ASoC: rt5670: fix HP Playback Volume control
[deliverable/linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 /*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright(C) 2007-2011 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56 #include "dwmac1000.h"
57
58 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
59 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
60
61 /* Module parameters */
62 #define TX_TIMEO 5000
63 static int watchdog = TX_TIMEO;
64 module_param(watchdog, int, S_IRUGO | S_IWUSR);
65 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
66
67 static int debug = -1;
68 module_param(debug, int, S_IRUGO | S_IWUSR);
69 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
70
71 static int phyaddr = -1;
72 module_param(phyaddr, int, S_IRUGO);
73 MODULE_PARM_DESC(phyaddr, "Physical device address");
74
75 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4)
76 #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4)
77
78 static int flow_ctrl = FLOW_OFF;
79 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
81
82 static int pause = PAUSE_TIME;
83 module_param(pause, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
85
86 #define TC_DEFAULT 64
87 static int tc = TC_DEFAULT;
88 module_param(tc, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(tc, "DMA threshold control value");
90
91 #define DEFAULT_BUFSIZE 1536
92 static int buf_sz = DEFAULT_BUFSIZE;
93 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
95
96 #define STMMAC_RX_COPYBREAK 256
97
98 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
99 NETIF_MSG_LINK | NETIF_MSG_IFUP |
100 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
101
102 #define STMMAC_DEFAULT_LPI_TIMER 1000
103 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
104 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
106 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
107
108 /* By default the driver will use the ring mode to manage tx and rx descriptors
109 * but passing this value so user can force to use the chain instead of the ring
110 */
111 static unsigned int chain_mode;
112 module_param(chain_mode, int, S_IRUGO);
113 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
114
115 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
116
117 #ifdef CONFIG_DEBUG_FS
118 static int stmmac_init_fs(struct net_device *dev);
119 static void stmmac_exit_fs(struct net_device *dev);
120 #endif
121
122 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
123
124 /**
125 * stmmac_verify_args - verify the driver parameters.
126 * Description: it checks the driver parameters and set a default in case of
127 * errors.
128 */
129 static void stmmac_verify_args(void)
130 {
131 if (unlikely(watchdog < 0))
132 watchdog = TX_TIMEO;
133 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
134 buf_sz = DEFAULT_BUFSIZE;
135 if (unlikely(flow_ctrl > 1))
136 flow_ctrl = FLOW_AUTO;
137 else if (likely(flow_ctrl < 0))
138 flow_ctrl = FLOW_OFF;
139 if (unlikely((pause < 0) || (pause > 0xffff)))
140 pause = PAUSE_TIME;
141 if (eee_timer < 0)
142 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
143 }
144
145 /**
146 * stmmac_clk_csr_set - dynamically set the MDC clock
147 * @priv: driver private structure
148 * Description: this is to dynamically set the MDC clock according to the csr
149 * clock input.
150 * Note:
151 * If a specific clk_csr value is passed from the platform
152 * this means that the CSR Clock Range selection cannot be
153 * changed at run-time and it is fixed (as reported in the driver
154 * documentation). Viceversa the driver will try to set the MDC
155 * clock dynamically according to the actual clock input.
156 */
157 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
158 {
159 u32 clk_rate;
160
161 clk_rate = clk_get_rate(priv->stmmac_clk);
162
163 /* Platform provided default clk_csr would be assumed valid
164 * for all other cases except for the below mentioned ones.
165 * For values higher than the IEEE 802.3 specified frequency
166 * we can not estimate the proper divider as it is not known
167 * the frequency of clk_csr_i. So we do not change the default
168 * divider.
169 */
170 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
171 if (clk_rate < CSR_F_35M)
172 priv->clk_csr = STMMAC_CSR_20_35M;
173 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
174 priv->clk_csr = STMMAC_CSR_35_60M;
175 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
176 priv->clk_csr = STMMAC_CSR_60_100M;
177 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
178 priv->clk_csr = STMMAC_CSR_100_150M;
179 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
180 priv->clk_csr = STMMAC_CSR_150_250M;
181 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
182 priv->clk_csr = STMMAC_CSR_250_300M;
183 }
184 }
185
186 static void print_pkt(unsigned char *buf, int len)
187 {
188 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
189 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
190 }
191
192 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
193 {
194 unsigned avail;
195
196 if (priv->dirty_tx > priv->cur_tx)
197 avail = priv->dirty_tx - priv->cur_tx - 1;
198 else
199 avail = DMA_TX_SIZE - priv->cur_tx + priv->dirty_tx - 1;
200
201 return avail;
202 }
203
204 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv)
205 {
206 unsigned dirty;
207
208 if (priv->dirty_rx <= priv->cur_rx)
209 dirty = priv->cur_rx - priv->dirty_rx;
210 else
211 dirty = DMA_RX_SIZE - priv->dirty_rx + priv->cur_rx;
212
213 return dirty;
214 }
215
216 /**
217 * stmmac_hw_fix_mac_speed - callback for speed selection
218 * @priv: driver private structure
219 * Description: on some platforms (e.g. ST), some HW system configuraton
220 * registers have to be set according to the link speed negotiated.
221 */
222 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
223 {
224 struct phy_device *phydev = priv->phydev;
225
226 if (likely(priv->plat->fix_mac_speed))
227 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
228 }
229
230 /**
231 * stmmac_enable_eee_mode - check and enter in LPI mode
232 * @priv: driver private structure
233 * Description: this function is to verify and enter in LPI mode in case of
234 * EEE.
235 */
236 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
237 {
238 /* Check and enter in LPI mode */
239 if ((priv->dirty_tx == priv->cur_tx) &&
240 (priv->tx_path_in_lpi_mode == false))
241 priv->hw->mac->set_eee_mode(priv->hw);
242 }
243
244 /**
245 * stmmac_disable_eee_mode - disable and exit from LPI mode
246 * @priv: driver private structure
247 * Description: this function is to exit and disable EEE in case of
248 * LPI state is true. This is called by the xmit.
249 */
250 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
251 {
252 priv->hw->mac->reset_eee_mode(priv->hw);
253 del_timer_sync(&priv->eee_ctrl_timer);
254 priv->tx_path_in_lpi_mode = false;
255 }
256
257 /**
258 * stmmac_eee_ctrl_timer - EEE TX SW timer.
259 * @arg : data hook
260 * Description:
261 * if there is no data transfer and if we are not in LPI state,
262 * then MAC Transmitter can be moved to LPI state.
263 */
264 static void stmmac_eee_ctrl_timer(unsigned long arg)
265 {
266 struct stmmac_priv *priv = (struct stmmac_priv *)arg;
267
268 stmmac_enable_eee_mode(priv);
269 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
270 }
271
272 /**
273 * stmmac_eee_init - init EEE
274 * @priv: driver private structure
275 * Description:
276 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
277 * can also manage EEE, this function enable the LPI state and start related
278 * timer.
279 */
280 bool stmmac_eee_init(struct stmmac_priv *priv)
281 {
282 unsigned long flags;
283 bool ret = false;
284
285 /* Using PCS we cannot dial with the phy registers at this stage
286 * so we do not support extra feature like EEE.
287 */
288 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
289 (priv->pcs == STMMAC_PCS_RTBI))
290 goto out;
291
292 /* MAC core supports the EEE feature. */
293 if (priv->dma_cap.eee) {
294 int tx_lpi_timer = priv->tx_lpi_timer;
295
296 /* Check if the PHY supports EEE */
297 if (phy_init_eee(priv->phydev, 1)) {
298 /* To manage at run-time if the EEE cannot be supported
299 * anymore (for example because the lp caps have been
300 * changed).
301 * In that case the driver disable own timers.
302 */
303 spin_lock_irqsave(&priv->lock, flags);
304 if (priv->eee_active) {
305 pr_debug("stmmac: disable EEE\n");
306 del_timer_sync(&priv->eee_ctrl_timer);
307 priv->hw->mac->set_eee_timer(priv->hw, 0,
308 tx_lpi_timer);
309 }
310 priv->eee_active = 0;
311 spin_unlock_irqrestore(&priv->lock, flags);
312 goto out;
313 }
314 /* Activate the EEE and start timers */
315 spin_lock_irqsave(&priv->lock, flags);
316 if (!priv->eee_active) {
317 priv->eee_active = 1;
318 setup_timer(&priv->eee_ctrl_timer,
319 stmmac_eee_ctrl_timer,
320 (unsigned long)priv);
321 mod_timer(&priv->eee_ctrl_timer,
322 STMMAC_LPI_T(eee_timer));
323
324 priv->hw->mac->set_eee_timer(priv->hw,
325 STMMAC_DEFAULT_LIT_LS,
326 tx_lpi_timer);
327 }
328 /* Set HW EEE according to the speed */
329 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
330
331 ret = true;
332 spin_unlock_irqrestore(&priv->lock, flags);
333
334 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
335 }
336 out:
337 return ret;
338 }
339
340 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
341 * @priv: driver private structure
342 * @entry : descriptor index to be used.
343 * @skb : the socket buffer
344 * Description :
345 * This function will read timestamp from the descriptor & pass it to stack.
346 * and also perform some sanity checks.
347 */
348 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
349 unsigned int entry, struct sk_buff *skb)
350 {
351 struct skb_shared_hwtstamps shhwtstamp;
352 u64 ns;
353 void *desc = NULL;
354
355 if (!priv->hwts_tx_en)
356 return;
357
358 /* exit if skb doesn't support hw tstamp */
359 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
360 return;
361
362 if (priv->adv_ts)
363 desc = (priv->dma_etx + entry);
364 else
365 desc = (priv->dma_tx + entry);
366
367 /* check tx tstamp status */
368 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
369 return;
370
371 /* get the valid tstamp */
372 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
373
374 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
375 shhwtstamp.hwtstamp = ns_to_ktime(ns);
376 /* pass tstamp to stack */
377 skb_tstamp_tx(skb, &shhwtstamp);
378
379 return;
380 }
381
382 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
383 * @priv: driver private structure
384 * @entry : descriptor index to be used.
385 * @skb : the socket buffer
386 * Description :
387 * This function will read received packet's timestamp from the descriptor
388 * and pass it to stack. It also perform some sanity checks.
389 */
390 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
391 unsigned int entry, struct sk_buff *skb)
392 {
393 struct skb_shared_hwtstamps *shhwtstamp = NULL;
394 u64 ns;
395 void *desc = NULL;
396
397 if (!priv->hwts_rx_en)
398 return;
399
400 if (priv->adv_ts)
401 desc = (priv->dma_erx + entry);
402 else
403 desc = (priv->dma_rx + entry);
404
405 /* exit if rx tstamp is not valid */
406 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
407 return;
408
409 /* get valid tstamp */
410 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
411 shhwtstamp = skb_hwtstamps(skb);
412 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
413 shhwtstamp->hwtstamp = ns_to_ktime(ns);
414 }
415
416 /**
417 * stmmac_hwtstamp_ioctl - control hardware timestamping.
418 * @dev: device pointer.
419 * @ifr: An IOCTL specefic structure, that can contain a pointer to
420 * a proprietary structure used to pass information to the driver.
421 * Description:
422 * This function configures the MAC to enable/disable both outgoing(TX)
423 * and incoming(RX) packets time stamping based on user input.
424 * Return Value:
425 * 0 on success and an appropriate -ve integer on failure.
426 */
427 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
428 {
429 struct stmmac_priv *priv = netdev_priv(dev);
430 struct hwtstamp_config config;
431 struct timespec64 now;
432 u64 temp = 0;
433 u32 ptp_v2 = 0;
434 u32 tstamp_all = 0;
435 u32 ptp_over_ipv4_udp = 0;
436 u32 ptp_over_ipv6_udp = 0;
437 u32 ptp_over_ethernet = 0;
438 u32 snap_type_sel = 0;
439 u32 ts_master_en = 0;
440 u32 ts_event_en = 0;
441 u32 value = 0;
442 u32 sec_inc;
443
444 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
445 netdev_alert(priv->dev, "No support for HW time stamping\n");
446 priv->hwts_tx_en = 0;
447 priv->hwts_rx_en = 0;
448
449 return -EOPNOTSUPP;
450 }
451
452 if (copy_from_user(&config, ifr->ifr_data,
453 sizeof(struct hwtstamp_config)))
454 return -EFAULT;
455
456 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
457 __func__, config.flags, config.tx_type, config.rx_filter);
458
459 /* reserved for future extensions */
460 if (config.flags)
461 return -EINVAL;
462
463 if (config.tx_type != HWTSTAMP_TX_OFF &&
464 config.tx_type != HWTSTAMP_TX_ON)
465 return -ERANGE;
466
467 if (priv->adv_ts) {
468 switch (config.rx_filter) {
469 case HWTSTAMP_FILTER_NONE:
470 /* time stamp no incoming packet at all */
471 config.rx_filter = HWTSTAMP_FILTER_NONE;
472 break;
473
474 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
475 /* PTP v1, UDP, any kind of event packet */
476 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
477 /* take time stamp for all event messages */
478 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
479
480 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
481 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
482 break;
483
484 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
485 /* PTP v1, UDP, Sync packet */
486 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
487 /* take time stamp for SYNC messages only */
488 ts_event_en = PTP_TCR_TSEVNTENA;
489
490 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
491 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
492 break;
493
494 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
495 /* PTP v1, UDP, Delay_req packet */
496 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
497 /* take time stamp for Delay_Req messages only */
498 ts_master_en = PTP_TCR_TSMSTRENA;
499 ts_event_en = PTP_TCR_TSEVNTENA;
500
501 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
502 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
503 break;
504
505 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
506 /* PTP v2, UDP, any kind of event packet */
507 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
508 ptp_v2 = PTP_TCR_TSVER2ENA;
509 /* take time stamp for all event messages */
510 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
511
512 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
513 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
514 break;
515
516 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
517 /* PTP v2, UDP, Sync packet */
518 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
519 ptp_v2 = PTP_TCR_TSVER2ENA;
520 /* take time stamp for SYNC messages only */
521 ts_event_en = PTP_TCR_TSEVNTENA;
522
523 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
524 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
525 break;
526
527 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
528 /* PTP v2, UDP, Delay_req packet */
529 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
530 ptp_v2 = PTP_TCR_TSVER2ENA;
531 /* take time stamp for Delay_Req messages only */
532 ts_master_en = PTP_TCR_TSMSTRENA;
533 ts_event_en = PTP_TCR_TSEVNTENA;
534
535 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
536 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
537 break;
538
539 case HWTSTAMP_FILTER_PTP_V2_EVENT:
540 /* PTP v2/802.AS1 any layer, any kind of event packet */
541 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
542 ptp_v2 = PTP_TCR_TSVER2ENA;
543 /* take time stamp for all event messages */
544 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
545
546 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
547 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
548 ptp_over_ethernet = PTP_TCR_TSIPENA;
549 break;
550
551 case HWTSTAMP_FILTER_PTP_V2_SYNC:
552 /* PTP v2/802.AS1, any layer, Sync packet */
553 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
554 ptp_v2 = PTP_TCR_TSVER2ENA;
555 /* take time stamp for SYNC messages only */
556 ts_event_en = PTP_TCR_TSEVNTENA;
557
558 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
559 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
560 ptp_over_ethernet = PTP_TCR_TSIPENA;
561 break;
562
563 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
564 /* PTP v2/802.AS1, any layer, Delay_req packet */
565 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
566 ptp_v2 = PTP_TCR_TSVER2ENA;
567 /* take time stamp for Delay_Req messages only */
568 ts_master_en = PTP_TCR_TSMSTRENA;
569 ts_event_en = PTP_TCR_TSEVNTENA;
570
571 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
572 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
573 ptp_over_ethernet = PTP_TCR_TSIPENA;
574 break;
575
576 case HWTSTAMP_FILTER_ALL:
577 /* time stamp any incoming packet */
578 config.rx_filter = HWTSTAMP_FILTER_ALL;
579 tstamp_all = PTP_TCR_TSENALL;
580 break;
581
582 default:
583 return -ERANGE;
584 }
585 } else {
586 switch (config.rx_filter) {
587 case HWTSTAMP_FILTER_NONE:
588 config.rx_filter = HWTSTAMP_FILTER_NONE;
589 break;
590 default:
591 /* PTP v1, UDP, any kind of event packet */
592 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
593 break;
594 }
595 }
596 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
597 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
598
599 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
600 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
601 else {
602 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
603 tstamp_all | ptp_v2 | ptp_over_ethernet |
604 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
605 ts_master_en | snap_type_sel);
606 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
607
608 /* program Sub Second Increment reg */
609 sec_inc = priv->hw->ptp->config_sub_second_increment(
610 priv->ioaddr, priv->clk_ptp_rate);
611 temp = div_u64(1000000000ULL, sec_inc);
612
613 /* calculate default added value:
614 * formula is :
615 * addend = (2^32)/freq_div_ratio;
616 * where, freq_div_ratio = 1e9ns/sec_inc
617 */
618 temp = (u64)(temp << 32);
619 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
620 priv->hw->ptp->config_addend(priv->ioaddr,
621 priv->default_addend);
622
623 /* initialize system time */
624 ktime_get_real_ts64(&now);
625
626 /* lower 32 bits of tv_sec are safe until y2106 */
627 priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec,
628 now.tv_nsec);
629 }
630
631 return copy_to_user(ifr->ifr_data, &config,
632 sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
633 }
634
635 /**
636 * stmmac_init_ptp - init PTP
637 * @priv: driver private structure
638 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
639 * This is done by looking at the HW cap. register.
640 * This function also registers the ptp driver.
641 */
642 static int stmmac_init_ptp(struct stmmac_priv *priv)
643 {
644 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
645 return -EOPNOTSUPP;
646
647 /* Fall-back to main clock in case of no PTP ref is passed */
648 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
649 if (IS_ERR(priv->clk_ptp_ref)) {
650 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
651 priv->clk_ptp_ref = NULL;
652 } else {
653 clk_prepare_enable(priv->clk_ptp_ref);
654 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
655 }
656
657 priv->adv_ts = 0;
658 if (priv->dma_cap.atime_stamp && priv->extend_desc)
659 priv->adv_ts = 1;
660
661 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
662 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
663
664 if (netif_msg_hw(priv) && priv->adv_ts)
665 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
666
667 priv->hw->ptp = &stmmac_ptp;
668 priv->hwts_tx_en = 0;
669 priv->hwts_rx_en = 0;
670
671 return stmmac_ptp_register(priv);
672 }
673
674 static void stmmac_release_ptp(struct stmmac_priv *priv)
675 {
676 if (priv->clk_ptp_ref)
677 clk_disable_unprepare(priv->clk_ptp_ref);
678 stmmac_ptp_unregister(priv);
679 }
680
681 /**
682 * stmmac_adjust_link - adjusts the link parameters
683 * @dev: net device structure
684 * Description: this is the helper called by the physical abstraction layer
685 * drivers to communicate the phy link status. According the speed and duplex
686 * this driver can invoke registered glue-logic as well.
687 * It also invoke the eee initialization because it could happen when switch
688 * on different networks (that are eee capable).
689 */
690 static void stmmac_adjust_link(struct net_device *dev)
691 {
692 struct stmmac_priv *priv = netdev_priv(dev);
693 struct phy_device *phydev = priv->phydev;
694 unsigned long flags;
695 int new_state = 0;
696 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
697
698 if (phydev == NULL)
699 return;
700
701 spin_lock_irqsave(&priv->lock, flags);
702
703 if (phydev->link) {
704 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
705
706 /* Now we make sure that we can be in full duplex mode.
707 * If not, we operate in half-duplex mode. */
708 if (phydev->duplex != priv->oldduplex) {
709 new_state = 1;
710 if (!(phydev->duplex))
711 ctrl &= ~priv->hw->link.duplex;
712 else
713 ctrl |= priv->hw->link.duplex;
714 priv->oldduplex = phydev->duplex;
715 }
716 /* Flow Control operation */
717 if (phydev->pause)
718 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
719 fc, pause_time);
720
721 if (phydev->speed != priv->speed) {
722 new_state = 1;
723 switch (phydev->speed) {
724 case 1000:
725 if (likely((priv->plat->has_gmac) ||
726 (priv->plat->has_gmac4)))
727 ctrl &= ~priv->hw->link.port;
728 stmmac_hw_fix_mac_speed(priv);
729 break;
730 case 100:
731 case 10:
732 if (likely((priv->plat->has_gmac) ||
733 (priv->plat->has_gmac4))) {
734 ctrl |= priv->hw->link.port;
735 if (phydev->speed == SPEED_100) {
736 ctrl |= priv->hw->link.speed;
737 } else {
738 ctrl &= ~(priv->hw->link.speed);
739 }
740 } else {
741 ctrl &= ~priv->hw->link.port;
742 }
743 stmmac_hw_fix_mac_speed(priv);
744 break;
745 default:
746 if (netif_msg_link(priv))
747 pr_warn("%s: Speed (%d) not 10/100\n",
748 dev->name, phydev->speed);
749 break;
750 }
751
752 priv->speed = phydev->speed;
753 }
754
755 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
756
757 if (!priv->oldlink) {
758 new_state = 1;
759 priv->oldlink = 1;
760 }
761 } else if (priv->oldlink) {
762 new_state = 1;
763 priv->oldlink = 0;
764 priv->speed = 0;
765 priv->oldduplex = -1;
766 }
767
768 if (new_state && netif_msg_link(priv))
769 phy_print_status(phydev);
770
771 spin_unlock_irqrestore(&priv->lock, flags);
772
773 if (phydev->is_pseudo_fixed_link)
774 /* Stop PHY layer to call the hook to adjust the link in case
775 * of a switch is attached to the stmmac driver.
776 */
777 phydev->irq = PHY_IGNORE_INTERRUPT;
778 else
779 /* At this stage, init the EEE if supported.
780 * Never called in case of fixed_link.
781 */
782 priv->eee_enabled = stmmac_eee_init(priv);
783 }
784
785 /**
786 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
787 * @priv: driver private structure
788 * Description: this is to verify if the HW supports the PCS.
789 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
790 * configured for the TBI, RTBI, or SGMII PHY interface.
791 */
792 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
793 {
794 int interface = priv->plat->interface;
795
796 if (priv->dma_cap.pcs) {
797 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
798 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
799 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
800 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
801 pr_debug("STMMAC: PCS RGMII support enable\n");
802 priv->pcs = STMMAC_PCS_RGMII;
803 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
804 pr_debug("STMMAC: PCS SGMII support enable\n");
805 priv->pcs = STMMAC_PCS_SGMII;
806 }
807 }
808 }
809
810 /**
811 * stmmac_init_phy - PHY initialization
812 * @dev: net device structure
813 * Description: it initializes the driver's PHY state, and attaches the PHY
814 * to the mac driver.
815 * Return value:
816 * 0 on success
817 */
818 static int stmmac_init_phy(struct net_device *dev)
819 {
820 struct stmmac_priv *priv = netdev_priv(dev);
821 struct phy_device *phydev;
822 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
823 char bus_id[MII_BUS_ID_SIZE];
824 int interface = priv->plat->interface;
825 int max_speed = priv->plat->max_speed;
826 priv->oldlink = 0;
827 priv->speed = 0;
828 priv->oldduplex = -1;
829
830 if (priv->plat->phy_node) {
831 phydev = of_phy_connect(dev, priv->plat->phy_node,
832 &stmmac_adjust_link, 0, interface);
833 } else {
834 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
835 priv->plat->bus_id);
836
837 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
838 priv->plat->phy_addr);
839 pr_debug("stmmac_init_phy: trying to attach to %s\n",
840 phy_id_fmt);
841
842 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
843 interface);
844 }
845
846 if (IS_ERR_OR_NULL(phydev)) {
847 pr_err("%s: Could not attach to PHY\n", dev->name);
848 if (!phydev)
849 return -ENODEV;
850
851 return PTR_ERR(phydev);
852 }
853
854 /* Stop Advertising 1000BASE Capability if interface is not GMII */
855 if ((interface == PHY_INTERFACE_MODE_MII) ||
856 (interface == PHY_INTERFACE_MODE_RMII) ||
857 (max_speed < 1000 && max_speed > 0))
858 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
859 SUPPORTED_1000baseT_Full);
860
861 /*
862 * Broken HW is sometimes missing the pull-up resistor on the
863 * MDIO line, which results in reads to non-existent devices returning
864 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
865 * device as well.
866 * Note: phydev->phy_id is the result of reading the UID PHY registers.
867 */
868 if (!priv->plat->phy_node && phydev->phy_id == 0) {
869 phy_disconnect(phydev);
870 return -ENODEV;
871 }
872
873 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
874 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
875
876 priv->phydev = phydev;
877
878 return 0;
879 }
880
881 static void stmmac_display_rings(struct stmmac_priv *priv)
882 {
883 void *head_rx, *head_tx;
884
885 if (priv->extend_desc) {
886 head_rx = (void *)priv->dma_erx;
887 head_tx = (void *)priv->dma_etx;
888 } else {
889 head_rx = (void *)priv->dma_rx;
890 head_tx = (void *)priv->dma_tx;
891 }
892
893 /* Display Rx ring */
894 priv->hw->desc->display_ring(head_rx, DMA_RX_SIZE, true);
895 /* Display Tx ring */
896 priv->hw->desc->display_ring(head_tx, DMA_TX_SIZE, false);
897 }
898
899 static int stmmac_set_bfsize(int mtu, int bufsize)
900 {
901 int ret = bufsize;
902
903 if (mtu >= BUF_SIZE_4KiB)
904 ret = BUF_SIZE_8KiB;
905 else if (mtu >= BUF_SIZE_2KiB)
906 ret = BUF_SIZE_4KiB;
907 else if (mtu > DEFAULT_BUFSIZE)
908 ret = BUF_SIZE_2KiB;
909 else
910 ret = DEFAULT_BUFSIZE;
911
912 return ret;
913 }
914
915 /**
916 * stmmac_clear_descriptors - clear descriptors
917 * @priv: driver private structure
918 * Description: this function is called to clear the tx and rx descriptors
919 * in case of both basic and extended descriptors are used.
920 */
921 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
922 {
923 int i;
924
925 /* Clear the Rx/Tx descriptors */
926 for (i = 0; i < DMA_RX_SIZE; i++)
927 if (priv->extend_desc)
928 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
929 priv->use_riwt, priv->mode,
930 (i == DMA_RX_SIZE - 1));
931 else
932 priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
933 priv->use_riwt, priv->mode,
934 (i == DMA_RX_SIZE - 1));
935 for (i = 0; i < DMA_TX_SIZE; i++)
936 if (priv->extend_desc)
937 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
938 priv->mode,
939 (i == DMA_TX_SIZE - 1));
940 else
941 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
942 priv->mode,
943 (i == DMA_TX_SIZE - 1));
944 }
945
946 /**
947 * stmmac_init_rx_buffers - init the RX descriptor buffer.
948 * @priv: driver private structure
949 * @p: descriptor pointer
950 * @i: descriptor index
951 * @flags: gfp flag.
952 * Description: this function is called to allocate a receive buffer, perform
953 * the DMA mapping and init the descriptor.
954 */
955 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
956 int i, gfp_t flags)
957 {
958 struct sk_buff *skb;
959
960 skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
961 if (!skb) {
962 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
963 return -ENOMEM;
964 }
965 priv->rx_skbuff[i] = skb;
966 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
967 priv->dma_buf_sz,
968 DMA_FROM_DEVICE);
969 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
970 pr_err("%s: DMA mapping error\n", __func__);
971 dev_kfree_skb_any(skb);
972 return -EINVAL;
973 }
974
975 if (priv->synopsys_id >= DWMAC_CORE_4_00)
976 p->des0 = priv->rx_skbuff_dma[i];
977 else
978 p->des2 = priv->rx_skbuff_dma[i];
979
980 if ((priv->hw->mode->init_desc3) &&
981 (priv->dma_buf_sz == BUF_SIZE_16KiB))
982 priv->hw->mode->init_desc3(p);
983
984 return 0;
985 }
986
987 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
988 {
989 if (priv->rx_skbuff[i]) {
990 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
991 priv->dma_buf_sz, DMA_FROM_DEVICE);
992 dev_kfree_skb_any(priv->rx_skbuff[i]);
993 }
994 priv->rx_skbuff[i] = NULL;
995 }
996
997 /**
998 * init_dma_desc_rings - init the RX/TX descriptor rings
999 * @dev: net device structure
1000 * @flags: gfp flag.
1001 * Description: this function initializes the DMA RX/TX descriptors
1002 * and allocates the socket buffers. It suppors the chained and ring
1003 * modes.
1004 */
1005 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1006 {
1007 int i;
1008 struct stmmac_priv *priv = netdev_priv(dev);
1009 unsigned int bfsize = 0;
1010 int ret = -ENOMEM;
1011
1012 if (priv->hw->mode->set_16kib_bfsize)
1013 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1014
1015 if (bfsize < BUF_SIZE_16KiB)
1016 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1017
1018 priv->dma_buf_sz = bfsize;
1019
1020 if (netif_msg_probe(priv)) {
1021 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1022 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1023
1024 /* RX INITIALIZATION */
1025 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1026 }
1027 for (i = 0; i < DMA_RX_SIZE; i++) {
1028 struct dma_desc *p;
1029 if (priv->extend_desc)
1030 p = &((priv->dma_erx + i)->basic);
1031 else
1032 p = priv->dma_rx + i;
1033
1034 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1035 if (ret)
1036 goto err_init_rx_buffers;
1037
1038 if (netif_msg_probe(priv))
1039 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1040 priv->rx_skbuff[i]->data,
1041 (unsigned int)priv->rx_skbuff_dma[i]);
1042 }
1043 priv->cur_rx = 0;
1044 priv->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1045 buf_sz = bfsize;
1046
1047 /* Setup the chained descriptor addresses */
1048 if (priv->mode == STMMAC_CHAIN_MODE) {
1049 if (priv->extend_desc) {
1050 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1051 DMA_RX_SIZE, 1);
1052 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1053 DMA_TX_SIZE, 1);
1054 } else {
1055 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1056 DMA_RX_SIZE, 0);
1057 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1058 DMA_TX_SIZE, 0);
1059 }
1060 }
1061
1062 /* TX INITIALIZATION */
1063 for (i = 0; i < DMA_TX_SIZE; i++) {
1064 struct dma_desc *p;
1065 if (priv->extend_desc)
1066 p = &((priv->dma_etx + i)->basic);
1067 else
1068 p = priv->dma_tx + i;
1069
1070 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1071 p->des0 = 0;
1072 p->des1 = 0;
1073 p->des2 = 0;
1074 p->des3 = 0;
1075 } else {
1076 p->des2 = 0;
1077 }
1078
1079 priv->tx_skbuff_dma[i].buf = 0;
1080 priv->tx_skbuff_dma[i].map_as_page = false;
1081 priv->tx_skbuff_dma[i].len = 0;
1082 priv->tx_skbuff_dma[i].last_segment = false;
1083 priv->tx_skbuff[i] = NULL;
1084 }
1085
1086 priv->dirty_tx = 0;
1087 priv->cur_tx = 0;
1088 netdev_reset_queue(priv->dev);
1089
1090 stmmac_clear_descriptors(priv);
1091
1092 if (netif_msg_hw(priv))
1093 stmmac_display_rings(priv);
1094
1095 return 0;
1096 err_init_rx_buffers:
1097 while (--i >= 0)
1098 stmmac_free_rx_buffers(priv, i);
1099 return ret;
1100 }
1101
1102 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1103 {
1104 int i;
1105
1106 for (i = 0; i < DMA_RX_SIZE; i++)
1107 stmmac_free_rx_buffers(priv, i);
1108 }
1109
1110 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1111 {
1112 int i;
1113
1114 for (i = 0; i < DMA_TX_SIZE; i++) {
1115 struct dma_desc *p;
1116
1117 if (priv->extend_desc)
1118 p = &((priv->dma_etx + i)->basic);
1119 else
1120 p = priv->dma_tx + i;
1121
1122 if (priv->tx_skbuff_dma[i].buf) {
1123 if (priv->tx_skbuff_dma[i].map_as_page)
1124 dma_unmap_page(priv->device,
1125 priv->tx_skbuff_dma[i].buf,
1126 priv->tx_skbuff_dma[i].len,
1127 DMA_TO_DEVICE);
1128 else
1129 dma_unmap_single(priv->device,
1130 priv->tx_skbuff_dma[i].buf,
1131 priv->tx_skbuff_dma[i].len,
1132 DMA_TO_DEVICE);
1133 }
1134
1135 if (priv->tx_skbuff[i] != NULL) {
1136 dev_kfree_skb_any(priv->tx_skbuff[i]);
1137 priv->tx_skbuff[i] = NULL;
1138 priv->tx_skbuff_dma[i].buf = 0;
1139 priv->tx_skbuff_dma[i].map_as_page = false;
1140 }
1141 }
1142 }
1143
1144 /**
1145 * alloc_dma_desc_resources - alloc TX/RX resources.
1146 * @priv: private structure
1147 * Description: according to which descriptor can be used (extend or basic)
1148 * this function allocates the resources for TX and RX paths. In case of
1149 * reception, for example, it pre-allocated the RX socket buffer in order to
1150 * allow zero-copy mechanism.
1151 */
1152 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1153 {
1154 int ret = -ENOMEM;
1155
1156 priv->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, sizeof(dma_addr_t),
1157 GFP_KERNEL);
1158 if (!priv->rx_skbuff_dma)
1159 return -ENOMEM;
1160
1161 priv->rx_skbuff = kmalloc_array(DMA_RX_SIZE, sizeof(struct sk_buff *),
1162 GFP_KERNEL);
1163 if (!priv->rx_skbuff)
1164 goto err_rx_skbuff;
1165
1166 priv->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1167 sizeof(*priv->tx_skbuff_dma),
1168 GFP_KERNEL);
1169 if (!priv->tx_skbuff_dma)
1170 goto err_tx_skbuff_dma;
1171
1172 priv->tx_skbuff = kmalloc_array(DMA_TX_SIZE, sizeof(struct sk_buff *),
1173 GFP_KERNEL);
1174 if (!priv->tx_skbuff)
1175 goto err_tx_skbuff;
1176
1177 if (priv->extend_desc) {
1178 priv->dma_erx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1179 sizeof(struct
1180 dma_extended_desc),
1181 &priv->dma_rx_phy,
1182 GFP_KERNEL);
1183 if (!priv->dma_erx)
1184 goto err_dma;
1185
1186 priv->dma_etx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1187 sizeof(struct
1188 dma_extended_desc),
1189 &priv->dma_tx_phy,
1190 GFP_KERNEL);
1191 if (!priv->dma_etx) {
1192 dma_free_coherent(priv->device, DMA_RX_SIZE *
1193 sizeof(struct dma_extended_desc),
1194 priv->dma_erx, priv->dma_rx_phy);
1195 goto err_dma;
1196 }
1197 } else {
1198 priv->dma_rx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1199 sizeof(struct dma_desc),
1200 &priv->dma_rx_phy,
1201 GFP_KERNEL);
1202 if (!priv->dma_rx)
1203 goto err_dma;
1204
1205 priv->dma_tx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1206 sizeof(struct dma_desc),
1207 &priv->dma_tx_phy,
1208 GFP_KERNEL);
1209 if (!priv->dma_tx) {
1210 dma_free_coherent(priv->device, DMA_RX_SIZE *
1211 sizeof(struct dma_desc),
1212 priv->dma_rx, priv->dma_rx_phy);
1213 goto err_dma;
1214 }
1215 }
1216
1217 return 0;
1218
1219 err_dma:
1220 kfree(priv->tx_skbuff);
1221 err_tx_skbuff:
1222 kfree(priv->tx_skbuff_dma);
1223 err_tx_skbuff_dma:
1224 kfree(priv->rx_skbuff);
1225 err_rx_skbuff:
1226 kfree(priv->rx_skbuff_dma);
1227 return ret;
1228 }
1229
1230 static void free_dma_desc_resources(struct stmmac_priv *priv)
1231 {
1232 /* Release the DMA TX/RX socket buffers */
1233 dma_free_rx_skbufs(priv);
1234 dma_free_tx_skbufs(priv);
1235
1236 /* Free DMA regions of consistent memory previously allocated */
1237 if (!priv->extend_desc) {
1238 dma_free_coherent(priv->device,
1239 DMA_TX_SIZE * sizeof(struct dma_desc),
1240 priv->dma_tx, priv->dma_tx_phy);
1241 dma_free_coherent(priv->device,
1242 DMA_RX_SIZE * sizeof(struct dma_desc),
1243 priv->dma_rx, priv->dma_rx_phy);
1244 } else {
1245 dma_free_coherent(priv->device, DMA_TX_SIZE *
1246 sizeof(struct dma_extended_desc),
1247 priv->dma_etx, priv->dma_tx_phy);
1248 dma_free_coherent(priv->device, DMA_RX_SIZE *
1249 sizeof(struct dma_extended_desc),
1250 priv->dma_erx, priv->dma_rx_phy);
1251 }
1252 kfree(priv->rx_skbuff_dma);
1253 kfree(priv->rx_skbuff);
1254 kfree(priv->tx_skbuff_dma);
1255 kfree(priv->tx_skbuff);
1256 }
1257
1258 /**
1259 * stmmac_dma_operation_mode - HW DMA operation mode
1260 * @priv: driver private structure
1261 * Description: it is used for configuring the DMA operation mode register in
1262 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1263 */
1264 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1265 {
1266 int rxfifosz = priv->plat->rx_fifo_size;
1267
1268 if (priv->plat->force_thresh_dma_mode)
1269 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1270 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1271 /*
1272 * In case of GMAC, SF mode can be enabled
1273 * to perform the TX COE in HW. This depends on:
1274 * 1) TX COE if actually supported
1275 * 2) There is no bugged Jumbo frame support
1276 * that needs to not insert csum in the TDES.
1277 */
1278 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1279 rxfifosz);
1280 priv->xstats.threshold = SF_DMA_MODE;
1281 } else
1282 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1283 rxfifosz);
1284 }
1285
1286 /**
1287 * stmmac_tx_clean - to manage the transmission completion
1288 * @priv: driver private structure
1289 * Description: it reclaims the transmit resources after transmission completes.
1290 */
1291 static void stmmac_tx_clean(struct stmmac_priv *priv)
1292 {
1293 unsigned int bytes_compl = 0, pkts_compl = 0;
1294 unsigned int entry = priv->dirty_tx;
1295
1296 spin_lock(&priv->tx_lock);
1297
1298 priv->xstats.tx_clean++;
1299
1300 while (entry != priv->cur_tx) {
1301 struct sk_buff *skb = priv->tx_skbuff[entry];
1302 struct dma_desc *p;
1303 int status;
1304
1305 if (priv->extend_desc)
1306 p = (struct dma_desc *)(priv->dma_etx + entry);
1307 else
1308 p = priv->dma_tx + entry;
1309
1310 status = priv->hw->desc->tx_status(&priv->dev->stats,
1311 &priv->xstats, p,
1312 priv->ioaddr);
1313 /* Check if the descriptor is owned by the DMA */
1314 if (unlikely(status & tx_dma_own))
1315 break;
1316
1317 /* Just consider the last segment and ...*/
1318 if (likely(!(status & tx_not_ls))) {
1319 /* ... verify the status error condition */
1320 if (unlikely(status & tx_err)) {
1321 priv->dev->stats.tx_errors++;
1322 } else {
1323 priv->dev->stats.tx_packets++;
1324 priv->xstats.tx_pkt_n++;
1325 }
1326 stmmac_get_tx_hwtstamp(priv, entry, skb);
1327 }
1328
1329 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1330 if (priv->tx_skbuff_dma[entry].map_as_page)
1331 dma_unmap_page(priv->device,
1332 priv->tx_skbuff_dma[entry].buf,
1333 priv->tx_skbuff_dma[entry].len,
1334 DMA_TO_DEVICE);
1335 else
1336 dma_unmap_single(priv->device,
1337 priv->tx_skbuff_dma[entry].buf,
1338 priv->tx_skbuff_dma[entry].len,
1339 DMA_TO_DEVICE);
1340 priv->tx_skbuff_dma[entry].buf = 0;
1341 priv->tx_skbuff_dma[entry].len = 0;
1342 priv->tx_skbuff_dma[entry].map_as_page = false;
1343 }
1344
1345 if (priv->hw->mode->clean_desc3)
1346 priv->hw->mode->clean_desc3(priv, p);
1347
1348 priv->tx_skbuff_dma[entry].last_segment = false;
1349 priv->tx_skbuff_dma[entry].is_jumbo = false;
1350
1351 if (likely(skb != NULL)) {
1352 pkts_compl++;
1353 bytes_compl += skb->len;
1354 dev_consume_skb_any(skb);
1355 priv->tx_skbuff[entry] = NULL;
1356 }
1357
1358 priv->hw->desc->release_tx_desc(p, priv->mode);
1359
1360 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1361 }
1362 priv->dirty_tx = entry;
1363
1364 netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1365
1366 if (unlikely(netif_queue_stopped(priv->dev) &&
1367 stmmac_tx_avail(priv) > STMMAC_TX_THRESH)) {
1368 netif_tx_lock(priv->dev);
1369 if (netif_queue_stopped(priv->dev) &&
1370 stmmac_tx_avail(priv) > STMMAC_TX_THRESH) {
1371 if (netif_msg_tx_done(priv))
1372 pr_debug("%s: restart transmit\n", __func__);
1373 netif_wake_queue(priv->dev);
1374 }
1375 netif_tx_unlock(priv->dev);
1376 }
1377
1378 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1379 stmmac_enable_eee_mode(priv);
1380 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1381 }
1382 spin_unlock(&priv->tx_lock);
1383 }
1384
1385 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1386 {
1387 priv->hw->dma->enable_dma_irq(priv->ioaddr);
1388 }
1389
1390 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1391 {
1392 priv->hw->dma->disable_dma_irq(priv->ioaddr);
1393 }
1394
1395 /**
1396 * stmmac_tx_err - to manage the tx error
1397 * @priv: driver private structure
1398 * Description: it cleans the descriptors and restarts the transmission
1399 * in case of transmission errors.
1400 */
1401 static void stmmac_tx_err(struct stmmac_priv *priv)
1402 {
1403 int i;
1404 netif_stop_queue(priv->dev);
1405
1406 priv->hw->dma->stop_tx(priv->ioaddr);
1407 dma_free_tx_skbufs(priv);
1408 for (i = 0; i < DMA_TX_SIZE; i++)
1409 if (priv->extend_desc)
1410 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1411 priv->mode,
1412 (i == DMA_TX_SIZE - 1));
1413 else
1414 priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1415 priv->mode,
1416 (i == DMA_TX_SIZE - 1));
1417 priv->dirty_tx = 0;
1418 priv->cur_tx = 0;
1419 netdev_reset_queue(priv->dev);
1420 priv->hw->dma->start_tx(priv->ioaddr);
1421
1422 priv->dev->stats.tx_errors++;
1423 netif_wake_queue(priv->dev);
1424 }
1425
1426 /**
1427 * stmmac_dma_interrupt - DMA ISR
1428 * @priv: driver private structure
1429 * Description: this is the DMA ISR. It is called by the main ISR.
1430 * It calls the dwmac dma routine and schedule poll method in case of some
1431 * work can be done.
1432 */
1433 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1434 {
1435 int status;
1436 int rxfifosz = priv->plat->rx_fifo_size;
1437
1438 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1439 if (likely((status & handle_rx)) || (status & handle_tx)) {
1440 if (likely(napi_schedule_prep(&priv->napi))) {
1441 stmmac_disable_dma_irq(priv);
1442 __napi_schedule(&priv->napi);
1443 }
1444 }
1445 if (unlikely(status & tx_hard_error_bump_tc)) {
1446 /* Try to bump up the dma threshold on this failure */
1447 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1448 (tc <= 256)) {
1449 tc += 64;
1450 if (priv->plat->force_thresh_dma_mode)
1451 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1452 rxfifosz);
1453 else
1454 priv->hw->dma->dma_mode(priv->ioaddr, tc,
1455 SF_DMA_MODE, rxfifosz);
1456 priv->xstats.threshold = tc;
1457 }
1458 } else if (unlikely(status == tx_hard_error))
1459 stmmac_tx_err(priv);
1460 }
1461
1462 /**
1463 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1464 * @priv: driver private structure
1465 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1466 */
1467 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1468 {
1469 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1470 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1471
1472 if (priv->synopsys_id >= DWMAC_CORE_4_00)
1473 priv->mmcaddr = priv->ioaddr + MMC_GMAC4_OFFSET;
1474 else
1475 priv->mmcaddr = priv->ioaddr + MMC_GMAC3_X_OFFSET;
1476
1477 dwmac_mmc_intr_all_mask(priv->mmcaddr);
1478
1479 if (priv->dma_cap.rmon) {
1480 dwmac_mmc_ctrl(priv->mmcaddr, mode);
1481 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1482 } else
1483 pr_info(" No MAC Management Counters available\n");
1484 }
1485
1486 /**
1487 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1488 * @priv: driver private structure
1489 * Description: select the Enhanced/Alternate or Normal descriptors.
1490 * In case of Enhanced/Alternate, it checks if the extended descriptors are
1491 * supported by the HW capability register.
1492 */
1493 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1494 {
1495 if (priv->plat->enh_desc) {
1496 pr_info(" Enhanced/Alternate descriptors\n");
1497
1498 /* GMAC older than 3.50 has no extended descriptors */
1499 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1500 pr_info("\tEnabled extended descriptors\n");
1501 priv->extend_desc = 1;
1502 } else
1503 pr_warn("Extended descriptors not supported\n");
1504
1505 priv->hw->desc = &enh_desc_ops;
1506 } else {
1507 pr_info(" Normal descriptors\n");
1508 priv->hw->desc = &ndesc_ops;
1509 }
1510 }
1511
1512 /**
1513 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1514 * @priv: driver private structure
1515 * Description:
1516 * new GMAC chip generations have a new register to indicate the
1517 * presence of the optional feature/functions.
1518 * This can be also used to override the value passed through the
1519 * platform and necessary for old MAC10/100 and GMAC chips.
1520 */
1521 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1522 {
1523 u32 ret = 0;
1524
1525 if (priv->hw->dma->get_hw_feature) {
1526 priv->hw->dma->get_hw_feature(priv->ioaddr,
1527 &priv->dma_cap);
1528 ret = 1;
1529 }
1530
1531 return ret;
1532 }
1533
1534 /**
1535 * stmmac_check_ether_addr - check if the MAC addr is valid
1536 * @priv: driver private structure
1537 * Description:
1538 * it is to verify if the MAC address is valid, in case of failures it
1539 * generates a random MAC address
1540 */
1541 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1542 {
1543 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1544 priv->hw->mac->get_umac_addr(priv->hw,
1545 priv->dev->dev_addr, 0);
1546 if (!is_valid_ether_addr(priv->dev->dev_addr))
1547 eth_hw_addr_random(priv->dev);
1548 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1549 priv->dev->dev_addr);
1550 }
1551 }
1552
1553 /**
1554 * stmmac_init_dma_engine - DMA init.
1555 * @priv: driver private structure
1556 * Description:
1557 * It inits the DMA invoking the specific MAC/GMAC callback.
1558 * Some DMA parameters can be passed from the platform;
1559 * in case of these are not passed a default is kept for the MAC or GMAC.
1560 */
1561 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1562 {
1563 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, aal = 0;
1564 int mixed_burst = 0;
1565 int atds = 0;
1566 int ret = 0;
1567
1568 if (priv->plat->dma_cfg) {
1569 pbl = priv->plat->dma_cfg->pbl;
1570 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1571 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1572 aal = priv->plat->dma_cfg->aal;
1573 }
1574
1575 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1576 atds = 1;
1577
1578 ret = priv->hw->dma->reset(priv->ioaddr);
1579 if (ret) {
1580 dev_err(priv->device, "Failed to reset the dma\n");
1581 return ret;
1582 }
1583
1584 priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1585 aal, priv->dma_tx_phy, priv->dma_rx_phy, atds);
1586
1587 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1588 priv->rx_tail_addr = priv->dma_rx_phy +
1589 (DMA_RX_SIZE * sizeof(struct dma_desc));
1590 priv->hw->dma->set_rx_tail_ptr(priv->ioaddr, priv->rx_tail_addr,
1591 STMMAC_CHAN0);
1592
1593 priv->tx_tail_addr = priv->dma_tx_phy +
1594 (DMA_TX_SIZE * sizeof(struct dma_desc));
1595 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
1596 STMMAC_CHAN0);
1597 }
1598
1599 if (priv->plat->axi && priv->hw->dma->axi)
1600 priv->hw->dma->axi(priv->ioaddr, priv->plat->axi);
1601
1602 return ret;
1603 }
1604
1605 /**
1606 * stmmac_tx_timer - mitigation sw timer for tx.
1607 * @data: data pointer
1608 * Description:
1609 * This is the timer handler to directly invoke the stmmac_tx_clean.
1610 */
1611 static void stmmac_tx_timer(unsigned long data)
1612 {
1613 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1614
1615 stmmac_tx_clean(priv);
1616 }
1617
1618 /**
1619 * stmmac_init_tx_coalesce - init tx mitigation options.
1620 * @priv: driver private structure
1621 * Description:
1622 * This inits the transmit coalesce parameters: i.e. timer rate,
1623 * timer handler and default threshold used for enabling the
1624 * interrupt on completion bit.
1625 */
1626 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1627 {
1628 priv->tx_coal_frames = STMMAC_TX_FRAMES;
1629 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1630 init_timer(&priv->txtimer);
1631 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1632 priv->txtimer.data = (unsigned long)priv;
1633 priv->txtimer.function = stmmac_tx_timer;
1634 add_timer(&priv->txtimer);
1635 }
1636
1637 /**
1638 * stmmac_hw_setup - setup mac in a usable state.
1639 * @dev : pointer to the device structure.
1640 * Description:
1641 * this is the main function to setup the HW in a usable state because the
1642 * dma engine is reset, the core registers are configured (e.g. AXI,
1643 * Checksum features, timers). The DMA is ready to start receiving and
1644 * transmitting.
1645 * Return value:
1646 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1647 * file on failure.
1648 */
1649 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1650 {
1651 struct stmmac_priv *priv = netdev_priv(dev);
1652 int ret;
1653
1654 /* DMA initialization and SW reset */
1655 ret = stmmac_init_dma_engine(priv);
1656 if (ret < 0) {
1657 pr_err("%s: DMA engine initialization failed\n", __func__);
1658 return ret;
1659 }
1660
1661 /* Copy the MAC addr into the HW */
1662 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1663
1664 /* If required, perform hw setup of the bus. */
1665 if (priv->plat->bus_setup)
1666 priv->plat->bus_setup(priv->ioaddr);
1667
1668 /* Initialize the MAC Core */
1669 priv->hw->mac->core_init(priv->hw, dev->mtu);
1670
1671 ret = priv->hw->mac->rx_ipc(priv->hw);
1672 if (!ret) {
1673 pr_warn(" RX IPC Checksum Offload disabled\n");
1674 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1675 priv->hw->rx_csum = 0;
1676 }
1677
1678 /* Enable the MAC Rx/Tx */
1679 if (priv->synopsys_id >= DWMAC_CORE_4_00)
1680 stmmac_dwmac4_set_mac(priv->ioaddr, true);
1681 else
1682 stmmac_set_mac(priv->ioaddr, true);
1683
1684 /* Set the HW DMA mode and the COE */
1685 stmmac_dma_operation_mode(priv);
1686
1687 stmmac_mmc_setup(priv);
1688
1689 if (init_ptp) {
1690 ret = stmmac_init_ptp(priv);
1691 if (ret && ret != -EOPNOTSUPP)
1692 pr_warn("%s: failed PTP initialisation\n", __func__);
1693 }
1694
1695 #ifdef CONFIG_DEBUG_FS
1696 ret = stmmac_init_fs(dev);
1697 if (ret < 0)
1698 pr_warn("%s: failed debugFS registration\n", __func__);
1699 #endif
1700 /* Start the ball rolling... */
1701 pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1702 priv->hw->dma->start_tx(priv->ioaddr);
1703 priv->hw->dma->start_rx(priv->ioaddr);
1704
1705 /* Dump DMA/MAC registers */
1706 if (netif_msg_hw(priv)) {
1707 priv->hw->mac->dump_regs(priv->hw);
1708 priv->hw->dma->dump_regs(priv->ioaddr);
1709 }
1710 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1711
1712 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1713 priv->rx_riwt = MAX_DMA_RIWT;
1714 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1715 }
1716
1717 if (priv->pcs && priv->hw->mac->ctrl_ane)
1718 priv->hw->mac->ctrl_ane(priv->hw, 0);
1719
1720 /* set TX ring length */
1721 if (priv->hw->dma->set_tx_ring_len)
1722 priv->hw->dma->set_tx_ring_len(priv->ioaddr,
1723 (DMA_TX_SIZE - 1));
1724 /* set RX ring length */
1725 if (priv->hw->dma->set_rx_ring_len)
1726 priv->hw->dma->set_rx_ring_len(priv->ioaddr,
1727 (DMA_RX_SIZE - 1));
1728 /* Enable TSO */
1729 if (priv->tso)
1730 priv->hw->dma->enable_tso(priv->ioaddr, 1, STMMAC_CHAN0);
1731
1732 return 0;
1733 }
1734
1735 /**
1736 * stmmac_open - open entry point of the driver
1737 * @dev : pointer to the device structure.
1738 * Description:
1739 * This function is the open entry point of the driver.
1740 * Return value:
1741 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1742 * file on failure.
1743 */
1744 static int stmmac_open(struct net_device *dev)
1745 {
1746 struct stmmac_priv *priv = netdev_priv(dev);
1747 int ret;
1748
1749 stmmac_check_ether_addr(priv);
1750
1751 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1752 priv->pcs != STMMAC_PCS_RTBI) {
1753 ret = stmmac_init_phy(dev);
1754 if (ret) {
1755 pr_err("%s: Cannot attach to PHY (error: %d)\n",
1756 __func__, ret);
1757 return ret;
1758 }
1759 }
1760
1761 /* Extra statistics */
1762 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1763 priv->xstats.threshold = tc;
1764
1765 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1766 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
1767
1768 ret = alloc_dma_desc_resources(priv);
1769 if (ret < 0) {
1770 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1771 goto dma_desc_error;
1772 }
1773
1774 ret = init_dma_desc_rings(dev, GFP_KERNEL);
1775 if (ret < 0) {
1776 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1777 goto init_error;
1778 }
1779
1780 ret = stmmac_hw_setup(dev, true);
1781 if (ret < 0) {
1782 pr_err("%s: Hw setup failed\n", __func__);
1783 goto init_error;
1784 }
1785
1786 stmmac_init_tx_coalesce(priv);
1787
1788 if (priv->phydev)
1789 phy_start(priv->phydev);
1790
1791 /* Request the IRQ lines */
1792 ret = request_irq(dev->irq, stmmac_interrupt,
1793 IRQF_SHARED, dev->name, dev);
1794 if (unlikely(ret < 0)) {
1795 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1796 __func__, dev->irq, ret);
1797 goto init_error;
1798 }
1799
1800 /* Request the Wake IRQ in case of another line is used for WoL */
1801 if (priv->wol_irq != dev->irq) {
1802 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1803 IRQF_SHARED, dev->name, dev);
1804 if (unlikely(ret < 0)) {
1805 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1806 __func__, priv->wol_irq, ret);
1807 goto wolirq_error;
1808 }
1809 }
1810
1811 /* Request the IRQ lines */
1812 if (priv->lpi_irq > 0) {
1813 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1814 dev->name, dev);
1815 if (unlikely(ret < 0)) {
1816 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1817 __func__, priv->lpi_irq, ret);
1818 goto lpiirq_error;
1819 }
1820 }
1821
1822 napi_enable(&priv->napi);
1823 netif_start_queue(dev);
1824
1825 return 0;
1826
1827 lpiirq_error:
1828 if (priv->wol_irq != dev->irq)
1829 free_irq(priv->wol_irq, dev);
1830 wolirq_error:
1831 free_irq(dev->irq, dev);
1832
1833 init_error:
1834 free_dma_desc_resources(priv);
1835 dma_desc_error:
1836 if (priv->phydev)
1837 phy_disconnect(priv->phydev);
1838
1839 return ret;
1840 }
1841
1842 /**
1843 * stmmac_release - close entry point of the driver
1844 * @dev : device pointer.
1845 * Description:
1846 * This is the stop entry point of the driver.
1847 */
1848 static int stmmac_release(struct net_device *dev)
1849 {
1850 struct stmmac_priv *priv = netdev_priv(dev);
1851
1852 if (priv->eee_enabled)
1853 del_timer_sync(&priv->eee_ctrl_timer);
1854
1855 /* Stop and disconnect the PHY */
1856 if (priv->phydev) {
1857 phy_stop(priv->phydev);
1858 phy_disconnect(priv->phydev);
1859 priv->phydev = NULL;
1860 }
1861
1862 netif_stop_queue(dev);
1863
1864 napi_disable(&priv->napi);
1865
1866 del_timer_sync(&priv->txtimer);
1867
1868 /* Free the IRQ lines */
1869 free_irq(dev->irq, dev);
1870 if (priv->wol_irq != dev->irq)
1871 free_irq(priv->wol_irq, dev);
1872 if (priv->lpi_irq > 0)
1873 free_irq(priv->lpi_irq, dev);
1874
1875 /* Stop TX/RX DMA and clear the descriptors */
1876 priv->hw->dma->stop_tx(priv->ioaddr);
1877 priv->hw->dma->stop_rx(priv->ioaddr);
1878
1879 /* Release and free the Rx/Tx resources */
1880 free_dma_desc_resources(priv);
1881
1882 /* Disable the MAC Rx/Tx */
1883 stmmac_set_mac(priv->ioaddr, false);
1884
1885 netif_carrier_off(dev);
1886
1887 #ifdef CONFIG_DEBUG_FS
1888 stmmac_exit_fs(dev);
1889 #endif
1890
1891 stmmac_release_ptp(priv);
1892
1893 return 0;
1894 }
1895
1896 /**
1897 * stmmac_tso_allocator - close entry point of the driver
1898 * @priv: driver private structure
1899 * @des: buffer start address
1900 * @total_len: total length to fill in descriptors
1901 * @last_segmant: condition for the last descriptor
1902 * Description:
1903 * This function fills descriptor and request new descriptors according to
1904 * buffer length to fill
1905 */
1906 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
1907 int total_len, bool last_segment)
1908 {
1909 struct dma_desc *desc;
1910 int tmp_len;
1911 u32 buff_size;
1912
1913 tmp_len = total_len;
1914
1915 while (tmp_len > 0) {
1916 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
1917 desc = priv->dma_tx + priv->cur_tx;
1918
1919 desc->des0 = des + (total_len - tmp_len);
1920 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
1921 TSO_MAX_BUFF_SIZE : tmp_len;
1922
1923 priv->hw->desc->prepare_tso_tx_desc(desc, 0, buff_size,
1924 0, 1,
1925 (last_segment) && (buff_size < TSO_MAX_BUFF_SIZE),
1926 0, 0);
1927
1928 tmp_len -= TSO_MAX_BUFF_SIZE;
1929 }
1930 }
1931
1932 /**
1933 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
1934 * @skb : the socket buffer
1935 * @dev : device pointer
1936 * Description: this is the transmit function that is called on TSO frames
1937 * (support available on GMAC4 and newer chips).
1938 * Diagram below show the ring programming in case of TSO frames:
1939 *
1940 * First Descriptor
1941 * --------
1942 * | DES0 |---> buffer1 = L2/L3/L4 header
1943 * | DES1 |---> TCP Payload (can continue on next descr...)
1944 * | DES2 |---> buffer 1 and 2 len
1945 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
1946 * --------
1947 * |
1948 * ...
1949 * |
1950 * --------
1951 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
1952 * | DES1 | --|
1953 * | DES2 | --> buffer 1 and 2 len
1954 * | DES3 |
1955 * --------
1956 *
1957 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
1958 */
1959 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
1960 {
1961 u32 pay_len, mss;
1962 int tmp_pay_len = 0;
1963 struct stmmac_priv *priv = netdev_priv(dev);
1964 int nfrags = skb_shinfo(skb)->nr_frags;
1965 unsigned int first_entry, des;
1966 struct dma_desc *desc, *first, *mss_desc = NULL;
1967 u8 proto_hdr_len;
1968 int i;
1969
1970 spin_lock(&priv->tx_lock);
1971
1972 /* Compute header lengths */
1973 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1974
1975 /* Desc availability based on threshold should be enough safe */
1976 if (unlikely(stmmac_tx_avail(priv) <
1977 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
1978 if (!netif_queue_stopped(dev)) {
1979 netif_stop_queue(dev);
1980 /* This is a hard error, log it. */
1981 pr_err("%s: Tx Ring full when queue awake\n", __func__);
1982 }
1983 spin_unlock(&priv->tx_lock);
1984 return NETDEV_TX_BUSY;
1985 }
1986
1987 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
1988
1989 mss = skb_shinfo(skb)->gso_size;
1990
1991 /* set new MSS value if needed */
1992 if (mss != priv->mss) {
1993 mss_desc = priv->dma_tx + priv->cur_tx;
1994 priv->hw->desc->set_mss(mss_desc, mss);
1995 priv->mss = mss;
1996 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
1997 }
1998
1999 if (netif_msg_tx_queued(priv)) {
2000 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2001 __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2002 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2003 skb->data_len);
2004 }
2005
2006 first_entry = priv->cur_tx;
2007
2008 desc = priv->dma_tx + first_entry;
2009 first = desc;
2010
2011 /* first descriptor: fill Headers on Buf1 */
2012 des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2013 DMA_TO_DEVICE);
2014 if (dma_mapping_error(priv->device, des))
2015 goto dma_map_err;
2016
2017 priv->tx_skbuff_dma[first_entry].buf = des;
2018 priv->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2019 priv->tx_skbuff[first_entry] = skb;
2020
2021 first->des0 = des;
2022
2023 /* Fill start of payload in buff2 of first descriptor */
2024 if (pay_len)
2025 first->des1 = des + proto_hdr_len;
2026
2027 /* If needed take extra descriptors to fill the remaining payload */
2028 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2029
2030 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0));
2031
2032 /* Prepare fragments */
2033 for (i = 0; i < nfrags; i++) {
2034 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2035
2036 des = skb_frag_dma_map(priv->device, frag, 0,
2037 skb_frag_size(frag),
2038 DMA_TO_DEVICE);
2039
2040 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2041 (i == nfrags - 1));
2042
2043 priv->tx_skbuff_dma[priv->cur_tx].buf = des;
2044 priv->tx_skbuff_dma[priv->cur_tx].len = skb_frag_size(frag);
2045 priv->tx_skbuff[priv->cur_tx] = NULL;
2046 priv->tx_skbuff_dma[priv->cur_tx].map_as_page = true;
2047 }
2048
2049 priv->tx_skbuff_dma[priv->cur_tx].last_segment = true;
2050
2051 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2052
2053 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2054 if (netif_msg_hw(priv))
2055 pr_debug("%s: stop transmitted packets\n", __func__);
2056 netif_stop_queue(dev);
2057 }
2058
2059 dev->stats.tx_bytes += skb->len;
2060 priv->xstats.tx_tso_frames++;
2061 priv->xstats.tx_tso_nfrags += nfrags;
2062
2063 /* Manage tx mitigation */
2064 priv->tx_count_frames += nfrags + 1;
2065 if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2066 mod_timer(&priv->txtimer,
2067 STMMAC_COAL_TIMER(priv->tx_coal_timer));
2068 } else {
2069 priv->tx_count_frames = 0;
2070 priv->hw->desc->set_tx_ic(desc);
2071 priv->xstats.tx_set_ic_bit++;
2072 }
2073
2074 if (!priv->hwts_tx_en)
2075 skb_tx_timestamp(skb);
2076
2077 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2078 priv->hwts_tx_en)) {
2079 /* declare that device is doing timestamping */
2080 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2081 priv->hw->desc->enable_tx_timestamp(first);
2082 }
2083
2084 /* Complete the first descriptor before granting the DMA */
2085 priv->hw->desc->prepare_tso_tx_desc(first, 1,
2086 proto_hdr_len,
2087 pay_len,
2088 1, priv->tx_skbuff_dma[first_entry].last_segment,
2089 tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2090
2091 /* If context desc is used to change MSS */
2092 if (mss_desc)
2093 priv->hw->desc->set_tx_owner(mss_desc);
2094
2095 /* The own bit must be the latest setting done when prepare the
2096 * descriptor and then barrier is needed to make sure that
2097 * all is coherent before granting the DMA engine.
2098 */
2099 smp_wmb();
2100
2101 if (netif_msg_pktdata(priv)) {
2102 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2103 __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2104 priv->cur_tx, first, nfrags);
2105
2106 priv->hw->desc->display_ring((void *)priv->dma_tx, DMA_TX_SIZE,
2107 0);
2108
2109 pr_info(">>> frame to be transmitted: ");
2110 print_pkt(skb->data, skb_headlen(skb));
2111 }
2112
2113 netdev_sent_queue(dev, skb->len);
2114
2115 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2116 STMMAC_CHAN0);
2117
2118 spin_unlock(&priv->tx_lock);
2119 return NETDEV_TX_OK;
2120
2121 dma_map_err:
2122 spin_unlock(&priv->tx_lock);
2123 dev_err(priv->device, "Tx dma map failed\n");
2124 dev_kfree_skb(skb);
2125 priv->dev->stats.tx_dropped++;
2126 return NETDEV_TX_OK;
2127 }
2128
2129 /**
2130 * stmmac_xmit - Tx entry point of the driver
2131 * @skb : the socket buffer
2132 * @dev : device pointer
2133 * Description : this is the tx entry point of the driver.
2134 * It programs the chain or the ring and supports oversized frames
2135 * and SG feature.
2136 */
2137 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
2138 {
2139 struct stmmac_priv *priv = netdev_priv(dev);
2140 unsigned int nopaged_len = skb_headlen(skb);
2141 int i, csum_insertion = 0, is_jumbo = 0;
2142 int nfrags = skb_shinfo(skb)->nr_frags;
2143 unsigned int entry, first_entry;
2144 struct dma_desc *desc, *first;
2145 unsigned int enh_desc;
2146 unsigned int des;
2147
2148 /* Manage oversized TCP frames for GMAC4 device */
2149 if (skb_is_gso(skb) && priv->tso) {
2150 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2151 return stmmac_tso_xmit(skb, dev);
2152 }
2153
2154 spin_lock(&priv->tx_lock);
2155
2156 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
2157 spin_unlock(&priv->tx_lock);
2158 if (!netif_queue_stopped(dev)) {
2159 netif_stop_queue(dev);
2160 /* This is a hard error, log it. */
2161 pr_err("%s: Tx Ring full when queue awake\n", __func__);
2162 }
2163 return NETDEV_TX_BUSY;
2164 }
2165
2166 if (priv->tx_path_in_lpi_mode)
2167 stmmac_disable_eee_mode(priv);
2168
2169 entry = priv->cur_tx;
2170 first_entry = entry;
2171
2172 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
2173
2174 if (likely(priv->extend_desc))
2175 desc = (struct dma_desc *)(priv->dma_etx + entry);
2176 else
2177 desc = priv->dma_tx + entry;
2178
2179 first = desc;
2180
2181 priv->tx_skbuff[first_entry] = skb;
2182
2183 enh_desc = priv->plat->enh_desc;
2184 /* To program the descriptors according to the size of the frame */
2185 if (enh_desc)
2186 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
2187
2188 if (unlikely(is_jumbo) && likely(priv->synopsys_id <
2189 DWMAC_CORE_4_00)) {
2190 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
2191 if (unlikely(entry < 0))
2192 goto dma_map_err;
2193 }
2194
2195 for (i = 0; i < nfrags; i++) {
2196 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2197 int len = skb_frag_size(frag);
2198 bool last_segment = (i == (nfrags - 1));
2199
2200 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2201
2202 if (likely(priv->extend_desc))
2203 desc = (struct dma_desc *)(priv->dma_etx + entry);
2204 else
2205 desc = priv->dma_tx + entry;
2206
2207 des = skb_frag_dma_map(priv->device, frag, 0, len,
2208 DMA_TO_DEVICE);
2209 if (dma_mapping_error(priv->device, des))
2210 goto dma_map_err; /* should reuse desc w/o issues */
2211
2212 priv->tx_skbuff[entry] = NULL;
2213
2214 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2215 desc->des0 = des;
2216 priv->tx_skbuff_dma[entry].buf = desc->des0;
2217 } else {
2218 desc->des2 = des;
2219 priv->tx_skbuff_dma[entry].buf = desc->des2;
2220 }
2221
2222 priv->tx_skbuff_dma[entry].map_as_page = true;
2223 priv->tx_skbuff_dma[entry].len = len;
2224 priv->tx_skbuff_dma[entry].last_segment = last_segment;
2225
2226 /* Prepare the descriptor and set the own bit too */
2227 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2228 priv->mode, 1, last_segment);
2229 }
2230
2231 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2232
2233 priv->cur_tx = entry;
2234
2235 if (netif_msg_pktdata(priv)) {
2236 void *tx_head;
2237
2238 pr_debug("%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
2239 __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2240 entry, first, nfrags);
2241
2242 if (priv->extend_desc)
2243 tx_head = (void *)priv->dma_etx;
2244 else
2245 tx_head = (void *)priv->dma_tx;
2246
2247 priv->hw->desc->display_ring(tx_head, DMA_TX_SIZE, false);
2248
2249 pr_debug(">>> frame to be transmitted: ");
2250 print_pkt(skb->data, skb->len);
2251 }
2252
2253 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2254 if (netif_msg_hw(priv))
2255 pr_debug("%s: stop transmitted packets\n", __func__);
2256 netif_stop_queue(dev);
2257 }
2258
2259 dev->stats.tx_bytes += skb->len;
2260
2261 /* According to the coalesce parameter the IC bit for the latest
2262 * segment is reset and the timer re-started to clean the tx status.
2263 * This approach takes care about the fragments: desc is the first
2264 * element in case of no SG.
2265 */
2266 priv->tx_count_frames += nfrags + 1;
2267 if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2268 mod_timer(&priv->txtimer,
2269 STMMAC_COAL_TIMER(priv->tx_coal_timer));
2270 } else {
2271 priv->tx_count_frames = 0;
2272 priv->hw->desc->set_tx_ic(desc);
2273 priv->xstats.tx_set_ic_bit++;
2274 }
2275
2276 if (!priv->hwts_tx_en)
2277 skb_tx_timestamp(skb);
2278
2279 /* Ready to fill the first descriptor and set the OWN bit w/o any
2280 * problems because all the descriptors are actually ready to be
2281 * passed to the DMA engine.
2282 */
2283 if (likely(!is_jumbo)) {
2284 bool last_segment = (nfrags == 0);
2285
2286 des = dma_map_single(priv->device, skb->data,
2287 nopaged_len, DMA_TO_DEVICE);
2288 if (dma_mapping_error(priv->device, des))
2289 goto dma_map_err;
2290
2291 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2292 first->des0 = des;
2293 priv->tx_skbuff_dma[first_entry].buf = first->des0;
2294 } else {
2295 first->des2 = des;
2296 priv->tx_skbuff_dma[first_entry].buf = first->des2;
2297 }
2298
2299 priv->tx_skbuff_dma[first_entry].len = nopaged_len;
2300 priv->tx_skbuff_dma[first_entry].last_segment = last_segment;
2301
2302 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2303 priv->hwts_tx_en)) {
2304 /* declare that device is doing timestamping */
2305 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2306 priv->hw->desc->enable_tx_timestamp(first);
2307 }
2308
2309 /* Prepare the first descriptor setting the OWN bit too */
2310 priv->hw->desc->prepare_tx_desc(first, 1, nopaged_len,
2311 csum_insertion, priv->mode, 1,
2312 last_segment);
2313
2314 /* The own bit must be the latest setting done when prepare the
2315 * descriptor and then barrier is needed to make sure that
2316 * all is coherent before granting the DMA engine.
2317 */
2318 smp_wmb();
2319 }
2320
2321 netdev_sent_queue(dev, skb->len);
2322
2323 if (priv->synopsys_id < DWMAC_CORE_4_00)
2324 priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2325 else
2326 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2327 STMMAC_CHAN0);
2328
2329 spin_unlock(&priv->tx_lock);
2330 return NETDEV_TX_OK;
2331
2332 dma_map_err:
2333 spin_unlock(&priv->tx_lock);
2334 dev_err(priv->device, "Tx dma map failed\n");
2335 dev_kfree_skb(skb);
2336 priv->dev->stats.tx_dropped++;
2337 return NETDEV_TX_OK;
2338 }
2339
2340 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2341 {
2342 struct ethhdr *ehdr;
2343 u16 vlanid;
2344
2345 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2346 NETIF_F_HW_VLAN_CTAG_RX &&
2347 !__vlan_get_tag(skb, &vlanid)) {
2348 /* pop the vlan tag */
2349 ehdr = (struct ethhdr *)skb->data;
2350 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2351 skb_pull(skb, VLAN_HLEN);
2352 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2353 }
2354 }
2355
2356
2357 static inline int stmmac_rx_threshold_count(struct stmmac_priv *priv)
2358 {
2359 if (priv->rx_zeroc_thresh < STMMAC_RX_THRESH)
2360 return 0;
2361
2362 return 1;
2363 }
2364
2365 /**
2366 * stmmac_rx_refill - refill used skb preallocated buffers
2367 * @priv: driver private structure
2368 * Description : this is to reallocate the skb for the reception process
2369 * that is based on zero-copy.
2370 */
2371 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2372 {
2373 int bfsize = priv->dma_buf_sz;
2374 unsigned int entry = priv->dirty_rx;
2375 int dirty = stmmac_rx_dirty(priv);
2376
2377 while (dirty-- > 0) {
2378 struct dma_desc *p;
2379
2380 if (priv->extend_desc)
2381 p = (struct dma_desc *)(priv->dma_erx + entry);
2382 else
2383 p = priv->dma_rx + entry;
2384
2385 if (likely(priv->rx_skbuff[entry] == NULL)) {
2386 struct sk_buff *skb;
2387
2388 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2389 if (unlikely(!skb)) {
2390 /* so for a while no zero-copy! */
2391 priv->rx_zeroc_thresh = STMMAC_RX_THRESH;
2392 if (unlikely(net_ratelimit()))
2393 dev_err(priv->device,
2394 "fail to alloc skb entry %d\n",
2395 entry);
2396 break;
2397 }
2398
2399 priv->rx_skbuff[entry] = skb;
2400 priv->rx_skbuff_dma[entry] =
2401 dma_map_single(priv->device, skb->data, bfsize,
2402 DMA_FROM_DEVICE);
2403 if (dma_mapping_error(priv->device,
2404 priv->rx_skbuff_dma[entry])) {
2405 dev_err(priv->device, "Rx dma map failed\n");
2406 dev_kfree_skb(skb);
2407 break;
2408 }
2409
2410 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2411 p->des0 = priv->rx_skbuff_dma[entry];
2412 p->des1 = 0;
2413 } else {
2414 p->des2 = priv->rx_skbuff_dma[entry];
2415 }
2416 if (priv->hw->mode->refill_desc3)
2417 priv->hw->mode->refill_desc3(priv, p);
2418
2419 if (priv->rx_zeroc_thresh > 0)
2420 priv->rx_zeroc_thresh--;
2421
2422 if (netif_msg_rx_status(priv))
2423 pr_debug("\trefill entry #%d\n", entry);
2424 }
2425 wmb();
2426
2427 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2428 priv->hw->desc->init_rx_desc(p, priv->use_riwt, 0, 0);
2429 else
2430 priv->hw->desc->set_rx_owner(p);
2431
2432 wmb();
2433
2434 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
2435 }
2436 priv->dirty_rx = entry;
2437 }
2438
2439 /**
2440 * stmmac_rx - manage the receive process
2441 * @priv: driver private structure
2442 * @limit: napi bugget.
2443 * Description : this the function called by the napi poll method.
2444 * It gets all the frames inside the ring.
2445 */
2446 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2447 {
2448 unsigned int entry = priv->cur_rx;
2449 unsigned int next_entry;
2450 unsigned int count = 0;
2451 int coe = priv->hw->rx_csum;
2452
2453 if (netif_msg_rx_status(priv)) {
2454 void *rx_head;
2455
2456 pr_debug("%s: descriptor ring:\n", __func__);
2457 if (priv->extend_desc)
2458 rx_head = (void *)priv->dma_erx;
2459 else
2460 rx_head = (void *)priv->dma_rx;
2461
2462 priv->hw->desc->display_ring(rx_head, DMA_RX_SIZE, true);
2463 }
2464 while (count < limit) {
2465 int status;
2466 struct dma_desc *p;
2467
2468 if (priv->extend_desc)
2469 p = (struct dma_desc *)(priv->dma_erx + entry);
2470 else
2471 p = priv->dma_rx + entry;
2472
2473 /* read the status of the incoming frame */
2474 status = priv->hw->desc->rx_status(&priv->dev->stats,
2475 &priv->xstats, p);
2476 /* check if managed by the DMA otherwise go ahead */
2477 if (unlikely(status & dma_own))
2478 break;
2479
2480 count++;
2481
2482 priv->cur_rx = STMMAC_GET_ENTRY(priv->cur_rx, DMA_RX_SIZE);
2483 next_entry = priv->cur_rx;
2484
2485 if (priv->extend_desc)
2486 prefetch(priv->dma_erx + next_entry);
2487 else
2488 prefetch(priv->dma_rx + next_entry);
2489
2490 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2491 priv->hw->desc->rx_extended_status(&priv->dev->stats,
2492 &priv->xstats,
2493 priv->dma_erx +
2494 entry);
2495 if (unlikely(status == discard_frame)) {
2496 priv->dev->stats.rx_errors++;
2497 if (priv->hwts_rx_en && !priv->extend_desc) {
2498 /* DESC2 & DESC3 will be overwitten by device
2499 * with timestamp value, hence reinitialize
2500 * them in stmmac_rx_refill() function so that
2501 * device can reuse it.
2502 */
2503 priv->rx_skbuff[entry] = NULL;
2504 dma_unmap_single(priv->device,
2505 priv->rx_skbuff_dma[entry],
2506 priv->dma_buf_sz,
2507 DMA_FROM_DEVICE);
2508 }
2509 } else {
2510 struct sk_buff *skb;
2511 int frame_len;
2512 unsigned int des;
2513
2514 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2515 des = p->des0;
2516 else
2517 des = p->des2;
2518
2519 frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2520
2521 /* If frame length is greather than skb buffer size
2522 * (preallocated during init) then the packet is
2523 * ignored
2524 */
2525 if (frame_len > priv->dma_buf_sz) {
2526 pr_err("%s: len %d larger than size (%d)\n",
2527 priv->dev->name, frame_len,
2528 priv->dma_buf_sz);
2529 priv->dev->stats.rx_length_errors++;
2530 break;
2531 }
2532
2533 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2534 * Type frames (LLC/LLC-SNAP)
2535 */
2536 if (unlikely(status != llc_snap))
2537 frame_len -= ETH_FCS_LEN;
2538
2539 if (netif_msg_rx_status(priv)) {
2540 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2541 p, entry, des);
2542 if (frame_len > ETH_FRAME_LEN)
2543 pr_debug("\tframe size %d, COE: %d\n",
2544 frame_len, status);
2545 }
2546
2547 /* The zero-copy is always used for all the sizes
2548 * in case of GMAC4 because it needs
2549 * to refill the used descriptors, always.
2550 */
2551 if (unlikely(!priv->plat->has_gmac4 &&
2552 ((frame_len < priv->rx_copybreak) ||
2553 stmmac_rx_threshold_count(priv)))) {
2554 skb = netdev_alloc_skb_ip_align(priv->dev,
2555 frame_len);
2556 if (unlikely(!skb)) {
2557 if (net_ratelimit())
2558 dev_warn(priv->device,
2559 "packet dropped\n");
2560 priv->dev->stats.rx_dropped++;
2561 break;
2562 }
2563
2564 dma_sync_single_for_cpu(priv->device,
2565 priv->rx_skbuff_dma
2566 [entry], frame_len,
2567 DMA_FROM_DEVICE);
2568 skb_copy_to_linear_data(skb,
2569 priv->
2570 rx_skbuff[entry]->data,
2571 frame_len);
2572
2573 skb_put(skb, frame_len);
2574 dma_sync_single_for_device(priv->device,
2575 priv->rx_skbuff_dma
2576 [entry], frame_len,
2577 DMA_FROM_DEVICE);
2578 } else {
2579 skb = priv->rx_skbuff[entry];
2580 if (unlikely(!skb)) {
2581 pr_err("%s: Inconsistent Rx chain\n",
2582 priv->dev->name);
2583 priv->dev->stats.rx_dropped++;
2584 break;
2585 }
2586 prefetch(skb->data - NET_IP_ALIGN);
2587 priv->rx_skbuff[entry] = NULL;
2588 priv->rx_zeroc_thresh++;
2589
2590 skb_put(skb, frame_len);
2591 dma_unmap_single(priv->device,
2592 priv->rx_skbuff_dma[entry],
2593 priv->dma_buf_sz,
2594 DMA_FROM_DEVICE);
2595 }
2596
2597 stmmac_get_rx_hwtstamp(priv, entry, skb);
2598
2599 if (netif_msg_pktdata(priv)) {
2600 pr_debug("frame received (%dbytes)", frame_len);
2601 print_pkt(skb->data, frame_len);
2602 }
2603
2604 stmmac_rx_vlan(priv->dev, skb);
2605
2606 skb->protocol = eth_type_trans(skb, priv->dev);
2607
2608 if (unlikely(!coe))
2609 skb_checksum_none_assert(skb);
2610 else
2611 skb->ip_summed = CHECKSUM_UNNECESSARY;
2612
2613 napi_gro_receive(&priv->napi, skb);
2614
2615 priv->dev->stats.rx_packets++;
2616 priv->dev->stats.rx_bytes += frame_len;
2617 }
2618 entry = next_entry;
2619 }
2620
2621 stmmac_rx_refill(priv);
2622
2623 priv->xstats.rx_pkt_n += count;
2624
2625 return count;
2626 }
2627
2628 /**
2629 * stmmac_poll - stmmac poll method (NAPI)
2630 * @napi : pointer to the napi structure.
2631 * @budget : maximum number of packets that the current CPU can receive from
2632 * all interfaces.
2633 * Description :
2634 * To look at the incoming frames and clear the tx resources.
2635 */
2636 static int stmmac_poll(struct napi_struct *napi, int budget)
2637 {
2638 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2639 int work_done = 0;
2640
2641 priv->xstats.napi_poll++;
2642 stmmac_tx_clean(priv);
2643
2644 work_done = stmmac_rx(priv, budget);
2645 if (work_done < budget) {
2646 napi_complete(napi);
2647 stmmac_enable_dma_irq(priv);
2648 }
2649 return work_done;
2650 }
2651
2652 /**
2653 * stmmac_tx_timeout
2654 * @dev : Pointer to net device structure
2655 * Description: this function is called when a packet transmission fails to
2656 * complete within a reasonable time. The driver will mark the error in the
2657 * netdev structure and arrange for the device to be reset to a sane state
2658 * in order to transmit a new packet.
2659 */
2660 static void stmmac_tx_timeout(struct net_device *dev)
2661 {
2662 struct stmmac_priv *priv = netdev_priv(dev);
2663
2664 /* Clear Tx resources and restart transmitting again */
2665 stmmac_tx_err(priv);
2666 }
2667
2668 /**
2669 * stmmac_set_rx_mode - entry point for multicast addressing
2670 * @dev : pointer to the device structure
2671 * Description:
2672 * This function is a driver entry point which gets called by the kernel
2673 * whenever multicast addresses must be enabled/disabled.
2674 * Return value:
2675 * void.
2676 */
2677 static void stmmac_set_rx_mode(struct net_device *dev)
2678 {
2679 struct stmmac_priv *priv = netdev_priv(dev);
2680
2681 priv->hw->mac->set_filter(priv->hw, dev);
2682 }
2683
2684 /**
2685 * stmmac_change_mtu - entry point to change MTU size for the device.
2686 * @dev : device pointer.
2687 * @new_mtu : the new MTU size for the device.
2688 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
2689 * to drive packet transmission. Ethernet has an MTU of 1500 octets
2690 * (ETH_DATA_LEN). This value can be changed with ifconfig.
2691 * Return value:
2692 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2693 * file on failure.
2694 */
2695 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2696 {
2697 struct stmmac_priv *priv = netdev_priv(dev);
2698 int max_mtu;
2699
2700 if (netif_running(dev)) {
2701 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2702 return -EBUSY;
2703 }
2704
2705 if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
2706 max_mtu = JUMBO_LEN;
2707 else
2708 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2709
2710 if (priv->plat->maxmtu < max_mtu)
2711 max_mtu = priv->plat->maxmtu;
2712
2713 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2714 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2715 return -EINVAL;
2716 }
2717
2718 dev->mtu = new_mtu;
2719
2720 netdev_update_features(dev);
2721
2722 return 0;
2723 }
2724
2725 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2726 netdev_features_t features)
2727 {
2728 struct stmmac_priv *priv = netdev_priv(dev);
2729
2730 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2731 features &= ~NETIF_F_RXCSUM;
2732
2733 if (!priv->plat->tx_coe)
2734 features &= ~NETIF_F_CSUM_MASK;
2735
2736 /* Some GMAC devices have a bugged Jumbo frame support that
2737 * needs to have the Tx COE disabled for oversized frames
2738 * (due to limited buffer sizes). In this case we disable
2739 * the TX csum insertionin the TDES and not use SF.
2740 */
2741 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2742 features &= ~NETIF_F_CSUM_MASK;
2743
2744 /* Disable tso if asked by ethtool */
2745 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
2746 if (features & NETIF_F_TSO)
2747 priv->tso = true;
2748 else
2749 priv->tso = false;
2750 }
2751
2752 return features;
2753 }
2754
2755 static int stmmac_set_features(struct net_device *netdev,
2756 netdev_features_t features)
2757 {
2758 struct stmmac_priv *priv = netdev_priv(netdev);
2759
2760 /* Keep the COE Type in case of csum is supporting */
2761 if (features & NETIF_F_RXCSUM)
2762 priv->hw->rx_csum = priv->plat->rx_coe;
2763 else
2764 priv->hw->rx_csum = 0;
2765 /* No check needed because rx_coe has been set before and it will be
2766 * fixed in case of issue.
2767 */
2768 priv->hw->mac->rx_ipc(priv->hw);
2769
2770 return 0;
2771 }
2772
2773 /**
2774 * stmmac_interrupt - main ISR
2775 * @irq: interrupt number.
2776 * @dev_id: to pass the net device pointer.
2777 * Description: this is the main driver interrupt service routine.
2778 * It can call:
2779 * o DMA service routine (to manage incoming frame reception and transmission
2780 * status)
2781 * o Core interrupts to manage: remote wake-up, management counter, LPI
2782 * interrupts.
2783 */
2784 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2785 {
2786 struct net_device *dev = (struct net_device *)dev_id;
2787 struct stmmac_priv *priv = netdev_priv(dev);
2788
2789 if (priv->irq_wake)
2790 pm_wakeup_event(priv->device, 0);
2791
2792 if (unlikely(!dev)) {
2793 pr_err("%s: invalid dev pointer\n", __func__);
2794 return IRQ_NONE;
2795 }
2796
2797 /* To handle GMAC own interrupts */
2798 if ((priv->plat->has_gmac) || (priv->plat->has_gmac4)) {
2799 int status = priv->hw->mac->host_irq_status(priv->hw,
2800 &priv->xstats);
2801 if (unlikely(status)) {
2802 /* For LPI we need to save the tx status */
2803 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2804 priv->tx_path_in_lpi_mode = true;
2805 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2806 priv->tx_path_in_lpi_mode = false;
2807 if (status & CORE_IRQ_MTL_RX_OVERFLOW)
2808 priv->hw->dma->set_rx_tail_ptr(priv->ioaddr,
2809 priv->rx_tail_addr,
2810 STMMAC_CHAN0);
2811 }
2812 }
2813
2814 /* To handle DMA interrupts */
2815 stmmac_dma_interrupt(priv);
2816
2817 return IRQ_HANDLED;
2818 }
2819
2820 #ifdef CONFIG_NET_POLL_CONTROLLER
2821 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2822 * to allow network I/O with interrupts disabled.
2823 */
2824 static void stmmac_poll_controller(struct net_device *dev)
2825 {
2826 disable_irq(dev->irq);
2827 stmmac_interrupt(dev->irq, dev);
2828 enable_irq(dev->irq);
2829 }
2830 #endif
2831
2832 /**
2833 * stmmac_ioctl - Entry point for the Ioctl
2834 * @dev: Device pointer.
2835 * @rq: An IOCTL specefic structure, that can contain a pointer to
2836 * a proprietary structure used to pass information to the driver.
2837 * @cmd: IOCTL command
2838 * Description:
2839 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2840 */
2841 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2842 {
2843 struct stmmac_priv *priv = netdev_priv(dev);
2844 int ret = -EOPNOTSUPP;
2845
2846 if (!netif_running(dev))
2847 return -EINVAL;
2848
2849 switch (cmd) {
2850 case SIOCGMIIPHY:
2851 case SIOCGMIIREG:
2852 case SIOCSMIIREG:
2853 if (!priv->phydev)
2854 return -EINVAL;
2855 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2856 break;
2857 case SIOCSHWTSTAMP:
2858 ret = stmmac_hwtstamp_ioctl(dev, rq);
2859 break;
2860 default:
2861 break;
2862 }
2863
2864 return ret;
2865 }
2866
2867 #ifdef CONFIG_DEBUG_FS
2868 static struct dentry *stmmac_fs_dir;
2869
2870 static void sysfs_display_ring(void *head, int size, int extend_desc,
2871 struct seq_file *seq)
2872 {
2873 int i;
2874 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2875 struct dma_desc *p = (struct dma_desc *)head;
2876
2877 for (i = 0; i < size; i++) {
2878 u64 x;
2879 if (extend_desc) {
2880 x = *(u64 *) ep;
2881 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2882 i, (unsigned int)virt_to_phys(ep),
2883 ep->basic.des0, ep->basic.des1,
2884 ep->basic.des2, ep->basic.des3);
2885 ep++;
2886 } else {
2887 x = *(u64 *) p;
2888 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2889 i, (unsigned int)virt_to_phys(ep),
2890 p->des0, p->des1, p->des2, p->des3);
2891 p++;
2892 }
2893 seq_printf(seq, "\n");
2894 }
2895 }
2896
2897 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2898 {
2899 struct net_device *dev = seq->private;
2900 struct stmmac_priv *priv = netdev_priv(dev);
2901
2902 if (priv->extend_desc) {
2903 seq_printf(seq, "Extended RX descriptor ring:\n");
2904 sysfs_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1, seq);
2905 seq_printf(seq, "Extended TX descriptor ring:\n");
2906 sysfs_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1, seq);
2907 } else {
2908 seq_printf(seq, "RX descriptor ring:\n");
2909 sysfs_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0, seq);
2910 seq_printf(seq, "TX descriptor ring:\n");
2911 sysfs_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0, seq);
2912 }
2913
2914 return 0;
2915 }
2916
2917 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2918 {
2919 return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2920 }
2921
2922 static const struct file_operations stmmac_rings_status_fops = {
2923 .owner = THIS_MODULE,
2924 .open = stmmac_sysfs_ring_open,
2925 .read = seq_read,
2926 .llseek = seq_lseek,
2927 .release = single_release,
2928 };
2929
2930 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2931 {
2932 struct net_device *dev = seq->private;
2933 struct stmmac_priv *priv = netdev_priv(dev);
2934
2935 if (!priv->hw_cap_support) {
2936 seq_printf(seq, "DMA HW features not supported\n");
2937 return 0;
2938 }
2939
2940 seq_printf(seq, "==============================\n");
2941 seq_printf(seq, "\tDMA HW features\n");
2942 seq_printf(seq, "==============================\n");
2943
2944 seq_printf(seq, "\t10/100 Mbps %s\n",
2945 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2946 seq_printf(seq, "\t1000 Mbps %s\n",
2947 (priv->dma_cap.mbps_1000) ? "Y" : "N");
2948 seq_printf(seq, "\tHalf duple %s\n",
2949 (priv->dma_cap.half_duplex) ? "Y" : "N");
2950 seq_printf(seq, "\tHash Filter: %s\n",
2951 (priv->dma_cap.hash_filter) ? "Y" : "N");
2952 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2953 (priv->dma_cap.multi_addr) ? "Y" : "N");
2954 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2955 (priv->dma_cap.pcs) ? "Y" : "N");
2956 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2957 (priv->dma_cap.sma_mdio) ? "Y" : "N");
2958 seq_printf(seq, "\tPMT Remote wake up: %s\n",
2959 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2960 seq_printf(seq, "\tPMT Magic Frame: %s\n",
2961 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2962 seq_printf(seq, "\tRMON module: %s\n",
2963 (priv->dma_cap.rmon) ? "Y" : "N");
2964 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2965 (priv->dma_cap.time_stamp) ? "Y" : "N");
2966 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2967 (priv->dma_cap.atime_stamp) ? "Y" : "N");
2968 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2969 (priv->dma_cap.eee) ? "Y" : "N");
2970 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2971 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2972 (priv->dma_cap.tx_coe) ? "Y" : "N");
2973 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
2974 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
2975 (priv->dma_cap.rx_coe) ? "Y" : "N");
2976 } else {
2977 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2978 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2979 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2980 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2981 }
2982 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2983 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2984 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2985 priv->dma_cap.number_rx_channel);
2986 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2987 priv->dma_cap.number_tx_channel);
2988 seq_printf(seq, "\tEnhanced descriptors: %s\n",
2989 (priv->dma_cap.enh_desc) ? "Y" : "N");
2990
2991 return 0;
2992 }
2993
2994 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2995 {
2996 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2997 }
2998
2999 static const struct file_operations stmmac_dma_cap_fops = {
3000 .owner = THIS_MODULE,
3001 .open = stmmac_sysfs_dma_cap_open,
3002 .read = seq_read,
3003 .llseek = seq_lseek,
3004 .release = single_release,
3005 };
3006
3007 static int stmmac_init_fs(struct net_device *dev)
3008 {
3009 struct stmmac_priv *priv = netdev_priv(dev);
3010
3011 /* Create per netdev entries */
3012 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
3013
3014 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3015 pr_err("ERROR %s/%s, debugfs create directory failed\n",
3016 STMMAC_RESOURCE_NAME, dev->name);
3017
3018 return -ENOMEM;
3019 }
3020
3021 /* Entry to report DMA RX/TX rings */
3022 priv->dbgfs_rings_status =
3023 debugfs_create_file("descriptors_status", S_IRUGO,
3024 priv->dbgfs_dir, dev,
3025 &stmmac_rings_status_fops);
3026
3027 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
3028 pr_info("ERROR creating stmmac ring debugfs file\n");
3029 debugfs_remove_recursive(priv->dbgfs_dir);
3030
3031 return -ENOMEM;
3032 }
3033
3034 /* Entry to report the DMA HW features */
3035 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
3036 priv->dbgfs_dir,
3037 dev, &stmmac_dma_cap_fops);
3038
3039 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
3040 pr_info("ERROR creating stmmac MMC debugfs file\n");
3041 debugfs_remove_recursive(priv->dbgfs_dir);
3042
3043 return -ENOMEM;
3044 }
3045
3046 return 0;
3047 }
3048
3049 static void stmmac_exit_fs(struct net_device *dev)
3050 {
3051 struct stmmac_priv *priv = netdev_priv(dev);
3052
3053 debugfs_remove_recursive(priv->dbgfs_dir);
3054 }
3055 #endif /* CONFIG_DEBUG_FS */
3056
3057 static const struct net_device_ops stmmac_netdev_ops = {
3058 .ndo_open = stmmac_open,
3059 .ndo_start_xmit = stmmac_xmit,
3060 .ndo_stop = stmmac_release,
3061 .ndo_change_mtu = stmmac_change_mtu,
3062 .ndo_fix_features = stmmac_fix_features,
3063 .ndo_set_features = stmmac_set_features,
3064 .ndo_set_rx_mode = stmmac_set_rx_mode,
3065 .ndo_tx_timeout = stmmac_tx_timeout,
3066 .ndo_do_ioctl = stmmac_ioctl,
3067 #ifdef CONFIG_NET_POLL_CONTROLLER
3068 .ndo_poll_controller = stmmac_poll_controller,
3069 #endif
3070 .ndo_set_mac_address = eth_mac_addr,
3071 };
3072
3073 /**
3074 * stmmac_hw_init - Init the MAC device
3075 * @priv: driver private structure
3076 * Description: this function is to configure the MAC device according to
3077 * some platform parameters or the HW capability register. It prepares the
3078 * driver to use either ring or chain modes and to setup either enhanced or
3079 * normal descriptors.
3080 */
3081 static int stmmac_hw_init(struct stmmac_priv *priv)
3082 {
3083 struct mac_device_info *mac;
3084
3085 /* Identify the MAC HW device */
3086 if (priv->plat->has_gmac) {
3087 priv->dev->priv_flags |= IFF_UNICAST_FLT;
3088 mac = dwmac1000_setup(priv->ioaddr,
3089 priv->plat->multicast_filter_bins,
3090 priv->plat->unicast_filter_entries,
3091 &priv->synopsys_id);
3092 } else if (priv->plat->has_gmac4) {
3093 priv->dev->priv_flags |= IFF_UNICAST_FLT;
3094 mac = dwmac4_setup(priv->ioaddr,
3095 priv->plat->multicast_filter_bins,
3096 priv->plat->unicast_filter_entries,
3097 &priv->synopsys_id);
3098 } else {
3099 mac = dwmac100_setup(priv->ioaddr, &priv->synopsys_id);
3100 }
3101 if (!mac)
3102 return -ENOMEM;
3103
3104 priv->hw = mac;
3105
3106 /* To use the chained or ring mode */
3107 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3108 priv->hw->mode = &dwmac4_ring_mode_ops;
3109 } else {
3110 if (chain_mode) {
3111 priv->hw->mode = &chain_mode_ops;
3112 pr_info(" Chain mode enabled\n");
3113 priv->mode = STMMAC_CHAIN_MODE;
3114 } else {
3115 priv->hw->mode = &ring_mode_ops;
3116 pr_info(" Ring mode enabled\n");
3117 priv->mode = STMMAC_RING_MODE;
3118 }
3119 }
3120
3121 /* Get the HW capability (new GMAC newer than 3.50a) */
3122 priv->hw_cap_support = stmmac_get_hw_features(priv);
3123 if (priv->hw_cap_support) {
3124 pr_info(" DMA HW capability register supported");
3125
3126 /* We can override some gmac/dma configuration fields: e.g.
3127 * enh_desc, tx_coe (e.g. that are passed through the
3128 * platform) with the values from the HW capability
3129 * register (if supported).
3130 */
3131 priv->plat->enh_desc = priv->dma_cap.enh_desc;
3132 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
3133
3134 /* TXCOE doesn't work in thresh DMA mode */
3135 if (priv->plat->force_thresh_dma_mode)
3136 priv->plat->tx_coe = 0;
3137 else
3138 priv->plat->tx_coe = priv->dma_cap.tx_coe;
3139
3140 /* In case of GMAC4 rx_coe is from HW cap register. */
3141 priv->plat->rx_coe = priv->dma_cap.rx_coe;
3142
3143 if (priv->dma_cap.rx_coe_type2)
3144 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
3145 else if (priv->dma_cap.rx_coe_type1)
3146 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
3147
3148 } else
3149 pr_info(" No HW DMA feature register supported");
3150
3151 /* To use alternate (extended), normal or GMAC4 descriptor structures */
3152 if (priv->synopsys_id >= DWMAC_CORE_4_00)
3153 priv->hw->desc = &dwmac4_desc_ops;
3154 else
3155 stmmac_selec_desc_mode(priv);
3156
3157 if (priv->plat->rx_coe) {
3158 priv->hw->rx_csum = priv->plat->rx_coe;
3159 pr_info(" RX Checksum Offload Engine supported\n");
3160 if (priv->synopsys_id < DWMAC_CORE_4_00)
3161 pr_info("\tCOE Type %d\n", priv->hw->rx_csum);
3162 }
3163 if (priv->plat->tx_coe)
3164 pr_info(" TX Checksum insertion supported\n");
3165
3166 if (priv->plat->pmt) {
3167 pr_info(" Wake-Up On Lan supported\n");
3168 device_set_wakeup_capable(priv->device, 1);
3169 }
3170
3171 if (priv->dma_cap.tsoen)
3172 pr_info(" TSO supported\n");
3173
3174 return 0;
3175 }
3176
3177 /**
3178 * stmmac_dvr_probe
3179 * @device: device pointer
3180 * @plat_dat: platform data pointer
3181 * @res: stmmac resource pointer
3182 * Description: this is the main probe function used to
3183 * call the alloc_etherdev, allocate the priv structure.
3184 * Return:
3185 * returns 0 on success, otherwise errno.
3186 */
3187 int stmmac_dvr_probe(struct device *device,
3188 struct plat_stmmacenet_data *plat_dat,
3189 struct stmmac_resources *res)
3190 {
3191 int ret = 0;
3192 struct net_device *ndev = NULL;
3193 struct stmmac_priv *priv;
3194
3195 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
3196 if (!ndev)
3197 return -ENOMEM;
3198
3199 SET_NETDEV_DEV(ndev, device);
3200
3201 priv = netdev_priv(ndev);
3202 priv->device = device;
3203 priv->dev = ndev;
3204
3205 stmmac_set_ethtool_ops(ndev);
3206 priv->pause = pause;
3207 priv->plat = plat_dat;
3208 priv->ioaddr = res->addr;
3209 priv->dev->base_addr = (unsigned long)res->addr;
3210
3211 priv->dev->irq = res->irq;
3212 priv->wol_irq = res->wol_irq;
3213 priv->lpi_irq = res->lpi_irq;
3214
3215 if (res->mac)
3216 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
3217
3218 dev_set_drvdata(device, priv->dev);
3219
3220 /* Verify driver arguments */
3221 stmmac_verify_args();
3222
3223 /* Override with kernel parameters if supplied XXX CRS XXX
3224 * this needs to have multiple instances
3225 */
3226 if ((phyaddr >= 0) && (phyaddr <= 31))
3227 priv->plat->phy_addr = phyaddr;
3228
3229 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
3230 if (IS_ERR(priv->stmmac_clk)) {
3231 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
3232 __func__);
3233 /* If failed to obtain stmmac_clk and specific clk_csr value
3234 * is NOT passed from the platform, probe fail.
3235 */
3236 if (!priv->plat->clk_csr) {
3237 ret = PTR_ERR(priv->stmmac_clk);
3238 goto error_clk_get;
3239 } else {
3240 priv->stmmac_clk = NULL;
3241 }
3242 }
3243 clk_prepare_enable(priv->stmmac_clk);
3244
3245 priv->pclk = devm_clk_get(priv->device, "pclk");
3246 if (IS_ERR(priv->pclk)) {
3247 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
3248 ret = -EPROBE_DEFER;
3249 goto error_pclk_get;
3250 }
3251 priv->pclk = NULL;
3252 }
3253 clk_prepare_enable(priv->pclk);
3254
3255 priv->stmmac_rst = devm_reset_control_get(priv->device,
3256 STMMAC_RESOURCE_NAME);
3257 if (IS_ERR(priv->stmmac_rst)) {
3258 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
3259 ret = -EPROBE_DEFER;
3260 goto error_hw_init;
3261 }
3262 dev_info(priv->device, "no reset control found\n");
3263 priv->stmmac_rst = NULL;
3264 }
3265 if (priv->stmmac_rst)
3266 reset_control_deassert(priv->stmmac_rst);
3267
3268 /* Init MAC and get the capabilities */
3269 ret = stmmac_hw_init(priv);
3270 if (ret)
3271 goto error_hw_init;
3272
3273 ndev->netdev_ops = &stmmac_netdev_ops;
3274
3275 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3276 NETIF_F_RXCSUM;
3277
3278 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3279 ndev->hw_features |= NETIF_F_TSO;
3280 priv->tso = true;
3281 pr_info(" TSO feature enabled\n");
3282 }
3283 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
3284 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
3285 #ifdef STMMAC_VLAN_TAG_USED
3286 /* Both mac100 and gmac support receive VLAN tag detection */
3287 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3288 #endif
3289 priv->msg_enable = netif_msg_init(debug, default_msg_level);
3290
3291 if (flow_ctrl)
3292 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
3293
3294 /* Rx Watchdog is available in the COREs newer than the 3.40.
3295 * In some case, for example on bugged HW this feature
3296 * has to be disable and this can be done by passing the
3297 * riwt_off field from the platform.
3298 */
3299 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
3300 priv->use_riwt = 1;
3301 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
3302 }
3303
3304 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
3305
3306 spin_lock_init(&priv->lock);
3307 spin_lock_init(&priv->tx_lock);
3308
3309 ret = register_netdev(ndev);
3310 if (ret) {
3311 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
3312 goto error_netdev_register;
3313 }
3314
3315 /* If a specific clk_csr value is passed from the platform
3316 * this means that the CSR Clock Range selection cannot be
3317 * changed at run-time and it is fixed. Viceversa the driver'll try to
3318 * set the MDC clock dynamically according to the csr actual
3319 * clock input.
3320 */
3321 if (!priv->plat->clk_csr)
3322 stmmac_clk_csr_set(priv);
3323 else
3324 priv->clk_csr = priv->plat->clk_csr;
3325
3326 stmmac_check_pcs_mode(priv);
3327
3328 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3329 priv->pcs != STMMAC_PCS_RTBI) {
3330 /* MDIO bus Registration */
3331 ret = stmmac_mdio_register(ndev);
3332 if (ret < 0) {
3333 pr_debug("%s: MDIO bus (id: %d) registration failed",
3334 __func__, priv->plat->bus_id);
3335 goto error_mdio_register;
3336 }
3337 }
3338
3339 return 0;
3340
3341 error_mdio_register:
3342 unregister_netdev(ndev);
3343 error_netdev_register:
3344 netif_napi_del(&priv->napi);
3345 error_hw_init:
3346 clk_disable_unprepare(priv->pclk);
3347 error_pclk_get:
3348 clk_disable_unprepare(priv->stmmac_clk);
3349 error_clk_get:
3350 free_netdev(ndev);
3351
3352 return ret;
3353 }
3354 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
3355
3356 /**
3357 * stmmac_dvr_remove
3358 * @dev: device pointer
3359 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
3360 * changes the link status, releases the DMA descriptor rings.
3361 */
3362 int stmmac_dvr_remove(struct device *dev)
3363 {
3364 struct net_device *ndev = dev_get_drvdata(dev);
3365 struct stmmac_priv *priv = netdev_priv(ndev);
3366
3367 pr_info("%s:\n\tremoving driver", __func__);
3368
3369 priv->hw->dma->stop_rx(priv->ioaddr);
3370 priv->hw->dma->stop_tx(priv->ioaddr);
3371
3372 stmmac_set_mac(priv->ioaddr, false);
3373 netif_carrier_off(ndev);
3374 unregister_netdev(ndev);
3375 if (priv->stmmac_rst)
3376 reset_control_assert(priv->stmmac_rst);
3377 clk_disable_unprepare(priv->pclk);
3378 clk_disable_unprepare(priv->stmmac_clk);
3379 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3380 priv->pcs != STMMAC_PCS_RTBI)
3381 stmmac_mdio_unregister(ndev);
3382 free_netdev(ndev);
3383
3384 return 0;
3385 }
3386 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3387
3388 /**
3389 * stmmac_suspend - suspend callback
3390 * @dev: device pointer
3391 * Description: this is the function to suspend the device and it is called
3392 * by the platform driver to stop the network queue, release the resources,
3393 * program the PMT register (for WoL), clean and release driver resources.
3394 */
3395 int stmmac_suspend(struct device *dev)
3396 {
3397 struct net_device *ndev = dev_get_drvdata(dev);
3398 struct stmmac_priv *priv = netdev_priv(ndev);
3399 unsigned long flags;
3400
3401 if (!ndev || !netif_running(ndev))
3402 return 0;
3403
3404 if (priv->phydev)
3405 phy_stop(priv->phydev);
3406
3407 spin_lock_irqsave(&priv->lock, flags);
3408
3409 netif_device_detach(ndev);
3410 netif_stop_queue(ndev);
3411
3412 napi_disable(&priv->napi);
3413
3414 /* Stop TX/RX DMA */
3415 priv->hw->dma->stop_tx(priv->ioaddr);
3416 priv->hw->dma->stop_rx(priv->ioaddr);
3417
3418 /* Enable Power down mode by programming the PMT regs */
3419 if (device_may_wakeup(priv->device)) {
3420 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3421 priv->irq_wake = 1;
3422 } else {
3423 stmmac_set_mac(priv->ioaddr, false);
3424 pinctrl_pm_select_sleep_state(priv->device);
3425 /* Disable clock in case of PWM is off */
3426 clk_disable(priv->pclk);
3427 clk_disable(priv->stmmac_clk);
3428 }
3429 spin_unlock_irqrestore(&priv->lock, flags);
3430
3431 priv->oldlink = 0;
3432 priv->speed = 0;
3433 priv->oldduplex = -1;
3434 return 0;
3435 }
3436 EXPORT_SYMBOL_GPL(stmmac_suspend);
3437
3438 /**
3439 * stmmac_resume - resume callback
3440 * @dev: device pointer
3441 * Description: when resume this function is invoked to setup the DMA and CORE
3442 * in a usable state.
3443 */
3444 int stmmac_resume(struct device *dev)
3445 {
3446 struct net_device *ndev = dev_get_drvdata(dev);
3447 struct stmmac_priv *priv = netdev_priv(ndev);
3448 unsigned long flags;
3449
3450 if (!netif_running(ndev))
3451 return 0;
3452
3453 spin_lock_irqsave(&priv->lock, flags);
3454
3455 /* Power Down bit, into the PM register, is cleared
3456 * automatically as soon as a magic packet or a Wake-up frame
3457 * is received. Anyway, it's better to manually clear
3458 * this bit because it can generate problems while resuming
3459 * from another devices (e.g. serial console).
3460 */
3461 if (device_may_wakeup(priv->device)) {
3462 priv->hw->mac->pmt(priv->hw, 0);
3463 priv->irq_wake = 0;
3464 } else {
3465 pinctrl_pm_select_default_state(priv->device);
3466 /* enable the clk prevously disabled */
3467 clk_enable(priv->stmmac_clk);
3468 clk_enable(priv->pclk);
3469 /* reset the phy so that it's ready */
3470 if (priv->mii)
3471 stmmac_mdio_reset(priv->mii);
3472 }
3473
3474 netif_device_attach(ndev);
3475
3476 priv->cur_rx = 0;
3477 priv->dirty_rx = 0;
3478 priv->dirty_tx = 0;
3479 priv->cur_tx = 0;
3480 /* reset private mss value to force mss context settings at
3481 * next tso xmit (only used for gmac4).
3482 */
3483 priv->mss = 0;
3484
3485 stmmac_clear_descriptors(priv);
3486
3487 stmmac_hw_setup(ndev, false);
3488 stmmac_init_tx_coalesce(priv);
3489 stmmac_set_rx_mode(ndev);
3490
3491 napi_enable(&priv->napi);
3492
3493 netif_start_queue(ndev);
3494
3495 spin_unlock_irqrestore(&priv->lock, flags);
3496
3497 if (priv->phydev)
3498 phy_start(priv->phydev);
3499
3500 return 0;
3501 }
3502 EXPORT_SYMBOL_GPL(stmmac_resume);
3503
3504 #ifndef MODULE
3505 static int __init stmmac_cmdline_opt(char *str)
3506 {
3507 char *opt;
3508
3509 if (!str || !*str)
3510 return -EINVAL;
3511 while ((opt = strsep(&str, ",")) != NULL) {
3512 if (!strncmp(opt, "debug:", 6)) {
3513 if (kstrtoint(opt + 6, 0, &debug))
3514 goto err;
3515 } else if (!strncmp(opt, "phyaddr:", 8)) {
3516 if (kstrtoint(opt + 8, 0, &phyaddr))
3517 goto err;
3518 } else if (!strncmp(opt, "buf_sz:", 7)) {
3519 if (kstrtoint(opt + 7, 0, &buf_sz))
3520 goto err;
3521 } else if (!strncmp(opt, "tc:", 3)) {
3522 if (kstrtoint(opt + 3, 0, &tc))
3523 goto err;
3524 } else if (!strncmp(opt, "watchdog:", 9)) {
3525 if (kstrtoint(opt + 9, 0, &watchdog))
3526 goto err;
3527 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3528 if (kstrtoint(opt + 10, 0, &flow_ctrl))
3529 goto err;
3530 } else if (!strncmp(opt, "pause:", 6)) {
3531 if (kstrtoint(opt + 6, 0, &pause))
3532 goto err;
3533 } else if (!strncmp(opt, "eee_timer:", 10)) {
3534 if (kstrtoint(opt + 10, 0, &eee_timer))
3535 goto err;
3536 } else if (!strncmp(opt, "chain_mode:", 11)) {
3537 if (kstrtoint(opt + 11, 0, &chain_mode))
3538 goto err;
3539 }
3540 }
3541 return 0;
3542
3543 err:
3544 pr_err("%s: ERROR broken module parameter conversion", __func__);
3545 return -EINVAL;
3546 }
3547
3548 __setup("stmmaceth=", stmmac_cmdline_opt);
3549 #endif /* MODULE */
3550
3551 static int __init stmmac_init(void)
3552 {
3553 #ifdef CONFIG_DEBUG_FS
3554 /* Create debugfs main directory if it doesn't exist yet */
3555 if (!stmmac_fs_dir) {
3556 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3557
3558 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3559 pr_err("ERROR %s, debugfs create directory failed\n",
3560 STMMAC_RESOURCE_NAME);
3561
3562 return -ENOMEM;
3563 }
3564 }
3565 #endif
3566
3567 return 0;
3568 }
3569
3570 static void __exit stmmac_exit(void)
3571 {
3572 #ifdef CONFIG_DEBUG_FS
3573 debugfs_remove_recursive(stmmac_fs_dir);
3574 #endif
3575 }
3576
3577 module_init(stmmac_init)
3578 module_exit(stmmac_exit)
3579
3580 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3581 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3582 MODULE_LICENSE("GPL");
This page took 0.16593 seconds and 5 git commands to generate.