eab7ac0f5bc1750c0120ca61dcb82dfca58f04c8
[deliverable/linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56 #include "dwmac1000.h"
57
58 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
59
60 /* Module parameters */
61 #define TX_TIMEO 5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, S_IRUGO | S_IWUSR);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
65
66 static int debug = -1;
67 module_param(debug, int, S_IRUGO | S_IWUSR);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
69
70 static int phyaddr = -1;
71 module_param(phyaddr, int, S_IRUGO);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
73
74 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4)
75
76 static int flow_ctrl = FLOW_OFF;
77 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
78 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
79
80 static int pause = PAUSE_TIME;
81 module_param(pause, int, S_IRUGO | S_IWUSR);
82 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
83
84 #define TC_DEFAULT 64
85 static int tc = TC_DEFAULT;
86 module_param(tc, int, S_IRUGO | S_IWUSR);
87 MODULE_PARM_DESC(tc, "DMA threshold control value");
88
89 #define DEFAULT_BUFSIZE 1536
90 static int buf_sz = DEFAULT_BUFSIZE;
91 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
92 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
93
94 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
95 NETIF_MSG_LINK | NETIF_MSG_IFUP |
96 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
97
98 #define STMMAC_DEFAULT_LPI_TIMER 1000
99 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
100 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
101 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
102 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
103
104 /* By default the driver will use the ring mode to manage tx and rx descriptors
105 * but passing this value so user can force to use the chain instead of the ring
106 */
107 static unsigned int chain_mode;
108 module_param(chain_mode, int, S_IRUGO);
109 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
110
111 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
112
113 #ifdef CONFIG_DEBUG_FS
114 static int stmmac_init_fs(struct net_device *dev);
115 static void stmmac_exit_fs(struct net_device *dev);
116 #endif
117
118 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
119
120 /**
121 * stmmac_verify_args - verify the driver parameters.
122 * Description: it checks the driver parameters and set a default in case of
123 * errors.
124 */
125 static void stmmac_verify_args(void)
126 {
127 if (unlikely(watchdog < 0))
128 watchdog = TX_TIMEO;
129 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
130 buf_sz = DEFAULT_BUFSIZE;
131 if (unlikely(flow_ctrl > 1))
132 flow_ctrl = FLOW_AUTO;
133 else if (likely(flow_ctrl < 0))
134 flow_ctrl = FLOW_OFF;
135 if (unlikely((pause < 0) || (pause > 0xffff)))
136 pause = PAUSE_TIME;
137 if (eee_timer < 0)
138 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
139 }
140
141 /**
142 * stmmac_clk_csr_set - dynamically set the MDC clock
143 * @priv: driver private structure
144 * Description: this is to dynamically set the MDC clock according to the csr
145 * clock input.
146 * Note:
147 * If a specific clk_csr value is passed from the platform
148 * this means that the CSR Clock Range selection cannot be
149 * changed at run-time and it is fixed (as reported in the driver
150 * documentation). Viceversa the driver will try to set the MDC
151 * clock dynamically according to the actual clock input.
152 */
153 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
154 {
155 u32 clk_rate;
156
157 clk_rate = clk_get_rate(priv->stmmac_clk);
158
159 /* Platform provided default clk_csr would be assumed valid
160 * for all other cases except for the below mentioned ones.
161 * For values higher than the IEEE 802.3 specified frequency
162 * we can not estimate the proper divider as it is not known
163 * the frequency of clk_csr_i. So we do not change the default
164 * divider.
165 */
166 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
167 if (clk_rate < CSR_F_35M)
168 priv->clk_csr = STMMAC_CSR_20_35M;
169 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
170 priv->clk_csr = STMMAC_CSR_35_60M;
171 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
172 priv->clk_csr = STMMAC_CSR_60_100M;
173 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
174 priv->clk_csr = STMMAC_CSR_100_150M;
175 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
176 priv->clk_csr = STMMAC_CSR_150_250M;
177 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
178 priv->clk_csr = STMMAC_CSR_250_300M;
179 }
180 }
181
182 static void print_pkt(unsigned char *buf, int len)
183 {
184 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
185 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
186 }
187
188 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
189 {
190 unsigned avail;
191
192 if (priv->dirty_tx > priv->cur_tx)
193 avail = priv->dirty_tx - priv->cur_tx - 1;
194 else
195 avail = DMA_TX_SIZE - priv->cur_tx + priv->dirty_tx - 1;
196
197 return avail;
198 }
199
200 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv)
201 {
202 unsigned dirty;
203
204 if (priv->dirty_rx <= priv->cur_rx)
205 dirty = priv->cur_rx - priv->dirty_rx;
206 else
207 dirty = DMA_RX_SIZE - priv->dirty_rx + priv->cur_rx;
208
209 return dirty;
210 }
211
212 /**
213 * stmmac_hw_fix_mac_speed - callback for speed selection
214 * @priv: driver private structure
215 * Description: on some platforms (e.g. ST), some HW system configuraton
216 * registers have to be set according to the link speed negotiated.
217 */
218 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
219 {
220 struct phy_device *phydev = priv->phydev;
221
222 if (likely(priv->plat->fix_mac_speed))
223 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
224 }
225
226 /**
227 * stmmac_enable_eee_mode - check and enter in LPI mode
228 * @priv: driver private structure
229 * Description: this function is to verify and enter in LPI mode in case of
230 * EEE.
231 */
232 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
233 {
234 /* Check and enter in LPI mode */
235 if ((priv->dirty_tx == priv->cur_tx) &&
236 (priv->tx_path_in_lpi_mode == false))
237 priv->hw->mac->set_eee_mode(priv->hw);
238 }
239
240 /**
241 * stmmac_disable_eee_mode - disable and exit from LPI mode
242 * @priv: driver private structure
243 * Description: this function is to exit and disable EEE in case of
244 * LPI state is true. This is called by the xmit.
245 */
246 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
247 {
248 priv->hw->mac->reset_eee_mode(priv->hw);
249 del_timer_sync(&priv->eee_ctrl_timer);
250 priv->tx_path_in_lpi_mode = false;
251 }
252
253 /**
254 * stmmac_eee_ctrl_timer - EEE TX SW timer.
255 * @arg : data hook
256 * Description:
257 * if there is no data transfer and if we are not in LPI state,
258 * then MAC Transmitter can be moved to LPI state.
259 */
260 static void stmmac_eee_ctrl_timer(unsigned long arg)
261 {
262 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
263
264 stmmac_enable_eee_mode(priv);
265 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
266 }
267
268 /**
269 * stmmac_eee_init - init EEE
270 * @priv: driver private structure
271 * Description:
272 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
273 * can also manage EEE, this function enable the LPI state and start related
274 * timer.
275 */
276 bool stmmac_eee_init(struct stmmac_priv *priv)
277 {
278 char *phy_bus_name = priv->plat->phy_bus_name;
279 unsigned long flags;
280 bool ret = false;
281
282 /* Using PCS we cannot dial with the phy registers at this stage
283 * so we do not support extra feature like EEE.
284 */
285 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
286 (priv->pcs == STMMAC_PCS_RTBI))
287 goto out;
288
289 /* Never init EEE in case of a switch is attached */
290 if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
291 goto out;
292
293 /* MAC core supports the EEE feature. */
294 if (priv->dma_cap.eee) {
295 int tx_lpi_timer = priv->tx_lpi_timer;
296
297 /* Check if the PHY supports EEE */
298 if (phy_init_eee(priv->phydev, 1)) {
299 /* To manage at run-time if the EEE cannot be supported
300 * anymore (for example because the lp caps have been
301 * changed).
302 * In that case the driver disable own timers.
303 */
304 spin_lock_irqsave(&priv->lock, flags);
305 if (priv->eee_active) {
306 pr_debug("stmmac: disable EEE\n");
307 del_timer_sync(&priv->eee_ctrl_timer);
308 priv->hw->mac->set_eee_timer(priv->hw, 0,
309 tx_lpi_timer);
310 }
311 priv->eee_active = 0;
312 spin_unlock_irqrestore(&priv->lock, flags);
313 goto out;
314 }
315 /* Activate the EEE and start timers */
316 spin_lock_irqsave(&priv->lock, flags);
317 if (!priv->eee_active) {
318 priv->eee_active = 1;
319 setup_timer(&priv->eee_ctrl_timer,
320 stmmac_eee_ctrl_timer,
321 (unsigned long)priv);
322 mod_timer(&priv->eee_ctrl_timer,
323 STMMAC_LPI_T(eee_timer));
324
325 priv->hw->mac->set_eee_timer(priv->hw,
326 STMMAC_DEFAULT_LIT_LS,
327 tx_lpi_timer);
328 }
329 /* Set HW EEE according to the speed */
330 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
331
332 ret = true;
333 spin_unlock_irqrestore(&priv->lock, flags);
334
335 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
336 }
337 out:
338 return ret;
339 }
340
341 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
342 * @priv: driver private structure
343 * @entry : descriptor index to be used.
344 * @skb : the socket buffer
345 * Description :
346 * This function will read timestamp from the descriptor & pass it to stack.
347 * and also perform some sanity checks.
348 */
349 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
350 unsigned int entry, struct sk_buff *skb)
351 {
352 struct skb_shared_hwtstamps shhwtstamp;
353 u64 ns;
354 void *desc = NULL;
355
356 if (!priv->hwts_tx_en)
357 return;
358
359 /* exit if skb doesn't support hw tstamp */
360 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
361 return;
362
363 if (priv->adv_ts)
364 desc = (priv->dma_etx + entry);
365 else
366 desc = (priv->dma_tx + entry);
367
368 /* check tx tstamp status */
369 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
370 return;
371
372 /* get the valid tstamp */
373 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
374
375 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
376 shhwtstamp.hwtstamp = ns_to_ktime(ns);
377 /* pass tstamp to stack */
378 skb_tstamp_tx(skb, &shhwtstamp);
379
380 return;
381 }
382
383 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
384 * @priv: driver private structure
385 * @entry : descriptor index to be used.
386 * @skb : the socket buffer
387 * Description :
388 * This function will read received packet's timestamp from the descriptor
389 * and pass it to stack. It also perform some sanity checks.
390 */
391 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
392 unsigned int entry, struct sk_buff *skb)
393 {
394 struct skb_shared_hwtstamps *shhwtstamp = NULL;
395 u64 ns;
396 void *desc = NULL;
397
398 if (!priv->hwts_rx_en)
399 return;
400
401 if (priv->adv_ts)
402 desc = (priv->dma_erx + entry);
403 else
404 desc = (priv->dma_rx + entry);
405
406 /* exit if rx tstamp is not valid */
407 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
408 return;
409
410 /* get valid tstamp */
411 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
412 shhwtstamp = skb_hwtstamps(skb);
413 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
414 shhwtstamp->hwtstamp = ns_to_ktime(ns);
415 }
416
417 /**
418 * stmmac_hwtstamp_ioctl - control hardware timestamping.
419 * @dev: device pointer.
420 * @ifr: An IOCTL specefic structure, that can contain a pointer to
421 * a proprietary structure used to pass information to the driver.
422 * Description:
423 * This function configures the MAC to enable/disable both outgoing(TX)
424 * and incoming(RX) packets time stamping based on user input.
425 * Return Value:
426 * 0 on success and an appropriate -ve integer on failure.
427 */
428 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
429 {
430 struct stmmac_priv *priv = netdev_priv(dev);
431 struct hwtstamp_config config;
432 struct timespec64 now;
433 u64 temp = 0;
434 u32 ptp_v2 = 0;
435 u32 tstamp_all = 0;
436 u32 ptp_over_ipv4_udp = 0;
437 u32 ptp_over_ipv6_udp = 0;
438 u32 ptp_over_ethernet = 0;
439 u32 snap_type_sel = 0;
440 u32 ts_master_en = 0;
441 u32 ts_event_en = 0;
442 u32 value = 0;
443 u32 sec_inc;
444
445 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
446 netdev_alert(priv->dev, "No support for HW time stamping\n");
447 priv->hwts_tx_en = 0;
448 priv->hwts_rx_en = 0;
449
450 return -EOPNOTSUPP;
451 }
452
453 if (copy_from_user(&config, ifr->ifr_data,
454 sizeof(struct hwtstamp_config)))
455 return -EFAULT;
456
457 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
458 __func__, config.flags, config.tx_type, config.rx_filter);
459
460 /* reserved for future extensions */
461 if (config.flags)
462 return -EINVAL;
463
464 if (config.tx_type != HWTSTAMP_TX_OFF &&
465 config.tx_type != HWTSTAMP_TX_ON)
466 return -ERANGE;
467
468 if (priv->adv_ts) {
469 switch (config.rx_filter) {
470 case HWTSTAMP_FILTER_NONE:
471 /* time stamp no incoming packet at all */
472 config.rx_filter = HWTSTAMP_FILTER_NONE;
473 break;
474
475 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
476 /* PTP v1, UDP, any kind of event packet */
477 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
478 /* take time stamp for all event messages */
479 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
480
481 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
482 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
483 break;
484
485 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
486 /* PTP v1, UDP, Sync packet */
487 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
488 /* take time stamp for SYNC messages only */
489 ts_event_en = PTP_TCR_TSEVNTENA;
490
491 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
492 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
493 break;
494
495 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
496 /* PTP v1, UDP, Delay_req packet */
497 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
498 /* take time stamp for Delay_Req messages only */
499 ts_master_en = PTP_TCR_TSMSTRENA;
500 ts_event_en = PTP_TCR_TSEVNTENA;
501
502 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
503 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
504 break;
505
506 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
507 /* PTP v2, UDP, any kind of event packet */
508 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
509 ptp_v2 = PTP_TCR_TSVER2ENA;
510 /* take time stamp for all event messages */
511 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
512
513 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
514 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
515 break;
516
517 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
518 /* PTP v2, UDP, Sync packet */
519 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
520 ptp_v2 = PTP_TCR_TSVER2ENA;
521 /* take time stamp for SYNC messages only */
522 ts_event_en = PTP_TCR_TSEVNTENA;
523
524 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
525 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
526 break;
527
528 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
529 /* PTP v2, UDP, Delay_req packet */
530 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
531 ptp_v2 = PTP_TCR_TSVER2ENA;
532 /* take time stamp for Delay_Req messages only */
533 ts_master_en = PTP_TCR_TSMSTRENA;
534 ts_event_en = PTP_TCR_TSEVNTENA;
535
536 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
537 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
538 break;
539
540 case HWTSTAMP_FILTER_PTP_V2_EVENT:
541 /* PTP v2/802.AS1 any layer, any kind of event packet */
542 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
543 ptp_v2 = PTP_TCR_TSVER2ENA;
544 /* take time stamp for all event messages */
545 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
546
547 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
548 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
549 ptp_over_ethernet = PTP_TCR_TSIPENA;
550 break;
551
552 case HWTSTAMP_FILTER_PTP_V2_SYNC:
553 /* PTP v2/802.AS1, any layer, Sync packet */
554 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
555 ptp_v2 = PTP_TCR_TSVER2ENA;
556 /* take time stamp for SYNC messages only */
557 ts_event_en = PTP_TCR_TSEVNTENA;
558
559 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
560 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
561 ptp_over_ethernet = PTP_TCR_TSIPENA;
562 break;
563
564 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
565 /* PTP v2/802.AS1, any layer, Delay_req packet */
566 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
567 ptp_v2 = PTP_TCR_TSVER2ENA;
568 /* take time stamp for Delay_Req messages only */
569 ts_master_en = PTP_TCR_TSMSTRENA;
570 ts_event_en = PTP_TCR_TSEVNTENA;
571
572 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
573 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
574 ptp_over_ethernet = PTP_TCR_TSIPENA;
575 break;
576
577 case HWTSTAMP_FILTER_ALL:
578 /* time stamp any incoming packet */
579 config.rx_filter = HWTSTAMP_FILTER_ALL;
580 tstamp_all = PTP_TCR_TSENALL;
581 break;
582
583 default:
584 return -ERANGE;
585 }
586 } else {
587 switch (config.rx_filter) {
588 case HWTSTAMP_FILTER_NONE:
589 config.rx_filter = HWTSTAMP_FILTER_NONE;
590 break;
591 default:
592 /* PTP v1, UDP, any kind of event packet */
593 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
594 break;
595 }
596 }
597 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
598 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
599
600 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
601 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
602 else {
603 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
604 tstamp_all | ptp_v2 | ptp_over_ethernet |
605 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
606 ts_master_en | snap_type_sel);
607 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
608
609 /* program Sub Second Increment reg */
610 sec_inc = priv->hw->ptp->config_sub_second_increment(
611 priv->ioaddr, priv->clk_ptp_rate);
612 temp = div_u64(1000000000ULL, sec_inc);
613
614 /* calculate default added value:
615 * formula is :
616 * addend = (2^32)/freq_div_ratio;
617 * where, freq_div_ratio = 1e9ns/sec_inc
618 */
619 temp = (u64)(temp << 32);
620 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
621 priv->hw->ptp->config_addend(priv->ioaddr,
622 priv->default_addend);
623
624 /* initialize system time */
625 ktime_get_real_ts64(&now);
626
627 /* lower 32 bits of tv_sec are safe until y2106 */
628 priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec,
629 now.tv_nsec);
630 }
631
632 return copy_to_user(ifr->ifr_data, &config,
633 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
634 }
635
636 /**
637 * stmmac_init_ptp - init PTP
638 * @priv: driver private structure
639 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
640 * This is done by looking at the HW cap. register.
641 * This function also registers the ptp driver.
642 */
643 static int stmmac_init_ptp(struct stmmac_priv *priv)
644 {
645 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
646 return -EOPNOTSUPP;
647
648 /* Fall-back to main clock in case of no PTP ref is passed */
649 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
650 if (IS_ERR(priv->clk_ptp_ref)) {
651 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
652 priv->clk_ptp_ref = NULL;
653 } else {
654 clk_prepare_enable(priv->clk_ptp_ref);
655 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
656 }
657
658 priv->adv_ts = 0;
659 if (priv->dma_cap.atime_stamp && priv->extend_desc)
660 priv->adv_ts = 1;
661
662 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
663 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
664
665 if (netif_msg_hw(priv) && priv->adv_ts)
666 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
667
668 priv->hw->ptp = &stmmac_ptp;
669 priv->hwts_tx_en = 0;
670 priv->hwts_rx_en = 0;
671
672 return stmmac_ptp_register(priv);
673 }
674
675 static void stmmac_release_ptp(struct stmmac_priv *priv)
676 {
677 if (priv->clk_ptp_ref)
678 clk_disable_unprepare(priv->clk_ptp_ref);
679 stmmac_ptp_unregister(priv);
680 }
681
682 /**
683 * stmmac_adjust_link - adjusts the link parameters
684 * @dev: net device structure
685 * Description: this is the helper called by the physical abstraction layer
686 * drivers to communicate the phy link status. According the speed and duplex
687 * this driver can invoke registered glue-logic as well.
688 * It also invoke the eee initialization because it could happen when switch
689 * on different networks (that are eee capable).
690 */
691 static void stmmac_adjust_link(struct net_device *dev)
692 {
693 struct stmmac_priv *priv = netdev_priv(dev);
694 struct phy_device *phydev = priv->phydev;
695 unsigned long flags;
696 int new_state = 0;
697 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
698
699 if (phydev == NULL)
700 return;
701
702 spin_lock_irqsave(&priv->lock, flags);
703
704 if (phydev->link) {
705 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
706
707 /* Now we make sure that we can be in full duplex mode.
708 * If not, we operate in half-duplex mode. */
709 if (phydev->duplex != priv->oldduplex) {
710 new_state = 1;
711 if (!(phydev->duplex))
712 ctrl &= ~priv->hw->link.duplex;
713 else
714 ctrl |= priv->hw->link.duplex;
715 priv->oldduplex = phydev->duplex;
716 }
717 /* Flow Control operation */
718 if (phydev->pause)
719 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
720 fc, pause_time);
721
722 if (phydev->speed != priv->speed) {
723 new_state = 1;
724 switch (phydev->speed) {
725 case 1000:
726 if (likely(priv->plat->has_gmac))
727 ctrl &= ~priv->hw->link.port;
728 stmmac_hw_fix_mac_speed(priv);
729 break;
730 case 100:
731 case 10:
732 if (priv->plat->has_gmac) {
733 ctrl |= priv->hw->link.port;
734 if (phydev->speed == SPEED_100) {
735 ctrl |= priv->hw->link.speed;
736 } else {
737 ctrl &= ~(priv->hw->link.speed);
738 }
739 } else {
740 ctrl &= ~priv->hw->link.port;
741 }
742 stmmac_hw_fix_mac_speed(priv);
743 break;
744 default:
745 if (netif_msg_link(priv))
746 pr_warn("%s: Speed (%d) not 10/100\n",
747 dev->name, phydev->speed);
748 break;
749 }
750
751 priv->speed = phydev->speed;
752 }
753
754 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
755
756 if (!priv->oldlink) {
757 new_state = 1;
758 priv->oldlink = 1;
759 }
760 } else if (priv->oldlink) {
761 new_state = 1;
762 priv->oldlink = 0;
763 priv->speed = 0;
764 priv->oldduplex = -1;
765 }
766
767 if (new_state && netif_msg_link(priv))
768 phy_print_status(phydev);
769
770 spin_unlock_irqrestore(&priv->lock, flags);
771
772 /* At this stage, it could be needed to setup the EEE or adjust some
773 * MAC related HW registers.
774 */
775 priv->eee_enabled = stmmac_eee_init(priv);
776 }
777
778 /**
779 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
780 * @priv: driver private structure
781 * Description: this is to verify if the HW supports the PCS.
782 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
783 * configured for the TBI, RTBI, or SGMII PHY interface.
784 */
785 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
786 {
787 int interface = priv->plat->interface;
788
789 if (priv->dma_cap.pcs) {
790 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
791 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
792 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
793 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
794 pr_debug("STMMAC: PCS RGMII support enable\n");
795 priv->pcs = STMMAC_PCS_RGMII;
796 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
797 pr_debug("STMMAC: PCS SGMII support enable\n");
798 priv->pcs = STMMAC_PCS_SGMII;
799 }
800 }
801 }
802
803 /**
804 * stmmac_init_phy - PHY initialization
805 * @dev: net device structure
806 * Description: it initializes the driver's PHY state, and attaches the PHY
807 * to the mac driver.
808 * Return value:
809 * 0 on success
810 */
811 static int stmmac_init_phy(struct net_device *dev)
812 {
813 struct stmmac_priv *priv = netdev_priv(dev);
814 struct phy_device *phydev;
815 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
816 char bus_id[MII_BUS_ID_SIZE];
817 int interface = priv->plat->interface;
818 int max_speed = priv->plat->max_speed;
819 priv->oldlink = 0;
820 priv->speed = 0;
821 priv->oldduplex = -1;
822
823 if (priv->plat->phy_node) {
824 phydev = of_phy_connect(dev, priv->plat->phy_node,
825 &stmmac_adjust_link, 0, interface);
826 } else {
827 if (priv->plat->phy_bus_name)
828 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
829 priv->plat->phy_bus_name, priv->plat->bus_id);
830 else
831 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
832 priv->plat->bus_id);
833
834 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
835 priv->plat->phy_addr);
836 pr_debug("stmmac_init_phy: trying to attach to %s\n",
837 phy_id_fmt);
838
839 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
840 interface);
841 }
842
843 if (IS_ERR_OR_NULL(phydev)) {
844 pr_err("%s: Could not attach to PHY\n", dev->name);
845 if (!phydev)
846 return -ENODEV;
847
848 return PTR_ERR(phydev);
849 }
850
851 /* Stop Advertising 1000BASE Capability if interface is not GMII */
852 if ((interface == PHY_INTERFACE_MODE_MII) ||
853 (interface == PHY_INTERFACE_MODE_RMII) ||
854 (max_speed < 1000 && max_speed > 0))
855 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
856 SUPPORTED_1000baseT_Full);
857
858 /*
859 * Broken HW is sometimes missing the pull-up resistor on the
860 * MDIO line, which results in reads to non-existent devices returning
861 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
862 * device as well.
863 * Note: phydev->phy_id is the result of reading the UID PHY registers.
864 */
865 if (!priv->plat->phy_node && phydev->phy_id == 0) {
866 phy_disconnect(phydev);
867 return -ENODEV;
868 }
869
870 /* If attached to a switch, there is no reason to poll phy handler */
871 if (!strcmp(priv->plat->phy_bus_name, "fixed"))
872 phydev->irq = PHY_IGNORE_INTERRUPT;
873
874 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
875 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
876
877 priv->phydev = phydev;
878
879 return 0;
880 }
881
882 /**
883 * stmmac_display_ring - display ring
884 * @head: pointer to the head of the ring passed.
885 * @size: size of the ring.
886 * @extend_desc: to verify if extended descriptors are used.
887 * Description: display the control/status and buffer descriptors.
888 */
889 static void stmmac_display_ring(void *head, int size, int extend_desc)
890 {
891 int i;
892 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
893 struct dma_desc *p = (struct dma_desc *)head;
894
895 for (i = 0; i < size; i++) {
896 u64 x;
897 if (extend_desc) {
898 x = *(u64 *) ep;
899 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
900 i, (unsigned int)virt_to_phys(ep),
901 (unsigned int)x, (unsigned int)(x >> 32),
902 ep->basic.des2, ep->basic.des3);
903 ep++;
904 } else {
905 x = *(u64 *) p;
906 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
907 i, (unsigned int)virt_to_phys(p),
908 (unsigned int)x, (unsigned int)(x >> 32),
909 p->des2, p->des3);
910 p++;
911 }
912 pr_info("\n");
913 }
914 }
915
916 static void stmmac_display_rings(struct stmmac_priv *priv)
917 {
918 if (priv->extend_desc) {
919 pr_info("Extended RX descriptor ring:\n");
920 stmmac_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1);
921 pr_info("Extended TX descriptor ring:\n");
922 stmmac_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1);
923 } else {
924 pr_info("RX descriptor ring:\n");
925 stmmac_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0);
926 pr_info("TX descriptor ring:\n");
927 stmmac_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0);
928 }
929 }
930
931 static int stmmac_set_bfsize(int mtu, int bufsize)
932 {
933 int ret = bufsize;
934
935 if (mtu >= BUF_SIZE_4KiB)
936 ret = BUF_SIZE_8KiB;
937 else if (mtu >= BUF_SIZE_2KiB)
938 ret = BUF_SIZE_4KiB;
939 else if (mtu > DEFAULT_BUFSIZE)
940 ret = BUF_SIZE_2KiB;
941 else
942 ret = DEFAULT_BUFSIZE;
943
944 return ret;
945 }
946
947 /**
948 * stmmac_clear_descriptors - clear descriptors
949 * @priv: driver private structure
950 * Description: this function is called to clear the tx and rx descriptors
951 * in case of both basic and extended descriptors are used.
952 */
953 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
954 {
955 int i;
956
957 /* Clear the Rx/Tx descriptors */
958 for (i = 0; i < DMA_RX_SIZE; i++)
959 if (priv->extend_desc)
960 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
961 priv->use_riwt, priv->mode,
962 (i == DMA_RX_SIZE - 1));
963 else
964 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
965 priv->use_riwt, priv->mode,
966 (i == DMA_RX_SIZE - 1));
967 for (i = 0; i < DMA_TX_SIZE; i++)
968 if (priv->extend_desc)
969 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
970 priv->mode,
971 (i == DMA_TX_SIZE - 1));
972 else
973 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
974 priv->mode,
975 (i == DMA_TX_SIZE - 1));
976 }
977
978 /**
979 * stmmac_init_rx_buffers - init the RX descriptor buffer.
980 * @priv: driver private structure
981 * @p: descriptor pointer
982 * @i: descriptor index
983 * @flags: gfp flag.
984 * Description: this function is called to allocate a receive buffer, perform
985 * the DMA mapping and init the descriptor.
986 */
987 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
988 int i, gfp_t flags)
989 {
990 struct sk_buff *skb;
991
992 skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
993 if (!skb) {
994 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
995 return -ENOMEM;
996 }
997 priv->rx_skbuff[i] = skb;
998 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
999 priv->dma_buf_sz,
1000 DMA_FROM_DEVICE);
1001 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
1002 pr_err("%s: DMA mapping error\n", __func__);
1003 dev_kfree_skb_any(skb);
1004 return -EINVAL;
1005 }
1006
1007 p->des2 = priv->rx_skbuff_dma[i];
1008
1009 if ((priv->hw->mode->init_desc3) &&
1010 (priv->dma_buf_sz == BUF_SIZE_16KiB))
1011 priv->hw->mode->init_desc3(p);
1012
1013 return 0;
1014 }
1015
1016 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1017 {
1018 if (priv->rx_skbuff[i]) {
1019 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1020 priv->dma_buf_sz, DMA_FROM_DEVICE);
1021 dev_kfree_skb_any(priv->rx_skbuff[i]);
1022 }
1023 priv->rx_skbuff[i] = NULL;
1024 }
1025
1026 /**
1027 * init_dma_desc_rings - init the RX/TX descriptor rings
1028 * @dev: net device structure
1029 * @flags: gfp flag.
1030 * Description: this function initializes the DMA RX/TX descriptors
1031 * and allocates the socket buffers. It suppors the chained and ring
1032 * modes.
1033 */
1034 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1035 {
1036 int i;
1037 struct stmmac_priv *priv = netdev_priv(dev);
1038 unsigned int bfsize = 0;
1039 int ret = -ENOMEM;
1040
1041 if (priv->hw->mode->set_16kib_bfsize)
1042 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1043
1044 if (bfsize < BUF_SIZE_16KiB)
1045 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1046
1047 priv->dma_buf_sz = bfsize;
1048
1049 if (netif_msg_probe(priv)) {
1050 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1051 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1052
1053 /* RX INITIALIZATION */
1054 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1055 }
1056 for (i = 0; i < DMA_RX_SIZE; i++) {
1057 struct dma_desc *p;
1058 if (priv->extend_desc)
1059 p = &((priv->dma_erx + i)->basic);
1060 else
1061 p = priv->dma_rx + i;
1062
1063 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1064 if (ret)
1065 goto err_init_rx_buffers;
1066
1067 if (netif_msg_probe(priv))
1068 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1069 priv->rx_skbuff[i]->data,
1070 (unsigned int)priv->rx_skbuff_dma[i]);
1071 }
1072 priv->cur_rx = 0;
1073 priv->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1074 buf_sz = bfsize;
1075
1076 /* Setup the chained descriptor addresses */
1077 if (priv->mode == STMMAC_CHAIN_MODE) {
1078 if (priv->extend_desc) {
1079 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1080 DMA_RX_SIZE, 1);
1081 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1082 DMA_TX_SIZE, 1);
1083 } else {
1084 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1085 DMA_RX_SIZE, 0);
1086 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1087 DMA_TX_SIZE, 0);
1088 }
1089 }
1090
1091 /* TX INITIALIZATION */
1092 for (i = 0; i < DMA_TX_SIZE; i++) {
1093 struct dma_desc *p;
1094 if (priv->extend_desc)
1095 p = &((priv->dma_etx + i)->basic);
1096 else
1097 p = priv->dma_tx + i;
1098 p->des2 = 0;
1099 priv->tx_skbuff_dma[i].buf = 0;
1100 priv->tx_skbuff_dma[i].map_as_page = false;
1101 priv->tx_skbuff_dma[i].len = 0;
1102 priv->tx_skbuff_dma[i].last_segment = false;
1103 priv->tx_skbuff[i] = NULL;
1104 }
1105
1106 priv->dirty_tx = 0;
1107 priv->cur_tx = 0;
1108 netdev_reset_queue(priv->dev);
1109
1110 stmmac_clear_descriptors(priv);
1111
1112 if (netif_msg_hw(priv))
1113 stmmac_display_rings(priv);
1114
1115 return 0;
1116 err_init_rx_buffers:
1117 while (--i >= 0)
1118 stmmac_free_rx_buffers(priv, i);
1119 return ret;
1120 }
1121
1122 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1123 {
1124 int i;
1125
1126 for (i = 0; i < DMA_RX_SIZE; i++)
1127 stmmac_free_rx_buffers(priv, i);
1128 }
1129
1130 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1131 {
1132 int i;
1133
1134 for (i = 0; i < DMA_TX_SIZE; i++) {
1135 struct dma_desc *p;
1136
1137 if (priv->extend_desc)
1138 p = &((priv->dma_etx + i)->basic);
1139 else
1140 p = priv->dma_tx + i;
1141
1142 if (priv->tx_skbuff_dma[i].buf) {
1143 if (priv->tx_skbuff_dma[i].map_as_page)
1144 dma_unmap_page(priv->device,
1145 priv->tx_skbuff_dma[i].buf,
1146 priv->tx_skbuff_dma[i].len,
1147 DMA_TO_DEVICE);
1148 else
1149 dma_unmap_single(priv->device,
1150 priv->tx_skbuff_dma[i].buf,
1151 priv->tx_skbuff_dma[i].len,
1152 DMA_TO_DEVICE);
1153 }
1154
1155 if (priv->tx_skbuff[i] != NULL) {
1156 dev_kfree_skb_any(priv->tx_skbuff[i]);
1157 priv->tx_skbuff[i] = NULL;
1158 priv->tx_skbuff_dma[i].buf = 0;
1159 priv->tx_skbuff_dma[i].map_as_page = false;
1160 }
1161 }
1162 }
1163
1164 /**
1165 * alloc_dma_desc_resources - alloc TX/RX resources.
1166 * @priv: private structure
1167 * Description: according to which descriptor can be used (extend or basic)
1168 * this function allocates the resources for TX and RX paths. In case of
1169 * reception, for example, it pre-allocated the RX socket buffer in order to
1170 * allow zero-copy mechanism.
1171 */
1172 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1173 {
1174 int ret = -ENOMEM;
1175
1176 priv->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, sizeof(dma_addr_t),
1177 GFP_KERNEL);
1178 if (!priv->rx_skbuff_dma)
1179 return -ENOMEM;
1180
1181 priv->rx_skbuff = kmalloc_array(DMA_RX_SIZE, sizeof(struct sk_buff *),
1182 GFP_KERNEL);
1183 if (!priv->rx_skbuff)
1184 goto err_rx_skbuff;
1185
1186 priv->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1187 sizeof(*priv->tx_skbuff_dma),
1188 GFP_KERNEL);
1189 if (!priv->tx_skbuff_dma)
1190 goto err_tx_skbuff_dma;
1191
1192 priv->tx_skbuff = kmalloc_array(DMA_TX_SIZE, sizeof(struct sk_buff *),
1193 GFP_KERNEL);
1194 if (!priv->tx_skbuff)
1195 goto err_tx_skbuff;
1196
1197 if (priv->extend_desc) {
1198 priv->dma_erx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1199 sizeof(struct
1200 dma_extended_desc),
1201 &priv->dma_rx_phy,
1202 GFP_KERNEL);
1203 if (!priv->dma_erx)
1204 goto err_dma;
1205
1206 priv->dma_etx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1207 sizeof(struct
1208 dma_extended_desc),
1209 &priv->dma_tx_phy,
1210 GFP_KERNEL);
1211 if (!priv->dma_etx) {
1212 dma_free_coherent(priv->device, DMA_RX_SIZE *
1213 sizeof(struct dma_extended_desc),
1214 priv->dma_erx, priv->dma_rx_phy);
1215 goto err_dma;
1216 }
1217 } else {
1218 priv->dma_rx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1219 sizeof(struct dma_desc),
1220 &priv->dma_rx_phy,
1221 GFP_KERNEL);
1222 if (!priv->dma_rx)
1223 goto err_dma;
1224
1225 priv->dma_tx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1226 sizeof(struct dma_desc),
1227 &priv->dma_tx_phy,
1228 GFP_KERNEL);
1229 if (!priv->dma_tx) {
1230 dma_free_coherent(priv->device, DMA_RX_SIZE *
1231 sizeof(struct dma_desc),
1232 priv->dma_rx, priv->dma_rx_phy);
1233 goto err_dma;
1234 }
1235 }
1236
1237 return 0;
1238
1239 err_dma:
1240 kfree(priv->tx_skbuff);
1241 err_tx_skbuff:
1242 kfree(priv->tx_skbuff_dma);
1243 err_tx_skbuff_dma:
1244 kfree(priv->rx_skbuff);
1245 err_rx_skbuff:
1246 kfree(priv->rx_skbuff_dma);
1247 return ret;
1248 }
1249
1250 static void free_dma_desc_resources(struct stmmac_priv *priv)
1251 {
1252 /* Release the DMA TX/RX socket buffers */
1253 dma_free_rx_skbufs(priv);
1254 dma_free_tx_skbufs(priv);
1255
1256 /* Free DMA regions of consistent memory previously allocated */
1257 if (!priv->extend_desc) {
1258 dma_free_coherent(priv->device,
1259 DMA_TX_SIZE * sizeof(struct dma_desc),
1260 priv->dma_tx, priv->dma_tx_phy);
1261 dma_free_coherent(priv->device,
1262 DMA_RX_SIZE * sizeof(struct dma_desc),
1263 priv->dma_rx, priv->dma_rx_phy);
1264 } else {
1265 dma_free_coherent(priv->device, DMA_TX_SIZE *
1266 sizeof(struct dma_extended_desc),
1267 priv->dma_etx, priv->dma_tx_phy);
1268 dma_free_coherent(priv->device, DMA_RX_SIZE *
1269 sizeof(struct dma_extended_desc),
1270 priv->dma_erx, priv->dma_rx_phy);
1271 }
1272 kfree(priv->rx_skbuff_dma);
1273 kfree(priv->rx_skbuff);
1274 kfree(priv->tx_skbuff_dma);
1275 kfree(priv->tx_skbuff);
1276 }
1277
1278 /**
1279 * stmmac_dma_operation_mode - HW DMA operation mode
1280 * @priv: driver private structure
1281 * Description: it is used for configuring the DMA operation mode register in
1282 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1283 */
1284 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1285 {
1286 int rxfifosz = priv->plat->rx_fifo_size;
1287
1288 if (priv->plat->force_thresh_dma_mode)
1289 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1290 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1291 /*
1292 * In case of GMAC, SF mode can be enabled
1293 * to perform the TX COE in HW. This depends on:
1294 * 1) TX COE if actually supported
1295 * 2) There is no bugged Jumbo frame support
1296 * that needs to not insert csum in the TDES.
1297 */
1298 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1299 rxfifosz);
1300 priv->xstats.threshold = SF_DMA_MODE;
1301 } else
1302 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1303 rxfifosz);
1304 }
1305
1306 /**
1307 * stmmac_tx_clean - to manage the transmission completion
1308 * @priv: driver private structure
1309 * Description: it reclaims the transmit resources after transmission completes.
1310 */
1311 static void stmmac_tx_clean(struct stmmac_priv *priv)
1312 {
1313 unsigned int bytes_compl = 0, pkts_compl = 0;
1314 unsigned int entry = priv->dirty_tx;
1315
1316 spin_lock(&priv->tx_lock);
1317
1318 priv->xstats.tx_clean++;
1319
1320 while (entry != priv->cur_tx) {
1321 struct sk_buff *skb = priv->tx_skbuff[entry];
1322 struct dma_desc *p;
1323 int status;
1324
1325 if (priv->extend_desc)
1326 p = (struct dma_desc *)(priv->dma_etx + entry);
1327 else
1328 p = priv->dma_tx + entry;
1329
1330 status = priv->hw->desc->tx_status(&priv->dev->stats,
1331 &priv->xstats, p,
1332 priv->ioaddr);
1333 /* Check if the descriptor is owned by the DMA */
1334 if (unlikely(status & tx_dma_own))
1335 break;
1336
1337 /* Just consider the last segment and ...*/
1338 if (likely(!(status & tx_not_ls))) {
1339 /* ... verify the status error condition */
1340 if (unlikely(status & tx_err)) {
1341 priv->dev->stats.tx_errors++;
1342 } else {
1343 priv->dev->stats.tx_packets++;
1344 priv->xstats.tx_pkt_n++;
1345 }
1346 stmmac_get_tx_hwtstamp(priv, entry, skb);
1347 }
1348
1349 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1350 if (priv->tx_skbuff_dma[entry].map_as_page)
1351 dma_unmap_page(priv->device,
1352 priv->tx_skbuff_dma[entry].buf,
1353 priv->tx_skbuff_dma[entry].len,
1354 DMA_TO_DEVICE);
1355 else
1356 dma_unmap_single(priv->device,
1357 priv->tx_skbuff_dma[entry].buf,
1358 priv->tx_skbuff_dma[entry].len,
1359 DMA_TO_DEVICE);
1360 priv->tx_skbuff_dma[entry].buf = 0;
1361 priv->tx_skbuff_dma[entry].map_as_page = false;
1362 }
1363 priv->hw->mode->clean_desc3(priv, p);
1364 priv->tx_skbuff_dma[entry].last_segment = false;
1365 priv->tx_skbuff_dma[entry].is_jumbo = false;
1366
1367 if (likely(skb != NULL)) {
1368 pkts_compl++;
1369 bytes_compl += skb->len;
1370 dev_consume_skb_any(skb);
1371 priv->tx_skbuff[entry] = NULL;
1372 }
1373
1374 priv->hw->desc->release_tx_desc(p, priv->mode);
1375
1376 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1377 }
1378 priv->dirty_tx = entry;
1379
1380 netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1381
1382 if (unlikely(netif_queue_stopped(priv->dev) &&
1383 stmmac_tx_avail(priv) > STMMAC_TX_THRESH)) {
1384 netif_tx_lock(priv->dev);
1385 if (netif_queue_stopped(priv->dev) &&
1386 stmmac_tx_avail(priv) > STMMAC_TX_THRESH) {
1387 if (netif_msg_tx_done(priv))
1388 pr_debug("%s: restart transmit\n", __func__);
1389 netif_wake_queue(priv->dev);
1390 }
1391 netif_tx_unlock(priv->dev);
1392 }
1393
1394 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1395 stmmac_enable_eee_mode(priv);
1396 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1397 }
1398 spin_unlock(&priv->tx_lock);
1399 }
1400
1401 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1402 {
1403 priv->hw->dma->enable_dma_irq(priv->ioaddr);
1404 }
1405
1406 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1407 {
1408 priv->hw->dma->disable_dma_irq(priv->ioaddr);
1409 }
1410
1411 /**
1412 * stmmac_tx_err - to manage the tx error
1413 * @priv: driver private structure
1414 * Description: it cleans the descriptors and restarts the transmission
1415 * in case of transmission errors.
1416 */
1417 static void stmmac_tx_err(struct stmmac_priv *priv)
1418 {
1419 int i;
1420 netif_stop_queue(priv->dev);
1421
1422 priv->hw->dma->stop_tx(priv->ioaddr);
1423 dma_free_tx_skbufs(priv);
1424 for (i = 0; i < DMA_TX_SIZE; i++)
1425 if (priv->extend_desc)
1426 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1427 priv->mode,
1428 (i == DMA_TX_SIZE - 1));
1429 else
1430 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1431 priv->mode,
1432 (i == DMA_TX_SIZE - 1));
1433 priv->dirty_tx = 0;
1434 priv->cur_tx = 0;
1435 netdev_reset_queue(priv->dev);
1436 priv->hw->dma->start_tx(priv->ioaddr);
1437
1438 priv->dev->stats.tx_errors++;
1439 netif_wake_queue(priv->dev);
1440 }
1441
1442 /**
1443 * stmmac_dma_interrupt - DMA ISR
1444 * @priv: driver private structure
1445 * Description: this is the DMA ISR. It is called by the main ISR.
1446 * It calls the dwmac dma routine and schedule poll method in case of some
1447 * work can be done.
1448 */
1449 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1450 {
1451 int status;
1452 int rxfifosz = priv->plat->rx_fifo_size;
1453
1454 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1455 if (likely((status & handle_rx)) || (status & handle_tx)) {
1456 if (likely(napi_schedule_prep(&priv->napi))) {
1457 stmmac_disable_dma_irq(priv);
1458 __napi_schedule(&priv->napi);
1459 }
1460 }
1461 if (unlikely(status & tx_hard_error_bump_tc)) {
1462 /* Try to bump up the dma threshold on this failure */
1463 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1464 (tc <= 256)) {
1465 tc += 64;
1466 if (priv->plat->force_thresh_dma_mode)
1467 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1468 rxfifosz);
1469 else
1470 priv->hw->dma->dma_mode(priv->ioaddr, tc,
1471 SF_DMA_MODE, rxfifosz);
1472 priv->xstats.threshold = tc;
1473 }
1474 } else if (unlikely(status == tx_hard_error))
1475 stmmac_tx_err(priv);
1476 }
1477
1478 /**
1479 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1480 * @priv: driver private structure
1481 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1482 */
1483 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1484 {
1485 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1486 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1487
1488 dwmac_mmc_intr_all_mask(priv->ioaddr);
1489
1490 if (priv->dma_cap.rmon) {
1491 dwmac_mmc_ctrl(priv->ioaddr, mode);
1492 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1493 } else
1494 pr_info(" No MAC Management Counters available\n");
1495 }
1496
1497 /**
1498 * stmmac_get_synopsys_id - return the SYINID.
1499 * @priv: driver private structure
1500 * Description: this simple function is to decode and return the SYINID
1501 * starting from the HW core register.
1502 */
1503 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1504 {
1505 u32 hwid = priv->hw->synopsys_uid;
1506
1507 /* Check Synopsys Id (not available on old chips) */
1508 if (likely(hwid)) {
1509 u32 uid = ((hwid & 0x0000ff00) >> 8);
1510 u32 synid = (hwid & 0x000000ff);
1511
1512 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1513 uid, synid);
1514
1515 return synid;
1516 }
1517 return 0;
1518 }
1519
1520 /**
1521 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1522 * @priv: driver private structure
1523 * Description: select the Enhanced/Alternate or Normal descriptors.
1524 * In case of Enhanced/Alternate, it checks if the extended descriptors are
1525 * supported by the HW capability register.
1526 */
1527 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1528 {
1529 if (priv->plat->enh_desc) {
1530 pr_info(" Enhanced/Alternate descriptors\n");
1531
1532 /* GMAC older than 3.50 has no extended descriptors */
1533 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1534 pr_info("\tEnabled extended descriptors\n");
1535 priv->extend_desc = 1;
1536 } else
1537 pr_warn("Extended descriptors not supported\n");
1538
1539 priv->hw->desc = &enh_desc_ops;
1540 } else {
1541 pr_info(" Normal descriptors\n");
1542 priv->hw->desc = &ndesc_ops;
1543 }
1544 }
1545
1546 /**
1547 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1548 * @priv: driver private structure
1549 * Description:
1550 * new GMAC chip generations have a new register to indicate the
1551 * presence of the optional feature/functions.
1552 * This can be also used to override the value passed through the
1553 * platform and necessary for old MAC10/100 and GMAC chips.
1554 */
1555 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1556 {
1557 u32 hw_cap = 0;
1558
1559 if (priv->hw->dma->get_hw_feature) {
1560 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1561
1562 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1563 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1564 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1565 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1566 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1567 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1568 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1569 priv->dma_cap.pmt_remote_wake_up =
1570 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1571 priv->dma_cap.pmt_magic_frame =
1572 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1573 /* MMC */
1574 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1575 /* IEEE 1588-2002 */
1576 priv->dma_cap.time_stamp =
1577 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1578 /* IEEE 1588-2008 */
1579 priv->dma_cap.atime_stamp =
1580 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1581 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1582 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1583 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1584 /* TX and RX csum */
1585 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1586 priv->dma_cap.rx_coe_type1 =
1587 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1588 priv->dma_cap.rx_coe_type2 =
1589 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1590 priv->dma_cap.rxfifo_over_2048 =
1591 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1592 /* TX and RX number of channels */
1593 priv->dma_cap.number_rx_channel =
1594 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1595 priv->dma_cap.number_tx_channel =
1596 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1597 /* Alternate (enhanced) DESC mode */
1598 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1599 }
1600
1601 return hw_cap;
1602 }
1603
1604 /**
1605 * stmmac_check_ether_addr - check if the MAC addr is valid
1606 * @priv: driver private structure
1607 * Description:
1608 * it is to verify if the MAC address is valid, in case of failures it
1609 * generates a random MAC address
1610 */
1611 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1612 {
1613 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1614 priv->hw->mac->get_umac_addr(priv->hw,
1615 priv->dev->dev_addr, 0);
1616 if (!is_valid_ether_addr(priv->dev->dev_addr))
1617 eth_hw_addr_random(priv->dev);
1618 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1619 priv->dev->dev_addr);
1620 }
1621 }
1622
1623 /**
1624 * stmmac_init_dma_engine - DMA init.
1625 * @priv: driver private structure
1626 * Description:
1627 * It inits the DMA invoking the specific MAC/GMAC callback.
1628 * Some DMA parameters can be passed from the platform;
1629 * in case of these are not passed a default is kept for the MAC or GMAC.
1630 */
1631 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1632 {
1633 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, aal = 0;
1634 int mixed_burst = 0;
1635 int atds = 0;
1636 int ret = 0;
1637
1638 if (priv->plat->dma_cfg) {
1639 pbl = priv->plat->dma_cfg->pbl;
1640 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1641 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1642 aal = priv->plat->dma_cfg->aal;
1643 }
1644
1645 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1646 atds = 1;
1647
1648 ret = priv->hw->dma->reset(priv->ioaddr);
1649 if (ret) {
1650 dev_err(priv->device, "Failed to reset the dma\n");
1651 return ret;
1652 }
1653
1654 priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1655 aal, priv->dma_tx_phy, priv->dma_rx_phy, atds);
1656
1657 if ((priv->synopsys_id >= DWMAC_CORE_3_50) &&
1658 (priv->plat->axi && priv->hw->dma->axi))
1659 priv->hw->dma->axi(priv->ioaddr, priv->plat->axi);
1660
1661 return ret;
1662 }
1663
1664 /**
1665 * stmmac_tx_timer - mitigation sw timer for tx.
1666 * @data: data pointer
1667 * Description:
1668 * This is the timer handler to directly invoke the stmmac_tx_clean.
1669 */
1670 static void stmmac_tx_timer(unsigned long data)
1671 {
1672 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1673
1674 stmmac_tx_clean(priv);
1675 }
1676
1677 /**
1678 * stmmac_init_tx_coalesce - init tx mitigation options.
1679 * @priv: driver private structure
1680 * Description:
1681 * This inits the transmit coalesce parameters: i.e. timer rate,
1682 * timer handler and default threshold used for enabling the
1683 * interrupt on completion bit.
1684 */
1685 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1686 {
1687 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1688 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1689 init_timer(&priv->txtimer);
1690 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1691 priv->txtimer.data = (unsigned long)priv;
1692 priv->txtimer.function = stmmac_tx_timer;
1693 add_timer(&priv->txtimer);
1694 }
1695
1696 /**
1697 * stmmac_hw_setup - setup mac in a usable state.
1698 * @dev : pointer to the device structure.
1699 * Description:
1700 * this is the main function to setup the HW in a usable state because the
1701 * dma engine is reset, the core registers are configured (e.g. AXI,
1702 * Checksum features, timers). The DMA is ready to start receiving and
1703 * transmitting.
1704 * Return value:
1705 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1706 * file on failure.
1707 */
1708 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1709 {
1710 struct stmmac_priv *priv = netdev_priv(dev);
1711 int ret;
1712
1713 /* DMA initialization and SW reset */
1714 ret = stmmac_init_dma_engine(priv);
1715 if (ret < 0) {
1716 pr_err("%s: DMA engine initialization failed\n", __func__);
1717 return ret;
1718 }
1719
1720 /* Copy the MAC addr into the HW */
1721 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1722
1723 /* If required, perform hw setup of the bus. */
1724 if (priv->plat->bus_setup)
1725 priv->plat->bus_setup(priv->ioaddr);
1726
1727 /* Initialize the MAC Core */
1728 priv->hw->mac->core_init(priv->hw, dev->mtu);
1729
1730 ret = priv->hw->mac->rx_ipc(priv->hw);
1731 if (!ret) {
1732 pr_warn(" RX IPC Checksum Offload disabled\n");
1733 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1734 priv->hw->rx_csum = 0;
1735 }
1736
1737 /* Enable the MAC Rx/Tx */
1738 stmmac_set_mac(priv->ioaddr, true);
1739
1740 /* Set the HW DMA mode and the COE */
1741 stmmac_dma_operation_mode(priv);
1742
1743 stmmac_mmc_setup(priv);
1744
1745 if (init_ptp) {
1746 ret = stmmac_init_ptp(priv);
1747 if (ret && ret != -EOPNOTSUPP)
1748 pr_warn("%s: failed PTP initialisation\n", __func__);
1749 }
1750
1751 #ifdef CONFIG_DEBUG_FS
1752 ret = stmmac_init_fs(dev);
1753 if (ret < 0)
1754 pr_warn("%s: failed debugFS registration\n", __func__);
1755 #endif
1756 /* Start the ball rolling... */
1757 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1758 priv->hw->dma->start_tx(priv->ioaddr);
1759 priv->hw->dma->start_rx(priv->ioaddr);
1760
1761 /* Dump DMA/MAC registers */
1762 if (netif_msg_hw(priv)) {
1763 priv->hw->mac->dump_regs(priv->hw);
1764 priv->hw->dma->dump_regs(priv->ioaddr);
1765 }
1766 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1767
1768 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1769 priv->rx_riwt = MAX_DMA_RIWT;
1770 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1771 }
1772
1773 if (priv->pcs && priv->hw->mac->ctrl_ane)
1774 priv->hw->mac->ctrl_ane(priv->hw, 0);
1775
1776 return 0;
1777 }
1778
1779 /**
1780 * stmmac_open - open entry point of the driver
1781 * @dev : pointer to the device structure.
1782 * Description:
1783 * This function is the open entry point of the driver.
1784 * Return value:
1785 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1786 * file on failure.
1787 */
1788 static int stmmac_open(struct net_device *dev)
1789 {
1790 struct stmmac_priv *priv = netdev_priv(dev);
1791 int ret;
1792
1793 stmmac_check_ether_addr(priv);
1794
1795 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1796 priv->pcs != STMMAC_PCS_RTBI) {
1797 ret = stmmac_init_phy(dev);
1798 if (ret) {
1799 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1800 __func__, ret);
1801 return ret;
1802 }
1803 }
1804
1805 /* Extra statistics */
1806 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1807 priv->xstats.threshold = tc;
1808
1809 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1810
1811 ret = alloc_dma_desc_resources(priv);
1812 if (ret < 0) {
1813 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1814 goto dma_desc_error;
1815 }
1816
1817 ret = init_dma_desc_rings(dev, GFP_KERNEL);
1818 if (ret < 0) {
1819 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1820 goto init_error;
1821 }
1822
1823 ret = stmmac_hw_setup(dev, true);
1824 if (ret < 0) {
1825 pr_err("%s: Hw setup failed\n", __func__);
1826 goto init_error;
1827 }
1828
1829 stmmac_init_tx_coalesce(priv);
1830
1831 if (priv->phydev)
1832 phy_start(priv->phydev);
1833
1834 /* Request the IRQ lines */
1835 ret = request_irq(dev->irq, stmmac_interrupt,
1836 IRQF_SHARED, dev->name, dev);
1837 if (unlikely(ret < 0)) {
1838 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1839 __func__, dev->irq, ret);
1840 goto init_error;
1841 }
1842
1843 /* Request the Wake IRQ in case of another line is used for WoL */
1844 if (priv->wol_irq != dev->irq) {
1845 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1846 IRQF_SHARED, dev->name, dev);
1847 if (unlikely(ret < 0)) {
1848 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1849 __func__, priv->wol_irq, ret);
1850 goto wolirq_error;
1851 }
1852 }
1853
1854 /* Request the IRQ lines */
1855 if (priv->lpi_irq > 0) {
1856 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1857 dev->name, dev);
1858 if (unlikely(ret < 0)) {
1859 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1860 __func__, priv->lpi_irq, ret);
1861 goto lpiirq_error;
1862 }
1863 }
1864
1865 napi_enable(&priv->napi);
1866 netif_start_queue(dev);
1867
1868 return 0;
1869
1870 lpiirq_error:
1871 if (priv->wol_irq != dev->irq)
1872 free_irq(priv->wol_irq, dev);
1873 wolirq_error:
1874 free_irq(dev->irq, dev);
1875
1876 init_error:
1877 free_dma_desc_resources(priv);
1878 dma_desc_error:
1879 if (priv->phydev)
1880 phy_disconnect(priv->phydev);
1881
1882 return ret;
1883 }
1884
1885 /**
1886 * stmmac_release - close entry point of the driver
1887 * @dev : device pointer.
1888 * Description:
1889 * This is the stop entry point of the driver.
1890 */
1891 static int stmmac_release(struct net_device *dev)
1892 {
1893 struct stmmac_priv *priv = netdev_priv(dev);
1894
1895 if (priv->eee_enabled)
1896 del_timer_sync(&priv->eee_ctrl_timer);
1897
1898 /* Stop and disconnect the PHY */
1899 if (priv->phydev) {
1900 phy_stop(priv->phydev);
1901 phy_disconnect(priv->phydev);
1902 priv->phydev = NULL;
1903 }
1904
1905 netif_stop_queue(dev);
1906
1907 napi_disable(&priv->napi);
1908
1909 del_timer_sync(&priv->txtimer);
1910
1911 /* Free the IRQ lines */
1912 free_irq(dev->irq, dev);
1913 if (priv->wol_irq != dev->irq)
1914 free_irq(priv->wol_irq, dev);
1915 if (priv->lpi_irq > 0)
1916 free_irq(priv->lpi_irq, dev);
1917
1918 /* Stop TX/RX DMA and clear the descriptors */
1919 priv->hw->dma->stop_tx(priv->ioaddr);
1920 priv->hw->dma->stop_rx(priv->ioaddr);
1921
1922 /* Release and free the Rx/Tx resources */
1923 free_dma_desc_resources(priv);
1924
1925 /* Disable the MAC Rx/Tx */
1926 stmmac_set_mac(priv->ioaddr, false);
1927
1928 netif_carrier_off(dev);
1929
1930 #ifdef CONFIG_DEBUG_FS
1931 stmmac_exit_fs(dev);
1932 #endif
1933
1934 stmmac_release_ptp(priv);
1935
1936 return 0;
1937 }
1938
1939 /**
1940 * stmmac_xmit - Tx entry point of the driver
1941 * @skb : the socket buffer
1942 * @dev : device pointer
1943 * Description : this is the tx entry point of the driver.
1944 * It programs the chain or the ring and supports oversized frames
1945 * and SG feature.
1946 */
1947 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1948 {
1949 struct stmmac_priv *priv = netdev_priv(dev);
1950 unsigned int nopaged_len = skb_headlen(skb);
1951 int i, csum_insertion = 0, is_jumbo = 0;
1952 int nfrags = skb_shinfo(skb)->nr_frags;
1953 unsigned int entry, first_entry;
1954 struct dma_desc *desc, *first;
1955 unsigned int enh_desc;
1956
1957 spin_lock(&priv->tx_lock);
1958
1959 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1960 spin_unlock(&priv->tx_lock);
1961 if (!netif_queue_stopped(dev)) {
1962 netif_stop_queue(dev);
1963 /* This is a hard error, log it. */
1964 pr_err("%s: Tx Ring full when queue awake\n", __func__);
1965 }
1966 return NETDEV_TX_BUSY;
1967 }
1968
1969 if (priv->tx_path_in_lpi_mode)
1970 stmmac_disable_eee_mode(priv);
1971
1972 entry = priv->cur_tx;
1973 first_entry = entry;
1974
1975 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1976
1977 if (likely(priv->extend_desc))
1978 desc = (struct dma_desc *)(priv->dma_etx + entry);
1979 else
1980 desc = priv->dma_tx + entry;
1981
1982 first = desc;
1983
1984 priv->tx_skbuff[first_entry] = skb;
1985
1986 enh_desc = priv->plat->enh_desc;
1987 /* To program the descriptors according to the size of the frame */
1988 if (enh_desc)
1989 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1990
1991 if (unlikely(is_jumbo)) {
1992 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1993 if (unlikely(entry < 0))
1994 goto dma_map_err;
1995 }
1996
1997 for (i = 0; i < nfrags; i++) {
1998 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1999 int len = skb_frag_size(frag);
2000 bool last_segment = (i == (nfrags - 1));
2001
2002 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2003
2004 if (likely(priv->extend_desc))
2005 desc = (struct dma_desc *)(priv->dma_etx + entry);
2006 else
2007 desc = priv->dma_tx + entry;
2008
2009 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
2010 DMA_TO_DEVICE);
2011 if (dma_mapping_error(priv->device, desc->des2))
2012 goto dma_map_err; /* should reuse desc w/o issues */
2013
2014 priv->tx_skbuff[entry] = NULL;
2015 priv->tx_skbuff_dma[entry].buf = desc->des2;
2016 priv->tx_skbuff_dma[entry].map_as_page = true;
2017 priv->tx_skbuff_dma[entry].len = len;
2018 priv->tx_skbuff_dma[entry].last_segment = last_segment;
2019
2020 /* Prepare the descriptor and set the own bit too */
2021 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2022 priv->mode, 1, last_segment);
2023 }
2024
2025 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2026
2027 priv->cur_tx = entry;
2028
2029 if (netif_msg_pktdata(priv)) {
2030 pr_debug("%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
2031 __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2032 entry, first, nfrags);
2033
2034 if (priv->extend_desc)
2035 stmmac_display_ring((void *)priv->dma_etx,
2036 DMA_TX_SIZE, 1);
2037 else
2038 stmmac_display_ring((void *)priv->dma_tx,
2039 DMA_TX_SIZE, 0);
2040
2041 pr_debug(">>> frame to be transmitted: ");
2042 print_pkt(skb->data, skb->len);
2043 }
2044
2045 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2046 if (netif_msg_hw(priv))
2047 pr_debug("%s: stop transmitted packets\n", __func__);
2048 netif_stop_queue(dev);
2049 }
2050
2051 dev->stats.tx_bytes += skb->len;
2052
2053 /* According to the coalesce parameter the IC bit for the latest
2054 * segment is reset and the timer re-started to clean the tx status.
2055 * This approach takes care about the fragments: desc is the first
2056 * element in case of no SG.
2057 */
2058 priv->tx_count_frames += nfrags + 1;
2059 if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2060 mod_timer(&priv->txtimer,
2061 STMMAC_COAL_TIMER(priv->tx_coal_timer));
2062 } else {
2063 priv->tx_count_frames = 0;
2064 priv->hw->desc->set_tx_ic(desc);
2065 priv->xstats.tx_set_ic_bit++;
2066 }
2067
2068 if (!priv->hwts_tx_en)
2069 skb_tx_timestamp(skb);
2070
2071 /* Ready to fill the first descriptor and set the OWN bit w/o any
2072 * problems because all the descriptors are actually ready to be
2073 * passed to the DMA engine.
2074 */
2075 if (likely(!is_jumbo)) {
2076 bool last_segment = (nfrags == 0);
2077
2078 first->des2 = dma_map_single(priv->device, skb->data,
2079 nopaged_len, DMA_TO_DEVICE);
2080 if (dma_mapping_error(priv->device, first->des2))
2081 goto dma_map_err;
2082
2083 priv->tx_skbuff_dma[first_entry].buf = first->des2;
2084 priv->tx_skbuff_dma[first_entry].len = nopaged_len;
2085 priv->tx_skbuff_dma[first_entry].last_segment = last_segment;
2086
2087 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2088 priv->hwts_tx_en)) {
2089 /* declare that device is doing timestamping */
2090 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2091 priv->hw->desc->enable_tx_timestamp(first);
2092 }
2093
2094 /* Prepare the first descriptor setting the OWN bit too */
2095 priv->hw->desc->prepare_tx_desc(first, 1, nopaged_len,
2096 csum_insertion, priv->mode, 1,
2097 last_segment);
2098
2099 /* The own bit must be the latest setting done when prepare the
2100 * descriptor and then barrier is needed to make sure that
2101 * all is coherent before granting the DMA engine.
2102 */
2103 smp_wmb();
2104 }
2105
2106 netdev_sent_queue(dev, skb->len);
2107 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2108
2109 spin_unlock(&priv->tx_lock);
2110 return NETDEV_TX_OK;
2111
2112 dma_map_err:
2113 spin_unlock(&priv->tx_lock);
2114 dev_err(priv->device, "Tx dma map failed\n");
2115 dev_kfree_skb(skb);
2116 priv->dev->stats.tx_dropped++;
2117 return NETDEV_TX_OK;
2118 }
2119
2120 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2121 {
2122 struct ethhdr *ehdr;
2123 u16 vlanid;
2124
2125 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2126 NETIF_F_HW_VLAN_CTAG_RX &&
2127 !__vlan_get_tag(skb, &vlanid)) {
2128 /* pop the vlan tag */
2129 ehdr = (struct ethhdr *)skb->data;
2130 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2131 skb_pull(skb, VLAN_HLEN);
2132 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2133 }
2134 }
2135
2136
2137 /**
2138 * stmmac_rx_refill - refill used skb preallocated buffers
2139 * @priv: driver private structure
2140 * Description : this is to reallocate the skb for the reception process
2141 * that is based on zero-copy.
2142 */
2143 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2144 {
2145 int bfsize = priv->dma_buf_sz;
2146 unsigned int entry = priv->dirty_rx;
2147 int dirty = stmmac_rx_dirty(priv);
2148
2149 while (dirty-- > 0) {
2150 struct dma_desc *p;
2151
2152 if (priv->extend_desc)
2153 p = (struct dma_desc *)(priv->dma_erx + entry);
2154 else
2155 p = priv->dma_rx + entry;
2156
2157 if (likely(priv->rx_skbuff[entry] == NULL)) {
2158 struct sk_buff *skb;
2159
2160 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2161
2162 if (unlikely(skb == NULL))
2163 break;
2164
2165 priv->rx_skbuff[entry] = skb;
2166 priv->rx_skbuff_dma[entry] =
2167 dma_map_single(priv->device, skb->data, bfsize,
2168 DMA_FROM_DEVICE);
2169 if (dma_mapping_error(priv->device,
2170 priv->rx_skbuff_dma[entry])) {
2171 dev_err(priv->device, "Rx dma map failed\n");
2172 dev_kfree_skb(skb);
2173 break;
2174 }
2175 p->des2 = priv->rx_skbuff_dma[entry];
2176
2177 priv->hw->mode->refill_desc3(priv, p);
2178
2179 if (netif_msg_rx_status(priv))
2180 pr_debug("\trefill entry #%d\n", entry);
2181 }
2182 wmb();
2183 priv->hw->desc->set_rx_owner(p);
2184 wmb();
2185
2186 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
2187 }
2188 priv->dirty_rx = entry;
2189 }
2190
2191 /**
2192 * stmmac_rx - manage the receive process
2193 * @priv: driver private structure
2194 * @limit: napi bugget.
2195 * Description : this the function called by the napi poll method.
2196 * It gets all the frames inside the ring.
2197 */
2198 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2199 {
2200 unsigned int entry = priv->cur_rx;
2201 unsigned int next_entry;
2202 unsigned int count = 0;
2203 int coe = priv->hw->rx_csum;
2204
2205 if (netif_msg_rx_status(priv)) {
2206 pr_debug("%s: descriptor ring:\n", __func__);
2207 if (priv->extend_desc)
2208 stmmac_display_ring((void *)priv->dma_erx,
2209 DMA_RX_SIZE, 1);
2210 else
2211 stmmac_display_ring((void *)priv->dma_rx,
2212 DMA_RX_SIZE, 0);
2213 }
2214 while (count < limit) {
2215 int status;
2216 struct dma_desc *p;
2217
2218 if (priv->extend_desc)
2219 p = (struct dma_desc *)(priv->dma_erx + entry);
2220 else
2221 p = priv->dma_rx + entry;
2222
2223 /* read the status of the incoming frame */
2224 status = priv->hw->desc->rx_status(&priv->dev->stats,
2225 &priv->xstats, p);
2226 /* check if managed by the DMA otherwise go ahead */
2227 if (unlikely(status & dma_own))
2228 break;
2229
2230 count++;
2231
2232 priv->cur_rx = STMMAC_GET_ENTRY(priv->cur_rx, DMA_RX_SIZE);
2233 next_entry = priv->cur_rx;
2234
2235 if (priv->extend_desc)
2236 prefetch(priv->dma_erx + next_entry);
2237 else
2238 prefetch(priv->dma_rx + next_entry);
2239
2240 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2241 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2242 &priv->xstats,
2243 priv->dma_erx +
2244 entry);
2245 if (unlikely(status == discard_frame)) {
2246 priv->dev->stats.rx_errors++;
2247 if (priv->hwts_rx_en && !priv->extend_desc) {
2248 /* DESC2 & DESC3 will be overwitten by device
2249 * with timestamp value, hence reinitialize
2250 * them in stmmac_rx_refill() function so that
2251 * device can reuse it.
2252 */
2253 priv->rx_skbuff[entry] = NULL;
2254 dma_unmap_single(priv->device,
2255 priv->rx_skbuff_dma[entry],
2256 priv->dma_buf_sz,
2257 DMA_FROM_DEVICE);
2258 }
2259 } else {
2260 struct sk_buff *skb;
2261 int frame_len;
2262
2263 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2264
2265 /* check if frame_len fits the preallocated memory */
2266 if (frame_len > priv->dma_buf_sz) {
2267 priv->dev->stats.rx_length_errors++;
2268 break;
2269 }
2270
2271 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2272 * Type frames (LLC/LLC-SNAP)
2273 */
2274 if (unlikely(status != llc_snap))
2275 frame_len -= ETH_FCS_LEN;
2276
2277 if (netif_msg_rx_status(priv)) {
2278 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2279 p, entry, p->des2);
2280 if (frame_len > ETH_FRAME_LEN)
2281 pr_debug("\tframe size %d, COE: %d\n",
2282 frame_len, status);
2283 }
2284 skb = priv->rx_skbuff[entry];
2285 if (unlikely(!skb)) {
2286 pr_err("%s: Inconsistent Rx descriptor chain\n",
2287 priv->dev->name);
2288 priv->dev->stats.rx_dropped++;
2289 break;
2290 }
2291 prefetch(skb->data - NET_IP_ALIGN);
2292 priv->rx_skbuff[entry] = NULL;
2293
2294 stmmac_get_rx_hwtstamp(priv, entry, skb);
2295
2296 skb_put(skb, frame_len);
2297 dma_unmap_single(priv->device,
2298 priv->rx_skbuff_dma[entry],
2299 priv->dma_buf_sz, DMA_FROM_DEVICE);
2300
2301 if (netif_msg_pktdata(priv)) {
2302 pr_debug("frame received (%dbytes)", frame_len);
2303 print_pkt(skb->data, frame_len);
2304 }
2305
2306 stmmac_rx_vlan(priv->dev, skb);
2307
2308 skb->protocol = eth_type_trans(skb, priv->dev);
2309
2310 if (unlikely(!coe))
2311 skb_checksum_none_assert(skb);
2312 else
2313 skb->ip_summed = CHECKSUM_UNNECESSARY;
2314
2315 napi_gro_receive(&priv->napi, skb);
2316
2317 priv->dev->stats.rx_packets++;
2318 priv->dev->stats.rx_bytes += frame_len;
2319 }
2320 entry = next_entry;
2321 }
2322
2323 stmmac_rx_refill(priv);
2324
2325 priv->xstats.rx_pkt_n += count;
2326
2327 return count;
2328 }
2329
2330 /**
2331 * stmmac_poll - stmmac poll method (NAPI)
2332 * @napi : pointer to the napi structure.
2333 * @budget : maximum number of packets that the current CPU can receive from
2334 * all interfaces.
2335 * Description :
2336 * To look at the incoming frames and clear the tx resources.
2337 */
2338 static int stmmac_poll(struct napi_struct *napi, int budget)
2339 {
2340 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2341 int work_done = 0;
2342
2343 priv->xstats.napi_poll++;
2344 stmmac_tx_clean(priv);
2345
2346 work_done = stmmac_rx(priv, budget);
2347 if (work_done < budget) {
2348 napi_complete(napi);
2349 stmmac_enable_dma_irq(priv);
2350 }
2351 return work_done;
2352 }
2353
2354 /**
2355 * stmmac_tx_timeout
2356 * @dev : Pointer to net device structure
2357 * Description: this function is called when a packet transmission fails to
2358 * complete within a reasonable time. The driver will mark the error in the
2359 * netdev structure and arrange for the device to be reset to a sane state
2360 * in order to transmit a new packet.
2361 */
2362 static void stmmac_tx_timeout(struct net_device *dev)
2363 {
2364 struct stmmac_priv *priv = netdev_priv(dev);
2365
2366 /* Clear Tx resources and restart transmitting again */
2367 stmmac_tx_err(priv);
2368 }
2369
2370 /**
2371 * stmmac_set_rx_mode - entry point for multicast addressing
2372 * @dev : pointer to the device structure
2373 * Description:
2374 * This function is a driver entry point which gets called by the kernel
2375 * whenever multicast addresses must be enabled/disabled.
2376 * Return value:
2377 * void.
2378 */
2379 static void stmmac_set_rx_mode(struct net_device *dev)
2380 {
2381 struct stmmac_priv *priv = netdev_priv(dev);
2382
2383 priv->hw->mac->set_filter(priv->hw, dev);
2384 }
2385
2386 /**
2387 * stmmac_change_mtu - entry point to change MTU size for the device.
2388 * @dev : device pointer.
2389 * @new_mtu : the new MTU size for the device.
2390 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2391 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2392 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2393 * Return value:
2394 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2395 * file on failure.
2396 */
2397 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2398 {
2399 struct stmmac_priv *priv = netdev_priv(dev);
2400 int max_mtu;
2401
2402 if (netif_running(dev)) {
2403 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2404 return -EBUSY;
2405 }
2406
2407 if (priv->plat->enh_desc)
2408 max_mtu = JUMBO_LEN;
2409 else
2410 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2411
2412 if (priv->plat->maxmtu < max_mtu)
2413 max_mtu = priv->plat->maxmtu;
2414
2415 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2416 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2417 return -EINVAL;
2418 }
2419
2420 dev->mtu = new_mtu;
2421 netdev_update_features(dev);
2422
2423 return 0;
2424 }
2425
2426 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2427 netdev_features_t features)
2428 {
2429 struct stmmac_priv *priv = netdev_priv(dev);
2430
2431 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2432 features &= ~NETIF_F_RXCSUM;
2433
2434 if (!priv->plat->tx_coe)
2435 features &= ~NETIF_F_CSUM_MASK;
2436
2437 /* Some GMAC devices have a bugged Jumbo frame support that
2438 * needs to have the Tx COE disabled for oversized frames
2439 * (due to limited buffer sizes). In this case we disable
2440 * the TX csum insertionin the TDES and not use SF.
2441 */
2442 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2443 features &= ~NETIF_F_CSUM_MASK;
2444
2445 return features;
2446 }
2447
2448 static int stmmac_set_features(struct net_device *netdev,
2449 netdev_features_t features)
2450 {
2451 struct stmmac_priv *priv = netdev_priv(netdev);
2452
2453 /* Keep the COE Type in case of csum is supporting */
2454 if (features & NETIF_F_RXCSUM)
2455 priv->hw->rx_csum = priv->plat->rx_coe;
2456 else
2457 priv->hw->rx_csum = 0;
2458 /* No check needed because rx_coe has been set before and it will be
2459 * fixed in case of issue.
2460 */
2461 priv->hw->mac->rx_ipc(priv->hw);
2462
2463 return 0;
2464 }
2465
2466 /**
2467 * stmmac_interrupt - main ISR
2468 * @irq: interrupt number.
2469 * @dev_id: to pass the net device pointer.
2470 * Description: this is the main driver interrupt service routine.
2471 * It can call:
2472 * o DMA service routine (to manage incoming frame reception and transmission
2473 * status)
2474 * o Core interrupts to manage: remote wake-up, management counter, LPI
2475 * interrupts.
2476 */
2477 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2478 {
2479 struct net_device *dev = (struct net_device *)dev_id;
2480 struct stmmac_priv *priv = netdev_priv(dev);
2481
2482 if (priv->irq_wake)
2483 pm_wakeup_event(priv->device, 0);
2484
2485 if (unlikely(!dev)) {
2486 pr_err("%s: invalid dev pointer\n", __func__);
2487 return IRQ_NONE;
2488 }
2489
2490 /* To handle GMAC own interrupts */
2491 if (priv->plat->has_gmac) {
2492 int status = priv->hw->mac->host_irq_status(priv->hw,
2493 &priv->xstats);
2494 if (unlikely(status)) {
2495 /* For LPI we need to save the tx status */
2496 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2497 priv->tx_path_in_lpi_mode = true;
2498 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2499 priv->tx_path_in_lpi_mode = false;
2500 }
2501 }
2502
2503 /* To handle DMA interrupts */
2504 stmmac_dma_interrupt(priv);
2505
2506 return IRQ_HANDLED;
2507 }
2508
2509 #ifdef CONFIG_NET_POLL_CONTROLLER
2510 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2511 * to allow network I/O with interrupts disabled.
2512 */
2513 static void stmmac_poll_controller(struct net_device *dev)
2514 {
2515 disable_irq(dev->irq);
2516 stmmac_interrupt(dev->irq, dev);
2517 enable_irq(dev->irq);
2518 }
2519 #endif
2520
2521 /**
2522 * stmmac_ioctl - Entry point for the Ioctl
2523 * @dev: Device pointer.
2524 * @rq: An IOCTL specefic structure, that can contain a pointer to
2525 * a proprietary structure used to pass information to the driver.
2526 * @cmd: IOCTL command
2527 * Description:
2528 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2529 */
2530 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2531 {
2532 struct stmmac_priv *priv = netdev_priv(dev);
2533 int ret = -EOPNOTSUPP;
2534
2535 if (!netif_running(dev))
2536 return -EINVAL;
2537
2538 switch (cmd) {
2539 case SIOCGMIIPHY:
2540 case SIOCGMIIREG:
2541 case SIOCSMIIREG:
2542 if (!priv->phydev)
2543 return -EINVAL;
2544 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2545 break;
2546 case SIOCSHWTSTAMP:
2547 ret = stmmac_hwtstamp_ioctl(dev, rq);
2548 break;
2549 default:
2550 break;
2551 }
2552
2553 return ret;
2554 }
2555
2556 #ifdef CONFIG_DEBUG_FS
2557 static struct dentry *stmmac_fs_dir;
2558
2559 static void sysfs_display_ring(void *head, int size, int extend_desc,
2560 struct seq_file *seq)
2561 {
2562 int i;
2563 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2564 struct dma_desc *p = (struct dma_desc *)head;
2565
2566 for (i = 0; i < size; i++) {
2567 u64 x;
2568 if (extend_desc) {
2569 x = *(u64 *) ep;
2570 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2571 i, (unsigned int)virt_to_phys(ep),
2572 (unsigned int)x, (unsigned int)(x >> 32),
2573 ep->basic.des2, ep->basic.des3);
2574 ep++;
2575 } else {
2576 x = *(u64 *) p;
2577 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2578 i, (unsigned int)virt_to_phys(ep),
2579 (unsigned int)x, (unsigned int)(x >> 32),
2580 p->des2, p->des3);
2581 p++;
2582 }
2583 seq_printf(seq, "\n");
2584 }
2585 }
2586
2587 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2588 {
2589 struct net_device *dev = seq->private;
2590 struct stmmac_priv *priv = netdev_priv(dev);
2591
2592 if (priv->extend_desc) {
2593 seq_printf(seq, "Extended RX descriptor ring:\n");
2594 sysfs_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1, seq);
2595 seq_printf(seq, "Extended TX descriptor ring:\n");
2596 sysfs_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1, seq);
2597 } else {
2598 seq_printf(seq, "RX descriptor ring:\n");
2599 sysfs_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0, seq);
2600 seq_printf(seq, "TX descriptor ring:\n");
2601 sysfs_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0, seq);
2602 }
2603
2604 return 0;
2605 }
2606
2607 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2608 {
2609 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2610 }
2611
2612 static const struct file_operations stmmac_rings_status_fops = {
2613 .owner = THIS_MODULE,
2614 .open = stmmac_sysfs_ring_open,
2615 .read = seq_read,
2616 .llseek = seq_lseek,
2617 .release = single_release,
2618 };
2619
2620 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2621 {
2622 struct net_device *dev = seq->private;
2623 struct stmmac_priv *priv = netdev_priv(dev);
2624
2625 if (!priv->hw_cap_support) {
2626 seq_printf(seq, "DMA HW features not supported\n");
2627 return 0;
2628 }
2629
2630 seq_printf(seq, "==============================\n");
2631 seq_printf(seq, "\tDMA HW features\n");
2632 seq_printf(seq, "==============================\n");
2633
2634 seq_printf(seq, "\t10/100 Mbps %s\n",
2635 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2636 seq_printf(seq, "\t1000 Mbps %s\n",
2637 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2638 seq_printf(seq, "\tHalf duple %s\n",
2639 (priv->dma_cap.half_duplex) ? "Y" : "N");
2640 seq_printf(seq, "\tHash Filter: %s\n",
2641 (priv->dma_cap.hash_filter) ? "Y" : "N");
2642 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2643 (priv->dma_cap.multi_addr) ? "Y" : "N");
2644 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2645 (priv->dma_cap.pcs) ? "Y" : "N");
2646 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2647 (priv->dma_cap.sma_mdio) ? "Y" : "N");
2648 seq_printf(seq, "\tPMT Remote wake up: %s\n",
2649 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2650 seq_printf(seq, "\tPMT Magic Frame: %s\n",
2651 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2652 seq_printf(seq, "\tRMON module: %s\n",
2653 (priv->dma_cap.rmon) ? "Y" : "N");
2654 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2655 (priv->dma_cap.time_stamp) ? "Y" : "N");
2656 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2657 (priv->dma_cap.atime_stamp) ? "Y" : "N");
2658 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2659 (priv->dma_cap.eee) ? "Y" : "N");
2660 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2661 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2662 (priv->dma_cap.tx_coe) ? "Y" : "N");
2663 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2664 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2665 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2666 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2667 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2668 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2669 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2670 priv->dma_cap.number_rx_channel);
2671 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2672 priv->dma_cap.number_tx_channel);
2673 seq_printf(seq, "\tEnhanced descriptors: %s\n",
2674 (priv->dma_cap.enh_desc) ? "Y" : "N");
2675
2676 return 0;
2677 }
2678
2679 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2680 {
2681 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2682 }
2683
2684 static const struct file_operations stmmac_dma_cap_fops = {
2685 .owner = THIS_MODULE,
2686 .open = stmmac_sysfs_dma_cap_open,
2687 .read = seq_read,
2688 .llseek = seq_lseek,
2689 .release = single_release,
2690 };
2691
2692 static int stmmac_init_fs(struct net_device *dev)
2693 {
2694 struct stmmac_priv *priv = netdev_priv(dev);
2695
2696 /* Create per netdev entries */
2697 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
2698
2699 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
2700 pr_err("ERROR %s/%s, debugfs create directory failed\n",
2701 STMMAC_RESOURCE_NAME, dev->name);
2702
2703 return -ENOMEM;
2704 }
2705
2706 /* Entry to report DMA RX/TX rings */
2707 priv->dbgfs_rings_status =
2708 debugfs_create_file("descriptors_status", S_IRUGO,
2709 priv->dbgfs_dir, dev,
2710 &stmmac_rings_status_fops);
2711
2712 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
2713 pr_info("ERROR creating stmmac ring debugfs file\n");
2714 debugfs_remove_recursive(priv->dbgfs_dir);
2715
2716 return -ENOMEM;
2717 }
2718
2719 /* Entry to report the DMA HW features */
2720 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
2721 priv->dbgfs_dir,
2722 dev, &stmmac_dma_cap_fops);
2723
2724 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
2725 pr_info("ERROR creating stmmac MMC debugfs file\n");
2726 debugfs_remove_recursive(priv->dbgfs_dir);
2727
2728 return -ENOMEM;
2729 }
2730
2731 return 0;
2732 }
2733
2734 static void stmmac_exit_fs(struct net_device *dev)
2735 {
2736 struct stmmac_priv *priv = netdev_priv(dev);
2737
2738 debugfs_remove_recursive(priv->dbgfs_dir);
2739 }
2740 #endif /* CONFIG_DEBUG_FS */
2741
2742 static const struct net_device_ops stmmac_netdev_ops = {
2743 .ndo_open = stmmac_open,
2744 .ndo_start_xmit = stmmac_xmit,
2745 .ndo_stop = stmmac_release,
2746 .ndo_change_mtu = stmmac_change_mtu,
2747 .ndo_fix_features = stmmac_fix_features,
2748 .ndo_set_features = stmmac_set_features,
2749 .ndo_set_rx_mode = stmmac_set_rx_mode,
2750 .ndo_tx_timeout = stmmac_tx_timeout,
2751 .ndo_do_ioctl = stmmac_ioctl,
2752 #ifdef CONFIG_NET_POLL_CONTROLLER
2753 .ndo_poll_controller = stmmac_poll_controller,
2754 #endif
2755 .ndo_set_mac_address = eth_mac_addr,
2756 };
2757
2758 /**
2759 * stmmac_hw_init - Init the MAC device
2760 * @priv: driver private structure
2761 * Description: this function is to configure the MAC device according to
2762 * some platform parameters or the HW capability register. It prepares the
2763 * driver to use either ring or chain modes and to setup either enhanced or
2764 * normal descriptors.
2765 */
2766 static int stmmac_hw_init(struct stmmac_priv *priv)
2767 {
2768 struct mac_device_info *mac;
2769
2770 /* Identify the MAC HW device */
2771 if (priv->plat->has_gmac) {
2772 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2773 mac = dwmac1000_setup(priv->ioaddr,
2774 priv->plat->multicast_filter_bins,
2775 priv->plat->unicast_filter_entries);
2776 } else {
2777 mac = dwmac100_setup(priv->ioaddr);
2778 }
2779 if (!mac)
2780 return -ENOMEM;
2781
2782 priv->hw = mac;
2783
2784 /* Get and dump the chip ID */
2785 priv->synopsys_id = stmmac_get_synopsys_id(priv);
2786
2787 /* To use the chained or ring mode */
2788 if (chain_mode) {
2789 priv->hw->mode = &chain_mode_ops;
2790 pr_info(" Chain mode enabled\n");
2791 priv->mode = STMMAC_CHAIN_MODE;
2792 } else {
2793 priv->hw->mode = &ring_mode_ops;
2794 pr_info(" Ring mode enabled\n");
2795 priv->mode = STMMAC_RING_MODE;
2796 }
2797
2798 /* Get the HW capability (new GMAC newer than 3.50a) */
2799 priv->hw_cap_support = stmmac_get_hw_features(priv);
2800 if (priv->hw_cap_support) {
2801 pr_info(" DMA HW capability register supported");
2802
2803 /* We can override some gmac/dma configuration fields: e.g.
2804 * enh_desc, tx_coe (e.g. that are passed through the
2805 * platform) with the values from the HW capability
2806 * register (if supported).
2807 */
2808 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2809 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2810
2811 /* TXCOE doesn't work in thresh DMA mode */
2812 if (priv->plat->force_thresh_dma_mode)
2813 priv->plat->tx_coe = 0;
2814 else
2815 priv->plat->tx_coe = priv->dma_cap.tx_coe;
2816
2817 if (priv->dma_cap.rx_coe_type2)
2818 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2819 else if (priv->dma_cap.rx_coe_type1)
2820 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2821
2822 } else
2823 pr_info(" No HW DMA feature register supported");
2824
2825 /* To use alternate (extended) or normal descriptor structures */
2826 stmmac_selec_desc_mode(priv);
2827
2828 if (priv->plat->rx_coe) {
2829 priv->hw->rx_csum = priv->plat->rx_coe;
2830 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2831 priv->plat->rx_coe);
2832 }
2833 if (priv->plat->tx_coe)
2834 pr_info(" TX Checksum insertion supported\n");
2835
2836 if (priv->plat->pmt) {
2837 pr_info(" Wake-Up On Lan supported\n");
2838 device_set_wakeup_capable(priv->device, 1);
2839 }
2840
2841 return 0;
2842 }
2843
2844 /**
2845 * stmmac_dvr_probe
2846 * @device: device pointer
2847 * @plat_dat: platform data pointer
2848 * @res: stmmac resource pointer
2849 * Description: this is the main probe function used to
2850 * call the alloc_etherdev, allocate the priv structure.
2851 * Return:
2852 * returns 0 on success, otherwise errno.
2853 */
2854 int stmmac_dvr_probe(struct device *device,
2855 struct plat_stmmacenet_data *plat_dat,
2856 struct stmmac_resources *res)
2857 {
2858 int ret = 0;
2859 struct net_device *ndev = NULL;
2860 struct stmmac_priv *priv;
2861
2862 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2863 if (!ndev)
2864 return -ENOMEM;
2865
2866 SET_NETDEV_DEV(ndev, device);
2867
2868 priv = netdev_priv(ndev);
2869 priv->device = device;
2870 priv->dev = ndev;
2871
2872 stmmac_set_ethtool_ops(ndev);
2873 priv->pause = pause;
2874 priv->plat = plat_dat;
2875 priv->ioaddr = res->addr;
2876 priv->dev->base_addr = (unsigned long)res->addr;
2877
2878 priv->dev->irq = res->irq;
2879 priv->wol_irq = res->wol_irq;
2880 priv->lpi_irq = res->lpi_irq;
2881
2882 if (res->mac)
2883 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
2884
2885 dev_set_drvdata(device, priv->dev);
2886
2887 /* Verify driver arguments */
2888 stmmac_verify_args();
2889
2890 /* Override with kernel parameters if supplied XXX CRS XXX
2891 * this needs to have multiple instances
2892 */
2893 if ((phyaddr >= 0) && (phyaddr <= 31))
2894 priv->plat->phy_addr = phyaddr;
2895
2896 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2897 if (IS_ERR(priv->stmmac_clk)) {
2898 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2899 __func__);
2900 /* If failed to obtain stmmac_clk and specific clk_csr value
2901 * is NOT passed from the platform, probe fail.
2902 */
2903 if (!priv->plat->clk_csr) {
2904 ret = PTR_ERR(priv->stmmac_clk);
2905 goto error_clk_get;
2906 } else {
2907 priv->stmmac_clk = NULL;
2908 }
2909 }
2910 clk_prepare_enable(priv->stmmac_clk);
2911
2912 priv->pclk = devm_clk_get(priv->device, "pclk");
2913 if (IS_ERR(priv->pclk)) {
2914 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
2915 ret = -EPROBE_DEFER;
2916 goto error_pclk_get;
2917 }
2918 priv->pclk = NULL;
2919 }
2920 clk_prepare_enable(priv->pclk);
2921
2922 priv->stmmac_rst = devm_reset_control_get(priv->device,
2923 STMMAC_RESOURCE_NAME);
2924 if (IS_ERR(priv->stmmac_rst)) {
2925 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2926 ret = -EPROBE_DEFER;
2927 goto error_hw_init;
2928 }
2929 dev_info(priv->device, "no reset control found\n");
2930 priv->stmmac_rst = NULL;
2931 }
2932 if (priv->stmmac_rst)
2933 reset_control_deassert(priv->stmmac_rst);
2934
2935 /* Init MAC and get the capabilities */
2936 ret = stmmac_hw_init(priv);
2937 if (ret)
2938 goto error_hw_init;
2939
2940 ndev->netdev_ops = &stmmac_netdev_ops;
2941
2942 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2943 NETIF_F_RXCSUM;
2944 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2945 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2946 #ifdef STMMAC_VLAN_TAG_USED
2947 /* Both mac100 and gmac support receive VLAN tag detection */
2948 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2949 #endif
2950 priv->msg_enable = netif_msg_init(debug, default_msg_level);
2951
2952 if (flow_ctrl)
2953 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
2954
2955 /* Rx Watchdog is available in the COREs newer than the 3.40.
2956 * In some case, for example on bugged HW this feature
2957 * has to be disable and this can be done by passing the
2958 * riwt_off field from the platform.
2959 */
2960 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2961 priv->use_riwt = 1;
2962 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2963 }
2964
2965 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2966
2967 spin_lock_init(&priv->lock);
2968 spin_lock_init(&priv->tx_lock);
2969
2970 ret = register_netdev(ndev);
2971 if (ret) {
2972 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2973 goto error_netdev_register;
2974 }
2975
2976 /* If a specific clk_csr value is passed from the platform
2977 * this means that the CSR Clock Range selection cannot be
2978 * changed at run-time and it is fixed. Viceversa the driver'll try to
2979 * set the MDC clock dynamically according to the csr actual
2980 * clock input.
2981 */
2982 if (!priv->plat->clk_csr)
2983 stmmac_clk_csr_set(priv);
2984 else
2985 priv->clk_csr = priv->plat->clk_csr;
2986
2987 stmmac_check_pcs_mode(priv);
2988
2989 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2990 priv->pcs != STMMAC_PCS_RTBI) {
2991 /* MDIO bus Registration */
2992 ret = stmmac_mdio_register(ndev);
2993 if (ret < 0) {
2994 pr_debug("%s: MDIO bus (id: %d) registration failed",
2995 __func__, priv->plat->bus_id);
2996 goto error_mdio_register;
2997 }
2998 }
2999
3000 return 0;
3001
3002 error_mdio_register:
3003 unregister_netdev(ndev);
3004 error_netdev_register:
3005 netif_napi_del(&priv->napi);
3006 error_hw_init:
3007 clk_disable_unprepare(priv->pclk);
3008 error_pclk_get:
3009 clk_disable_unprepare(priv->stmmac_clk);
3010 error_clk_get:
3011 free_netdev(ndev);
3012
3013 return ret;
3014 }
3015 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
3016
3017 /**
3018 * stmmac_dvr_remove
3019 * @ndev: net device pointer
3020 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
3021 * changes the link status, releases the DMA descriptor rings.
3022 */
3023 int stmmac_dvr_remove(struct net_device *ndev)
3024 {
3025 struct stmmac_priv *priv = netdev_priv(ndev);
3026
3027 pr_info("%s:\n\tremoving driver", __func__);
3028
3029 priv->hw->dma->stop_rx(priv->ioaddr);
3030 priv->hw->dma->stop_tx(priv->ioaddr);
3031
3032 stmmac_set_mac(priv->ioaddr, false);
3033 netif_carrier_off(ndev);
3034 unregister_netdev(ndev);
3035 if (priv->stmmac_rst)
3036 reset_control_assert(priv->stmmac_rst);
3037 clk_disable_unprepare(priv->pclk);
3038 clk_disable_unprepare(priv->stmmac_clk);
3039 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3040 priv->pcs != STMMAC_PCS_RTBI)
3041 stmmac_mdio_unregister(ndev);
3042 free_netdev(ndev);
3043
3044 return 0;
3045 }
3046 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3047
3048 /**
3049 * stmmac_suspend - suspend callback
3050 * @ndev: net device pointer
3051 * Description: this is the function to suspend the device and it is called
3052 * by the platform driver to stop the network queue, release the resources,
3053 * program the PMT register (for WoL), clean and release driver resources.
3054 */
3055 int stmmac_suspend(struct net_device *ndev)
3056 {
3057 struct stmmac_priv *priv = netdev_priv(ndev);
3058 unsigned long flags;
3059
3060 if (!ndev || !netif_running(ndev))
3061 return 0;
3062
3063 if (priv->phydev)
3064 phy_stop(priv->phydev);
3065
3066 spin_lock_irqsave(&priv->lock, flags);
3067
3068 netif_device_detach(ndev);
3069 netif_stop_queue(ndev);
3070
3071 napi_disable(&priv->napi);
3072
3073 /* Stop TX/RX DMA */
3074 priv->hw->dma->stop_tx(priv->ioaddr);
3075 priv->hw->dma->stop_rx(priv->ioaddr);
3076
3077 /* Enable Power down mode by programming the PMT regs */
3078 if (device_may_wakeup(priv->device)) {
3079 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3080 priv->irq_wake = 1;
3081 } else {
3082 stmmac_set_mac(priv->ioaddr, false);
3083 pinctrl_pm_select_sleep_state(priv->device);
3084 /* Disable clock in case of PWM is off */
3085 clk_disable(priv->pclk);
3086 clk_disable(priv->stmmac_clk);
3087 }
3088 spin_unlock_irqrestore(&priv->lock, flags);
3089
3090 priv->oldlink = 0;
3091 priv->speed = 0;
3092 priv->oldduplex = -1;
3093 return 0;
3094 }
3095 EXPORT_SYMBOL_GPL(stmmac_suspend);
3096
3097 /**
3098 * stmmac_resume - resume callback
3099 * @ndev: net device pointer
3100 * Description: when resume this function is invoked to setup the DMA and CORE
3101 * in a usable state.
3102 */
3103 int stmmac_resume(struct net_device *ndev)
3104 {
3105 struct stmmac_priv *priv = netdev_priv(ndev);
3106 unsigned long flags;
3107
3108 if (!netif_running(ndev))
3109 return 0;
3110
3111 spin_lock_irqsave(&priv->lock, flags);
3112
3113 /* Power Down bit, into the PM register, is cleared
3114 * automatically as soon as a magic packet or a Wake-up frame
3115 * is received. Anyway, it's better to manually clear
3116 * this bit because it can generate problems while resuming
3117 * from another devices (e.g. serial console).
3118 */
3119 if (device_may_wakeup(priv->device)) {
3120 priv->hw->mac->pmt(priv->hw, 0);
3121 priv->irq_wake = 0;
3122 } else {
3123 pinctrl_pm_select_default_state(priv->device);
3124 /* enable the clk prevously disabled */
3125 clk_enable(priv->stmmac_clk);
3126 clk_enable(priv->pclk);
3127 /* reset the phy so that it's ready */
3128 if (priv->mii)
3129 stmmac_mdio_reset(priv->mii);
3130 }
3131
3132 netif_device_attach(ndev);
3133
3134 priv->cur_rx = 0;
3135 priv->dirty_rx = 0;
3136 priv->dirty_tx = 0;
3137 priv->cur_tx = 0;
3138 stmmac_clear_descriptors(priv);
3139
3140 stmmac_hw_setup(ndev, false);
3141 stmmac_init_tx_coalesce(priv);
3142 stmmac_set_rx_mode(ndev);
3143
3144 napi_enable(&priv->napi);
3145
3146 netif_start_queue(ndev);
3147
3148 spin_unlock_irqrestore(&priv->lock, flags);
3149
3150 if (priv->phydev)
3151 phy_start(priv->phydev);
3152
3153 return 0;
3154 }
3155 EXPORT_SYMBOL_GPL(stmmac_resume);
3156
3157 #ifndef MODULE
3158 static int __init stmmac_cmdline_opt(char *str)
3159 {
3160 char *opt;
3161
3162 if (!str || !*str)
3163 return -EINVAL;
3164 while ((opt = strsep(&str, ",")) != NULL) {
3165 if (!strncmp(opt, "debug:", 6)) {
3166 if (kstrtoint(opt + 6, 0, &debug))
3167 goto err;
3168 } else if (!strncmp(opt, "phyaddr:", 8)) {
3169 if (kstrtoint(opt + 8, 0, &phyaddr))
3170 goto err;
3171 } else if (!strncmp(opt, "buf_sz:", 7)) {
3172 if (kstrtoint(opt + 7, 0, &buf_sz))
3173 goto err;
3174 } else if (!strncmp(opt, "tc:", 3)) {
3175 if (kstrtoint(opt + 3, 0, &tc))
3176 goto err;
3177 } else if (!strncmp(opt, "watchdog:", 9)) {
3178 if (kstrtoint(opt + 9, 0, &watchdog))
3179 goto err;
3180 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3181 if (kstrtoint(opt + 10, 0, &flow_ctrl))
3182 goto err;
3183 } else if (!strncmp(opt, "pause:", 6)) {
3184 if (kstrtoint(opt + 6, 0, &pause))
3185 goto err;
3186 } else if (!strncmp(opt, "eee_timer:", 10)) {
3187 if (kstrtoint(opt + 10, 0, &eee_timer))
3188 goto err;
3189 } else if (!strncmp(opt, "chain_mode:", 11)) {
3190 if (kstrtoint(opt + 11, 0, &chain_mode))
3191 goto err;
3192 }
3193 }
3194 return 0;
3195
3196 err:
3197 pr_err("%s: ERROR broken module parameter conversion", __func__);
3198 return -EINVAL;
3199 }
3200
3201 __setup("stmmaceth=", stmmac_cmdline_opt);
3202 #endif /* MODULE */
3203
3204 static int __init stmmac_init(void)
3205 {
3206 #ifdef CONFIG_DEBUG_FS
3207 /* Create debugfs main directory if it doesn't exist yet */
3208 if (!stmmac_fs_dir) {
3209 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3210
3211 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3212 pr_err("ERROR %s, debugfs create directory failed\n",
3213 STMMAC_RESOURCE_NAME);
3214
3215 return -ENOMEM;
3216 }
3217 }
3218 #endif
3219
3220 return 0;
3221 }
3222
3223 static void __exit stmmac_exit(void)
3224 {
3225 #ifdef CONFIG_DEBUG_FS
3226 debugfs_remove_recursive(stmmac_fs_dir);
3227 #endif
3228 }
3229
3230 module_init(stmmac_init)
3231 module_exit(stmmac_exit)
3232
3233 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3234 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3235 MODULE_LICENSE("GPL");
This page took 0.143984 seconds and 4 git commands to generate.