Merge tag 'for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon/linux...
[deliverable/linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55
56 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
57
58 /* Module parameters */
59 #define TX_TIMEO 5000
60 static int watchdog = TX_TIMEO;
61 module_param(watchdog, int, S_IRUGO | S_IWUSR);
62 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
63
64 static int debug = -1;
65 module_param(debug, int, S_IRUGO | S_IWUSR);
66 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
67
68 static int phyaddr = -1;
69 module_param(phyaddr, int, S_IRUGO);
70 MODULE_PARM_DESC(phyaddr, "Physical device address");
71
72 #define DMA_TX_SIZE 256
73 static int dma_txsize = DMA_TX_SIZE;
74 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
75 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
76
77 #define DMA_RX_SIZE 256
78 static int dma_rxsize = DMA_RX_SIZE;
79 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
81
82 static int flow_ctrl = FLOW_OFF;
83 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
85
86 static int pause = PAUSE_TIME;
87 module_param(pause, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
89
90 #define TC_DEFAULT 64
91 static int tc = TC_DEFAULT;
92 module_param(tc, int, S_IRUGO | S_IWUSR);
93 MODULE_PARM_DESC(tc, "DMA threshold control value");
94
95 #define DEFAULT_BUFSIZE 1536
96 static int buf_sz = DEFAULT_BUFSIZE;
97 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
99
100 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
101 NETIF_MSG_LINK | NETIF_MSG_IFUP |
102 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
103
104 #define STMMAC_DEFAULT_LPI_TIMER 1000
105 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
106 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
108 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
109
110 /* By default the driver will use the ring mode to manage tx and rx descriptors
111 * but passing this value so user can force to use the chain instead of the ring
112 */
113 static unsigned int chain_mode;
114 module_param(chain_mode, int, S_IRUGO);
115 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
116
117 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
118
119 #ifdef CONFIG_DEBUG_FS
120 static int stmmac_init_fs(struct net_device *dev);
121 static void stmmac_exit_fs(void);
122 #endif
123
124 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
125
126 /**
127 * stmmac_verify_args - verify the driver parameters.
128 * Description: it checks the driver parameters and set a default in case of
129 * errors.
130 */
131 static void stmmac_verify_args(void)
132 {
133 if (unlikely(watchdog < 0))
134 watchdog = TX_TIMEO;
135 if (unlikely(dma_rxsize < 0))
136 dma_rxsize = DMA_RX_SIZE;
137 if (unlikely(dma_txsize < 0))
138 dma_txsize = DMA_TX_SIZE;
139 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
140 buf_sz = DEFAULT_BUFSIZE;
141 if (unlikely(flow_ctrl > 1))
142 flow_ctrl = FLOW_AUTO;
143 else if (likely(flow_ctrl < 0))
144 flow_ctrl = FLOW_OFF;
145 if (unlikely((pause < 0) || (pause > 0xffff)))
146 pause = PAUSE_TIME;
147 if (eee_timer < 0)
148 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
149 }
150
151 /**
152 * stmmac_clk_csr_set - dynamically set the MDC clock
153 * @priv: driver private structure
154 * Description: this is to dynamically set the MDC clock according to the csr
155 * clock input.
156 * Note:
157 * If a specific clk_csr value is passed from the platform
158 * this means that the CSR Clock Range selection cannot be
159 * changed at run-time and it is fixed (as reported in the driver
160 * documentation). Viceversa the driver will try to set the MDC
161 * clock dynamically according to the actual clock input.
162 */
163 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
164 {
165 u32 clk_rate;
166
167 clk_rate = clk_get_rate(priv->stmmac_clk);
168
169 /* Platform provided default clk_csr would be assumed valid
170 * for all other cases except for the below mentioned ones.
171 * For values higher than the IEEE 802.3 specified frequency
172 * we can not estimate the proper divider as it is not known
173 * the frequency of clk_csr_i. So we do not change the default
174 * divider.
175 */
176 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
177 if (clk_rate < CSR_F_35M)
178 priv->clk_csr = STMMAC_CSR_20_35M;
179 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
180 priv->clk_csr = STMMAC_CSR_35_60M;
181 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
182 priv->clk_csr = STMMAC_CSR_60_100M;
183 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
184 priv->clk_csr = STMMAC_CSR_100_150M;
185 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
186 priv->clk_csr = STMMAC_CSR_150_250M;
187 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
188 priv->clk_csr = STMMAC_CSR_250_300M;
189 }
190 }
191
192 static void print_pkt(unsigned char *buf, int len)
193 {
194 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
195 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
196 }
197
198 /* minimum number of free TX descriptors required to wake up TX process */
199 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
200
201 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
202 {
203 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
204 }
205
206 /**
207 * stmmac_hw_fix_mac_speed - callback for speed selection
208 * @priv: driver private structure
209 * Description: on some platforms (e.g. ST), some HW system configuraton
210 * registers have to be set according to the link speed negotiated.
211 */
212 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
213 {
214 struct phy_device *phydev = priv->phydev;
215
216 if (likely(priv->plat->fix_mac_speed))
217 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
218 }
219
220 /**
221 * stmmac_enable_eee_mode - check and enter in LPI mode
222 * @priv: driver private structure
223 * Description: this function is to verify and enter in LPI mode in case of
224 * EEE.
225 */
226 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
227 {
228 /* Check and enter in LPI mode */
229 if ((priv->dirty_tx == priv->cur_tx) &&
230 (priv->tx_path_in_lpi_mode == false))
231 priv->hw->mac->set_eee_mode(priv->hw);
232 }
233
234 /**
235 * stmmac_disable_eee_mode - disable and exit from LPI mode
236 * @priv: driver private structure
237 * Description: this function is to exit and disable EEE in case of
238 * LPI state is true. This is called by the xmit.
239 */
240 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
241 {
242 priv->hw->mac->reset_eee_mode(priv->hw);
243 del_timer_sync(&priv->eee_ctrl_timer);
244 priv->tx_path_in_lpi_mode = false;
245 }
246
247 /**
248 * stmmac_eee_ctrl_timer - EEE TX SW timer.
249 * @arg : data hook
250 * Description:
251 * if there is no data transfer and if we are not in LPI state,
252 * then MAC Transmitter can be moved to LPI state.
253 */
254 static void stmmac_eee_ctrl_timer(unsigned long arg)
255 {
256 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
257
258 stmmac_enable_eee_mode(priv);
259 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
260 }
261
262 /**
263 * stmmac_eee_init - init EEE
264 * @priv: driver private structure
265 * Description:
266 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
267 * can also manage EEE, this function enable the LPI state and start related
268 * timer.
269 */
270 bool stmmac_eee_init(struct stmmac_priv *priv)
271 {
272 char *phy_bus_name = priv->plat->phy_bus_name;
273 unsigned long flags;
274 bool ret = false;
275
276 /* Using PCS we cannot dial with the phy registers at this stage
277 * so we do not support extra feature like EEE.
278 */
279 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
280 (priv->pcs == STMMAC_PCS_RTBI))
281 goto out;
282
283 /* Never init EEE in case of a switch is attached */
284 if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
285 goto out;
286
287 /* MAC core supports the EEE feature. */
288 if (priv->dma_cap.eee) {
289 int tx_lpi_timer = priv->tx_lpi_timer;
290
291 /* Check if the PHY supports EEE */
292 if (phy_init_eee(priv->phydev, 1)) {
293 /* To manage at run-time if the EEE cannot be supported
294 * anymore (for example because the lp caps have been
295 * changed).
296 * In that case the driver disable own timers.
297 */
298 spin_lock_irqsave(&priv->lock, flags);
299 if (priv->eee_active) {
300 pr_debug("stmmac: disable EEE\n");
301 del_timer_sync(&priv->eee_ctrl_timer);
302 priv->hw->mac->set_eee_timer(priv->hw, 0,
303 tx_lpi_timer);
304 }
305 priv->eee_active = 0;
306 spin_unlock_irqrestore(&priv->lock, flags);
307 goto out;
308 }
309 /* Activate the EEE and start timers */
310 spin_lock_irqsave(&priv->lock, flags);
311 if (!priv->eee_active) {
312 priv->eee_active = 1;
313 setup_timer(&priv->eee_ctrl_timer,
314 stmmac_eee_ctrl_timer,
315 (unsigned long)priv);
316 mod_timer(&priv->eee_ctrl_timer,
317 STMMAC_LPI_T(eee_timer));
318
319 priv->hw->mac->set_eee_timer(priv->hw,
320 STMMAC_DEFAULT_LIT_LS,
321 tx_lpi_timer);
322 }
323 /* Set HW EEE according to the speed */
324 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
325
326 ret = true;
327 spin_unlock_irqrestore(&priv->lock, flags);
328
329 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
330 }
331 out:
332 return ret;
333 }
334
335 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
336 * @priv: driver private structure
337 * @entry : descriptor index to be used.
338 * @skb : the socket buffer
339 * Description :
340 * This function will read timestamp from the descriptor & pass it to stack.
341 * and also perform some sanity checks.
342 */
343 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
344 unsigned int entry, struct sk_buff *skb)
345 {
346 struct skb_shared_hwtstamps shhwtstamp;
347 u64 ns;
348 void *desc = NULL;
349
350 if (!priv->hwts_tx_en)
351 return;
352
353 /* exit if skb doesn't support hw tstamp */
354 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
355 return;
356
357 if (priv->adv_ts)
358 desc = (priv->dma_etx + entry);
359 else
360 desc = (priv->dma_tx + entry);
361
362 /* check tx tstamp status */
363 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
364 return;
365
366 /* get the valid tstamp */
367 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
368
369 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
370 shhwtstamp.hwtstamp = ns_to_ktime(ns);
371 /* pass tstamp to stack */
372 skb_tstamp_tx(skb, &shhwtstamp);
373
374 return;
375 }
376
377 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
378 * @priv: driver private structure
379 * @entry : descriptor index to be used.
380 * @skb : the socket buffer
381 * Description :
382 * This function will read received packet's timestamp from the descriptor
383 * and pass it to stack. It also perform some sanity checks.
384 */
385 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
386 unsigned int entry, struct sk_buff *skb)
387 {
388 struct skb_shared_hwtstamps *shhwtstamp = NULL;
389 u64 ns;
390 void *desc = NULL;
391
392 if (!priv->hwts_rx_en)
393 return;
394
395 if (priv->adv_ts)
396 desc = (priv->dma_erx + entry);
397 else
398 desc = (priv->dma_rx + entry);
399
400 /* exit if rx tstamp is not valid */
401 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
402 return;
403
404 /* get valid tstamp */
405 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
406 shhwtstamp = skb_hwtstamps(skb);
407 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
408 shhwtstamp->hwtstamp = ns_to_ktime(ns);
409 }
410
411 /**
412 * stmmac_hwtstamp_ioctl - control hardware timestamping.
413 * @dev: device pointer.
414 * @ifr: An IOCTL specefic structure, that can contain a pointer to
415 * a proprietary structure used to pass information to the driver.
416 * Description:
417 * This function configures the MAC to enable/disable both outgoing(TX)
418 * and incoming(RX) packets time stamping based on user input.
419 * Return Value:
420 * 0 on success and an appropriate -ve integer on failure.
421 */
422 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
423 {
424 struct stmmac_priv *priv = netdev_priv(dev);
425 struct hwtstamp_config config;
426 struct timespec now;
427 u64 temp = 0;
428 u32 ptp_v2 = 0;
429 u32 tstamp_all = 0;
430 u32 ptp_over_ipv4_udp = 0;
431 u32 ptp_over_ipv6_udp = 0;
432 u32 ptp_over_ethernet = 0;
433 u32 snap_type_sel = 0;
434 u32 ts_master_en = 0;
435 u32 ts_event_en = 0;
436 u32 value = 0;
437
438 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
439 netdev_alert(priv->dev, "No support for HW time stamping\n");
440 priv->hwts_tx_en = 0;
441 priv->hwts_rx_en = 0;
442
443 return -EOPNOTSUPP;
444 }
445
446 if (copy_from_user(&config, ifr->ifr_data,
447 sizeof(struct hwtstamp_config)))
448 return -EFAULT;
449
450 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
451 __func__, config.flags, config.tx_type, config.rx_filter);
452
453 /* reserved for future extensions */
454 if (config.flags)
455 return -EINVAL;
456
457 if (config.tx_type != HWTSTAMP_TX_OFF &&
458 config.tx_type != HWTSTAMP_TX_ON)
459 return -ERANGE;
460
461 if (priv->adv_ts) {
462 switch (config.rx_filter) {
463 case HWTSTAMP_FILTER_NONE:
464 /* time stamp no incoming packet at all */
465 config.rx_filter = HWTSTAMP_FILTER_NONE;
466 break;
467
468 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
469 /* PTP v1, UDP, any kind of event packet */
470 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
471 /* take time stamp for all event messages */
472 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
473
474 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
475 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
476 break;
477
478 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
479 /* PTP v1, UDP, Sync packet */
480 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
481 /* take time stamp for SYNC messages only */
482 ts_event_en = PTP_TCR_TSEVNTENA;
483
484 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
485 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
486 break;
487
488 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
489 /* PTP v1, UDP, Delay_req packet */
490 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
491 /* take time stamp for Delay_Req messages only */
492 ts_master_en = PTP_TCR_TSMSTRENA;
493 ts_event_en = PTP_TCR_TSEVNTENA;
494
495 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
496 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
497 break;
498
499 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
500 /* PTP v2, UDP, any kind of event packet */
501 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
502 ptp_v2 = PTP_TCR_TSVER2ENA;
503 /* take time stamp for all event messages */
504 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
505
506 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
507 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
508 break;
509
510 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
511 /* PTP v2, UDP, Sync packet */
512 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
513 ptp_v2 = PTP_TCR_TSVER2ENA;
514 /* take time stamp for SYNC messages only */
515 ts_event_en = PTP_TCR_TSEVNTENA;
516
517 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
518 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
519 break;
520
521 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
522 /* PTP v2, UDP, Delay_req packet */
523 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
524 ptp_v2 = PTP_TCR_TSVER2ENA;
525 /* take time stamp for Delay_Req messages only */
526 ts_master_en = PTP_TCR_TSMSTRENA;
527 ts_event_en = PTP_TCR_TSEVNTENA;
528
529 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
530 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
531 break;
532
533 case HWTSTAMP_FILTER_PTP_V2_EVENT:
534 /* PTP v2/802.AS1 any layer, any kind of event packet */
535 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
536 ptp_v2 = PTP_TCR_TSVER2ENA;
537 /* take time stamp for all event messages */
538 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
539
540 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
541 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
542 ptp_over_ethernet = PTP_TCR_TSIPENA;
543 break;
544
545 case HWTSTAMP_FILTER_PTP_V2_SYNC:
546 /* PTP v2/802.AS1, any layer, Sync packet */
547 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
548 ptp_v2 = PTP_TCR_TSVER2ENA;
549 /* take time stamp for SYNC messages only */
550 ts_event_en = PTP_TCR_TSEVNTENA;
551
552 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
553 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
554 ptp_over_ethernet = PTP_TCR_TSIPENA;
555 break;
556
557 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
558 /* PTP v2/802.AS1, any layer, Delay_req packet */
559 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
560 ptp_v2 = PTP_TCR_TSVER2ENA;
561 /* take time stamp for Delay_Req messages only */
562 ts_master_en = PTP_TCR_TSMSTRENA;
563 ts_event_en = PTP_TCR_TSEVNTENA;
564
565 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
566 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
567 ptp_over_ethernet = PTP_TCR_TSIPENA;
568 break;
569
570 case HWTSTAMP_FILTER_ALL:
571 /* time stamp any incoming packet */
572 config.rx_filter = HWTSTAMP_FILTER_ALL;
573 tstamp_all = PTP_TCR_TSENALL;
574 break;
575
576 default:
577 return -ERANGE;
578 }
579 } else {
580 switch (config.rx_filter) {
581 case HWTSTAMP_FILTER_NONE:
582 config.rx_filter = HWTSTAMP_FILTER_NONE;
583 break;
584 default:
585 /* PTP v1, UDP, any kind of event packet */
586 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
587 break;
588 }
589 }
590 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
591 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
592
593 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
594 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
595 else {
596 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
597 tstamp_all | ptp_v2 | ptp_over_ethernet |
598 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
599 ts_master_en | snap_type_sel);
600
601 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
602
603 /* program Sub Second Increment reg */
604 priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
605
606 /* calculate default added value:
607 * formula is :
608 * addend = (2^32)/freq_div_ratio;
609 * where, freq_div_ratio = clk_ptp_ref_i/50MHz
610 * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i;
611 * NOTE: clk_ptp_ref_i should be >= 50MHz to
612 * achive 20ns accuracy.
613 *
614 * 2^x * y == (y << x), hence
615 * 2^32 * 50000000 ==> (50000000 << 32)
616 */
617 temp = (u64) (50000000ULL << 32);
618 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
619 priv->hw->ptp->config_addend(priv->ioaddr,
620 priv->default_addend);
621
622 /* initialize system time */
623 getnstimeofday(&now);
624 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
625 now.tv_nsec);
626 }
627
628 return copy_to_user(ifr->ifr_data, &config,
629 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
630 }
631
632 /**
633 * stmmac_init_ptp - init PTP
634 * @priv: driver private structure
635 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
636 * This is done by looking at the HW cap. register.
637 * This function also registers the ptp driver.
638 */
639 static int stmmac_init_ptp(struct stmmac_priv *priv)
640 {
641 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
642 return -EOPNOTSUPP;
643
644 /* Fall-back to main clock in case of no PTP ref is passed */
645 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
646 if (IS_ERR(priv->clk_ptp_ref)) {
647 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
648 priv->clk_ptp_ref = NULL;
649 } else {
650 clk_prepare_enable(priv->clk_ptp_ref);
651 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
652 }
653
654 priv->adv_ts = 0;
655 if (priv->dma_cap.atime_stamp && priv->extend_desc)
656 priv->adv_ts = 1;
657
658 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
659 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
660
661 if (netif_msg_hw(priv) && priv->adv_ts)
662 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
663
664 priv->hw->ptp = &stmmac_ptp;
665 priv->hwts_tx_en = 0;
666 priv->hwts_rx_en = 0;
667
668 return stmmac_ptp_register(priv);
669 }
670
671 static void stmmac_release_ptp(struct stmmac_priv *priv)
672 {
673 if (priv->clk_ptp_ref)
674 clk_disable_unprepare(priv->clk_ptp_ref);
675 stmmac_ptp_unregister(priv);
676 }
677
678 /**
679 * stmmac_adjust_link - adjusts the link parameters
680 * @dev: net device structure
681 * Description: this is the helper called by the physical abstraction layer
682 * drivers to communicate the phy link status. According the speed and duplex
683 * this driver can invoke registered glue-logic as well.
684 * It also invoke the eee initialization because it could happen when switch
685 * on different networks (that are eee capable).
686 */
687 static void stmmac_adjust_link(struct net_device *dev)
688 {
689 struct stmmac_priv *priv = netdev_priv(dev);
690 struct phy_device *phydev = priv->phydev;
691 unsigned long flags;
692 int new_state = 0;
693 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
694
695 if (phydev == NULL)
696 return;
697
698 spin_lock_irqsave(&priv->lock, flags);
699
700 if (phydev->link) {
701 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
702
703 /* Now we make sure that we can be in full duplex mode.
704 * If not, we operate in half-duplex mode. */
705 if (phydev->duplex != priv->oldduplex) {
706 new_state = 1;
707 if (!(phydev->duplex))
708 ctrl &= ~priv->hw->link.duplex;
709 else
710 ctrl |= priv->hw->link.duplex;
711 priv->oldduplex = phydev->duplex;
712 }
713 /* Flow Control operation */
714 if (phydev->pause)
715 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
716 fc, pause_time);
717
718 if (phydev->speed != priv->speed) {
719 new_state = 1;
720 switch (phydev->speed) {
721 case 1000:
722 if (likely(priv->plat->has_gmac))
723 ctrl &= ~priv->hw->link.port;
724 stmmac_hw_fix_mac_speed(priv);
725 break;
726 case 100:
727 case 10:
728 if (priv->plat->has_gmac) {
729 ctrl |= priv->hw->link.port;
730 if (phydev->speed == SPEED_100) {
731 ctrl |= priv->hw->link.speed;
732 } else {
733 ctrl &= ~(priv->hw->link.speed);
734 }
735 } else {
736 ctrl &= ~priv->hw->link.port;
737 }
738 stmmac_hw_fix_mac_speed(priv);
739 break;
740 default:
741 if (netif_msg_link(priv))
742 pr_warn("%s: Speed (%d) not 10/100\n",
743 dev->name, phydev->speed);
744 break;
745 }
746
747 priv->speed = phydev->speed;
748 }
749
750 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
751
752 if (!priv->oldlink) {
753 new_state = 1;
754 priv->oldlink = 1;
755 }
756 } else if (priv->oldlink) {
757 new_state = 1;
758 priv->oldlink = 0;
759 priv->speed = 0;
760 priv->oldduplex = -1;
761 }
762
763 if (new_state && netif_msg_link(priv))
764 phy_print_status(phydev);
765
766 spin_unlock_irqrestore(&priv->lock, flags);
767
768 /* At this stage, it could be needed to setup the EEE or adjust some
769 * MAC related HW registers.
770 */
771 priv->eee_enabled = stmmac_eee_init(priv);
772 }
773
774 /**
775 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
776 * @priv: driver private structure
777 * Description: this is to verify if the HW supports the PCS.
778 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
779 * configured for the TBI, RTBI, or SGMII PHY interface.
780 */
781 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
782 {
783 int interface = priv->plat->interface;
784
785 if (priv->dma_cap.pcs) {
786 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
787 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
788 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
789 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
790 pr_debug("STMMAC: PCS RGMII support enable\n");
791 priv->pcs = STMMAC_PCS_RGMII;
792 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
793 pr_debug("STMMAC: PCS SGMII support enable\n");
794 priv->pcs = STMMAC_PCS_SGMII;
795 }
796 }
797 }
798
799 /**
800 * stmmac_init_phy - PHY initialization
801 * @dev: net device structure
802 * Description: it initializes the driver's PHY state, and attaches the PHY
803 * to the mac driver.
804 * Return value:
805 * 0 on success
806 */
807 static int stmmac_init_phy(struct net_device *dev)
808 {
809 struct stmmac_priv *priv = netdev_priv(dev);
810 struct phy_device *phydev;
811 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
812 char bus_id[MII_BUS_ID_SIZE];
813 int interface = priv->plat->interface;
814 int max_speed = priv->plat->max_speed;
815 priv->oldlink = 0;
816 priv->speed = 0;
817 priv->oldduplex = -1;
818
819 if (priv->plat->phy_bus_name)
820 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
821 priv->plat->phy_bus_name, priv->plat->bus_id);
822 else
823 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
824 priv->plat->bus_id);
825
826 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
827 priv->plat->phy_addr);
828 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id_fmt);
829
830 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
831
832 if (IS_ERR(phydev)) {
833 pr_err("%s: Could not attach to PHY\n", dev->name);
834 return PTR_ERR(phydev);
835 }
836
837 /* Stop Advertising 1000BASE Capability if interface is not GMII */
838 if ((interface == PHY_INTERFACE_MODE_MII) ||
839 (interface == PHY_INTERFACE_MODE_RMII) ||
840 (max_speed < 1000 && max_speed > 0))
841 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
842 SUPPORTED_1000baseT_Full);
843
844 /*
845 * Broken HW is sometimes missing the pull-up resistor on the
846 * MDIO line, which results in reads to non-existent devices returning
847 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
848 * device as well.
849 * Note: phydev->phy_id is the result of reading the UID PHY registers.
850 */
851 if (phydev->phy_id == 0) {
852 phy_disconnect(phydev);
853 return -ENODEV;
854 }
855 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
856 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
857
858 priv->phydev = phydev;
859
860 return 0;
861 }
862
863 /**
864 * stmmac_display_ring - display ring
865 * @head: pointer to the head of the ring passed.
866 * @size: size of the ring.
867 * @extend_desc: to verify if extended descriptors are used.
868 * Description: display the control/status and buffer descriptors.
869 */
870 static void stmmac_display_ring(void *head, int size, int extend_desc)
871 {
872 int i;
873 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
874 struct dma_desc *p = (struct dma_desc *)head;
875
876 for (i = 0; i < size; i++) {
877 u64 x;
878 if (extend_desc) {
879 x = *(u64 *) ep;
880 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
881 i, (unsigned int)virt_to_phys(ep),
882 (unsigned int)x, (unsigned int)(x >> 32),
883 ep->basic.des2, ep->basic.des3);
884 ep++;
885 } else {
886 x = *(u64 *) p;
887 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
888 i, (unsigned int)virt_to_phys(p),
889 (unsigned int)x, (unsigned int)(x >> 32),
890 p->des2, p->des3);
891 p++;
892 }
893 pr_info("\n");
894 }
895 }
896
897 static void stmmac_display_rings(struct stmmac_priv *priv)
898 {
899 unsigned int txsize = priv->dma_tx_size;
900 unsigned int rxsize = priv->dma_rx_size;
901
902 if (priv->extend_desc) {
903 pr_info("Extended RX descriptor ring:\n");
904 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
905 pr_info("Extended TX descriptor ring:\n");
906 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
907 } else {
908 pr_info("RX descriptor ring:\n");
909 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
910 pr_info("TX descriptor ring:\n");
911 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
912 }
913 }
914
915 static int stmmac_set_bfsize(int mtu, int bufsize)
916 {
917 int ret = bufsize;
918
919 if (mtu >= BUF_SIZE_4KiB)
920 ret = BUF_SIZE_8KiB;
921 else if (mtu >= BUF_SIZE_2KiB)
922 ret = BUF_SIZE_4KiB;
923 else if (mtu > DEFAULT_BUFSIZE)
924 ret = BUF_SIZE_2KiB;
925 else
926 ret = DEFAULT_BUFSIZE;
927
928 return ret;
929 }
930
931 /**
932 * stmmac_clear_descriptors - clear descriptors
933 * @priv: driver private structure
934 * Description: this function is called to clear the tx and rx descriptors
935 * in case of both basic and extended descriptors are used.
936 */
937 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
938 {
939 int i;
940 unsigned int txsize = priv->dma_tx_size;
941 unsigned int rxsize = priv->dma_rx_size;
942
943 /* Clear the Rx/Tx descriptors */
944 for (i = 0; i < rxsize; i++)
945 if (priv->extend_desc)
946 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
947 priv->use_riwt, priv->mode,
948 (i == rxsize - 1));
949 else
950 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
951 priv->use_riwt, priv->mode,
952 (i == rxsize - 1));
953 for (i = 0; i < txsize; i++)
954 if (priv->extend_desc)
955 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
956 priv->mode,
957 (i == txsize - 1));
958 else
959 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
960 priv->mode,
961 (i == txsize - 1));
962 }
963
964 /**
965 * stmmac_init_rx_buffers - init the RX descriptor buffer.
966 * @priv: driver private structure
967 * @p: descriptor pointer
968 * @i: descriptor index
969 * @flags: gfp flag.
970 * Description: this function is called to allocate a receive buffer, perform
971 * the DMA mapping and init the descriptor.
972 */
973 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
974 int i, gfp_t flags)
975 {
976 struct sk_buff *skb;
977
978 skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
979 flags);
980 if (!skb) {
981 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
982 return -ENOMEM;
983 }
984 skb_reserve(skb, NET_IP_ALIGN);
985 priv->rx_skbuff[i] = skb;
986 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
987 priv->dma_buf_sz,
988 DMA_FROM_DEVICE);
989 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
990 pr_err("%s: DMA mapping error\n", __func__);
991 dev_kfree_skb_any(skb);
992 return -EINVAL;
993 }
994
995 p->des2 = priv->rx_skbuff_dma[i];
996
997 if ((priv->hw->mode->init_desc3) &&
998 (priv->dma_buf_sz == BUF_SIZE_16KiB))
999 priv->hw->mode->init_desc3(p);
1000
1001 return 0;
1002 }
1003
1004 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1005 {
1006 if (priv->rx_skbuff[i]) {
1007 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1008 priv->dma_buf_sz, DMA_FROM_DEVICE);
1009 dev_kfree_skb_any(priv->rx_skbuff[i]);
1010 }
1011 priv->rx_skbuff[i] = NULL;
1012 }
1013
1014 /**
1015 * init_dma_desc_rings - init the RX/TX descriptor rings
1016 * @dev: net device structure
1017 * @flags: gfp flag.
1018 * Description: this function initializes the DMA RX/TX descriptors
1019 * and allocates the socket buffers. It suppors the chained and ring
1020 * modes.
1021 */
1022 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1023 {
1024 int i;
1025 struct stmmac_priv *priv = netdev_priv(dev);
1026 unsigned int txsize = priv->dma_tx_size;
1027 unsigned int rxsize = priv->dma_rx_size;
1028 unsigned int bfsize = 0;
1029 int ret = -ENOMEM;
1030
1031 if (priv->hw->mode->set_16kib_bfsize)
1032 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1033
1034 if (bfsize < BUF_SIZE_16KiB)
1035 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1036
1037 priv->dma_buf_sz = bfsize;
1038
1039 if (netif_msg_probe(priv))
1040 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1041 txsize, rxsize, bfsize);
1042
1043 if (netif_msg_probe(priv)) {
1044 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1045 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1046
1047 /* RX INITIALIZATION */
1048 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1049 }
1050 for (i = 0; i < rxsize; i++) {
1051 struct dma_desc *p;
1052 if (priv->extend_desc)
1053 p = &((priv->dma_erx + i)->basic);
1054 else
1055 p = priv->dma_rx + i;
1056
1057 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1058 if (ret)
1059 goto err_init_rx_buffers;
1060
1061 if (netif_msg_probe(priv))
1062 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1063 priv->rx_skbuff[i]->data,
1064 (unsigned int)priv->rx_skbuff_dma[i]);
1065 }
1066 priv->cur_rx = 0;
1067 priv->dirty_rx = (unsigned int)(i - rxsize);
1068 buf_sz = bfsize;
1069
1070 /* Setup the chained descriptor addresses */
1071 if (priv->mode == STMMAC_CHAIN_MODE) {
1072 if (priv->extend_desc) {
1073 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1074 rxsize, 1);
1075 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1076 txsize, 1);
1077 } else {
1078 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1079 rxsize, 0);
1080 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1081 txsize, 0);
1082 }
1083 }
1084
1085 /* TX INITIALIZATION */
1086 for (i = 0; i < txsize; i++) {
1087 struct dma_desc *p;
1088 if (priv->extend_desc)
1089 p = &((priv->dma_etx + i)->basic);
1090 else
1091 p = priv->dma_tx + i;
1092 p->des2 = 0;
1093 priv->tx_skbuff_dma[i].buf = 0;
1094 priv->tx_skbuff_dma[i].map_as_page = false;
1095 priv->tx_skbuff[i] = NULL;
1096 }
1097
1098 priv->dirty_tx = 0;
1099 priv->cur_tx = 0;
1100 netdev_reset_queue(priv->dev);
1101
1102 stmmac_clear_descriptors(priv);
1103
1104 if (netif_msg_hw(priv))
1105 stmmac_display_rings(priv);
1106
1107 return 0;
1108 err_init_rx_buffers:
1109 while (--i >= 0)
1110 stmmac_free_rx_buffers(priv, i);
1111 return ret;
1112 }
1113
1114 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1115 {
1116 int i;
1117
1118 for (i = 0; i < priv->dma_rx_size; i++)
1119 stmmac_free_rx_buffers(priv, i);
1120 }
1121
1122 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1123 {
1124 int i;
1125
1126 for (i = 0; i < priv->dma_tx_size; i++) {
1127 struct dma_desc *p;
1128
1129 if (priv->extend_desc)
1130 p = &((priv->dma_etx + i)->basic);
1131 else
1132 p = priv->dma_tx + i;
1133
1134 if (priv->tx_skbuff_dma[i].buf) {
1135 if (priv->tx_skbuff_dma[i].map_as_page)
1136 dma_unmap_page(priv->device,
1137 priv->tx_skbuff_dma[i].buf,
1138 priv->hw->desc->get_tx_len(p),
1139 DMA_TO_DEVICE);
1140 else
1141 dma_unmap_single(priv->device,
1142 priv->tx_skbuff_dma[i].buf,
1143 priv->hw->desc->get_tx_len(p),
1144 DMA_TO_DEVICE);
1145 }
1146
1147 if (priv->tx_skbuff[i] != NULL) {
1148 dev_kfree_skb_any(priv->tx_skbuff[i]);
1149 priv->tx_skbuff[i] = NULL;
1150 priv->tx_skbuff_dma[i].buf = 0;
1151 priv->tx_skbuff_dma[i].map_as_page = false;
1152 }
1153 }
1154 }
1155
1156 /**
1157 * alloc_dma_desc_resources - alloc TX/RX resources.
1158 * @priv: private structure
1159 * Description: according to which descriptor can be used (extend or basic)
1160 * this function allocates the resources for TX and RX paths. In case of
1161 * reception, for example, it pre-allocated the RX socket buffer in order to
1162 * allow zero-copy mechanism.
1163 */
1164 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1165 {
1166 unsigned int txsize = priv->dma_tx_size;
1167 unsigned int rxsize = priv->dma_rx_size;
1168 int ret = -ENOMEM;
1169
1170 priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1171 GFP_KERNEL);
1172 if (!priv->rx_skbuff_dma)
1173 return -ENOMEM;
1174
1175 priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1176 GFP_KERNEL);
1177 if (!priv->rx_skbuff)
1178 goto err_rx_skbuff;
1179
1180 priv->tx_skbuff_dma = kmalloc_array(txsize,
1181 sizeof(*priv->tx_skbuff_dma),
1182 GFP_KERNEL);
1183 if (!priv->tx_skbuff_dma)
1184 goto err_tx_skbuff_dma;
1185
1186 priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1187 GFP_KERNEL);
1188 if (!priv->tx_skbuff)
1189 goto err_tx_skbuff;
1190
1191 if (priv->extend_desc) {
1192 priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1193 sizeof(struct
1194 dma_extended_desc),
1195 &priv->dma_rx_phy,
1196 GFP_KERNEL);
1197 if (!priv->dma_erx)
1198 goto err_dma;
1199
1200 priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1201 sizeof(struct
1202 dma_extended_desc),
1203 &priv->dma_tx_phy,
1204 GFP_KERNEL);
1205 if (!priv->dma_etx) {
1206 dma_free_coherent(priv->device, priv->dma_rx_size *
1207 sizeof(struct dma_extended_desc),
1208 priv->dma_erx, priv->dma_rx_phy);
1209 goto err_dma;
1210 }
1211 } else {
1212 priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1213 sizeof(struct dma_desc),
1214 &priv->dma_rx_phy,
1215 GFP_KERNEL);
1216 if (!priv->dma_rx)
1217 goto err_dma;
1218
1219 priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1220 sizeof(struct dma_desc),
1221 &priv->dma_tx_phy,
1222 GFP_KERNEL);
1223 if (!priv->dma_tx) {
1224 dma_free_coherent(priv->device, priv->dma_rx_size *
1225 sizeof(struct dma_desc),
1226 priv->dma_rx, priv->dma_rx_phy);
1227 goto err_dma;
1228 }
1229 }
1230
1231 return 0;
1232
1233 err_dma:
1234 kfree(priv->tx_skbuff);
1235 err_tx_skbuff:
1236 kfree(priv->tx_skbuff_dma);
1237 err_tx_skbuff_dma:
1238 kfree(priv->rx_skbuff);
1239 err_rx_skbuff:
1240 kfree(priv->rx_skbuff_dma);
1241 return ret;
1242 }
1243
1244 static void free_dma_desc_resources(struct stmmac_priv *priv)
1245 {
1246 /* Release the DMA TX/RX socket buffers */
1247 dma_free_rx_skbufs(priv);
1248 dma_free_tx_skbufs(priv);
1249
1250 /* Free DMA regions of consistent memory previously allocated */
1251 if (!priv->extend_desc) {
1252 dma_free_coherent(priv->device,
1253 priv->dma_tx_size * sizeof(struct dma_desc),
1254 priv->dma_tx, priv->dma_tx_phy);
1255 dma_free_coherent(priv->device,
1256 priv->dma_rx_size * sizeof(struct dma_desc),
1257 priv->dma_rx, priv->dma_rx_phy);
1258 } else {
1259 dma_free_coherent(priv->device, priv->dma_tx_size *
1260 sizeof(struct dma_extended_desc),
1261 priv->dma_etx, priv->dma_tx_phy);
1262 dma_free_coherent(priv->device, priv->dma_rx_size *
1263 sizeof(struct dma_extended_desc),
1264 priv->dma_erx, priv->dma_rx_phy);
1265 }
1266 kfree(priv->rx_skbuff_dma);
1267 kfree(priv->rx_skbuff);
1268 kfree(priv->tx_skbuff_dma);
1269 kfree(priv->tx_skbuff);
1270 }
1271
1272 /**
1273 * stmmac_dma_operation_mode - HW DMA operation mode
1274 * @priv: driver private structure
1275 * Description: it is used for configuring the DMA operation mode register in
1276 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1277 */
1278 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1279 {
1280 if (priv->plat->force_thresh_dma_mode)
1281 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc);
1282 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1283 /*
1284 * In case of GMAC, SF mode can be enabled
1285 * to perform the TX COE in HW. This depends on:
1286 * 1) TX COE if actually supported
1287 * 2) There is no bugged Jumbo frame support
1288 * that needs to not insert csum in the TDES.
1289 */
1290 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1291 priv->xstats.threshold = SF_DMA_MODE;
1292 } else
1293 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1294 }
1295
1296 /**
1297 * stmmac_tx_clean - to manage the transmission completion
1298 * @priv: driver private structure
1299 * Description: it reclaims the transmit resources after transmission completes.
1300 */
1301 static void stmmac_tx_clean(struct stmmac_priv *priv)
1302 {
1303 unsigned int txsize = priv->dma_tx_size;
1304 unsigned int bytes_compl = 0, pkts_compl = 0;
1305
1306 spin_lock(&priv->tx_lock);
1307
1308 priv->xstats.tx_clean++;
1309
1310 while (priv->dirty_tx != priv->cur_tx) {
1311 int last;
1312 unsigned int entry = priv->dirty_tx % txsize;
1313 struct sk_buff *skb = priv->tx_skbuff[entry];
1314 struct dma_desc *p;
1315
1316 if (priv->extend_desc)
1317 p = (struct dma_desc *)(priv->dma_etx + entry);
1318 else
1319 p = priv->dma_tx + entry;
1320
1321 /* Check if the descriptor is owned by the DMA. */
1322 if (priv->hw->desc->get_tx_owner(p))
1323 break;
1324
1325 /* Verify tx error by looking at the last segment. */
1326 last = priv->hw->desc->get_tx_ls(p);
1327 if (likely(last)) {
1328 int tx_error =
1329 priv->hw->desc->tx_status(&priv->dev->stats,
1330 &priv->xstats, p,
1331 priv->ioaddr);
1332 if (likely(tx_error == 0)) {
1333 priv->dev->stats.tx_packets++;
1334 priv->xstats.tx_pkt_n++;
1335 } else
1336 priv->dev->stats.tx_errors++;
1337
1338 stmmac_get_tx_hwtstamp(priv, entry, skb);
1339 }
1340 if (netif_msg_tx_done(priv))
1341 pr_debug("%s: curr %d, dirty %d\n", __func__,
1342 priv->cur_tx, priv->dirty_tx);
1343
1344 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1345 if (priv->tx_skbuff_dma[entry].map_as_page)
1346 dma_unmap_page(priv->device,
1347 priv->tx_skbuff_dma[entry].buf,
1348 priv->hw->desc->get_tx_len(p),
1349 DMA_TO_DEVICE);
1350 else
1351 dma_unmap_single(priv->device,
1352 priv->tx_skbuff_dma[entry].buf,
1353 priv->hw->desc->get_tx_len(p),
1354 DMA_TO_DEVICE);
1355 priv->tx_skbuff_dma[entry].buf = 0;
1356 priv->tx_skbuff_dma[entry].map_as_page = false;
1357 }
1358 priv->hw->mode->clean_desc3(priv, p);
1359
1360 if (likely(skb != NULL)) {
1361 pkts_compl++;
1362 bytes_compl += skb->len;
1363 dev_consume_skb_any(skb);
1364 priv->tx_skbuff[entry] = NULL;
1365 }
1366
1367 priv->hw->desc->release_tx_desc(p, priv->mode);
1368
1369 priv->dirty_tx++;
1370 }
1371
1372 netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1373
1374 if (unlikely(netif_queue_stopped(priv->dev) &&
1375 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1376 netif_tx_lock(priv->dev);
1377 if (netif_queue_stopped(priv->dev) &&
1378 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1379 if (netif_msg_tx_done(priv))
1380 pr_debug("%s: restart transmit\n", __func__);
1381 netif_wake_queue(priv->dev);
1382 }
1383 netif_tx_unlock(priv->dev);
1384 }
1385
1386 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1387 stmmac_enable_eee_mode(priv);
1388 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1389 }
1390 spin_unlock(&priv->tx_lock);
1391 }
1392
1393 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1394 {
1395 priv->hw->dma->enable_dma_irq(priv->ioaddr);
1396 }
1397
1398 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1399 {
1400 priv->hw->dma->disable_dma_irq(priv->ioaddr);
1401 }
1402
1403 /**
1404 * stmmac_tx_err - to manage the tx error
1405 * @priv: driver private structure
1406 * Description: it cleans the descriptors and restarts the transmission
1407 * in case of transmission errors.
1408 */
1409 static void stmmac_tx_err(struct stmmac_priv *priv)
1410 {
1411 int i;
1412 int txsize = priv->dma_tx_size;
1413 netif_stop_queue(priv->dev);
1414
1415 priv->hw->dma->stop_tx(priv->ioaddr);
1416 dma_free_tx_skbufs(priv);
1417 for (i = 0; i < txsize; i++)
1418 if (priv->extend_desc)
1419 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1420 priv->mode,
1421 (i == txsize - 1));
1422 else
1423 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1424 priv->mode,
1425 (i == txsize - 1));
1426 priv->dirty_tx = 0;
1427 priv->cur_tx = 0;
1428 netdev_reset_queue(priv->dev);
1429 priv->hw->dma->start_tx(priv->ioaddr);
1430
1431 priv->dev->stats.tx_errors++;
1432 netif_wake_queue(priv->dev);
1433 }
1434
1435 /**
1436 * stmmac_dma_interrupt - DMA ISR
1437 * @priv: driver private structure
1438 * Description: this is the DMA ISR. It is called by the main ISR.
1439 * It calls the dwmac dma routine and schedule poll method in case of some
1440 * work can be done.
1441 */
1442 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1443 {
1444 int status;
1445
1446 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1447 if (likely((status & handle_rx)) || (status & handle_tx)) {
1448 if (likely(napi_schedule_prep(&priv->napi))) {
1449 stmmac_disable_dma_irq(priv);
1450 __napi_schedule(&priv->napi);
1451 }
1452 }
1453 if (unlikely(status & tx_hard_error_bump_tc)) {
1454 /* Try to bump up the dma threshold on this failure */
1455 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1456 (tc <= 256)) {
1457 tc += 64;
1458 if (priv->plat->force_thresh_dma_mode)
1459 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc);
1460 else
1461 priv->hw->dma->dma_mode(priv->ioaddr, tc,
1462 SF_DMA_MODE);
1463 priv->xstats.threshold = tc;
1464 }
1465 } else if (unlikely(status == tx_hard_error))
1466 stmmac_tx_err(priv);
1467 }
1468
1469 /**
1470 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1471 * @priv: driver private structure
1472 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1473 */
1474 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1475 {
1476 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1477 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1478
1479 dwmac_mmc_intr_all_mask(priv->ioaddr);
1480
1481 if (priv->dma_cap.rmon) {
1482 dwmac_mmc_ctrl(priv->ioaddr, mode);
1483 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1484 } else
1485 pr_info(" No MAC Management Counters available\n");
1486 }
1487
1488 /**
1489 * stmmac_get_synopsys_id - return the SYINID.
1490 * @priv: driver private structure
1491 * Description: this simple function is to decode and return the SYINID
1492 * starting from the HW core register.
1493 */
1494 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1495 {
1496 u32 hwid = priv->hw->synopsys_uid;
1497
1498 /* Check Synopsys Id (not available on old chips) */
1499 if (likely(hwid)) {
1500 u32 uid = ((hwid & 0x0000ff00) >> 8);
1501 u32 synid = (hwid & 0x000000ff);
1502
1503 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1504 uid, synid);
1505
1506 return synid;
1507 }
1508 return 0;
1509 }
1510
1511 /**
1512 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1513 * @priv: driver private structure
1514 * Description: select the Enhanced/Alternate or Normal descriptors.
1515 * In case of Enhanced/Alternate, it checks if the extended descriptors are
1516 * supported by the HW capability register.
1517 */
1518 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1519 {
1520 if (priv->plat->enh_desc) {
1521 pr_info(" Enhanced/Alternate descriptors\n");
1522
1523 /* GMAC older than 3.50 has no extended descriptors */
1524 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1525 pr_info("\tEnabled extended descriptors\n");
1526 priv->extend_desc = 1;
1527 } else
1528 pr_warn("Extended descriptors not supported\n");
1529
1530 priv->hw->desc = &enh_desc_ops;
1531 } else {
1532 pr_info(" Normal descriptors\n");
1533 priv->hw->desc = &ndesc_ops;
1534 }
1535 }
1536
1537 /**
1538 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1539 * @priv: driver private structure
1540 * Description:
1541 * new GMAC chip generations have a new register to indicate the
1542 * presence of the optional feature/functions.
1543 * This can be also used to override the value passed through the
1544 * platform and necessary for old MAC10/100 and GMAC chips.
1545 */
1546 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1547 {
1548 u32 hw_cap = 0;
1549
1550 if (priv->hw->dma->get_hw_feature) {
1551 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1552
1553 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1554 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1555 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1556 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1557 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1558 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1559 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1560 priv->dma_cap.pmt_remote_wake_up =
1561 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1562 priv->dma_cap.pmt_magic_frame =
1563 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1564 /* MMC */
1565 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1566 /* IEEE 1588-2002 */
1567 priv->dma_cap.time_stamp =
1568 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1569 /* IEEE 1588-2008 */
1570 priv->dma_cap.atime_stamp =
1571 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1572 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1573 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1574 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1575 /* TX and RX csum */
1576 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1577 priv->dma_cap.rx_coe_type1 =
1578 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1579 priv->dma_cap.rx_coe_type2 =
1580 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1581 priv->dma_cap.rxfifo_over_2048 =
1582 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1583 /* TX and RX number of channels */
1584 priv->dma_cap.number_rx_channel =
1585 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1586 priv->dma_cap.number_tx_channel =
1587 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1588 /* Alternate (enhanced) DESC mode */
1589 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1590 }
1591
1592 return hw_cap;
1593 }
1594
1595 /**
1596 * stmmac_check_ether_addr - check if the MAC addr is valid
1597 * @priv: driver private structure
1598 * Description:
1599 * it is to verify if the MAC address is valid, in case of failures it
1600 * generates a random MAC address
1601 */
1602 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1603 {
1604 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1605 priv->hw->mac->get_umac_addr(priv->hw,
1606 priv->dev->dev_addr, 0);
1607 if (!is_valid_ether_addr(priv->dev->dev_addr))
1608 eth_hw_addr_random(priv->dev);
1609 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1610 priv->dev->dev_addr);
1611 }
1612 }
1613
1614 /**
1615 * stmmac_init_dma_engine - DMA init.
1616 * @priv: driver private structure
1617 * Description:
1618 * It inits the DMA invoking the specific MAC/GMAC callback.
1619 * Some DMA parameters can be passed from the platform;
1620 * in case of these are not passed a default is kept for the MAC or GMAC.
1621 */
1622 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1623 {
1624 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1625 int mixed_burst = 0;
1626 int atds = 0;
1627
1628 if (priv->plat->dma_cfg) {
1629 pbl = priv->plat->dma_cfg->pbl;
1630 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1631 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1632 burst_len = priv->plat->dma_cfg->burst_len;
1633 }
1634
1635 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1636 atds = 1;
1637
1638 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1639 burst_len, priv->dma_tx_phy,
1640 priv->dma_rx_phy, atds);
1641 }
1642
1643 /**
1644 * stmmac_tx_timer - mitigation sw timer for tx.
1645 * @data: data pointer
1646 * Description:
1647 * This is the timer handler to directly invoke the stmmac_tx_clean.
1648 */
1649 static void stmmac_tx_timer(unsigned long data)
1650 {
1651 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1652
1653 stmmac_tx_clean(priv);
1654 }
1655
1656 /**
1657 * stmmac_init_tx_coalesce - init tx mitigation options.
1658 * @priv: driver private structure
1659 * Description:
1660 * This inits the transmit coalesce parameters: i.e. timer rate,
1661 * timer handler and default threshold used for enabling the
1662 * interrupt on completion bit.
1663 */
1664 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1665 {
1666 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1667 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1668 init_timer(&priv->txtimer);
1669 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1670 priv->txtimer.data = (unsigned long)priv;
1671 priv->txtimer.function = stmmac_tx_timer;
1672 add_timer(&priv->txtimer);
1673 }
1674
1675 /**
1676 * stmmac_hw_setup - setup mac in a usable state.
1677 * @dev : pointer to the device structure.
1678 * Description:
1679 * this is the main function to setup the HW in a usable state because the
1680 * dma engine is reset, the core registers are configured (e.g. AXI,
1681 * Checksum features, timers). The DMA is ready to start receiving and
1682 * transmitting.
1683 * Return value:
1684 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1685 * file on failure.
1686 */
1687 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1688 {
1689 struct stmmac_priv *priv = netdev_priv(dev);
1690 int ret;
1691
1692 /* DMA initialization and SW reset */
1693 ret = stmmac_init_dma_engine(priv);
1694 if (ret < 0) {
1695 pr_err("%s: DMA engine initialization failed\n", __func__);
1696 return ret;
1697 }
1698
1699 /* Copy the MAC addr into the HW */
1700 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1701
1702 /* If required, perform hw setup of the bus. */
1703 if (priv->plat->bus_setup)
1704 priv->plat->bus_setup(priv->ioaddr);
1705
1706 /* Initialize the MAC Core */
1707 priv->hw->mac->core_init(priv->hw, dev->mtu);
1708
1709 ret = priv->hw->mac->rx_ipc(priv->hw);
1710 if (!ret) {
1711 pr_warn(" RX IPC Checksum Offload disabled\n");
1712 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1713 priv->hw->rx_csum = 0;
1714 }
1715
1716 /* Enable the MAC Rx/Tx */
1717 stmmac_set_mac(priv->ioaddr, true);
1718
1719 /* Set the HW DMA mode and the COE */
1720 stmmac_dma_operation_mode(priv);
1721
1722 stmmac_mmc_setup(priv);
1723
1724 if (init_ptp) {
1725 ret = stmmac_init_ptp(priv);
1726 if (ret && ret != -EOPNOTSUPP)
1727 pr_warn("%s: failed PTP initialisation\n", __func__);
1728 }
1729
1730 #ifdef CONFIG_DEBUG_FS
1731 ret = stmmac_init_fs(dev);
1732 if (ret < 0)
1733 pr_warn("%s: failed debugFS registration\n", __func__);
1734 #endif
1735 /* Start the ball rolling... */
1736 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1737 priv->hw->dma->start_tx(priv->ioaddr);
1738 priv->hw->dma->start_rx(priv->ioaddr);
1739
1740 /* Dump DMA/MAC registers */
1741 if (netif_msg_hw(priv)) {
1742 priv->hw->mac->dump_regs(priv->hw);
1743 priv->hw->dma->dump_regs(priv->ioaddr);
1744 }
1745 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1746
1747 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1748 priv->rx_riwt = MAX_DMA_RIWT;
1749 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1750 }
1751
1752 if (priv->pcs && priv->hw->mac->ctrl_ane)
1753 priv->hw->mac->ctrl_ane(priv->hw, 0);
1754
1755 return 0;
1756 }
1757
1758 /**
1759 * stmmac_open - open entry point of the driver
1760 * @dev : pointer to the device structure.
1761 * Description:
1762 * This function is the open entry point of the driver.
1763 * Return value:
1764 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1765 * file on failure.
1766 */
1767 static int stmmac_open(struct net_device *dev)
1768 {
1769 struct stmmac_priv *priv = netdev_priv(dev);
1770 int ret;
1771
1772 stmmac_check_ether_addr(priv);
1773
1774 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1775 priv->pcs != STMMAC_PCS_RTBI) {
1776 ret = stmmac_init_phy(dev);
1777 if (ret) {
1778 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1779 __func__, ret);
1780 return ret;
1781 }
1782 }
1783
1784 /* Extra statistics */
1785 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1786 priv->xstats.threshold = tc;
1787
1788 /* Create and initialize the TX/RX descriptors chains. */
1789 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1790 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1791 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1792
1793 ret = alloc_dma_desc_resources(priv);
1794 if (ret < 0) {
1795 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1796 goto dma_desc_error;
1797 }
1798
1799 ret = init_dma_desc_rings(dev, GFP_KERNEL);
1800 if (ret < 0) {
1801 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1802 goto init_error;
1803 }
1804
1805 ret = stmmac_hw_setup(dev, true);
1806 if (ret < 0) {
1807 pr_err("%s: Hw setup failed\n", __func__);
1808 goto init_error;
1809 }
1810
1811 stmmac_init_tx_coalesce(priv);
1812
1813 if (priv->phydev)
1814 phy_start(priv->phydev);
1815
1816 /* Request the IRQ lines */
1817 ret = request_irq(dev->irq, stmmac_interrupt,
1818 IRQF_SHARED, dev->name, dev);
1819 if (unlikely(ret < 0)) {
1820 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1821 __func__, dev->irq, ret);
1822 goto init_error;
1823 }
1824
1825 /* Request the Wake IRQ in case of another line is used for WoL */
1826 if (priv->wol_irq != dev->irq) {
1827 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1828 IRQF_SHARED, dev->name, dev);
1829 if (unlikely(ret < 0)) {
1830 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1831 __func__, priv->wol_irq, ret);
1832 goto wolirq_error;
1833 }
1834 }
1835
1836 /* Request the IRQ lines */
1837 if (priv->lpi_irq > 0) {
1838 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1839 dev->name, dev);
1840 if (unlikely(ret < 0)) {
1841 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1842 __func__, priv->lpi_irq, ret);
1843 goto lpiirq_error;
1844 }
1845 }
1846
1847 napi_enable(&priv->napi);
1848 netif_start_queue(dev);
1849
1850 return 0;
1851
1852 lpiirq_error:
1853 if (priv->wol_irq != dev->irq)
1854 free_irq(priv->wol_irq, dev);
1855 wolirq_error:
1856 free_irq(dev->irq, dev);
1857
1858 init_error:
1859 free_dma_desc_resources(priv);
1860 dma_desc_error:
1861 if (priv->phydev)
1862 phy_disconnect(priv->phydev);
1863
1864 return ret;
1865 }
1866
1867 /**
1868 * stmmac_release - close entry point of the driver
1869 * @dev : device pointer.
1870 * Description:
1871 * This is the stop entry point of the driver.
1872 */
1873 static int stmmac_release(struct net_device *dev)
1874 {
1875 struct stmmac_priv *priv = netdev_priv(dev);
1876
1877 if (priv->eee_enabled)
1878 del_timer_sync(&priv->eee_ctrl_timer);
1879
1880 /* Stop and disconnect the PHY */
1881 if (priv->phydev) {
1882 phy_stop(priv->phydev);
1883 phy_disconnect(priv->phydev);
1884 priv->phydev = NULL;
1885 }
1886
1887 netif_stop_queue(dev);
1888
1889 napi_disable(&priv->napi);
1890
1891 del_timer_sync(&priv->txtimer);
1892
1893 /* Free the IRQ lines */
1894 free_irq(dev->irq, dev);
1895 if (priv->wol_irq != dev->irq)
1896 free_irq(priv->wol_irq, dev);
1897 if (priv->lpi_irq > 0)
1898 free_irq(priv->lpi_irq, dev);
1899
1900 /* Stop TX/RX DMA and clear the descriptors */
1901 priv->hw->dma->stop_tx(priv->ioaddr);
1902 priv->hw->dma->stop_rx(priv->ioaddr);
1903
1904 /* Release and free the Rx/Tx resources */
1905 free_dma_desc_resources(priv);
1906
1907 /* Disable the MAC Rx/Tx */
1908 stmmac_set_mac(priv->ioaddr, false);
1909
1910 netif_carrier_off(dev);
1911
1912 #ifdef CONFIG_DEBUG_FS
1913 stmmac_exit_fs();
1914 #endif
1915
1916 stmmac_release_ptp(priv);
1917
1918 return 0;
1919 }
1920
1921 /**
1922 * stmmac_xmit - Tx entry point of the driver
1923 * @skb : the socket buffer
1924 * @dev : device pointer
1925 * Description : this is the tx entry point of the driver.
1926 * It programs the chain or the ring and supports oversized frames
1927 * and SG feature.
1928 */
1929 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1930 {
1931 struct stmmac_priv *priv = netdev_priv(dev);
1932 unsigned int txsize = priv->dma_tx_size;
1933 unsigned int entry;
1934 int i, csum_insertion = 0, is_jumbo = 0;
1935 int nfrags = skb_shinfo(skb)->nr_frags;
1936 struct dma_desc *desc, *first;
1937 unsigned int nopaged_len = skb_headlen(skb);
1938 unsigned int enh_desc = priv->plat->enh_desc;
1939
1940 spin_lock(&priv->tx_lock);
1941
1942 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1943 spin_unlock(&priv->tx_lock);
1944 if (!netif_queue_stopped(dev)) {
1945 netif_stop_queue(dev);
1946 /* This is a hard error, log it. */
1947 pr_err("%s: Tx Ring full when queue awake\n", __func__);
1948 }
1949 return NETDEV_TX_BUSY;
1950 }
1951
1952 if (priv->tx_path_in_lpi_mode)
1953 stmmac_disable_eee_mode(priv);
1954
1955 entry = priv->cur_tx % txsize;
1956
1957 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1958
1959 if (priv->extend_desc)
1960 desc = (struct dma_desc *)(priv->dma_etx + entry);
1961 else
1962 desc = priv->dma_tx + entry;
1963
1964 first = desc;
1965
1966 /* To program the descriptors according to the size of the frame */
1967 if (enh_desc)
1968 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1969
1970 if (likely(!is_jumbo)) {
1971 desc->des2 = dma_map_single(priv->device, skb->data,
1972 nopaged_len, DMA_TO_DEVICE);
1973 if (dma_mapping_error(priv->device, desc->des2))
1974 goto dma_map_err;
1975 priv->tx_skbuff_dma[entry].buf = desc->des2;
1976 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1977 csum_insertion, priv->mode);
1978 } else {
1979 desc = first;
1980 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1981 if (unlikely(entry < 0))
1982 goto dma_map_err;
1983 }
1984
1985 for (i = 0; i < nfrags; i++) {
1986 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1987 int len = skb_frag_size(frag);
1988
1989 priv->tx_skbuff[entry] = NULL;
1990 entry = (++priv->cur_tx) % txsize;
1991 if (priv->extend_desc)
1992 desc = (struct dma_desc *)(priv->dma_etx + entry);
1993 else
1994 desc = priv->dma_tx + entry;
1995
1996 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1997 DMA_TO_DEVICE);
1998 if (dma_mapping_error(priv->device, desc->des2))
1999 goto dma_map_err; /* should reuse desc w/o issues */
2000
2001 priv->tx_skbuff_dma[entry].buf = desc->des2;
2002 priv->tx_skbuff_dma[entry].map_as_page = true;
2003 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2004 priv->mode);
2005 wmb();
2006 priv->hw->desc->set_tx_owner(desc);
2007 wmb();
2008 }
2009
2010 priv->tx_skbuff[entry] = skb;
2011
2012 /* Finalize the latest segment. */
2013 priv->hw->desc->close_tx_desc(desc);
2014
2015 wmb();
2016 /* According to the coalesce parameter the IC bit for the latest
2017 * segment could be reset and the timer re-started to invoke the
2018 * stmmac_tx function. This approach takes care about the fragments.
2019 */
2020 priv->tx_count_frames += nfrags + 1;
2021 if (priv->tx_coal_frames > priv->tx_count_frames) {
2022 priv->hw->desc->clear_tx_ic(desc);
2023 priv->xstats.tx_reset_ic_bit++;
2024 mod_timer(&priv->txtimer,
2025 STMMAC_COAL_TIMER(priv->tx_coal_timer));
2026 } else
2027 priv->tx_count_frames = 0;
2028
2029 /* To avoid raise condition */
2030 priv->hw->desc->set_tx_owner(first);
2031 wmb();
2032
2033 priv->cur_tx++;
2034
2035 if (netif_msg_pktdata(priv)) {
2036 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
2037 __func__, (priv->cur_tx % txsize),
2038 (priv->dirty_tx % txsize), entry, first, nfrags);
2039
2040 if (priv->extend_desc)
2041 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
2042 else
2043 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
2044
2045 pr_debug(">>> frame to be transmitted: ");
2046 print_pkt(skb->data, skb->len);
2047 }
2048 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2049 if (netif_msg_hw(priv))
2050 pr_debug("%s: stop transmitted packets\n", __func__);
2051 netif_stop_queue(dev);
2052 }
2053
2054 dev->stats.tx_bytes += skb->len;
2055
2056 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2057 priv->hwts_tx_en)) {
2058 /* declare that device is doing timestamping */
2059 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2060 priv->hw->desc->enable_tx_timestamp(first);
2061 }
2062
2063 if (!priv->hwts_tx_en)
2064 skb_tx_timestamp(skb);
2065
2066 netdev_sent_queue(dev, skb->len);
2067 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2068
2069 spin_unlock(&priv->tx_lock);
2070 return NETDEV_TX_OK;
2071
2072 dma_map_err:
2073 spin_unlock(&priv->tx_lock);
2074 dev_err(priv->device, "Tx dma map failed\n");
2075 dev_kfree_skb(skb);
2076 priv->dev->stats.tx_dropped++;
2077 return NETDEV_TX_OK;
2078 }
2079
2080 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2081 {
2082 struct ethhdr *ehdr;
2083 u16 vlanid;
2084
2085 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2086 NETIF_F_HW_VLAN_CTAG_RX &&
2087 !__vlan_get_tag(skb, &vlanid)) {
2088 /* pop the vlan tag */
2089 ehdr = (struct ethhdr *)skb->data;
2090 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2091 skb_pull(skb, VLAN_HLEN);
2092 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2093 }
2094 }
2095
2096
2097 /**
2098 * stmmac_rx_refill - refill used skb preallocated buffers
2099 * @priv: driver private structure
2100 * Description : this is to reallocate the skb for the reception process
2101 * that is based on zero-copy.
2102 */
2103 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2104 {
2105 unsigned int rxsize = priv->dma_rx_size;
2106 int bfsize = priv->dma_buf_sz;
2107
2108 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2109 unsigned int entry = priv->dirty_rx % rxsize;
2110 struct dma_desc *p;
2111
2112 if (priv->extend_desc)
2113 p = (struct dma_desc *)(priv->dma_erx + entry);
2114 else
2115 p = priv->dma_rx + entry;
2116
2117 if (likely(priv->rx_skbuff[entry] == NULL)) {
2118 struct sk_buff *skb;
2119
2120 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2121
2122 if (unlikely(skb == NULL))
2123 break;
2124
2125 priv->rx_skbuff[entry] = skb;
2126 priv->rx_skbuff_dma[entry] =
2127 dma_map_single(priv->device, skb->data, bfsize,
2128 DMA_FROM_DEVICE);
2129 if (dma_mapping_error(priv->device,
2130 priv->rx_skbuff_dma[entry])) {
2131 dev_err(priv->device, "Rx dma map failed\n");
2132 dev_kfree_skb(skb);
2133 break;
2134 }
2135 p->des2 = priv->rx_skbuff_dma[entry];
2136
2137 priv->hw->mode->refill_desc3(priv, p);
2138
2139 if (netif_msg_rx_status(priv))
2140 pr_debug("\trefill entry #%d\n", entry);
2141 }
2142 wmb();
2143 priv->hw->desc->set_rx_owner(p);
2144 wmb();
2145 }
2146 }
2147
2148 /**
2149 * stmmac_rx - manage the receive process
2150 * @priv: driver private structure
2151 * @limit: napi bugget.
2152 * Description : this the function called by the napi poll method.
2153 * It gets all the frames inside the ring.
2154 */
2155 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2156 {
2157 unsigned int rxsize = priv->dma_rx_size;
2158 unsigned int entry = priv->cur_rx % rxsize;
2159 unsigned int next_entry;
2160 unsigned int count = 0;
2161 int coe = priv->hw->rx_csum;
2162
2163 if (netif_msg_rx_status(priv)) {
2164 pr_debug("%s: descriptor ring:\n", __func__);
2165 if (priv->extend_desc)
2166 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2167 else
2168 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2169 }
2170 while (count < limit) {
2171 int status;
2172 struct dma_desc *p;
2173
2174 if (priv->extend_desc)
2175 p = (struct dma_desc *)(priv->dma_erx + entry);
2176 else
2177 p = priv->dma_rx + entry;
2178
2179 if (priv->hw->desc->get_rx_owner(p))
2180 break;
2181
2182 count++;
2183
2184 next_entry = (++priv->cur_rx) % rxsize;
2185 if (priv->extend_desc)
2186 prefetch(priv->dma_erx + next_entry);
2187 else
2188 prefetch(priv->dma_rx + next_entry);
2189
2190 /* read the status of the incoming frame */
2191 status = priv->hw->desc->rx_status(&priv->dev->stats,
2192 &priv->xstats, p);
2193 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2194 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2195 &priv->xstats,
2196 priv->dma_erx +
2197 entry);
2198 if (unlikely(status == discard_frame)) {
2199 priv->dev->stats.rx_errors++;
2200 if (priv->hwts_rx_en && !priv->extend_desc) {
2201 /* DESC2 & DESC3 will be overwitten by device
2202 * with timestamp value, hence reinitialize
2203 * them in stmmac_rx_refill() function so that
2204 * device can reuse it.
2205 */
2206 priv->rx_skbuff[entry] = NULL;
2207 dma_unmap_single(priv->device,
2208 priv->rx_skbuff_dma[entry],
2209 priv->dma_buf_sz,
2210 DMA_FROM_DEVICE);
2211 }
2212 } else {
2213 struct sk_buff *skb;
2214 int frame_len;
2215
2216 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2217
2218 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2219 * Type frames (LLC/LLC-SNAP)
2220 */
2221 if (unlikely(status != llc_snap))
2222 frame_len -= ETH_FCS_LEN;
2223
2224 if (netif_msg_rx_status(priv)) {
2225 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2226 p, entry, p->des2);
2227 if (frame_len > ETH_FRAME_LEN)
2228 pr_debug("\tframe size %d, COE: %d\n",
2229 frame_len, status);
2230 }
2231 skb = priv->rx_skbuff[entry];
2232 if (unlikely(!skb)) {
2233 pr_err("%s: Inconsistent Rx descriptor chain\n",
2234 priv->dev->name);
2235 priv->dev->stats.rx_dropped++;
2236 break;
2237 }
2238 prefetch(skb->data - NET_IP_ALIGN);
2239 priv->rx_skbuff[entry] = NULL;
2240
2241 stmmac_get_rx_hwtstamp(priv, entry, skb);
2242
2243 skb_put(skb, frame_len);
2244 dma_unmap_single(priv->device,
2245 priv->rx_skbuff_dma[entry],
2246 priv->dma_buf_sz, DMA_FROM_DEVICE);
2247
2248 if (netif_msg_pktdata(priv)) {
2249 pr_debug("frame received (%dbytes)", frame_len);
2250 print_pkt(skb->data, frame_len);
2251 }
2252
2253 stmmac_rx_vlan(priv->dev, skb);
2254
2255 skb->protocol = eth_type_trans(skb, priv->dev);
2256
2257 if (unlikely(!coe))
2258 skb_checksum_none_assert(skb);
2259 else
2260 skb->ip_summed = CHECKSUM_UNNECESSARY;
2261
2262 napi_gro_receive(&priv->napi, skb);
2263
2264 priv->dev->stats.rx_packets++;
2265 priv->dev->stats.rx_bytes += frame_len;
2266 }
2267 entry = next_entry;
2268 }
2269
2270 stmmac_rx_refill(priv);
2271
2272 priv->xstats.rx_pkt_n += count;
2273
2274 return count;
2275 }
2276
2277 /**
2278 * stmmac_poll - stmmac poll method (NAPI)
2279 * @napi : pointer to the napi structure.
2280 * @budget : maximum number of packets that the current CPU can receive from
2281 * all interfaces.
2282 * Description :
2283 * To look at the incoming frames and clear the tx resources.
2284 */
2285 static int stmmac_poll(struct napi_struct *napi, int budget)
2286 {
2287 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2288 int work_done = 0;
2289
2290 priv->xstats.napi_poll++;
2291 stmmac_tx_clean(priv);
2292
2293 work_done = stmmac_rx(priv, budget);
2294 if (work_done < budget) {
2295 napi_complete(napi);
2296 stmmac_enable_dma_irq(priv);
2297 }
2298 return work_done;
2299 }
2300
2301 /**
2302 * stmmac_tx_timeout
2303 * @dev : Pointer to net device structure
2304 * Description: this function is called when a packet transmission fails to
2305 * complete within a reasonable time. The driver will mark the error in the
2306 * netdev structure and arrange for the device to be reset to a sane state
2307 * in order to transmit a new packet.
2308 */
2309 static void stmmac_tx_timeout(struct net_device *dev)
2310 {
2311 struct stmmac_priv *priv = netdev_priv(dev);
2312
2313 /* Clear Tx resources and restart transmitting again */
2314 stmmac_tx_err(priv);
2315 }
2316
2317 /**
2318 * stmmac_set_rx_mode - entry point for multicast addressing
2319 * @dev : pointer to the device structure
2320 * Description:
2321 * This function is a driver entry point which gets called by the kernel
2322 * whenever multicast addresses must be enabled/disabled.
2323 * Return value:
2324 * void.
2325 */
2326 static void stmmac_set_rx_mode(struct net_device *dev)
2327 {
2328 struct stmmac_priv *priv = netdev_priv(dev);
2329
2330 priv->hw->mac->set_filter(priv->hw, dev);
2331 }
2332
2333 /**
2334 * stmmac_change_mtu - entry point to change MTU size for the device.
2335 * @dev : device pointer.
2336 * @new_mtu : the new MTU size for the device.
2337 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2338 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2339 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2340 * Return value:
2341 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2342 * file on failure.
2343 */
2344 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2345 {
2346 struct stmmac_priv *priv = netdev_priv(dev);
2347 int max_mtu;
2348
2349 if (netif_running(dev)) {
2350 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2351 return -EBUSY;
2352 }
2353
2354 if (priv->plat->enh_desc)
2355 max_mtu = JUMBO_LEN;
2356 else
2357 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2358
2359 if (priv->plat->maxmtu < max_mtu)
2360 max_mtu = priv->plat->maxmtu;
2361
2362 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2363 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2364 return -EINVAL;
2365 }
2366
2367 dev->mtu = new_mtu;
2368 netdev_update_features(dev);
2369
2370 return 0;
2371 }
2372
2373 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2374 netdev_features_t features)
2375 {
2376 struct stmmac_priv *priv = netdev_priv(dev);
2377
2378 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2379 features &= ~NETIF_F_RXCSUM;
2380
2381 if (!priv->plat->tx_coe)
2382 features &= ~NETIF_F_ALL_CSUM;
2383
2384 /* Some GMAC devices have a bugged Jumbo frame support that
2385 * needs to have the Tx COE disabled for oversized frames
2386 * (due to limited buffer sizes). In this case we disable
2387 * the TX csum insertionin the TDES and not use SF.
2388 */
2389 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2390 features &= ~NETIF_F_ALL_CSUM;
2391
2392 return features;
2393 }
2394
2395 static int stmmac_set_features(struct net_device *netdev,
2396 netdev_features_t features)
2397 {
2398 struct stmmac_priv *priv = netdev_priv(netdev);
2399
2400 /* Keep the COE Type in case of csum is supporting */
2401 if (features & NETIF_F_RXCSUM)
2402 priv->hw->rx_csum = priv->plat->rx_coe;
2403 else
2404 priv->hw->rx_csum = 0;
2405 /* No check needed because rx_coe has been set before and it will be
2406 * fixed in case of issue.
2407 */
2408 priv->hw->mac->rx_ipc(priv->hw);
2409
2410 return 0;
2411 }
2412
2413 /**
2414 * stmmac_interrupt - main ISR
2415 * @irq: interrupt number.
2416 * @dev_id: to pass the net device pointer.
2417 * Description: this is the main driver interrupt service routine.
2418 * It can call:
2419 * o DMA service routine (to manage incoming frame reception and transmission
2420 * status)
2421 * o Core interrupts to manage: remote wake-up, management counter, LPI
2422 * interrupts.
2423 */
2424 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2425 {
2426 struct net_device *dev = (struct net_device *)dev_id;
2427 struct stmmac_priv *priv = netdev_priv(dev);
2428
2429 if (priv->irq_wake)
2430 pm_wakeup_event(priv->device, 0);
2431
2432 if (unlikely(!dev)) {
2433 pr_err("%s: invalid dev pointer\n", __func__);
2434 return IRQ_NONE;
2435 }
2436
2437 /* To handle GMAC own interrupts */
2438 if (priv->plat->has_gmac) {
2439 int status = priv->hw->mac->host_irq_status(priv->hw,
2440 &priv->xstats);
2441 if (unlikely(status)) {
2442 /* For LPI we need to save the tx status */
2443 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2444 priv->tx_path_in_lpi_mode = true;
2445 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2446 priv->tx_path_in_lpi_mode = false;
2447 }
2448 }
2449
2450 /* To handle DMA interrupts */
2451 stmmac_dma_interrupt(priv);
2452
2453 return IRQ_HANDLED;
2454 }
2455
2456 #ifdef CONFIG_NET_POLL_CONTROLLER
2457 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2458 * to allow network I/O with interrupts disabled.
2459 */
2460 static void stmmac_poll_controller(struct net_device *dev)
2461 {
2462 disable_irq(dev->irq);
2463 stmmac_interrupt(dev->irq, dev);
2464 enable_irq(dev->irq);
2465 }
2466 #endif
2467
2468 /**
2469 * stmmac_ioctl - Entry point for the Ioctl
2470 * @dev: Device pointer.
2471 * @rq: An IOCTL specefic structure, that can contain a pointer to
2472 * a proprietary structure used to pass information to the driver.
2473 * @cmd: IOCTL command
2474 * Description:
2475 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2476 */
2477 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2478 {
2479 struct stmmac_priv *priv = netdev_priv(dev);
2480 int ret = -EOPNOTSUPP;
2481
2482 if (!netif_running(dev))
2483 return -EINVAL;
2484
2485 switch (cmd) {
2486 case SIOCGMIIPHY:
2487 case SIOCGMIIREG:
2488 case SIOCSMIIREG:
2489 if (!priv->phydev)
2490 return -EINVAL;
2491 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2492 break;
2493 case SIOCSHWTSTAMP:
2494 ret = stmmac_hwtstamp_ioctl(dev, rq);
2495 break;
2496 default:
2497 break;
2498 }
2499
2500 return ret;
2501 }
2502
2503 #ifdef CONFIG_DEBUG_FS
2504 static struct dentry *stmmac_fs_dir;
2505 static struct dentry *stmmac_rings_status;
2506 static struct dentry *stmmac_dma_cap;
2507
2508 static void sysfs_display_ring(void *head, int size, int extend_desc,
2509 struct seq_file *seq)
2510 {
2511 int i;
2512 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2513 struct dma_desc *p = (struct dma_desc *)head;
2514
2515 for (i = 0; i < size; i++) {
2516 u64 x;
2517 if (extend_desc) {
2518 x = *(u64 *) ep;
2519 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2520 i, (unsigned int)virt_to_phys(ep),
2521 (unsigned int)x, (unsigned int)(x >> 32),
2522 ep->basic.des2, ep->basic.des3);
2523 ep++;
2524 } else {
2525 x = *(u64 *) p;
2526 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2527 i, (unsigned int)virt_to_phys(ep),
2528 (unsigned int)x, (unsigned int)(x >> 32),
2529 p->des2, p->des3);
2530 p++;
2531 }
2532 seq_printf(seq, "\n");
2533 }
2534 }
2535
2536 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2537 {
2538 struct net_device *dev = seq->private;
2539 struct stmmac_priv *priv = netdev_priv(dev);
2540 unsigned int txsize = priv->dma_tx_size;
2541 unsigned int rxsize = priv->dma_rx_size;
2542
2543 if (priv->extend_desc) {
2544 seq_printf(seq, "Extended RX descriptor ring:\n");
2545 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2546 seq_printf(seq, "Extended TX descriptor ring:\n");
2547 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2548 } else {
2549 seq_printf(seq, "RX descriptor ring:\n");
2550 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2551 seq_printf(seq, "TX descriptor ring:\n");
2552 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2553 }
2554
2555 return 0;
2556 }
2557
2558 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2559 {
2560 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2561 }
2562
2563 static const struct file_operations stmmac_rings_status_fops = {
2564 .owner = THIS_MODULE,
2565 .open = stmmac_sysfs_ring_open,
2566 .read = seq_read,
2567 .llseek = seq_lseek,
2568 .release = single_release,
2569 };
2570
2571 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2572 {
2573 struct net_device *dev = seq->private;
2574 struct stmmac_priv *priv = netdev_priv(dev);
2575
2576 if (!priv->hw_cap_support) {
2577 seq_printf(seq, "DMA HW features not supported\n");
2578 return 0;
2579 }
2580
2581 seq_printf(seq, "==============================\n");
2582 seq_printf(seq, "\tDMA HW features\n");
2583 seq_printf(seq, "==============================\n");
2584
2585 seq_printf(seq, "\t10/100 Mbps %s\n",
2586 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2587 seq_printf(seq, "\t1000 Mbps %s\n",
2588 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2589 seq_printf(seq, "\tHalf duple %s\n",
2590 (priv->dma_cap.half_duplex) ? "Y" : "N");
2591 seq_printf(seq, "\tHash Filter: %s\n",
2592 (priv->dma_cap.hash_filter) ? "Y" : "N");
2593 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2594 (priv->dma_cap.multi_addr) ? "Y" : "N");
2595 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2596 (priv->dma_cap.pcs) ? "Y" : "N");
2597 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2598 (priv->dma_cap.sma_mdio) ? "Y" : "N");
2599 seq_printf(seq, "\tPMT Remote wake up: %s\n",
2600 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2601 seq_printf(seq, "\tPMT Magic Frame: %s\n",
2602 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2603 seq_printf(seq, "\tRMON module: %s\n",
2604 (priv->dma_cap.rmon) ? "Y" : "N");
2605 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2606 (priv->dma_cap.time_stamp) ? "Y" : "N");
2607 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2608 (priv->dma_cap.atime_stamp) ? "Y" : "N");
2609 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2610 (priv->dma_cap.eee) ? "Y" : "N");
2611 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2612 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2613 (priv->dma_cap.tx_coe) ? "Y" : "N");
2614 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2615 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2616 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2617 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2618 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2619 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2620 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2621 priv->dma_cap.number_rx_channel);
2622 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2623 priv->dma_cap.number_tx_channel);
2624 seq_printf(seq, "\tEnhanced descriptors: %s\n",
2625 (priv->dma_cap.enh_desc) ? "Y" : "N");
2626
2627 return 0;
2628 }
2629
2630 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2631 {
2632 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2633 }
2634
2635 static const struct file_operations stmmac_dma_cap_fops = {
2636 .owner = THIS_MODULE,
2637 .open = stmmac_sysfs_dma_cap_open,
2638 .read = seq_read,
2639 .llseek = seq_lseek,
2640 .release = single_release,
2641 };
2642
2643 static int stmmac_init_fs(struct net_device *dev)
2644 {
2645 /* Create debugfs entries */
2646 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2647
2648 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2649 pr_err("ERROR %s, debugfs create directory failed\n",
2650 STMMAC_RESOURCE_NAME);
2651
2652 return -ENOMEM;
2653 }
2654
2655 /* Entry to report DMA RX/TX rings */
2656 stmmac_rings_status = debugfs_create_file("descriptors_status",
2657 S_IRUGO, stmmac_fs_dir, dev,
2658 &stmmac_rings_status_fops);
2659
2660 if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2661 pr_info("ERROR creating stmmac ring debugfs file\n");
2662 debugfs_remove(stmmac_fs_dir);
2663
2664 return -ENOMEM;
2665 }
2666
2667 /* Entry to report the DMA HW features */
2668 stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2669 dev, &stmmac_dma_cap_fops);
2670
2671 if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2672 pr_info("ERROR creating stmmac MMC debugfs file\n");
2673 debugfs_remove(stmmac_rings_status);
2674 debugfs_remove(stmmac_fs_dir);
2675
2676 return -ENOMEM;
2677 }
2678
2679 return 0;
2680 }
2681
2682 static void stmmac_exit_fs(void)
2683 {
2684 debugfs_remove(stmmac_rings_status);
2685 debugfs_remove(stmmac_dma_cap);
2686 debugfs_remove(stmmac_fs_dir);
2687 }
2688 #endif /* CONFIG_DEBUG_FS */
2689
2690 static const struct net_device_ops stmmac_netdev_ops = {
2691 .ndo_open = stmmac_open,
2692 .ndo_start_xmit = stmmac_xmit,
2693 .ndo_stop = stmmac_release,
2694 .ndo_change_mtu = stmmac_change_mtu,
2695 .ndo_fix_features = stmmac_fix_features,
2696 .ndo_set_features = stmmac_set_features,
2697 .ndo_set_rx_mode = stmmac_set_rx_mode,
2698 .ndo_tx_timeout = stmmac_tx_timeout,
2699 .ndo_do_ioctl = stmmac_ioctl,
2700 #ifdef CONFIG_NET_POLL_CONTROLLER
2701 .ndo_poll_controller = stmmac_poll_controller,
2702 #endif
2703 .ndo_set_mac_address = eth_mac_addr,
2704 };
2705
2706 /**
2707 * stmmac_hw_init - Init the MAC device
2708 * @priv: driver private structure
2709 * Description: this function is to configure the MAC device according to
2710 * some platform parameters or the HW capability register. It prepares the
2711 * driver to use either ring or chain modes and to setup either enhanced or
2712 * normal descriptors.
2713 */
2714 static int stmmac_hw_init(struct stmmac_priv *priv)
2715 {
2716 struct mac_device_info *mac;
2717
2718 /* Identify the MAC HW device */
2719 if (priv->plat->has_gmac) {
2720 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2721 mac = dwmac1000_setup(priv->ioaddr,
2722 priv->plat->multicast_filter_bins,
2723 priv->plat->unicast_filter_entries);
2724 } else {
2725 mac = dwmac100_setup(priv->ioaddr);
2726 }
2727 if (!mac)
2728 return -ENOMEM;
2729
2730 priv->hw = mac;
2731
2732 /* Get and dump the chip ID */
2733 priv->synopsys_id = stmmac_get_synopsys_id(priv);
2734
2735 /* To use the chained or ring mode */
2736 if (chain_mode) {
2737 priv->hw->mode = &chain_mode_ops;
2738 pr_info(" Chain mode enabled\n");
2739 priv->mode = STMMAC_CHAIN_MODE;
2740 } else {
2741 priv->hw->mode = &ring_mode_ops;
2742 pr_info(" Ring mode enabled\n");
2743 priv->mode = STMMAC_RING_MODE;
2744 }
2745
2746 /* Get the HW capability (new GMAC newer than 3.50a) */
2747 priv->hw_cap_support = stmmac_get_hw_features(priv);
2748 if (priv->hw_cap_support) {
2749 pr_info(" DMA HW capability register supported");
2750
2751 /* We can override some gmac/dma configuration fields: e.g.
2752 * enh_desc, tx_coe (e.g. that are passed through the
2753 * platform) with the values from the HW capability
2754 * register (if supported).
2755 */
2756 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2757 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2758
2759 /* TXCOE doesn't work in thresh DMA mode */
2760 if (priv->plat->force_thresh_dma_mode)
2761 priv->plat->tx_coe = 0;
2762 else
2763 priv->plat->tx_coe = priv->dma_cap.tx_coe;
2764
2765 if (priv->dma_cap.rx_coe_type2)
2766 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2767 else if (priv->dma_cap.rx_coe_type1)
2768 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2769
2770 } else
2771 pr_info(" No HW DMA feature register supported");
2772
2773 /* To use alternate (extended) or normal descriptor structures */
2774 stmmac_selec_desc_mode(priv);
2775
2776 if (priv->plat->rx_coe) {
2777 priv->hw->rx_csum = priv->plat->rx_coe;
2778 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2779 priv->plat->rx_coe);
2780 }
2781 if (priv->plat->tx_coe)
2782 pr_info(" TX Checksum insertion supported\n");
2783
2784 if (priv->plat->pmt) {
2785 pr_info(" Wake-Up On Lan supported\n");
2786 device_set_wakeup_capable(priv->device, 1);
2787 }
2788
2789 return 0;
2790 }
2791
2792 /**
2793 * stmmac_dvr_probe
2794 * @device: device pointer
2795 * @plat_dat: platform data pointer
2796 * @addr: iobase memory address
2797 * Description: this is the main probe function used to
2798 * call the alloc_etherdev, allocate the priv structure.
2799 * Return:
2800 * on success the new private structure is returned, otherwise the error
2801 * pointer.
2802 */
2803 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2804 struct plat_stmmacenet_data *plat_dat,
2805 void __iomem *addr)
2806 {
2807 int ret = 0;
2808 struct net_device *ndev = NULL;
2809 struct stmmac_priv *priv;
2810
2811 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2812 if (!ndev)
2813 return ERR_PTR(-ENOMEM);
2814
2815 SET_NETDEV_DEV(ndev, device);
2816
2817 priv = netdev_priv(ndev);
2818 priv->device = device;
2819 priv->dev = ndev;
2820
2821 stmmac_set_ethtool_ops(ndev);
2822 priv->pause = pause;
2823 priv->plat = plat_dat;
2824 priv->ioaddr = addr;
2825 priv->dev->base_addr = (unsigned long)addr;
2826
2827 /* Verify driver arguments */
2828 stmmac_verify_args();
2829
2830 /* Override with kernel parameters if supplied XXX CRS XXX
2831 * this needs to have multiple instances
2832 */
2833 if ((phyaddr >= 0) && (phyaddr <= 31))
2834 priv->plat->phy_addr = phyaddr;
2835
2836 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2837 if (IS_ERR(priv->stmmac_clk)) {
2838 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2839 __func__);
2840 /* If failed to obtain stmmac_clk and specific clk_csr value
2841 * is NOT passed from the platform, probe fail.
2842 */
2843 if (!priv->plat->clk_csr) {
2844 ret = PTR_ERR(priv->stmmac_clk);
2845 goto error_clk_get;
2846 } else {
2847 priv->stmmac_clk = NULL;
2848 }
2849 }
2850 clk_prepare_enable(priv->stmmac_clk);
2851
2852 priv->stmmac_rst = devm_reset_control_get(priv->device,
2853 STMMAC_RESOURCE_NAME);
2854 if (IS_ERR(priv->stmmac_rst)) {
2855 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2856 ret = -EPROBE_DEFER;
2857 goto error_hw_init;
2858 }
2859 dev_info(priv->device, "no reset control found\n");
2860 priv->stmmac_rst = NULL;
2861 }
2862 if (priv->stmmac_rst)
2863 reset_control_deassert(priv->stmmac_rst);
2864
2865 /* Init MAC and get the capabilities */
2866 ret = stmmac_hw_init(priv);
2867 if (ret)
2868 goto error_hw_init;
2869
2870 ndev->netdev_ops = &stmmac_netdev_ops;
2871
2872 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2873 NETIF_F_RXCSUM;
2874 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2875 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2876 #ifdef STMMAC_VLAN_TAG_USED
2877 /* Both mac100 and gmac support receive VLAN tag detection */
2878 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2879 #endif
2880 priv->msg_enable = netif_msg_init(debug, default_msg_level);
2881
2882 if (flow_ctrl)
2883 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
2884
2885 /* Rx Watchdog is available in the COREs newer than the 3.40.
2886 * In some case, for example on bugged HW this feature
2887 * has to be disable and this can be done by passing the
2888 * riwt_off field from the platform.
2889 */
2890 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2891 priv->use_riwt = 1;
2892 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2893 }
2894
2895 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2896
2897 spin_lock_init(&priv->lock);
2898 spin_lock_init(&priv->tx_lock);
2899
2900 ret = register_netdev(ndev);
2901 if (ret) {
2902 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2903 goto error_netdev_register;
2904 }
2905
2906 /* If a specific clk_csr value is passed from the platform
2907 * this means that the CSR Clock Range selection cannot be
2908 * changed at run-time and it is fixed. Viceversa the driver'll try to
2909 * set the MDC clock dynamically according to the csr actual
2910 * clock input.
2911 */
2912 if (!priv->plat->clk_csr)
2913 stmmac_clk_csr_set(priv);
2914 else
2915 priv->clk_csr = priv->plat->clk_csr;
2916
2917 stmmac_check_pcs_mode(priv);
2918
2919 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2920 priv->pcs != STMMAC_PCS_RTBI) {
2921 /* MDIO bus Registration */
2922 ret = stmmac_mdio_register(ndev);
2923 if (ret < 0) {
2924 pr_debug("%s: MDIO bus (id: %d) registration failed",
2925 __func__, priv->plat->bus_id);
2926 goto error_mdio_register;
2927 }
2928 }
2929
2930 return priv;
2931
2932 error_mdio_register:
2933 unregister_netdev(ndev);
2934 error_netdev_register:
2935 netif_napi_del(&priv->napi);
2936 error_hw_init:
2937 clk_disable_unprepare(priv->stmmac_clk);
2938 error_clk_get:
2939 free_netdev(ndev);
2940
2941 return ERR_PTR(ret);
2942 }
2943 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
2944
2945 /**
2946 * stmmac_dvr_remove
2947 * @ndev: net device pointer
2948 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2949 * changes the link status, releases the DMA descriptor rings.
2950 */
2951 int stmmac_dvr_remove(struct net_device *ndev)
2952 {
2953 struct stmmac_priv *priv = netdev_priv(ndev);
2954
2955 pr_info("%s:\n\tremoving driver", __func__);
2956
2957 priv->hw->dma->stop_rx(priv->ioaddr);
2958 priv->hw->dma->stop_tx(priv->ioaddr);
2959
2960 stmmac_set_mac(priv->ioaddr, false);
2961 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2962 priv->pcs != STMMAC_PCS_RTBI)
2963 stmmac_mdio_unregister(ndev);
2964 netif_carrier_off(ndev);
2965 unregister_netdev(ndev);
2966 if (priv->stmmac_rst)
2967 reset_control_assert(priv->stmmac_rst);
2968 clk_disable_unprepare(priv->stmmac_clk);
2969 free_netdev(ndev);
2970
2971 return 0;
2972 }
2973 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
2974
2975 /**
2976 * stmmac_suspend - suspend callback
2977 * @ndev: net device pointer
2978 * Description: this is the function to suspend the device and it is called
2979 * by the platform driver to stop the network queue, release the resources,
2980 * program the PMT register (for WoL), clean and release driver resources.
2981 */
2982 int stmmac_suspend(struct net_device *ndev)
2983 {
2984 struct stmmac_priv *priv = netdev_priv(ndev);
2985 unsigned long flags;
2986
2987 if (!ndev || !netif_running(ndev))
2988 return 0;
2989
2990 if (priv->phydev)
2991 phy_stop(priv->phydev);
2992
2993 spin_lock_irqsave(&priv->lock, flags);
2994
2995 netif_device_detach(ndev);
2996 netif_stop_queue(ndev);
2997
2998 napi_disable(&priv->napi);
2999
3000 /* Stop TX/RX DMA */
3001 priv->hw->dma->stop_tx(priv->ioaddr);
3002 priv->hw->dma->stop_rx(priv->ioaddr);
3003
3004 stmmac_clear_descriptors(priv);
3005
3006 /* Enable Power down mode by programming the PMT regs */
3007 if (device_may_wakeup(priv->device)) {
3008 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3009 priv->irq_wake = 1;
3010 } else {
3011 stmmac_set_mac(priv->ioaddr, false);
3012 pinctrl_pm_select_sleep_state(priv->device);
3013 /* Disable clock in case of PWM is off */
3014 clk_disable(priv->stmmac_clk);
3015 }
3016 spin_unlock_irqrestore(&priv->lock, flags);
3017
3018 priv->oldlink = 0;
3019 priv->speed = 0;
3020 priv->oldduplex = -1;
3021 return 0;
3022 }
3023 EXPORT_SYMBOL_GPL(stmmac_suspend);
3024
3025 /**
3026 * stmmac_resume - resume callback
3027 * @ndev: net device pointer
3028 * Description: when resume this function is invoked to setup the DMA and CORE
3029 * in a usable state.
3030 */
3031 int stmmac_resume(struct net_device *ndev)
3032 {
3033 struct stmmac_priv *priv = netdev_priv(ndev);
3034 unsigned long flags;
3035
3036 if (!netif_running(ndev))
3037 return 0;
3038
3039 spin_lock_irqsave(&priv->lock, flags);
3040
3041 /* Power Down bit, into the PM register, is cleared
3042 * automatically as soon as a magic packet or a Wake-up frame
3043 * is received. Anyway, it's better to manually clear
3044 * this bit because it can generate problems while resuming
3045 * from another devices (e.g. serial console).
3046 */
3047 if (device_may_wakeup(priv->device)) {
3048 priv->hw->mac->pmt(priv->hw, 0);
3049 priv->irq_wake = 0;
3050 } else {
3051 pinctrl_pm_select_default_state(priv->device);
3052 /* enable the clk prevously disabled */
3053 clk_enable(priv->stmmac_clk);
3054 /* reset the phy so that it's ready */
3055 if (priv->mii)
3056 stmmac_mdio_reset(priv->mii);
3057 }
3058
3059 netif_device_attach(ndev);
3060
3061 init_dma_desc_rings(ndev, GFP_ATOMIC);
3062 stmmac_hw_setup(ndev, false);
3063 stmmac_init_tx_coalesce(priv);
3064
3065 napi_enable(&priv->napi);
3066
3067 netif_start_queue(ndev);
3068
3069 spin_unlock_irqrestore(&priv->lock, flags);
3070
3071 if (priv->phydev)
3072 phy_start(priv->phydev);
3073
3074 return 0;
3075 }
3076 EXPORT_SYMBOL_GPL(stmmac_resume);
3077
3078 #ifndef MODULE
3079 static int __init stmmac_cmdline_opt(char *str)
3080 {
3081 char *opt;
3082
3083 if (!str || !*str)
3084 return -EINVAL;
3085 while ((opt = strsep(&str, ",")) != NULL) {
3086 if (!strncmp(opt, "debug:", 6)) {
3087 if (kstrtoint(opt + 6, 0, &debug))
3088 goto err;
3089 } else if (!strncmp(opt, "phyaddr:", 8)) {
3090 if (kstrtoint(opt + 8, 0, &phyaddr))
3091 goto err;
3092 } else if (!strncmp(opt, "dma_txsize:", 11)) {
3093 if (kstrtoint(opt + 11, 0, &dma_txsize))
3094 goto err;
3095 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
3096 if (kstrtoint(opt + 11, 0, &dma_rxsize))
3097 goto err;
3098 } else if (!strncmp(opt, "buf_sz:", 7)) {
3099 if (kstrtoint(opt + 7, 0, &buf_sz))
3100 goto err;
3101 } else if (!strncmp(opt, "tc:", 3)) {
3102 if (kstrtoint(opt + 3, 0, &tc))
3103 goto err;
3104 } else if (!strncmp(opt, "watchdog:", 9)) {
3105 if (kstrtoint(opt + 9, 0, &watchdog))
3106 goto err;
3107 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3108 if (kstrtoint(opt + 10, 0, &flow_ctrl))
3109 goto err;
3110 } else if (!strncmp(opt, "pause:", 6)) {
3111 if (kstrtoint(opt + 6, 0, &pause))
3112 goto err;
3113 } else if (!strncmp(opt, "eee_timer:", 10)) {
3114 if (kstrtoint(opt + 10, 0, &eee_timer))
3115 goto err;
3116 } else if (!strncmp(opt, "chain_mode:", 11)) {
3117 if (kstrtoint(opt + 11, 0, &chain_mode))
3118 goto err;
3119 }
3120 }
3121 return 0;
3122
3123 err:
3124 pr_err("%s: ERROR broken module parameter conversion", __func__);
3125 return -EINVAL;
3126 }
3127
3128 __setup("stmmaceth=", stmmac_cmdline_opt);
3129 #endif /* MODULE */
3130
3131 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3132 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3133 MODULE_LICENSE("GPL");
This page took 0.120738 seconds and 5 git commands to generate.