stmmac: fix phy init when attached to a phy
[deliverable/linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56 #include "dwmac1000.h"
57
58 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
59
60 /* Module parameters */
61 #define TX_TIMEO 5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, S_IRUGO | S_IWUSR);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
65
66 static int debug = -1;
67 module_param(debug, int, S_IRUGO | S_IWUSR);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
69
70 static int phyaddr = -1;
71 module_param(phyaddr, int, S_IRUGO);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
73
74 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4)
75
76 static int flow_ctrl = FLOW_OFF;
77 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
78 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
79
80 static int pause = PAUSE_TIME;
81 module_param(pause, int, S_IRUGO | S_IWUSR);
82 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
83
84 #define TC_DEFAULT 64
85 static int tc = TC_DEFAULT;
86 module_param(tc, int, S_IRUGO | S_IWUSR);
87 MODULE_PARM_DESC(tc, "DMA threshold control value");
88
89 #define DEFAULT_BUFSIZE 1536
90 static int buf_sz = DEFAULT_BUFSIZE;
91 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
92 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
93
94 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
95 NETIF_MSG_LINK | NETIF_MSG_IFUP |
96 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
97
98 #define STMMAC_DEFAULT_LPI_TIMER 1000
99 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
100 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
101 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
102 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
103
104 /* By default the driver will use the ring mode to manage tx and rx descriptors
105 * but passing this value so user can force to use the chain instead of the ring
106 */
107 static unsigned int chain_mode;
108 module_param(chain_mode, int, S_IRUGO);
109 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
110
111 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
112
113 #ifdef CONFIG_DEBUG_FS
114 static int stmmac_init_fs(struct net_device *dev);
115 static void stmmac_exit_fs(struct net_device *dev);
116 #endif
117
118 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
119
120 /**
121 * stmmac_verify_args - verify the driver parameters.
122 * Description: it checks the driver parameters and set a default in case of
123 * errors.
124 */
125 static void stmmac_verify_args(void)
126 {
127 if (unlikely(watchdog < 0))
128 watchdog = TX_TIMEO;
129 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
130 buf_sz = DEFAULT_BUFSIZE;
131 if (unlikely(flow_ctrl > 1))
132 flow_ctrl = FLOW_AUTO;
133 else if (likely(flow_ctrl < 0))
134 flow_ctrl = FLOW_OFF;
135 if (unlikely((pause < 0) || (pause > 0xffff)))
136 pause = PAUSE_TIME;
137 if (eee_timer < 0)
138 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
139 }
140
141 /**
142 * stmmac_clk_csr_set - dynamically set the MDC clock
143 * @priv: driver private structure
144 * Description: this is to dynamically set the MDC clock according to the csr
145 * clock input.
146 * Note:
147 * If a specific clk_csr value is passed from the platform
148 * this means that the CSR Clock Range selection cannot be
149 * changed at run-time and it is fixed (as reported in the driver
150 * documentation). Viceversa the driver will try to set the MDC
151 * clock dynamically according to the actual clock input.
152 */
153 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
154 {
155 u32 clk_rate;
156
157 clk_rate = clk_get_rate(priv->stmmac_clk);
158
159 /* Platform provided default clk_csr would be assumed valid
160 * for all other cases except for the below mentioned ones.
161 * For values higher than the IEEE 802.3 specified frequency
162 * we can not estimate the proper divider as it is not known
163 * the frequency of clk_csr_i. So we do not change the default
164 * divider.
165 */
166 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
167 if (clk_rate < CSR_F_35M)
168 priv->clk_csr = STMMAC_CSR_20_35M;
169 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
170 priv->clk_csr = STMMAC_CSR_35_60M;
171 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
172 priv->clk_csr = STMMAC_CSR_60_100M;
173 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
174 priv->clk_csr = STMMAC_CSR_100_150M;
175 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
176 priv->clk_csr = STMMAC_CSR_150_250M;
177 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
178 priv->clk_csr = STMMAC_CSR_250_300M;
179 }
180 }
181
182 static void print_pkt(unsigned char *buf, int len)
183 {
184 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
185 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
186 }
187
188 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
189 {
190 unsigned avail;
191
192 if (priv->dirty_tx > priv->cur_tx)
193 avail = priv->dirty_tx - priv->cur_tx - 1;
194 else
195 avail = DMA_TX_SIZE - priv->cur_tx + priv->dirty_tx - 1;
196
197 return avail;
198 }
199
200 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv)
201 {
202 unsigned dirty;
203
204 if (priv->dirty_rx <= priv->cur_rx)
205 dirty = priv->cur_rx - priv->dirty_rx;
206 else
207 dirty = DMA_RX_SIZE - priv->dirty_rx + priv->cur_rx;
208
209 return dirty;
210 }
211
212 /**
213 * stmmac_hw_fix_mac_speed - callback for speed selection
214 * @priv: driver private structure
215 * Description: on some platforms (e.g. ST), some HW system configuraton
216 * registers have to be set according to the link speed negotiated.
217 */
218 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
219 {
220 struct phy_device *phydev = priv->phydev;
221
222 if (likely(priv->plat->fix_mac_speed))
223 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
224 }
225
226 /**
227 * stmmac_enable_eee_mode - check and enter in LPI mode
228 * @priv: driver private structure
229 * Description: this function is to verify and enter in LPI mode in case of
230 * EEE.
231 */
232 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
233 {
234 /* Check and enter in LPI mode */
235 if ((priv->dirty_tx == priv->cur_tx) &&
236 (priv->tx_path_in_lpi_mode == false))
237 priv->hw->mac->set_eee_mode(priv->hw);
238 }
239
240 /**
241 * stmmac_disable_eee_mode - disable and exit from LPI mode
242 * @priv: driver private structure
243 * Description: this function is to exit and disable EEE in case of
244 * LPI state is true. This is called by the xmit.
245 */
246 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
247 {
248 priv->hw->mac->reset_eee_mode(priv->hw);
249 del_timer_sync(&priv->eee_ctrl_timer);
250 priv->tx_path_in_lpi_mode = false;
251 }
252
253 /**
254 * stmmac_eee_ctrl_timer - EEE TX SW timer.
255 * @arg : data hook
256 * Description:
257 * if there is no data transfer and if we are not in LPI state,
258 * then MAC Transmitter can be moved to LPI state.
259 */
260 static void stmmac_eee_ctrl_timer(unsigned long arg)
261 {
262 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
263
264 stmmac_enable_eee_mode(priv);
265 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
266 }
267
268 /**
269 * stmmac_eee_init - init EEE
270 * @priv: driver private structure
271 * Description:
272 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
273 * can also manage EEE, this function enable the LPI state and start related
274 * timer.
275 */
276 bool stmmac_eee_init(struct stmmac_priv *priv)
277 {
278 char *phy_bus_name = priv->plat->phy_bus_name;
279 unsigned long flags;
280 bool ret = false;
281
282 /* Using PCS we cannot dial with the phy registers at this stage
283 * so we do not support extra feature like EEE.
284 */
285 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
286 (priv->pcs == STMMAC_PCS_RTBI))
287 goto out;
288
289 /* Never init EEE in case of a switch is attached */
290 if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
291 goto out;
292
293 /* MAC core supports the EEE feature. */
294 if (priv->dma_cap.eee) {
295 int tx_lpi_timer = priv->tx_lpi_timer;
296
297 /* Check if the PHY supports EEE */
298 if (phy_init_eee(priv->phydev, 1)) {
299 /* To manage at run-time if the EEE cannot be supported
300 * anymore (for example because the lp caps have been
301 * changed).
302 * In that case the driver disable own timers.
303 */
304 spin_lock_irqsave(&priv->lock, flags);
305 if (priv->eee_active) {
306 pr_debug("stmmac: disable EEE\n");
307 del_timer_sync(&priv->eee_ctrl_timer);
308 priv->hw->mac->set_eee_timer(priv->hw, 0,
309 tx_lpi_timer);
310 }
311 priv->eee_active = 0;
312 spin_unlock_irqrestore(&priv->lock, flags);
313 goto out;
314 }
315 /* Activate the EEE and start timers */
316 spin_lock_irqsave(&priv->lock, flags);
317 if (!priv->eee_active) {
318 priv->eee_active = 1;
319 setup_timer(&priv->eee_ctrl_timer,
320 stmmac_eee_ctrl_timer,
321 (unsigned long)priv);
322 mod_timer(&priv->eee_ctrl_timer,
323 STMMAC_LPI_T(eee_timer));
324
325 priv->hw->mac->set_eee_timer(priv->hw,
326 STMMAC_DEFAULT_LIT_LS,
327 tx_lpi_timer);
328 }
329 /* Set HW EEE according to the speed */
330 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
331
332 ret = true;
333 spin_unlock_irqrestore(&priv->lock, flags);
334
335 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
336 }
337 out:
338 return ret;
339 }
340
341 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
342 * @priv: driver private structure
343 * @entry : descriptor index to be used.
344 * @skb : the socket buffer
345 * Description :
346 * This function will read timestamp from the descriptor & pass it to stack.
347 * and also perform some sanity checks.
348 */
349 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
350 unsigned int entry, struct sk_buff *skb)
351 {
352 struct skb_shared_hwtstamps shhwtstamp;
353 u64 ns;
354 void *desc = NULL;
355
356 if (!priv->hwts_tx_en)
357 return;
358
359 /* exit if skb doesn't support hw tstamp */
360 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
361 return;
362
363 if (priv->adv_ts)
364 desc = (priv->dma_etx + entry);
365 else
366 desc = (priv->dma_tx + entry);
367
368 /* check tx tstamp status */
369 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
370 return;
371
372 /* get the valid tstamp */
373 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
374
375 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
376 shhwtstamp.hwtstamp = ns_to_ktime(ns);
377 /* pass tstamp to stack */
378 skb_tstamp_tx(skb, &shhwtstamp);
379
380 return;
381 }
382
383 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
384 * @priv: driver private structure
385 * @entry : descriptor index to be used.
386 * @skb : the socket buffer
387 * Description :
388 * This function will read received packet's timestamp from the descriptor
389 * and pass it to stack. It also perform some sanity checks.
390 */
391 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
392 unsigned int entry, struct sk_buff *skb)
393 {
394 struct skb_shared_hwtstamps *shhwtstamp = NULL;
395 u64 ns;
396 void *desc = NULL;
397
398 if (!priv->hwts_rx_en)
399 return;
400
401 if (priv->adv_ts)
402 desc = (priv->dma_erx + entry);
403 else
404 desc = (priv->dma_rx + entry);
405
406 /* exit if rx tstamp is not valid */
407 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
408 return;
409
410 /* get valid tstamp */
411 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
412 shhwtstamp = skb_hwtstamps(skb);
413 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
414 shhwtstamp->hwtstamp = ns_to_ktime(ns);
415 }
416
417 /**
418 * stmmac_hwtstamp_ioctl - control hardware timestamping.
419 * @dev: device pointer.
420 * @ifr: An IOCTL specefic structure, that can contain a pointer to
421 * a proprietary structure used to pass information to the driver.
422 * Description:
423 * This function configures the MAC to enable/disable both outgoing(TX)
424 * and incoming(RX) packets time stamping based on user input.
425 * Return Value:
426 * 0 on success and an appropriate -ve integer on failure.
427 */
428 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
429 {
430 struct stmmac_priv *priv = netdev_priv(dev);
431 struct hwtstamp_config config;
432 struct timespec64 now;
433 u64 temp = 0;
434 u32 ptp_v2 = 0;
435 u32 tstamp_all = 0;
436 u32 ptp_over_ipv4_udp = 0;
437 u32 ptp_over_ipv6_udp = 0;
438 u32 ptp_over_ethernet = 0;
439 u32 snap_type_sel = 0;
440 u32 ts_master_en = 0;
441 u32 ts_event_en = 0;
442 u32 value = 0;
443 u32 sec_inc;
444
445 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
446 netdev_alert(priv->dev, "No support for HW time stamping\n");
447 priv->hwts_tx_en = 0;
448 priv->hwts_rx_en = 0;
449
450 return -EOPNOTSUPP;
451 }
452
453 if (copy_from_user(&config, ifr->ifr_data,
454 sizeof(struct hwtstamp_config)))
455 return -EFAULT;
456
457 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
458 __func__, config.flags, config.tx_type, config.rx_filter);
459
460 /* reserved for future extensions */
461 if (config.flags)
462 return -EINVAL;
463
464 if (config.tx_type != HWTSTAMP_TX_OFF &&
465 config.tx_type != HWTSTAMP_TX_ON)
466 return -ERANGE;
467
468 if (priv->adv_ts) {
469 switch (config.rx_filter) {
470 case HWTSTAMP_FILTER_NONE:
471 /* time stamp no incoming packet at all */
472 config.rx_filter = HWTSTAMP_FILTER_NONE;
473 break;
474
475 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
476 /* PTP v1, UDP, any kind of event packet */
477 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
478 /* take time stamp for all event messages */
479 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
480
481 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
482 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
483 break;
484
485 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
486 /* PTP v1, UDP, Sync packet */
487 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
488 /* take time stamp for SYNC messages only */
489 ts_event_en = PTP_TCR_TSEVNTENA;
490
491 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
492 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
493 break;
494
495 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
496 /* PTP v1, UDP, Delay_req packet */
497 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
498 /* take time stamp for Delay_Req messages only */
499 ts_master_en = PTP_TCR_TSMSTRENA;
500 ts_event_en = PTP_TCR_TSEVNTENA;
501
502 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
503 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
504 break;
505
506 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
507 /* PTP v2, UDP, any kind of event packet */
508 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
509 ptp_v2 = PTP_TCR_TSVER2ENA;
510 /* take time stamp for all event messages */
511 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
512
513 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
514 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
515 break;
516
517 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
518 /* PTP v2, UDP, Sync packet */
519 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
520 ptp_v2 = PTP_TCR_TSVER2ENA;
521 /* take time stamp for SYNC messages only */
522 ts_event_en = PTP_TCR_TSEVNTENA;
523
524 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
525 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
526 break;
527
528 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
529 /* PTP v2, UDP, Delay_req packet */
530 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
531 ptp_v2 = PTP_TCR_TSVER2ENA;
532 /* take time stamp for Delay_Req messages only */
533 ts_master_en = PTP_TCR_TSMSTRENA;
534 ts_event_en = PTP_TCR_TSEVNTENA;
535
536 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
537 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
538 break;
539
540 case HWTSTAMP_FILTER_PTP_V2_EVENT:
541 /* PTP v2/802.AS1 any layer, any kind of event packet */
542 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
543 ptp_v2 = PTP_TCR_TSVER2ENA;
544 /* take time stamp for all event messages */
545 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
546
547 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
548 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
549 ptp_over_ethernet = PTP_TCR_TSIPENA;
550 break;
551
552 case HWTSTAMP_FILTER_PTP_V2_SYNC:
553 /* PTP v2/802.AS1, any layer, Sync packet */
554 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
555 ptp_v2 = PTP_TCR_TSVER2ENA;
556 /* take time stamp for SYNC messages only */
557 ts_event_en = PTP_TCR_TSEVNTENA;
558
559 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
560 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
561 ptp_over_ethernet = PTP_TCR_TSIPENA;
562 break;
563
564 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
565 /* PTP v2/802.AS1, any layer, Delay_req packet */
566 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
567 ptp_v2 = PTP_TCR_TSVER2ENA;
568 /* take time stamp for Delay_Req messages only */
569 ts_master_en = PTP_TCR_TSMSTRENA;
570 ts_event_en = PTP_TCR_TSEVNTENA;
571
572 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
573 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
574 ptp_over_ethernet = PTP_TCR_TSIPENA;
575 break;
576
577 case HWTSTAMP_FILTER_ALL:
578 /* time stamp any incoming packet */
579 config.rx_filter = HWTSTAMP_FILTER_ALL;
580 tstamp_all = PTP_TCR_TSENALL;
581 break;
582
583 default:
584 return -ERANGE;
585 }
586 } else {
587 switch (config.rx_filter) {
588 case HWTSTAMP_FILTER_NONE:
589 config.rx_filter = HWTSTAMP_FILTER_NONE;
590 break;
591 default:
592 /* PTP v1, UDP, any kind of event packet */
593 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
594 break;
595 }
596 }
597 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
598 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
599
600 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
601 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
602 else {
603 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
604 tstamp_all | ptp_v2 | ptp_over_ethernet |
605 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
606 ts_master_en | snap_type_sel);
607 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
608
609 /* program Sub Second Increment reg */
610 sec_inc = priv->hw->ptp->config_sub_second_increment(
611 priv->ioaddr, priv->clk_ptp_rate);
612 temp = div_u64(1000000000ULL, sec_inc);
613
614 /* calculate default added value:
615 * formula is :
616 * addend = (2^32)/freq_div_ratio;
617 * where, freq_div_ratio = 1e9ns/sec_inc
618 */
619 temp = (u64)(temp << 32);
620 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
621 priv->hw->ptp->config_addend(priv->ioaddr,
622 priv->default_addend);
623
624 /* initialize system time */
625 ktime_get_real_ts64(&now);
626
627 /* lower 32 bits of tv_sec are safe until y2106 */
628 priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec,
629 now.tv_nsec);
630 }
631
632 return copy_to_user(ifr->ifr_data, &config,
633 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
634 }
635
636 /**
637 * stmmac_init_ptp - init PTP
638 * @priv: driver private structure
639 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
640 * This is done by looking at the HW cap. register.
641 * This function also registers the ptp driver.
642 */
643 static int stmmac_init_ptp(struct stmmac_priv *priv)
644 {
645 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
646 return -EOPNOTSUPP;
647
648 /* Fall-back to main clock in case of no PTP ref is passed */
649 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
650 if (IS_ERR(priv->clk_ptp_ref)) {
651 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
652 priv->clk_ptp_ref = NULL;
653 } else {
654 clk_prepare_enable(priv->clk_ptp_ref);
655 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
656 }
657
658 priv->adv_ts = 0;
659 if (priv->dma_cap.atime_stamp && priv->extend_desc)
660 priv->adv_ts = 1;
661
662 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
663 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
664
665 if (netif_msg_hw(priv) && priv->adv_ts)
666 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
667
668 priv->hw->ptp = &stmmac_ptp;
669 priv->hwts_tx_en = 0;
670 priv->hwts_rx_en = 0;
671
672 return stmmac_ptp_register(priv);
673 }
674
675 static void stmmac_release_ptp(struct stmmac_priv *priv)
676 {
677 if (priv->clk_ptp_ref)
678 clk_disable_unprepare(priv->clk_ptp_ref);
679 stmmac_ptp_unregister(priv);
680 }
681
682 /**
683 * stmmac_adjust_link - adjusts the link parameters
684 * @dev: net device structure
685 * Description: this is the helper called by the physical abstraction layer
686 * drivers to communicate the phy link status. According the speed and duplex
687 * this driver can invoke registered glue-logic as well.
688 * It also invoke the eee initialization because it could happen when switch
689 * on different networks (that are eee capable).
690 */
691 static void stmmac_adjust_link(struct net_device *dev)
692 {
693 struct stmmac_priv *priv = netdev_priv(dev);
694 struct phy_device *phydev = priv->phydev;
695 unsigned long flags;
696 int new_state = 0;
697 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
698
699 if (phydev == NULL)
700 return;
701
702 spin_lock_irqsave(&priv->lock, flags);
703
704 if (phydev->link) {
705 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
706
707 /* Now we make sure that we can be in full duplex mode.
708 * If not, we operate in half-duplex mode. */
709 if (phydev->duplex != priv->oldduplex) {
710 new_state = 1;
711 if (!(phydev->duplex))
712 ctrl &= ~priv->hw->link.duplex;
713 else
714 ctrl |= priv->hw->link.duplex;
715 priv->oldduplex = phydev->duplex;
716 }
717 /* Flow Control operation */
718 if (phydev->pause)
719 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
720 fc, pause_time);
721
722 if (phydev->speed != priv->speed) {
723 new_state = 1;
724 switch (phydev->speed) {
725 case 1000:
726 if (likely(priv->plat->has_gmac))
727 ctrl &= ~priv->hw->link.port;
728 stmmac_hw_fix_mac_speed(priv);
729 break;
730 case 100:
731 case 10:
732 if (priv->plat->has_gmac) {
733 ctrl |= priv->hw->link.port;
734 if (phydev->speed == SPEED_100) {
735 ctrl |= priv->hw->link.speed;
736 } else {
737 ctrl &= ~(priv->hw->link.speed);
738 }
739 } else {
740 ctrl &= ~priv->hw->link.port;
741 }
742 stmmac_hw_fix_mac_speed(priv);
743 break;
744 default:
745 if (netif_msg_link(priv))
746 pr_warn("%s: Speed (%d) not 10/100\n",
747 dev->name, phydev->speed);
748 break;
749 }
750
751 priv->speed = phydev->speed;
752 }
753
754 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
755
756 if (!priv->oldlink) {
757 new_state = 1;
758 priv->oldlink = 1;
759 }
760 } else if (priv->oldlink) {
761 new_state = 1;
762 priv->oldlink = 0;
763 priv->speed = 0;
764 priv->oldduplex = -1;
765 }
766
767 if (new_state && netif_msg_link(priv))
768 phy_print_status(phydev);
769
770 spin_unlock_irqrestore(&priv->lock, flags);
771
772 /* At this stage, it could be needed to setup the EEE or adjust some
773 * MAC related HW registers.
774 */
775 priv->eee_enabled = stmmac_eee_init(priv);
776 }
777
778 /**
779 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
780 * @priv: driver private structure
781 * Description: this is to verify if the HW supports the PCS.
782 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
783 * configured for the TBI, RTBI, or SGMII PHY interface.
784 */
785 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
786 {
787 int interface = priv->plat->interface;
788
789 if (priv->dma_cap.pcs) {
790 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
791 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
792 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
793 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
794 pr_debug("STMMAC: PCS RGMII support enable\n");
795 priv->pcs = STMMAC_PCS_RGMII;
796 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
797 pr_debug("STMMAC: PCS SGMII support enable\n");
798 priv->pcs = STMMAC_PCS_SGMII;
799 }
800 }
801 }
802
803 /**
804 * stmmac_init_phy - PHY initialization
805 * @dev: net device structure
806 * Description: it initializes the driver's PHY state, and attaches the PHY
807 * to the mac driver.
808 * Return value:
809 * 0 on success
810 */
811 static int stmmac_init_phy(struct net_device *dev)
812 {
813 struct stmmac_priv *priv = netdev_priv(dev);
814 struct phy_device *phydev;
815 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
816 char bus_id[MII_BUS_ID_SIZE];
817 int interface = priv->plat->interface;
818 int max_speed = priv->plat->max_speed;
819 priv->oldlink = 0;
820 priv->speed = 0;
821 priv->oldduplex = -1;
822
823 if (priv->plat->phy_node) {
824 phydev = of_phy_connect(dev, priv->plat->phy_node,
825 &stmmac_adjust_link, 0, interface);
826 } else {
827 if (priv->plat->phy_bus_name)
828 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
829 priv->plat->phy_bus_name, priv->plat->bus_id);
830 else
831 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
832 priv->plat->bus_id);
833
834 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
835 priv->plat->phy_addr);
836 pr_debug("stmmac_init_phy: trying to attach to %s\n",
837 phy_id_fmt);
838
839 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
840 interface);
841 }
842
843 if (IS_ERR_OR_NULL(phydev)) {
844 pr_err("%s: Could not attach to PHY\n", dev->name);
845 if (!phydev)
846 return -ENODEV;
847
848 return PTR_ERR(phydev);
849 }
850
851 /* Stop Advertising 1000BASE Capability if interface is not GMII */
852 if ((interface == PHY_INTERFACE_MODE_MII) ||
853 (interface == PHY_INTERFACE_MODE_RMII) ||
854 (max_speed < 1000 && max_speed > 0))
855 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
856 SUPPORTED_1000baseT_Full);
857
858 /*
859 * Broken HW is sometimes missing the pull-up resistor on the
860 * MDIO line, which results in reads to non-existent devices returning
861 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
862 * device as well.
863 * Note: phydev->phy_id is the result of reading the UID PHY registers.
864 */
865 if (!priv->plat->phy_node && phydev->phy_id == 0) {
866 phy_disconnect(phydev);
867 return -ENODEV;
868 }
869
870 /* If attached to a switch, there is no reason to poll phy handler */
871 if (priv->plat->phy_bus_name)
872 if (!strcmp(priv->plat->phy_bus_name, "fixed"))
873 phydev->irq = PHY_IGNORE_INTERRUPT;
874
875 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
876 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
877
878 priv->phydev = phydev;
879
880 return 0;
881 }
882
883 /**
884 * stmmac_display_ring - display ring
885 * @head: pointer to the head of the ring passed.
886 * @size: size of the ring.
887 * @extend_desc: to verify if extended descriptors are used.
888 * Description: display the control/status and buffer descriptors.
889 */
890 static void stmmac_display_ring(void *head, int size, int extend_desc)
891 {
892 int i;
893 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
894 struct dma_desc *p = (struct dma_desc *)head;
895
896 for (i = 0; i < size; i++) {
897 u64 x;
898 if (extend_desc) {
899 x = *(u64 *) ep;
900 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
901 i, (unsigned int)virt_to_phys(ep),
902 (unsigned int)x, (unsigned int)(x >> 32),
903 ep->basic.des2, ep->basic.des3);
904 ep++;
905 } else {
906 x = *(u64 *) p;
907 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
908 i, (unsigned int)virt_to_phys(p),
909 (unsigned int)x, (unsigned int)(x >> 32),
910 p->des2, p->des3);
911 p++;
912 }
913 pr_info("\n");
914 }
915 }
916
917 static void stmmac_display_rings(struct stmmac_priv *priv)
918 {
919 if (priv->extend_desc) {
920 pr_info("Extended RX descriptor ring:\n");
921 stmmac_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1);
922 pr_info("Extended TX descriptor ring:\n");
923 stmmac_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1);
924 } else {
925 pr_info("RX descriptor ring:\n");
926 stmmac_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0);
927 pr_info("TX descriptor ring:\n");
928 stmmac_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0);
929 }
930 }
931
932 static int stmmac_set_bfsize(int mtu, int bufsize)
933 {
934 int ret = bufsize;
935
936 if (mtu >= BUF_SIZE_4KiB)
937 ret = BUF_SIZE_8KiB;
938 else if (mtu >= BUF_SIZE_2KiB)
939 ret = BUF_SIZE_4KiB;
940 else if (mtu > DEFAULT_BUFSIZE)
941 ret = BUF_SIZE_2KiB;
942 else
943 ret = DEFAULT_BUFSIZE;
944
945 return ret;
946 }
947
948 /**
949 * stmmac_clear_descriptors - clear descriptors
950 * @priv: driver private structure
951 * Description: this function is called to clear the tx and rx descriptors
952 * in case of both basic and extended descriptors are used.
953 */
954 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
955 {
956 int i;
957
958 /* Clear the Rx/Tx descriptors */
959 for (i = 0; i < DMA_RX_SIZE; i++)
960 if (priv->extend_desc)
961 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
962 priv->use_riwt, priv->mode,
963 (i == DMA_RX_SIZE - 1));
964 else
965 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
966 priv->use_riwt, priv->mode,
967 (i == DMA_RX_SIZE - 1));
968 for (i = 0; i < DMA_TX_SIZE; i++)
969 if (priv->extend_desc)
970 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
971 priv->mode,
972 (i == DMA_TX_SIZE - 1));
973 else
974 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
975 priv->mode,
976 (i == DMA_TX_SIZE - 1));
977 }
978
979 /**
980 * stmmac_init_rx_buffers - init the RX descriptor buffer.
981 * @priv: driver private structure
982 * @p: descriptor pointer
983 * @i: descriptor index
984 * @flags: gfp flag.
985 * Description: this function is called to allocate a receive buffer, perform
986 * the DMA mapping and init the descriptor.
987 */
988 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
989 int i, gfp_t flags)
990 {
991 struct sk_buff *skb;
992
993 skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
994 if (!skb) {
995 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
996 return -ENOMEM;
997 }
998 priv->rx_skbuff[i] = skb;
999 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
1000 priv->dma_buf_sz,
1001 DMA_FROM_DEVICE);
1002 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
1003 pr_err("%s: DMA mapping error\n", __func__);
1004 dev_kfree_skb_any(skb);
1005 return -EINVAL;
1006 }
1007
1008 p->des2 = priv->rx_skbuff_dma[i];
1009
1010 if ((priv->hw->mode->init_desc3) &&
1011 (priv->dma_buf_sz == BUF_SIZE_16KiB))
1012 priv->hw->mode->init_desc3(p);
1013
1014 return 0;
1015 }
1016
1017 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1018 {
1019 if (priv->rx_skbuff[i]) {
1020 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1021 priv->dma_buf_sz, DMA_FROM_DEVICE);
1022 dev_kfree_skb_any(priv->rx_skbuff[i]);
1023 }
1024 priv->rx_skbuff[i] = NULL;
1025 }
1026
1027 /**
1028 * init_dma_desc_rings - init the RX/TX descriptor rings
1029 * @dev: net device structure
1030 * @flags: gfp flag.
1031 * Description: this function initializes the DMA RX/TX descriptors
1032 * and allocates the socket buffers. It suppors the chained and ring
1033 * modes.
1034 */
1035 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1036 {
1037 int i;
1038 struct stmmac_priv *priv = netdev_priv(dev);
1039 unsigned int bfsize = 0;
1040 int ret = -ENOMEM;
1041
1042 if (priv->hw->mode->set_16kib_bfsize)
1043 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1044
1045 if (bfsize < BUF_SIZE_16KiB)
1046 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1047
1048 priv->dma_buf_sz = bfsize;
1049
1050 if (netif_msg_probe(priv)) {
1051 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1052 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1053
1054 /* RX INITIALIZATION */
1055 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1056 }
1057 for (i = 0; i < DMA_RX_SIZE; i++) {
1058 struct dma_desc *p;
1059 if (priv->extend_desc)
1060 p = &((priv->dma_erx + i)->basic);
1061 else
1062 p = priv->dma_rx + i;
1063
1064 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1065 if (ret)
1066 goto err_init_rx_buffers;
1067
1068 if (netif_msg_probe(priv))
1069 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1070 priv->rx_skbuff[i]->data,
1071 (unsigned int)priv->rx_skbuff_dma[i]);
1072 }
1073 priv->cur_rx = 0;
1074 priv->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1075 buf_sz = bfsize;
1076
1077 /* Setup the chained descriptor addresses */
1078 if (priv->mode == STMMAC_CHAIN_MODE) {
1079 if (priv->extend_desc) {
1080 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1081 DMA_RX_SIZE, 1);
1082 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1083 DMA_TX_SIZE, 1);
1084 } else {
1085 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1086 DMA_RX_SIZE, 0);
1087 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1088 DMA_TX_SIZE, 0);
1089 }
1090 }
1091
1092 /* TX INITIALIZATION */
1093 for (i = 0; i < DMA_TX_SIZE; i++) {
1094 struct dma_desc *p;
1095 if (priv->extend_desc)
1096 p = &((priv->dma_etx + i)->basic);
1097 else
1098 p = priv->dma_tx + i;
1099 p->des2 = 0;
1100 priv->tx_skbuff_dma[i].buf = 0;
1101 priv->tx_skbuff_dma[i].map_as_page = false;
1102 priv->tx_skbuff_dma[i].len = 0;
1103 priv->tx_skbuff_dma[i].last_segment = false;
1104 priv->tx_skbuff[i] = NULL;
1105 }
1106
1107 priv->dirty_tx = 0;
1108 priv->cur_tx = 0;
1109 netdev_reset_queue(priv->dev);
1110
1111 stmmac_clear_descriptors(priv);
1112
1113 if (netif_msg_hw(priv))
1114 stmmac_display_rings(priv);
1115
1116 return 0;
1117 err_init_rx_buffers:
1118 while (--i >= 0)
1119 stmmac_free_rx_buffers(priv, i);
1120 return ret;
1121 }
1122
1123 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1124 {
1125 int i;
1126
1127 for (i = 0; i < DMA_RX_SIZE; i++)
1128 stmmac_free_rx_buffers(priv, i);
1129 }
1130
1131 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1132 {
1133 int i;
1134
1135 for (i = 0; i < DMA_TX_SIZE; i++) {
1136 struct dma_desc *p;
1137
1138 if (priv->extend_desc)
1139 p = &((priv->dma_etx + i)->basic);
1140 else
1141 p = priv->dma_tx + i;
1142
1143 if (priv->tx_skbuff_dma[i].buf) {
1144 if (priv->tx_skbuff_dma[i].map_as_page)
1145 dma_unmap_page(priv->device,
1146 priv->tx_skbuff_dma[i].buf,
1147 priv->tx_skbuff_dma[i].len,
1148 DMA_TO_DEVICE);
1149 else
1150 dma_unmap_single(priv->device,
1151 priv->tx_skbuff_dma[i].buf,
1152 priv->tx_skbuff_dma[i].len,
1153 DMA_TO_DEVICE);
1154 }
1155
1156 if (priv->tx_skbuff[i] != NULL) {
1157 dev_kfree_skb_any(priv->tx_skbuff[i]);
1158 priv->tx_skbuff[i] = NULL;
1159 priv->tx_skbuff_dma[i].buf = 0;
1160 priv->tx_skbuff_dma[i].map_as_page = false;
1161 }
1162 }
1163 }
1164
1165 /**
1166 * alloc_dma_desc_resources - alloc TX/RX resources.
1167 * @priv: private structure
1168 * Description: according to which descriptor can be used (extend or basic)
1169 * this function allocates the resources for TX and RX paths. In case of
1170 * reception, for example, it pre-allocated the RX socket buffer in order to
1171 * allow zero-copy mechanism.
1172 */
1173 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1174 {
1175 int ret = -ENOMEM;
1176
1177 priv->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, sizeof(dma_addr_t),
1178 GFP_KERNEL);
1179 if (!priv->rx_skbuff_dma)
1180 return -ENOMEM;
1181
1182 priv->rx_skbuff = kmalloc_array(DMA_RX_SIZE, sizeof(struct sk_buff *),
1183 GFP_KERNEL);
1184 if (!priv->rx_skbuff)
1185 goto err_rx_skbuff;
1186
1187 priv->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1188 sizeof(*priv->tx_skbuff_dma),
1189 GFP_KERNEL);
1190 if (!priv->tx_skbuff_dma)
1191 goto err_tx_skbuff_dma;
1192
1193 priv->tx_skbuff = kmalloc_array(DMA_TX_SIZE, sizeof(struct sk_buff *),
1194 GFP_KERNEL);
1195 if (!priv->tx_skbuff)
1196 goto err_tx_skbuff;
1197
1198 if (priv->extend_desc) {
1199 priv->dma_erx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1200 sizeof(struct
1201 dma_extended_desc),
1202 &priv->dma_rx_phy,
1203 GFP_KERNEL);
1204 if (!priv->dma_erx)
1205 goto err_dma;
1206
1207 priv->dma_etx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1208 sizeof(struct
1209 dma_extended_desc),
1210 &priv->dma_tx_phy,
1211 GFP_KERNEL);
1212 if (!priv->dma_etx) {
1213 dma_free_coherent(priv->device, DMA_RX_SIZE *
1214 sizeof(struct dma_extended_desc),
1215 priv->dma_erx, priv->dma_rx_phy);
1216 goto err_dma;
1217 }
1218 } else {
1219 priv->dma_rx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1220 sizeof(struct dma_desc),
1221 &priv->dma_rx_phy,
1222 GFP_KERNEL);
1223 if (!priv->dma_rx)
1224 goto err_dma;
1225
1226 priv->dma_tx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1227 sizeof(struct dma_desc),
1228 &priv->dma_tx_phy,
1229 GFP_KERNEL);
1230 if (!priv->dma_tx) {
1231 dma_free_coherent(priv->device, DMA_RX_SIZE *
1232 sizeof(struct dma_desc),
1233 priv->dma_rx, priv->dma_rx_phy);
1234 goto err_dma;
1235 }
1236 }
1237
1238 return 0;
1239
1240 err_dma:
1241 kfree(priv->tx_skbuff);
1242 err_tx_skbuff:
1243 kfree(priv->tx_skbuff_dma);
1244 err_tx_skbuff_dma:
1245 kfree(priv->rx_skbuff);
1246 err_rx_skbuff:
1247 kfree(priv->rx_skbuff_dma);
1248 return ret;
1249 }
1250
1251 static void free_dma_desc_resources(struct stmmac_priv *priv)
1252 {
1253 /* Release the DMA TX/RX socket buffers */
1254 dma_free_rx_skbufs(priv);
1255 dma_free_tx_skbufs(priv);
1256
1257 /* Free DMA regions of consistent memory previously allocated */
1258 if (!priv->extend_desc) {
1259 dma_free_coherent(priv->device,
1260 DMA_TX_SIZE * sizeof(struct dma_desc),
1261 priv->dma_tx, priv->dma_tx_phy);
1262 dma_free_coherent(priv->device,
1263 DMA_RX_SIZE * sizeof(struct dma_desc),
1264 priv->dma_rx, priv->dma_rx_phy);
1265 } else {
1266 dma_free_coherent(priv->device, DMA_TX_SIZE *
1267 sizeof(struct dma_extended_desc),
1268 priv->dma_etx, priv->dma_tx_phy);
1269 dma_free_coherent(priv->device, DMA_RX_SIZE *
1270 sizeof(struct dma_extended_desc),
1271 priv->dma_erx, priv->dma_rx_phy);
1272 }
1273 kfree(priv->rx_skbuff_dma);
1274 kfree(priv->rx_skbuff);
1275 kfree(priv->tx_skbuff_dma);
1276 kfree(priv->tx_skbuff);
1277 }
1278
1279 /**
1280 * stmmac_dma_operation_mode - HW DMA operation mode
1281 * @priv: driver private structure
1282 * Description: it is used for configuring the DMA operation mode register in
1283 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1284 */
1285 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1286 {
1287 int rxfifosz = priv->plat->rx_fifo_size;
1288
1289 if (priv->plat->force_thresh_dma_mode)
1290 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1291 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1292 /*
1293 * In case of GMAC, SF mode can be enabled
1294 * to perform the TX COE in HW. This depends on:
1295 * 1) TX COE if actually supported
1296 * 2) There is no bugged Jumbo frame support
1297 * that needs to not insert csum in the TDES.
1298 */
1299 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1300 rxfifosz);
1301 priv->xstats.threshold = SF_DMA_MODE;
1302 } else
1303 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1304 rxfifosz);
1305 }
1306
1307 /**
1308 * stmmac_tx_clean - to manage the transmission completion
1309 * @priv: driver private structure
1310 * Description: it reclaims the transmit resources after transmission completes.
1311 */
1312 static void stmmac_tx_clean(struct stmmac_priv *priv)
1313 {
1314 unsigned int bytes_compl = 0, pkts_compl = 0;
1315 unsigned int entry = priv->dirty_tx;
1316
1317 spin_lock(&priv->tx_lock);
1318
1319 priv->xstats.tx_clean++;
1320
1321 while (entry != priv->cur_tx) {
1322 struct sk_buff *skb = priv->tx_skbuff[entry];
1323 struct dma_desc *p;
1324 int status;
1325
1326 if (priv->extend_desc)
1327 p = (struct dma_desc *)(priv->dma_etx + entry);
1328 else
1329 p = priv->dma_tx + entry;
1330
1331 status = priv->hw->desc->tx_status(&priv->dev->stats,
1332 &priv->xstats, p,
1333 priv->ioaddr);
1334 /* Check if the descriptor is owned by the DMA */
1335 if (unlikely(status & tx_dma_own))
1336 break;
1337
1338 /* Just consider the last segment and ...*/
1339 if (likely(!(status & tx_not_ls))) {
1340 /* ... verify the status error condition */
1341 if (unlikely(status & tx_err)) {
1342 priv->dev->stats.tx_errors++;
1343 } else {
1344 priv->dev->stats.tx_packets++;
1345 priv->xstats.tx_pkt_n++;
1346 }
1347 stmmac_get_tx_hwtstamp(priv, entry, skb);
1348 }
1349
1350 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1351 if (priv->tx_skbuff_dma[entry].map_as_page)
1352 dma_unmap_page(priv->device,
1353 priv->tx_skbuff_dma[entry].buf,
1354 priv->tx_skbuff_dma[entry].len,
1355 DMA_TO_DEVICE);
1356 else
1357 dma_unmap_single(priv->device,
1358 priv->tx_skbuff_dma[entry].buf,
1359 priv->tx_skbuff_dma[entry].len,
1360 DMA_TO_DEVICE);
1361 priv->tx_skbuff_dma[entry].buf = 0;
1362 priv->tx_skbuff_dma[entry].map_as_page = false;
1363 }
1364 priv->hw->mode->clean_desc3(priv, p);
1365 priv->tx_skbuff_dma[entry].last_segment = false;
1366 priv->tx_skbuff_dma[entry].is_jumbo = false;
1367
1368 if (likely(skb != NULL)) {
1369 pkts_compl++;
1370 bytes_compl += skb->len;
1371 dev_consume_skb_any(skb);
1372 priv->tx_skbuff[entry] = NULL;
1373 }
1374
1375 priv->hw->desc->release_tx_desc(p, priv->mode);
1376
1377 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1378 }
1379 priv->dirty_tx = entry;
1380
1381 netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1382
1383 if (unlikely(netif_queue_stopped(priv->dev) &&
1384 stmmac_tx_avail(priv) > STMMAC_TX_THRESH)) {
1385 netif_tx_lock(priv->dev);
1386 if (netif_queue_stopped(priv->dev) &&
1387 stmmac_tx_avail(priv) > STMMAC_TX_THRESH) {
1388 if (netif_msg_tx_done(priv))
1389 pr_debug("%s: restart transmit\n", __func__);
1390 netif_wake_queue(priv->dev);
1391 }
1392 netif_tx_unlock(priv->dev);
1393 }
1394
1395 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1396 stmmac_enable_eee_mode(priv);
1397 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1398 }
1399 spin_unlock(&priv->tx_lock);
1400 }
1401
1402 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1403 {
1404 priv->hw->dma->enable_dma_irq(priv->ioaddr);
1405 }
1406
1407 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1408 {
1409 priv->hw->dma->disable_dma_irq(priv->ioaddr);
1410 }
1411
1412 /**
1413 * stmmac_tx_err - to manage the tx error
1414 * @priv: driver private structure
1415 * Description: it cleans the descriptors and restarts the transmission
1416 * in case of transmission errors.
1417 */
1418 static void stmmac_tx_err(struct stmmac_priv *priv)
1419 {
1420 int i;
1421 netif_stop_queue(priv->dev);
1422
1423 priv->hw->dma->stop_tx(priv->ioaddr);
1424 dma_free_tx_skbufs(priv);
1425 for (i = 0; i < DMA_TX_SIZE; i++)
1426 if (priv->extend_desc)
1427 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1428 priv->mode,
1429 (i == DMA_TX_SIZE - 1));
1430 else
1431 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1432 priv->mode,
1433 (i == DMA_TX_SIZE - 1));
1434 priv->dirty_tx = 0;
1435 priv->cur_tx = 0;
1436 netdev_reset_queue(priv->dev);
1437 priv->hw->dma->start_tx(priv->ioaddr);
1438
1439 priv->dev->stats.tx_errors++;
1440 netif_wake_queue(priv->dev);
1441 }
1442
1443 /**
1444 * stmmac_dma_interrupt - DMA ISR
1445 * @priv: driver private structure
1446 * Description: this is the DMA ISR. It is called by the main ISR.
1447 * It calls the dwmac dma routine and schedule poll method in case of some
1448 * work can be done.
1449 */
1450 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1451 {
1452 int status;
1453 int rxfifosz = priv->plat->rx_fifo_size;
1454
1455 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1456 if (likely((status & handle_rx)) || (status & handle_tx)) {
1457 if (likely(napi_schedule_prep(&priv->napi))) {
1458 stmmac_disable_dma_irq(priv);
1459 __napi_schedule(&priv->napi);
1460 }
1461 }
1462 if (unlikely(status & tx_hard_error_bump_tc)) {
1463 /* Try to bump up the dma threshold on this failure */
1464 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1465 (tc <= 256)) {
1466 tc += 64;
1467 if (priv->plat->force_thresh_dma_mode)
1468 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1469 rxfifosz);
1470 else
1471 priv->hw->dma->dma_mode(priv->ioaddr, tc,
1472 SF_DMA_MODE, rxfifosz);
1473 priv->xstats.threshold = tc;
1474 }
1475 } else if (unlikely(status == tx_hard_error))
1476 stmmac_tx_err(priv);
1477 }
1478
1479 /**
1480 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1481 * @priv: driver private structure
1482 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1483 */
1484 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1485 {
1486 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1487 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1488
1489 dwmac_mmc_intr_all_mask(priv->ioaddr);
1490
1491 if (priv->dma_cap.rmon) {
1492 dwmac_mmc_ctrl(priv->ioaddr, mode);
1493 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1494 } else
1495 pr_info(" No MAC Management Counters available\n");
1496 }
1497
1498 /**
1499 * stmmac_get_synopsys_id - return the SYINID.
1500 * @priv: driver private structure
1501 * Description: this simple function is to decode and return the SYINID
1502 * starting from the HW core register.
1503 */
1504 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1505 {
1506 u32 hwid = priv->hw->synopsys_uid;
1507
1508 /* Check Synopsys Id (not available on old chips) */
1509 if (likely(hwid)) {
1510 u32 uid = ((hwid & 0x0000ff00) >> 8);
1511 u32 synid = (hwid & 0x000000ff);
1512
1513 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1514 uid, synid);
1515
1516 return synid;
1517 }
1518 return 0;
1519 }
1520
1521 /**
1522 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1523 * @priv: driver private structure
1524 * Description: select the Enhanced/Alternate or Normal descriptors.
1525 * In case of Enhanced/Alternate, it checks if the extended descriptors are
1526 * supported by the HW capability register.
1527 */
1528 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1529 {
1530 if (priv->plat->enh_desc) {
1531 pr_info(" Enhanced/Alternate descriptors\n");
1532
1533 /* GMAC older than 3.50 has no extended descriptors */
1534 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1535 pr_info("\tEnabled extended descriptors\n");
1536 priv->extend_desc = 1;
1537 } else
1538 pr_warn("Extended descriptors not supported\n");
1539
1540 priv->hw->desc = &enh_desc_ops;
1541 } else {
1542 pr_info(" Normal descriptors\n");
1543 priv->hw->desc = &ndesc_ops;
1544 }
1545 }
1546
1547 /**
1548 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1549 * @priv: driver private structure
1550 * Description:
1551 * new GMAC chip generations have a new register to indicate the
1552 * presence of the optional feature/functions.
1553 * This can be also used to override the value passed through the
1554 * platform and necessary for old MAC10/100 and GMAC chips.
1555 */
1556 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1557 {
1558 u32 hw_cap = 0;
1559
1560 if (priv->hw->dma->get_hw_feature) {
1561 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1562
1563 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1564 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1565 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1566 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1567 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1568 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1569 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1570 priv->dma_cap.pmt_remote_wake_up =
1571 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1572 priv->dma_cap.pmt_magic_frame =
1573 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1574 /* MMC */
1575 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1576 /* IEEE 1588-2002 */
1577 priv->dma_cap.time_stamp =
1578 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1579 /* IEEE 1588-2008 */
1580 priv->dma_cap.atime_stamp =
1581 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1582 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1583 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1584 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1585 /* TX and RX csum */
1586 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1587 priv->dma_cap.rx_coe_type1 =
1588 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1589 priv->dma_cap.rx_coe_type2 =
1590 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1591 priv->dma_cap.rxfifo_over_2048 =
1592 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1593 /* TX and RX number of channels */
1594 priv->dma_cap.number_rx_channel =
1595 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1596 priv->dma_cap.number_tx_channel =
1597 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1598 /* Alternate (enhanced) DESC mode */
1599 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1600 }
1601
1602 return hw_cap;
1603 }
1604
1605 /**
1606 * stmmac_check_ether_addr - check if the MAC addr is valid
1607 * @priv: driver private structure
1608 * Description:
1609 * it is to verify if the MAC address is valid, in case of failures it
1610 * generates a random MAC address
1611 */
1612 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1613 {
1614 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1615 priv->hw->mac->get_umac_addr(priv->hw,
1616 priv->dev->dev_addr, 0);
1617 if (!is_valid_ether_addr(priv->dev->dev_addr))
1618 eth_hw_addr_random(priv->dev);
1619 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1620 priv->dev->dev_addr);
1621 }
1622 }
1623
1624 /**
1625 * stmmac_init_dma_engine - DMA init.
1626 * @priv: driver private structure
1627 * Description:
1628 * It inits the DMA invoking the specific MAC/GMAC callback.
1629 * Some DMA parameters can be passed from the platform;
1630 * in case of these are not passed a default is kept for the MAC or GMAC.
1631 */
1632 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1633 {
1634 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, aal = 0;
1635 int mixed_burst = 0;
1636 int atds = 0;
1637 int ret = 0;
1638
1639 if (priv->plat->dma_cfg) {
1640 pbl = priv->plat->dma_cfg->pbl;
1641 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1642 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1643 aal = priv->plat->dma_cfg->aal;
1644 }
1645
1646 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1647 atds = 1;
1648
1649 ret = priv->hw->dma->reset(priv->ioaddr);
1650 if (ret) {
1651 dev_err(priv->device, "Failed to reset the dma\n");
1652 return ret;
1653 }
1654
1655 priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1656 aal, priv->dma_tx_phy, priv->dma_rx_phy, atds);
1657
1658 if ((priv->synopsys_id >= DWMAC_CORE_3_50) &&
1659 (priv->plat->axi && priv->hw->dma->axi))
1660 priv->hw->dma->axi(priv->ioaddr, priv->plat->axi);
1661
1662 return ret;
1663 }
1664
1665 /**
1666 * stmmac_tx_timer - mitigation sw timer for tx.
1667 * @data: data pointer
1668 * Description:
1669 * This is the timer handler to directly invoke the stmmac_tx_clean.
1670 */
1671 static void stmmac_tx_timer(unsigned long data)
1672 {
1673 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1674
1675 stmmac_tx_clean(priv);
1676 }
1677
1678 /**
1679 * stmmac_init_tx_coalesce - init tx mitigation options.
1680 * @priv: driver private structure
1681 * Description:
1682 * This inits the transmit coalesce parameters: i.e. timer rate,
1683 * timer handler and default threshold used for enabling the
1684 * interrupt on completion bit.
1685 */
1686 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1687 {
1688 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1689 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1690 init_timer(&priv->txtimer);
1691 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1692 priv->txtimer.data = (unsigned long)priv;
1693 priv->txtimer.function = stmmac_tx_timer;
1694 add_timer(&priv->txtimer);
1695 }
1696
1697 /**
1698 * stmmac_hw_setup - setup mac in a usable state.
1699 * @dev : pointer to the device structure.
1700 * Description:
1701 * this is the main function to setup the HW in a usable state because the
1702 * dma engine is reset, the core registers are configured (e.g. AXI,
1703 * Checksum features, timers). The DMA is ready to start receiving and
1704 * transmitting.
1705 * Return value:
1706 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1707 * file on failure.
1708 */
1709 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1710 {
1711 struct stmmac_priv *priv = netdev_priv(dev);
1712 int ret;
1713
1714 /* DMA initialization and SW reset */
1715 ret = stmmac_init_dma_engine(priv);
1716 if (ret < 0) {
1717 pr_err("%s: DMA engine initialization failed\n", __func__);
1718 return ret;
1719 }
1720
1721 /* Copy the MAC addr into the HW */
1722 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1723
1724 /* If required, perform hw setup of the bus. */
1725 if (priv->plat->bus_setup)
1726 priv->plat->bus_setup(priv->ioaddr);
1727
1728 /* Initialize the MAC Core */
1729 priv->hw->mac->core_init(priv->hw, dev->mtu);
1730
1731 ret = priv->hw->mac->rx_ipc(priv->hw);
1732 if (!ret) {
1733 pr_warn(" RX IPC Checksum Offload disabled\n");
1734 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1735 priv->hw->rx_csum = 0;
1736 }
1737
1738 /* Enable the MAC Rx/Tx */
1739 stmmac_set_mac(priv->ioaddr, true);
1740
1741 /* Set the HW DMA mode and the COE */
1742 stmmac_dma_operation_mode(priv);
1743
1744 stmmac_mmc_setup(priv);
1745
1746 if (init_ptp) {
1747 ret = stmmac_init_ptp(priv);
1748 if (ret && ret != -EOPNOTSUPP)
1749 pr_warn("%s: failed PTP initialisation\n", __func__);
1750 }
1751
1752 #ifdef CONFIG_DEBUG_FS
1753 ret = stmmac_init_fs(dev);
1754 if (ret < 0)
1755 pr_warn("%s: failed debugFS registration\n", __func__);
1756 #endif
1757 /* Start the ball rolling... */
1758 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1759 priv->hw->dma->start_tx(priv->ioaddr);
1760 priv->hw->dma->start_rx(priv->ioaddr);
1761
1762 /* Dump DMA/MAC registers */
1763 if (netif_msg_hw(priv)) {
1764 priv->hw->mac->dump_regs(priv->hw);
1765 priv->hw->dma->dump_regs(priv->ioaddr);
1766 }
1767 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1768
1769 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1770 priv->rx_riwt = MAX_DMA_RIWT;
1771 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1772 }
1773
1774 if (priv->pcs && priv->hw->mac->ctrl_ane)
1775 priv->hw->mac->ctrl_ane(priv->hw, 0);
1776
1777 return 0;
1778 }
1779
1780 /**
1781 * stmmac_open - open entry point of the driver
1782 * @dev : pointer to the device structure.
1783 * Description:
1784 * This function is the open entry point of the driver.
1785 * Return value:
1786 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1787 * file on failure.
1788 */
1789 static int stmmac_open(struct net_device *dev)
1790 {
1791 struct stmmac_priv *priv = netdev_priv(dev);
1792 int ret;
1793
1794 stmmac_check_ether_addr(priv);
1795
1796 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1797 priv->pcs != STMMAC_PCS_RTBI) {
1798 ret = stmmac_init_phy(dev);
1799 if (ret) {
1800 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1801 __func__, ret);
1802 return ret;
1803 }
1804 }
1805
1806 /* Extra statistics */
1807 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1808 priv->xstats.threshold = tc;
1809
1810 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1811
1812 ret = alloc_dma_desc_resources(priv);
1813 if (ret < 0) {
1814 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1815 goto dma_desc_error;
1816 }
1817
1818 ret = init_dma_desc_rings(dev, GFP_KERNEL);
1819 if (ret < 0) {
1820 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1821 goto init_error;
1822 }
1823
1824 ret = stmmac_hw_setup(dev, true);
1825 if (ret < 0) {
1826 pr_err("%s: Hw setup failed\n", __func__);
1827 goto init_error;
1828 }
1829
1830 stmmac_init_tx_coalesce(priv);
1831
1832 if (priv->phydev)
1833 phy_start(priv->phydev);
1834
1835 /* Request the IRQ lines */
1836 ret = request_irq(dev->irq, stmmac_interrupt,
1837 IRQF_SHARED, dev->name, dev);
1838 if (unlikely(ret < 0)) {
1839 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1840 __func__, dev->irq, ret);
1841 goto init_error;
1842 }
1843
1844 /* Request the Wake IRQ in case of another line is used for WoL */
1845 if (priv->wol_irq != dev->irq) {
1846 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1847 IRQF_SHARED, dev->name, dev);
1848 if (unlikely(ret < 0)) {
1849 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1850 __func__, priv->wol_irq, ret);
1851 goto wolirq_error;
1852 }
1853 }
1854
1855 /* Request the IRQ lines */
1856 if (priv->lpi_irq > 0) {
1857 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1858 dev->name, dev);
1859 if (unlikely(ret < 0)) {
1860 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1861 __func__, priv->lpi_irq, ret);
1862 goto lpiirq_error;
1863 }
1864 }
1865
1866 napi_enable(&priv->napi);
1867 netif_start_queue(dev);
1868
1869 return 0;
1870
1871 lpiirq_error:
1872 if (priv->wol_irq != dev->irq)
1873 free_irq(priv->wol_irq, dev);
1874 wolirq_error:
1875 free_irq(dev->irq, dev);
1876
1877 init_error:
1878 free_dma_desc_resources(priv);
1879 dma_desc_error:
1880 if (priv->phydev)
1881 phy_disconnect(priv->phydev);
1882
1883 return ret;
1884 }
1885
1886 /**
1887 * stmmac_release - close entry point of the driver
1888 * @dev : device pointer.
1889 * Description:
1890 * This is the stop entry point of the driver.
1891 */
1892 static int stmmac_release(struct net_device *dev)
1893 {
1894 struct stmmac_priv *priv = netdev_priv(dev);
1895
1896 if (priv->eee_enabled)
1897 del_timer_sync(&priv->eee_ctrl_timer);
1898
1899 /* Stop and disconnect the PHY */
1900 if (priv->phydev) {
1901 phy_stop(priv->phydev);
1902 phy_disconnect(priv->phydev);
1903 priv->phydev = NULL;
1904 }
1905
1906 netif_stop_queue(dev);
1907
1908 napi_disable(&priv->napi);
1909
1910 del_timer_sync(&priv->txtimer);
1911
1912 /* Free the IRQ lines */
1913 free_irq(dev->irq, dev);
1914 if (priv->wol_irq != dev->irq)
1915 free_irq(priv->wol_irq, dev);
1916 if (priv->lpi_irq > 0)
1917 free_irq(priv->lpi_irq, dev);
1918
1919 /* Stop TX/RX DMA and clear the descriptors */
1920 priv->hw->dma->stop_tx(priv->ioaddr);
1921 priv->hw->dma->stop_rx(priv->ioaddr);
1922
1923 /* Release and free the Rx/Tx resources */
1924 free_dma_desc_resources(priv);
1925
1926 /* Disable the MAC Rx/Tx */
1927 stmmac_set_mac(priv->ioaddr, false);
1928
1929 netif_carrier_off(dev);
1930
1931 #ifdef CONFIG_DEBUG_FS
1932 stmmac_exit_fs(dev);
1933 #endif
1934
1935 stmmac_release_ptp(priv);
1936
1937 return 0;
1938 }
1939
1940 /**
1941 * stmmac_xmit - Tx entry point of the driver
1942 * @skb : the socket buffer
1943 * @dev : device pointer
1944 * Description : this is the tx entry point of the driver.
1945 * It programs the chain or the ring and supports oversized frames
1946 * and SG feature.
1947 */
1948 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1949 {
1950 struct stmmac_priv *priv = netdev_priv(dev);
1951 unsigned int nopaged_len = skb_headlen(skb);
1952 int i, csum_insertion = 0, is_jumbo = 0;
1953 int nfrags = skb_shinfo(skb)->nr_frags;
1954 unsigned int entry, first_entry;
1955 struct dma_desc *desc, *first;
1956 unsigned int enh_desc;
1957
1958 spin_lock(&priv->tx_lock);
1959
1960 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1961 spin_unlock(&priv->tx_lock);
1962 if (!netif_queue_stopped(dev)) {
1963 netif_stop_queue(dev);
1964 /* This is a hard error, log it. */
1965 pr_err("%s: Tx Ring full when queue awake\n", __func__);
1966 }
1967 return NETDEV_TX_BUSY;
1968 }
1969
1970 if (priv->tx_path_in_lpi_mode)
1971 stmmac_disable_eee_mode(priv);
1972
1973 entry = priv->cur_tx;
1974 first_entry = entry;
1975
1976 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1977
1978 if (likely(priv->extend_desc))
1979 desc = (struct dma_desc *)(priv->dma_etx + entry);
1980 else
1981 desc = priv->dma_tx + entry;
1982
1983 first = desc;
1984
1985 priv->tx_skbuff[first_entry] = skb;
1986
1987 enh_desc = priv->plat->enh_desc;
1988 /* To program the descriptors according to the size of the frame */
1989 if (enh_desc)
1990 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1991
1992 if (unlikely(is_jumbo)) {
1993 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1994 if (unlikely(entry < 0))
1995 goto dma_map_err;
1996 }
1997
1998 for (i = 0; i < nfrags; i++) {
1999 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2000 int len = skb_frag_size(frag);
2001 bool last_segment = (i == (nfrags - 1));
2002
2003 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2004
2005 if (likely(priv->extend_desc))
2006 desc = (struct dma_desc *)(priv->dma_etx + entry);
2007 else
2008 desc = priv->dma_tx + entry;
2009
2010 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
2011 DMA_TO_DEVICE);
2012 if (dma_mapping_error(priv->device, desc->des2))
2013 goto dma_map_err; /* should reuse desc w/o issues */
2014
2015 priv->tx_skbuff[entry] = NULL;
2016 priv->tx_skbuff_dma[entry].buf = desc->des2;
2017 priv->tx_skbuff_dma[entry].map_as_page = true;
2018 priv->tx_skbuff_dma[entry].len = len;
2019 priv->tx_skbuff_dma[entry].last_segment = last_segment;
2020
2021 /* Prepare the descriptor and set the own bit too */
2022 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2023 priv->mode, 1, last_segment);
2024 }
2025
2026 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2027
2028 priv->cur_tx = entry;
2029
2030 if (netif_msg_pktdata(priv)) {
2031 pr_debug("%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
2032 __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2033 entry, first, nfrags);
2034
2035 if (priv->extend_desc)
2036 stmmac_display_ring((void *)priv->dma_etx,
2037 DMA_TX_SIZE, 1);
2038 else
2039 stmmac_display_ring((void *)priv->dma_tx,
2040 DMA_TX_SIZE, 0);
2041
2042 pr_debug(">>> frame to be transmitted: ");
2043 print_pkt(skb->data, skb->len);
2044 }
2045
2046 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2047 if (netif_msg_hw(priv))
2048 pr_debug("%s: stop transmitted packets\n", __func__);
2049 netif_stop_queue(dev);
2050 }
2051
2052 dev->stats.tx_bytes += skb->len;
2053
2054 /* According to the coalesce parameter the IC bit for the latest
2055 * segment is reset and the timer re-started to clean the tx status.
2056 * This approach takes care about the fragments: desc is the first
2057 * element in case of no SG.
2058 */
2059 priv->tx_count_frames += nfrags + 1;
2060 if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2061 mod_timer(&priv->txtimer,
2062 STMMAC_COAL_TIMER(priv->tx_coal_timer));
2063 } else {
2064 priv->tx_count_frames = 0;
2065 priv->hw->desc->set_tx_ic(desc);
2066 priv->xstats.tx_set_ic_bit++;
2067 }
2068
2069 if (!priv->hwts_tx_en)
2070 skb_tx_timestamp(skb);
2071
2072 /* Ready to fill the first descriptor and set the OWN bit w/o any
2073 * problems because all the descriptors are actually ready to be
2074 * passed to the DMA engine.
2075 */
2076 if (likely(!is_jumbo)) {
2077 bool last_segment = (nfrags == 0);
2078
2079 first->des2 = dma_map_single(priv->device, skb->data,
2080 nopaged_len, DMA_TO_DEVICE);
2081 if (dma_mapping_error(priv->device, first->des2))
2082 goto dma_map_err;
2083
2084 priv->tx_skbuff_dma[first_entry].buf = first->des2;
2085 priv->tx_skbuff_dma[first_entry].len = nopaged_len;
2086 priv->tx_skbuff_dma[first_entry].last_segment = last_segment;
2087
2088 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2089 priv->hwts_tx_en)) {
2090 /* declare that device is doing timestamping */
2091 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2092 priv->hw->desc->enable_tx_timestamp(first);
2093 }
2094
2095 /* Prepare the first descriptor setting the OWN bit too */
2096 priv->hw->desc->prepare_tx_desc(first, 1, nopaged_len,
2097 csum_insertion, priv->mode, 1,
2098 last_segment);
2099
2100 /* The own bit must be the latest setting done when prepare the
2101 * descriptor and then barrier is needed to make sure that
2102 * all is coherent before granting the DMA engine.
2103 */
2104 smp_wmb();
2105 }
2106
2107 netdev_sent_queue(dev, skb->len);
2108 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2109
2110 spin_unlock(&priv->tx_lock);
2111 return NETDEV_TX_OK;
2112
2113 dma_map_err:
2114 spin_unlock(&priv->tx_lock);
2115 dev_err(priv->device, "Tx dma map failed\n");
2116 dev_kfree_skb(skb);
2117 priv->dev->stats.tx_dropped++;
2118 return NETDEV_TX_OK;
2119 }
2120
2121 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2122 {
2123 struct ethhdr *ehdr;
2124 u16 vlanid;
2125
2126 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2127 NETIF_F_HW_VLAN_CTAG_RX &&
2128 !__vlan_get_tag(skb, &vlanid)) {
2129 /* pop the vlan tag */
2130 ehdr = (struct ethhdr *)skb->data;
2131 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2132 skb_pull(skb, VLAN_HLEN);
2133 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2134 }
2135 }
2136
2137
2138 /**
2139 * stmmac_rx_refill - refill used skb preallocated buffers
2140 * @priv: driver private structure
2141 * Description : this is to reallocate the skb for the reception process
2142 * that is based on zero-copy.
2143 */
2144 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2145 {
2146 int bfsize = priv->dma_buf_sz;
2147 unsigned int entry = priv->dirty_rx;
2148 int dirty = stmmac_rx_dirty(priv);
2149
2150 while (dirty-- > 0) {
2151 struct dma_desc *p;
2152
2153 if (priv->extend_desc)
2154 p = (struct dma_desc *)(priv->dma_erx + entry);
2155 else
2156 p = priv->dma_rx + entry;
2157
2158 if (likely(priv->rx_skbuff[entry] == NULL)) {
2159 struct sk_buff *skb;
2160
2161 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2162
2163 if (unlikely(skb == NULL))
2164 break;
2165
2166 priv->rx_skbuff[entry] = skb;
2167 priv->rx_skbuff_dma[entry] =
2168 dma_map_single(priv->device, skb->data, bfsize,
2169 DMA_FROM_DEVICE);
2170 if (dma_mapping_error(priv->device,
2171 priv->rx_skbuff_dma[entry])) {
2172 dev_err(priv->device, "Rx dma map failed\n");
2173 dev_kfree_skb(skb);
2174 break;
2175 }
2176 p->des2 = priv->rx_skbuff_dma[entry];
2177
2178 priv->hw->mode->refill_desc3(priv, p);
2179
2180 if (netif_msg_rx_status(priv))
2181 pr_debug("\trefill entry #%d\n", entry);
2182 }
2183 wmb();
2184 priv->hw->desc->set_rx_owner(p);
2185 wmb();
2186
2187 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
2188 }
2189 priv->dirty_rx = entry;
2190 }
2191
2192 /**
2193 * stmmac_rx - manage the receive process
2194 * @priv: driver private structure
2195 * @limit: napi bugget.
2196 * Description : this the function called by the napi poll method.
2197 * It gets all the frames inside the ring.
2198 */
2199 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2200 {
2201 unsigned int entry = priv->cur_rx;
2202 unsigned int next_entry;
2203 unsigned int count = 0;
2204 int coe = priv->hw->rx_csum;
2205
2206 if (netif_msg_rx_status(priv)) {
2207 pr_debug("%s: descriptor ring:\n", __func__);
2208 if (priv->extend_desc)
2209 stmmac_display_ring((void *)priv->dma_erx,
2210 DMA_RX_SIZE, 1);
2211 else
2212 stmmac_display_ring((void *)priv->dma_rx,
2213 DMA_RX_SIZE, 0);
2214 }
2215 while (count < limit) {
2216 int status;
2217 struct dma_desc *p;
2218
2219 if (priv->extend_desc)
2220 p = (struct dma_desc *)(priv->dma_erx + entry);
2221 else
2222 p = priv->dma_rx + entry;
2223
2224 /* read the status of the incoming frame */
2225 status = priv->hw->desc->rx_status(&priv->dev->stats,
2226 &priv->xstats, p);
2227 /* check if managed by the DMA otherwise go ahead */
2228 if (unlikely(status & dma_own))
2229 break;
2230
2231 count++;
2232
2233 priv->cur_rx = STMMAC_GET_ENTRY(priv->cur_rx, DMA_RX_SIZE);
2234 next_entry = priv->cur_rx;
2235
2236 if (priv->extend_desc)
2237 prefetch(priv->dma_erx + next_entry);
2238 else
2239 prefetch(priv->dma_rx + next_entry);
2240
2241 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2242 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2243 &priv->xstats,
2244 priv->dma_erx +
2245 entry);
2246 if (unlikely(status == discard_frame)) {
2247 priv->dev->stats.rx_errors++;
2248 if (priv->hwts_rx_en && !priv->extend_desc) {
2249 /* DESC2 & DESC3 will be overwitten by device
2250 * with timestamp value, hence reinitialize
2251 * them in stmmac_rx_refill() function so that
2252 * device can reuse it.
2253 */
2254 priv->rx_skbuff[entry] = NULL;
2255 dma_unmap_single(priv->device,
2256 priv->rx_skbuff_dma[entry],
2257 priv->dma_buf_sz,
2258 DMA_FROM_DEVICE);
2259 }
2260 } else {
2261 struct sk_buff *skb;
2262 int frame_len;
2263
2264 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2265
2266 /* check if frame_len fits the preallocated memory */
2267 if (frame_len > priv->dma_buf_sz) {
2268 priv->dev->stats.rx_length_errors++;
2269 break;
2270 }
2271
2272 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2273 * Type frames (LLC/LLC-SNAP)
2274 */
2275 if (unlikely(status != llc_snap))
2276 frame_len -= ETH_FCS_LEN;
2277
2278 if (netif_msg_rx_status(priv)) {
2279 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2280 p, entry, p->des2);
2281 if (frame_len > ETH_FRAME_LEN)
2282 pr_debug("\tframe size %d, COE: %d\n",
2283 frame_len, status);
2284 }
2285 skb = priv->rx_skbuff[entry];
2286 if (unlikely(!skb)) {
2287 pr_err("%s: Inconsistent Rx descriptor chain\n",
2288 priv->dev->name);
2289 priv->dev->stats.rx_dropped++;
2290 break;
2291 }
2292 prefetch(skb->data - NET_IP_ALIGN);
2293 priv->rx_skbuff[entry] = NULL;
2294
2295 stmmac_get_rx_hwtstamp(priv, entry, skb);
2296
2297 skb_put(skb, frame_len);
2298 dma_unmap_single(priv->device,
2299 priv->rx_skbuff_dma[entry],
2300 priv->dma_buf_sz, DMA_FROM_DEVICE);
2301
2302 if (netif_msg_pktdata(priv)) {
2303 pr_debug("frame received (%dbytes)", frame_len);
2304 print_pkt(skb->data, frame_len);
2305 }
2306
2307 stmmac_rx_vlan(priv->dev, skb);
2308
2309 skb->protocol = eth_type_trans(skb, priv->dev);
2310
2311 if (unlikely(!coe))
2312 skb_checksum_none_assert(skb);
2313 else
2314 skb->ip_summed = CHECKSUM_UNNECESSARY;
2315
2316 napi_gro_receive(&priv->napi, skb);
2317
2318 priv->dev->stats.rx_packets++;
2319 priv->dev->stats.rx_bytes += frame_len;
2320 }
2321 entry = next_entry;
2322 }
2323
2324 stmmac_rx_refill(priv);
2325
2326 priv->xstats.rx_pkt_n += count;
2327
2328 return count;
2329 }
2330
2331 /**
2332 * stmmac_poll - stmmac poll method (NAPI)
2333 * @napi : pointer to the napi structure.
2334 * @budget : maximum number of packets that the current CPU can receive from
2335 * all interfaces.
2336 * Description :
2337 * To look at the incoming frames and clear the tx resources.
2338 */
2339 static int stmmac_poll(struct napi_struct *napi, int budget)
2340 {
2341 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2342 int work_done = 0;
2343
2344 priv->xstats.napi_poll++;
2345 stmmac_tx_clean(priv);
2346
2347 work_done = stmmac_rx(priv, budget);
2348 if (work_done < budget) {
2349 napi_complete(napi);
2350 stmmac_enable_dma_irq(priv);
2351 }
2352 return work_done;
2353 }
2354
2355 /**
2356 * stmmac_tx_timeout
2357 * @dev : Pointer to net device structure
2358 * Description: this function is called when a packet transmission fails to
2359 * complete within a reasonable time. The driver will mark the error in the
2360 * netdev structure and arrange for the device to be reset to a sane state
2361 * in order to transmit a new packet.
2362 */
2363 static void stmmac_tx_timeout(struct net_device *dev)
2364 {
2365 struct stmmac_priv *priv = netdev_priv(dev);
2366
2367 /* Clear Tx resources and restart transmitting again */
2368 stmmac_tx_err(priv);
2369 }
2370
2371 /**
2372 * stmmac_set_rx_mode - entry point for multicast addressing
2373 * @dev : pointer to the device structure
2374 * Description:
2375 * This function is a driver entry point which gets called by the kernel
2376 * whenever multicast addresses must be enabled/disabled.
2377 * Return value:
2378 * void.
2379 */
2380 static void stmmac_set_rx_mode(struct net_device *dev)
2381 {
2382 struct stmmac_priv *priv = netdev_priv(dev);
2383
2384 priv->hw->mac->set_filter(priv->hw, dev);
2385 }
2386
2387 /**
2388 * stmmac_change_mtu - entry point to change MTU size for the device.
2389 * @dev : device pointer.
2390 * @new_mtu : the new MTU size for the device.
2391 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2392 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2393 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2394 * Return value:
2395 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2396 * file on failure.
2397 */
2398 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2399 {
2400 struct stmmac_priv *priv = netdev_priv(dev);
2401 int max_mtu;
2402
2403 if (netif_running(dev)) {
2404 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2405 return -EBUSY;
2406 }
2407
2408 if (priv->plat->enh_desc)
2409 max_mtu = JUMBO_LEN;
2410 else
2411 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2412
2413 if (priv->plat->maxmtu < max_mtu)
2414 max_mtu = priv->plat->maxmtu;
2415
2416 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2417 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2418 return -EINVAL;
2419 }
2420
2421 dev->mtu = new_mtu;
2422 netdev_update_features(dev);
2423
2424 return 0;
2425 }
2426
2427 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2428 netdev_features_t features)
2429 {
2430 struct stmmac_priv *priv = netdev_priv(dev);
2431
2432 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2433 features &= ~NETIF_F_RXCSUM;
2434
2435 if (!priv->plat->tx_coe)
2436 features &= ~NETIF_F_CSUM_MASK;
2437
2438 /* Some GMAC devices have a bugged Jumbo frame support that
2439 * needs to have the Tx COE disabled for oversized frames
2440 * (due to limited buffer sizes). In this case we disable
2441 * the TX csum insertionin the TDES and not use SF.
2442 */
2443 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2444 features &= ~NETIF_F_CSUM_MASK;
2445
2446 return features;
2447 }
2448
2449 static int stmmac_set_features(struct net_device *netdev,
2450 netdev_features_t features)
2451 {
2452 struct stmmac_priv *priv = netdev_priv(netdev);
2453
2454 /* Keep the COE Type in case of csum is supporting */
2455 if (features & NETIF_F_RXCSUM)
2456 priv->hw->rx_csum = priv->plat->rx_coe;
2457 else
2458 priv->hw->rx_csum = 0;
2459 /* No check needed because rx_coe has been set before and it will be
2460 * fixed in case of issue.
2461 */
2462 priv->hw->mac->rx_ipc(priv->hw);
2463
2464 return 0;
2465 }
2466
2467 /**
2468 * stmmac_interrupt - main ISR
2469 * @irq: interrupt number.
2470 * @dev_id: to pass the net device pointer.
2471 * Description: this is the main driver interrupt service routine.
2472 * It can call:
2473 * o DMA service routine (to manage incoming frame reception and transmission
2474 * status)
2475 * o Core interrupts to manage: remote wake-up, management counter, LPI
2476 * interrupts.
2477 */
2478 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2479 {
2480 struct net_device *dev = (struct net_device *)dev_id;
2481 struct stmmac_priv *priv = netdev_priv(dev);
2482
2483 if (priv->irq_wake)
2484 pm_wakeup_event(priv->device, 0);
2485
2486 if (unlikely(!dev)) {
2487 pr_err("%s: invalid dev pointer\n", __func__);
2488 return IRQ_NONE;
2489 }
2490
2491 /* To handle GMAC own interrupts */
2492 if (priv->plat->has_gmac) {
2493 int status = priv->hw->mac->host_irq_status(priv->hw,
2494 &priv->xstats);
2495 if (unlikely(status)) {
2496 /* For LPI we need to save the tx status */
2497 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2498 priv->tx_path_in_lpi_mode = true;
2499 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2500 priv->tx_path_in_lpi_mode = false;
2501 }
2502 }
2503
2504 /* To handle DMA interrupts */
2505 stmmac_dma_interrupt(priv);
2506
2507 return IRQ_HANDLED;
2508 }
2509
2510 #ifdef CONFIG_NET_POLL_CONTROLLER
2511 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2512 * to allow network I/O with interrupts disabled.
2513 */
2514 static void stmmac_poll_controller(struct net_device *dev)
2515 {
2516 disable_irq(dev->irq);
2517 stmmac_interrupt(dev->irq, dev);
2518 enable_irq(dev->irq);
2519 }
2520 #endif
2521
2522 /**
2523 * stmmac_ioctl - Entry point for the Ioctl
2524 * @dev: Device pointer.
2525 * @rq: An IOCTL specefic structure, that can contain a pointer to
2526 * a proprietary structure used to pass information to the driver.
2527 * @cmd: IOCTL command
2528 * Description:
2529 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2530 */
2531 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2532 {
2533 struct stmmac_priv *priv = netdev_priv(dev);
2534 int ret = -EOPNOTSUPP;
2535
2536 if (!netif_running(dev))
2537 return -EINVAL;
2538
2539 switch (cmd) {
2540 case SIOCGMIIPHY:
2541 case SIOCGMIIREG:
2542 case SIOCSMIIREG:
2543 if (!priv->phydev)
2544 return -EINVAL;
2545 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2546 break;
2547 case SIOCSHWTSTAMP:
2548 ret = stmmac_hwtstamp_ioctl(dev, rq);
2549 break;
2550 default:
2551 break;
2552 }
2553
2554 return ret;
2555 }
2556
2557 #ifdef CONFIG_DEBUG_FS
2558 static struct dentry *stmmac_fs_dir;
2559
2560 static void sysfs_display_ring(void *head, int size, int extend_desc,
2561 struct seq_file *seq)
2562 {
2563 int i;
2564 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2565 struct dma_desc *p = (struct dma_desc *)head;
2566
2567 for (i = 0; i < size; i++) {
2568 u64 x;
2569 if (extend_desc) {
2570 x = *(u64 *) ep;
2571 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2572 i, (unsigned int)virt_to_phys(ep),
2573 (unsigned int)x, (unsigned int)(x >> 32),
2574 ep->basic.des2, ep->basic.des3);
2575 ep++;
2576 } else {
2577 x = *(u64 *) p;
2578 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2579 i, (unsigned int)virt_to_phys(ep),
2580 (unsigned int)x, (unsigned int)(x >> 32),
2581 p->des2, p->des3);
2582 p++;
2583 }
2584 seq_printf(seq, "\n");
2585 }
2586 }
2587
2588 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2589 {
2590 struct net_device *dev = seq->private;
2591 struct stmmac_priv *priv = netdev_priv(dev);
2592
2593 if (priv->extend_desc) {
2594 seq_printf(seq, "Extended RX descriptor ring:\n");
2595 sysfs_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1, seq);
2596 seq_printf(seq, "Extended TX descriptor ring:\n");
2597 sysfs_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1, seq);
2598 } else {
2599 seq_printf(seq, "RX descriptor ring:\n");
2600 sysfs_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0, seq);
2601 seq_printf(seq, "TX descriptor ring:\n");
2602 sysfs_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0, seq);
2603 }
2604
2605 return 0;
2606 }
2607
2608 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2609 {
2610 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2611 }
2612
2613 static const struct file_operations stmmac_rings_status_fops = {
2614 .owner = THIS_MODULE,
2615 .open = stmmac_sysfs_ring_open,
2616 .read = seq_read,
2617 .llseek = seq_lseek,
2618 .release = single_release,
2619 };
2620
2621 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2622 {
2623 struct net_device *dev = seq->private;
2624 struct stmmac_priv *priv = netdev_priv(dev);
2625
2626 if (!priv->hw_cap_support) {
2627 seq_printf(seq, "DMA HW features not supported\n");
2628 return 0;
2629 }
2630
2631 seq_printf(seq, "==============================\n");
2632 seq_printf(seq, "\tDMA HW features\n");
2633 seq_printf(seq, "==============================\n");
2634
2635 seq_printf(seq, "\t10/100 Mbps %s\n",
2636 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2637 seq_printf(seq, "\t1000 Mbps %s\n",
2638 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2639 seq_printf(seq, "\tHalf duple %s\n",
2640 (priv->dma_cap.half_duplex) ? "Y" : "N");
2641 seq_printf(seq, "\tHash Filter: %s\n",
2642 (priv->dma_cap.hash_filter) ? "Y" : "N");
2643 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2644 (priv->dma_cap.multi_addr) ? "Y" : "N");
2645 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2646 (priv->dma_cap.pcs) ? "Y" : "N");
2647 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2648 (priv->dma_cap.sma_mdio) ? "Y" : "N");
2649 seq_printf(seq, "\tPMT Remote wake up: %s\n",
2650 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2651 seq_printf(seq, "\tPMT Magic Frame: %s\n",
2652 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2653 seq_printf(seq, "\tRMON module: %s\n",
2654 (priv->dma_cap.rmon) ? "Y" : "N");
2655 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2656 (priv->dma_cap.time_stamp) ? "Y" : "N");
2657 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2658 (priv->dma_cap.atime_stamp) ? "Y" : "N");
2659 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2660 (priv->dma_cap.eee) ? "Y" : "N");
2661 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2662 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2663 (priv->dma_cap.tx_coe) ? "Y" : "N");
2664 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2665 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2666 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2667 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2668 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2669 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2670 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2671 priv->dma_cap.number_rx_channel);
2672 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2673 priv->dma_cap.number_tx_channel);
2674 seq_printf(seq, "\tEnhanced descriptors: %s\n",
2675 (priv->dma_cap.enh_desc) ? "Y" : "N");
2676
2677 return 0;
2678 }
2679
2680 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2681 {
2682 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2683 }
2684
2685 static const struct file_operations stmmac_dma_cap_fops = {
2686 .owner = THIS_MODULE,
2687 .open = stmmac_sysfs_dma_cap_open,
2688 .read = seq_read,
2689 .llseek = seq_lseek,
2690 .release = single_release,
2691 };
2692
2693 static int stmmac_init_fs(struct net_device *dev)
2694 {
2695 struct stmmac_priv *priv = netdev_priv(dev);
2696
2697 /* Create per netdev entries */
2698 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
2699
2700 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
2701 pr_err("ERROR %s/%s, debugfs create directory failed\n",
2702 STMMAC_RESOURCE_NAME, dev->name);
2703
2704 return -ENOMEM;
2705 }
2706
2707 /* Entry to report DMA RX/TX rings */
2708 priv->dbgfs_rings_status =
2709 debugfs_create_file("descriptors_status", S_IRUGO,
2710 priv->dbgfs_dir, dev,
2711 &stmmac_rings_status_fops);
2712
2713 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
2714 pr_info("ERROR creating stmmac ring debugfs file\n");
2715 debugfs_remove_recursive(priv->dbgfs_dir);
2716
2717 return -ENOMEM;
2718 }
2719
2720 /* Entry to report the DMA HW features */
2721 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
2722 priv->dbgfs_dir,
2723 dev, &stmmac_dma_cap_fops);
2724
2725 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
2726 pr_info("ERROR creating stmmac MMC debugfs file\n");
2727 debugfs_remove_recursive(priv->dbgfs_dir);
2728
2729 return -ENOMEM;
2730 }
2731
2732 return 0;
2733 }
2734
2735 static void stmmac_exit_fs(struct net_device *dev)
2736 {
2737 struct stmmac_priv *priv = netdev_priv(dev);
2738
2739 debugfs_remove_recursive(priv->dbgfs_dir);
2740 }
2741 #endif /* CONFIG_DEBUG_FS */
2742
2743 static const struct net_device_ops stmmac_netdev_ops = {
2744 .ndo_open = stmmac_open,
2745 .ndo_start_xmit = stmmac_xmit,
2746 .ndo_stop = stmmac_release,
2747 .ndo_change_mtu = stmmac_change_mtu,
2748 .ndo_fix_features = stmmac_fix_features,
2749 .ndo_set_features = stmmac_set_features,
2750 .ndo_set_rx_mode = stmmac_set_rx_mode,
2751 .ndo_tx_timeout = stmmac_tx_timeout,
2752 .ndo_do_ioctl = stmmac_ioctl,
2753 #ifdef CONFIG_NET_POLL_CONTROLLER
2754 .ndo_poll_controller = stmmac_poll_controller,
2755 #endif
2756 .ndo_set_mac_address = eth_mac_addr,
2757 };
2758
2759 /**
2760 * stmmac_hw_init - Init the MAC device
2761 * @priv: driver private structure
2762 * Description: this function is to configure the MAC device according to
2763 * some platform parameters or the HW capability register. It prepares the
2764 * driver to use either ring or chain modes and to setup either enhanced or
2765 * normal descriptors.
2766 */
2767 static int stmmac_hw_init(struct stmmac_priv *priv)
2768 {
2769 struct mac_device_info *mac;
2770
2771 /* Identify the MAC HW device */
2772 if (priv->plat->has_gmac) {
2773 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2774 mac = dwmac1000_setup(priv->ioaddr,
2775 priv->plat->multicast_filter_bins,
2776 priv->plat->unicast_filter_entries);
2777 } else {
2778 mac = dwmac100_setup(priv->ioaddr);
2779 }
2780 if (!mac)
2781 return -ENOMEM;
2782
2783 priv->hw = mac;
2784
2785 /* Get and dump the chip ID */
2786 priv->synopsys_id = stmmac_get_synopsys_id(priv);
2787
2788 /* To use the chained or ring mode */
2789 if (chain_mode) {
2790 priv->hw->mode = &chain_mode_ops;
2791 pr_info(" Chain mode enabled\n");
2792 priv->mode = STMMAC_CHAIN_MODE;
2793 } else {
2794 priv->hw->mode = &ring_mode_ops;
2795 pr_info(" Ring mode enabled\n");
2796 priv->mode = STMMAC_RING_MODE;
2797 }
2798
2799 /* Get the HW capability (new GMAC newer than 3.50a) */
2800 priv->hw_cap_support = stmmac_get_hw_features(priv);
2801 if (priv->hw_cap_support) {
2802 pr_info(" DMA HW capability register supported");
2803
2804 /* We can override some gmac/dma configuration fields: e.g.
2805 * enh_desc, tx_coe (e.g. that are passed through the
2806 * platform) with the values from the HW capability
2807 * register (if supported).
2808 */
2809 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2810 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2811
2812 /* TXCOE doesn't work in thresh DMA mode */
2813 if (priv->plat->force_thresh_dma_mode)
2814 priv->plat->tx_coe = 0;
2815 else
2816 priv->plat->tx_coe = priv->dma_cap.tx_coe;
2817
2818 if (priv->dma_cap.rx_coe_type2)
2819 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2820 else if (priv->dma_cap.rx_coe_type1)
2821 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2822
2823 } else
2824 pr_info(" No HW DMA feature register supported");
2825
2826 /* To use alternate (extended) or normal descriptor structures */
2827 stmmac_selec_desc_mode(priv);
2828
2829 if (priv->plat->rx_coe) {
2830 priv->hw->rx_csum = priv->plat->rx_coe;
2831 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2832 priv->plat->rx_coe);
2833 }
2834 if (priv->plat->tx_coe)
2835 pr_info(" TX Checksum insertion supported\n");
2836
2837 if (priv->plat->pmt) {
2838 pr_info(" Wake-Up On Lan supported\n");
2839 device_set_wakeup_capable(priv->device, 1);
2840 }
2841
2842 return 0;
2843 }
2844
2845 /**
2846 * stmmac_dvr_probe
2847 * @device: device pointer
2848 * @plat_dat: platform data pointer
2849 * @res: stmmac resource pointer
2850 * Description: this is the main probe function used to
2851 * call the alloc_etherdev, allocate the priv structure.
2852 * Return:
2853 * returns 0 on success, otherwise errno.
2854 */
2855 int stmmac_dvr_probe(struct device *device,
2856 struct plat_stmmacenet_data *plat_dat,
2857 struct stmmac_resources *res)
2858 {
2859 int ret = 0;
2860 struct net_device *ndev = NULL;
2861 struct stmmac_priv *priv;
2862
2863 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2864 if (!ndev)
2865 return -ENOMEM;
2866
2867 SET_NETDEV_DEV(ndev, device);
2868
2869 priv = netdev_priv(ndev);
2870 priv->device = device;
2871 priv->dev = ndev;
2872
2873 stmmac_set_ethtool_ops(ndev);
2874 priv->pause = pause;
2875 priv->plat = plat_dat;
2876 priv->ioaddr = res->addr;
2877 priv->dev->base_addr = (unsigned long)res->addr;
2878
2879 priv->dev->irq = res->irq;
2880 priv->wol_irq = res->wol_irq;
2881 priv->lpi_irq = res->lpi_irq;
2882
2883 if (res->mac)
2884 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
2885
2886 dev_set_drvdata(device, priv->dev);
2887
2888 /* Verify driver arguments */
2889 stmmac_verify_args();
2890
2891 /* Override with kernel parameters if supplied XXX CRS XXX
2892 * this needs to have multiple instances
2893 */
2894 if ((phyaddr >= 0) && (phyaddr <= 31))
2895 priv->plat->phy_addr = phyaddr;
2896
2897 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2898 if (IS_ERR(priv->stmmac_clk)) {
2899 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2900 __func__);
2901 /* If failed to obtain stmmac_clk and specific clk_csr value
2902 * is NOT passed from the platform, probe fail.
2903 */
2904 if (!priv->plat->clk_csr) {
2905 ret = PTR_ERR(priv->stmmac_clk);
2906 goto error_clk_get;
2907 } else {
2908 priv->stmmac_clk = NULL;
2909 }
2910 }
2911 clk_prepare_enable(priv->stmmac_clk);
2912
2913 priv->pclk = devm_clk_get(priv->device, "pclk");
2914 if (IS_ERR(priv->pclk)) {
2915 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
2916 ret = -EPROBE_DEFER;
2917 goto error_pclk_get;
2918 }
2919 priv->pclk = NULL;
2920 }
2921 clk_prepare_enable(priv->pclk);
2922
2923 priv->stmmac_rst = devm_reset_control_get(priv->device,
2924 STMMAC_RESOURCE_NAME);
2925 if (IS_ERR(priv->stmmac_rst)) {
2926 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2927 ret = -EPROBE_DEFER;
2928 goto error_hw_init;
2929 }
2930 dev_info(priv->device, "no reset control found\n");
2931 priv->stmmac_rst = NULL;
2932 }
2933 if (priv->stmmac_rst)
2934 reset_control_deassert(priv->stmmac_rst);
2935
2936 /* Init MAC and get the capabilities */
2937 ret = stmmac_hw_init(priv);
2938 if (ret)
2939 goto error_hw_init;
2940
2941 ndev->netdev_ops = &stmmac_netdev_ops;
2942
2943 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2944 NETIF_F_RXCSUM;
2945 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2946 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2947 #ifdef STMMAC_VLAN_TAG_USED
2948 /* Both mac100 and gmac support receive VLAN tag detection */
2949 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2950 #endif
2951 priv->msg_enable = netif_msg_init(debug, default_msg_level);
2952
2953 if (flow_ctrl)
2954 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
2955
2956 /* Rx Watchdog is available in the COREs newer than the 3.40.
2957 * In some case, for example on bugged HW this feature
2958 * has to be disable and this can be done by passing the
2959 * riwt_off field from the platform.
2960 */
2961 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2962 priv->use_riwt = 1;
2963 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2964 }
2965
2966 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2967
2968 spin_lock_init(&priv->lock);
2969 spin_lock_init(&priv->tx_lock);
2970
2971 ret = register_netdev(ndev);
2972 if (ret) {
2973 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2974 goto error_netdev_register;
2975 }
2976
2977 /* If a specific clk_csr value is passed from the platform
2978 * this means that the CSR Clock Range selection cannot be
2979 * changed at run-time and it is fixed. Viceversa the driver'll try to
2980 * set the MDC clock dynamically according to the csr actual
2981 * clock input.
2982 */
2983 if (!priv->plat->clk_csr)
2984 stmmac_clk_csr_set(priv);
2985 else
2986 priv->clk_csr = priv->plat->clk_csr;
2987
2988 stmmac_check_pcs_mode(priv);
2989
2990 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2991 priv->pcs != STMMAC_PCS_RTBI) {
2992 /* MDIO bus Registration */
2993 ret = stmmac_mdio_register(ndev);
2994 if (ret < 0) {
2995 pr_debug("%s: MDIO bus (id: %d) registration failed",
2996 __func__, priv->plat->bus_id);
2997 goto error_mdio_register;
2998 }
2999 }
3000
3001 return 0;
3002
3003 error_mdio_register:
3004 unregister_netdev(ndev);
3005 error_netdev_register:
3006 netif_napi_del(&priv->napi);
3007 error_hw_init:
3008 clk_disable_unprepare(priv->pclk);
3009 error_pclk_get:
3010 clk_disable_unprepare(priv->stmmac_clk);
3011 error_clk_get:
3012 free_netdev(ndev);
3013
3014 return ret;
3015 }
3016 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
3017
3018 /**
3019 * stmmac_dvr_remove
3020 * @ndev: net device pointer
3021 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
3022 * changes the link status, releases the DMA descriptor rings.
3023 */
3024 int stmmac_dvr_remove(struct net_device *ndev)
3025 {
3026 struct stmmac_priv *priv = netdev_priv(ndev);
3027
3028 pr_info("%s:\n\tremoving driver", __func__);
3029
3030 priv->hw->dma->stop_rx(priv->ioaddr);
3031 priv->hw->dma->stop_tx(priv->ioaddr);
3032
3033 stmmac_set_mac(priv->ioaddr, false);
3034 netif_carrier_off(ndev);
3035 unregister_netdev(ndev);
3036 if (priv->stmmac_rst)
3037 reset_control_assert(priv->stmmac_rst);
3038 clk_disable_unprepare(priv->pclk);
3039 clk_disable_unprepare(priv->stmmac_clk);
3040 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3041 priv->pcs != STMMAC_PCS_RTBI)
3042 stmmac_mdio_unregister(ndev);
3043 free_netdev(ndev);
3044
3045 return 0;
3046 }
3047 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3048
3049 /**
3050 * stmmac_suspend - suspend callback
3051 * @ndev: net device pointer
3052 * Description: this is the function to suspend the device and it is called
3053 * by the platform driver to stop the network queue, release the resources,
3054 * program the PMT register (for WoL), clean and release driver resources.
3055 */
3056 int stmmac_suspend(struct net_device *ndev)
3057 {
3058 struct stmmac_priv *priv = netdev_priv(ndev);
3059 unsigned long flags;
3060
3061 if (!ndev || !netif_running(ndev))
3062 return 0;
3063
3064 if (priv->phydev)
3065 phy_stop(priv->phydev);
3066
3067 spin_lock_irqsave(&priv->lock, flags);
3068
3069 netif_device_detach(ndev);
3070 netif_stop_queue(ndev);
3071
3072 napi_disable(&priv->napi);
3073
3074 /* Stop TX/RX DMA */
3075 priv->hw->dma->stop_tx(priv->ioaddr);
3076 priv->hw->dma->stop_rx(priv->ioaddr);
3077
3078 /* Enable Power down mode by programming the PMT regs */
3079 if (device_may_wakeup(priv->device)) {
3080 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3081 priv->irq_wake = 1;
3082 } else {
3083 stmmac_set_mac(priv->ioaddr, false);
3084 pinctrl_pm_select_sleep_state(priv->device);
3085 /* Disable clock in case of PWM is off */
3086 clk_disable(priv->pclk);
3087 clk_disable(priv->stmmac_clk);
3088 }
3089 spin_unlock_irqrestore(&priv->lock, flags);
3090
3091 priv->oldlink = 0;
3092 priv->speed = 0;
3093 priv->oldduplex = -1;
3094 return 0;
3095 }
3096 EXPORT_SYMBOL_GPL(stmmac_suspend);
3097
3098 /**
3099 * stmmac_resume - resume callback
3100 * @ndev: net device pointer
3101 * Description: when resume this function is invoked to setup the DMA and CORE
3102 * in a usable state.
3103 */
3104 int stmmac_resume(struct net_device *ndev)
3105 {
3106 struct stmmac_priv *priv = netdev_priv(ndev);
3107 unsigned long flags;
3108
3109 if (!netif_running(ndev))
3110 return 0;
3111
3112 spin_lock_irqsave(&priv->lock, flags);
3113
3114 /* Power Down bit, into the PM register, is cleared
3115 * automatically as soon as a magic packet or a Wake-up frame
3116 * is received. Anyway, it's better to manually clear
3117 * this bit because it can generate problems while resuming
3118 * from another devices (e.g. serial console).
3119 */
3120 if (device_may_wakeup(priv->device)) {
3121 priv->hw->mac->pmt(priv->hw, 0);
3122 priv->irq_wake = 0;
3123 } else {
3124 pinctrl_pm_select_default_state(priv->device);
3125 /* enable the clk prevously disabled */
3126 clk_enable(priv->stmmac_clk);
3127 clk_enable(priv->pclk);
3128 /* reset the phy so that it's ready */
3129 if (priv->mii)
3130 stmmac_mdio_reset(priv->mii);
3131 }
3132
3133 netif_device_attach(ndev);
3134
3135 priv->cur_rx = 0;
3136 priv->dirty_rx = 0;
3137 priv->dirty_tx = 0;
3138 priv->cur_tx = 0;
3139 stmmac_clear_descriptors(priv);
3140
3141 stmmac_hw_setup(ndev, false);
3142 stmmac_init_tx_coalesce(priv);
3143 stmmac_set_rx_mode(ndev);
3144
3145 napi_enable(&priv->napi);
3146
3147 netif_start_queue(ndev);
3148
3149 spin_unlock_irqrestore(&priv->lock, flags);
3150
3151 if (priv->phydev)
3152 phy_start(priv->phydev);
3153
3154 return 0;
3155 }
3156 EXPORT_SYMBOL_GPL(stmmac_resume);
3157
3158 #ifndef MODULE
3159 static int __init stmmac_cmdline_opt(char *str)
3160 {
3161 char *opt;
3162
3163 if (!str || !*str)
3164 return -EINVAL;
3165 while ((opt = strsep(&str, ",")) != NULL) {
3166 if (!strncmp(opt, "debug:", 6)) {
3167 if (kstrtoint(opt + 6, 0, &debug))
3168 goto err;
3169 } else if (!strncmp(opt, "phyaddr:", 8)) {
3170 if (kstrtoint(opt + 8, 0, &phyaddr))
3171 goto err;
3172 } else if (!strncmp(opt, "buf_sz:", 7)) {
3173 if (kstrtoint(opt + 7, 0, &buf_sz))
3174 goto err;
3175 } else if (!strncmp(opt, "tc:", 3)) {
3176 if (kstrtoint(opt + 3, 0, &tc))
3177 goto err;
3178 } else if (!strncmp(opt, "watchdog:", 9)) {
3179 if (kstrtoint(opt + 9, 0, &watchdog))
3180 goto err;
3181 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3182 if (kstrtoint(opt + 10, 0, &flow_ctrl))
3183 goto err;
3184 } else if (!strncmp(opt, "pause:", 6)) {
3185 if (kstrtoint(opt + 6, 0, &pause))
3186 goto err;
3187 } else if (!strncmp(opt, "eee_timer:", 10)) {
3188 if (kstrtoint(opt + 10, 0, &eee_timer))
3189 goto err;
3190 } else if (!strncmp(opt, "chain_mode:", 11)) {
3191 if (kstrtoint(opt + 11, 0, &chain_mode))
3192 goto err;
3193 }
3194 }
3195 return 0;
3196
3197 err:
3198 pr_err("%s: ERROR broken module parameter conversion", __func__);
3199 return -EINVAL;
3200 }
3201
3202 __setup("stmmaceth=", stmmac_cmdline_opt);
3203 #endif /* MODULE */
3204
3205 static int __init stmmac_init(void)
3206 {
3207 #ifdef CONFIG_DEBUG_FS
3208 /* Create debugfs main directory if it doesn't exist yet */
3209 if (!stmmac_fs_dir) {
3210 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3211
3212 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3213 pr_err("ERROR %s, debugfs create directory failed\n",
3214 STMMAC_RESOURCE_NAME);
3215
3216 return -ENOMEM;
3217 }
3218 }
3219 #endif
3220
3221 return 0;
3222 }
3223
3224 static void __exit stmmac_exit(void)
3225 {
3226 #ifdef CONFIG_DEBUG_FS
3227 debugfs_remove_recursive(stmmac_fs_dir);
3228 #endif
3229 }
3230
3231 module_init(stmmac_init)
3232 module_exit(stmmac_exit)
3233
3234 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3235 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3236 MODULE_LICENSE("GPL");
This page took 0.151413 seconds and 5 git commands to generate.