Merge branch 'for-airlied' of git://people.freedesktop.org/~danvet/drm-intel into...
[deliverable/linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #ifdef CONFIG_STMMAC_DEBUG_FS
47 #include <linux/debugfs.h>
48 #include <linux/seq_file.h>
49 #endif
50 #include "stmmac.h"
51
52 #undef STMMAC_DEBUG
53 /*#define STMMAC_DEBUG*/
54 #ifdef STMMAC_DEBUG
55 #define DBG(nlevel, klevel, fmt, args...) \
56 ((void)(netif_msg_##nlevel(priv) && \
57 printk(KERN_##klevel fmt, ## args)))
58 #else
59 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
60 #endif
61
62 #undef STMMAC_RX_DEBUG
63 /*#define STMMAC_RX_DEBUG*/
64 #ifdef STMMAC_RX_DEBUG
65 #define RX_DBG(fmt, args...) printk(fmt, ## args)
66 #else
67 #define RX_DBG(fmt, args...) do { } while (0)
68 #endif
69
70 #undef STMMAC_XMIT_DEBUG
71 /*#define STMMAC_XMIT_DEBUG*/
72 #ifdef STMMAC_TX_DEBUG
73 #define TX_DBG(fmt, args...) printk(fmt, ## args)
74 #else
75 #define TX_DBG(fmt, args...) do { } while (0)
76 #endif
77
78 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
79 #define JUMBO_LEN 9000
80
81 /* Module parameters */
82 #define TX_TIMEO 5000 /* default 5 seconds */
83 static int watchdog = TX_TIMEO;
84 module_param(watchdog, int, S_IRUGO | S_IWUSR);
85 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
86
87 static int debug = -1; /* -1: default, 0: no output, 16: all */
88 module_param(debug, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
90
91 int phyaddr = -1;
92 module_param(phyaddr, int, S_IRUGO);
93 MODULE_PARM_DESC(phyaddr, "Physical device address");
94
95 #define DMA_TX_SIZE 256
96 static int dma_txsize = DMA_TX_SIZE;
97 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
99
100 #define DMA_RX_SIZE 256
101 static int dma_rxsize = DMA_RX_SIZE;
102 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
103 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
104
105 static int flow_ctrl = FLOW_OFF;
106 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
108
109 static int pause = PAUSE_TIME;
110 module_param(pause, int, S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
112
113 #define TC_DEFAULT 64
114 static int tc = TC_DEFAULT;
115 module_param(tc, int, S_IRUGO | S_IWUSR);
116 MODULE_PARM_DESC(tc, "DMA threshold control value");
117
118 /* Pay attention to tune this parameter; take care of both
119 * hardware capability and network stabitily/performance impact.
120 * Many tests showed that ~4ms latency seems to be good enough. */
121 #ifdef CONFIG_STMMAC_TIMER
122 #define DEFAULT_PERIODIC_RATE 256
123 static int tmrate = DEFAULT_PERIODIC_RATE;
124 module_param(tmrate, int, S_IRUGO | S_IWUSR);
125 MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
126 #endif
127
128 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
129 static int buf_sz = DMA_BUFFER_SIZE;
130 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
131 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
132
133 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
134 NETIF_MSG_LINK | NETIF_MSG_IFUP |
135 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
136
137 #define STMMAC_DEFAULT_LPI_TIMER 1000
138 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
139 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
140 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
141 #define STMMAC_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))
142
143 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
144
145 #ifdef CONFIG_STMMAC_DEBUG_FS
146 static int stmmac_init_fs(struct net_device *dev);
147 static void stmmac_exit_fs(void);
148 #endif
149
150 /**
151 * stmmac_verify_args - verify the driver parameters.
152 * Description: it verifies if some wrong parameter is passed to the driver.
153 * Note that wrong parameters are replaced with the default values.
154 */
155 static void stmmac_verify_args(void)
156 {
157 if (unlikely(watchdog < 0))
158 watchdog = TX_TIMEO;
159 if (unlikely(dma_rxsize < 0))
160 dma_rxsize = DMA_RX_SIZE;
161 if (unlikely(dma_txsize < 0))
162 dma_txsize = DMA_TX_SIZE;
163 if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
164 buf_sz = DMA_BUFFER_SIZE;
165 if (unlikely(flow_ctrl > 1))
166 flow_ctrl = FLOW_AUTO;
167 else if (likely(flow_ctrl < 0))
168 flow_ctrl = FLOW_OFF;
169 if (unlikely((pause < 0) || (pause > 0xffff)))
170 pause = PAUSE_TIME;
171 if (eee_timer < 0)
172 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
173 }
174
175 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
176 {
177 u32 clk_rate;
178
179 clk_rate = clk_get_rate(priv->stmmac_clk);
180
181 /* Platform provided default clk_csr would be assumed valid
182 * for all other cases except for the below mentioned ones. */
183 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
184 if (clk_rate < CSR_F_35M)
185 priv->clk_csr = STMMAC_CSR_20_35M;
186 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
187 priv->clk_csr = STMMAC_CSR_35_60M;
188 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
189 priv->clk_csr = STMMAC_CSR_60_100M;
190 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
191 priv->clk_csr = STMMAC_CSR_100_150M;
192 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
193 priv->clk_csr = STMMAC_CSR_150_250M;
194 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
195 priv->clk_csr = STMMAC_CSR_250_300M;
196 } /* For values higher than the IEEE 802.3 specified frequency
197 * we can not estimate the proper divider as it is not known
198 * the frequency of clk_csr_i. So we do not change the default
199 * divider. */
200 }
201
202 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
203 static void print_pkt(unsigned char *buf, int len)
204 {
205 int j;
206 pr_info("len = %d byte, buf addr: 0x%p", len, buf);
207 for (j = 0; j < len; j++) {
208 if ((j % 16) == 0)
209 pr_info("\n %03x:", j);
210 pr_info(" %02x", buf[j]);
211 }
212 pr_info("\n");
213 }
214 #endif
215
216 /* minimum number of free TX descriptors required to wake up TX process */
217 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
218
219 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
220 {
221 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
222 }
223
224 /* On some ST platforms, some HW system configuraton registers have to be
225 * set according to the link speed negotiated.
226 */
227 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
228 {
229 struct phy_device *phydev = priv->phydev;
230
231 if (likely(priv->plat->fix_mac_speed))
232 priv->plat->fix_mac_speed(priv->plat->bsp_priv,
233 phydev->speed);
234 }
235
236 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
237 {
238 /* Check and enter in LPI mode */
239 if ((priv->dirty_tx == priv->cur_tx) &&
240 (priv->tx_path_in_lpi_mode == false))
241 priv->hw->mac->set_eee_mode(priv->ioaddr);
242 }
243
244 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
245 {
246 /* Exit and disable EEE in case of we are are in LPI state. */
247 priv->hw->mac->reset_eee_mode(priv->ioaddr);
248 del_timer_sync(&priv->eee_ctrl_timer);
249 priv->tx_path_in_lpi_mode = false;
250 }
251
252 /**
253 * stmmac_eee_ctrl_timer
254 * @arg : data hook
255 * Description:
256 * If there is no data transfer and if we are not in LPI state,
257 * then MAC Transmitter can be moved to LPI state.
258 */
259 static void stmmac_eee_ctrl_timer(unsigned long arg)
260 {
261 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
262
263 stmmac_enable_eee_mode(priv);
264 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
265 }
266
267 /**
268 * stmmac_eee_init
269 * @priv: private device pointer
270 * Description:
271 * If the EEE support has been enabled while configuring the driver,
272 * if the GMAC actually supports the EEE (from the HW cap reg) and the
273 * phy can also manage EEE, so enable the LPI state and start the timer
274 * to verify if the tx path can enter in LPI state.
275 */
276 bool stmmac_eee_init(struct stmmac_priv *priv)
277 {
278 bool ret = false;
279
280 /* MAC core supports the EEE feature. */
281 if (priv->dma_cap.eee) {
282 /* Check if the PHY supports EEE */
283 if (phy_init_eee(priv->phydev, 1))
284 goto out;
285
286 priv->eee_active = 1;
287 init_timer(&priv->eee_ctrl_timer);
288 priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
289 priv->eee_ctrl_timer.data = (unsigned long)priv;
290 priv->eee_ctrl_timer.expires = STMMAC_LPI_TIMER(eee_timer);
291 add_timer(&priv->eee_ctrl_timer);
292
293 priv->hw->mac->set_eee_timer(priv->ioaddr,
294 STMMAC_DEFAULT_LIT_LS_TIMER,
295 priv->tx_lpi_timer);
296
297 pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
298
299 ret = true;
300 }
301 out:
302 return ret;
303 }
304
305 static void stmmac_eee_adjust(struct stmmac_priv *priv)
306 {
307 /* When the EEE has been already initialised we have to
308 * modify the PLS bit in the LPI ctrl & status reg according
309 * to the PHY link status. For this reason.
310 */
311 if (priv->eee_enabled)
312 priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
313 }
314
315 /**
316 * stmmac_adjust_link
317 * @dev: net device structure
318 * Description: it adjusts the link parameters.
319 */
320 static void stmmac_adjust_link(struct net_device *dev)
321 {
322 struct stmmac_priv *priv = netdev_priv(dev);
323 struct phy_device *phydev = priv->phydev;
324 unsigned long flags;
325 int new_state = 0;
326 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
327
328 if (phydev == NULL)
329 return;
330
331 DBG(probe, DEBUG, "stmmac_adjust_link: called. address %d link %d\n",
332 phydev->addr, phydev->link);
333
334 spin_lock_irqsave(&priv->lock, flags);
335
336 if (phydev->link) {
337 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
338
339 /* Now we make sure that we can be in full duplex mode.
340 * If not, we operate in half-duplex mode. */
341 if (phydev->duplex != priv->oldduplex) {
342 new_state = 1;
343 if (!(phydev->duplex))
344 ctrl &= ~priv->hw->link.duplex;
345 else
346 ctrl |= priv->hw->link.duplex;
347 priv->oldduplex = phydev->duplex;
348 }
349 /* Flow Control operation */
350 if (phydev->pause)
351 priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
352 fc, pause_time);
353
354 if (phydev->speed != priv->speed) {
355 new_state = 1;
356 switch (phydev->speed) {
357 case 1000:
358 if (likely(priv->plat->has_gmac))
359 ctrl &= ~priv->hw->link.port;
360 stmmac_hw_fix_mac_speed(priv);
361 break;
362 case 100:
363 case 10:
364 if (priv->plat->has_gmac) {
365 ctrl |= priv->hw->link.port;
366 if (phydev->speed == SPEED_100) {
367 ctrl |= priv->hw->link.speed;
368 } else {
369 ctrl &= ~(priv->hw->link.speed);
370 }
371 } else {
372 ctrl &= ~priv->hw->link.port;
373 }
374 stmmac_hw_fix_mac_speed(priv);
375 break;
376 default:
377 if (netif_msg_link(priv))
378 pr_warning("%s: Speed (%d) is not 10"
379 " or 100!\n", dev->name, phydev->speed);
380 break;
381 }
382
383 priv->speed = phydev->speed;
384 }
385
386 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
387
388 if (!priv->oldlink) {
389 new_state = 1;
390 priv->oldlink = 1;
391 }
392 } else if (priv->oldlink) {
393 new_state = 1;
394 priv->oldlink = 0;
395 priv->speed = 0;
396 priv->oldduplex = -1;
397 }
398
399 if (new_state && netif_msg_link(priv))
400 phy_print_status(phydev);
401
402 stmmac_eee_adjust(priv);
403
404 spin_unlock_irqrestore(&priv->lock, flags);
405
406 DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
407 }
408
409 /**
410 * stmmac_init_phy - PHY initialization
411 * @dev: net device structure
412 * Description: it initializes the driver's PHY state, and attaches the PHY
413 * to the mac driver.
414 * Return value:
415 * 0 on success
416 */
417 static int stmmac_init_phy(struct net_device *dev)
418 {
419 struct stmmac_priv *priv = netdev_priv(dev);
420 struct phy_device *phydev;
421 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
422 char bus_id[MII_BUS_ID_SIZE];
423 int interface = priv->plat->interface;
424 priv->oldlink = 0;
425 priv->speed = 0;
426 priv->oldduplex = -1;
427
428 if (priv->plat->phy_bus_name)
429 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
430 priv->plat->phy_bus_name, priv->plat->bus_id);
431 else
432 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
433 priv->plat->bus_id);
434
435 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
436 priv->plat->phy_addr);
437 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id_fmt);
438
439 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, 0,
440 interface);
441
442 if (IS_ERR(phydev)) {
443 pr_err("%s: Could not attach to PHY\n", dev->name);
444 return PTR_ERR(phydev);
445 }
446
447 /* Stop Advertising 1000BASE Capability if interface is not GMII */
448 if ((interface == PHY_INTERFACE_MODE_MII) ||
449 (interface == PHY_INTERFACE_MODE_RMII))
450 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
451 SUPPORTED_1000baseT_Full);
452
453 /*
454 * Broken HW is sometimes missing the pull-up resistor on the
455 * MDIO line, which results in reads to non-existent devices returning
456 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
457 * device as well.
458 * Note: phydev->phy_id is the result of reading the UID PHY registers.
459 */
460 if (phydev->phy_id == 0) {
461 phy_disconnect(phydev);
462 return -ENODEV;
463 }
464 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
465 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
466
467 priv->phydev = phydev;
468
469 return 0;
470 }
471
472 /**
473 * display_ring
474 * @p: pointer to the ring.
475 * @size: size of the ring.
476 * Description: display all the descriptors within the ring.
477 */
478 static void display_ring(struct dma_desc *p, int size)
479 {
480 struct tmp_s {
481 u64 a;
482 unsigned int b;
483 unsigned int c;
484 };
485 int i;
486 for (i = 0; i < size; i++) {
487 struct tmp_s *x = (struct tmp_s *)(p + i);
488 pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
489 i, (unsigned int)virt_to_phys(&p[i]),
490 (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
491 x->b, x->c);
492 pr_info("\n");
493 }
494 }
495
496 static int stmmac_set_bfsize(int mtu, int bufsize)
497 {
498 int ret = bufsize;
499
500 if (mtu >= BUF_SIZE_4KiB)
501 ret = BUF_SIZE_8KiB;
502 else if (mtu >= BUF_SIZE_2KiB)
503 ret = BUF_SIZE_4KiB;
504 else if (mtu >= DMA_BUFFER_SIZE)
505 ret = BUF_SIZE_2KiB;
506 else
507 ret = DMA_BUFFER_SIZE;
508
509 return ret;
510 }
511
512 /**
513 * init_dma_desc_rings - init the RX/TX descriptor rings
514 * @dev: net device structure
515 * Description: this function initializes the DMA RX/TX descriptors
516 * and allocates the socket buffers. It suppors the chained and ring
517 * modes.
518 */
519 static void init_dma_desc_rings(struct net_device *dev)
520 {
521 int i;
522 struct stmmac_priv *priv = netdev_priv(dev);
523 struct sk_buff *skb;
524 unsigned int txsize = priv->dma_tx_size;
525 unsigned int rxsize = priv->dma_rx_size;
526 unsigned int bfsize;
527 int dis_ic = 0;
528 int des3_as_data_buf = 0;
529
530 /* Set the max buffer size according to the DESC mode
531 * and the MTU. Note that RING mode allows 16KiB bsize. */
532 bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
533
534 if (bfsize == BUF_SIZE_16KiB)
535 des3_as_data_buf = 1;
536 else
537 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
538
539 #ifdef CONFIG_STMMAC_TIMER
540 /* Disable interrupts on completion for the reception if timer is on */
541 if (likely(priv->tm->enable))
542 dis_ic = 1;
543 #endif
544
545 DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
546 txsize, rxsize, bfsize);
547
548 priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
549 priv->rx_skbuff =
550 kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
551 priv->dma_rx =
552 (struct dma_desc *)dma_alloc_coherent(priv->device,
553 rxsize *
554 sizeof(struct dma_desc),
555 &priv->dma_rx_phy,
556 GFP_KERNEL);
557 priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
558 GFP_KERNEL);
559 priv->dma_tx =
560 (struct dma_desc *)dma_alloc_coherent(priv->device,
561 txsize *
562 sizeof(struct dma_desc),
563 &priv->dma_tx_phy,
564 GFP_KERNEL);
565
566 if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
567 pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
568 return;
569 }
570
571 DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
572 "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
573 dev->name, priv->dma_rx, priv->dma_tx,
574 (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
575
576 /* RX INITIALIZATION */
577 DBG(probe, INFO, "stmmac: SKB addresses:\n"
578 "skb\t\tskb data\tdma data\n");
579
580 for (i = 0; i < rxsize; i++) {
581 struct dma_desc *p = priv->dma_rx + i;
582
583 skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
584 GFP_KERNEL);
585 if (unlikely(skb == NULL)) {
586 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
587 break;
588 }
589 skb_reserve(skb, NET_IP_ALIGN);
590 priv->rx_skbuff[i] = skb;
591 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
592 bfsize, DMA_FROM_DEVICE);
593
594 p->des2 = priv->rx_skbuff_dma[i];
595
596 priv->hw->ring->init_desc3(des3_as_data_buf, p);
597
598 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
599 priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
600 }
601 priv->cur_rx = 0;
602 priv->dirty_rx = (unsigned int)(i - rxsize);
603 priv->dma_buf_sz = bfsize;
604 buf_sz = bfsize;
605
606 /* TX INITIALIZATION */
607 for (i = 0; i < txsize; i++) {
608 priv->tx_skbuff[i] = NULL;
609 priv->dma_tx[i].des2 = 0;
610 }
611
612 /* In case of Chained mode this sets the des3 to the next
613 * element in the chain */
614 priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
615 priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);
616
617 priv->dirty_tx = 0;
618 priv->cur_tx = 0;
619
620 /* Clear the Rx/Tx descriptors */
621 priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
622 priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
623
624 if (netif_msg_hw(priv)) {
625 pr_info("RX descriptor ring:\n");
626 display_ring(priv->dma_rx, rxsize);
627 pr_info("TX descriptor ring:\n");
628 display_ring(priv->dma_tx, txsize);
629 }
630 }
631
632 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
633 {
634 int i;
635
636 for (i = 0; i < priv->dma_rx_size; i++) {
637 if (priv->rx_skbuff[i]) {
638 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
639 priv->dma_buf_sz, DMA_FROM_DEVICE);
640 dev_kfree_skb_any(priv->rx_skbuff[i]);
641 }
642 priv->rx_skbuff[i] = NULL;
643 }
644 }
645
646 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
647 {
648 int i;
649
650 for (i = 0; i < priv->dma_tx_size; i++) {
651 if (priv->tx_skbuff[i] != NULL) {
652 struct dma_desc *p = priv->dma_tx + i;
653 if (p->des2)
654 dma_unmap_single(priv->device, p->des2,
655 priv->hw->desc->get_tx_len(p),
656 DMA_TO_DEVICE);
657 dev_kfree_skb_any(priv->tx_skbuff[i]);
658 priv->tx_skbuff[i] = NULL;
659 }
660 }
661 }
662
663 static void free_dma_desc_resources(struct stmmac_priv *priv)
664 {
665 /* Release the DMA TX/RX socket buffers */
666 dma_free_rx_skbufs(priv);
667 dma_free_tx_skbufs(priv);
668
669 /* Free the region of consistent memory previously allocated for
670 * the DMA */
671 dma_free_coherent(priv->device,
672 priv->dma_tx_size * sizeof(struct dma_desc),
673 priv->dma_tx, priv->dma_tx_phy);
674 dma_free_coherent(priv->device,
675 priv->dma_rx_size * sizeof(struct dma_desc),
676 priv->dma_rx, priv->dma_rx_phy);
677 kfree(priv->rx_skbuff_dma);
678 kfree(priv->rx_skbuff);
679 kfree(priv->tx_skbuff);
680 }
681
682 /**
683 * stmmac_dma_operation_mode - HW DMA operation mode
684 * @priv : pointer to the private device structure.
685 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
686 * or Store-And-Forward capability.
687 */
688 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
689 {
690 if (likely(priv->plat->force_sf_dma_mode ||
691 ((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
692 /*
693 * In case of GMAC, SF mode can be enabled
694 * to perform the TX COE in HW. This depends on:
695 * 1) TX COE if actually supported
696 * 2) There is no bugged Jumbo frame support
697 * that needs to not insert csum in the TDES.
698 */
699 priv->hw->dma->dma_mode(priv->ioaddr,
700 SF_DMA_MODE, SF_DMA_MODE);
701 tc = SF_DMA_MODE;
702 } else
703 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
704 }
705
706 /**
707 * stmmac_tx:
708 * @priv: private driver structure
709 * Description: it reclaims resources after transmission completes.
710 */
711 static void stmmac_tx(struct stmmac_priv *priv)
712 {
713 unsigned int txsize = priv->dma_tx_size;
714
715 spin_lock(&priv->tx_lock);
716
717 while (priv->dirty_tx != priv->cur_tx) {
718 int last;
719 unsigned int entry = priv->dirty_tx % txsize;
720 struct sk_buff *skb = priv->tx_skbuff[entry];
721 struct dma_desc *p = priv->dma_tx + entry;
722
723 /* Check if the descriptor is owned by the DMA. */
724 if (priv->hw->desc->get_tx_owner(p))
725 break;
726
727 /* Verify tx error by looking at the last segment */
728 last = priv->hw->desc->get_tx_ls(p);
729 if (likely(last)) {
730 int tx_error =
731 priv->hw->desc->tx_status(&priv->dev->stats,
732 &priv->xstats, p,
733 priv->ioaddr);
734 if (likely(tx_error == 0)) {
735 priv->dev->stats.tx_packets++;
736 priv->xstats.tx_pkt_n++;
737 } else
738 priv->dev->stats.tx_errors++;
739 }
740 TX_DBG("%s: curr %d, dirty %d\n", __func__,
741 priv->cur_tx, priv->dirty_tx);
742
743 if (likely(p->des2))
744 dma_unmap_single(priv->device, p->des2,
745 priv->hw->desc->get_tx_len(p),
746 DMA_TO_DEVICE);
747 priv->hw->ring->clean_desc3(p);
748
749 if (likely(skb != NULL)) {
750 /*
751 * If there's room in the queue (limit it to size)
752 * we add this skb back into the pool,
753 * if it's the right size.
754 */
755 if ((skb_queue_len(&priv->rx_recycle) <
756 priv->dma_rx_size) &&
757 skb_recycle_check(skb, priv->dma_buf_sz))
758 __skb_queue_head(&priv->rx_recycle, skb);
759 else
760 dev_kfree_skb(skb);
761
762 priv->tx_skbuff[entry] = NULL;
763 }
764
765 priv->hw->desc->release_tx_desc(p);
766
767 priv->dirty_tx++;
768 }
769 if (unlikely(netif_queue_stopped(priv->dev) &&
770 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
771 netif_tx_lock(priv->dev);
772 if (netif_queue_stopped(priv->dev) &&
773 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
774 TX_DBG("%s: restart transmit\n", __func__);
775 netif_wake_queue(priv->dev);
776 }
777 netif_tx_unlock(priv->dev);
778 }
779
780 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
781 stmmac_enable_eee_mode(priv);
782 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
783 }
784 spin_unlock(&priv->tx_lock);
785 }
786
787 static inline void stmmac_enable_irq(struct stmmac_priv *priv)
788 {
789 #ifdef CONFIG_STMMAC_TIMER
790 if (likely(priv->tm->enable))
791 priv->tm->timer_start(tmrate);
792 else
793 #endif
794 priv->hw->dma->enable_dma_irq(priv->ioaddr);
795 }
796
797 static inline void stmmac_disable_irq(struct stmmac_priv *priv)
798 {
799 #ifdef CONFIG_STMMAC_TIMER
800 if (likely(priv->tm->enable))
801 priv->tm->timer_stop();
802 else
803 #endif
804 priv->hw->dma->disable_dma_irq(priv->ioaddr);
805 }
806
807 static int stmmac_has_work(struct stmmac_priv *priv)
808 {
809 unsigned int has_work = 0;
810 int rxret, tx_work = 0;
811
812 rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
813 (priv->cur_rx % priv->dma_rx_size));
814
815 if (priv->dirty_tx != priv->cur_tx)
816 tx_work = 1;
817
818 if (likely(!rxret || tx_work))
819 has_work = 1;
820
821 return has_work;
822 }
823
824 static inline void _stmmac_schedule(struct stmmac_priv *priv)
825 {
826 if (likely(stmmac_has_work(priv))) {
827 stmmac_disable_irq(priv);
828 napi_schedule(&priv->napi);
829 }
830 }
831
832 #ifdef CONFIG_STMMAC_TIMER
833 void stmmac_schedule(struct net_device *dev)
834 {
835 struct stmmac_priv *priv = netdev_priv(dev);
836
837 priv->xstats.sched_timer_n++;
838
839 _stmmac_schedule(priv);
840 }
841
842 static void stmmac_no_timer_started(unsigned int x)
843 {;
844 };
845
846 static void stmmac_no_timer_stopped(void)
847 {;
848 };
849 #endif
850
851 /**
852 * stmmac_tx_err:
853 * @priv: pointer to the private device structure
854 * Description: it cleans the descriptors and restarts the transmission
855 * in case of errors.
856 */
857 static void stmmac_tx_err(struct stmmac_priv *priv)
858 {
859 netif_stop_queue(priv->dev);
860
861 priv->hw->dma->stop_tx(priv->ioaddr);
862 dma_free_tx_skbufs(priv);
863 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
864 priv->dirty_tx = 0;
865 priv->cur_tx = 0;
866 priv->hw->dma->start_tx(priv->ioaddr);
867
868 priv->dev->stats.tx_errors++;
869 netif_wake_queue(priv->dev);
870 }
871
872
873 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
874 {
875 int status;
876
877 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
878 if (likely(status == handle_tx_rx))
879 _stmmac_schedule(priv);
880
881 else if (unlikely(status == tx_hard_error_bump_tc)) {
882 /* Try to bump up the dma threshold on this failure */
883 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
884 tc += 64;
885 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
886 priv->xstats.threshold = tc;
887 }
888 } else if (unlikely(status == tx_hard_error))
889 stmmac_tx_err(priv);
890 }
891
892 static void stmmac_mmc_setup(struct stmmac_priv *priv)
893 {
894 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
895 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
896
897 /* Mask MMC irq, counters are managed in SW and registers
898 * are cleared on each READ eventually. */
899 dwmac_mmc_intr_all_mask(priv->ioaddr);
900
901 if (priv->dma_cap.rmon) {
902 dwmac_mmc_ctrl(priv->ioaddr, mode);
903 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
904 } else
905 pr_info(" No MAC Management Counters available\n");
906 }
907
908 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
909 {
910 u32 hwid = priv->hw->synopsys_uid;
911
912 /* Only check valid Synopsys Id because old MAC chips
913 * have no HW registers where get the ID */
914 if (likely(hwid)) {
915 u32 uid = ((hwid & 0x0000ff00) >> 8);
916 u32 synid = (hwid & 0x000000ff);
917
918 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
919 uid, synid);
920
921 return synid;
922 }
923 return 0;
924 }
925
926 /**
927 * stmmac_selec_desc_mode
928 * @priv : private structure
929 * Description: select the Enhanced/Alternate or Normal descriptors
930 */
931 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
932 {
933 if (priv->plat->enh_desc) {
934 pr_info(" Enhanced/Alternate descriptors\n");
935 priv->hw->desc = &enh_desc_ops;
936 } else {
937 pr_info(" Normal descriptors\n");
938 priv->hw->desc = &ndesc_ops;
939 }
940 }
941
942 /**
943 * stmmac_get_hw_features
944 * @priv : private device pointer
945 * Description:
946 * new GMAC chip generations have a new register to indicate the
947 * presence of the optional feature/functions.
948 * This can be also used to override the value passed through the
949 * platform and necessary for old MAC10/100 and GMAC chips.
950 */
951 static int stmmac_get_hw_features(struct stmmac_priv *priv)
952 {
953 u32 hw_cap = 0;
954
955 if (priv->hw->dma->get_hw_feature) {
956 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
957
958 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
959 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
960 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
961 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
962 priv->dma_cap.multi_addr =
963 (hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
964 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
965 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
966 priv->dma_cap.pmt_remote_wake_up =
967 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
968 priv->dma_cap.pmt_magic_frame =
969 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
970 /* MMC */
971 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
972 /* IEEE 1588-2002*/
973 priv->dma_cap.time_stamp =
974 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
975 /* IEEE 1588-2008*/
976 priv->dma_cap.atime_stamp =
977 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
978 /* 802.3az - Energy-Efficient Ethernet (EEE) */
979 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
980 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
981 /* TX and RX csum */
982 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
983 priv->dma_cap.rx_coe_type1 =
984 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
985 priv->dma_cap.rx_coe_type2 =
986 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
987 priv->dma_cap.rxfifo_over_2048 =
988 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
989 /* TX and RX number of channels */
990 priv->dma_cap.number_rx_channel =
991 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
992 priv->dma_cap.number_tx_channel =
993 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
994 /* Alternate (enhanced) DESC mode*/
995 priv->dma_cap.enh_desc =
996 (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
997
998 }
999
1000 return hw_cap;
1001 }
1002
1003 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1004 {
1005 /* verify if the MAC address is valid, in case of failures it
1006 * generates a random MAC address */
1007 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1008 priv->hw->mac->get_umac_addr((void __iomem *)
1009 priv->dev->base_addr,
1010 priv->dev->dev_addr, 0);
1011 if (!is_valid_ether_addr(priv->dev->dev_addr))
1012 eth_hw_addr_random(priv->dev);
1013 }
1014 pr_warning("%s: device MAC address %pM\n", priv->dev->name,
1015 priv->dev->dev_addr);
1016 }
1017
1018 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1019 {
1020 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1021 int mixed_burst = 0;
1022
1023 /* Some DMA parameters can be passed from the platform;
1024 * in case of these are not passed we keep a default
1025 * (good for all the chips) and init the DMA! */
1026 if (priv->plat->dma_cfg) {
1027 pbl = priv->plat->dma_cfg->pbl;
1028 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1029 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1030 burst_len = priv->plat->dma_cfg->burst_len;
1031 }
1032
1033 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1034 burst_len, priv->dma_tx_phy,
1035 priv->dma_rx_phy);
1036 }
1037
1038 /**
1039 * stmmac_open - open entry point of the driver
1040 * @dev : pointer to the device structure.
1041 * Description:
1042 * This function is the open entry point of the driver.
1043 * Return value:
1044 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1045 * file on failure.
1046 */
1047 static int stmmac_open(struct net_device *dev)
1048 {
1049 struct stmmac_priv *priv = netdev_priv(dev);
1050 int ret;
1051
1052 #ifdef CONFIG_STMMAC_TIMER
1053 priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
1054 if (unlikely(priv->tm == NULL))
1055 return -ENOMEM;
1056
1057 priv->tm->freq = tmrate;
1058
1059 /* Test if the external timer can be actually used.
1060 * In case of failure continue without timer. */
1061 if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
1062 pr_warning("stmmaceth: cannot attach the external timer.\n");
1063 priv->tm->freq = 0;
1064 priv->tm->timer_start = stmmac_no_timer_started;
1065 priv->tm->timer_stop = stmmac_no_timer_stopped;
1066 } else
1067 priv->tm->enable = 1;
1068 #endif
1069 clk_enable(priv->stmmac_clk);
1070
1071 stmmac_check_ether_addr(priv);
1072
1073 ret = stmmac_init_phy(dev);
1074 if (unlikely(ret)) {
1075 pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
1076 goto open_error;
1077 }
1078
1079 /* Create and initialize the TX/RX descriptors chains. */
1080 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1081 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1082 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1083 init_dma_desc_rings(dev);
1084
1085 /* DMA initialization and SW reset */
1086 ret = stmmac_init_dma_engine(priv);
1087 if (ret < 0) {
1088 pr_err("%s: DMA initialization failed\n", __func__);
1089 goto open_error;
1090 }
1091
1092 /* Copy the MAC addr into the HW */
1093 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1094
1095 /* If required, perform hw setup of the bus. */
1096 if (priv->plat->bus_setup)
1097 priv->plat->bus_setup(priv->ioaddr);
1098
1099 /* Initialize the MAC Core */
1100 priv->hw->mac->core_init(priv->ioaddr);
1101
1102 /* Request the IRQ lines */
1103 ret = request_irq(dev->irq, stmmac_interrupt,
1104 IRQF_SHARED, dev->name, dev);
1105 if (unlikely(ret < 0)) {
1106 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1107 __func__, dev->irq, ret);
1108 goto open_error;
1109 }
1110
1111 /* Request the Wake IRQ in case of another line is used for WoL */
1112 if (priv->wol_irq != dev->irq) {
1113 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1114 IRQF_SHARED, dev->name, dev);
1115 if (unlikely(ret < 0)) {
1116 pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
1117 "(error: %d)\n", __func__, priv->wol_irq, ret);
1118 goto open_error_wolirq;
1119 }
1120 }
1121
1122 /* Request the IRQ lines */
1123 if (priv->lpi_irq != -ENXIO) {
1124 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1125 dev->name, dev);
1126 if (unlikely(ret < 0)) {
1127 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1128 __func__, priv->lpi_irq, ret);
1129 goto open_error_lpiirq;
1130 }
1131 }
1132
1133 /* Enable the MAC Rx/Tx */
1134 stmmac_set_mac(priv->ioaddr, true);
1135
1136 /* Set the HW DMA mode and the COE */
1137 stmmac_dma_operation_mode(priv);
1138
1139 /* Extra statistics */
1140 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1141 priv->xstats.threshold = tc;
1142
1143 stmmac_mmc_setup(priv);
1144
1145 #ifdef CONFIG_STMMAC_DEBUG_FS
1146 ret = stmmac_init_fs(dev);
1147 if (ret < 0)
1148 pr_warning("%s: failed debugFS registration\n", __func__);
1149 #endif
1150 /* Start the ball rolling... */
1151 DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1152 priv->hw->dma->start_tx(priv->ioaddr);
1153 priv->hw->dma->start_rx(priv->ioaddr);
1154
1155 #ifdef CONFIG_STMMAC_TIMER
1156 priv->tm->timer_start(tmrate);
1157 #endif
1158
1159 /* Dump DMA/MAC registers */
1160 if (netif_msg_hw(priv)) {
1161 priv->hw->mac->dump_regs(priv->ioaddr);
1162 priv->hw->dma->dump_regs(priv->ioaddr);
1163 }
1164
1165 if (priv->phydev)
1166 phy_start(priv->phydev);
1167
1168 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS_TIMER;
1169 priv->eee_enabled = stmmac_eee_init(priv);
1170
1171 napi_enable(&priv->napi);
1172 skb_queue_head_init(&priv->rx_recycle);
1173 netif_start_queue(dev);
1174
1175 return 0;
1176
1177 open_error_lpiirq:
1178 if (priv->wol_irq != dev->irq)
1179 free_irq(priv->wol_irq, dev);
1180
1181 open_error_wolirq:
1182 free_irq(dev->irq, dev);
1183
1184 open_error:
1185 #ifdef CONFIG_STMMAC_TIMER
1186 kfree(priv->tm);
1187 #endif
1188 if (priv->phydev)
1189 phy_disconnect(priv->phydev);
1190
1191 clk_disable(priv->stmmac_clk);
1192
1193 return ret;
1194 }
1195
1196 /**
1197 * stmmac_release - close entry point of the driver
1198 * @dev : device pointer.
1199 * Description:
1200 * This is the stop entry point of the driver.
1201 */
1202 static int stmmac_release(struct net_device *dev)
1203 {
1204 struct stmmac_priv *priv = netdev_priv(dev);
1205
1206 if (priv->eee_enabled)
1207 del_timer_sync(&priv->eee_ctrl_timer);
1208
1209 /* Stop and disconnect the PHY */
1210 if (priv->phydev) {
1211 phy_stop(priv->phydev);
1212 phy_disconnect(priv->phydev);
1213 priv->phydev = NULL;
1214 }
1215
1216 netif_stop_queue(dev);
1217
1218 #ifdef CONFIG_STMMAC_TIMER
1219 /* Stop and release the timer */
1220 stmmac_close_ext_timer();
1221 if (priv->tm != NULL)
1222 kfree(priv->tm);
1223 #endif
1224 napi_disable(&priv->napi);
1225 skb_queue_purge(&priv->rx_recycle);
1226
1227 /* Free the IRQ lines */
1228 free_irq(dev->irq, dev);
1229 if (priv->wol_irq != dev->irq)
1230 free_irq(priv->wol_irq, dev);
1231 if (priv->lpi_irq != -ENXIO)
1232 free_irq(priv->lpi_irq, dev);
1233
1234 /* Stop TX/RX DMA and clear the descriptors */
1235 priv->hw->dma->stop_tx(priv->ioaddr);
1236 priv->hw->dma->stop_rx(priv->ioaddr);
1237
1238 /* Release and free the Rx/Tx resources */
1239 free_dma_desc_resources(priv);
1240
1241 /* Disable the MAC Rx/Tx */
1242 stmmac_set_mac(priv->ioaddr, false);
1243
1244 netif_carrier_off(dev);
1245
1246 #ifdef CONFIG_STMMAC_DEBUG_FS
1247 stmmac_exit_fs();
1248 #endif
1249 clk_disable(priv->stmmac_clk);
1250
1251 return 0;
1252 }
1253
1254 /**
1255 * stmmac_xmit:
1256 * @skb : the socket buffer
1257 * @dev : device pointer
1258 * Description : Tx entry point of the driver.
1259 */
1260 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1261 {
1262 struct stmmac_priv *priv = netdev_priv(dev);
1263 unsigned int txsize = priv->dma_tx_size;
1264 unsigned int entry;
1265 int i, csum_insertion = 0;
1266 int nfrags = skb_shinfo(skb)->nr_frags;
1267 struct dma_desc *desc, *first;
1268 unsigned int nopaged_len = skb_headlen(skb);
1269
1270 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1271 if (!netif_queue_stopped(dev)) {
1272 netif_stop_queue(dev);
1273 /* This is a hard error, log it. */
1274 pr_err("%s: BUG! Tx Ring full when queue awake\n",
1275 __func__);
1276 }
1277 return NETDEV_TX_BUSY;
1278 }
1279
1280 spin_lock(&priv->tx_lock);
1281
1282 if (priv->tx_path_in_lpi_mode)
1283 stmmac_disable_eee_mode(priv);
1284
1285 entry = priv->cur_tx % txsize;
1286
1287 #ifdef STMMAC_XMIT_DEBUG
1288 if ((skb->len > ETH_FRAME_LEN) || nfrags)
1289 pr_info("stmmac xmit:\n"
1290 "\tskb addr %p - len: %d - nopaged_len: %d\n"
1291 "\tn_frags: %d - ip_summed: %d - %s gso\n",
1292 skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1293 !skb_is_gso(skb) ? "isn't" : "is");
1294 #endif
1295
1296 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1297
1298 desc = priv->dma_tx + entry;
1299 first = desc;
1300
1301 #ifdef STMMAC_XMIT_DEBUG
1302 if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1303 pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1304 "\t\tn_frags: %d, ip_summed: %d\n",
1305 skb->len, nopaged_len, nfrags, skb->ip_summed);
1306 #endif
1307 priv->tx_skbuff[entry] = skb;
1308
1309 if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
1310 entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1311 desc = priv->dma_tx + entry;
1312 } else {
1313 desc->des2 = dma_map_single(priv->device, skb->data,
1314 nopaged_len, DMA_TO_DEVICE);
1315 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1316 csum_insertion);
1317 }
1318
1319 for (i = 0; i < nfrags; i++) {
1320 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1321 int len = skb_frag_size(frag);
1322
1323 entry = (++priv->cur_tx) % txsize;
1324 desc = priv->dma_tx + entry;
1325
1326 TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1327 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1328 DMA_TO_DEVICE);
1329 priv->tx_skbuff[entry] = NULL;
1330 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1331 wmb();
1332 priv->hw->desc->set_tx_owner(desc);
1333 wmb();
1334 }
1335
1336 /* Interrupt on completition only for the latest segment */
1337 priv->hw->desc->close_tx_desc(desc);
1338
1339 #ifdef CONFIG_STMMAC_TIMER
1340 /* Clean IC while using timer */
1341 if (likely(priv->tm->enable))
1342 priv->hw->desc->clear_tx_ic(desc);
1343 #endif
1344
1345 wmb();
1346
1347 /* To avoid raise condition */
1348 priv->hw->desc->set_tx_owner(first);
1349 wmb();
1350
1351 priv->cur_tx++;
1352
1353 #ifdef STMMAC_XMIT_DEBUG
1354 if (netif_msg_pktdata(priv)) {
1355 pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1356 "first=%p, nfrags=%d\n",
1357 (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1358 entry, first, nfrags);
1359 display_ring(priv->dma_tx, txsize);
1360 pr_info(">>> frame to be transmitted: ");
1361 print_pkt(skb->data, skb->len);
1362 }
1363 #endif
1364 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1365 TX_DBG("%s: stop transmitted packets\n", __func__);
1366 netif_stop_queue(dev);
1367 }
1368
1369 dev->stats.tx_bytes += skb->len;
1370
1371 skb_tx_timestamp(skb);
1372
1373 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1374
1375 spin_unlock(&priv->tx_lock);
1376
1377 return NETDEV_TX_OK;
1378 }
1379
1380 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1381 {
1382 unsigned int rxsize = priv->dma_rx_size;
1383 int bfsize = priv->dma_buf_sz;
1384 struct dma_desc *p = priv->dma_rx;
1385
1386 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1387 unsigned int entry = priv->dirty_rx % rxsize;
1388 if (likely(priv->rx_skbuff[entry] == NULL)) {
1389 struct sk_buff *skb;
1390
1391 skb = __skb_dequeue(&priv->rx_recycle);
1392 if (skb == NULL)
1393 skb = netdev_alloc_skb_ip_align(priv->dev,
1394 bfsize);
1395
1396 if (unlikely(skb == NULL))
1397 break;
1398
1399 priv->rx_skbuff[entry] = skb;
1400 priv->rx_skbuff_dma[entry] =
1401 dma_map_single(priv->device, skb->data, bfsize,
1402 DMA_FROM_DEVICE);
1403
1404 (p + entry)->des2 = priv->rx_skbuff_dma[entry];
1405
1406 if (unlikely(priv->plat->has_gmac))
1407 priv->hw->ring->refill_desc3(bfsize, p + entry);
1408
1409 RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1410 }
1411 wmb();
1412 priv->hw->desc->set_rx_owner(p + entry);
1413 wmb();
1414 }
1415 }
1416
1417 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1418 {
1419 unsigned int rxsize = priv->dma_rx_size;
1420 unsigned int entry = priv->cur_rx % rxsize;
1421 unsigned int next_entry;
1422 unsigned int count = 0;
1423 struct dma_desc *p = priv->dma_rx + entry;
1424 struct dma_desc *p_next;
1425
1426 #ifdef STMMAC_RX_DEBUG
1427 if (netif_msg_hw(priv)) {
1428 pr_debug(">>> stmmac_rx: descriptor ring:\n");
1429 display_ring(priv->dma_rx, rxsize);
1430 }
1431 #endif
1432 while (!priv->hw->desc->get_rx_owner(p)) {
1433 int status;
1434
1435 if (count >= limit)
1436 break;
1437
1438 count++;
1439
1440 next_entry = (++priv->cur_rx) % rxsize;
1441 p_next = priv->dma_rx + next_entry;
1442 prefetch(p_next);
1443
1444 /* read the status of the incoming frame */
1445 status = (priv->hw->desc->rx_status(&priv->dev->stats,
1446 &priv->xstats, p));
1447 if (unlikely(status == discard_frame))
1448 priv->dev->stats.rx_errors++;
1449 else {
1450 struct sk_buff *skb;
1451 int frame_len;
1452
1453 frame_len = priv->hw->desc->get_rx_frame_len(p,
1454 priv->plat->rx_coe);
1455 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1456 * Type frames (LLC/LLC-SNAP) */
1457 if (unlikely(status != llc_snap))
1458 frame_len -= ETH_FCS_LEN;
1459 #ifdef STMMAC_RX_DEBUG
1460 if (frame_len > ETH_FRAME_LEN)
1461 pr_debug("\tRX frame size %d, COE status: %d\n",
1462 frame_len, status);
1463
1464 if (netif_msg_hw(priv))
1465 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1466 p, entry, p->des2);
1467 #endif
1468 skb = priv->rx_skbuff[entry];
1469 if (unlikely(!skb)) {
1470 pr_err("%s: Inconsistent Rx descriptor chain\n",
1471 priv->dev->name);
1472 priv->dev->stats.rx_dropped++;
1473 break;
1474 }
1475 prefetch(skb->data - NET_IP_ALIGN);
1476 priv->rx_skbuff[entry] = NULL;
1477
1478 skb_put(skb, frame_len);
1479 dma_unmap_single(priv->device,
1480 priv->rx_skbuff_dma[entry],
1481 priv->dma_buf_sz, DMA_FROM_DEVICE);
1482 #ifdef STMMAC_RX_DEBUG
1483 if (netif_msg_pktdata(priv)) {
1484 pr_info(" frame received (%dbytes)", frame_len);
1485 print_pkt(skb->data, frame_len);
1486 }
1487 #endif
1488 skb->protocol = eth_type_trans(skb, priv->dev);
1489
1490 if (unlikely(!priv->plat->rx_coe)) {
1491 /* No RX COE for old mac10/100 devices */
1492 skb_checksum_none_assert(skb);
1493 netif_receive_skb(skb);
1494 } else {
1495 skb->ip_summed = CHECKSUM_UNNECESSARY;
1496 napi_gro_receive(&priv->napi, skb);
1497 }
1498
1499 priv->dev->stats.rx_packets++;
1500 priv->dev->stats.rx_bytes += frame_len;
1501 }
1502 entry = next_entry;
1503 p = p_next; /* use prefetched values */
1504 }
1505
1506 stmmac_rx_refill(priv);
1507
1508 priv->xstats.rx_pkt_n += count;
1509
1510 return count;
1511 }
1512
1513 /**
1514 * stmmac_poll - stmmac poll method (NAPI)
1515 * @napi : pointer to the napi structure.
1516 * @budget : maximum number of packets that the current CPU can receive from
1517 * all interfaces.
1518 * Description :
1519 * This function implements the the reception process.
1520 * Also it runs the TX completion thread
1521 */
1522 static int stmmac_poll(struct napi_struct *napi, int budget)
1523 {
1524 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1525 int work_done = 0;
1526
1527 priv->xstats.poll_n++;
1528 stmmac_tx(priv);
1529 work_done = stmmac_rx(priv, budget);
1530
1531 if (work_done < budget) {
1532 napi_complete(napi);
1533 stmmac_enable_irq(priv);
1534 }
1535 return work_done;
1536 }
1537
1538 /**
1539 * stmmac_tx_timeout
1540 * @dev : Pointer to net device structure
1541 * Description: this function is called when a packet transmission fails to
1542 * complete within a reasonable tmrate. The driver will mark the error in the
1543 * netdev structure and arrange for the device to be reset to a sane state
1544 * in order to transmit a new packet.
1545 */
1546 static void stmmac_tx_timeout(struct net_device *dev)
1547 {
1548 struct stmmac_priv *priv = netdev_priv(dev);
1549
1550 /* Clear Tx resources and restart transmitting again */
1551 stmmac_tx_err(priv);
1552 }
1553
1554 /* Configuration changes (passed on by ifconfig) */
1555 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1556 {
1557 if (dev->flags & IFF_UP) /* can't act on a running interface */
1558 return -EBUSY;
1559
1560 /* Don't allow changing the I/O address */
1561 if (map->base_addr != dev->base_addr) {
1562 pr_warning("%s: can't change I/O address\n", dev->name);
1563 return -EOPNOTSUPP;
1564 }
1565
1566 /* Don't allow changing the IRQ */
1567 if (map->irq != dev->irq) {
1568 pr_warning("%s: can't change IRQ number %d\n",
1569 dev->name, dev->irq);
1570 return -EOPNOTSUPP;
1571 }
1572
1573 /* ignore other fields */
1574 return 0;
1575 }
1576
1577 /**
1578 * stmmac_set_rx_mode - entry point for multicast addressing
1579 * @dev : pointer to the device structure
1580 * Description:
1581 * This function is a driver entry point which gets called by the kernel
1582 * whenever multicast addresses must be enabled/disabled.
1583 * Return value:
1584 * void.
1585 */
1586 static void stmmac_set_rx_mode(struct net_device *dev)
1587 {
1588 struct stmmac_priv *priv = netdev_priv(dev);
1589
1590 spin_lock(&priv->lock);
1591 priv->hw->mac->set_filter(dev, priv->synopsys_id);
1592 spin_unlock(&priv->lock);
1593 }
1594
1595 /**
1596 * stmmac_change_mtu - entry point to change MTU size for the device.
1597 * @dev : device pointer.
1598 * @new_mtu : the new MTU size for the device.
1599 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
1600 * to drive packet transmission. Ethernet has an MTU of 1500 octets
1601 * (ETH_DATA_LEN). This value can be changed with ifconfig.
1602 * Return value:
1603 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1604 * file on failure.
1605 */
1606 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1607 {
1608 struct stmmac_priv *priv = netdev_priv(dev);
1609 int max_mtu;
1610
1611 if (netif_running(dev)) {
1612 pr_err("%s: must be stopped to change its MTU\n", dev->name);
1613 return -EBUSY;
1614 }
1615
1616 if (priv->plat->enh_desc)
1617 max_mtu = JUMBO_LEN;
1618 else
1619 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1620
1621 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1622 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1623 return -EINVAL;
1624 }
1625
1626 dev->mtu = new_mtu;
1627 netdev_update_features(dev);
1628
1629 return 0;
1630 }
1631
1632 static netdev_features_t stmmac_fix_features(struct net_device *dev,
1633 netdev_features_t features)
1634 {
1635 struct stmmac_priv *priv = netdev_priv(dev);
1636
1637 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
1638 features &= ~NETIF_F_RXCSUM;
1639 else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
1640 features &= ~NETIF_F_IPV6_CSUM;
1641 if (!priv->plat->tx_coe)
1642 features &= ~NETIF_F_ALL_CSUM;
1643
1644 /* Some GMAC devices have a bugged Jumbo frame support that
1645 * needs to have the Tx COE disabled for oversized frames
1646 * (due to limited buffer sizes). In this case we disable
1647 * the TX csum insertionin the TDES and not use SF. */
1648 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
1649 features &= ~NETIF_F_ALL_CSUM;
1650
1651 return features;
1652 }
1653
1654 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1655 {
1656 struct net_device *dev = (struct net_device *)dev_id;
1657 struct stmmac_priv *priv = netdev_priv(dev);
1658
1659 if (unlikely(!dev)) {
1660 pr_err("%s: invalid dev pointer\n", __func__);
1661 return IRQ_NONE;
1662 }
1663
1664 /* To handle GMAC own interrupts */
1665 if (priv->plat->has_gmac) {
1666 int status = priv->hw->mac->host_irq_status((void __iomem *)
1667 dev->base_addr);
1668 if (unlikely(status)) {
1669 if (status & core_mmc_tx_irq)
1670 priv->xstats.mmc_tx_irq_n++;
1671 if (status & core_mmc_rx_irq)
1672 priv->xstats.mmc_rx_irq_n++;
1673 if (status & core_mmc_rx_csum_offload_irq)
1674 priv->xstats.mmc_rx_csum_offload_irq_n++;
1675 if (status & core_irq_receive_pmt_irq)
1676 priv->xstats.irq_receive_pmt_irq_n++;
1677
1678 /* For LPI we need to save the tx status */
1679 if (status & core_irq_tx_path_in_lpi_mode) {
1680 priv->xstats.irq_tx_path_in_lpi_mode_n++;
1681 priv->tx_path_in_lpi_mode = true;
1682 }
1683 if (status & core_irq_tx_path_exit_lpi_mode) {
1684 priv->xstats.irq_tx_path_exit_lpi_mode_n++;
1685 priv->tx_path_in_lpi_mode = false;
1686 }
1687 if (status & core_irq_rx_path_in_lpi_mode)
1688 priv->xstats.irq_rx_path_in_lpi_mode_n++;
1689 if (status & core_irq_rx_path_exit_lpi_mode)
1690 priv->xstats.irq_rx_path_exit_lpi_mode_n++;
1691 }
1692 }
1693
1694 /* To handle DMA interrupts */
1695 stmmac_dma_interrupt(priv);
1696
1697 return IRQ_HANDLED;
1698 }
1699
1700 #ifdef CONFIG_NET_POLL_CONTROLLER
1701 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1702 * to allow network I/O with interrupts disabled. */
1703 static void stmmac_poll_controller(struct net_device *dev)
1704 {
1705 disable_irq(dev->irq);
1706 stmmac_interrupt(dev->irq, dev);
1707 enable_irq(dev->irq);
1708 }
1709 #endif
1710
1711 /**
1712 * stmmac_ioctl - Entry point for the Ioctl
1713 * @dev: Device pointer.
1714 * @rq: An IOCTL specefic structure, that can contain a pointer to
1715 * a proprietary structure used to pass information to the driver.
1716 * @cmd: IOCTL command
1717 * Description:
1718 * Currently there are no special functionality supported in IOCTL, just the
1719 * phy_mii_ioctl(...) can be invoked.
1720 */
1721 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1722 {
1723 struct stmmac_priv *priv = netdev_priv(dev);
1724 int ret;
1725
1726 if (!netif_running(dev))
1727 return -EINVAL;
1728
1729 if (!priv->phydev)
1730 return -EINVAL;
1731
1732 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1733
1734 return ret;
1735 }
1736
1737 #ifdef CONFIG_STMMAC_DEBUG_FS
1738 static struct dentry *stmmac_fs_dir;
1739 static struct dentry *stmmac_rings_status;
1740 static struct dentry *stmmac_dma_cap;
1741
1742 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
1743 {
1744 struct tmp_s {
1745 u64 a;
1746 unsigned int b;
1747 unsigned int c;
1748 };
1749 int i;
1750 struct net_device *dev = seq->private;
1751 struct stmmac_priv *priv = netdev_priv(dev);
1752
1753 seq_printf(seq, "=======================\n");
1754 seq_printf(seq, " RX descriptor ring\n");
1755 seq_printf(seq, "=======================\n");
1756
1757 for (i = 0; i < priv->dma_rx_size; i++) {
1758 struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
1759 seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1760 i, (unsigned int)(x->a),
1761 (unsigned int)((x->a) >> 32), x->b, x->c);
1762 seq_printf(seq, "\n");
1763 }
1764
1765 seq_printf(seq, "\n");
1766 seq_printf(seq, "=======================\n");
1767 seq_printf(seq, " TX descriptor ring\n");
1768 seq_printf(seq, "=======================\n");
1769
1770 for (i = 0; i < priv->dma_tx_size; i++) {
1771 struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
1772 seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1773 i, (unsigned int)(x->a),
1774 (unsigned int)((x->a) >> 32), x->b, x->c);
1775 seq_printf(seq, "\n");
1776 }
1777
1778 return 0;
1779 }
1780
1781 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
1782 {
1783 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
1784 }
1785
1786 static const struct file_operations stmmac_rings_status_fops = {
1787 .owner = THIS_MODULE,
1788 .open = stmmac_sysfs_ring_open,
1789 .read = seq_read,
1790 .llseek = seq_lseek,
1791 .release = single_release,
1792 };
1793
1794 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
1795 {
1796 struct net_device *dev = seq->private;
1797 struct stmmac_priv *priv = netdev_priv(dev);
1798
1799 if (!priv->hw_cap_support) {
1800 seq_printf(seq, "DMA HW features not supported\n");
1801 return 0;
1802 }
1803
1804 seq_printf(seq, "==============================\n");
1805 seq_printf(seq, "\tDMA HW features\n");
1806 seq_printf(seq, "==============================\n");
1807
1808 seq_printf(seq, "\t10/100 Mbps %s\n",
1809 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
1810 seq_printf(seq, "\t1000 Mbps %s\n",
1811 (priv->dma_cap.mbps_1000) ? "Y" : "N");
1812 seq_printf(seq, "\tHalf duple %s\n",
1813 (priv->dma_cap.half_duplex) ? "Y" : "N");
1814 seq_printf(seq, "\tHash Filter: %s\n",
1815 (priv->dma_cap.hash_filter) ? "Y" : "N");
1816 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
1817 (priv->dma_cap.multi_addr) ? "Y" : "N");
1818 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
1819 (priv->dma_cap.pcs) ? "Y" : "N");
1820 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
1821 (priv->dma_cap.sma_mdio) ? "Y" : "N");
1822 seq_printf(seq, "\tPMT Remote wake up: %s\n",
1823 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
1824 seq_printf(seq, "\tPMT Magic Frame: %s\n",
1825 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
1826 seq_printf(seq, "\tRMON module: %s\n",
1827 (priv->dma_cap.rmon) ? "Y" : "N");
1828 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
1829 (priv->dma_cap.time_stamp) ? "Y" : "N");
1830 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
1831 (priv->dma_cap.atime_stamp) ? "Y" : "N");
1832 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
1833 (priv->dma_cap.eee) ? "Y" : "N");
1834 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
1835 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
1836 (priv->dma_cap.tx_coe) ? "Y" : "N");
1837 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
1838 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
1839 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
1840 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
1841 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
1842 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
1843 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
1844 priv->dma_cap.number_rx_channel);
1845 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
1846 priv->dma_cap.number_tx_channel);
1847 seq_printf(seq, "\tEnhanced descriptors: %s\n",
1848 (priv->dma_cap.enh_desc) ? "Y" : "N");
1849
1850 return 0;
1851 }
1852
1853 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
1854 {
1855 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
1856 }
1857
1858 static const struct file_operations stmmac_dma_cap_fops = {
1859 .owner = THIS_MODULE,
1860 .open = stmmac_sysfs_dma_cap_open,
1861 .read = seq_read,
1862 .llseek = seq_lseek,
1863 .release = single_release,
1864 };
1865
1866 static int stmmac_init_fs(struct net_device *dev)
1867 {
1868 /* Create debugfs entries */
1869 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
1870
1871 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
1872 pr_err("ERROR %s, debugfs create directory failed\n",
1873 STMMAC_RESOURCE_NAME);
1874
1875 return -ENOMEM;
1876 }
1877
1878 /* Entry to report DMA RX/TX rings */
1879 stmmac_rings_status = debugfs_create_file("descriptors_status",
1880 S_IRUGO, stmmac_fs_dir, dev,
1881 &stmmac_rings_status_fops);
1882
1883 if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
1884 pr_info("ERROR creating stmmac ring debugfs file\n");
1885 debugfs_remove(stmmac_fs_dir);
1886
1887 return -ENOMEM;
1888 }
1889
1890 /* Entry to report the DMA HW features */
1891 stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
1892 dev, &stmmac_dma_cap_fops);
1893
1894 if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
1895 pr_info("ERROR creating stmmac MMC debugfs file\n");
1896 debugfs_remove(stmmac_rings_status);
1897 debugfs_remove(stmmac_fs_dir);
1898
1899 return -ENOMEM;
1900 }
1901
1902 return 0;
1903 }
1904
1905 static void stmmac_exit_fs(void)
1906 {
1907 debugfs_remove(stmmac_rings_status);
1908 debugfs_remove(stmmac_dma_cap);
1909 debugfs_remove(stmmac_fs_dir);
1910 }
1911 #endif /* CONFIG_STMMAC_DEBUG_FS */
1912
1913 static const struct net_device_ops stmmac_netdev_ops = {
1914 .ndo_open = stmmac_open,
1915 .ndo_start_xmit = stmmac_xmit,
1916 .ndo_stop = stmmac_release,
1917 .ndo_change_mtu = stmmac_change_mtu,
1918 .ndo_fix_features = stmmac_fix_features,
1919 .ndo_set_rx_mode = stmmac_set_rx_mode,
1920 .ndo_tx_timeout = stmmac_tx_timeout,
1921 .ndo_do_ioctl = stmmac_ioctl,
1922 .ndo_set_config = stmmac_config,
1923 #ifdef CONFIG_NET_POLL_CONTROLLER
1924 .ndo_poll_controller = stmmac_poll_controller,
1925 #endif
1926 .ndo_set_mac_address = eth_mac_addr,
1927 };
1928
1929 /**
1930 * stmmac_hw_init - Init the MAC device
1931 * @priv : pointer to the private device structure.
1932 * Description: this function detects which MAC device
1933 * (GMAC/MAC10-100) has to attached, checks the HW capability
1934 * (if supported) and sets the driver's features (for example
1935 * to use the ring or chaine mode or support the normal/enh
1936 * descriptor structure).
1937 */
1938 static int stmmac_hw_init(struct stmmac_priv *priv)
1939 {
1940 int ret = 0;
1941 struct mac_device_info *mac;
1942
1943 /* Identify the MAC HW device */
1944 if (priv->plat->has_gmac) {
1945 priv->dev->priv_flags |= IFF_UNICAST_FLT;
1946 mac = dwmac1000_setup(priv->ioaddr);
1947 } else {
1948 mac = dwmac100_setup(priv->ioaddr);
1949 }
1950 if (!mac)
1951 return -ENOMEM;
1952
1953 priv->hw = mac;
1954
1955 /* To use the chained or ring mode */
1956 priv->hw->ring = &ring_mode_ops;
1957
1958 /* Get and dump the chip ID */
1959 priv->synopsys_id = stmmac_get_synopsys_id(priv);
1960
1961 /* Get the HW capability (new GMAC newer than 3.50a) */
1962 priv->hw_cap_support = stmmac_get_hw_features(priv);
1963 if (priv->hw_cap_support) {
1964 pr_info(" DMA HW capability register supported");
1965
1966 /* We can override some gmac/dma configuration fields: e.g.
1967 * enh_desc, tx_coe (e.g. that are passed through the
1968 * platform) with the values from the HW capability
1969 * register (if supported).
1970 */
1971 priv->plat->enh_desc = priv->dma_cap.enh_desc;
1972 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
1973
1974 priv->plat->tx_coe = priv->dma_cap.tx_coe;
1975
1976 if (priv->dma_cap.rx_coe_type2)
1977 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
1978 else if (priv->dma_cap.rx_coe_type1)
1979 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
1980
1981 } else
1982 pr_info(" No HW DMA feature register supported");
1983
1984 /* Select the enhnaced/normal descriptor structures */
1985 stmmac_selec_desc_mode(priv);
1986
1987 /* Enable the IPC (Checksum Offload) and check if the feature has been
1988 * enabled during the core configuration. */
1989 ret = priv->hw->mac->rx_ipc(priv->ioaddr);
1990 if (!ret) {
1991 pr_warning(" RX IPC Checksum Offload not configured.\n");
1992 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1993 }
1994
1995 if (priv->plat->rx_coe)
1996 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
1997 priv->plat->rx_coe);
1998 if (priv->plat->tx_coe)
1999 pr_info(" TX Checksum insertion supported\n");
2000
2001 if (priv->plat->pmt) {
2002 pr_info(" Wake-Up On Lan supported\n");
2003 device_set_wakeup_capable(priv->device, 1);
2004 }
2005
2006 return ret;
2007 }
2008
2009 /**
2010 * stmmac_dvr_probe
2011 * @device: device pointer
2012 * @plat_dat: platform data pointer
2013 * @addr: iobase memory address
2014 * Description: this is the main probe function used to
2015 * call the alloc_etherdev, allocate the priv structure.
2016 */
2017 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2018 struct plat_stmmacenet_data *plat_dat,
2019 void __iomem *addr)
2020 {
2021 int ret = 0;
2022 struct net_device *ndev = NULL;
2023 struct stmmac_priv *priv;
2024
2025 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2026 if (!ndev)
2027 return NULL;
2028
2029 SET_NETDEV_DEV(ndev, device);
2030
2031 priv = netdev_priv(ndev);
2032 priv->device = device;
2033 priv->dev = ndev;
2034
2035 ether_setup(ndev);
2036
2037 stmmac_set_ethtool_ops(ndev);
2038 priv->pause = pause;
2039 priv->plat = plat_dat;
2040 priv->ioaddr = addr;
2041 priv->dev->base_addr = (unsigned long)addr;
2042
2043 /* Verify driver arguments */
2044 stmmac_verify_args();
2045
2046 /* Override with kernel parameters if supplied XXX CRS XXX
2047 * this needs to have multiple instances */
2048 if ((phyaddr >= 0) && (phyaddr <= 31))
2049 priv->plat->phy_addr = phyaddr;
2050
2051 /* Init MAC and get the capabilities */
2052 stmmac_hw_init(priv);
2053
2054 ndev->netdev_ops = &stmmac_netdev_ops;
2055
2056 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2057 NETIF_F_RXCSUM;
2058 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2059 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2060 #ifdef STMMAC_VLAN_TAG_USED
2061 /* Both mac100 and gmac support receive VLAN tag detection */
2062 ndev->features |= NETIF_F_HW_VLAN_RX;
2063 #endif
2064 priv->msg_enable = netif_msg_init(debug, default_msg_level);
2065
2066 if (flow_ctrl)
2067 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
2068
2069 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2070
2071 spin_lock_init(&priv->lock);
2072 spin_lock_init(&priv->tx_lock);
2073
2074 ret = register_netdev(ndev);
2075 if (ret) {
2076 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2077 goto error_netdev_register;
2078 }
2079
2080 priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2081 if (IS_ERR(priv->stmmac_clk)) {
2082 pr_warning("%s: warning: cannot get CSR clock\n", __func__);
2083 goto error_clk_get;
2084 }
2085
2086 /* If a specific clk_csr value is passed from the platform
2087 * this means that the CSR Clock Range selection cannot be
2088 * changed at run-time and it is fixed. Viceversa the driver'll try to
2089 * set the MDC clock dynamically according to the csr actual
2090 * clock input.
2091 */
2092 if (!priv->plat->clk_csr)
2093 stmmac_clk_csr_set(priv);
2094 else
2095 priv->clk_csr = priv->plat->clk_csr;
2096
2097 /* MDIO bus Registration */
2098 ret = stmmac_mdio_register(ndev);
2099 if (ret < 0) {
2100 pr_debug("%s: MDIO bus (id: %d) registration failed",
2101 __func__, priv->plat->bus_id);
2102 goto error_mdio_register;
2103 }
2104
2105 return priv;
2106
2107 error_mdio_register:
2108 clk_put(priv->stmmac_clk);
2109 error_clk_get:
2110 unregister_netdev(ndev);
2111 error_netdev_register:
2112 netif_napi_del(&priv->napi);
2113 free_netdev(ndev);
2114
2115 return NULL;
2116 }
2117
2118 /**
2119 * stmmac_dvr_remove
2120 * @ndev: net device pointer
2121 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2122 * changes the link status, releases the DMA descriptor rings.
2123 */
2124 int stmmac_dvr_remove(struct net_device *ndev)
2125 {
2126 struct stmmac_priv *priv = netdev_priv(ndev);
2127
2128 pr_info("%s:\n\tremoving driver", __func__);
2129
2130 priv->hw->dma->stop_rx(priv->ioaddr);
2131 priv->hw->dma->stop_tx(priv->ioaddr);
2132
2133 stmmac_set_mac(priv->ioaddr, false);
2134 stmmac_mdio_unregister(ndev);
2135 netif_carrier_off(ndev);
2136 unregister_netdev(ndev);
2137 free_netdev(ndev);
2138
2139 return 0;
2140 }
2141
2142 #ifdef CONFIG_PM
2143 int stmmac_suspend(struct net_device *ndev)
2144 {
2145 struct stmmac_priv *priv = netdev_priv(ndev);
2146 int dis_ic = 0;
2147 unsigned long flags;
2148
2149 if (!ndev || !netif_running(ndev))
2150 return 0;
2151
2152 if (priv->phydev)
2153 phy_stop(priv->phydev);
2154
2155 spin_lock_irqsave(&priv->lock, flags);
2156
2157 netif_device_detach(ndev);
2158 netif_stop_queue(ndev);
2159
2160 #ifdef CONFIG_STMMAC_TIMER
2161 priv->tm->timer_stop();
2162 if (likely(priv->tm->enable))
2163 dis_ic = 1;
2164 #endif
2165 napi_disable(&priv->napi);
2166
2167 /* Stop TX/RX DMA */
2168 priv->hw->dma->stop_tx(priv->ioaddr);
2169 priv->hw->dma->stop_rx(priv->ioaddr);
2170 /* Clear the Rx/Tx descriptors */
2171 priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
2172 dis_ic);
2173 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
2174
2175 /* Enable Power down mode by programming the PMT regs */
2176 if (device_may_wakeup(priv->device))
2177 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2178 else {
2179 stmmac_set_mac(priv->ioaddr, false);
2180 /* Disable clock in case of PWM is off */
2181 clk_disable(priv->stmmac_clk);
2182 }
2183 spin_unlock_irqrestore(&priv->lock, flags);
2184 return 0;
2185 }
2186
2187 int stmmac_resume(struct net_device *ndev)
2188 {
2189 struct stmmac_priv *priv = netdev_priv(ndev);
2190 unsigned long flags;
2191
2192 if (!netif_running(ndev))
2193 return 0;
2194
2195 spin_lock_irqsave(&priv->lock, flags);
2196
2197 /* Power Down bit, into the PM register, is cleared
2198 * automatically as soon as a magic packet or a Wake-up frame
2199 * is received. Anyway, it's better to manually clear
2200 * this bit because it can generate problems while resuming
2201 * from another devices (e.g. serial console). */
2202 if (device_may_wakeup(priv->device))
2203 priv->hw->mac->pmt(priv->ioaddr, 0);
2204 else
2205 /* enable the clk prevously disabled */
2206 clk_enable(priv->stmmac_clk);
2207
2208 netif_device_attach(ndev);
2209
2210 /* Enable the MAC and DMA */
2211 stmmac_set_mac(priv->ioaddr, true);
2212 priv->hw->dma->start_tx(priv->ioaddr);
2213 priv->hw->dma->start_rx(priv->ioaddr);
2214
2215 #ifdef CONFIG_STMMAC_TIMER
2216 if (likely(priv->tm->enable))
2217 priv->tm->timer_start(tmrate);
2218 #endif
2219 napi_enable(&priv->napi);
2220
2221 netif_start_queue(ndev);
2222
2223 spin_unlock_irqrestore(&priv->lock, flags);
2224
2225 if (priv->phydev)
2226 phy_start(priv->phydev);
2227
2228 return 0;
2229 }
2230
2231 int stmmac_freeze(struct net_device *ndev)
2232 {
2233 if (!ndev || !netif_running(ndev))
2234 return 0;
2235
2236 return stmmac_release(ndev);
2237 }
2238
2239 int stmmac_restore(struct net_device *ndev)
2240 {
2241 if (!ndev || !netif_running(ndev))
2242 return 0;
2243
2244 return stmmac_open(ndev);
2245 }
2246 #endif /* CONFIG_PM */
2247
2248 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2249 * depending on the configuration selected.
2250 */
2251 static int __init stmmac_init(void)
2252 {
2253 int err_plt = 0;
2254 int err_pci = 0;
2255
2256 err_plt = stmmac_register_platform();
2257 err_pci = stmmac_register_pci();
2258
2259 if ((err_pci) && (err_plt)) {
2260 pr_err("stmmac: driver registration failed\n");
2261 return -EINVAL;
2262 }
2263
2264 return 0;
2265 }
2266
2267 static void __exit stmmac_exit(void)
2268 {
2269 stmmac_unregister_platform();
2270 stmmac_unregister_pci();
2271 }
2272
2273 module_init(stmmac_init);
2274 module_exit(stmmac_exit);
2275
2276 #ifndef MODULE
2277 static int __init stmmac_cmdline_opt(char *str)
2278 {
2279 char *opt;
2280
2281 if (!str || !*str)
2282 return -EINVAL;
2283 while ((opt = strsep(&str, ",")) != NULL) {
2284 if (!strncmp(opt, "debug:", 6)) {
2285 if (kstrtoint(opt + 6, 0, &debug))
2286 goto err;
2287 } else if (!strncmp(opt, "phyaddr:", 8)) {
2288 if (kstrtoint(opt + 8, 0, &phyaddr))
2289 goto err;
2290 } else if (!strncmp(opt, "dma_txsize:", 11)) {
2291 if (kstrtoint(opt + 11, 0, &dma_txsize))
2292 goto err;
2293 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
2294 if (kstrtoint(opt + 11, 0, &dma_rxsize))
2295 goto err;
2296 } else if (!strncmp(opt, "buf_sz:", 7)) {
2297 if (kstrtoint(opt + 7, 0, &buf_sz))
2298 goto err;
2299 } else if (!strncmp(opt, "tc:", 3)) {
2300 if (kstrtoint(opt + 3, 0, &tc))
2301 goto err;
2302 } else if (!strncmp(opt, "watchdog:", 9)) {
2303 if (kstrtoint(opt + 9, 0, &watchdog))
2304 goto err;
2305 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
2306 if (kstrtoint(opt + 10, 0, &flow_ctrl))
2307 goto err;
2308 } else if (!strncmp(opt, "pause:", 6)) {
2309 if (kstrtoint(opt + 6, 0, &pause))
2310 goto err;
2311 } else if (!strncmp(opt, "eee_timer:", 6)) {
2312 if (kstrtoint(opt + 10, 0, &eee_timer))
2313 goto err;
2314 #ifdef CONFIG_STMMAC_TIMER
2315 } else if (!strncmp(opt, "tmrate:", 7)) {
2316 if (kstrtoint(opt + 7, 0, &tmrate))
2317 goto err;
2318 #endif
2319 }
2320 }
2321 return 0;
2322
2323 err:
2324 pr_err("%s: ERROR broken module parameter conversion", __func__);
2325 return -EINVAL;
2326 }
2327
2328 __setup("stmmaceth=", stmmac_cmdline_opt);
2329 #endif
2330
2331 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2332 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2333 MODULE_LICENSE("GPL");
This page took 0.155207 seconds and 5 git commands to generate.