drivers/net: Remove alloc_etherdev error messages
[deliverable/linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/kernel.h>
32 #include <linux/interrupt.h>
33 #include <linux/ip.h>
34 #include <linux/tcp.h>
35 #include <linux/skbuff.h>
36 #include <linux/ethtool.h>
37 #include <linux/if_ether.h>
38 #include <linux/crc32.h>
39 #include <linux/mii.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/slab.h>
44 #include <linux/prefetch.h>
45 #ifdef CONFIG_STMMAC_DEBUG_FS
46 #include <linux/debugfs.h>
47 #include <linux/seq_file.h>
48 #endif
49 #include "stmmac.h"
50
51 #undef STMMAC_DEBUG
52 /*#define STMMAC_DEBUG*/
53 #ifdef STMMAC_DEBUG
54 #define DBG(nlevel, klevel, fmt, args...) \
55 ((void)(netif_msg_##nlevel(priv) && \
56 printk(KERN_##klevel fmt, ## args)))
57 #else
58 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
59 #endif
60
61 #undef STMMAC_RX_DEBUG
62 /*#define STMMAC_RX_DEBUG*/
63 #ifdef STMMAC_RX_DEBUG
64 #define RX_DBG(fmt, args...) printk(fmt, ## args)
65 #else
66 #define RX_DBG(fmt, args...) do { } while (0)
67 #endif
68
69 #undef STMMAC_XMIT_DEBUG
70 /*#define STMMAC_XMIT_DEBUG*/
71 #ifdef STMMAC_TX_DEBUG
72 #define TX_DBG(fmt, args...) printk(fmt, ## args)
73 #else
74 #define TX_DBG(fmt, args...) do { } while (0)
75 #endif
76
77 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
78 #define JUMBO_LEN 9000
79
80 /* Module parameters */
81 #define TX_TIMEO 5000 /* default 5 seconds */
82 static int watchdog = TX_TIMEO;
83 module_param(watchdog, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
85
86 static int debug = -1; /* -1: default, 0: no output, 16: all */
87 module_param(debug, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
89
90 int phyaddr = -1;
91 module_param(phyaddr, int, S_IRUGO);
92 MODULE_PARM_DESC(phyaddr, "Physical device address");
93
94 #define DMA_TX_SIZE 256
95 static int dma_txsize = DMA_TX_SIZE;
96 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
97 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
98
99 #define DMA_RX_SIZE 256
100 static int dma_rxsize = DMA_RX_SIZE;
101 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
102 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
103
104 static int flow_ctrl = FLOW_OFF;
105 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
107
108 static int pause = PAUSE_TIME;
109 module_param(pause, int, S_IRUGO | S_IWUSR);
110 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
111
112 #define TC_DEFAULT 64
113 static int tc = TC_DEFAULT;
114 module_param(tc, int, S_IRUGO | S_IWUSR);
115 MODULE_PARM_DESC(tc, "DMA threshold control value");
116
117 /* Pay attention to tune this parameter; take care of both
118 * hardware capability and network stabitily/performance impact.
119 * Many tests showed that ~4ms latency seems to be good enough. */
120 #ifdef CONFIG_STMMAC_TIMER
121 #define DEFAULT_PERIODIC_RATE 256
122 static int tmrate = DEFAULT_PERIODIC_RATE;
123 module_param(tmrate, int, S_IRUGO | S_IWUSR);
124 MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
125 #endif
126
127 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
128 static int buf_sz = DMA_BUFFER_SIZE;
129 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
130 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
131
132 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
133 NETIF_MSG_LINK | NETIF_MSG_IFUP |
134 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
135
136 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
137
138 #ifdef CONFIG_STMMAC_DEBUG_FS
139 static int stmmac_init_fs(struct net_device *dev);
140 static void stmmac_exit_fs(void);
141 #endif
142
143 /**
144 * stmmac_verify_args - verify the driver parameters.
145 * Description: it verifies if some wrong parameter is passed to the driver.
146 * Note that wrong parameters are replaced with the default values.
147 */
148 static void stmmac_verify_args(void)
149 {
150 if (unlikely(watchdog < 0))
151 watchdog = TX_TIMEO;
152 if (unlikely(dma_rxsize < 0))
153 dma_rxsize = DMA_RX_SIZE;
154 if (unlikely(dma_txsize < 0))
155 dma_txsize = DMA_TX_SIZE;
156 if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
157 buf_sz = DMA_BUFFER_SIZE;
158 if (unlikely(flow_ctrl > 1))
159 flow_ctrl = FLOW_AUTO;
160 else if (likely(flow_ctrl < 0))
161 flow_ctrl = FLOW_OFF;
162 if (unlikely((pause < 0) || (pause > 0xffff)))
163 pause = PAUSE_TIME;
164 }
165
166 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
167 static void print_pkt(unsigned char *buf, int len)
168 {
169 int j;
170 pr_info("len = %d byte, buf addr: 0x%p", len, buf);
171 for (j = 0; j < len; j++) {
172 if ((j % 16) == 0)
173 pr_info("\n %03x:", j);
174 pr_info(" %02x", buf[j]);
175 }
176 pr_info("\n");
177 }
178 #endif
179
180 /* minimum number of free TX descriptors required to wake up TX process */
181 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
182
183 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
184 {
185 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
186 }
187
188 /* On some ST platforms, some HW system configuraton registers have to be
189 * set according to the link speed negotiated.
190 */
191 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
192 {
193 struct phy_device *phydev = priv->phydev;
194
195 if (likely(priv->plat->fix_mac_speed))
196 priv->plat->fix_mac_speed(priv->plat->bsp_priv,
197 phydev->speed);
198 }
199
200 /**
201 * stmmac_adjust_link
202 * @dev: net device structure
203 * Description: it adjusts the link parameters.
204 */
205 static void stmmac_adjust_link(struct net_device *dev)
206 {
207 struct stmmac_priv *priv = netdev_priv(dev);
208 struct phy_device *phydev = priv->phydev;
209 unsigned long flags;
210 int new_state = 0;
211 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
212
213 if (phydev == NULL)
214 return;
215
216 DBG(probe, DEBUG, "stmmac_adjust_link: called. address %d link %d\n",
217 phydev->addr, phydev->link);
218
219 spin_lock_irqsave(&priv->lock, flags);
220 if (phydev->link) {
221 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
222
223 /* Now we make sure that we can be in full duplex mode.
224 * If not, we operate in half-duplex mode. */
225 if (phydev->duplex != priv->oldduplex) {
226 new_state = 1;
227 if (!(phydev->duplex))
228 ctrl &= ~priv->hw->link.duplex;
229 else
230 ctrl |= priv->hw->link.duplex;
231 priv->oldduplex = phydev->duplex;
232 }
233 /* Flow Control operation */
234 if (phydev->pause)
235 priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
236 fc, pause_time);
237
238 if (phydev->speed != priv->speed) {
239 new_state = 1;
240 switch (phydev->speed) {
241 case 1000:
242 if (likely(priv->plat->has_gmac))
243 ctrl &= ~priv->hw->link.port;
244 stmmac_hw_fix_mac_speed(priv);
245 break;
246 case 100:
247 case 10:
248 if (priv->plat->has_gmac) {
249 ctrl |= priv->hw->link.port;
250 if (phydev->speed == SPEED_100) {
251 ctrl |= priv->hw->link.speed;
252 } else {
253 ctrl &= ~(priv->hw->link.speed);
254 }
255 } else {
256 ctrl &= ~priv->hw->link.port;
257 }
258 stmmac_hw_fix_mac_speed(priv);
259 break;
260 default:
261 if (netif_msg_link(priv))
262 pr_warning("%s: Speed (%d) is not 10"
263 " or 100!\n", dev->name, phydev->speed);
264 break;
265 }
266
267 priv->speed = phydev->speed;
268 }
269
270 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
271
272 if (!priv->oldlink) {
273 new_state = 1;
274 priv->oldlink = 1;
275 }
276 } else if (priv->oldlink) {
277 new_state = 1;
278 priv->oldlink = 0;
279 priv->speed = 0;
280 priv->oldduplex = -1;
281 }
282
283 if (new_state && netif_msg_link(priv))
284 phy_print_status(phydev);
285
286 spin_unlock_irqrestore(&priv->lock, flags);
287
288 DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
289 }
290
291 /**
292 * stmmac_init_phy - PHY initialization
293 * @dev: net device structure
294 * Description: it initializes the driver's PHY state, and attaches the PHY
295 * to the mac driver.
296 * Return value:
297 * 0 on success
298 */
299 static int stmmac_init_phy(struct net_device *dev)
300 {
301 struct stmmac_priv *priv = netdev_priv(dev);
302 struct phy_device *phydev;
303 char phy_id[MII_BUS_ID_SIZE + 3];
304 char bus_id[MII_BUS_ID_SIZE];
305 int interface = priv->plat->interface;
306 priv->oldlink = 0;
307 priv->speed = 0;
308 priv->oldduplex = -1;
309
310 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x", priv->plat->bus_id);
311 snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
312 priv->plat->phy_addr);
313 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id);
314
315 phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0, interface);
316
317 if (IS_ERR(phydev)) {
318 pr_err("%s: Could not attach to PHY\n", dev->name);
319 return PTR_ERR(phydev);
320 }
321
322 /* Stop Advertising 1000BASE Capability if interface is not GMII */
323 if ((interface == PHY_INTERFACE_MODE_MII) ||
324 (interface == PHY_INTERFACE_MODE_RMII))
325 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
326 SUPPORTED_1000baseT_Full);
327
328 /*
329 * Broken HW is sometimes missing the pull-up resistor on the
330 * MDIO line, which results in reads to non-existent devices returning
331 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
332 * device as well.
333 * Note: phydev->phy_id is the result of reading the UID PHY registers.
334 */
335 if (phydev->phy_id == 0) {
336 phy_disconnect(phydev);
337 return -ENODEV;
338 }
339 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
340 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
341
342 priv->phydev = phydev;
343
344 return 0;
345 }
346
347 /**
348 * display_ring
349 * @p: pointer to the ring.
350 * @size: size of the ring.
351 * Description: display all the descriptors within the ring.
352 */
353 static void display_ring(struct dma_desc *p, int size)
354 {
355 struct tmp_s {
356 u64 a;
357 unsigned int b;
358 unsigned int c;
359 };
360 int i;
361 for (i = 0; i < size; i++) {
362 struct tmp_s *x = (struct tmp_s *)(p + i);
363 pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
364 i, (unsigned int)virt_to_phys(&p[i]),
365 (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
366 x->b, x->c);
367 pr_info("\n");
368 }
369 }
370
371 static int stmmac_set_bfsize(int mtu, int bufsize)
372 {
373 int ret = bufsize;
374
375 if (mtu >= BUF_SIZE_4KiB)
376 ret = BUF_SIZE_8KiB;
377 else if (mtu >= BUF_SIZE_2KiB)
378 ret = BUF_SIZE_4KiB;
379 else if (mtu >= DMA_BUFFER_SIZE)
380 ret = BUF_SIZE_2KiB;
381 else
382 ret = DMA_BUFFER_SIZE;
383
384 return ret;
385 }
386
387 /**
388 * init_dma_desc_rings - init the RX/TX descriptor rings
389 * @dev: net device structure
390 * Description: this function initializes the DMA RX/TX descriptors
391 * and allocates the socket buffers. It suppors the chained and ring
392 * modes.
393 */
394 static void init_dma_desc_rings(struct net_device *dev)
395 {
396 int i;
397 struct stmmac_priv *priv = netdev_priv(dev);
398 struct sk_buff *skb;
399 unsigned int txsize = priv->dma_tx_size;
400 unsigned int rxsize = priv->dma_rx_size;
401 unsigned int bfsize;
402 int dis_ic = 0;
403 int des3_as_data_buf = 0;
404
405 /* Set the max buffer size according to the DESC mode
406 * and the MTU. Note that RING mode allows 16KiB bsize. */
407 bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
408
409 if (bfsize == BUF_SIZE_16KiB)
410 des3_as_data_buf = 1;
411 else
412 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
413
414 #ifdef CONFIG_STMMAC_TIMER
415 /* Disable interrupts on completion for the reception if timer is on */
416 if (likely(priv->tm->enable))
417 dis_ic = 1;
418 #endif
419
420 DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
421 txsize, rxsize, bfsize);
422
423 priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
424 priv->rx_skbuff =
425 kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
426 priv->dma_rx =
427 (struct dma_desc *)dma_alloc_coherent(priv->device,
428 rxsize *
429 sizeof(struct dma_desc),
430 &priv->dma_rx_phy,
431 GFP_KERNEL);
432 priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
433 GFP_KERNEL);
434 priv->dma_tx =
435 (struct dma_desc *)dma_alloc_coherent(priv->device,
436 txsize *
437 sizeof(struct dma_desc),
438 &priv->dma_tx_phy,
439 GFP_KERNEL);
440
441 if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
442 pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
443 return;
444 }
445
446 DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
447 "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
448 dev->name, priv->dma_rx, priv->dma_tx,
449 (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
450
451 /* RX INITIALIZATION */
452 DBG(probe, INFO, "stmmac: SKB addresses:\n"
453 "skb\t\tskb data\tdma data\n");
454
455 for (i = 0; i < rxsize; i++) {
456 struct dma_desc *p = priv->dma_rx + i;
457
458 skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
459 GFP_KERNEL);
460 if (unlikely(skb == NULL)) {
461 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
462 break;
463 }
464 skb_reserve(skb, NET_IP_ALIGN);
465 priv->rx_skbuff[i] = skb;
466 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
467 bfsize, DMA_FROM_DEVICE);
468
469 p->des2 = priv->rx_skbuff_dma[i];
470
471 priv->hw->ring->init_desc3(des3_as_data_buf, p);
472
473 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
474 priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
475 }
476 priv->cur_rx = 0;
477 priv->dirty_rx = (unsigned int)(i - rxsize);
478 priv->dma_buf_sz = bfsize;
479 buf_sz = bfsize;
480
481 /* TX INITIALIZATION */
482 for (i = 0; i < txsize; i++) {
483 priv->tx_skbuff[i] = NULL;
484 priv->dma_tx[i].des2 = 0;
485 }
486
487 /* In case of Chained mode this sets the des3 to the next
488 * element in the chain */
489 priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
490 priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);
491
492 priv->dirty_tx = 0;
493 priv->cur_tx = 0;
494
495 /* Clear the Rx/Tx descriptors */
496 priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
497 priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
498
499 if (netif_msg_hw(priv)) {
500 pr_info("RX descriptor ring:\n");
501 display_ring(priv->dma_rx, rxsize);
502 pr_info("TX descriptor ring:\n");
503 display_ring(priv->dma_tx, txsize);
504 }
505 }
506
507 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
508 {
509 int i;
510
511 for (i = 0; i < priv->dma_rx_size; i++) {
512 if (priv->rx_skbuff[i]) {
513 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
514 priv->dma_buf_sz, DMA_FROM_DEVICE);
515 dev_kfree_skb_any(priv->rx_skbuff[i]);
516 }
517 priv->rx_skbuff[i] = NULL;
518 }
519 }
520
521 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
522 {
523 int i;
524
525 for (i = 0; i < priv->dma_tx_size; i++) {
526 if (priv->tx_skbuff[i] != NULL) {
527 struct dma_desc *p = priv->dma_tx + i;
528 if (p->des2)
529 dma_unmap_single(priv->device, p->des2,
530 priv->hw->desc->get_tx_len(p),
531 DMA_TO_DEVICE);
532 dev_kfree_skb_any(priv->tx_skbuff[i]);
533 priv->tx_skbuff[i] = NULL;
534 }
535 }
536 }
537
538 static void free_dma_desc_resources(struct stmmac_priv *priv)
539 {
540 /* Release the DMA TX/RX socket buffers */
541 dma_free_rx_skbufs(priv);
542 dma_free_tx_skbufs(priv);
543
544 /* Free the region of consistent memory previously allocated for
545 * the DMA */
546 dma_free_coherent(priv->device,
547 priv->dma_tx_size * sizeof(struct dma_desc),
548 priv->dma_tx, priv->dma_tx_phy);
549 dma_free_coherent(priv->device,
550 priv->dma_rx_size * sizeof(struct dma_desc),
551 priv->dma_rx, priv->dma_rx_phy);
552 kfree(priv->rx_skbuff_dma);
553 kfree(priv->rx_skbuff);
554 kfree(priv->tx_skbuff);
555 }
556
557 /**
558 * stmmac_dma_operation_mode - HW DMA operation mode
559 * @priv : pointer to the private device structure.
560 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
561 * or Store-And-Forward capability.
562 */
563 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
564 {
565 if (likely(priv->plat->force_sf_dma_mode ||
566 ((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
567 /*
568 * In case of GMAC, SF mode can be enabled
569 * to perform the TX COE in HW. This depends on:
570 * 1) TX COE if actually supported
571 * 2) There is no bugged Jumbo frame support
572 * that needs to not insert csum in the TDES.
573 */
574 priv->hw->dma->dma_mode(priv->ioaddr,
575 SF_DMA_MODE, SF_DMA_MODE);
576 tc = SF_DMA_MODE;
577 } else
578 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
579 }
580
581 /**
582 * stmmac_tx:
583 * @priv: private driver structure
584 * Description: it reclaims resources after transmission completes.
585 */
586 static void stmmac_tx(struct stmmac_priv *priv)
587 {
588 unsigned int txsize = priv->dma_tx_size;
589
590 spin_lock(&priv->tx_lock);
591
592 while (priv->dirty_tx != priv->cur_tx) {
593 int last;
594 unsigned int entry = priv->dirty_tx % txsize;
595 struct sk_buff *skb = priv->tx_skbuff[entry];
596 struct dma_desc *p = priv->dma_tx + entry;
597
598 /* Check if the descriptor is owned by the DMA. */
599 if (priv->hw->desc->get_tx_owner(p))
600 break;
601
602 /* Verify tx error by looking at the last segment */
603 last = priv->hw->desc->get_tx_ls(p);
604 if (likely(last)) {
605 int tx_error =
606 priv->hw->desc->tx_status(&priv->dev->stats,
607 &priv->xstats, p,
608 priv->ioaddr);
609 if (likely(tx_error == 0)) {
610 priv->dev->stats.tx_packets++;
611 priv->xstats.tx_pkt_n++;
612 } else
613 priv->dev->stats.tx_errors++;
614 }
615 TX_DBG("%s: curr %d, dirty %d\n", __func__,
616 priv->cur_tx, priv->dirty_tx);
617
618 if (likely(p->des2))
619 dma_unmap_single(priv->device, p->des2,
620 priv->hw->desc->get_tx_len(p),
621 DMA_TO_DEVICE);
622 priv->hw->ring->clean_desc3(p);
623
624 if (likely(skb != NULL)) {
625 /*
626 * If there's room in the queue (limit it to size)
627 * we add this skb back into the pool,
628 * if it's the right size.
629 */
630 if ((skb_queue_len(&priv->rx_recycle) <
631 priv->dma_rx_size) &&
632 skb_recycle_check(skb, priv->dma_buf_sz))
633 __skb_queue_head(&priv->rx_recycle, skb);
634 else
635 dev_kfree_skb(skb);
636
637 priv->tx_skbuff[entry] = NULL;
638 }
639
640 priv->hw->desc->release_tx_desc(p);
641
642 entry = (++priv->dirty_tx) % txsize;
643 }
644 if (unlikely(netif_queue_stopped(priv->dev) &&
645 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
646 netif_tx_lock(priv->dev);
647 if (netif_queue_stopped(priv->dev) &&
648 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
649 TX_DBG("%s: restart transmit\n", __func__);
650 netif_wake_queue(priv->dev);
651 }
652 netif_tx_unlock(priv->dev);
653 }
654 spin_unlock(&priv->tx_lock);
655 }
656
657 static inline void stmmac_enable_irq(struct stmmac_priv *priv)
658 {
659 #ifdef CONFIG_STMMAC_TIMER
660 if (likely(priv->tm->enable))
661 priv->tm->timer_start(tmrate);
662 else
663 #endif
664 priv->hw->dma->enable_dma_irq(priv->ioaddr);
665 }
666
667 static inline void stmmac_disable_irq(struct stmmac_priv *priv)
668 {
669 #ifdef CONFIG_STMMAC_TIMER
670 if (likely(priv->tm->enable))
671 priv->tm->timer_stop();
672 else
673 #endif
674 priv->hw->dma->disable_dma_irq(priv->ioaddr);
675 }
676
677 static int stmmac_has_work(struct stmmac_priv *priv)
678 {
679 unsigned int has_work = 0;
680 int rxret, tx_work = 0;
681
682 rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
683 (priv->cur_rx % priv->dma_rx_size));
684
685 if (priv->dirty_tx != priv->cur_tx)
686 tx_work = 1;
687
688 if (likely(!rxret || tx_work))
689 has_work = 1;
690
691 return has_work;
692 }
693
694 static inline void _stmmac_schedule(struct stmmac_priv *priv)
695 {
696 if (likely(stmmac_has_work(priv))) {
697 stmmac_disable_irq(priv);
698 napi_schedule(&priv->napi);
699 }
700 }
701
702 #ifdef CONFIG_STMMAC_TIMER
703 void stmmac_schedule(struct net_device *dev)
704 {
705 struct stmmac_priv *priv = netdev_priv(dev);
706
707 priv->xstats.sched_timer_n++;
708
709 _stmmac_schedule(priv);
710 }
711
712 static void stmmac_no_timer_started(unsigned int x)
713 {;
714 };
715
716 static void stmmac_no_timer_stopped(void)
717 {;
718 };
719 #endif
720
721 /**
722 * stmmac_tx_err:
723 * @priv: pointer to the private device structure
724 * Description: it cleans the descriptors and restarts the transmission
725 * in case of errors.
726 */
727 static void stmmac_tx_err(struct stmmac_priv *priv)
728 {
729 netif_stop_queue(priv->dev);
730
731 priv->hw->dma->stop_tx(priv->ioaddr);
732 dma_free_tx_skbufs(priv);
733 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
734 priv->dirty_tx = 0;
735 priv->cur_tx = 0;
736 priv->hw->dma->start_tx(priv->ioaddr);
737
738 priv->dev->stats.tx_errors++;
739 netif_wake_queue(priv->dev);
740 }
741
742
743 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
744 {
745 int status;
746
747 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
748 if (likely(status == handle_tx_rx))
749 _stmmac_schedule(priv);
750
751 else if (unlikely(status == tx_hard_error_bump_tc)) {
752 /* Try to bump up the dma threshold on this failure */
753 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
754 tc += 64;
755 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
756 priv->xstats.threshold = tc;
757 }
758 } else if (unlikely(status == tx_hard_error))
759 stmmac_tx_err(priv);
760 }
761
762 static void stmmac_mmc_setup(struct stmmac_priv *priv)
763 {
764 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
765 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
766
767 /* Mask MMC irq, counters are managed in SW and registers
768 * are cleared on each READ eventually. */
769 dwmac_mmc_intr_all_mask(priv->ioaddr);
770
771 if (priv->dma_cap.rmon) {
772 dwmac_mmc_ctrl(priv->ioaddr, mode);
773 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
774 } else
775 pr_info(" No MAC Management Counters available\n");
776 }
777
778 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
779 {
780 u32 hwid = priv->hw->synopsys_uid;
781
782 /* Only check valid Synopsys Id because old MAC chips
783 * have no HW registers where get the ID */
784 if (likely(hwid)) {
785 u32 uid = ((hwid & 0x0000ff00) >> 8);
786 u32 synid = (hwid & 0x000000ff);
787
788 pr_info("STMMAC - user ID: 0x%x, Synopsys ID: 0x%x\n",
789 uid, synid);
790
791 return synid;
792 }
793 return 0;
794 }
795
796 /**
797 * stmmac_selec_desc_mode
798 * @dev : device pointer
799 * Description: select the Enhanced/Alternate or Normal descriptors */
800 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
801 {
802 if (priv->plat->enh_desc) {
803 pr_info(" Enhanced/Alternate descriptors\n");
804 priv->hw->desc = &enh_desc_ops;
805 } else {
806 pr_info(" Normal descriptors\n");
807 priv->hw->desc = &ndesc_ops;
808 }
809 }
810
811 /**
812 * stmmac_get_hw_features
813 * @priv : private device pointer
814 * Description:
815 * new GMAC chip generations have a new register to indicate the
816 * presence of the optional feature/functions.
817 * This can be also used to override the value passed through the
818 * platform and necessary for old MAC10/100 and GMAC chips.
819 */
820 static int stmmac_get_hw_features(struct stmmac_priv *priv)
821 {
822 u32 hw_cap = 0;
823
824 if (priv->hw->dma->get_hw_feature) {
825 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
826
827 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
828 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
829 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
830 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
831 priv->dma_cap.multi_addr =
832 (hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
833 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
834 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
835 priv->dma_cap.pmt_remote_wake_up =
836 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
837 priv->dma_cap.pmt_magic_frame =
838 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
839 /* MMC */
840 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
841 /* IEEE 1588-2002*/
842 priv->dma_cap.time_stamp =
843 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
844 /* IEEE 1588-2008*/
845 priv->dma_cap.atime_stamp =
846 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
847 /* 802.3az - Energy-Efficient Ethernet (EEE) */
848 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
849 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
850 /* TX and RX csum */
851 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
852 priv->dma_cap.rx_coe_type1 =
853 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
854 priv->dma_cap.rx_coe_type2 =
855 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
856 priv->dma_cap.rxfifo_over_2048 =
857 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
858 /* TX and RX number of channels */
859 priv->dma_cap.number_rx_channel =
860 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
861 priv->dma_cap.number_tx_channel =
862 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
863 /* Alternate (enhanced) DESC mode*/
864 priv->dma_cap.enh_desc =
865 (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
866
867 }
868
869 return hw_cap;
870 }
871
872 /**
873 * stmmac_mac_device_setup
874 * @dev : device pointer
875 * Description: this is to attach the GMAC or MAC 10/100
876 * main core structures that will be completed during the
877 * open step.
878 */
879 static int stmmac_mac_device_setup(struct net_device *dev)
880 {
881 struct stmmac_priv *priv = netdev_priv(dev);
882
883 struct mac_device_info *device;
884
885 if (priv->plat->has_gmac)
886 device = dwmac1000_setup(priv->ioaddr);
887 else
888 device = dwmac100_setup(priv->ioaddr);
889
890 if (!device)
891 return -ENOMEM;
892
893 priv->hw = device;
894 priv->hw->ring = &ring_mode_ops;
895
896 if (device_can_wakeup(priv->device)) {
897 priv->wolopts = WAKE_MAGIC; /* Magic Frame as default */
898 enable_irq_wake(priv->wol_irq);
899 }
900
901 return 0;
902 }
903
904 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
905 {
906 /* verify if the MAC address is valid, in case of failures it
907 * generates a random MAC address */
908 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
909 priv->hw->mac->get_umac_addr((void __iomem *)
910 priv->dev->base_addr,
911 priv->dev->dev_addr, 0);
912 if (!is_valid_ether_addr(priv->dev->dev_addr))
913 random_ether_addr(priv->dev->dev_addr);
914 }
915 pr_warning("%s: device MAC address %pM\n", priv->dev->name,
916 priv->dev->dev_addr);
917 }
918
919 /**
920 * stmmac_open - open entry point of the driver
921 * @dev : pointer to the device structure.
922 * Description:
923 * This function is the open entry point of the driver.
924 * Return value:
925 * 0 on success and an appropriate (-)ve integer as defined in errno.h
926 * file on failure.
927 */
928 static int stmmac_open(struct net_device *dev)
929 {
930 struct stmmac_priv *priv = netdev_priv(dev);
931 int ret;
932
933 /* MAC HW device setup */
934 ret = stmmac_mac_device_setup(dev);
935 if (ret < 0)
936 return ret;
937
938 stmmac_check_ether_addr(priv);
939
940 stmmac_verify_args();
941
942 /* Override with kernel parameters if supplied XXX CRS XXX
943 * this needs to have multiple instances */
944 if ((phyaddr >= 0) && (phyaddr <= 31))
945 priv->plat->phy_addr = phyaddr;
946
947 /* MDIO bus Registration */
948 ret = stmmac_mdio_register(dev);
949 if (ret < 0) {
950 pr_debug("%s: MDIO bus (id: %d) registration failed",
951 __func__, priv->plat->bus_id);
952 return ret;
953 }
954
955 #ifdef CONFIG_STMMAC_TIMER
956 priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
957 if (unlikely(priv->tm == NULL))
958 return -ENOMEM;
959
960 priv->tm->freq = tmrate;
961
962 /* Test if the external timer can be actually used.
963 * In case of failure continue without timer. */
964 if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
965 pr_warning("stmmaceth: cannot attach the external timer.\n");
966 priv->tm->freq = 0;
967 priv->tm->timer_start = stmmac_no_timer_started;
968 priv->tm->timer_stop = stmmac_no_timer_stopped;
969 } else
970 priv->tm->enable = 1;
971 #endif
972 ret = stmmac_init_phy(dev);
973 if (unlikely(ret)) {
974 pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
975 goto open_error;
976 }
977
978 stmmac_get_synopsys_id(priv);
979
980 priv->hw_cap_support = stmmac_get_hw_features(priv);
981
982 if (priv->hw_cap_support) {
983 pr_info(" Support DMA HW capability register");
984
985 /* We can override some gmac/dma configuration fields: e.g.
986 * enh_desc, tx_coe (e.g. that are passed through the
987 * platform) with the values from the HW capability
988 * register (if supported).
989 */
990 priv->plat->enh_desc = priv->dma_cap.enh_desc;
991 priv->plat->tx_coe = priv->dma_cap.tx_coe;
992 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
993
994 /* By default disable wol on magic frame if not supported */
995 if (!priv->dma_cap.pmt_magic_frame)
996 priv->wolopts &= ~WAKE_MAGIC;
997
998 } else
999 pr_info(" No HW DMA feature register supported");
1000
1001 /* Select the enhnaced/normal descriptor structures */
1002 stmmac_selec_desc_mode(priv);
1003
1004 /* PMT module is not integrated in all the MAC devices. */
1005 if (priv->plat->pmt) {
1006 pr_info(" Remote wake-up capable\n");
1007 device_set_wakeup_capable(priv->device, 1);
1008 }
1009
1010 priv->rx_coe = priv->hw->mac->rx_coe(priv->ioaddr);
1011 if (priv->rx_coe)
1012 pr_info(" Checksum Offload Engine supported\n");
1013 if (priv->plat->tx_coe)
1014 pr_info(" Checksum insertion supported\n");
1015
1016 /* Create and initialize the TX/RX descriptors chains. */
1017 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1018 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1019 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1020 init_dma_desc_rings(dev);
1021
1022 /* DMA initialization and SW reset */
1023 ret = priv->hw->dma->init(priv->ioaddr, priv->plat->pbl,
1024 priv->dma_tx_phy, priv->dma_rx_phy);
1025 if (ret < 0) {
1026 pr_err("%s: DMA initialization failed\n", __func__);
1027 goto open_error;
1028 }
1029
1030 /* Copy the MAC addr into the HW */
1031 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1032 /* If required, perform hw setup of the bus. */
1033 if (priv->plat->bus_setup)
1034 priv->plat->bus_setup(priv->ioaddr);
1035 /* Initialize the MAC Core */
1036 priv->hw->mac->core_init(priv->ioaddr);
1037
1038 netdev_update_features(dev);
1039
1040 /* Request the IRQ lines */
1041 ret = request_irq(dev->irq, stmmac_interrupt,
1042 IRQF_SHARED, dev->name, dev);
1043 if (unlikely(ret < 0)) {
1044 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1045 __func__, dev->irq, ret);
1046 goto open_error;
1047 }
1048
1049 /* Enable the MAC Rx/Tx */
1050 stmmac_set_mac(priv->ioaddr, true);
1051
1052 /* Set the HW DMA mode and the COE */
1053 stmmac_dma_operation_mode(priv);
1054
1055 /* Extra statistics */
1056 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1057 priv->xstats.threshold = tc;
1058
1059 stmmac_mmc_setup(priv);
1060
1061 #ifdef CONFIG_STMMAC_DEBUG_FS
1062 ret = stmmac_init_fs(dev);
1063 if (ret < 0)
1064 pr_warning("\tFailed debugFS registration");
1065 #endif
1066 /* Start the ball rolling... */
1067 DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1068 priv->hw->dma->start_tx(priv->ioaddr);
1069 priv->hw->dma->start_rx(priv->ioaddr);
1070
1071 #ifdef CONFIG_STMMAC_TIMER
1072 priv->tm->timer_start(tmrate);
1073 #endif
1074 /* Dump DMA/MAC registers */
1075 if (netif_msg_hw(priv)) {
1076 priv->hw->mac->dump_regs(priv->ioaddr);
1077 priv->hw->dma->dump_regs(priv->ioaddr);
1078 }
1079
1080 if (priv->phydev)
1081 phy_start(priv->phydev);
1082
1083 napi_enable(&priv->napi);
1084 skb_queue_head_init(&priv->rx_recycle);
1085 netif_start_queue(dev);
1086
1087 return 0;
1088
1089 open_error:
1090 #ifdef CONFIG_STMMAC_TIMER
1091 kfree(priv->tm);
1092 #endif
1093 if (priv->phydev)
1094 phy_disconnect(priv->phydev);
1095
1096 return ret;
1097 }
1098
1099 /**
1100 * stmmac_release - close entry point of the driver
1101 * @dev : device pointer.
1102 * Description:
1103 * This is the stop entry point of the driver.
1104 */
1105 static int stmmac_release(struct net_device *dev)
1106 {
1107 struct stmmac_priv *priv = netdev_priv(dev);
1108
1109 /* Stop and disconnect the PHY */
1110 if (priv->phydev) {
1111 phy_stop(priv->phydev);
1112 phy_disconnect(priv->phydev);
1113 priv->phydev = NULL;
1114 }
1115
1116 netif_stop_queue(dev);
1117
1118 #ifdef CONFIG_STMMAC_TIMER
1119 /* Stop and release the timer */
1120 stmmac_close_ext_timer();
1121 if (priv->tm != NULL)
1122 kfree(priv->tm);
1123 #endif
1124 napi_disable(&priv->napi);
1125 skb_queue_purge(&priv->rx_recycle);
1126
1127 /* Free the IRQ lines */
1128 free_irq(dev->irq, dev);
1129
1130 /* Stop TX/RX DMA and clear the descriptors */
1131 priv->hw->dma->stop_tx(priv->ioaddr);
1132 priv->hw->dma->stop_rx(priv->ioaddr);
1133
1134 /* Release and free the Rx/Tx resources */
1135 free_dma_desc_resources(priv);
1136
1137 /* Disable the MAC Rx/Tx */
1138 stmmac_set_mac(priv->ioaddr, false);
1139
1140 netif_carrier_off(dev);
1141
1142 #ifdef CONFIG_STMMAC_DEBUG_FS
1143 stmmac_exit_fs();
1144 #endif
1145 stmmac_mdio_unregister(dev);
1146
1147 return 0;
1148 }
1149
1150 /**
1151 * stmmac_xmit:
1152 * @skb : the socket buffer
1153 * @dev : device pointer
1154 * Description : Tx entry point of the driver.
1155 */
1156 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1157 {
1158 struct stmmac_priv *priv = netdev_priv(dev);
1159 unsigned int txsize = priv->dma_tx_size;
1160 unsigned int entry;
1161 int i, csum_insertion = 0;
1162 int nfrags = skb_shinfo(skb)->nr_frags;
1163 struct dma_desc *desc, *first;
1164 unsigned int nopaged_len = skb_headlen(skb);
1165
1166 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1167 if (!netif_queue_stopped(dev)) {
1168 netif_stop_queue(dev);
1169 /* This is a hard error, log it. */
1170 pr_err("%s: BUG! Tx Ring full when queue awake\n",
1171 __func__);
1172 }
1173 return NETDEV_TX_BUSY;
1174 }
1175
1176 spin_lock(&priv->tx_lock);
1177
1178 entry = priv->cur_tx % txsize;
1179
1180 #ifdef STMMAC_XMIT_DEBUG
1181 if ((skb->len > ETH_FRAME_LEN) || nfrags)
1182 pr_info("stmmac xmit:\n"
1183 "\tskb addr %p - len: %d - nopaged_len: %d\n"
1184 "\tn_frags: %d - ip_summed: %d - %s gso\n",
1185 skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1186 !skb_is_gso(skb) ? "isn't" : "is");
1187 #endif
1188
1189 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1190
1191 desc = priv->dma_tx + entry;
1192 first = desc;
1193
1194 #ifdef STMMAC_XMIT_DEBUG
1195 if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1196 pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1197 "\t\tn_frags: %d, ip_summed: %d\n",
1198 skb->len, nopaged_len, nfrags, skb->ip_summed);
1199 #endif
1200 priv->tx_skbuff[entry] = skb;
1201
1202 if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
1203 entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1204 desc = priv->dma_tx + entry;
1205 } else {
1206 desc->des2 = dma_map_single(priv->device, skb->data,
1207 nopaged_len, DMA_TO_DEVICE);
1208 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1209 csum_insertion);
1210 }
1211
1212 for (i = 0; i < nfrags; i++) {
1213 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1214 int len = skb_frag_size(frag);
1215
1216 entry = (++priv->cur_tx) % txsize;
1217 desc = priv->dma_tx + entry;
1218
1219 TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1220 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1221 DMA_TO_DEVICE);
1222 priv->tx_skbuff[entry] = NULL;
1223 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1224 wmb();
1225 priv->hw->desc->set_tx_owner(desc);
1226 }
1227
1228 /* Interrupt on completition only for the latest segment */
1229 priv->hw->desc->close_tx_desc(desc);
1230
1231 #ifdef CONFIG_STMMAC_TIMER
1232 /* Clean IC while using timer */
1233 if (likely(priv->tm->enable))
1234 priv->hw->desc->clear_tx_ic(desc);
1235 #endif
1236
1237 wmb();
1238
1239 /* To avoid raise condition */
1240 priv->hw->desc->set_tx_owner(first);
1241
1242 priv->cur_tx++;
1243
1244 #ifdef STMMAC_XMIT_DEBUG
1245 if (netif_msg_pktdata(priv)) {
1246 pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1247 "first=%p, nfrags=%d\n",
1248 (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1249 entry, first, nfrags);
1250 display_ring(priv->dma_tx, txsize);
1251 pr_info(">>> frame to be transmitted: ");
1252 print_pkt(skb->data, skb->len);
1253 }
1254 #endif
1255 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1256 TX_DBG("%s: stop transmitted packets\n", __func__);
1257 netif_stop_queue(dev);
1258 }
1259
1260 dev->stats.tx_bytes += skb->len;
1261
1262 skb_tx_timestamp(skb);
1263
1264 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1265
1266 spin_unlock(&priv->tx_lock);
1267
1268 return NETDEV_TX_OK;
1269 }
1270
1271 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1272 {
1273 unsigned int rxsize = priv->dma_rx_size;
1274 int bfsize = priv->dma_buf_sz;
1275 struct dma_desc *p = priv->dma_rx;
1276
1277 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1278 unsigned int entry = priv->dirty_rx % rxsize;
1279 if (likely(priv->rx_skbuff[entry] == NULL)) {
1280 struct sk_buff *skb;
1281
1282 skb = __skb_dequeue(&priv->rx_recycle);
1283 if (skb == NULL)
1284 skb = netdev_alloc_skb_ip_align(priv->dev,
1285 bfsize);
1286
1287 if (unlikely(skb == NULL))
1288 break;
1289
1290 priv->rx_skbuff[entry] = skb;
1291 priv->rx_skbuff_dma[entry] =
1292 dma_map_single(priv->device, skb->data, bfsize,
1293 DMA_FROM_DEVICE);
1294
1295 (p + entry)->des2 = priv->rx_skbuff_dma[entry];
1296
1297 if (unlikely(priv->plat->has_gmac))
1298 priv->hw->ring->refill_desc3(bfsize, p + entry);
1299
1300 RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1301 }
1302 wmb();
1303 priv->hw->desc->set_rx_owner(p + entry);
1304 }
1305 }
1306
1307 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1308 {
1309 unsigned int rxsize = priv->dma_rx_size;
1310 unsigned int entry = priv->cur_rx % rxsize;
1311 unsigned int next_entry;
1312 unsigned int count = 0;
1313 struct dma_desc *p = priv->dma_rx + entry;
1314 struct dma_desc *p_next;
1315
1316 #ifdef STMMAC_RX_DEBUG
1317 if (netif_msg_hw(priv)) {
1318 pr_debug(">>> stmmac_rx: descriptor ring:\n");
1319 display_ring(priv->dma_rx, rxsize);
1320 }
1321 #endif
1322 count = 0;
1323 while (!priv->hw->desc->get_rx_owner(p)) {
1324 int status;
1325
1326 if (count >= limit)
1327 break;
1328
1329 count++;
1330
1331 next_entry = (++priv->cur_rx) % rxsize;
1332 p_next = priv->dma_rx + next_entry;
1333 prefetch(p_next);
1334
1335 /* read the status of the incoming frame */
1336 status = (priv->hw->desc->rx_status(&priv->dev->stats,
1337 &priv->xstats, p));
1338 if (unlikely(status == discard_frame))
1339 priv->dev->stats.rx_errors++;
1340 else {
1341 struct sk_buff *skb;
1342 int frame_len;
1343
1344 frame_len = priv->hw->desc->get_rx_frame_len(p);
1345 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1346 * Type frames (LLC/LLC-SNAP) */
1347 if (unlikely(status != llc_snap))
1348 frame_len -= ETH_FCS_LEN;
1349 #ifdef STMMAC_RX_DEBUG
1350 if (frame_len > ETH_FRAME_LEN)
1351 pr_debug("\tRX frame size %d, COE status: %d\n",
1352 frame_len, status);
1353
1354 if (netif_msg_hw(priv))
1355 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1356 p, entry, p->des2);
1357 #endif
1358 skb = priv->rx_skbuff[entry];
1359 if (unlikely(!skb)) {
1360 pr_err("%s: Inconsistent Rx descriptor chain\n",
1361 priv->dev->name);
1362 priv->dev->stats.rx_dropped++;
1363 break;
1364 }
1365 prefetch(skb->data - NET_IP_ALIGN);
1366 priv->rx_skbuff[entry] = NULL;
1367
1368 skb_put(skb, frame_len);
1369 dma_unmap_single(priv->device,
1370 priv->rx_skbuff_dma[entry],
1371 priv->dma_buf_sz, DMA_FROM_DEVICE);
1372 #ifdef STMMAC_RX_DEBUG
1373 if (netif_msg_pktdata(priv)) {
1374 pr_info(" frame received (%dbytes)", frame_len);
1375 print_pkt(skb->data, frame_len);
1376 }
1377 #endif
1378 skb->protocol = eth_type_trans(skb, priv->dev);
1379
1380 if (unlikely(!priv->rx_coe)) {
1381 /* No RX COE for old mac10/100 devices */
1382 skb_checksum_none_assert(skb);
1383 netif_receive_skb(skb);
1384 } else {
1385 skb->ip_summed = CHECKSUM_UNNECESSARY;
1386 napi_gro_receive(&priv->napi, skb);
1387 }
1388
1389 priv->dev->stats.rx_packets++;
1390 priv->dev->stats.rx_bytes += frame_len;
1391 }
1392 entry = next_entry;
1393 p = p_next; /* use prefetched values */
1394 }
1395
1396 stmmac_rx_refill(priv);
1397
1398 priv->xstats.rx_pkt_n += count;
1399
1400 return count;
1401 }
1402
1403 /**
1404 * stmmac_poll - stmmac poll method (NAPI)
1405 * @napi : pointer to the napi structure.
1406 * @budget : maximum number of packets that the current CPU can receive from
1407 * all interfaces.
1408 * Description :
1409 * This function implements the the reception process.
1410 * Also it runs the TX completion thread
1411 */
1412 static int stmmac_poll(struct napi_struct *napi, int budget)
1413 {
1414 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1415 int work_done = 0;
1416
1417 priv->xstats.poll_n++;
1418 stmmac_tx(priv);
1419 work_done = stmmac_rx(priv, budget);
1420
1421 if (work_done < budget) {
1422 napi_complete(napi);
1423 stmmac_enable_irq(priv);
1424 }
1425 return work_done;
1426 }
1427
1428 /**
1429 * stmmac_tx_timeout
1430 * @dev : Pointer to net device structure
1431 * Description: this function is called when a packet transmission fails to
1432 * complete within a reasonable tmrate. The driver will mark the error in the
1433 * netdev structure and arrange for the device to be reset to a sane state
1434 * in order to transmit a new packet.
1435 */
1436 static void stmmac_tx_timeout(struct net_device *dev)
1437 {
1438 struct stmmac_priv *priv = netdev_priv(dev);
1439
1440 /* Clear Tx resources and restart transmitting again */
1441 stmmac_tx_err(priv);
1442 }
1443
1444 /* Configuration changes (passed on by ifconfig) */
1445 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1446 {
1447 if (dev->flags & IFF_UP) /* can't act on a running interface */
1448 return -EBUSY;
1449
1450 /* Don't allow changing the I/O address */
1451 if (map->base_addr != dev->base_addr) {
1452 pr_warning("%s: can't change I/O address\n", dev->name);
1453 return -EOPNOTSUPP;
1454 }
1455
1456 /* Don't allow changing the IRQ */
1457 if (map->irq != dev->irq) {
1458 pr_warning("%s: can't change IRQ number %d\n",
1459 dev->name, dev->irq);
1460 return -EOPNOTSUPP;
1461 }
1462
1463 /* ignore other fields */
1464 return 0;
1465 }
1466
1467 /**
1468 * stmmac_set_rx_mode - entry point for multicast addressing
1469 * @dev : pointer to the device structure
1470 * Description:
1471 * This function is a driver entry point which gets called by the kernel
1472 * whenever multicast addresses must be enabled/disabled.
1473 * Return value:
1474 * void.
1475 */
1476 static void stmmac_set_rx_mode(struct net_device *dev)
1477 {
1478 struct stmmac_priv *priv = netdev_priv(dev);
1479
1480 spin_lock(&priv->lock);
1481 priv->hw->mac->set_filter(dev);
1482 spin_unlock(&priv->lock);
1483 }
1484
1485 /**
1486 * stmmac_change_mtu - entry point to change MTU size for the device.
1487 * @dev : device pointer.
1488 * @new_mtu : the new MTU size for the device.
1489 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
1490 * to drive packet transmission. Ethernet has an MTU of 1500 octets
1491 * (ETH_DATA_LEN). This value can be changed with ifconfig.
1492 * Return value:
1493 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1494 * file on failure.
1495 */
1496 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1497 {
1498 struct stmmac_priv *priv = netdev_priv(dev);
1499 int max_mtu;
1500
1501 if (netif_running(dev)) {
1502 pr_err("%s: must be stopped to change its MTU\n", dev->name);
1503 return -EBUSY;
1504 }
1505
1506 if (priv->plat->enh_desc)
1507 max_mtu = JUMBO_LEN;
1508 else
1509 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1510
1511 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1512 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1513 return -EINVAL;
1514 }
1515
1516 dev->mtu = new_mtu;
1517 netdev_update_features(dev);
1518
1519 return 0;
1520 }
1521
1522 static netdev_features_t stmmac_fix_features(struct net_device *dev,
1523 netdev_features_t features)
1524 {
1525 struct stmmac_priv *priv = netdev_priv(dev);
1526
1527 if (!priv->rx_coe)
1528 features &= ~NETIF_F_RXCSUM;
1529 if (!priv->plat->tx_coe)
1530 features &= ~NETIF_F_ALL_CSUM;
1531
1532 /* Some GMAC devices have a bugged Jumbo frame support that
1533 * needs to have the Tx COE disabled for oversized frames
1534 * (due to limited buffer sizes). In this case we disable
1535 * the TX csum insertionin the TDES and not use SF. */
1536 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
1537 features &= ~NETIF_F_ALL_CSUM;
1538
1539 return features;
1540 }
1541
1542 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1543 {
1544 struct net_device *dev = (struct net_device *)dev_id;
1545 struct stmmac_priv *priv = netdev_priv(dev);
1546
1547 if (unlikely(!dev)) {
1548 pr_err("%s: invalid dev pointer\n", __func__);
1549 return IRQ_NONE;
1550 }
1551
1552 if (priv->plat->has_gmac)
1553 /* To handle GMAC own interrupts */
1554 priv->hw->mac->host_irq_status((void __iomem *) dev->base_addr);
1555
1556 stmmac_dma_interrupt(priv);
1557
1558 return IRQ_HANDLED;
1559 }
1560
1561 #ifdef CONFIG_NET_POLL_CONTROLLER
1562 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1563 * to allow network I/O with interrupts disabled. */
1564 static void stmmac_poll_controller(struct net_device *dev)
1565 {
1566 disable_irq(dev->irq);
1567 stmmac_interrupt(dev->irq, dev);
1568 enable_irq(dev->irq);
1569 }
1570 #endif
1571
1572 /**
1573 * stmmac_ioctl - Entry point for the Ioctl
1574 * @dev: Device pointer.
1575 * @rq: An IOCTL specefic structure, that can contain a pointer to
1576 * a proprietary structure used to pass information to the driver.
1577 * @cmd: IOCTL command
1578 * Description:
1579 * Currently there are no special functionality supported in IOCTL, just the
1580 * phy_mii_ioctl(...) can be invoked.
1581 */
1582 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1583 {
1584 struct stmmac_priv *priv = netdev_priv(dev);
1585 int ret;
1586
1587 if (!netif_running(dev))
1588 return -EINVAL;
1589
1590 if (!priv->phydev)
1591 return -EINVAL;
1592
1593 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1594
1595 return ret;
1596 }
1597
1598 #ifdef CONFIG_STMMAC_DEBUG_FS
1599 static struct dentry *stmmac_fs_dir;
1600 static struct dentry *stmmac_rings_status;
1601 static struct dentry *stmmac_dma_cap;
1602
1603 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
1604 {
1605 struct tmp_s {
1606 u64 a;
1607 unsigned int b;
1608 unsigned int c;
1609 };
1610 int i;
1611 struct net_device *dev = seq->private;
1612 struct stmmac_priv *priv = netdev_priv(dev);
1613
1614 seq_printf(seq, "=======================\n");
1615 seq_printf(seq, " RX descriptor ring\n");
1616 seq_printf(seq, "=======================\n");
1617
1618 for (i = 0; i < priv->dma_rx_size; i++) {
1619 struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
1620 seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1621 i, (unsigned int)(x->a),
1622 (unsigned int)((x->a) >> 32), x->b, x->c);
1623 seq_printf(seq, "\n");
1624 }
1625
1626 seq_printf(seq, "\n");
1627 seq_printf(seq, "=======================\n");
1628 seq_printf(seq, " TX descriptor ring\n");
1629 seq_printf(seq, "=======================\n");
1630
1631 for (i = 0; i < priv->dma_tx_size; i++) {
1632 struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
1633 seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1634 i, (unsigned int)(x->a),
1635 (unsigned int)((x->a) >> 32), x->b, x->c);
1636 seq_printf(seq, "\n");
1637 }
1638
1639 return 0;
1640 }
1641
1642 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
1643 {
1644 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
1645 }
1646
1647 static const struct file_operations stmmac_rings_status_fops = {
1648 .owner = THIS_MODULE,
1649 .open = stmmac_sysfs_ring_open,
1650 .read = seq_read,
1651 .llseek = seq_lseek,
1652 .release = seq_release,
1653 };
1654
1655 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
1656 {
1657 struct net_device *dev = seq->private;
1658 struct stmmac_priv *priv = netdev_priv(dev);
1659
1660 if (!priv->hw_cap_support) {
1661 seq_printf(seq, "DMA HW features not supported\n");
1662 return 0;
1663 }
1664
1665 seq_printf(seq, "==============================\n");
1666 seq_printf(seq, "\tDMA HW features\n");
1667 seq_printf(seq, "==============================\n");
1668
1669 seq_printf(seq, "\t10/100 Mbps %s\n",
1670 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
1671 seq_printf(seq, "\t1000 Mbps %s\n",
1672 (priv->dma_cap.mbps_1000) ? "Y" : "N");
1673 seq_printf(seq, "\tHalf duple %s\n",
1674 (priv->dma_cap.half_duplex) ? "Y" : "N");
1675 seq_printf(seq, "\tHash Filter: %s\n",
1676 (priv->dma_cap.hash_filter) ? "Y" : "N");
1677 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
1678 (priv->dma_cap.multi_addr) ? "Y" : "N");
1679 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
1680 (priv->dma_cap.pcs) ? "Y" : "N");
1681 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
1682 (priv->dma_cap.sma_mdio) ? "Y" : "N");
1683 seq_printf(seq, "\tPMT Remote wake up: %s\n",
1684 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
1685 seq_printf(seq, "\tPMT Magic Frame: %s\n",
1686 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
1687 seq_printf(seq, "\tRMON module: %s\n",
1688 (priv->dma_cap.rmon) ? "Y" : "N");
1689 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
1690 (priv->dma_cap.time_stamp) ? "Y" : "N");
1691 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
1692 (priv->dma_cap.atime_stamp) ? "Y" : "N");
1693 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
1694 (priv->dma_cap.eee) ? "Y" : "N");
1695 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
1696 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
1697 (priv->dma_cap.tx_coe) ? "Y" : "N");
1698 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
1699 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
1700 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
1701 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
1702 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
1703 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
1704 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
1705 priv->dma_cap.number_rx_channel);
1706 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
1707 priv->dma_cap.number_tx_channel);
1708 seq_printf(seq, "\tEnhanced descriptors: %s\n",
1709 (priv->dma_cap.enh_desc) ? "Y" : "N");
1710
1711 return 0;
1712 }
1713
1714 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
1715 {
1716 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
1717 }
1718
1719 static const struct file_operations stmmac_dma_cap_fops = {
1720 .owner = THIS_MODULE,
1721 .open = stmmac_sysfs_dma_cap_open,
1722 .read = seq_read,
1723 .llseek = seq_lseek,
1724 .release = seq_release,
1725 };
1726
1727 static int stmmac_init_fs(struct net_device *dev)
1728 {
1729 /* Create debugfs entries */
1730 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
1731
1732 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
1733 pr_err("ERROR %s, debugfs create directory failed\n",
1734 STMMAC_RESOURCE_NAME);
1735
1736 return -ENOMEM;
1737 }
1738
1739 /* Entry to report DMA RX/TX rings */
1740 stmmac_rings_status = debugfs_create_file("descriptors_status",
1741 S_IRUGO, stmmac_fs_dir, dev,
1742 &stmmac_rings_status_fops);
1743
1744 if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
1745 pr_info("ERROR creating stmmac ring debugfs file\n");
1746 debugfs_remove(stmmac_fs_dir);
1747
1748 return -ENOMEM;
1749 }
1750
1751 /* Entry to report the DMA HW features */
1752 stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
1753 dev, &stmmac_dma_cap_fops);
1754
1755 if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
1756 pr_info("ERROR creating stmmac MMC debugfs file\n");
1757 debugfs_remove(stmmac_rings_status);
1758 debugfs_remove(stmmac_fs_dir);
1759
1760 return -ENOMEM;
1761 }
1762
1763 return 0;
1764 }
1765
1766 static void stmmac_exit_fs(void)
1767 {
1768 debugfs_remove(stmmac_rings_status);
1769 debugfs_remove(stmmac_dma_cap);
1770 debugfs_remove(stmmac_fs_dir);
1771 }
1772 #endif /* CONFIG_STMMAC_DEBUG_FS */
1773
1774 static const struct net_device_ops stmmac_netdev_ops = {
1775 .ndo_open = stmmac_open,
1776 .ndo_start_xmit = stmmac_xmit,
1777 .ndo_stop = stmmac_release,
1778 .ndo_change_mtu = stmmac_change_mtu,
1779 .ndo_fix_features = stmmac_fix_features,
1780 .ndo_set_rx_mode = stmmac_set_rx_mode,
1781 .ndo_tx_timeout = stmmac_tx_timeout,
1782 .ndo_do_ioctl = stmmac_ioctl,
1783 .ndo_set_config = stmmac_config,
1784 #ifdef CONFIG_NET_POLL_CONTROLLER
1785 .ndo_poll_controller = stmmac_poll_controller,
1786 #endif
1787 .ndo_set_mac_address = eth_mac_addr,
1788 };
1789
1790 /**
1791 * stmmac_dvr_probe
1792 * @device: device pointer
1793 * Description: this is the main probe function used to
1794 * call the alloc_etherdev, allocate the priv structure.
1795 */
1796 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
1797 struct plat_stmmacenet_data *plat_dat)
1798 {
1799 int ret = 0;
1800 struct net_device *ndev = NULL;
1801 struct stmmac_priv *priv;
1802
1803 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1804 if (!ndev)
1805 return NULL;
1806
1807 SET_NETDEV_DEV(ndev, device);
1808
1809 priv = netdev_priv(ndev);
1810 priv->device = device;
1811 priv->dev = ndev;
1812
1813 ether_setup(ndev);
1814
1815 ndev->netdev_ops = &stmmac_netdev_ops;
1816 stmmac_set_ethtool_ops(ndev);
1817
1818 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1819 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1820 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
1821 #ifdef STMMAC_VLAN_TAG_USED
1822 /* Both mac100 and gmac support receive VLAN tag detection */
1823 ndev->features |= NETIF_F_HW_VLAN_RX;
1824 #endif
1825 priv->msg_enable = netif_msg_init(debug, default_msg_level);
1826
1827 if (flow_ctrl)
1828 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
1829
1830 priv->pause = pause;
1831 priv->plat = plat_dat;
1832 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
1833
1834 spin_lock_init(&priv->lock);
1835 spin_lock_init(&priv->tx_lock);
1836
1837 ret = register_netdev(ndev);
1838 if (ret) {
1839 pr_err("%s: ERROR %i registering the device\n",
1840 __func__, ret);
1841 goto error;
1842 }
1843
1844 DBG(probe, DEBUG, "%s: Scatter/Gather: %s - HW checksums: %s\n",
1845 ndev->name, (ndev->features & NETIF_F_SG) ? "on" : "off",
1846 (ndev->features & NETIF_F_IP_CSUM) ? "on" : "off");
1847
1848 return priv;
1849
1850 error:
1851 netif_napi_del(&priv->napi);
1852
1853 unregister_netdev(ndev);
1854 free_netdev(ndev);
1855
1856 return NULL;
1857 }
1858
1859 /**
1860 * stmmac_dvr_remove
1861 * @ndev: net device pointer
1862 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1863 * changes the link status, releases the DMA descriptor rings.
1864 */
1865 int stmmac_dvr_remove(struct net_device *ndev)
1866 {
1867 struct stmmac_priv *priv = netdev_priv(ndev);
1868
1869 pr_info("%s:\n\tremoving driver", __func__);
1870
1871 priv->hw->dma->stop_rx(priv->ioaddr);
1872 priv->hw->dma->stop_tx(priv->ioaddr);
1873
1874 stmmac_set_mac(priv->ioaddr, false);
1875 netif_carrier_off(ndev);
1876 unregister_netdev(ndev);
1877 free_netdev(ndev);
1878
1879 return 0;
1880 }
1881
1882 #ifdef CONFIG_PM
1883 int stmmac_suspend(struct net_device *ndev)
1884 {
1885 struct stmmac_priv *priv = netdev_priv(ndev);
1886 int dis_ic = 0;
1887
1888 if (!ndev || !netif_running(ndev))
1889 return 0;
1890
1891 if (priv->phydev)
1892 phy_stop(priv->phydev);
1893
1894 spin_lock(&priv->lock);
1895
1896 netif_device_detach(ndev);
1897 netif_stop_queue(ndev);
1898
1899 #ifdef CONFIG_STMMAC_TIMER
1900 priv->tm->timer_stop();
1901 if (likely(priv->tm->enable))
1902 dis_ic = 1;
1903 #endif
1904 napi_disable(&priv->napi);
1905
1906 /* Stop TX/RX DMA */
1907 priv->hw->dma->stop_tx(priv->ioaddr);
1908 priv->hw->dma->stop_rx(priv->ioaddr);
1909 /* Clear the Rx/Tx descriptors */
1910 priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
1911 dis_ic);
1912 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
1913
1914 /* Enable Power down mode by programming the PMT regs */
1915 if (device_may_wakeup(priv->device))
1916 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
1917 else
1918 stmmac_set_mac(priv->ioaddr, false);
1919
1920 spin_unlock(&priv->lock);
1921 return 0;
1922 }
1923
1924 int stmmac_resume(struct net_device *ndev)
1925 {
1926 struct stmmac_priv *priv = netdev_priv(ndev);
1927
1928 if (!netif_running(ndev))
1929 return 0;
1930
1931 spin_lock(&priv->lock);
1932
1933 /* Power Down bit, into the PM register, is cleared
1934 * automatically as soon as a magic packet or a Wake-up frame
1935 * is received. Anyway, it's better to manually clear
1936 * this bit because it can generate problems while resuming
1937 * from another devices (e.g. serial console). */
1938 if (device_may_wakeup(priv->device))
1939 priv->hw->mac->pmt(priv->ioaddr, 0);
1940
1941 netif_device_attach(ndev);
1942
1943 /* Enable the MAC and DMA */
1944 stmmac_set_mac(priv->ioaddr, true);
1945 priv->hw->dma->start_tx(priv->ioaddr);
1946 priv->hw->dma->start_rx(priv->ioaddr);
1947
1948 #ifdef CONFIG_STMMAC_TIMER
1949 if (likely(priv->tm->enable))
1950 priv->tm->timer_start(tmrate);
1951 #endif
1952 napi_enable(&priv->napi);
1953
1954 netif_start_queue(ndev);
1955
1956 spin_unlock(&priv->lock);
1957
1958 if (priv->phydev)
1959 phy_start(priv->phydev);
1960
1961 return 0;
1962 }
1963
1964 int stmmac_freeze(struct net_device *ndev)
1965 {
1966 if (!ndev || !netif_running(ndev))
1967 return 0;
1968
1969 return stmmac_release(ndev);
1970 }
1971
1972 int stmmac_restore(struct net_device *ndev)
1973 {
1974 if (!ndev || !netif_running(ndev))
1975 return 0;
1976
1977 return stmmac_open(ndev);
1978 }
1979 #endif /* CONFIG_PM */
1980
1981 #ifndef MODULE
1982 static int __init stmmac_cmdline_opt(char *str)
1983 {
1984 char *opt;
1985
1986 if (!str || !*str)
1987 return -EINVAL;
1988 while ((opt = strsep(&str, ",")) != NULL) {
1989 if (!strncmp(opt, "debug:", 6)) {
1990 if (strict_strtoul(opt + 6, 0, (unsigned long *)&debug))
1991 goto err;
1992 } else if (!strncmp(opt, "phyaddr:", 8)) {
1993 if (strict_strtoul(opt + 8, 0,
1994 (unsigned long *)&phyaddr))
1995 goto err;
1996 } else if (!strncmp(opt, "dma_txsize:", 11)) {
1997 if (strict_strtoul(opt + 11, 0,
1998 (unsigned long *)&dma_txsize))
1999 goto err;
2000 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
2001 if (strict_strtoul(opt + 11, 0,
2002 (unsigned long *)&dma_rxsize))
2003 goto err;
2004 } else if (!strncmp(opt, "buf_sz:", 7)) {
2005 if (strict_strtoul(opt + 7, 0,
2006 (unsigned long *)&buf_sz))
2007 goto err;
2008 } else if (!strncmp(opt, "tc:", 3)) {
2009 if (strict_strtoul(opt + 3, 0, (unsigned long *)&tc))
2010 goto err;
2011 } else if (!strncmp(opt, "watchdog:", 9)) {
2012 if (strict_strtoul(opt + 9, 0,
2013 (unsigned long *)&watchdog))
2014 goto err;
2015 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
2016 if (strict_strtoul(opt + 10, 0,
2017 (unsigned long *)&flow_ctrl))
2018 goto err;
2019 } else if (!strncmp(opt, "pause:", 6)) {
2020 if (strict_strtoul(opt + 6, 0, (unsigned long *)&pause))
2021 goto err;
2022 #ifdef CONFIG_STMMAC_TIMER
2023 } else if (!strncmp(opt, "tmrate:", 7)) {
2024 if (strict_strtoul(opt + 7, 0,
2025 (unsigned long *)&tmrate))
2026 goto err;
2027 #endif
2028 }
2029 }
2030 return 0;
2031
2032 err:
2033 pr_err("%s: ERROR broken module parameter conversion", __func__);
2034 return -EINVAL;
2035 }
2036
2037 __setup("stmmaceth=", stmmac_cmdline_opt);
2038 #endif
2039
2040 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2041 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2042 MODULE_LICENSE("GPL");
This page took 0.253664 seconds and 5 git commands to generate.