virt_to_phys(p),
889 (unsigned int)x, (unsigned int)(x >> 32),
890 p->des2, p->des3);
891 p++;
892 }
893 pr_info("\n");
894 }
895 }
896
897 static void stmmac_display_rings(struct stmmac_priv *priv)
898 {
899 unsigned int txsize = priv->dma_tx_size;
900 unsigned int rxsize = priv->dma_rx_size;
901
902 if (priv->extend_desc) {
903 pr_info("Extended RX descriptor ring:\n");
904 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
905 pr_info("Extended TX descriptor ring:\n");
906 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
907 } else {
908 pr_info("RX descriptor ring:\n");
909 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
910 pr_info("TX descriptor ring:\n");
911 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
912 }
913 }
914
915 static int stmmac_set_bfsize(int mtu, int bufsize)
916 {
917 int ret = bufsize;
918
919 if (mtu >= BUF_SIZE_4KiB)
920 ret = BUF_SIZE_8KiB;
921 else if (mtu >= BUF_SIZE_2KiB)
922 ret = BUF_SIZE_4KiB;
923 else if (mtu > DEFAULT_BUFSIZE)
924 ret = BUF_SIZE_2KiB;
925 else
926 ret = DEFAULT_BUFSIZE;
927
928 return ret;
929 }
930
931 /**
932 * stmmac_clear_descriptors - clear descriptors
933 * @priv: driver private structure
934 * Description: this function is called to clear the tx and rx descriptors
935 * in case of both basic and extended descriptors are used.
936 */
937 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
938 {
939 int i;
940 unsigned int txsize = priv->dma_tx_size;
941 unsigned int rxsize = priv->dma_rx_size;
942
943 /* Clear the Rx/Tx descriptors */
944 for (i = 0; i < rxsize; i++)
945 if (priv->extend_desc)
946 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
947 priv->use_riwt, priv->mode,
948 (i == rxsize - 1));
949 else
950 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
951 priv->use_riwt, priv->mode,
952 (i == rxsize - 1));
953 for (i = 0; i < txsize; i++)
954 if (priv->extend_desc)
955 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
956 priv->mode,
957 (i == txsize - 1));
958 else
959 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
960 priv->mode,
961 (i == txsize - 1));
962 }
963
964 /**
965 * stmmac_init_rx_buffers - init the RX descriptor buffer.
966 * @priv: driver private structure
967 * @p: descriptor pointer
968 * @i: descriptor index
969 * @flags: gfp flag.
970 * Description: this function is called to allocate a receive buffer, perform
971 * the DMA mapping and init the descriptor.
972 */
973 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
974 int i, gfp_t flags)
975 {
976 struct sk_buff *skb;
977
978 skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
979 flags);
980 if (!skb) {
981 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
982 return -ENOMEM;
983 }
984 skb_reserve(skb, NET_IP_ALIGN);
985 priv->rx_skbuff[i] = skb;
986 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
987 priv->dma_buf_sz,
988 DMA_FROM_DEVICE);
989 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
990 pr_err("%s: DMA mapping error\n", __func__);
991 dev_kfree_skb_any(skb);
992 return -EINVAL;
993 }
994
995 p->des2 = priv->rx_skbuff_dma[i];
996
997 if ((priv->hw->mode->init_desc3) &&
998 (priv->dma_buf_sz == BUF_SIZE_16KiB))
999 priv->hw->mode->init_desc3(p);
1000
1001 return 0;
1002 }
1003
1004 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1005 {
1006 if (priv->rx_skbuff[i]) {
1007 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1008 priv->dma_buf_sz, DMA_FROM_DEVICE);
1009 dev_kfree_skb_any(priv->rx_skbuff[i]);
1010 }
1011 priv->rx_skbuff[i] = NULL;
1012 }
1013
1014 /**
1015 * init_dma_desc_rings - init the RX/TX descriptor rings
1016 * @dev: net device structure
1017 * @flags: gfp flag.
1018 * Description: this function initializes the DMA RX/TX descriptors
1019 * and allocates the socket buffers. It suppors the chained and ring
1020 * modes.
1021 */
1022 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1023 {
1024 int i;
1025 struct stmmac_priv *priv = netdev_priv(dev);
1026 unsigned int txsize = priv->dma_tx_size;
1027 unsigned int rxsize = priv->dma_rx_size;
1028 unsigned int bfsize = 0;
1029 int ret = -ENOMEM;
1030
1031 if (priv->hw->mode->set_16kib_bfsize)
1032 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1033
1034 if (bfsize < BUF_SIZE_16KiB)
1035 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1036
1037 priv->dma_buf_sz = bfsize;
1038
1039 if (netif_msg_probe(priv))
1040 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1041 txsize, rxsize, bfsize);
1042
1043 if (netif_msg_probe(priv)) {
1044 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1045 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1046
1047 /* RX INITIALIZATION */
1048 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1049 }
1050 for (i = 0; i < rxsize; i++) {
1051 struct dma_desc *p;
1052 if (priv->extend_desc)
1053 p = &((priv->dma_erx + i)->basic);
1054 else
1055 p = priv->dma_rx + i;
1056
1057 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1058 if (ret)
1059 goto err_init_rx_buffers;
1060
1061 if (netif_msg_probe(priv))
1062 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1063 priv->rx_skbuff[i]->data,
1064 (unsigned int)priv->rx_skbuff_dma[i]);
1065 }
1066 priv->cur_rx = 0;
1067 priv->dirty_rx = (unsigned int)(i - rxsize);
1068 buf_sz = bfsize;
1069
1070 /* Setup the chained descriptor addresses */
1071 if (priv->mode == STMMAC_CHAIN_MODE) {
1072 if (priv->extend_desc) {
1073 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1074 rxsize, 1);
1075 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1076 txsize, 1);
1077 } else {
1078 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1079 rxsize, 0);
1080 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1081 txsize, 0);
1082 }
1083 }
1084
1085 /* TX INITIALIZATION */
1086 for (i = 0; i < txsize; i++) {
1087 struct dma_desc *p;
1088 if (priv->extend_desc)
1089 p = &((priv->dma_etx + i)->basic);
1090 else
1091 p = priv->dma_tx + i;
1092 p->des2 = 0;
1093 priv->tx_skbuff_dma[i].buf = 0;
1094 priv->tx_skbuff_dma[i].map_as_page = false;
1095 priv->tx_skbuff[i] = NULL;
1096 }
1097
1098 priv->dirty_tx = 0;
1099 priv->cur_tx = 0;
1100 netdev_reset_queue(priv->dev);
1101
1102 stmmac_clear_descriptors(priv);
1103
1104 if (netif_msg_hw(priv))
1105 stmmac_display_rings(priv);
1106
1107 return 0;
1108 err_init_rx_buffers:
1109 while (--i >= 0)
1110 stmmac_free_rx_buffers(priv, i);
1111 return ret;
1112 }
1113
1114 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1115 {
1116 int i;
1117
1118 for (i = 0; i < priv->dma_rx_size; i++)
1119 stmmac_free_rx_buffers(priv, i);
1120 }
1121
1122 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1123 {
1124 int i;
1125
1126 for (i = 0; i < priv->dma_tx_size; i++) {
1127 struct dma_desc *p;
1128
1129 if (priv->extend_desc)
1130 p = &((priv->dma_etx + i)->basic);
1131 else
1132 p = priv->dma_tx + i;
1133
1134 if (priv->tx_skbuff_dma[i].buf) {
1135 if (priv->tx_skbuff_dma[i].map_as_page)
1136 dma_unmap_page(priv->device,
1137 priv->tx_skbuff_dma[i].buf,
1138 priv->hw->desc->get_tx_len(p),
1139 DMA_TO_DEVICE);
1140 else
1141 dma_unmap_single(priv->device,
1142 priv->tx_skbuff_dma[i].buf,
1143 priv->hw->desc->get_tx_len(p),
1144 DMA_TO_DEVICE);
1145 }
1146
1147 if (priv->tx_skbuff[i] != NULL) {
1148 dev_kfree_skb_any(priv->tx_skbuff[i]);
1149 priv->tx_skbuff[i] = NULL;
1150 priv->tx_skbuff_dma[i].buf = 0;
1151 priv->tx_skbuff_dma[i].map_as_page = false;
1152 }
1153 }
1154 }
1155
1156 /**
1157 * alloc_dma_desc_resources - alloc TX/RX resources.
1158 * @priv: private structure
1159 * Description: according to which descriptor can be used (extend or basic)
1160 * this function allocates the resources for TX and RX paths. In case of
1161 * reception, for example, it pre-allocated the RX socket buffer in order to
1162 * allow zero-copy mechanism.
1163 */
1164 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1165 {
1166 unsigned int txsize = priv->dma_tx_size;
1167 unsigned int rxsize = priv->dma_rx_size;
1168 int ret = -ENOMEM;
1169
1170 priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1171 GFP_KERNEL);
1172 if (!priv->rx_skbuff_dma)
1173 return -ENOMEM;
1174
1175 priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1176 GFP_KERNEL);
1177 if (!priv->rx_skbuff)
1178 goto err_rx_skbuff;
1179
1180 priv->tx_skbuff_dma = kmalloc_array(txsize,
1181 sizeof(*priv->tx_skbuff_dma),
1182 GFP_KERNEL);
1183 if (!priv->tx_skbuff_dma)
1184 goto err_tx_skbuff_dma;
1185
1186 priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1187 GFP_KERNEL);
1188 if (!priv->tx_skbuff)
1189 goto err_tx_skbuff;
1190
1191 if (priv->extend_desc) {
1192 priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1193 sizeof(struct
1194 dma_extended_desc),
1195 &priv->dma_rx_phy,
1196 GFP_KERNEL);
1197 if (!priv->dma_erx)
1198 goto err_dma;
1199
1200 priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1201 sizeof(struct
1202 dma_extended_desc),
1203 &priv->dma_tx_phy,
1204 GFP_KERNEL);
1205 if (!priv->dma_etx) {
1206 dma_free_coherent(priv->device, priv->dma_rx_size *
1207 sizeof(struct dma_extended_desc),
1208 priv->dma_erx, priv->dma_rx_phy);
1209 goto err_dma;
1210 }
1211 } else {
1212 priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1213 sizeof(struct dma_desc),
1214 &priv->dma_rx_phy,
1215 GFP_KERNEL);
1216 if (!priv->dma_rx)
1217 goto err_dma;
1218
1219 priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1220 sizeof(struct dma_desc),
1221 &priv->dma_tx_phy,
1222 GFP_KERNEL);
1223 if (!priv->dma_tx) {
1224 dma_free_coherent(priv->device, priv->dma_rx_size *
1225 sizeof(struct dma_desc),
1226 priv->dma_rx, priv->dma_rx_phy);
1227 goto err_dma;
1228 }
1229 }
1230
1231 return 0;
1232
1233 err_dma:
1234 kfree(priv->tx_skbuff);
1235 err_tx_skbuff:
1236 kfree(priv->tx_skbuff_dma);
1237 err_tx_skbuff_dma:
1238 kfree(priv->rx_skbuff);
1239 err_rx_skbuff:
1240 kfree(priv->rx_skbuff_dma);
1241 return ret;
1242 }
1243
1244 static void free_dma_desc_resources(struct stmmac_priv *priv)
1245 {
1246 /* Release the DMA TX/RX socket buffers */
1247 dma_free_rx_skbufs(priv);
1248 dma_free_tx_skbufs(priv);
1249
1250 /* Free DMA regions of consistent memory previously allocated */
1251 if (!priv->extend_desc) {
1252 dma_free_coherent(priv->device,
1253 priv->dma_tx_size * sizeof(struct dma_desc),
1254 priv->dma_tx, priv->dma_tx_phy);
1255 dma_free_coherent(priv->device,
1256 priv->dma_rx_size * sizeof(struct dma_desc),
1257 priv->dma_rx, priv->dma_rx_phy);
1258 } else {
1259 dma_free_coherent(priv->device, priv->dma_tx_size *
1260 sizeof(struct dma_extended_desc),
1261 priv->dma_etx, priv->dma_tx_phy);
1262 dma_free_coherent(priv->device, priv->dma_rx_size *
1263 sizeof(struct dma_extended_desc),
1264 priv->dma_erx, priv->dma_rx_phy);
1265 }
1266 kfree(priv->rx_skbuff_dma);
1267 kfree(priv->rx_skbuff);
1268 kfree(priv->tx_skbuff_dma);
1269 kfree(priv->tx_skbuff);
1270 }
1271
1272 /**
1273 * stmmac_dma_operation_mode - HW DMA operation mode
1274 * @priv: driver private structure
1275 * Description: it is used for configuring the DMA operation mode register in
1276 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1277 */
1278 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1279 {
1280 int rxfifosz = priv->plat->rx_fifo_size;
1281
1282 if (priv->plat->force_thresh_dma_mode)
1283 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1284 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1285 /*
1286 * In case of GMAC, SF mode can be enabled
1287 * to perform the TX COE in HW. This depends on:
1288 * 1) TX COE if actually supported
1289 * 2) There is no bugged Jumbo frame support
1290 * that needs to not insert csum in the TDES.
1291 */
1292 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1293 rxfifosz);
1294 priv->xstats.threshold = SF_DMA_MODE;
1295 } else
1296 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1297 rxfifosz);
1298 }
1299
1300 /**
1301 * stmmac_tx_clean - to manage the transmission completion
1302 * @priv: driver private structure
1303 * Description: it reclaims the transmit resources after transmission completes.
1304 */
1305 static void stmmac_tx_clean(struct stmmac_priv *priv)
1306 {
1307 unsigned int txsize = priv->dma_tx_size;
1308 unsigned int bytes_compl = 0, pkts_compl = 0;
1309
1310 spin_lock(&priv->tx_lock);
1311
1312 priv->xstats.tx_clean++;
1313
1314 while (priv->dirty_tx != priv->cur_tx) {
1315 int last;
1316 unsigned int entry = priv->dirty_tx % txsize;
1317 struct sk_buff *skb = priv->tx_skbuff[entry];
1318 struct dma_desc *p;
1319
1320 if (priv->extend_desc)
1321 p = (struct dma_desc *)(priv->dma_etx + entry);
1322 else
1323 p = priv->dma_tx + entry;
1324
1325 /* Check if the descriptor is owned by the DMA. */
1326 if (priv->hw->desc->get_tx_owner(p))
1327 break;
1328
1329 /* Verify tx error by looking at the last segment. */
1330 last = priv->hw->desc->get_tx_ls(p);
1331 if (likely(last)) {
1332 int tx_error =
1333 priv->hw->desc->tx_status(&priv->dev->stats,
1334 &priv->xstats, p,
1335 priv->ioaddr);
1336 if (likely(tx_error == 0)) {
1337 priv->dev->stats.tx_packets++;
1338 priv->xstats.tx_pkt_n++;
1339 } else
1340 priv->dev->stats.tx_errors++;
1341
1342 stmmac_get_tx_hwtstamp(priv, entry, skb);
1343 }
1344 if (netif_msg_tx_done(priv))
1345 pr_debug("%s: curr %d, dirty %d\n", __func__,
1346 priv->cur_tx, priv->dirty_tx);
1347
1348 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1349 if (priv->tx_skbuff_dma[entry].map_as_page)
1350 dma_unmap_page(priv->device,
1351 priv->tx_skbuff_dma[entry].buf,
1352 priv->hw->desc->get_tx_len(p),
1353 DMA_TO_DEVICE);
1354 else
1355 dma_unmap_single(priv->device,
1356 priv->tx_skbuff_dma[entry].buf,
1357 priv->hw->desc->get_tx_len(p),
1358 DMA_TO_DEVICE);
1359 priv->tx_skbuff_dma[entry].buf = 0;
1360 priv->tx_skbuff_dma[entry].map_as_page = false;
1361 }
1362 priv->hw->mode->clean_desc3(priv, p);
1363
1364 if (likely(skb != NULL)) {
1365 pkts_compl++;
1366 bytes_compl += skb->len;
1367 dev_consume_skb_any(skb);
1368 priv->tx_skbuff[entry] = NULL;
1369 }
1370
1371 priv->hw->desc->release_tx_desc(p, priv->mode);
1372
1373 priv->dirty_tx++;
1374 }
1375
1376 netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1377
1378 if (unlikely(netif_queue_stopped(priv->dev) &&
1379 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1380 netif_tx_lock(priv->dev);
1381 if (netif_queue_stopped(priv->dev) &&
1382 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1383 if (netif_msg_tx_done(priv))
1384 pr_debug("%s: restart transmit\n", __func__);
1385 netif_wake_queue(priv->dev);
1386 }
1387 netif_tx_unlock(priv->dev);
1388 }
1389
1390 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1391 stmmac_enable_eee_mode(priv);
1392 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1393 }
1394 spin_unlock(&priv->tx_lock);
1395 }
1396
1397 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1398 {
1399 priv->hw->dma->enable_dma_irq(priv->ioaddr);
1400 }
1401
1402 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1403 {
1404 priv->hw->dma->disable_dma_irq(priv->ioaddr);
1405 }
1406
1407 /**
1408 * stmmac_tx_err - to manage the tx error
1409 * @priv: driver private structure
1410 * Description: it cleans the descriptors and restarts the transmission
1411 * in case of transmission errors.
1412 */
1413 static void stmmac_tx_err(struct stmmac_priv *priv)
1414 {
1415 int i;
1416 int txsize = priv->dma_tx_size;
1417 netif_stop_queue(priv->dev);
1418
1419 priv->hw->dma->stop_tx(priv->ioaddr);
1420 dma_free_tx_skbufs(priv);
1421 for (i = 0; i < txsize; i++)
1422 if (priv->extend_desc)
1423 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1424 priv->mode,
1425 (i == txsize - 1));
1426 else
1427 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1428 priv->mode,
1429 (i == txsize - 1));
1430 priv->dirty_tx = 0;
1431 priv->cur_tx = 0;
1432 netdev_reset_queue(priv->dev);
1433 priv->hw->dma->start_tx(priv->ioaddr);
1434
1435 priv->dev->stats.tx_errors++;
1436 netif_wake_queue(priv->dev);
1437 }
1438
1439 /**
1440 * stmmac_dma_interrupt - DMA ISR
1441 * @priv: driver private structure
1442 * Description: this is the DMA ISR. It is called by the main ISR.
1443 * It calls the dwmac dma routine and schedule poll method in case of some
1444 * work can be done.
1445 */
1446 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1447 {
1448 int status;
1449 int rxfifosz = priv->plat->rx_fifo_size;
1450
1451 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1452 if (likely((status & handle_rx)) || (status & handle_tx)) {
1453 if (likely(napi_schedule_prep(&priv->napi))) {
1454 stmmac_disable_dma_irq(priv);
1455 __napi_schedule(&priv->napi);
1456 }
1457 }
1458 if (unlikely(status & tx_hard_error_bump_tc)) {
1459 /* Try to bump up the dma threshold on this failure */
1460 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1461 (tc <= 256)) {
1462 tc += 64;
1463 if (priv->plat->force_thresh_dma_mode)
1464 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1465 rxfifosz);
1466 else
1467 priv->hw->dma->dma_mode(priv->ioaddr, tc,
1468 SF_DMA_MODE, rxfifosz);
1469 priv->xstats.threshold = tc;
1470 }
1471 } else if (unlikely(status == tx_hard_error))
1472 stmmac_tx_err(priv);
1473 }
1474
1475 /**
1476 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1477 * @priv: driver private structure
1478 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1479 */
1480 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1481 {
1482 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1483 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1484
1485 dwmac_mmc_intr_all_mask(priv->ioaddr);
1486
1487 if (priv->dma_cap.rmon) {
1488 dwmac_mmc_ctrl(priv->ioaddr, mode);
1489 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1490 } else
1491 pr_info(" No MAC Management Counters available\n");
1492 }
1493
1494 /**
1495 * stmmac_get_synopsys_id - return the SYINID.
1496 * @priv: driver private structure
1497 * Description: this simple function is to decode and return the SYINID
1498 * starting from the HW core register.
1499 */
1500 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1501 {
1502 u32 hwid = priv->hw->synopsys_uid;
1503
1504 /* Check Synopsys Id (not available on old chips) */
1505 if (likely(hwid)) {
1506 u32 uid = ((hwid & 0x0000ff00) >> 8);
1507 u32 synid = (hwid & 0x000000ff);
1508
1509 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1510 uid, synid);
1511
1512 return synid;
1513 }
1514 return 0;
1515 }
1516
1517 /**
1518 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1519 * @priv: driver private structure
1520 * Description: select the Enhanced/Alternate or Normal descriptors.
1521 * In case of Enhanced/Alternate, it checks if the extended descriptors are
1522 * supported by the HW capability register.
1523 */
1524 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1525 {
1526 if (priv->plat->enh_desc) {
1527 pr_info(" Enhanced/Alternate descriptors\n");
1528
1529 /* GMAC older than 3.50 has no extended descriptors */
1530 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1531 pr_info("\tEnabled extended descriptors\n");
1532 priv->extend_desc = 1;
1533 } else
1534 pr_warn("Extended descriptors not supported\n");
1535
1536 priv->hw->desc = &enh_desc_ops;
1537 } else {
1538 pr_info(" Normal descriptors\n");
1539 priv->hw->desc = &ndesc_ops;
1540 }
1541 }
1542
1543 /**
1544 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1545 * @priv: driver private structure
1546 * Description:
1547 * new GMAC chip generations have a new register to indicate the
1548 * presence of the optional feature/functions.
1549 * This can be also used to override the value passed through the
1550 * platform and necessary for old MAC10/100 and GMAC chips.
1551 */
1552 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1553 {
1554 u32 hw_cap = 0;
1555
1556 if (priv->hw->dma->get_hw_feature) {
1557 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1558
1559 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1560 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1561 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1562 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1563 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1564 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1565 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1566 priv->dma_cap.pmt_remote_wake_up =
1567 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1568 priv->dma_cap.pmt_magic_frame =
1569 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1570 /* MMC */
1571 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1572 /* IEEE 1588-2002 */
1573 priv->dma_cap.time_stamp =
1574 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1575 /* IEEE 1588-2008 */
1576 priv->dma_cap.atime_stamp =
1577 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1578 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1579 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1580 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1581 /* TX and RX csum */
1582 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1583 priv->dma_cap.rx_coe_type1 =
1584 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1585 priv->dma_cap.rx_coe_type2 =
1586 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1587 priv->dma_cap.rxfifo_over_2048 =
1588 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1589 /* TX and RX number of channels */
1590 priv->dma_cap.number_rx_channel =
1591 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1592 priv->dma_cap.number_tx_channel =
1593 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1594 /* Alternate (enhanced) DESC mode */
1595 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1596 }
1597
1598 return hw_cap;
1599 }
1600
1601 /**
1602 * stmmac_check_ether_addr - check if the MAC addr is valid
1603 * @priv: driver private structure
1604 * Description:
1605 * it is to verify if the MAC address is valid, in case of failures it
1606 * generates a random MAC address
1607 */
1608 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1609 {
1610 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1611 priv->hw->mac->get_umac_addr(priv->hw,
1612 priv->dev->dev_addr, 0);
1613 if (!is_valid_ether_addr(priv->dev->dev_addr))
1614 eth_hw_addr_random(priv->dev);
1615 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1616 priv->dev->dev_addr);
1617 }
1618 }
1619
1620 /**
1621 * stmmac_init_dma_engine - DMA init.
1622 * @priv: driver private structure
1623 * Description:
1624 * It inits the DMA invoking the specific MAC/GMAC callback.
1625 * Some DMA parameters can be passed from the platform;
1626 * in case of these are not passed a default is kept for the MAC or GMAC.
1627 */
1628 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1629 {
1630 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1631 int mixed_burst = 0;
1632 int atds = 0;
1633
1634 if (priv->plat->dma_cfg) {
1635 pbl = priv->plat->dma_cfg->pbl;
1636 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1637 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1638 burst_len = priv->plat->dma_cfg->burst_len;
1639 }
1640
1641 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1642 atds = 1;
1643
1644 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1645 burst_len, priv->dma_tx_phy,
1646 priv->dma_rx_phy, atds);
1647 }
1648
1649 /**
1650 * stmmac_tx_timer - mitigation sw timer for tx.
1651 * @data: data pointer
1652 * Description:
1653 * This is the timer handler to directly invoke the stmmac_tx_clean.
1654 */
1655 static void stmmac_tx_timer(unsigned long data)
1656 {
1657 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1658
1659 stmmac_tx_clean(priv);
1660 }
1661
1662 /**
1663 * stmmac_init_tx_coalesce - init tx mitigation options.
1664 * @priv: driver private structure
1665 * Description:
1666 * This inits the transmit coalesce parameters: i.e. timer rate,
1667 * timer handler and default threshold used for enabling the
1668 * interrupt on completion bit.
1669 */
1670 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1671 {
1672 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1673 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1674 init_timer(&priv->txtimer);
1675 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1676 priv->txtimer.data = (unsigned long)priv;
1677 priv->txtimer.function = stmmac_tx_timer;
1678 add_timer(&priv->txtimer);
1679 }
1680
1681 /**
1682 * stmmac_hw_setup - setup mac in a usable state.
1683 * @dev : pointer to the device structure.
1684 * Description:
1685 * this is the main function to setup the HW in a usable state because the
1686 * dma engine is reset, the core registers are configured (e.g. AXI,
1687 * Checksum features, timers). The DMA is ready to start receiving and
1688 * transmitting.
1689 * Return value:
1690 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1691 * file on failure.
1692 */
1693 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1694 {
1695 struct stmmac_priv *priv = netdev_priv(dev);
1696 int ret;
1697
1698 /* DMA initialization and SW reset */
1699 ret = stmmac_init_dma_engine(priv);
1700 if (ret < 0) {
1701 pr_err("%s: DMA engine initialization failed\n", __func__);
1702 return ret;
1703 }
1704
1705 /* Copy the MAC addr into the HW */
1706 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1707
1708 /* If required, perform hw setup of the bus. */
1709 if (priv->plat->bus_setup)
1710 priv->plat->bus_setup(priv->ioaddr);
1711
1712 /* Initialize the MAC Core */
1713 priv->hw->mac->core_init(priv->hw, dev->mtu);
1714
1715 ret = priv->hw->mac->rx_ipc(priv->hw);
1716 if (!ret) {
1717 pr_warn(" RX IPC Checksum Offload disabled\n");
1718 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1719 priv->hw->rx_csum = 0;
1720 }
1721
1722 /* Enable the MAC Rx/Tx */
1723 stmmac_set_mac(priv->ioaddr, true);
1724
1725 /* Set the HW DMA mode and the COE */
1726 stmmac_dma_operation_mode(priv);
1727
1728 stmmac_mmc_setup(priv);
1729
1730 if (init_ptp) {
1731 ret = stmmac_init_ptp(priv);
1732 if (ret && ret != -EOPNOTSUPP)
1733 pr_warn("%s: failed PTP initialisation\n", __func__);
1734 }
1735
1736 #ifdef CONFIG_DEBUG_FS
1737 ret = stmmac_init_fs(dev);
1738 if (ret < 0)
1739 pr_warn("%s: failed debugFS registration\n", __func__);
1740 #endif
1741 /* Start the ball rolling... */
1742 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1743 priv->hw->dma->start_tx(priv->ioaddr);
1744 priv->hw->dma->start_rx(priv->ioaddr);
1745
1746 /* Dump DMA/MAC registers */
1747 if (netif_msg_hw(priv)) {
1748 priv->hw->mac->dump_regs(priv->hw);
1749 priv->hw->dma->dump_regs(priv->ioaddr);
1750 }
1751 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1752
1753 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1754 priv->rx_riwt = MAX_DMA_RIWT;
1755 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1756 }
1757
1758 if (priv->pcs && priv->hw->mac->ctrl_ane)
1759 priv->hw->mac->ctrl_ane(priv->hw, 0);
1760
1761 return 0;
1762 }
1763
1764 /**
1765 * stmmac_open - open entry point of the driver
1766 * @dev : pointer to the device structure.
1767 * Description:
1768 * This function is the open entry point of the driver.
1769 * Return value:
1770 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1771 * file on failure.
1772 */
1773 static int stmmac_open(struct net_device *dev)
1774 {
1775 struct stmmac_priv *priv = netdev_priv(dev);
1776 int ret;
1777
1778 stmmac_check_ether_addr(priv);
1779
1780 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1781 priv->pcs != STMMAC_PCS_RTBI) {
1782 ret = stmmac_init_phy(dev);
1783 if (ret) {
1784 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1785 __func__, ret);
1786 return ret;
1787 }
1788 }
1789
1790 /* Extra statistics */
1791 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1792 priv->xstats.threshold = tc;
1793
1794 /* Create and initialize the TX/RX descriptors chains. */
1795 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1796 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1797 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1798
1799 ret = alloc_dma_desc_resources(priv);
1800 if (ret < 0) {
1801 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1802 goto dma_desc_error;
1803 }
1804
1805 ret = init_dma_desc_rings(dev, GFP_KERNEL);
1806 if (ret < 0) {
1807 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1808 goto init_error;
1809 }
1810
1811 ret = stmmac_hw_setup(dev, true);
1812 if (ret < 0) {
1813 pr_err("%s: Hw setup failed\n", __func__);
1814 goto init_error;
1815 }
1816
1817 stmmac_init_tx_coalesce(priv);
1818
1819 if (priv->phydev)
1820 phy_start(priv->phydev);
1821
1822 /* Request the IRQ lines */
1823 ret = request_irq(dev->irq, stmmac_interrupt,
1824 IRQF_SHARED, dev->name, dev);
1825 if (unlikely(ret < 0)) {
1826 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1827 __func__, dev->irq, ret);
1828 goto init_error;
1829 }
1830
1831 /* Request the Wake IRQ in case of another line is used for WoL */
1832 if (priv->wol_irq != dev->irq) {
1833 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1834 IRQF_SHARED, dev->name, dev);
1835 if (unlikely(ret < 0)) {
1836 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1837 __func__, priv->wol_irq, ret);
1838 goto wolirq_error;
1839 }
1840 }
1841
1842 /* Request the IRQ lines */
1843 if (priv->lpi_irq > 0) {
1844 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1845 dev->name, dev);
1846 if (unlikely(ret < 0)) {
1847 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1848 __func__, priv->lpi_irq, ret);
1849 goto lpiirq_error;
1850 }
1851 }
1852
1853 napi_enable(&priv->napi);
1854 netif_start_queue(dev);
1855
1856 return 0;
1857
1858 lpiirq_error:
1859 if (priv->wol_irq != dev->irq)
1860 free_irq(priv->wol_irq, dev);
1861 wolirq_error:
1862 free_irq(dev->irq, dev);
1863
1864 init_error:
1865 free_dma_desc_resources(priv);
1866 dma_desc_error:
1867 if (priv->phydev)
1868 phy_disconnect(priv->phydev);
1869
1870 return ret;
1871 }
1872
1873 /**
1874 * stmmac_release - close entry point of the driver
1875 * @dev : device pointer.
1876 * Description:
1877 * This is the stop entry point of the driver.
1878 */
1879 static int stmmac_release(struct net_device *dev)
1880 {
1881 struct stmmac_priv *priv = netdev_priv(dev);
1882
1883 if (priv->eee_enabled)
1884 del_timer_sync(&priv->eee_ctrl_timer);
1885
1886 /* Stop and disconnect the PHY */
1887 if (priv->phydev) {
1888 phy_stop(priv->phydev);
1889 phy_disconnect(priv->phydev);
1890 priv->phydev = NULL;
1891 }
1892
1893 netif_stop_queue(dev);
1894
1895 napi_disable(&priv->napi);
1896
1897 del_timer_sync(&priv->txtimer);
1898
1899 /* Free the IRQ lines */
1900 free_irq(dev->irq, dev);
1901 if (priv->wol_irq != dev->irq)
1902 free_irq(priv->wol_irq, dev);
1903 if (priv->lpi_irq > 0)
1904 free_irq(priv->lpi_irq, dev);
1905
1906 /* Stop TX/RX DMA and clear the descriptors */
1907 priv->hw->dma->stop_tx(priv->ioaddr);
1908 priv->hw->dma->stop_rx(priv->ioaddr);
1909
1910 /* Release and free the Rx/Tx resources */
1911 free_dma_desc_resources(priv);
1912
1913 /* Disable the MAC Rx/Tx */
1914 stmmac_set_mac(priv->ioaddr, false);
1915
1916 netif_carrier_off(dev);
1917
1918 #ifdef CONFIG_DEBUG_FS
1919 stmmac_exit_fs();
1920 #endif
1921
1922 stmmac_release_ptp(priv);
1923
1924 return 0;
1925 }
1926
1927 /**
1928 * stmmac_xmit - Tx entry point of the driver
1929 * @skb : the socket buffer
1930 * @dev : device pointer
1931 * Description : this is the tx entry point of the driver.
1932 * It programs the chain or the ring and supports oversized frames
1933 * and SG feature.
1934 */
1935 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1936 {
1937 struct stmmac_priv *priv = netdev_priv(dev);
1938 unsigned int txsize = priv->dma_tx_size;
1939 unsigned int entry;
1940 int i, csum_insertion = 0, is_jumbo = 0;
1941 int nfrags = skb_shinfo(skb)->nr_frags;
1942 struct dma_desc *desc, *first;
1943 unsigned int nopaged_len = skb_headlen(skb);
1944 unsigned int enh_desc = priv->plat->enh_desc;
1945
1946 spin_lock(&priv->tx_lock);
1947
1948 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1949 spin_unlock(&priv->tx_lock);
1950 if (!netif_queue_stopped(dev)) {
1951 netif_stop_queue(dev);
1952 /* This is a hard error, log it. */
1953 pr_err("%s: Tx Ring full when queue awake\n", __func__);
1954 }
1955 return NETDEV_TX_BUSY;
1956 }
1957
1958 if (priv->tx_path_in_lpi_mode)
1959 stmmac_disable_eee_mode(priv);
1960
1961 entry = priv->cur_tx % txsize;
1962
1963 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1964
1965 if (priv->extend_desc)
1966 desc = (struct dma_desc *)(priv->dma_etx + entry);
1967 else
1968 desc = priv->dma_tx + entry;
1969
1970 first = desc;
1971
1972 /* To program the descriptors according to the size of the frame */
1973 if (enh_desc)
1974 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1975
1976 if (likely(!is_jumbo)) {
1977 desc->des2 = dma_map_single(priv->device, skb->data,
1978 nopaged_len, DMA_TO_DEVICE);
1979 if (dma_mapping_error(priv->device, desc->des2))
1980 goto dma_map_err;
1981 priv->tx_skbuff_dma[entry].buf = desc->des2;
1982 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1983 csum_insertion, priv->mode);
1984 } else {
1985 desc = first;
1986 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1987 if (unlikely(entry < 0))
1988 goto dma_map_err;
1989 }
1990
1991 for (i = 0; i < nfrags; i++) {
1992 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1993 int len = skb_frag_size(frag);
1994
1995 priv->tx_skbuff[entry] = NULL;
1996 entry = (++priv->cur_tx) % txsize;
1997 if (priv->extend_desc)
1998 desc = (struct dma_desc *)(priv->dma_etx + entry);
1999 else
2000 desc = priv->dma_tx + entry;
2001
2002 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
2003 DMA_TO_DEVICE);
2004 if (dma_mapping_error(priv->device, desc->des2))
2005 goto dma_map_err; /* should reuse desc w/o issues */
2006
2007 priv->tx_skbuff_dma[entry].buf = desc->des2;
2008 priv->tx_skbuff_dma[entry].map_as_page = true;
2009 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2010 priv->mode);
2011 wmb();
2012 priv->hw->desc->set_tx_owner(desc);
2013 wmb();
2014 }
2015
2016 priv->tx_skbuff[entry] = skb;
2017
2018 /* Finalize the latest segment. */
2019 priv->hw->desc->close_tx_desc(desc);
2020
2021 wmb();
2022 /* According to the coalesce parameter the IC bit for the latest
2023 * segment could be reset and the timer re-started to invoke the
2024 * stmmac_tx function. This approach takes care about the fragments.
2025 */
2026 priv->tx_count_frames += nfrags + 1;
2027 if (priv->tx_coal_frames > priv->tx_count_frames) {
2028 priv->hw->desc->clear_tx_ic(desc);
2029 priv->xstats.tx_reset_ic_bit++;
2030 mod_timer(&priv->txtimer,
2031 STMMAC_COAL_TIMER(priv->tx_coal_timer));
2032 } else
2033 priv->tx_count_frames = 0;
2034
2035 /* To avoid raise condition */
2036 priv->hw->desc->set_tx_owner(first);
2037 wmb();
2038
2039 priv->cur_tx++;
2040
2041 if (netif_msg_pktdata(priv)) {
2042 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
2043 __func__, (priv->cur_tx % txsize),
2044 (priv->dirty_tx % txsize), entry, first, nfrags);
2045
2046 if (priv->extend_desc)
2047 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
2048 else
2049 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
2050
2051 pr_debug(">>> frame to be transmitted: ");
2052 print_pkt(skb->data, skb->len);
2053 }
2054 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2055 if (netif_msg_hw(priv))
2056 pr_debug("%s: stop transmitted packets\n", __func__);
2057 netif_stop_queue(dev);
2058 }
2059
2060 dev->stats.tx_bytes += skb->len;
2061
2062 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2063 priv->hwts_tx_en)) {
2064 /* declare that device is doing timestamping */
2065 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2066 priv->hw->desc->enable_tx_timestamp(first);
2067 }
2068
2069 if (!priv->hwts_tx_en)
2070 skb_tx_timestamp(skb);
2071
2072 netdev_sent_queue(dev, skb->len);
2073 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2074
2075 spin_unlock(&priv->tx_lock);
2076 return NETDEV_TX_OK;
2077
2078 dma_map_err:
2079 spin_unlock(&priv->tx_lock);
2080 dev_err(priv->device, "Tx dma map failed\n");
2081 dev_kfree_skb(skb);
2082 priv->dev->stats.tx_dropped++;
2083 return NETDEV_TX_OK;
2084 }
2085
2086 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2087 {
2088 struct ethhdr *ehdr;
2089 u16 vlanid;
2090
2091 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2092 NETIF_F_HW_VLAN_CTAG_RX &&
2093 !__vlan_get_tag(skb, &vlanid)) {
2094 /* pop the vlan tag */
2095 ehdr = (struct ethhdr *)skb->data;
2096 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2097 skb_pull(skb, VLAN_HLEN);
2098 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2099 }
2100 }
2101
2102
2103 /**
2104 * stmmac_rx_refill - refill used skb preallocated buffers
2105 * @priv: driver private structure
2106 * Description : this is to reallocate the skb for the reception process
2107 * that is based on zero-copy.
2108 */
2109 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2110 {
2111 unsigned int rxsize = priv->dma_rx_size;
2112 int bfsize = priv->dma_buf_sz;
2113
2114 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2115 unsigned int entry = priv->dirty_rx % rxsize;
2116 struct dma_desc *p;
2117
2118 if (priv->extend_desc)
2119 p = (struct dma_desc *)(priv->dma_erx + entry);
2120 else
2121 p = priv->dma_rx + entry;
2122
2123 if (likely(priv->rx_skbuff[entry] == NULL)) {
2124 struct sk_buff *skb;
2125
2126 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2127
2128 if (unlikely(skb == NULL))
2129 break;
2130
2131 priv->rx_skbuff[entry] = skb;
2132 priv->rx_skbuff_dma[entry] =
2133 dma_map_single(priv->device, skb->data, bfsize,
2134 DMA_FROM_DEVICE);
2135 if (dma_mapping_error(priv->device,
2136 priv->rx_skbuff_dma[entry])) {
2137 dev_err(priv->device, "Rx dma map failed\n");
2138 dev_kfree_skb(skb);
2139 break;
2140 }
2141 p->des2 = priv->rx_skbuff_dma[entry];
2142
2143 priv->hw->mode->refill_desc3(priv, p);
2144
2145 if (netif_msg_rx_status(priv))
2146 pr_debug("\trefill entry #%d\n", entry);
2147 }
2148 wmb();
2149 priv->hw->desc->set_rx_owner(p);
2150 wmb();
2151 }
2152 }
2153
2154 /**
2155 * stmmac_rx - manage the receive process
2156 * @priv: driver private structure
2157 * @limit: napi bugget.
2158 * Description : this the function called by the napi poll method.
2159 * It gets all the frames inside the ring.
2160 */
2161 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2162 {
2163 unsigned int rxsize = priv->dma_rx_size;
2164 unsigned int entry = priv->cur_rx % rxsize;
2165 unsigned int next_entry;
2166 unsigned int count = 0;
2167 int coe = priv->hw->rx_csum;
2168
2169 if (netif_msg_rx_status(priv)) {
2170 pr_debug("%s: descriptor ring:\n", __func__);
2171 if (priv->extend_desc)
2172 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2173 else
2174 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2175 }
2176 while (count < limit) {
2177 int status;
2178 struct dma_desc *p;
2179
2180 if (priv->extend_desc)
2181 p = (struct dma_desc *)(priv->dma_erx + entry);
2182 else
2183 p = priv->dma_rx + entry;
2184
2185 if (priv->hw->desc->get_rx_owner(p))
2186 break;
2187
2188 count++;
2189
2190 next_entry = (++priv->cur_rx) % rxsize;
2191 if (priv->extend_desc)
2192 prefetch(priv->dma_erx + next_entry);
2193 else
2194 prefetch(priv->dma_rx + next_entry);
2195
2196 /* read the status of the incoming frame */
2197 status = priv->hw->desc->rx_status(&priv->dev->stats,
2198 &priv->xstats, p);
2199 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2200 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2201 &priv->xstats,
2202 priv->dma_erx +
2203 entry);
2204 if (unlikely(status == discard_frame)) {
2205 priv->dev->stats.rx_errors++;
2206 if (priv->hwts_rx_en && !priv->extend_desc) {
2207 /* DESC2 & DESC3 will be overwitten by device
2208 * with timestamp value, hence reinitialize
2209 * them in stmmac_rx_refill() function so that
2210 * device can reuse it.
2211 */
2212 priv->rx_skbuff[entry] = NULL;
2213 dma_unmap_single(priv->device,
2214 priv->rx_skbuff_dma[entry],
2215 priv->dma_buf_sz,
2216 DMA_FROM_DEVICE);
2217 }
2218 } else {
2219 struct sk_buff *skb;
2220 int frame_len;
2221
2222 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2223
2224 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2225 * Type frames (LLC/LLC-SNAP)
2226 */
2227 if (unlikely(status != llc_snap))
2228 frame_len -= ETH_FCS_LEN;
2229
2230 if (netif_msg_rx_status(priv)) {
2231 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2232 p, entry, p->des2);
2233 if (frame_len > ETH_FRAME_LEN)
2234 pr_debug("\tframe size %d, COE: %d\n",
2235 frame_len, status);
2236 }
2237 skb = priv->rx_skbuff[entry];
2238 if (unlikely(!skb)) {
2239 pr_err("%s: Inconsistent Rx descriptor chain\n",
2240 priv->dev->name);
2241 priv->dev->stats.rx_dropped++;
2242 break;
2243 }
2244 prefetch(skb->data - NET_IP_ALIGN);
2245 priv->rx_skbuff[entry] = NULL;
2246
2247 stmmac_get_rx_hwtstamp(priv, entry, skb);
2248
2249 skb_put(skb, frame_len);
2250 dma_unmap_single(priv->device,
2251 priv->rx_skbuff_dma[entry],
2252 priv->dma_buf_sz, DMA_FROM_DEVICE);
2253
2254 if (netif_msg_pktdata(priv)) {
2255 pr_debug("frame received (%dbytes)", frame_len);
2256 print_pkt(skb->data, frame_len);
2257 }
2258
2259 stmmac_rx_vlan(priv->dev, skb);
2260
2261 skb->protocol = eth_type_trans(skb, priv->dev);
2262
2263 if (unlikely(!coe))
2264 skb_checksum_none_assert(skb);
2265 else
2266 skb->ip_summed = CHECKSUM_UNNECESSARY;
2267
2268 napi_gro_receive(&priv->napi, skb);
2269
2270 priv->dev->stats.rx_packets++;
2271 priv->dev->stats.rx_bytes += frame_len;
2272 }
2273 entry = next_entry;
2274 }
2275
2276 stmmac_rx_refill(priv);
2277
2278 priv->xstats.rx_pkt_n += count;
2279
2280 return count;
2281 }
2282
2283 /**
2284 * stmmac_poll - stmmac poll method (NAPI)
2285 * @napi : pointer to the napi structure.
2286 * @budget : maximum number of packets that the current CPU can receive from
2287 * all interfaces.
2288 * Description :
2289 * To look at the incoming frames and clear the tx resources.
2290 */
2291 static int stmmac_poll(struct napi_struct *napi, int budget)
2292 {
2293 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2294 int work_done = 0;
2295
2296 priv->xstats.napi_poll++;
2297 stmmac_tx_clean(priv);
2298
2299 work_done = stmmac_rx(priv, budget);
2300 if (work_done < budget) {
2301 napi_complete(napi);
2302 stmmac_enable_dma_irq(priv);
2303 }
2304 return work_done;
2305 }
2306
2307 /**
2308 * stmmac_tx_timeout
2309 * @dev : Pointer to net device structure
2310 * Description: this function is called when a packet transmission fails to
2311 * complete within a reasonable time. The driver will mark the error in the
2312 * netdev structure and arrange for the device to be reset to a sane state
2313 * in order to transmit a new packet.
2314 */
2315 static void stmmac_tx_timeout(struct net_device *dev)
2316 {
2317 struct stmmac_priv *priv = netdev_priv(dev);
2318
2319 /* Clear Tx resources and restart transmitting again */
2320 stmmac_tx_err(priv);
2321 }
2322
2323 /**
2324 * stmmac_set_rx_mode - entry point for multicast addressing
2325 * @dev : pointer to the device structure
2326 * Description:
2327 * This function is a driver entry point which gets called by the kernel
2328 * whenever multicast addresses must be enabled/disabled.
2329 * Return value:
2330 * void.
2331 */
2332 static void stmmac_set_rx_mode(struct net_device *dev)
2333 {
2334 struct stmmac_priv *priv = netdev_priv(dev);
2335
2336 priv->hw->mac->set_filter(priv->hw, dev);
2337 }
2338
2339 /**
2340 * stmmac_change_mtu - entry point to change MTU size for the device.
2341 * @dev : device pointer.
2342 * @new_mtu : the new MTU size for the device.
2343 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2344 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2345 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2346 * Return value:
2347 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2348 * file on failure.
2349 */
2350 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2351 {
2352 struct stmmac_priv *priv = netdev_priv(dev);
2353 int max_mtu;
2354
2355 if (netif_running(dev)) {
2356 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2357 return -EBUSY;
2358 }
2359
2360 if (priv->plat->enh_desc)
2361 max_mtu = JUMBO_LEN;
2362 else
2363 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2364
2365 if (priv->plat->maxmtu < max_mtu)
2366 max_mtu = priv->plat->maxmtu;
2367
2368 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2369 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2370 return -EINVAL;
2371 }
2372
2373 dev->mtu = new_mtu;
2374 netdev_update_features(dev);
2375
2376 return 0;
2377 }
2378
2379 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2380 netdev_features_t features)
2381 {
2382 struct stmmac_priv *priv = netdev_priv(dev);
2383
2384 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2385 features &= ~NETIF_F_RXCSUM;
2386
2387 if (!priv->plat->tx_coe)
2388 features &= ~NETIF_F_ALL_CSUM;
2389
2390 /* Some GMAC devices have a bugged Jumbo frame support that
2391 * needs to have the Tx COE disabled for oversized frames
2392 * (due to limited buffer sizes). In this case we disable
2393 * the TX csum insertionin the TDES and not use SF.
2394 */
2395 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2396 features &= ~NETIF_F_ALL_CSUM;
2397
2398 return features;
2399 }
2400
2401 static int stmmac_set_features(struct net_device *netdev,
2402 netdev_features_t features)
2403 {
2404 struct stmmac_priv *priv = netdev_priv(netdev);
2405
2406 /* Keep the COE Type in case of csum is supporting */
2407 if (features & NETIF_F_RXCSUM)
2408 priv->hw->rx_csum = priv->plat->rx_coe;
2409 else
2410 priv->hw->rx_csum = 0;
2411 /* No check needed because rx_coe has been set before and it will be
2412 * fixed in case of issue.
2413 */
2414 priv->hw->mac->rx_ipc(priv->hw);
2415
2416 return 0;
2417 }
2418
2419 /**
2420 * stmmac_interrupt - main ISR
2421 * @irq: interrupt number.
2422 * @dev_id: to pass the net device pointer.
2423 * Description: this is the main driver interrupt service routine.
2424 * It can call:
2425 * o DMA service routine (to manage incoming frame reception and transmission
2426 * status)
2427 * o Core interrupts to manage: remote wake-up, management counter, LPI
2428 * interrupts.
2429 */
2430 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2431 {
2432 struct net_device *dev = (struct net_device *)dev_id;
2433 struct stmmac_priv *priv = netdev_priv(dev);
2434
2435 if (priv->irq_wake)
2436 pm_wakeup_event(priv->device, 0);
2437
2438 if (unlikely(!dev)) {
2439 pr_err("%s: invalid dev pointer\n", __func__);
2440 return IRQ_NONE;
2441 }
2442
2443 /* To handle GMAC own interrupts */
2444 if (priv->plat->has_gmac) {
2445 int status = priv->hw->mac->host_irq_status(priv->hw,
2446 &priv->xstats);
2447 if (unlikely(status)) {
2448 /* For LPI we need to save the tx status */
2449 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2450 priv->tx_path_in_lpi_mode = true;
2451 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2452 priv->tx_path_in_lpi_mode = false;
2453 }
2454 }
2455
2456 /* To handle DMA interrupts */
2457 stmmac_dma_interrupt(priv);
2458
2459 return IRQ_HANDLED;
2460 }
2461
2462 #ifdef CONFIG_NET_POLL_CONTROLLER
2463 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2464 * to allow network I/O with interrupts disabled.
2465 */
2466 static void stmmac_poll_controller(struct net_device *dev)
2467 {
2468 disable_irq(dev->irq);
2469 stmmac_interrupt(dev->irq, dev);
2470 enable_irq(dev->irq);
2471 }
2472 #endif
2473
2474 /**
2475 * stmmac_ioctl - Entry point for the Ioctl
2476 * @dev: Device pointer.
2477 * @rq: An IOCTL specefic structure, that can contain a pointer to
2478 * a proprietary structure used to pass information to the driver.
2479 * @cmd: IOCTL command
2480 * Description:
2481 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2482 */
2483 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2484 {
2485 struct stmmac_priv *priv = netdev_priv(dev);
2486 int ret = -EOPNOTSUPP;
2487
2488 if (!netif_running(dev))
2489 return -EINVAL;
2490
2491 switch (cmd) {
2492 case SIOCGMIIPHY:
2493 case SIOCGMIIREG:
2494 case SIOCSMIIREG:
2495 if (!priv->phydev)
2496 return -EINVAL;
2497 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2498 break;
2499 case SIOCSHWTSTAMP:
2500 ret = stmmac_hwtstamp_ioctl(dev, rq);
2501 break;
2502 default:
2503 break;
2504 }
2505
2506 return ret;
2507 }
2508
2509 #ifdef CONFIG_DEBUG_FS
2510 static struct dentry *stmmac_fs_dir;
2511 static struct dentry *stmmac_rings_status;
2512 static struct dentry *stmmac_dma_cap;
2513
2514 static void sysfs_display_ring(void *head, int size, int extend_desc,
2515 struct seq_file *seq)
2516 {
2517 int i;
2518 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2519 struct dma_desc *p = (struct dma_desc *)head;
2520
2521 for (i = 0; i < size; i++) {
2522 u64 x;
2523 if (extend_desc) {
2524 x = *(u64 *) ep;
2525 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2526 i, (unsigned int)virt_to_phys(ep),
2527 (unsigned int)x, (unsigned int)(x >> 32),
2528 ep->basic.des2, ep->basic.des3);
2529 ep++;
2530 } else {
2531 x = *(u64 *) p;
2532 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2533 i, (unsigned int)virt_to_phys(ep),
2534 (unsigned int)x, (unsigned int)(x >> 32),
2535 p->des2, p->des3);
2536 p++;
2537 }
2538 seq_printf(seq, "\n");
2539 }
2540 }
2541
2542 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2543 {
2544 struct net_device *dev = seq->private;
2545 struct stmmac_priv *priv = netdev_priv(dev);
2546 unsigned int txsize = priv->dma_tx_size;
2547 unsigned int rxsize = priv->dma_rx_size;
2548
2549 if (priv->extend_desc) {
2550 seq_printf(seq, "Extended RX descriptor ring:\n");
2551 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2552 seq_printf(seq, "Extended TX descriptor ring:\n");
2553 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2554 } else {
2555 seq_printf(seq, "RX descriptor ring:\n");
2556 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2557 seq_printf(seq, "TX descriptor ring:\n");
2558 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2559 }
2560
2561 return 0;
2562 }
2563
2564 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2565 {
2566 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2567 }
2568
2569 static const struct file_operations stmmac_rings_status_fops = {
2570 .owner = THIS_MODULE,
2571 .open = stmmac_sysfs_ring_open,
2572 .read = seq_read,
2573 .llseek = seq_lseek,
2574 .release = single_release,
2575 };
2576
2577 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2578 {
2579 struct net_device *dev = seq->private;
2580 struct stmmac_priv *priv = netdev_priv(dev);
2581
2582 if (!priv->hw_cap_support) {
2583 seq_printf(seq, "DMA HW features not supported\n");
2584 return 0;
2585 }
2586
2587 seq_printf(seq, "==============================\n");
2588 seq_printf(seq, "\tDMA HW features\n");
2589 seq_printf(seq, "==============================\n");
2590
2591 seq_printf(seq, "\t10/100 Mbps %s\n",
2592 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2593 seq_printf(seq, "\t1000 Mbps %s\n",
2594 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2595 seq_printf(seq, "\tHalf duple %s\n",
2596 (priv->dma_cap.half_duplex) ? "Y" : "N");
2597 seq_printf(seq, "\tHash Filter: %s\n",
2598 (priv->dma_cap.hash_filter) ? "Y" : "N");
2599 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2600 (priv->dma_cap.multi_addr) ? "Y" : "N");
2601 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2602 (priv->dma_cap.pcs) ? "Y" : "N");
2603 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2604 (priv->dma_cap.sma_mdio) ? "Y" : "N");
2605 seq_printf(seq, "\tPMT Remote wake up: %s\n",
2606 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2607 seq_printf(seq, "\tPMT Magic Frame: %s\n",
2608 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2609 seq_printf(seq, "\tRMON module: %s\n",
2610 (priv->dma_cap.rmon) ? "Y" : "N");
2611 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2612 (priv->dma_cap.time_stamp) ? "Y" : "N");
2613 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2614 (priv->dma_cap.atime_stamp) ? "Y" : "N");
2615 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2616 (priv->dma_cap.eee) ? "Y" : "N");
2617 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2618 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2619 (priv->dma_cap.tx_coe) ? "Y" : "N");
2620 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2621 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2622 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2623 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2624 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2625 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2626 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2627 priv->dma_cap.number_rx_channel);
2628 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2629 priv->dma_cap.number_tx_channel);
2630 seq_printf(seq, "\tEnhanced descriptors: %s\n",
2631 (priv->dma_cap.enh_desc) ? "Y" : "N");
2632
2633 return 0;
2634 }
2635
2636 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2637 {
2638 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2639 }
2640
2641 static const struct file_operations stmmac_dma_cap_fops = {
2642 .owner = THIS_MODULE,
2643 .open = stmmac_sysfs_dma_cap_open,
2644 .read = seq_read,
2645 .llseek = seq_lseek,
2646 .release = single_release,
2647 };
2648
2649 static int stmmac_init_fs(struct net_device *dev)
2650 {
2651 /* Create debugfs entries */
2652 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2653
2654 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2655 pr_err("ERROR %s, debugfs create directory failed\n",
2656 STMMAC_RESOURCE_NAME);
2657
2658 return -ENOMEM;
2659 }
2660
2661 /* Entry to report DMA RX/TX rings */
2662 stmmac_rings_status = debugfs_create_file("descriptors_status",
2663 S_IRUGO, stmmac_fs_dir, dev,
2664 &stmmac_rings_status_fops);
2665
2666 if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2667 pr_info("ERROR creating stmmac ring debugfs file\n");
2668 debugfs_remove(stmmac_fs_dir);
2669
2670 return -ENOMEM;
2671 }
2672
2673 /* Entry to report the DMA HW features */
2674 stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2675 dev, &stmmac_dma_cap_fops);
2676
2677 if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2678 pr_info("ERROR creating stmmac MMC debugfs file\n");
2679 debugfs_remove(stmmac_rings_status);
2680 debugfs_remove(stmmac_fs_dir);
2681
2682 return -ENOMEM;
2683 }
2684
2685 return 0;
2686 }
2687
2688 static void stmmac_exit_fs(void)
2689 {
2690 debugfs_remove(stmmac_rings_status);
2691 debugfs_remove(stmmac_dma_cap);
2692 debugfs_remove(stmmac_fs_dir);
2693 }
2694 #endif /* CONFIG_DEBUG_FS */
2695
2696 static const struct net_device_ops stmmac_netdev_ops = {
2697 .ndo_open = stmmac_open,
2698 .ndo_start_xmit = stmmac_xmit,
2699 .ndo_stop = stmmac_release,
2700 .ndo_change_mtu = stmmac_change_mtu,
2701 .ndo_fix_features = stmmac_fix_features,
2702 .ndo_set_features = stmmac_set_features,
2703 .ndo_set_rx_mode = stmmac_set_rx_mode,
2704 .ndo_tx_timeout = stmmac_tx_timeout,
2705 .ndo_do_ioctl = stmmac_ioctl,
2706 #ifdef CONFIG_NET_POLL_CONTROLLER
2707 .ndo_poll_controller = stmmac_poll_controller,
2708 #endif
2709 .ndo_set_mac_address = eth_mac_addr,
2710 };
2711
2712 /**
2713 * stmmac_hw_init - Init the MAC device
2714 * @priv: driver private structure
2715 * Description: this function is to configure the MAC device according to
2716 * some platform parameters or the HW capability register. It prepares the
2717 * driver to use either ring or chain modes and to setup either enhanced or
2718 * normal descriptors.
2719 */
2720 static int stmmac_hw_init(struct stmmac_priv *priv)
2721 {
2722 struct mac_device_info *mac;
2723
2724 /* Identify the MAC HW device */
2725 if (priv->plat->has_gmac) {
2726 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2727 mac = dwmac1000_setup(priv->ioaddr,
2728 priv->plat->multicast_filter_bins,
2729 priv->plat->unicast_filter_entries);
2730 } else {
2731 mac = dwmac100_setup(priv->ioaddr);
2732 }
2733 if (!mac)
2734 return -ENOMEM;
2735
2736 priv->hw = mac;
2737
2738 /* Get and dump the chip ID */
2739 priv->synopsys_id = stmmac_get_synopsys_id(priv);
2740
2741 /* To use the chained or ring mode */
2742 if (chain_mode) {
2743 priv->hw->mode = &chain_mode_ops;
2744 pr_info(" Chain mode enabled\n");
2745 priv->mode = STMMAC_CHAIN_MODE;
2746 } else {
2747 priv->hw->mode = &ring_mode_ops;
2748 pr_info(" Ring mode enabled\n");
2749 priv->mode = STMMAC_RING_MODE;
2750 }
2751
2752 /* Get the HW capability (new GMAC newer than 3.50a) */
2753 priv->hw_cap_support = stmmac_get_hw_features(priv);
2754 if (priv->hw_cap_support) {
2755 pr_info(" DMA HW capability register supported");
2756
2757 /* We can override some gmac/dma configuration fields: e.g.
2758 * enh_desc, tx_coe (e.g. that are passed through the
2759 * platform) with the values from the HW capability
2760 * register (if supported).
2761 */
2762 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2763 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2764
2765 /* TXCOE doesn't work in thresh DMA mode */
2766 if (priv->plat->force_thresh_dma_mode)
2767 priv->plat->tx_coe = 0;
2768 else
2769 priv->plat->tx_coe = priv->dma_cap.tx_coe;
2770
2771 if (priv->dma_cap.rx_coe_type2)
2772 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2773 else if (priv->dma_cap.rx_coe_type1)
2774 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2775
2776 } else
2777 pr_info(" No HW DMA feature register supported");
2778
2779 /* To use alternate (extended) or normal descriptor structures */
2780 stmmac_selec_desc_mode(priv);
2781
2782 if (priv->plat->rx_coe) {
2783 priv->hw->rx_csum = priv->plat->rx_coe;
2784 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2785 priv->plat->rx_coe);
2786 }
2787 if (priv->plat->tx_coe)
2788 pr_info(" TX Checksum insertion supported\n");
2789
2790 if (priv->plat->pmt) {
2791 pr_info(" Wake-Up On Lan supported\n");
2792 device_set_wakeup_capable(priv->device, 1);
2793 }
2794
2795 return 0;
2796 }
2797
2798 /**
2799 * stmmac_dvr_probe
2800 * @device: device pointer
2801 * @plat_dat: platform data pointer
2802 * @addr: iobase memory address
2803 * Description: this is the main probe function used to
2804 * call the alloc_etherdev, allocate the priv structure.
2805 * Return:
2806 * on success the new private structure is returned, otherwise the error
2807 * pointer.
2808 */
2809 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2810 struct plat_stmmacenet_data *plat_dat,
2811 void __iomem *addr)
2812 {
2813 int ret = 0;
2814 struct net_device *ndev = NULL;
2815 struct stmmac_priv *priv;
2816
2817 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2818 if (!ndev)
2819 return ERR_PTR(-ENOMEM);
2820
2821 SET_NETDEV_DEV(ndev, device);
2822
2823 priv = netdev_priv(ndev);
2824 priv->device = device;
2825 priv->dev = ndev;
2826
2827 stmmac_set_ethtool_ops(ndev);
2828 priv->pause = pause;
2829 priv->plat = plat_dat;
2830 priv->ioaddr = addr;
2831 priv->dev->base_addr = (unsigned long)addr;
2832
2833 /* Verify driver arguments */
2834 stmmac_verify_args();
2835
2836 /* Override with kernel parameters if supplied XXX CRS XXX
2837 * this needs to have multiple instances
2838 */
2839 if ((phyaddr >= 0) && (phyaddr <= 31))
2840 priv->plat->phy_addr = phyaddr;
2841
2842 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2843 if (IS_ERR(priv->stmmac_clk)) {
2844 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2845 __func__);
2846 /* If failed to obtain stmmac_clk and specific clk_csr value
2847 * is NOT passed from the platform, probe fail.
2848 */
2849 if (!priv->plat->clk_csr) {
2850 ret = PTR_ERR(priv->stmmac_clk);
2851 goto error_clk_get;
2852 } else {
2853 priv->stmmac_clk = NULL;
2854 }
2855 }
2856 clk_prepare_enable(priv->stmmac_clk);
2857
2858 priv->pclk = devm_clk_get(priv->device, "pclk");
2859 if (IS_ERR(priv->pclk)) {
2860 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
2861 ret = -EPROBE_DEFER;
2862 goto error_pclk_get;
2863 }
2864 priv->pclk = NULL;
2865 }
2866 clk_prepare_enable(priv->pclk);
2867
2868 priv->stmmac_rst = devm_reset_control_get(priv->device,
2869 STMMAC_RESOURCE_NAME);
2870 if (IS_ERR(priv->stmmac_rst)) {
2871 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2872 ret = -EPROBE_DEFER;
2873 goto error_hw_init;
2874 }
2875 dev_info(priv->device, "no reset control found\n");
2876 priv->stmmac_rst = NULL;
2877 }
2878 if (priv->stmmac_rst)
2879 reset_control_deassert(priv->stmmac_rst);
2880
2881 /* Init MAC and get the capabilities */
2882 ret = stmmac_hw_init(priv);
2883 if (ret)
2884 goto error_hw_init;
2885
2886 ndev->netdev_ops = &stmmac_netdev_ops;
2887
2888 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2889 NETIF_F_RXCSUM;
2890 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2891 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2892 #ifdef STMMAC_VLAN_TAG_USED
2893 /* Both mac100 and gmac support receive VLAN tag detection */
2894 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2895 #endif
2896 priv->msg_enable = netif_msg_init(debug, default_msg_level);
2897
2898 if (flow_ctrl)
2899 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
2900
2901 /* Rx Watchdog is available in the COREs newer than the 3.40.
2902 * In some case, for example on bugged HW this feature
2903 * has to be disable and this can be done by passing the
2904 * riwt_off field from the platform.
2905 */
2906 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2907 priv->use_riwt = 1;
2908 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2909 }
2910
2911 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2912
2913 spin_lock_init(&priv->lock);
2914 spin_lock_init(&priv->tx_lock);
2915
2916 ret = register_netdev(ndev);
2917 if (ret) {
2918 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2919 goto error_netdev_register;
2920 }
2921
2922 /* If a specific clk_csr value is passed from the platform
2923 * this means that the CSR Clock Range selection cannot be
2924 * changed at run-time and it is fixed. Viceversa the driver'll try to
2925 * set the MDC clock dynamically according to the csr actual
2926 * clock input.
2927 */
2928 if (!priv->plat->clk_csr)
2929 stmmac_clk_csr_set(priv);
2930 else
2931 priv->clk_csr = priv->plat->clk_csr;
2932
2933 stmmac_check_pcs_mode(priv);
2934
2935 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2936 priv->pcs != STMMAC_PCS_RTBI) {
2937 /* MDIO bus Registration */
2938 ret = stmmac_mdio_register(ndev);
2939 if (ret < 0) {
2940 pr_debug("%s: MDIO bus (id: %d) registration failed",
2941 __func__, priv->plat->bus_id);
2942 goto error_mdio_register;
2943 }
2944 }
2945
2946 return priv;
2947
2948 error_mdio_register:
2949 unregister_netdev(ndev);
2950 error_netdev_register:
2951 netif_napi_del(&priv->napi);
2952 error_hw_init:
2953 clk_disable_unprepare(priv->pclk);
2954 error_pclk_get:
2955 clk_disable_unprepare(priv->stmmac_clk);
2956 error_clk_get:
2957 free_netdev(ndev);
2958
2959 return ERR_PTR(ret);
2960 }
2961 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
2962
2963 /**
2964 * stmmac_dvr_remove
2965 * @ndev: net device pointer
2966 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2967 * changes the link status, releases the DMA descriptor rings.
2968 */
2969 int stmmac_dvr_remove(struct net_device *ndev)
2970 {
2971 struct stmmac_priv *priv = netdev_priv(ndev);
2972
2973 pr_info("%s:\n\tremoving driver", __func__);
2974
2975 priv->hw->dma->stop_rx(priv->ioaddr);
2976 priv->hw->dma->stop_tx(priv->ioaddr);
2977
2978 stmmac_set_mac(priv->ioaddr, false);
2979 netif_carrier_off(ndev);
2980 unregister_netdev(ndev);
2981 if (priv->stmmac_rst)
2982 reset_control_assert(priv->stmmac_rst);
2983 clk_disable_unprepare(priv->pclk);
2984 clk_disable_unprepare(priv->stmmac_clk);
2985 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2986 priv->pcs != STMMAC_PCS_RTBI)
2987 stmmac_mdio_unregister(ndev);
2988 free_netdev(ndev);
2989
2990 return 0;
2991 }
2992 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
2993
2994 /**
2995 * stmmac_suspend - suspend callback
2996 * @ndev: net device pointer
2997 * Description: this is the function to suspend the device and it is called
2998 * by the platform driver to stop the network queue, release the resources,
2999 * program the PMT register (for WoL), clean and release driver resources.
3000 */
3001 int stmmac_suspend(struct net_device *ndev)
3002 {
3003 struct stmmac_priv *priv = netdev_priv(ndev);
3004 unsigned long flags;
3005
3006 if (!ndev || !netif_running(ndev))
3007 return 0;
3008
3009 if (priv->phydev)
3010 phy_stop(priv->phydev);
3011
3012 spin_lock_irqsave(&priv->lock, flags);
3013
3014 netif_device_detach(ndev);
3015 netif_stop_queue(ndev);
3016
3017 napi_disable(&priv->napi);
3018
3019 /* Stop TX/RX DMA */
3020 priv->hw->dma->stop_tx(priv->ioaddr);
3021 priv->hw->dma->stop_rx(priv->ioaddr);
3022
3023 stmmac_clear_descriptors(priv);
3024
3025 /* Enable Power down mode by programming the PMT regs */
3026 if (device_may_wakeup(priv->device)) {
3027 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3028 priv->irq_wake = 1;
3029 } else {
3030 stmmac_set_mac(priv->ioaddr, false);
3031 pinctrl_pm_select_sleep_state(priv->device);
3032 /* Disable clock in case of PWM is off */
3033 clk_disable(priv->pclk);
3034 clk_disable(priv->stmmac_clk);
3035 }
3036 spin_unlock_irqrestore(&priv->lock, flags);
3037
3038 priv->oldlink = 0;
3039 priv->speed = 0;
3040 priv->oldduplex = -1;
3041 return 0;
3042 }
3043 EXPORT_SYMBOL_GPL(stmmac_suspend);
3044
3045 /**
3046 * stmmac_resume - resume callback
3047 * @ndev: net device pointer
3048 * Description: when resume this function is invoked to setup the DMA and CORE
3049 * in a usable state.
3050 */
3051 int stmmac_resume(struct net_device *ndev)
3052 {
3053 struct stmmac_priv *priv = netdev_priv(ndev);
3054 unsigned long flags;
3055
3056 if (!netif_running(ndev))
3057 return 0;
3058
3059 spin_lock_irqsave(&priv->lock, flags);
3060
3061 /* Power Down bit, into the PM register, is cleared
3062 * automatically as soon as a magic packet or a Wake-up frame
3063 * is received. Anyway, it's better to manually clear
3064 * this bit because it can generate problems while resuming
3065 * from another devices (e.g. serial console).
3066 */
3067 if (device_may_wakeup(priv->device)) {
3068 priv->hw->mac->pmt(priv->hw, 0);
3069 priv->irq_wake = 0;
3070 } else {
3071 pinctrl_pm_select_default_state(priv->device);
3072 /* enable the clk prevously disabled */
3073 clk_enable(priv->stmmac_clk);
3074 clk_enable(priv->pclk);
3075 /* reset the phy so that it's ready */
3076 if (priv->mii)
3077 stmmac_mdio_reset(priv->mii);
3078 }
3079
3080 netif_device_attach(ndev);
3081
3082 init_dma_desc_rings(ndev, GFP_ATOMIC);
3083 stmmac_hw_setup(ndev, false);
3084 stmmac_init_tx_coalesce(priv);
3085
3086 napi_enable(&priv->napi);
3087
3088 netif_start_queue(ndev);
3089
3090 spin_unlock_irqrestore(&priv->lock, flags);
3091
3092 if (priv->phydev)
3093 phy_start(priv->phydev);
3094
3095 return 0;
3096 }
3097 EXPORT_SYMBOL_GPL(stmmac_resume);
3098
3099 #ifndef MODULE
3100 static int __init stmmac_cmdline_opt(char *str)
3101 {
3102 char *opt;
3103
3104 if (!str || !*str)
3105 return -EINVAL;
3106 while ((opt = strsep(&str, ",")) != NULL) {
3107 if (!strncmp(opt, "debug:", 6)) {
3108 if (kstrtoint(opt + 6, 0, &debug))
3109 goto err;
3110 } else if (!strncmp(opt, "phyaddr:", 8)) {
3111 if (kstrtoint(opt + 8, 0, &phyaddr))
3112 goto err;
3113 } else if (!strncmp(opt, "dma_txsize:", 11)) {
3114 if (kstrtoint(opt + 11, 0, &dma_txsize))
3115 goto err;
3116 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
3117 if (kstrtoint(opt + 11, 0, &dma_rxsize))
3118 goto err;
3119 } else if (!strncmp(opt, "buf_sz:", 7)) {
3120 if (kstrtoint(opt + 7, 0, &buf_sz))
3121 goto err;
3122 } else if (!strncmp(opt, "tc:", 3)) {
3123 if (kstrtoint(opt + 3, 0, &tc))
3124 goto err;
3125 } else if (!strncmp(opt, "watchdog:", 9)) {
3126 if (kstrtoint(opt + 9, 0, &watchdog))
3127 goto err;
3128 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3129 if (kstrtoint(opt + 10, 0, &flow_ctrl))
3130 goto err;
3131 } else if (!strncmp(opt, "pause:", 6)) {
3132 if (kstrtoint(opt + 6, 0, &pause))
3133 goto err;
3134 } else if (!strncmp(opt, "eee_timer:", 10)) {
3135 if (kstrtoint(opt + 10, 0, &eee_timer))
3136 goto err;
3137 } else if (!strncmp(opt, "chain_mode:", 11)) {
3138 if (kstrtoint(opt + 11, 0, &chain_mode))
3139 goto err;
3140 }
3141 }
3142 return 0;
3143
3144 err:
3145 pr_err("%s: ERROR broken module parameter conversion", __func__);
3146 return -EINVAL;
3147 }
3148
3149 __setup("stmmaceth=", stmmac_cmdline_opt);
3150 #endif /* MODULE */
3151
3152 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3153 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3154 MODULE_LICENSE("GPL");
This page took 0.132319 seconds and 5 git commands to generate.