clk: mxs: imx28: decrease the frequency of ref_io1 for SSP2 and SSP3
[deliverable/linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/kernel.h>
32 #include <linux/interrupt.h>
33 #include <linux/ip.h>
34 #include <linux/tcp.h>
35 #include <linux/skbuff.h>
36 #include <linux/ethtool.h>
37 #include <linux/if_ether.h>
38 #include <linux/crc32.h>
39 #include <linux/mii.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/slab.h>
44 #include <linux/prefetch.h>
45 #ifdef CONFIG_STMMAC_DEBUG_FS
46 #include <linux/debugfs.h>
47 #include <linux/seq_file.h>
48 #endif
49 #include "stmmac.h"
50
51 #undef STMMAC_DEBUG
52 /*#define STMMAC_DEBUG*/
53 #ifdef STMMAC_DEBUG
54 #define DBG(nlevel, klevel, fmt, args...) \
55 ((void)(netif_msg_##nlevel(priv) && \
56 printk(KERN_##klevel fmt, ## args)))
57 #else
58 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
59 #endif
60
61 #undef STMMAC_RX_DEBUG
62 /*#define STMMAC_RX_DEBUG*/
63 #ifdef STMMAC_RX_DEBUG
64 #define RX_DBG(fmt, args...) printk(fmt, ## args)
65 #else
66 #define RX_DBG(fmt, args...) do { } while (0)
67 #endif
68
69 #undef STMMAC_XMIT_DEBUG
70 /*#define STMMAC_XMIT_DEBUG*/
71 #ifdef STMMAC_TX_DEBUG
72 #define TX_DBG(fmt, args...) printk(fmt, ## args)
73 #else
74 #define TX_DBG(fmt, args...) do { } while (0)
75 #endif
76
77 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
78 #define JUMBO_LEN 9000
79
80 /* Module parameters */
81 #define TX_TIMEO 5000 /* default 5 seconds */
82 static int watchdog = TX_TIMEO;
83 module_param(watchdog, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
85
86 static int debug = -1; /* -1: default, 0: no output, 16: all */
87 module_param(debug, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
89
90 int phyaddr = -1;
91 module_param(phyaddr, int, S_IRUGO);
92 MODULE_PARM_DESC(phyaddr, "Physical device address");
93
94 #define DMA_TX_SIZE 256
95 static int dma_txsize = DMA_TX_SIZE;
96 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
97 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
98
99 #define DMA_RX_SIZE 256
100 static int dma_rxsize = DMA_RX_SIZE;
101 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
102 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
103
104 static int flow_ctrl = FLOW_OFF;
105 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
107
108 static int pause = PAUSE_TIME;
109 module_param(pause, int, S_IRUGO | S_IWUSR);
110 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
111
112 #define TC_DEFAULT 64
113 static int tc = TC_DEFAULT;
114 module_param(tc, int, S_IRUGO | S_IWUSR);
115 MODULE_PARM_DESC(tc, "DMA threshold control value");
116
117 /* Pay attention to tune this parameter; take care of both
118 * hardware capability and network stabitily/performance impact.
119 * Many tests showed that ~4ms latency seems to be good enough. */
120 #ifdef CONFIG_STMMAC_TIMER
121 #define DEFAULT_PERIODIC_RATE 256
122 static int tmrate = DEFAULT_PERIODIC_RATE;
123 module_param(tmrate, int, S_IRUGO | S_IWUSR);
124 MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
125 #endif
126
127 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
128 static int buf_sz = DMA_BUFFER_SIZE;
129 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
130 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
131
132 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
133 NETIF_MSG_LINK | NETIF_MSG_IFUP |
134 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
135
136 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
137
138 #ifdef CONFIG_STMMAC_DEBUG_FS
139 static int stmmac_init_fs(struct net_device *dev);
140 static void stmmac_exit_fs(void);
141 #endif
142
143 /**
144 * stmmac_verify_args - verify the driver parameters.
145 * Description: it verifies if some wrong parameter is passed to the driver.
146 * Note that wrong parameters are replaced with the default values.
147 */
148 static void stmmac_verify_args(void)
149 {
150 if (unlikely(watchdog < 0))
151 watchdog = TX_TIMEO;
152 if (unlikely(dma_rxsize < 0))
153 dma_rxsize = DMA_RX_SIZE;
154 if (unlikely(dma_txsize < 0))
155 dma_txsize = DMA_TX_SIZE;
156 if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
157 buf_sz = DMA_BUFFER_SIZE;
158 if (unlikely(flow_ctrl > 1))
159 flow_ctrl = FLOW_AUTO;
160 else if (likely(flow_ctrl < 0))
161 flow_ctrl = FLOW_OFF;
162 if (unlikely((pause < 0) || (pause > 0xffff)))
163 pause = PAUSE_TIME;
164 }
165
166 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
167 {
168 #ifdef CONFIG_HAVE_CLK
169 u32 clk_rate;
170
171 if (IS_ERR(priv->stmmac_clk))
172 return;
173
174 clk_rate = clk_get_rate(priv->stmmac_clk);
175
176 /* Platform provided default clk_csr would be assumed valid
177 * for all other cases except for the below mentioned ones. */
178 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
179 if (clk_rate < CSR_F_35M)
180 priv->clk_csr = STMMAC_CSR_20_35M;
181 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
182 priv->clk_csr = STMMAC_CSR_35_60M;
183 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
184 priv->clk_csr = STMMAC_CSR_60_100M;
185 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
186 priv->clk_csr = STMMAC_CSR_100_150M;
187 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
188 priv->clk_csr = STMMAC_CSR_150_250M;
189 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
190 priv->clk_csr = STMMAC_CSR_250_300M;
191 } /* For values higher than the IEEE 802.3 specified frequency
192 * we can not estimate the proper divider as it is not known
193 * the frequency of clk_csr_i. So we do not change the default
194 * divider. */
195 #endif
196 }
197
198 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
199 static void print_pkt(unsigned char *buf, int len)
200 {
201 int j;
202 pr_info("len = %d byte, buf addr: 0x%p", len, buf);
203 for (j = 0; j < len; j++) {
204 if ((j % 16) == 0)
205 pr_info("\n %03x:", j);
206 pr_info(" %02x", buf[j]);
207 }
208 pr_info("\n");
209 }
210 #endif
211
212 /* minimum number of free TX descriptors required to wake up TX process */
213 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
214
215 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
216 {
217 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
218 }
219
220 /* On some ST platforms, some HW system configuraton registers have to be
221 * set according to the link speed negotiated.
222 */
223 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
224 {
225 struct phy_device *phydev = priv->phydev;
226
227 if (likely(priv->plat->fix_mac_speed))
228 priv->plat->fix_mac_speed(priv->plat->bsp_priv,
229 phydev->speed);
230 }
231
232 /**
233 * stmmac_adjust_link
234 * @dev: net device structure
235 * Description: it adjusts the link parameters.
236 */
237 static void stmmac_adjust_link(struct net_device *dev)
238 {
239 struct stmmac_priv *priv = netdev_priv(dev);
240 struct phy_device *phydev = priv->phydev;
241 unsigned long flags;
242 int new_state = 0;
243 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
244
245 if (phydev == NULL)
246 return;
247
248 DBG(probe, DEBUG, "stmmac_adjust_link: called. address %d link %d\n",
249 phydev->addr, phydev->link);
250
251 spin_lock_irqsave(&priv->lock, flags);
252 if (phydev->link) {
253 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
254
255 /* Now we make sure that we can be in full duplex mode.
256 * If not, we operate in half-duplex mode. */
257 if (phydev->duplex != priv->oldduplex) {
258 new_state = 1;
259 if (!(phydev->duplex))
260 ctrl &= ~priv->hw->link.duplex;
261 else
262 ctrl |= priv->hw->link.duplex;
263 priv->oldduplex = phydev->duplex;
264 }
265 /* Flow Control operation */
266 if (phydev->pause)
267 priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
268 fc, pause_time);
269
270 if (phydev->speed != priv->speed) {
271 new_state = 1;
272 switch (phydev->speed) {
273 case 1000:
274 if (likely(priv->plat->has_gmac))
275 ctrl &= ~priv->hw->link.port;
276 stmmac_hw_fix_mac_speed(priv);
277 break;
278 case 100:
279 case 10:
280 if (priv->plat->has_gmac) {
281 ctrl |= priv->hw->link.port;
282 if (phydev->speed == SPEED_100) {
283 ctrl |= priv->hw->link.speed;
284 } else {
285 ctrl &= ~(priv->hw->link.speed);
286 }
287 } else {
288 ctrl &= ~priv->hw->link.port;
289 }
290 stmmac_hw_fix_mac_speed(priv);
291 break;
292 default:
293 if (netif_msg_link(priv))
294 pr_warning("%s: Speed (%d) is not 10"
295 " or 100!\n", dev->name, phydev->speed);
296 break;
297 }
298
299 priv->speed = phydev->speed;
300 }
301
302 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
303
304 if (!priv->oldlink) {
305 new_state = 1;
306 priv->oldlink = 1;
307 }
308 } else if (priv->oldlink) {
309 new_state = 1;
310 priv->oldlink = 0;
311 priv->speed = 0;
312 priv->oldduplex = -1;
313 }
314
315 if (new_state && netif_msg_link(priv))
316 phy_print_status(phydev);
317
318 spin_unlock_irqrestore(&priv->lock, flags);
319
320 DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
321 }
322
323 /**
324 * stmmac_init_phy - PHY initialization
325 * @dev: net device structure
326 * Description: it initializes the driver's PHY state, and attaches the PHY
327 * to the mac driver.
328 * Return value:
329 * 0 on success
330 */
331 static int stmmac_init_phy(struct net_device *dev)
332 {
333 struct stmmac_priv *priv = netdev_priv(dev);
334 struct phy_device *phydev;
335 char phy_id[MII_BUS_ID_SIZE + 3];
336 char bus_id[MII_BUS_ID_SIZE];
337 int interface = priv->plat->interface;
338 priv->oldlink = 0;
339 priv->speed = 0;
340 priv->oldduplex = -1;
341
342 if (priv->plat->phy_bus_name)
343 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
344 priv->plat->phy_bus_name, priv->plat->bus_id);
345 else
346 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
347 priv->plat->bus_id);
348
349 snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
350 priv->plat->phy_addr);
351 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id);
352
353 phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0, interface);
354
355 if (IS_ERR(phydev)) {
356 pr_err("%s: Could not attach to PHY\n", dev->name);
357 return PTR_ERR(phydev);
358 }
359
360 /* Stop Advertising 1000BASE Capability if interface is not GMII */
361 if ((interface == PHY_INTERFACE_MODE_MII) ||
362 (interface == PHY_INTERFACE_MODE_RMII))
363 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
364 SUPPORTED_1000baseT_Full);
365
366 /*
367 * Broken HW is sometimes missing the pull-up resistor on the
368 * MDIO line, which results in reads to non-existent devices returning
369 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
370 * device as well.
371 * Note: phydev->phy_id is the result of reading the UID PHY registers.
372 */
373 if (phydev->phy_id == 0) {
374 phy_disconnect(phydev);
375 return -ENODEV;
376 }
377 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
378 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
379
380 priv->phydev = phydev;
381
382 return 0;
383 }
384
385 /**
386 * display_ring
387 * @p: pointer to the ring.
388 * @size: size of the ring.
389 * Description: display all the descriptors within the ring.
390 */
391 static void display_ring(struct dma_desc *p, int size)
392 {
393 struct tmp_s {
394 u64 a;
395 unsigned int b;
396 unsigned int c;
397 };
398 int i;
399 for (i = 0; i < size; i++) {
400 struct tmp_s *x = (struct tmp_s *)(p + i);
401 pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
402 i, (unsigned int)virt_to_phys(&p[i]),
403 (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
404 x->b, x->c);
405 pr_info("\n");
406 }
407 }
408
409 static int stmmac_set_bfsize(int mtu, int bufsize)
410 {
411 int ret = bufsize;
412
413 if (mtu >= BUF_SIZE_4KiB)
414 ret = BUF_SIZE_8KiB;
415 else if (mtu >= BUF_SIZE_2KiB)
416 ret = BUF_SIZE_4KiB;
417 else if (mtu >= DMA_BUFFER_SIZE)
418 ret = BUF_SIZE_2KiB;
419 else
420 ret = DMA_BUFFER_SIZE;
421
422 return ret;
423 }
424
425 /**
426 * init_dma_desc_rings - init the RX/TX descriptor rings
427 * @dev: net device structure
428 * Description: this function initializes the DMA RX/TX descriptors
429 * and allocates the socket buffers. It suppors the chained and ring
430 * modes.
431 */
432 static void init_dma_desc_rings(struct net_device *dev)
433 {
434 int i;
435 struct stmmac_priv *priv = netdev_priv(dev);
436 struct sk_buff *skb;
437 unsigned int txsize = priv->dma_tx_size;
438 unsigned int rxsize = priv->dma_rx_size;
439 unsigned int bfsize;
440 int dis_ic = 0;
441 int des3_as_data_buf = 0;
442
443 /* Set the max buffer size according to the DESC mode
444 * and the MTU. Note that RING mode allows 16KiB bsize. */
445 bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
446
447 if (bfsize == BUF_SIZE_16KiB)
448 des3_as_data_buf = 1;
449 else
450 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
451
452 #ifdef CONFIG_STMMAC_TIMER
453 /* Disable interrupts on completion for the reception if timer is on */
454 if (likely(priv->tm->enable))
455 dis_ic = 1;
456 #endif
457
458 DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
459 txsize, rxsize, bfsize);
460
461 priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
462 priv->rx_skbuff =
463 kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
464 priv->dma_rx =
465 (struct dma_desc *)dma_alloc_coherent(priv->device,
466 rxsize *
467 sizeof(struct dma_desc),
468 &priv->dma_rx_phy,
469 GFP_KERNEL);
470 priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
471 GFP_KERNEL);
472 priv->dma_tx =
473 (struct dma_desc *)dma_alloc_coherent(priv->device,
474 txsize *
475 sizeof(struct dma_desc),
476 &priv->dma_tx_phy,
477 GFP_KERNEL);
478
479 if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
480 pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
481 return;
482 }
483
484 DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
485 "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
486 dev->name, priv->dma_rx, priv->dma_tx,
487 (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
488
489 /* RX INITIALIZATION */
490 DBG(probe, INFO, "stmmac: SKB addresses:\n"
491 "skb\t\tskb data\tdma data\n");
492
493 for (i = 0; i < rxsize; i++) {
494 struct dma_desc *p = priv->dma_rx + i;
495
496 skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
497 GFP_KERNEL);
498 if (unlikely(skb == NULL)) {
499 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
500 break;
501 }
502 skb_reserve(skb, NET_IP_ALIGN);
503 priv->rx_skbuff[i] = skb;
504 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
505 bfsize, DMA_FROM_DEVICE);
506
507 p->des2 = priv->rx_skbuff_dma[i];
508
509 priv->hw->ring->init_desc3(des3_as_data_buf, p);
510
511 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
512 priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
513 }
514 priv->cur_rx = 0;
515 priv->dirty_rx = (unsigned int)(i - rxsize);
516 priv->dma_buf_sz = bfsize;
517 buf_sz = bfsize;
518
519 /* TX INITIALIZATION */
520 for (i = 0; i < txsize; i++) {
521 priv->tx_skbuff[i] = NULL;
522 priv->dma_tx[i].des2 = 0;
523 }
524
525 /* In case of Chained mode this sets the des3 to the next
526 * element in the chain */
527 priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
528 priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);
529
530 priv->dirty_tx = 0;
531 priv->cur_tx = 0;
532
533 /* Clear the Rx/Tx descriptors */
534 priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
535 priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
536
537 if (netif_msg_hw(priv)) {
538 pr_info("RX descriptor ring:\n");
539 display_ring(priv->dma_rx, rxsize);
540 pr_info("TX descriptor ring:\n");
541 display_ring(priv->dma_tx, txsize);
542 }
543 }
544
545 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
546 {
547 int i;
548
549 for (i = 0; i < priv->dma_rx_size; i++) {
550 if (priv->rx_skbuff[i]) {
551 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
552 priv->dma_buf_sz, DMA_FROM_DEVICE);
553 dev_kfree_skb_any(priv->rx_skbuff[i]);
554 }
555 priv->rx_skbuff[i] = NULL;
556 }
557 }
558
559 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
560 {
561 int i;
562
563 for (i = 0; i < priv->dma_tx_size; i++) {
564 if (priv->tx_skbuff[i] != NULL) {
565 struct dma_desc *p = priv->dma_tx + i;
566 if (p->des2)
567 dma_unmap_single(priv->device, p->des2,
568 priv->hw->desc->get_tx_len(p),
569 DMA_TO_DEVICE);
570 dev_kfree_skb_any(priv->tx_skbuff[i]);
571 priv->tx_skbuff[i] = NULL;
572 }
573 }
574 }
575
576 static void free_dma_desc_resources(struct stmmac_priv *priv)
577 {
578 /* Release the DMA TX/RX socket buffers */
579 dma_free_rx_skbufs(priv);
580 dma_free_tx_skbufs(priv);
581
582 /* Free the region of consistent memory previously allocated for
583 * the DMA */
584 dma_free_coherent(priv->device,
585 priv->dma_tx_size * sizeof(struct dma_desc),
586 priv->dma_tx, priv->dma_tx_phy);
587 dma_free_coherent(priv->device,
588 priv->dma_rx_size * sizeof(struct dma_desc),
589 priv->dma_rx, priv->dma_rx_phy);
590 kfree(priv->rx_skbuff_dma);
591 kfree(priv->rx_skbuff);
592 kfree(priv->tx_skbuff);
593 }
594
595 /**
596 * stmmac_dma_operation_mode - HW DMA operation mode
597 * @priv : pointer to the private device structure.
598 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
599 * or Store-And-Forward capability.
600 */
601 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
602 {
603 if (likely(priv->plat->force_sf_dma_mode ||
604 ((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
605 /*
606 * In case of GMAC, SF mode can be enabled
607 * to perform the TX COE in HW. This depends on:
608 * 1) TX COE if actually supported
609 * 2) There is no bugged Jumbo frame support
610 * that needs to not insert csum in the TDES.
611 */
612 priv->hw->dma->dma_mode(priv->ioaddr,
613 SF_DMA_MODE, SF_DMA_MODE);
614 tc = SF_DMA_MODE;
615 } else
616 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
617 }
618
619 /**
620 * stmmac_tx:
621 * @priv: private driver structure
622 * Description: it reclaims resources after transmission completes.
623 */
624 static void stmmac_tx(struct stmmac_priv *priv)
625 {
626 unsigned int txsize = priv->dma_tx_size;
627
628 spin_lock(&priv->tx_lock);
629
630 while (priv->dirty_tx != priv->cur_tx) {
631 int last;
632 unsigned int entry = priv->dirty_tx % txsize;
633 struct sk_buff *skb = priv->tx_skbuff[entry];
634 struct dma_desc *p = priv->dma_tx + entry;
635
636 /* Check if the descriptor is owned by the DMA. */
637 if (priv->hw->desc->get_tx_owner(p))
638 break;
639
640 /* Verify tx error by looking at the last segment */
641 last = priv->hw->desc->get_tx_ls(p);
642 if (likely(last)) {
643 int tx_error =
644 priv->hw->desc->tx_status(&priv->dev->stats,
645 &priv->xstats, p,
646 priv->ioaddr);
647 if (likely(tx_error == 0)) {
648 priv->dev->stats.tx_packets++;
649 priv->xstats.tx_pkt_n++;
650 } else
651 priv->dev->stats.tx_errors++;
652 }
653 TX_DBG("%s: curr %d, dirty %d\n", __func__,
654 priv->cur_tx, priv->dirty_tx);
655
656 if (likely(p->des2))
657 dma_unmap_single(priv->device, p->des2,
658 priv->hw->desc->get_tx_len(p),
659 DMA_TO_DEVICE);
660 priv->hw->ring->clean_desc3(p);
661
662 if (likely(skb != NULL)) {
663 /*
664 * If there's room in the queue (limit it to size)
665 * we add this skb back into the pool,
666 * if it's the right size.
667 */
668 if ((skb_queue_len(&priv->rx_recycle) <
669 priv->dma_rx_size) &&
670 skb_recycle_check(skb, priv->dma_buf_sz))
671 __skb_queue_head(&priv->rx_recycle, skb);
672 else
673 dev_kfree_skb(skb);
674
675 priv->tx_skbuff[entry] = NULL;
676 }
677
678 priv->hw->desc->release_tx_desc(p);
679
680 entry = (++priv->dirty_tx) % txsize;
681 }
682 if (unlikely(netif_queue_stopped(priv->dev) &&
683 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
684 netif_tx_lock(priv->dev);
685 if (netif_queue_stopped(priv->dev) &&
686 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
687 TX_DBG("%s: restart transmit\n", __func__);
688 netif_wake_queue(priv->dev);
689 }
690 netif_tx_unlock(priv->dev);
691 }
692 spin_unlock(&priv->tx_lock);
693 }
694
695 static inline void stmmac_enable_irq(struct stmmac_priv *priv)
696 {
697 #ifdef CONFIG_STMMAC_TIMER
698 if (likely(priv->tm->enable))
699 priv->tm->timer_start(tmrate);
700 else
701 #endif
702 priv->hw->dma->enable_dma_irq(priv->ioaddr);
703 }
704
705 static inline void stmmac_disable_irq(struct stmmac_priv *priv)
706 {
707 #ifdef CONFIG_STMMAC_TIMER
708 if (likely(priv->tm->enable))
709 priv->tm->timer_stop();
710 else
711 #endif
712 priv->hw->dma->disable_dma_irq(priv->ioaddr);
713 }
714
715 static int stmmac_has_work(struct stmmac_priv *priv)
716 {
717 unsigned int has_work = 0;
718 int rxret, tx_work = 0;
719
720 rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
721 (priv->cur_rx % priv->dma_rx_size));
722
723 if (priv->dirty_tx != priv->cur_tx)
724 tx_work = 1;
725
726 if (likely(!rxret || tx_work))
727 has_work = 1;
728
729 return has_work;
730 }
731
732 static inline void _stmmac_schedule(struct stmmac_priv *priv)
733 {
734 if (likely(stmmac_has_work(priv))) {
735 stmmac_disable_irq(priv);
736 napi_schedule(&priv->napi);
737 }
738 }
739
740 #ifdef CONFIG_STMMAC_TIMER
741 void stmmac_schedule(struct net_device *dev)
742 {
743 struct stmmac_priv *priv = netdev_priv(dev);
744
745 priv->xstats.sched_timer_n++;
746
747 _stmmac_schedule(priv);
748 }
749
750 static void stmmac_no_timer_started(unsigned int x)
751 {;
752 };
753
754 static void stmmac_no_timer_stopped(void)
755 {;
756 };
757 #endif
758
759 /**
760 * stmmac_tx_err:
761 * @priv: pointer to the private device structure
762 * Description: it cleans the descriptors and restarts the transmission
763 * in case of errors.
764 */
765 static void stmmac_tx_err(struct stmmac_priv *priv)
766 {
767 netif_stop_queue(priv->dev);
768
769 priv->hw->dma->stop_tx(priv->ioaddr);
770 dma_free_tx_skbufs(priv);
771 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
772 priv->dirty_tx = 0;
773 priv->cur_tx = 0;
774 priv->hw->dma->start_tx(priv->ioaddr);
775
776 priv->dev->stats.tx_errors++;
777 netif_wake_queue(priv->dev);
778 }
779
780
781 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
782 {
783 int status;
784
785 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
786 if (likely(status == handle_tx_rx))
787 _stmmac_schedule(priv);
788
789 else if (unlikely(status == tx_hard_error_bump_tc)) {
790 /* Try to bump up the dma threshold on this failure */
791 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
792 tc += 64;
793 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
794 priv->xstats.threshold = tc;
795 }
796 } else if (unlikely(status == tx_hard_error))
797 stmmac_tx_err(priv);
798 }
799
800 static void stmmac_mmc_setup(struct stmmac_priv *priv)
801 {
802 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
803 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
804
805 /* Mask MMC irq, counters are managed in SW and registers
806 * are cleared on each READ eventually. */
807 dwmac_mmc_intr_all_mask(priv->ioaddr);
808
809 if (priv->dma_cap.rmon) {
810 dwmac_mmc_ctrl(priv->ioaddr, mode);
811 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
812 } else
813 pr_info(" No MAC Management Counters available\n");
814 }
815
816 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
817 {
818 u32 hwid = priv->hw->synopsys_uid;
819
820 /* Only check valid Synopsys Id because old MAC chips
821 * have no HW registers where get the ID */
822 if (likely(hwid)) {
823 u32 uid = ((hwid & 0x0000ff00) >> 8);
824 u32 synid = (hwid & 0x000000ff);
825
826 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
827 uid, synid);
828
829 return synid;
830 }
831 return 0;
832 }
833
834 /**
835 * stmmac_selec_desc_mode
836 * @dev : device pointer
837 * Description: select the Enhanced/Alternate or Normal descriptors */
838 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
839 {
840 if (priv->plat->enh_desc) {
841 pr_info(" Enhanced/Alternate descriptors\n");
842 priv->hw->desc = &enh_desc_ops;
843 } else {
844 pr_info(" Normal descriptors\n");
845 priv->hw->desc = &ndesc_ops;
846 }
847 }
848
849 /**
850 * stmmac_get_hw_features
851 * @priv : private device pointer
852 * Description:
853 * new GMAC chip generations have a new register to indicate the
854 * presence of the optional feature/functions.
855 * This can be also used to override the value passed through the
856 * platform and necessary for old MAC10/100 and GMAC chips.
857 */
858 static int stmmac_get_hw_features(struct stmmac_priv *priv)
859 {
860 u32 hw_cap = 0;
861
862 if (priv->hw->dma->get_hw_feature) {
863 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
864
865 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
866 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
867 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
868 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
869 priv->dma_cap.multi_addr =
870 (hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
871 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
872 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
873 priv->dma_cap.pmt_remote_wake_up =
874 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
875 priv->dma_cap.pmt_magic_frame =
876 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
877 /* MMC */
878 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
879 /* IEEE 1588-2002*/
880 priv->dma_cap.time_stamp =
881 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
882 /* IEEE 1588-2008*/
883 priv->dma_cap.atime_stamp =
884 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
885 /* 802.3az - Energy-Efficient Ethernet (EEE) */
886 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
887 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
888 /* TX and RX csum */
889 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
890 priv->dma_cap.rx_coe_type1 =
891 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
892 priv->dma_cap.rx_coe_type2 =
893 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
894 priv->dma_cap.rxfifo_over_2048 =
895 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
896 /* TX and RX number of channels */
897 priv->dma_cap.number_rx_channel =
898 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
899 priv->dma_cap.number_tx_channel =
900 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
901 /* Alternate (enhanced) DESC mode*/
902 priv->dma_cap.enh_desc =
903 (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
904
905 }
906
907 return hw_cap;
908 }
909
910 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
911 {
912 /* verify if the MAC address is valid, in case of failures it
913 * generates a random MAC address */
914 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
915 priv->hw->mac->get_umac_addr((void __iomem *)
916 priv->dev->base_addr,
917 priv->dev->dev_addr, 0);
918 if (!is_valid_ether_addr(priv->dev->dev_addr))
919 eth_hw_addr_random(priv->dev);
920 }
921 pr_warning("%s: device MAC address %pM\n", priv->dev->name,
922 priv->dev->dev_addr);
923 }
924
925 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
926 {
927 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
928 int mixed_burst = 0;
929
930 /* Some DMA parameters can be passed from the platform;
931 * in case of these are not passed we keep a default
932 * (good for all the chips) and init the DMA! */
933 if (priv->plat->dma_cfg) {
934 pbl = priv->plat->dma_cfg->pbl;
935 fixed_burst = priv->plat->dma_cfg->fixed_burst;
936 mixed_burst = priv->plat->dma_cfg->mixed_burst;
937 burst_len = priv->plat->dma_cfg->burst_len;
938 }
939
940 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
941 burst_len, priv->dma_tx_phy,
942 priv->dma_rx_phy);
943 }
944
945 /**
946 * stmmac_open - open entry point of the driver
947 * @dev : pointer to the device structure.
948 * Description:
949 * This function is the open entry point of the driver.
950 * Return value:
951 * 0 on success and an appropriate (-)ve integer as defined in errno.h
952 * file on failure.
953 */
954 static int stmmac_open(struct net_device *dev)
955 {
956 struct stmmac_priv *priv = netdev_priv(dev);
957 int ret;
958
959 #ifdef CONFIG_STMMAC_TIMER
960 priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
961 if (unlikely(priv->tm == NULL))
962 return -ENOMEM;
963
964 priv->tm->freq = tmrate;
965
966 /* Test if the external timer can be actually used.
967 * In case of failure continue without timer. */
968 if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
969 pr_warning("stmmaceth: cannot attach the external timer.\n");
970 priv->tm->freq = 0;
971 priv->tm->timer_start = stmmac_no_timer_started;
972 priv->tm->timer_stop = stmmac_no_timer_stopped;
973 } else
974 priv->tm->enable = 1;
975 #endif
976 stmmac_clk_enable(priv);
977
978 stmmac_check_ether_addr(priv);
979
980 ret = stmmac_init_phy(dev);
981 if (unlikely(ret)) {
982 pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
983 goto open_error;
984 }
985
986 /* Create and initialize the TX/RX descriptors chains. */
987 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
988 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
989 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
990 init_dma_desc_rings(dev);
991
992 /* DMA initialization and SW reset */
993 ret = stmmac_init_dma_engine(priv);
994 if (ret < 0) {
995 pr_err("%s: DMA initialization failed\n", __func__);
996 goto open_error;
997 }
998
999 /* Copy the MAC addr into the HW */
1000 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1001
1002 /* If required, perform hw setup of the bus. */
1003 if (priv->plat->bus_setup)
1004 priv->plat->bus_setup(priv->ioaddr);
1005
1006 /* Initialize the MAC Core */
1007 priv->hw->mac->core_init(priv->ioaddr);
1008
1009 /* Request the IRQ lines */
1010 ret = request_irq(dev->irq, stmmac_interrupt,
1011 IRQF_SHARED, dev->name, dev);
1012 if (unlikely(ret < 0)) {
1013 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1014 __func__, dev->irq, ret);
1015 goto open_error;
1016 }
1017
1018 /* Request the Wake IRQ in case of another line is used for WoL */
1019 if (priv->wol_irq != dev->irq) {
1020 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1021 IRQF_SHARED, dev->name, dev);
1022 if (unlikely(ret < 0)) {
1023 pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
1024 "(error: %d)\n", __func__, priv->wol_irq, ret);
1025 goto open_error_wolirq;
1026 }
1027 }
1028
1029 /* Enable the MAC Rx/Tx */
1030 stmmac_set_mac(priv->ioaddr, true);
1031
1032 /* Set the HW DMA mode and the COE */
1033 stmmac_dma_operation_mode(priv);
1034
1035 /* Extra statistics */
1036 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1037 priv->xstats.threshold = tc;
1038
1039 stmmac_mmc_setup(priv);
1040
1041 #ifdef CONFIG_STMMAC_DEBUG_FS
1042 ret = stmmac_init_fs(dev);
1043 if (ret < 0)
1044 pr_warning("%s: failed debugFS registration\n", __func__);
1045 #endif
1046 /* Start the ball rolling... */
1047 DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1048 priv->hw->dma->start_tx(priv->ioaddr);
1049 priv->hw->dma->start_rx(priv->ioaddr);
1050
1051 #ifdef CONFIG_STMMAC_TIMER
1052 priv->tm->timer_start(tmrate);
1053 #endif
1054
1055 /* Dump DMA/MAC registers */
1056 if (netif_msg_hw(priv)) {
1057 priv->hw->mac->dump_regs(priv->ioaddr);
1058 priv->hw->dma->dump_regs(priv->ioaddr);
1059 }
1060
1061 if (priv->phydev)
1062 phy_start(priv->phydev);
1063
1064 napi_enable(&priv->napi);
1065 skb_queue_head_init(&priv->rx_recycle);
1066 netif_start_queue(dev);
1067
1068 return 0;
1069
1070 open_error_wolirq:
1071 free_irq(dev->irq, dev);
1072
1073 open_error:
1074 #ifdef CONFIG_STMMAC_TIMER
1075 kfree(priv->tm);
1076 #endif
1077 if (priv->phydev)
1078 phy_disconnect(priv->phydev);
1079
1080 stmmac_clk_disable(priv);
1081
1082 return ret;
1083 }
1084
1085 /**
1086 * stmmac_release - close entry point of the driver
1087 * @dev : device pointer.
1088 * Description:
1089 * This is the stop entry point of the driver.
1090 */
1091 static int stmmac_release(struct net_device *dev)
1092 {
1093 struct stmmac_priv *priv = netdev_priv(dev);
1094
1095 /* Stop and disconnect the PHY */
1096 if (priv->phydev) {
1097 phy_stop(priv->phydev);
1098 phy_disconnect(priv->phydev);
1099 priv->phydev = NULL;
1100 }
1101
1102 netif_stop_queue(dev);
1103
1104 #ifdef CONFIG_STMMAC_TIMER
1105 /* Stop and release the timer */
1106 stmmac_close_ext_timer();
1107 if (priv->tm != NULL)
1108 kfree(priv->tm);
1109 #endif
1110 napi_disable(&priv->napi);
1111 skb_queue_purge(&priv->rx_recycle);
1112
1113 /* Free the IRQ lines */
1114 free_irq(dev->irq, dev);
1115 if (priv->wol_irq != dev->irq)
1116 free_irq(priv->wol_irq, dev);
1117
1118 /* Stop TX/RX DMA and clear the descriptors */
1119 priv->hw->dma->stop_tx(priv->ioaddr);
1120 priv->hw->dma->stop_rx(priv->ioaddr);
1121
1122 /* Release and free the Rx/Tx resources */
1123 free_dma_desc_resources(priv);
1124
1125 /* Disable the MAC Rx/Tx */
1126 stmmac_set_mac(priv->ioaddr, false);
1127
1128 netif_carrier_off(dev);
1129
1130 #ifdef CONFIG_STMMAC_DEBUG_FS
1131 stmmac_exit_fs();
1132 #endif
1133 stmmac_clk_disable(priv);
1134
1135 return 0;
1136 }
1137
1138 /**
1139 * stmmac_xmit:
1140 * @skb : the socket buffer
1141 * @dev : device pointer
1142 * Description : Tx entry point of the driver.
1143 */
1144 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1145 {
1146 struct stmmac_priv *priv = netdev_priv(dev);
1147 unsigned int txsize = priv->dma_tx_size;
1148 unsigned int entry;
1149 int i, csum_insertion = 0;
1150 int nfrags = skb_shinfo(skb)->nr_frags;
1151 struct dma_desc *desc, *first;
1152 unsigned int nopaged_len = skb_headlen(skb);
1153
1154 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1155 if (!netif_queue_stopped(dev)) {
1156 netif_stop_queue(dev);
1157 /* This is a hard error, log it. */
1158 pr_err("%s: BUG! Tx Ring full when queue awake\n",
1159 __func__);
1160 }
1161 return NETDEV_TX_BUSY;
1162 }
1163
1164 spin_lock(&priv->tx_lock);
1165
1166 entry = priv->cur_tx % txsize;
1167
1168 #ifdef STMMAC_XMIT_DEBUG
1169 if ((skb->len > ETH_FRAME_LEN) || nfrags)
1170 pr_info("stmmac xmit:\n"
1171 "\tskb addr %p - len: %d - nopaged_len: %d\n"
1172 "\tn_frags: %d - ip_summed: %d - %s gso\n",
1173 skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1174 !skb_is_gso(skb) ? "isn't" : "is");
1175 #endif
1176
1177 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1178
1179 desc = priv->dma_tx + entry;
1180 first = desc;
1181
1182 #ifdef STMMAC_XMIT_DEBUG
1183 if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1184 pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1185 "\t\tn_frags: %d, ip_summed: %d\n",
1186 skb->len, nopaged_len, nfrags, skb->ip_summed);
1187 #endif
1188 priv->tx_skbuff[entry] = skb;
1189
1190 if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
1191 entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1192 desc = priv->dma_tx + entry;
1193 } else {
1194 desc->des2 = dma_map_single(priv->device, skb->data,
1195 nopaged_len, DMA_TO_DEVICE);
1196 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1197 csum_insertion);
1198 }
1199
1200 for (i = 0; i < nfrags; i++) {
1201 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1202 int len = skb_frag_size(frag);
1203
1204 entry = (++priv->cur_tx) % txsize;
1205 desc = priv->dma_tx + entry;
1206
1207 TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1208 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1209 DMA_TO_DEVICE);
1210 priv->tx_skbuff[entry] = NULL;
1211 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1212 wmb();
1213 priv->hw->desc->set_tx_owner(desc);
1214 }
1215
1216 /* Interrupt on completition only for the latest segment */
1217 priv->hw->desc->close_tx_desc(desc);
1218
1219 #ifdef CONFIG_STMMAC_TIMER
1220 /* Clean IC while using timer */
1221 if (likely(priv->tm->enable))
1222 priv->hw->desc->clear_tx_ic(desc);
1223 #endif
1224
1225 wmb();
1226
1227 /* To avoid raise condition */
1228 priv->hw->desc->set_tx_owner(first);
1229
1230 priv->cur_tx++;
1231
1232 #ifdef STMMAC_XMIT_DEBUG
1233 if (netif_msg_pktdata(priv)) {
1234 pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1235 "first=%p, nfrags=%d\n",
1236 (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1237 entry, first, nfrags);
1238 display_ring(priv->dma_tx, txsize);
1239 pr_info(">>> frame to be transmitted: ");
1240 print_pkt(skb->data, skb->len);
1241 }
1242 #endif
1243 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1244 TX_DBG("%s: stop transmitted packets\n", __func__);
1245 netif_stop_queue(dev);
1246 }
1247
1248 dev->stats.tx_bytes += skb->len;
1249
1250 skb_tx_timestamp(skb);
1251
1252 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1253
1254 spin_unlock(&priv->tx_lock);
1255
1256 return NETDEV_TX_OK;
1257 }
1258
1259 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1260 {
1261 unsigned int rxsize = priv->dma_rx_size;
1262 int bfsize = priv->dma_buf_sz;
1263 struct dma_desc *p = priv->dma_rx;
1264
1265 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1266 unsigned int entry = priv->dirty_rx % rxsize;
1267 if (likely(priv->rx_skbuff[entry] == NULL)) {
1268 struct sk_buff *skb;
1269
1270 skb = __skb_dequeue(&priv->rx_recycle);
1271 if (skb == NULL)
1272 skb = netdev_alloc_skb_ip_align(priv->dev,
1273 bfsize);
1274
1275 if (unlikely(skb == NULL))
1276 break;
1277
1278 priv->rx_skbuff[entry] = skb;
1279 priv->rx_skbuff_dma[entry] =
1280 dma_map_single(priv->device, skb->data, bfsize,
1281 DMA_FROM_DEVICE);
1282
1283 (p + entry)->des2 = priv->rx_skbuff_dma[entry];
1284
1285 if (unlikely(priv->plat->has_gmac))
1286 priv->hw->ring->refill_desc3(bfsize, p + entry);
1287
1288 RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1289 }
1290 wmb();
1291 priv->hw->desc->set_rx_owner(p + entry);
1292 }
1293 }
1294
1295 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1296 {
1297 unsigned int rxsize = priv->dma_rx_size;
1298 unsigned int entry = priv->cur_rx % rxsize;
1299 unsigned int next_entry;
1300 unsigned int count = 0;
1301 struct dma_desc *p = priv->dma_rx + entry;
1302 struct dma_desc *p_next;
1303
1304 #ifdef STMMAC_RX_DEBUG
1305 if (netif_msg_hw(priv)) {
1306 pr_debug(">>> stmmac_rx: descriptor ring:\n");
1307 display_ring(priv->dma_rx, rxsize);
1308 }
1309 #endif
1310 count = 0;
1311 while (!priv->hw->desc->get_rx_owner(p)) {
1312 int status;
1313
1314 if (count >= limit)
1315 break;
1316
1317 count++;
1318
1319 next_entry = (++priv->cur_rx) % rxsize;
1320 p_next = priv->dma_rx + next_entry;
1321 prefetch(p_next);
1322
1323 /* read the status of the incoming frame */
1324 status = (priv->hw->desc->rx_status(&priv->dev->stats,
1325 &priv->xstats, p));
1326 if (unlikely(status == discard_frame))
1327 priv->dev->stats.rx_errors++;
1328 else {
1329 struct sk_buff *skb;
1330 int frame_len;
1331
1332 frame_len = priv->hw->desc->get_rx_frame_len(p,
1333 priv->plat->rx_coe);
1334 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1335 * Type frames (LLC/LLC-SNAP) */
1336 if (unlikely(status != llc_snap))
1337 frame_len -= ETH_FCS_LEN;
1338 #ifdef STMMAC_RX_DEBUG
1339 if (frame_len > ETH_FRAME_LEN)
1340 pr_debug("\tRX frame size %d, COE status: %d\n",
1341 frame_len, status);
1342
1343 if (netif_msg_hw(priv))
1344 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1345 p, entry, p->des2);
1346 #endif
1347 skb = priv->rx_skbuff[entry];
1348 if (unlikely(!skb)) {
1349 pr_err("%s: Inconsistent Rx descriptor chain\n",
1350 priv->dev->name);
1351 priv->dev->stats.rx_dropped++;
1352 break;
1353 }
1354 prefetch(skb->data - NET_IP_ALIGN);
1355 priv->rx_skbuff[entry] = NULL;
1356
1357 skb_put(skb, frame_len);
1358 dma_unmap_single(priv->device,
1359 priv->rx_skbuff_dma[entry],
1360 priv->dma_buf_sz, DMA_FROM_DEVICE);
1361 #ifdef STMMAC_RX_DEBUG
1362 if (netif_msg_pktdata(priv)) {
1363 pr_info(" frame received (%dbytes)", frame_len);
1364 print_pkt(skb->data, frame_len);
1365 }
1366 #endif
1367 skb->protocol = eth_type_trans(skb, priv->dev);
1368
1369 if (unlikely(!priv->plat->rx_coe)) {
1370 /* No RX COE for old mac10/100 devices */
1371 skb_checksum_none_assert(skb);
1372 netif_receive_skb(skb);
1373 } else {
1374 skb->ip_summed = CHECKSUM_UNNECESSARY;
1375 napi_gro_receive(&priv->napi, skb);
1376 }
1377
1378 priv->dev->stats.rx_packets++;
1379 priv->dev->stats.rx_bytes += frame_len;
1380 }
1381 entry = next_entry;
1382 p = p_next; /* use prefetched values */
1383 }
1384
1385 stmmac_rx_refill(priv);
1386
1387 priv->xstats.rx_pkt_n += count;
1388
1389 return count;
1390 }
1391
1392 /**
1393 * stmmac_poll - stmmac poll method (NAPI)
1394 * @napi : pointer to the napi structure.
1395 * @budget : maximum number of packets that the current CPU can receive from
1396 * all interfaces.
1397 * Description :
1398 * This function implements the the reception process.
1399 * Also it runs the TX completion thread
1400 */
1401 static int stmmac_poll(struct napi_struct *napi, int budget)
1402 {
1403 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1404 int work_done = 0;
1405
1406 priv->xstats.poll_n++;
1407 stmmac_tx(priv);
1408 work_done = stmmac_rx(priv, budget);
1409
1410 if (work_done < budget) {
1411 napi_complete(napi);
1412 stmmac_enable_irq(priv);
1413 }
1414 return work_done;
1415 }
1416
1417 /**
1418 * stmmac_tx_timeout
1419 * @dev : Pointer to net device structure
1420 * Description: this function is called when a packet transmission fails to
1421 * complete within a reasonable tmrate. The driver will mark the error in the
1422 * netdev structure and arrange for the device to be reset to a sane state
1423 * in order to transmit a new packet.
1424 */
1425 static void stmmac_tx_timeout(struct net_device *dev)
1426 {
1427 struct stmmac_priv *priv = netdev_priv(dev);
1428
1429 /* Clear Tx resources and restart transmitting again */
1430 stmmac_tx_err(priv);
1431 }
1432
1433 /* Configuration changes (passed on by ifconfig) */
1434 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1435 {
1436 if (dev->flags & IFF_UP) /* can't act on a running interface */
1437 return -EBUSY;
1438
1439 /* Don't allow changing the I/O address */
1440 if (map->base_addr != dev->base_addr) {
1441 pr_warning("%s: can't change I/O address\n", dev->name);
1442 return -EOPNOTSUPP;
1443 }
1444
1445 /* Don't allow changing the IRQ */
1446 if (map->irq != dev->irq) {
1447 pr_warning("%s: can't change IRQ number %d\n",
1448 dev->name, dev->irq);
1449 return -EOPNOTSUPP;
1450 }
1451
1452 /* ignore other fields */
1453 return 0;
1454 }
1455
1456 /**
1457 * stmmac_set_rx_mode - entry point for multicast addressing
1458 * @dev : pointer to the device structure
1459 * Description:
1460 * This function is a driver entry point which gets called by the kernel
1461 * whenever multicast addresses must be enabled/disabled.
1462 * Return value:
1463 * void.
1464 */
1465 static void stmmac_set_rx_mode(struct net_device *dev)
1466 {
1467 struct stmmac_priv *priv = netdev_priv(dev);
1468
1469 spin_lock(&priv->lock);
1470 priv->hw->mac->set_filter(dev, priv->synopsys_id);
1471 spin_unlock(&priv->lock);
1472 }
1473
1474 /**
1475 * stmmac_change_mtu - entry point to change MTU size for the device.
1476 * @dev : device pointer.
1477 * @new_mtu : the new MTU size for the device.
1478 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
1479 * to drive packet transmission. Ethernet has an MTU of 1500 octets
1480 * (ETH_DATA_LEN). This value can be changed with ifconfig.
1481 * Return value:
1482 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1483 * file on failure.
1484 */
1485 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1486 {
1487 struct stmmac_priv *priv = netdev_priv(dev);
1488 int max_mtu;
1489
1490 if (netif_running(dev)) {
1491 pr_err("%s: must be stopped to change its MTU\n", dev->name);
1492 return -EBUSY;
1493 }
1494
1495 if (priv->plat->enh_desc)
1496 max_mtu = JUMBO_LEN;
1497 else
1498 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1499
1500 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1501 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1502 return -EINVAL;
1503 }
1504
1505 dev->mtu = new_mtu;
1506 netdev_update_features(dev);
1507
1508 return 0;
1509 }
1510
1511 static netdev_features_t stmmac_fix_features(struct net_device *dev,
1512 netdev_features_t features)
1513 {
1514 struct stmmac_priv *priv = netdev_priv(dev);
1515
1516 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
1517 features &= ~NETIF_F_RXCSUM;
1518 else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
1519 features &= ~NETIF_F_IPV6_CSUM;
1520 if (!priv->plat->tx_coe)
1521 features &= ~NETIF_F_ALL_CSUM;
1522
1523 /* Some GMAC devices have a bugged Jumbo frame support that
1524 * needs to have the Tx COE disabled for oversized frames
1525 * (due to limited buffer sizes). In this case we disable
1526 * the TX csum insertionin the TDES and not use SF. */
1527 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
1528 features &= ~NETIF_F_ALL_CSUM;
1529
1530 return features;
1531 }
1532
1533 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1534 {
1535 struct net_device *dev = (struct net_device *)dev_id;
1536 struct stmmac_priv *priv = netdev_priv(dev);
1537
1538 if (unlikely(!dev)) {
1539 pr_err("%s: invalid dev pointer\n", __func__);
1540 return IRQ_NONE;
1541 }
1542
1543 if (priv->plat->has_gmac)
1544 /* To handle GMAC own interrupts */
1545 priv->hw->mac->host_irq_status((void __iomem *) dev->base_addr);
1546
1547 stmmac_dma_interrupt(priv);
1548
1549 return IRQ_HANDLED;
1550 }
1551
1552 #ifdef CONFIG_NET_POLL_CONTROLLER
1553 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1554 * to allow network I/O with interrupts disabled. */
1555 static void stmmac_poll_controller(struct net_device *dev)
1556 {
1557 disable_irq(dev->irq);
1558 stmmac_interrupt(dev->irq, dev);
1559 enable_irq(dev->irq);
1560 }
1561 #endif
1562
1563 /**
1564 * stmmac_ioctl - Entry point for the Ioctl
1565 * @dev: Device pointer.
1566 * @rq: An IOCTL specefic structure, that can contain a pointer to
1567 * a proprietary structure used to pass information to the driver.
1568 * @cmd: IOCTL command
1569 * Description:
1570 * Currently there are no special functionality supported in IOCTL, just the
1571 * phy_mii_ioctl(...) can be invoked.
1572 */
1573 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1574 {
1575 struct stmmac_priv *priv = netdev_priv(dev);
1576 int ret;
1577
1578 if (!netif_running(dev))
1579 return -EINVAL;
1580
1581 if (!priv->phydev)
1582 return -EINVAL;
1583
1584 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1585
1586 return ret;
1587 }
1588
1589 #ifdef CONFIG_STMMAC_DEBUG_FS
1590 static struct dentry *stmmac_fs_dir;
1591 static struct dentry *stmmac_rings_status;
1592 static struct dentry *stmmac_dma_cap;
1593
1594 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
1595 {
1596 struct tmp_s {
1597 u64 a;
1598 unsigned int b;
1599 unsigned int c;
1600 };
1601 int i;
1602 struct net_device *dev = seq->private;
1603 struct stmmac_priv *priv = netdev_priv(dev);
1604
1605 seq_printf(seq, "=======================\n");
1606 seq_printf(seq, " RX descriptor ring\n");
1607 seq_printf(seq, "=======================\n");
1608
1609 for (i = 0; i < priv->dma_rx_size; i++) {
1610 struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
1611 seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1612 i, (unsigned int)(x->a),
1613 (unsigned int)((x->a) >> 32), x->b, x->c);
1614 seq_printf(seq, "\n");
1615 }
1616
1617 seq_printf(seq, "\n");
1618 seq_printf(seq, "=======================\n");
1619 seq_printf(seq, " TX descriptor ring\n");
1620 seq_printf(seq, "=======================\n");
1621
1622 for (i = 0; i < priv->dma_tx_size; i++) {
1623 struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
1624 seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1625 i, (unsigned int)(x->a),
1626 (unsigned int)((x->a) >> 32), x->b, x->c);
1627 seq_printf(seq, "\n");
1628 }
1629
1630 return 0;
1631 }
1632
1633 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
1634 {
1635 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
1636 }
1637
1638 static const struct file_operations stmmac_rings_status_fops = {
1639 .owner = THIS_MODULE,
1640 .open = stmmac_sysfs_ring_open,
1641 .read = seq_read,
1642 .llseek = seq_lseek,
1643 .release = single_release,
1644 };
1645
1646 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
1647 {
1648 struct net_device *dev = seq->private;
1649 struct stmmac_priv *priv = netdev_priv(dev);
1650
1651 if (!priv->hw_cap_support) {
1652 seq_printf(seq, "DMA HW features not supported\n");
1653 return 0;
1654 }
1655
1656 seq_printf(seq, "==============================\n");
1657 seq_printf(seq, "\tDMA HW features\n");
1658 seq_printf(seq, "==============================\n");
1659
1660 seq_printf(seq, "\t10/100 Mbps %s\n",
1661 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
1662 seq_printf(seq, "\t1000 Mbps %s\n",
1663 (priv->dma_cap.mbps_1000) ? "Y" : "N");
1664 seq_printf(seq, "\tHalf duple %s\n",
1665 (priv->dma_cap.half_duplex) ? "Y" : "N");
1666 seq_printf(seq, "\tHash Filter: %s\n",
1667 (priv->dma_cap.hash_filter) ? "Y" : "N");
1668 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
1669 (priv->dma_cap.multi_addr) ? "Y" : "N");
1670 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
1671 (priv->dma_cap.pcs) ? "Y" : "N");
1672 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
1673 (priv->dma_cap.sma_mdio) ? "Y" : "N");
1674 seq_printf(seq, "\tPMT Remote wake up: %s\n",
1675 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
1676 seq_printf(seq, "\tPMT Magic Frame: %s\n",
1677 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
1678 seq_printf(seq, "\tRMON module: %s\n",
1679 (priv->dma_cap.rmon) ? "Y" : "N");
1680 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
1681 (priv->dma_cap.time_stamp) ? "Y" : "N");
1682 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
1683 (priv->dma_cap.atime_stamp) ? "Y" : "N");
1684 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
1685 (priv->dma_cap.eee) ? "Y" : "N");
1686 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
1687 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
1688 (priv->dma_cap.tx_coe) ? "Y" : "N");
1689 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
1690 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
1691 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
1692 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
1693 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
1694 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
1695 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
1696 priv->dma_cap.number_rx_channel);
1697 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
1698 priv->dma_cap.number_tx_channel);
1699 seq_printf(seq, "\tEnhanced descriptors: %s\n",
1700 (priv->dma_cap.enh_desc) ? "Y" : "N");
1701
1702 return 0;
1703 }
1704
1705 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
1706 {
1707 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
1708 }
1709
1710 static const struct file_operations stmmac_dma_cap_fops = {
1711 .owner = THIS_MODULE,
1712 .open = stmmac_sysfs_dma_cap_open,
1713 .read = seq_read,
1714 .llseek = seq_lseek,
1715 .release = single_release,
1716 };
1717
1718 static int stmmac_init_fs(struct net_device *dev)
1719 {
1720 /* Create debugfs entries */
1721 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
1722
1723 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
1724 pr_err("ERROR %s, debugfs create directory failed\n",
1725 STMMAC_RESOURCE_NAME);
1726
1727 return -ENOMEM;
1728 }
1729
1730 /* Entry to report DMA RX/TX rings */
1731 stmmac_rings_status = debugfs_create_file("descriptors_status",
1732 S_IRUGO, stmmac_fs_dir, dev,
1733 &stmmac_rings_status_fops);
1734
1735 if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
1736 pr_info("ERROR creating stmmac ring debugfs file\n");
1737 debugfs_remove(stmmac_fs_dir);
1738
1739 return -ENOMEM;
1740 }
1741
1742 /* Entry to report the DMA HW features */
1743 stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
1744 dev, &stmmac_dma_cap_fops);
1745
1746 if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
1747 pr_info("ERROR creating stmmac MMC debugfs file\n");
1748 debugfs_remove(stmmac_rings_status);
1749 debugfs_remove(stmmac_fs_dir);
1750
1751 return -ENOMEM;
1752 }
1753
1754 return 0;
1755 }
1756
1757 static void stmmac_exit_fs(void)
1758 {
1759 debugfs_remove(stmmac_rings_status);
1760 debugfs_remove(stmmac_dma_cap);
1761 debugfs_remove(stmmac_fs_dir);
1762 }
1763 #endif /* CONFIG_STMMAC_DEBUG_FS */
1764
1765 static const struct net_device_ops stmmac_netdev_ops = {
1766 .ndo_open = stmmac_open,
1767 .ndo_start_xmit = stmmac_xmit,
1768 .ndo_stop = stmmac_release,
1769 .ndo_change_mtu = stmmac_change_mtu,
1770 .ndo_fix_features = stmmac_fix_features,
1771 .ndo_set_rx_mode = stmmac_set_rx_mode,
1772 .ndo_tx_timeout = stmmac_tx_timeout,
1773 .ndo_do_ioctl = stmmac_ioctl,
1774 .ndo_set_config = stmmac_config,
1775 #ifdef CONFIG_NET_POLL_CONTROLLER
1776 .ndo_poll_controller = stmmac_poll_controller,
1777 #endif
1778 .ndo_set_mac_address = eth_mac_addr,
1779 };
1780
1781 /**
1782 * stmmac_hw_init - Init the MAC device
1783 * @priv : pointer to the private device structure.
1784 * Description: this function detects which MAC device
1785 * (GMAC/MAC10-100) has to attached, checks the HW capability
1786 * (if supported) and sets the driver's features (for example
1787 * to use the ring or chaine mode or support the normal/enh
1788 * descriptor structure).
1789 */
1790 static int stmmac_hw_init(struct stmmac_priv *priv)
1791 {
1792 int ret = 0;
1793 struct mac_device_info *mac;
1794
1795 /* Identify the MAC HW device */
1796 if (priv->plat->has_gmac) {
1797 priv->dev->priv_flags |= IFF_UNICAST_FLT;
1798 mac = dwmac1000_setup(priv->ioaddr);
1799 } else {
1800 mac = dwmac100_setup(priv->ioaddr);
1801 }
1802 if (!mac)
1803 return -ENOMEM;
1804
1805 priv->hw = mac;
1806
1807 /* To use the chained or ring mode */
1808 priv->hw->ring = &ring_mode_ops;
1809
1810 /* Get and dump the chip ID */
1811 priv->synopsys_id = stmmac_get_synopsys_id(priv);
1812
1813 /* Get the HW capability (new GMAC newer than 3.50a) */
1814 priv->hw_cap_support = stmmac_get_hw_features(priv);
1815 if (priv->hw_cap_support) {
1816 pr_info(" DMA HW capability register supported");
1817
1818 /* We can override some gmac/dma configuration fields: e.g.
1819 * enh_desc, tx_coe (e.g. that are passed through the
1820 * platform) with the values from the HW capability
1821 * register (if supported).
1822 */
1823 priv->plat->enh_desc = priv->dma_cap.enh_desc;
1824 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
1825
1826 priv->plat->tx_coe = priv->dma_cap.tx_coe;
1827
1828 if (priv->dma_cap.rx_coe_type2)
1829 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
1830 else if (priv->dma_cap.rx_coe_type1)
1831 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
1832
1833 } else
1834 pr_info(" No HW DMA feature register supported");
1835
1836 /* Select the enhnaced/normal descriptor structures */
1837 stmmac_selec_desc_mode(priv);
1838
1839 /* Enable the IPC (Checksum Offload) and check if the feature has been
1840 * enabled during the core configuration. */
1841 ret = priv->hw->mac->rx_ipc(priv->ioaddr);
1842 if (!ret) {
1843 pr_warning(" RX IPC Checksum Offload not configured.\n");
1844 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1845 }
1846
1847 if (priv->plat->rx_coe)
1848 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
1849 priv->plat->rx_coe);
1850 if (priv->plat->tx_coe)
1851 pr_info(" TX Checksum insertion supported\n");
1852
1853 if (priv->plat->pmt) {
1854 pr_info(" Wake-Up On Lan supported\n");
1855 device_set_wakeup_capable(priv->device, 1);
1856 }
1857
1858 return ret;
1859 }
1860
1861 /**
1862 * stmmac_dvr_probe
1863 * @device: device pointer
1864 * Description: this is the main probe function used to
1865 * call the alloc_etherdev, allocate the priv structure.
1866 */
1867 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
1868 struct plat_stmmacenet_data *plat_dat,
1869 void __iomem *addr)
1870 {
1871 int ret = 0;
1872 struct net_device *ndev = NULL;
1873 struct stmmac_priv *priv;
1874
1875 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1876 if (!ndev)
1877 return NULL;
1878
1879 SET_NETDEV_DEV(ndev, device);
1880
1881 priv = netdev_priv(ndev);
1882 priv->device = device;
1883 priv->dev = ndev;
1884
1885 ether_setup(ndev);
1886
1887 stmmac_set_ethtool_ops(ndev);
1888 priv->pause = pause;
1889 priv->plat = plat_dat;
1890 priv->ioaddr = addr;
1891 priv->dev->base_addr = (unsigned long)addr;
1892
1893 /* Verify driver arguments */
1894 stmmac_verify_args();
1895
1896 /* Override with kernel parameters if supplied XXX CRS XXX
1897 * this needs to have multiple instances */
1898 if ((phyaddr >= 0) && (phyaddr <= 31))
1899 priv->plat->phy_addr = phyaddr;
1900
1901 /* Init MAC and get the capabilities */
1902 stmmac_hw_init(priv);
1903
1904 ndev->netdev_ops = &stmmac_netdev_ops;
1905
1906 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1907 NETIF_F_RXCSUM;
1908 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1909 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
1910 #ifdef STMMAC_VLAN_TAG_USED
1911 /* Both mac100 and gmac support receive VLAN tag detection */
1912 ndev->features |= NETIF_F_HW_VLAN_RX;
1913 #endif
1914 priv->msg_enable = netif_msg_init(debug, default_msg_level);
1915
1916 if (flow_ctrl)
1917 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
1918
1919 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
1920
1921 spin_lock_init(&priv->lock);
1922 spin_lock_init(&priv->tx_lock);
1923
1924 ret = register_netdev(ndev);
1925 if (ret) {
1926 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
1927 goto error;
1928 }
1929
1930 if (stmmac_clk_get(priv))
1931 pr_warning("%s: warning: cannot get CSR clock\n", __func__);
1932
1933 /* If a specific clk_csr value is passed from the platform
1934 * this means that the CSR Clock Range selection cannot be
1935 * changed at run-time and it is fixed. Viceversa the driver'll try to
1936 * set the MDC clock dynamically according to the csr actual
1937 * clock input.
1938 */
1939 if (!priv->plat->clk_csr)
1940 stmmac_clk_csr_set(priv);
1941 else
1942 priv->clk_csr = priv->plat->clk_csr;
1943
1944 /* MDIO bus Registration */
1945 ret = stmmac_mdio_register(ndev);
1946 if (ret < 0) {
1947 pr_debug("%s: MDIO bus (id: %d) registration failed",
1948 __func__, priv->plat->bus_id);
1949 goto error;
1950 }
1951
1952 return priv;
1953
1954 error:
1955 netif_napi_del(&priv->napi);
1956
1957 unregister_netdev(ndev);
1958 free_netdev(ndev);
1959
1960 return NULL;
1961 }
1962
1963 /**
1964 * stmmac_dvr_remove
1965 * @ndev: net device pointer
1966 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1967 * changes the link status, releases the DMA descriptor rings.
1968 */
1969 int stmmac_dvr_remove(struct net_device *ndev)
1970 {
1971 struct stmmac_priv *priv = netdev_priv(ndev);
1972
1973 pr_info("%s:\n\tremoving driver", __func__);
1974
1975 priv->hw->dma->stop_rx(priv->ioaddr);
1976 priv->hw->dma->stop_tx(priv->ioaddr);
1977
1978 stmmac_set_mac(priv->ioaddr, false);
1979 stmmac_mdio_unregister(ndev);
1980 netif_carrier_off(ndev);
1981 unregister_netdev(ndev);
1982 free_netdev(ndev);
1983
1984 return 0;
1985 }
1986
1987 #ifdef CONFIG_PM
1988 int stmmac_suspend(struct net_device *ndev)
1989 {
1990 struct stmmac_priv *priv = netdev_priv(ndev);
1991 int dis_ic = 0;
1992 unsigned long flags;
1993
1994 if (!ndev || !netif_running(ndev))
1995 return 0;
1996
1997 if (priv->phydev)
1998 phy_stop(priv->phydev);
1999
2000 spin_lock_irqsave(&priv->lock, flags);
2001
2002 netif_device_detach(ndev);
2003 netif_stop_queue(ndev);
2004
2005 #ifdef CONFIG_STMMAC_TIMER
2006 priv->tm->timer_stop();
2007 if (likely(priv->tm->enable))
2008 dis_ic = 1;
2009 #endif
2010 napi_disable(&priv->napi);
2011
2012 /* Stop TX/RX DMA */
2013 priv->hw->dma->stop_tx(priv->ioaddr);
2014 priv->hw->dma->stop_rx(priv->ioaddr);
2015 /* Clear the Rx/Tx descriptors */
2016 priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
2017 dis_ic);
2018 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
2019
2020 /* Enable Power down mode by programming the PMT regs */
2021 if (device_may_wakeup(priv->device))
2022 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2023 else {
2024 stmmac_set_mac(priv->ioaddr, false);
2025 /* Disable clock in case of PWM is off */
2026 stmmac_clk_disable(priv);
2027 }
2028 spin_unlock_irqrestore(&priv->lock, flags);
2029 return 0;
2030 }
2031
2032 int stmmac_resume(struct net_device *ndev)
2033 {
2034 struct stmmac_priv *priv = netdev_priv(ndev);
2035 unsigned long flags;
2036
2037 if (!netif_running(ndev))
2038 return 0;
2039
2040 spin_lock_irqsave(&priv->lock, flags);
2041
2042 /* Power Down bit, into the PM register, is cleared
2043 * automatically as soon as a magic packet or a Wake-up frame
2044 * is received. Anyway, it's better to manually clear
2045 * this bit because it can generate problems while resuming
2046 * from another devices (e.g. serial console). */
2047 if (device_may_wakeup(priv->device))
2048 priv->hw->mac->pmt(priv->ioaddr, 0);
2049 else
2050 /* enable the clk prevously disabled */
2051 stmmac_clk_enable(priv);
2052
2053 netif_device_attach(ndev);
2054
2055 /* Enable the MAC and DMA */
2056 stmmac_set_mac(priv->ioaddr, true);
2057 priv->hw->dma->start_tx(priv->ioaddr);
2058 priv->hw->dma->start_rx(priv->ioaddr);
2059
2060 #ifdef CONFIG_STMMAC_TIMER
2061 if (likely(priv->tm->enable))
2062 priv->tm->timer_start(tmrate);
2063 #endif
2064 napi_enable(&priv->napi);
2065
2066 netif_start_queue(ndev);
2067
2068 spin_unlock_irqrestore(&priv->lock, flags);
2069
2070 if (priv->phydev)
2071 phy_start(priv->phydev);
2072
2073 return 0;
2074 }
2075
2076 int stmmac_freeze(struct net_device *ndev)
2077 {
2078 if (!ndev || !netif_running(ndev))
2079 return 0;
2080
2081 return stmmac_release(ndev);
2082 }
2083
2084 int stmmac_restore(struct net_device *ndev)
2085 {
2086 if (!ndev || !netif_running(ndev))
2087 return 0;
2088
2089 return stmmac_open(ndev);
2090 }
2091 #endif /* CONFIG_PM */
2092
2093 #ifndef MODULE
2094 static int __init stmmac_cmdline_opt(char *str)
2095 {
2096 char *opt;
2097
2098 if (!str || !*str)
2099 return -EINVAL;
2100 while ((opt = strsep(&str, ",")) != NULL) {
2101 if (!strncmp(opt, "debug:", 6)) {
2102 if (strict_strtoul(opt + 6, 0, (unsigned long *)&debug))
2103 goto err;
2104 } else if (!strncmp(opt, "phyaddr:", 8)) {
2105 if (strict_strtoul(opt + 8, 0,
2106 (unsigned long *)&phyaddr))
2107 goto err;
2108 } else if (!strncmp(opt, "dma_txsize:", 11)) {
2109 if (strict_strtoul(opt + 11, 0,
2110 (unsigned long *)&dma_txsize))
2111 goto err;
2112 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
2113 if (strict_strtoul(opt + 11, 0,
2114 (unsigned long *)&dma_rxsize))
2115 goto err;
2116 } else if (!strncmp(opt, "buf_sz:", 7)) {
2117 if (strict_strtoul(opt + 7, 0,
2118 (unsigned long *)&buf_sz))
2119 goto err;
2120 } else if (!strncmp(opt, "tc:", 3)) {
2121 if (strict_strtoul(opt + 3, 0, (unsigned long *)&tc))
2122 goto err;
2123 } else if (!strncmp(opt, "watchdog:", 9)) {
2124 if (strict_strtoul(opt + 9, 0,
2125 (unsigned long *)&watchdog))
2126 goto err;
2127 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
2128 if (strict_strtoul(opt + 10, 0,
2129 (unsigned long *)&flow_ctrl))
2130 goto err;
2131 } else if (!strncmp(opt, "pause:", 6)) {
2132 if (strict_strtoul(opt + 6, 0, (unsigned long *)&pause))
2133 goto err;
2134 #ifdef CONFIG_STMMAC_TIMER
2135 } else if (!strncmp(opt, "tmrate:", 7)) {
2136 if (strict_strtoul(opt + 7, 0,
2137 (unsigned long *)&tmrate))
2138 goto err;
2139 #endif
2140 }
2141 }
2142 return 0;
2143
2144 err:
2145 pr_err("%s: ERROR broken module parameter conversion", __func__);
2146 return -EINVAL;
2147 }
2148
2149 __setup("stmmaceth=", stmmac_cmdline_opt);
2150 #endif
2151
2152 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2153 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2154 MODULE_LICENSE("GPL");
This page took 0.12342 seconds and 5 git commands to generate.