drivers/net: Remove alloc_etherdev error messages
[deliverable/linux.git] / drivers / net / ethernet / sun / cassini.c
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2 *
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19 * 02111-1307, USA.
20 *
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
23 *
24 * The cassini chip has a number of features that distinguish it from
25 * the gem chip:
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
33 *
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
37 * on them.
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
40 * to make them happy.
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
46 * the page.
47 *
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
50 *
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targeted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
56 * ioctl.
57 *
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
64 * instead.
65 *
66 * by default, the selective clear mask is set up to process rx packets.
67 */
68
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/interrupt.h>
79 #include <linux/vmalloc.h>
80 #include <linux/ioport.h>
81 #include <linux/pci.h>
82 #include <linux/mm.h>
83 #include <linux/highmem.h>
84 #include <linux/list.h>
85 #include <linux/dma-mapping.h>
86
87 #include <linux/netdevice.h>
88 #include <linux/etherdevice.h>
89 #include <linux/skbuff.h>
90 #include <linux/ethtool.h>
91 #include <linux/crc32.h>
92 #include <linux/random.h>
93 #include <linux/mii.h>
94 #include <linux/ip.h>
95 #include <linux/tcp.h>
96 #include <linux/mutex.h>
97 #include <linux/firmware.h>
98
99 #include <net/checksum.h>
100
101 #include <linux/atomic.h>
102 #include <asm/system.h>
103 #include <asm/io.h>
104 #include <asm/byteorder.h>
105 #include <asm/uaccess.h>
106
107 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
108 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
109 #define CAS_NCPUS num_online_cpus()
110
111 #define cas_skb_release(x) netif_rx(x)
112
113 /* select which firmware to use */
114 #define USE_HP_WORKAROUND
115 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
116 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
117
118 #include "cassini.h"
119
120 #define USE_TX_COMPWB /* use completion writeback registers */
121 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
122 #define USE_RX_BLANK /* hw interrupt mitigation */
123 #undef USE_ENTROPY_DEV /* don't test for entropy device */
124
125 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
126 * also, we need to make cp->lock finer-grained.
127 */
128 #undef USE_PCI_INTB
129 #undef USE_PCI_INTC
130 #undef USE_PCI_INTD
131 #undef USE_QOS
132
133 #undef USE_VPD_DEBUG /* debug vpd information if defined */
134
135 /* rx processing options */
136 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
137 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
138 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
139 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
140 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
141
142 #define DRV_MODULE_NAME "cassini"
143 #define DRV_MODULE_VERSION "1.6"
144 #define DRV_MODULE_RELDATE "21 May 2008"
145
146 #define CAS_DEF_MSG_ENABLE \
147 (NETIF_MSG_DRV | \
148 NETIF_MSG_PROBE | \
149 NETIF_MSG_LINK | \
150 NETIF_MSG_TIMER | \
151 NETIF_MSG_IFDOWN | \
152 NETIF_MSG_IFUP | \
153 NETIF_MSG_RX_ERR | \
154 NETIF_MSG_TX_ERR)
155
156 /* length of time before we decide the hardware is borked,
157 * and dev->tx_timeout() should be called to fix the problem
158 */
159 #define CAS_TX_TIMEOUT (HZ)
160 #define CAS_LINK_TIMEOUT (22*HZ/10)
161 #define CAS_LINK_FAST_TIMEOUT (1)
162
163 /* timeout values for state changing. these specify the number
164 * of 10us delays to be used before giving up.
165 */
166 #define STOP_TRIES_PHY 1000
167 #define STOP_TRIES 5000
168
169 /* specify a minimum frame size to deal with some fifo issues
170 * max mtu == 2 * page size - ethernet header - 64 - swivel =
171 * 2 * page_size - 0x50
172 */
173 #define CAS_MIN_FRAME 97
174 #define CAS_1000MB_MIN_FRAME 255
175 #define CAS_MIN_MTU 60
176 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
177
178 #if 1
179 /*
180 * Eliminate these and use separate atomic counters for each, to
181 * avoid a race condition.
182 */
183 #else
184 #define CAS_RESET_MTU 1
185 #define CAS_RESET_ALL 2
186 #define CAS_RESET_SPARE 3
187 #endif
188
189 static char version[] __devinitdata =
190 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
191
192 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
193 static int link_mode;
194
195 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
196 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
197 MODULE_LICENSE("GPL");
198 MODULE_FIRMWARE("sun/cassini.bin");
199 module_param(cassini_debug, int, 0);
200 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
201 module_param(link_mode, int, 0);
202 MODULE_PARM_DESC(link_mode, "default link mode");
203
204 /*
205 * Work around for a PCS bug in which the link goes down due to the chip
206 * being confused and never showing a link status of "up."
207 */
208 #define DEFAULT_LINKDOWN_TIMEOUT 5
209 /*
210 * Value in seconds, for user input.
211 */
212 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
213 module_param(linkdown_timeout, int, 0);
214 MODULE_PARM_DESC(linkdown_timeout,
215 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
216
217 /*
218 * value in 'ticks' (units used by jiffies). Set when we init the
219 * module because 'HZ' in actually a function call on some flavors of
220 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
221 */
222 static int link_transition_timeout;
223
224
225
226 static u16 link_modes[] __devinitdata = {
227 BMCR_ANENABLE, /* 0 : autoneg */
228 0, /* 1 : 10bt half duplex */
229 BMCR_SPEED100, /* 2 : 100bt half duplex */
230 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
231 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
232 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
233 };
234
235 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = {
236 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
237 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
238 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
239 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
240 { 0, }
241 };
242
243 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
244
245 static void cas_set_link_modes(struct cas *cp);
246
247 static inline void cas_lock_tx(struct cas *cp)
248 {
249 int i;
250
251 for (i = 0; i < N_TX_RINGS; i++)
252 spin_lock(&cp->tx_lock[i]);
253 }
254
255 static inline void cas_lock_all(struct cas *cp)
256 {
257 spin_lock_irq(&cp->lock);
258 cas_lock_tx(cp);
259 }
260
261 /* WTZ: QA was finding deadlock problems with the previous
262 * versions after long test runs with multiple cards per machine.
263 * See if replacing cas_lock_all with safer versions helps. The
264 * symptoms QA is reporting match those we'd expect if interrupts
265 * aren't being properly restored, and we fixed a previous deadlock
266 * with similar symptoms by using save/restore versions in other
267 * places.
268 */
269 #define cas_lock_all_save(cp, flags) \
270 do { \
271 struct cas *xxxcp = (cp); \
272 spin_lock_irqsave(&xxxcp->lock, flags); \
273 cas_lock_tx(xxxcp); \
274 } while (0)
275
276 static inline void cas_unlock_tx(struct cas *cp)
277 {
278 int i;
279
280 for (i = N_TX_RINGS; i > 0; i--)
281 spin_unlock(&cp->tx_lock[i - 1]);
282 }
283
284 static inline void cas_unlock_all(struct cas *cp)
285 {
286 cas_unlock_tx(cp);
287 spin_unlock_irq(&cp->lock);
288 }
289
290 #define cas_unlock_all_restore(cp, flags) \
291 do { \
292 struct cas *xxxcp = (cp); \
293 cas_unlock_tx(xxxcp); \
294 spin_unlock_irqrestore(&xxxcp->lock, flags); \
295 } while (0)
296
297 static void cas_disable_irq(struct cas *cp, const int ring)
298 {
299 /* Make sure we won't get any more interrupts */
300 if (ring == 0) {
301 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
302 return;
303 }
304
305 /* disable completion interrupts and selectively mask */
306 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
307 switch (ring) {
308 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
309 #ifdef USE_PCI_INTB
310 case 1:
311 #endif
312 #ifdef USE_PCI_INTC
313 case 2:
314 #endif
315 #ifdef USE_PCI_INTD
316 case 3:
317 #endif
318 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
319 cp->regs + REG_PLUS_INTRN_MASK(ring));
320 break;
321 #endif
322 default:
323 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
324 REG_PLUS_INTRN_MASK(ring));
325 break;
326 }
327 }
328 }
329
330 static inline void cas_mask_intr(struct cas *cp)
331 {
332 int i;
333
334 for (i = 0; i < N_RX_COMP_RINGS; i++)
335 cas_disable_irq(cp, i);
336 }
337
338 static void cas_enable_irq(struct cas *cp, const int ring)
339 {
340 if (ring == 0) { /* all but TX_DONE */
341 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
342 return;
343 }
344
345 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
346 switch (ring) {
347 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
348 #ifdef USE_PCI_INTB
349 case 1:
350 #endif
351 #ifdef USE_PCI_INTC
352 case 2:
353 #endif
354 #ifdef USE_PCI_INTD
355 case 3:
356 #endif
357 writel(INTRN_MASK_RX_EN, cp->regs +
358 REG_PLUS_INTRN_MASK(ring));
359 break;
360 #endif
361 default:
362 break;
363 }
364 }
365 }
366
367 static inline void cas_unmask_intr(struct cas *cp)
368 {
369 int i;
370
371 for (i = 0; i < N_RX_COMP_RINGS; i++)
372 cas_enable_irq(cp, i);
373 }
374
375 static inline void cas_entropy_gather(struct cas *cp)
376 {
377 #ifdef USE_ENTROPY_DEV
378 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
379 return;
380
381 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
382 readl(cp->regs + REG_ENTROPY_IV),
383 sizeof(uint64_t)*8);
384 #endif
385 }
386
387 static inline void cas_entropy_reset(struct cas *cp)
388 {
389 #ifdef USE_ENTROPY_DEV
390 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
391 return;
392
393 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
394 cp->regs + REG_BIM_LOCAL_DEV_EN);
395 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
396 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
397
398 /* if we read back 0x0, we don't have an entropy device */
399 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
400 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
401 #endif
402 }
403
404 /* access to the phy. the following assumes that we've initialized the MIF to
405 * be in frame rather than bit-bang mode
406 */
407 static u16 cas_phy_read(struct cas *cp, int reg)
408 {
409 u32 cmd;
410 int limit = STOP_TRIES_PHY;
411
412 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
413 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
414 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
415 cmd |= MIF_FRAME_TURN_AROUND_MSB;
416 writel(cmd, cp->regs + REG_MIF_FRAME);
417
418 /* poll for completion */
419 while (limit-- > 0) {
420 udelay(10);
421 cmd = readl(cp->regs + REG_MIF_FRAME);
422 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
423 return cmd & MIF_FRAME_DATA_MASK;
424 }
425 return 0xFFFF; /* -1 */
426 }
427
428 static int cas_phy_write(struct cas *cp, int reg, u16 val)
429 {
430 int limit = STOP_TRIES_PHY;
431 u32 cmd;
432
433 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
434 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
435 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
436 cmd |= MIF_FRAME_TURN_AROUND_MSB;
437 cmd |= val & MIF_FRAME_DATA_MASK;
438 writel(cmd, cp->regs + REG_MIF_FRAME);
439
440 /* poll for completion */
441 while (limit-- > 0) {
442 udelay(10);
443 cmd = readl(cp->regs + REG_MIF_FRAME);
444 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
445 return 0;
446 }
447 return -1;
448 }
449
450 static void cas_phy_powerup(struct cas *cp)
451 {
452 u16 ctl = cas_phy_read(cp, MII_BMCR);
453
454 if ((ctl & BMCR_PDOWN) == 0)
455 return;
456 ctl &= ~BMCR_PDOWN;
457 cas_phy_write(cp, MII_BMCR, ctl);
458 }
459
460 static void cas_phy_powerdown(struct cas *cp)
461 {
462 u16 ctl = cas_phy_read(cp, MII_BMCR);
463
464 if (ctl & BMCR_PDOWN)
465 return;
466 ctl |= BMCR_PDOWN;
467 cas_phy_write(cp, MII_BMCR, ctl);
468 }
469
470 /* cp->lock held. note: the last put_page will free the buffer */
471 static int cas_page_free(struct cas *cp, cas_page_t *page)
472 {
473 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
474 PCI_DMA_FROMDEVICE);
475 __free_pages(page->buffer, cp->page_order);
476 kfree(page);
477 return 0;
478 }
479
480 #ifdef RX_COUNT_BUFFERS
481 #define RX_USED_ADD(x, y) ((x)->used += (y))
482 #define RX_USED_SET(x, y) ((x)->used = (y))
483 #else
484 #define RX_USED_ADD(x, y)
485 #define RX_USED_SET(x, y)
486 #endif
487
488 /* local page allocation routines for the receive buffers. jumbo pages
489 * require at least 8K contiguous and 8K aligned buffers.
490 */
491 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
492 {
493 cas_page_t *page;
494
495 page = kmalloc(sizeof(cas_page_t), flags);
496 if (!page)
497 return NULL;
498
499 INIT_LIST_HEAD(&page->list);
500 RX_USED_SET(page, 0);
501 page->buffer = alloc_pages(flags, cp->page_order);
502 if (!page->buffer)
503 goto page_err;
504 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
505 cp->page_size, PCI_DMA_FROMDEVICE);
506 return page;
507
508 page_err:
509 kfree(page);
510 return NULL;
511 }
512
513 /* initialize spare pool of rx buffers, but allocate during the open */
514 static void cas_spare_init(struct cas *cp)
515 {
516 spin_lock(&cp->rx_inuse_lock);
517 INIT_LIST_HEAD(&cp->rx_inuse_list);
518 spin_unlock(&cp->rx_inuse_lock);
519
520 spin_lock(&cp->rx_spare_lock);
521 INIT_LIST_HEAD(&cp->rx_spare_list);
522 cp->rx_spares_needed = RX_SPARE_COUNT;
523 spin_unlock(&cp->rx_spare_lock);
524 }
525
526 /* used on close. free all the spare buffers. */
527 static void cas_spare_free(struct cas *cp)
528 {
529 struct list_head list, *elem, *tmp;
530
531 /* free spare buffers */
532 INIT_LIST_HEAD(&list);
533 spin_lock(&cp->rx_spare_lock);
534 list_splice_init(&cp->rx_spare_list, &list);
535 spin_unlock(&cp->rx_spare_lock);
536 list_for_each_safe(elem, tmp, &list) {
537 cas_page_free(cp, list_entry(elem, cas_page_t, list));
538 }
539
540 INIT_LIST_HEAD(&list);
541 #if 1
542 /*
543 * Looks like Adrian had protected this with a different
544 * lock than used everywhere else to manipulate this list.
545 */
546 spin_lock(&cp->rx_inuse_lock);
547 list_splice_init(&cp->rx_inuse_list, &list);
548 spin_unlock(&cp->rx_inuse_lock);
549 #else
550 spin_lock(&cp->rx_spare_lock);
551 list_splice_init(&cp->rx_inuse_list, &list);
552 spin_unlock(&cp->rx_spare_lock);
553 #endif
554 list_for_each_safe(elem, tmp, &list) {
555 cas_page_free(cp, list_entry(elem, cas_page_t, list));
556 }
557 }
558
559 /* replenish spares if needed */
560 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
561 {
562 struct list_head list, *elem, *tmp;
563 int needed, i;
564
565 /* check inuse list. if we don't need any more free buffers,
566 * just free it
567 */
568
569 /* make a local copy of the list */
570 INIT_LIST_HEAD(&list);
571 spin_lock(&cp->rx_inuse_lock);
572 list_splice_init(&cp->rx_inuse_list, &list);
573 spin_unlock(&cp->rx_inuse_lock);
574
575 list_for_each_safe(elem, tmp, &list) {
576 cas_page_t *page = list_entry(elem, cas_page_t, list);
577
578 /*
579 * With the lockless pagecache, cassini buffering scheme gets
580 * slightly less accurate: we might find that a page has an
581 * elevated reference count here, due to a speculative ref,
582 * and skip it as in-use. Ideally we would be able to reclaim
583 * it. However this would be such a rare case, it doesn't
584 * matter too much as we should pick it up the next time round.
585 *
586 * Importantly, if we find that the page has a refcount of 1
587 * here (our refcount), then we know it is definitely not inuse
588 * so we can reuse it.
589 */
590 if (page_count(page->buffer) > 1)
591 continue;
592
593 list_del(elem);
594 spin_lock(&cp->rx_spare_lock);
595 if (cp->rx_spares_needed > 0) {
596 list_add(elem, &cp->rx_spare_list);
597 cp->rx_spares_needed--;
598 spin_unlock(&cp->rx_spare_lock);
599 } else {
600 spin_unlock(&cp->rx_spare_lock);
601 cas_page_free(cp, page);
602 }
603 }
604
605 /* put any inuse buffers back on the list */
606 if (!list_empty(&list)) {
607 spin_lock(&cp->rx_inuse_lock);
608 list_splice(&list, &cp->rx_inuse_list);
609 spin_unlock(&cp->rx_inuse_lock);
610 }
611
612 spin_lock(&cp->rx_spare_lock);
613 needed = cp->rx_spares_needed;
614 spin_unlock(&cp->rx_spare_lock);
615 if (!needed)
616 return;
617
618 /* we still need spares, so try to allocate some */
619 INIT_LIST_HEAD(&list);
620 i = 0;
621 while (i < needed) {
622 cas_page_t *spare = cas_page_alloc(cp, flags);
623 if (!spare)
624 break;
625 list_add(&spare->list, &list);
626 i++;
627 }
628
629 spin_lock(&cp->rx_spare_lock);
630 list_splice(&list, &cp->rx_spare_list);
631 cp->rx_spares_needed -= i;
632 spin_unlock(&cp->rx_spare_lock);
633 }
634
635 /* pull a page from the list. */
636 static cas_page_t *cas_page_dequeue(struct cas *cp)
637 {
638 struct list_head *entry;
639 int recover;
640
641 spin_lock(&cp->rx_spare_lock);
642 if (list_empty(&cp->rx_spare_list)) {
643 /* try to do a quick recovery */
644 spin_unlock(&cp->rx_spare_lock);
645 cas_spare_recover(cp, GFP_ATOMIC);
646 spin_lock(&cp->rx_spare_lock);
647 if (list_empty(&cp->rx_spare_list)) {
648 netif_err(cp, rx_err, cp->dev,
649 "no spare buffers available\n");
650 spin_unlock(&cp->rx_spare_lock);
651 return NULL;
652 }
653 }
654
655 entry = cp->rx_spare_list.next;
656 list_del(entry);
657 recover = ++cp->rx_spares_needed;
658 spin_unlock(&cp->rx_spare_lock);
659
660 /* trigger the timer to do the recovery */
661 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
662 #if 1
663 atomic_inc(&cp->reset_task_pending);
664 atomic_inc(&cp->reset_task_pending_spare);
665 schedule_work(&cp->reset_task);
666 #else
667 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
668 schedule_work(&cp->reset_task);
669 #endif
670 }
671 return list_entry(entry, cas_page_t, list);
672 }
673
674
675 static void cas_mif_poll(struct cas *cp, const int enable)
676 {
677 u32 cfg;
678
679 cfg = readl(cp->regs + REG_MIF_CFG);
680 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
681
682 if (cp->phy_type & CAS_PHY_MII_MDIO1)
683 cfg |= MIF_CFG_PHY_SELECT;
684
685 /* poll and interrupt on link status change. */
686 if (enable) {
687 cfg |= MIF_CFG_POLL_EN;
688 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
689 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
690 }
691 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
692 cp->regs + REG_MIF_MASK);
693 writel(cfg, cp->regs + REG_MIF_CFG);
694 }
695
696 /* Must be invoked under cp->lock */
697 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
698 {
699 u16 ctl;
700 #if 1
701 int lcntl;
702 int changed = 0;
703 int oldstate = cp->lstate;
704 int link_was_not_down = !(oldstate == link_down);
705 #endif
706 /* Setup link parameters */
707 if (!ep)
708 goto start_aneg;
709 lcntl = cp->link_cntl;
710 if (ep->autoneg == AUTONEG_ENABLE)
711 cp->link_cntl = BMCR_ANENABLE;
712 else {
713 u32 speed = ethtool_cmd_speed(ep);
714 cp->link_cntl = 0;
715 if (speed == SPEED_100)
716 cp->link_cntl |= BMCR_SPEED100;
717 else if (speed == SPEED_1000)
718 cp->link_cntl |= CAS_BMCR_SPEED1000;
719 if (ep->duplex == DUPLEX_FULL)
720 cp->link_cntl |= BMCR_FULLDPLX;
721 }
722 #if 1
723 changed = (lcntl != cp->link_cntl);
724 #endif
725 start_aneg:
726 if (cp->lstate == link_up) {
727 netdev_info(cp->dev, "PCS link down\n");
728 } else {
729 if (changed) {
730 netdev_info(cp->dev, "link configuration changed\n");
731 }
732 }
733 cp->lstate = link_down;
734 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
735 if (!cp->hw_running)
736 return;
737 #if 1
738 /*
739 * WTZ: If the old state was link_up, we turn off the carrier
740 * to replicate everything we do elsewhere on a link-down
741 * event when we were already in a link-up state..
742 */
743 if (oldstate == link_up)
744 netif_carrier_off(cp->dev);
745 if (changed && link_was_not_down) {
746 /*
747 * WTZ: This branch will simply schedule a full reset after
748 * we explicitly changed link modes in an ioctl. See if this
749 * fixes the link-problems we were having for forced mode.
750 */
751 atomic_inc(&cp->reset_task_pending);
752 atomic_inc(&cp->reset_task_pending_all);
753 schedule_work(&cp->reset_task);
754 cp->timer_ticks = 0;
755 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
756 return;
757 }
758 #endif
759 if (cp->phy_type & CAS_PHY_SERDES) {
760 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
761
762 if (cp->link_cntl & BMCR_ANENABLE) {
763 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
764 cp->lstate = link_aneg;
765 } else {
766 if (cp->link_cntl & BMCR_FULLDPLX)
767 val |= PCS_MII_CTRL_DUPLEX;
768 val &= ~PCS_MII_AUTONEG_EN;
769 cp->lstate = link_force_ok;
770 }
771 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
772 writel(val, cp->regs + REG_PCS_MII_CTRL);
773
774 } else {
775 cas_mif_poll(cp, 0);
776 ctl = cas_phy_read(cp, MII_BMCR);
777 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
778 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
779 ctl |= cp->link_cntl;
780 if (ctl & BMCR_ANENABLE) {
781 ctl |= BMCR_ANRESTART;
782 cp->lstate = link_aneg;
783 } else {
784 cp->lstate = link_force_ok;
785 }
786 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
787 cas_phy_write(cp, MII_BMCR, ctl);
788 cas_mif_poll(cp, 1);
789 }
790
791 cp->timer_ticks = 0;
792 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
793 }
794
795 /* Must be invoked under cp->lock. */
796 static int cas_reset_mii_phy(struct cas *cp)
797 {
798 int limit = STOP_TRIES_PHY;
799 u16 val;
800
801 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
802 udelay(100);
803 while (--limit) {
804 val = cas_phy_read(cp, MII_BMCR);
805 if ((val & BMCR_RESET) == 0)
806 break;
807 udelay(10);
808 }
809 return limit <= 0;
810 }
811
812 static int cas_saturn_firmware_init(struct cas *cp)
813 {
814 const struct firmware *fw;
815 const char fw_name[] = "sun/cassini.bin";
816 int err;
817
818 if (PHY_NS_DP83065 != cp->phy_id)
819 return 0;
820
821 err = request_firmware(&fw, fw_name, &cp->pdev->dev);
822 if (err) {
823 pr_err("Failed to load firmware \"%s\"\n",
824 fw_name);
825 return err;
826 }
827 if (fw->size < 2) {
828 pr_err("bogus length %zu in \"%s\"\n",
829 fw->size, fw_name);
830 err = -EINVAL;
831 goto out;
832 }
833 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
834 cp->fw_size = fw->size - 2;
835 cp->fw_data = vmalloc(cp->fw_size);
836 if (!cp->fw_data) {
837 err = -ENOMEM;
838 goto out;
839 }
840 memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
841 out:
842 release_firmware(fw);
843 return err;
844 }
845
846 static void cas_saturn_firmware_load(struct cas *cp)
847 {
848 int i;
849
850 cas_phy_powerdown(cp);
851
852 /* expanded memory access mode */
853 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
854
855 /* pointer configuration for new firmware */
856 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
857 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
858 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
859 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
860 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
861 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
862 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
863 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
864
865 /* download new firmware */
866 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
867 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
868 for (i = 0; i < cp->fw_size; i++)
869 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
870
871 /* enable firmware */
872 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
873 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
874 }
875
876
877 /* phy initialization */
878 static void cas_phy_init(struct cas *cp)
879 {
880 u16 val;
881
882 /* if we're in MII/GMII mode, set up phy */
883 if (CAS_PHY_MII(cp->phy_type)) {
884 writel(PCS_DATAPATH_MODE_MII,
885 cp->regs + REG_PCS_DATAPATH_MODE);
886
887 cas_mif_poll(cp, 0);
888 cas_reset_mii_phy(cp); /* take out of isolate mode */
889
890 if (PHY_LUCENT_B0 == cp->phy_id) {
891 /* workaround link up/down issue with lucent */
892 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
893 cas_phy_write(cp, MII_BMCR, 0x00f1);
894 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
895
896 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
897 /* workarounds for broadcom phy */
898 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
899 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
900 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
901 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
902 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
903 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
904 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
905 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
906 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
907 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
908 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
909
910 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
911 val = cas_phy_read(cp, BROADCOM_MII_REG4);
912 val = cas_phy_read(cp, BROADCOM_MII_REG4);
913 if (val & 0x0080) {
914 /* link workaround */
915 cas_phy_write(cp, BROADCOM_MII_REG4,
916 val & ~0x0080);
917 }
918
919 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
920 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
921 SATURN_PCFG_FSI : 0x0,
922 cp->regs + REG_SATURN_PCFG);
923
924 /* load firmware to address 10Mbps auto-negotiation
925 * issue. NOTE: this will need to be changed if the
926 * default firmware gets fixed.
927 */
928 if (PHY_NS_DP83065 == cp->phy_id) {
929 cas_saturn_firmware_load(cp);
930 }
931 cas_phy_powerup(cp);
932 }
933
934 /* advertise capabilities */
935 val = cas_phy_read(cp, MII_BMCR);
936 val &= ~BMCR_ANENABLE;
937 cas_phy_write(cp, MII_BMCR, val);
938 udelay(10);
939
940 cas_phy_write(cp, MII_ADVERTISE,
941 cas_phy_read(cp, MII_ADVERTISE) |
942 (ADVERTISE_10HALF | ADVERTISE_10FULL |
943 ADVERTISE_100HALF | ADVERTISE_100FULL |
944 CAS_ADVERTISE_PAUSE |
945 CAS_ADVERTISE_ASYM_PAUSE));
946
947 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
948 /* make sure that we don't advertise half
949 * duplex to avoid a chip issue
950 */
951 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
952 val &= ~CAS_ADVERTISE_1000HALF;
953 val |= CAS_ADVERTISE_1000FULL;
954 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
955 }
956
957 } else {
958 /* reset pcs for serdes */
959 u32 val;
960 int limit;
961
962 writel(PCS_DATAPATH_MODE_SERDES,
963 cp->regs + REG_PCS_DATAPATH_MODE);
964
965 /* enable serdes pins on saturn */
966 if (cp->cas_flags & CAS_FLAG_SATURN)
967 writel(0, cp->regs + REG_SATURN_PCFG);
968
969 /* Reset PCS unit. */
970 val = readl(cp->regs + REG_PCS_MII_CTRL);
971 val |= PCS_MII_RESET;
972 writel(val, cp->regs + REG_PCS_MII_CTRL);
973
974 limit = STOP_TRIES;
975 while (--limit > 0) {
976 udelay(10);
977 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
978 PCS_MII_RESET) == 0)
979 break;
980 }
981 if (limit <= 0)
982 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
983 readl(cp->regs + REG_PCS_STATE_MACHINE));
984
985 /* Make sure PCS is disabled while changing advertisement
986 * configuration.
987 */
988 writel(0x0, cp->regs + REG_PCS_CFG);
989
990 /* Advertise all capabilities except half-duplex. */
991 val = readl(cp->regs + REG_PCS_MII_ADVERT);
992 val &= ~PCS_MII_ADVERT_HD;
993 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
994 PCS_MII_ADVERT_ASYM_PAUSE);
995 writel(val, cp->regs + REG_PCS_MII_ADVERT);
996
997 /* enable PCS */
998 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
999
1000 /* pcs workaround: enable sync detect */
1001 writel(PCS_SERDES_CTRL_SYNCD_EN,
1002 cp->regs + REG_PCS_SERDES_CTRL);
1003 }
1004 }
1005
1006
1007 static int cas_pcs_link_check(struct cas *cp)
1008 {
1009 u32 stat, state_machine;
1010 int retval = 0;
1011
1012 /* The link status bit latches on zero, so you must
1013 * read it twice in such a case to see a transition
1014 * to the link being up.
1015 */
1016 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1017 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1018 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1019
1020 /* The remote-fault indication is only valid
1021 * when autoneg has completed.
1022 */
1023 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1024 PCS_MII_STATUS_REMOTE_FAULT)) ==
1025 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1026 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1027
1028 /* work around link detection issue by querying the PCS state
1029 * machine directly.
1030 */
1031 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1032 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1033 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1034 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1035 stat |= PCS_MII_STATUS_LINK_STATUS;
1036 }
1037
1038 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1039 if (cp->lstate != link_up) {
1040 if (cp->opened) {
1041 cp->lstate = link_up;
1042 cp->link_transition = LINK_TRANSITION_LINK_UP;
1043
1044 cas_set_link_modes(cp);
1045 netif_carrier_on(cp->dev);
1046 }
1047 }
1048 } else if (cp->lstate == link_up) {
1049 cp->lstate = link_down;
1050 if (link_transition_timeout != 0 &&
1051 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1052 !cp->link_transition_jiffies_valid) {
1053 /*
1054 * force a reset, as a workaround for the
1055 * link-failure problem. May want to move this to a
1056 * point a bit earlier in the sequence. If we had
1057 * generated a reset a short time ago, we'll wait for
1058 * the link timer to check the status until a
1059 * timer expires (link_transistion_jiffies_valid is
1060 * true when the timer is running.) Instead of using
1061 * a system timer, we just do a check whenever the
1062 * link timer is running - this clears the flag after
1063 * a suitable delay.
1064 */
1065 retval = 1;
1066 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1067 cp->link_transition_jiffies = jiffies;
1068 cp->link_transition_jiffies_valid = 1;
1069 } else {
1070 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1071 }
1072 netif_carrier_off(cp->dev);
1073 if (cp->opened)
1074 netif_info(cp, link, cp->dev, "PCS link down\n");
1075
1076 /* Cassini only: if you force a mode, there can be
1077 * sync problems on link down. to fix that, the following
1078 * things need to be checked:
1079 * 1) read serialink state register
1080 * 2) read pcs status register to verify link down.
1081 * 3) if link down and serial link == 0x03, then you need
1082 * to global reset the chip.
1083 */
1084 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1085 /* should check to see if we're in a forced mode */
1086 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1087 if (stat == 0x03)
1088 return 1;
1089 }
1090 } else if (cp->lstate == link_down) {
1091 if (link_transition_timeout != 0 &&
1092 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1093 !cp->link_transition_jiffies_valid) {
1094 /* force a reset, as a workaround for the
1095 * link-failure problem. May want to move
1096 * this to a point a bit earlier in the
1097 * sequence.
1098 */
1099 retval = 1;
1100 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1101 cp->link_transition_jiffies = jiffies;
1102 cp->link_transition_jiffies_valid = 1;
1103 } else {
1104 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1105 }
1106 }
1107
1108 return retval;
1109 }
1110
1111 static int cas_pcs_interrupt(struct net_device *dev,
1112 struct cas *cp, u32 status)
1113 {
1114 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1115
1116 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1117 return 0;
1118 return cas_pcs_link_check(cp);
1119 }
1120
1121 static int cas_txmac_interrupt(struct net_device *dev,
1122 struct cas *cp, u32 status)
1123 {
1124 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1125
1126 if (!txmac_stat)
1127 return 0;
1128
1129 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1130 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1131
1132 /* Defer timer expiration is quite normal,
1133 * don't even log the event.
1134 */
1135 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1136 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1137 return 0;
1138
1139 spin_lock(&cp->stat_lock[0]);
1140 if (txmac_stat & MAC_TX_UNDERRUN) {
1141 netdev_err(dev, "TX MAC xmit underrun\n");
1142 cp->net_stats[0].tx_fifo_errors++;
1143 }
1144
1145 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1146 netdev_err(dev, "TX MAC max packet size error\n");
1147 cp->net_stats[0].tx_errors++;
1148 }
1149
1150 /* The rest are all cases of one of the 16-bit TX
1151 * counters expiring.
1152 */
1153 if (txmac_stat & MAC_TX_COLL_NORMAL)
1154 cp->net_stats[0].collisions += 0x10000;
1155
1156 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1157 cp->net_stats[0].tx_aborted_errors += 0x10000;
1158 cp->net_stats[0].collisions += 0x10000;
1159 }
1160
1161 if (txmac_stat & MAC_TX_COLL_LATE) {
1162 cp->net_stats[0].tx_aborted_errors += 0x10000;
1163 cp->net_stats[0].collisions += 0x10000;
1164 }
1165 spin_unlock(&cp->stat_lock[0]);
1166
1167 /* We do not keep track of MAC_TX_COLL_FIRST and
1168 * MAC_TX_PEAK_ATTEMPTS events.
1169 */
1170 return 0;
1171 }
1172
1173 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1174 {
1175 cas_hp_inst_t *inst;
1176 u32 val;
1177 int i;
1178
1179 i = 0;
1180 while ((inst = firmware) && inst->note) {
1181 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1182
1183 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1184 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1185 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1186
1187 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1188 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1189 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1190 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1191 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1192 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1193 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1194 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1195
1196 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1197 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1198 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1199 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1200 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1201 ++firmware;
1202 ++i;
1203 }
1204 }
1205
1206 static void cas_init_rx_dma(struct cas *cp)
1207 {
1208 u64 desc_dma = cp->block_dvma;
1209 u32 val;
1210 int i, size;
1211
1212 /* rx free descriptors */
1213 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1214 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1215 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1216 if ((N_RX_DESC_RINGS > 1) &&
1217 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1218 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1219 writel(val, cp->regs + REG_RX_CFG);
1220
1221 val = (unsigned long) cp->init_rxds[0] -
1222 (unsigned long) cp->init_block;
1223 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1224 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1225 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1226
1227 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1228 /* rx desc 2 is for IPSEC packets. however,
1229 * we don't it that for that purpose.
1230 */
1231 val = (unsigned long) cp->init_rxds[1] -
1232 (unsigned long) cp->init_block;
1233 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1234 writel((desc_dma + val) & 0xffffffff, cp->regs +
1235 REG_PLUS_RX_DB1_LOW);
1236 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1237 REG_PLUS_RX_KICK1);
1238 }
1239
1240 /* rx completion registers */
1241 val = (unsigned long) cp->init_rxcs[0] -
1242 (unsigned long) cp->init_block;
1243 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1244 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1245
1246 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1247 /* rx comp 2-4 */
1248 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1249 val = (unsigned long) cp->init_rxcs[i] -
1250 (unsigned long) cp->init_block;
1251 writel((desc_dma + val) >> 32, cp->regs +
1252 REG_PLUS_RX_CBN_HI(i));
1253 writel((desc_dma + val) & 0xffffffff, cp->regs +
1254 REG_PLUS_RX_CBN_LOW(i));
1255 }
1256 }
1257
1258 /* read selective clear regs to prevent spurious interrupts
1259 * on reset because complete == kick.
1260 * selective clear set up to prevent interrupts on resets
1261 */
1262 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1263 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1264 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1265 for (i = 1; i < N_RX_COMP_RINGS; i++)
1266 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1267
1268 /* 2 is different from 3 and 4 */
1269 if (N_RX_COMP_RINGS > 1)
1270 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1271 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1272
1273 for (i = 2; i < N_RX_COMP_RINGS; i++)
1274 writel(INTR_RX_DONE_ALT,
1275 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1276 }
1277
1278 /* set up pause thresholds */
1279 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1280 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1281 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1282 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1283 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1284
1285 /* zero out dma reassembly buffers */
1286 for (i = 0; i < 64; i++) {
1287 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1288 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1289 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1290 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1291 }
1292
1293 /* make sure address register is 0 for normal operation */
1294 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1295 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1296
1297 /* interrupt mitigation */
1298 #ifdef USE_RX_BLANK
1299 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1300 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1301 writel(val, cp->regs + REG_RX_BLANK);
1302 #else
1303 writel(0x0, cp->regs + REG_RX_BLANK);
1304 #endif
1305
1306 /* interrupt generation as a function of low water marks for
1307 * free desc and completion entries. these are used to trigger
1308 * housekeeping for rx descs. we don't use the free interrupt
1309 * as it's not very useful
1310 */
1311 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1312 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1313 writel(val, cp->regs + REG_RX_AE_THRESH);
1314 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1315 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1316 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1317 }
1318
1319 /* Random early detect registers. useful for congestion avoidance.
1320 * this should be tunable.
1321 */
1322 writel(0x0, cp->regs + REG_RX_RED);
1323
1324 /* receive page sizes. default == 2K (0x800) */
1325 val = 0;
1326 if (cp->page_size == 0x1000)
1327 val = 0x1;
1328 else if (cp->page_size == 0x2000)
1329 val = 0x2;
1330 else if (cp->page_size == 0x4000)
1331 val = 0x3;
1332
1333 /* round mtu + offset. constrain to page size. */
1334 size = cp->dev->mtu + 64;
1335 if (size > cp->page_size)
1336 size = cp->page_size;
1337
1338 if (size <= 0x400)
1339 i = 0x0;
1340 else if (size <= 0x800)
1341 i = 0x1;
1342 else if (size <= 0x1000)
1343 i = 0x2;
1344 else
1345 i = 0x3;
1346
1347 cp->mtu_stride = 1 << (i + 10);
1348 val = CAS_BASE(RX_PAGE_SIZE, val);
1349 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1350 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1351 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1352 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1353
1354 /* enable the header parser if desired */
1355 if (CAS_HP_FIRMWARE == cas_prog_null)
1356 return;
1357
1358 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1359 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1360 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1361 writel(val, cp->regs + REG_HP_CFG);
1362 }
1363
1364 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1365 {
1366 memset(rxc, 0, sizeof(*rxc));
1367 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1368 }
1369
1370 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1371 * flipping is protected by the fact that the chip will not
1372 * hand back the same page index while it's being processed.
1373 */
1374 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1375 {
1376 cas_page_t *page = cp->rx_pages[1][index];
1377 cas_page_t *new;
1378
1379 if (page_count(page->buffer) == 1)
1380 return page;
1381
1382 new = cas_page_dequeue(cp);
1383 if (new) {
1384 spin_lock(&cp->rx_inuse_lock);
1385 list_add(&page->list, &cp->rx_inuse_list);
1386 spin_unlock(&cp->rx_inuse_lock);
1387 }
1388 return new;
1389 }
1390
1391 /* this needs to be changed if we actually use the ENC RX DESC ring */
1392 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1393 const int index)
1394 {
1395 cas_page_t **page0 = cp->rx_pages[0];
1396 cas_page_t **page1 = cp->rx_pages[1];
1397
1398 /* swap if buffer is in use */
1399 if (page_count(page0[index]->buffer) > 1) {
1400 cas_page_t *new = cas_page_spare(cp, index);
1401 if (new) {
1402 page1[index] = page0[index];
1403 page0[index] = new;
1404 }
1405 }
1406 RX_USED_SET(page0[index], 0);
1407 return page0[index];
1408 }
1409
1410 static void cas_clean_rxds(struct cas *cp)
1411 {
1412 /* only clean ring 0 as ring 1 is used for spare buffers */
1413 struct cas_rx_desc *rxd = cp->init_rxds[0];
1414 int i, size;
1415
1416 /* release all rx flows */
1417 for (i = 0; i < N_RX_FLOWS; i++) {
1418 struct sk_buff *skb;
1419 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1420 cas_skb_release(skb);
1421 }
1422 }
1423
1424 /* initialize descriptors */
1425 size = RX_DESC_RINGN_SIZE(0);
1426 for (i = 0; i < size; i++) {
1427 cas_page_t *page = cas_page_swap(cp, 0, i);
1428 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1429 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1430 CAS_BASE(RX_INDEX_RING, 0));
1431 }
1432
1433 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1434 cp->rx_last[0] = 0;
1435 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1436 }
1437
1438 static void cas_clean_rxcs(struct cas *cp)
1439 {
1440 int i, j;
1441
1442 /* take ownership of rx comp descriptors */
1443 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1444 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1445 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1446 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1447 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1448 cas_rxc_init(rxc + j);
1449 }
1450 }
1451 }
1452
1453 #if 0
1454 /* When we get a RX fifo overflow, the RX unit is probably hung
1455 * so we do the following.
1456 *
1457 * If any part of the reset goes wrong, we return 1 and that causes the
1458 * whole chip to be reset.
1459 */
1460 static int cas_rxmac_reset(struct cas *cp)
1461 {
1462 struct net_device *dev = cp->dev;
1463 int limit;
1464 u32 val;
1465
1466 /* First, reset MAC RX. */
1467 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1468 for (limit = 0; limit < STOP_TRIES; limit++) {
1469 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1470 break;
1471 udelay(10);
1472 }
1473 if (limit == STOP_TRIES) {
1474 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1475 return 1;
1476 }
1477
1478 /* Second, disable RX DMA. */
1479 writel(0, cp->regs + REG_RX_CFG);
1480 for (limit = 0; limit < STOP_TRIES; limit++) {
1481 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1482 break;
1483 udelay(10);
1484 }
1485 if (limit == STOP_TRIES) {
1486 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1487 return 1;
1488 }
1489
1490 mdelay(5);
1491
1492 /* Execute RX reset command. */
1493 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1494 for (limit = 0; limit < STOP_TRIES; limit++) {
1495 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1496 break;
1497 udelay(10);
1498 }
1499 if (limit == STOP_TRIES) {
1500 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1501 return 1;
1502 }
1503
1504 /* reset driver rx state */
1505 cas_clean_rxds(cp);
1506 cas_clean_rxcs(cp);
1507
1508 /* Now, reprogram the rest of RX unit. */
1509 cas_init_rx_dma(cp);
1510
1511 /* re-enable */
1512 val = readl(cp->regs + REG_RX_CFG);
1513 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1514 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1515 val = readl(cp->regs + REG_MAC_RX_CFG);
1516 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1517 return 0;
1518 }
1519 #endif
1520
1521 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1522 u32 status)
1523 {
1524 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1525
1526 if (!stat)
1527 return 0;
1528
1529 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1530
1531 /* these are all rollovers */
1532 spin_lock(&cp->stat_lock[0]);
1533 if (stat & MAC_RX_ALIGN_ERR)
1534 cp->net_stats[0].rx_frame_errors += 0x10000;
1535
1536 if (stat & MAC_RX_CRC_ERR)
1537 cp->net_stats[0].rx_crc_errors += 0x10000;
1538
1539 if (stat & MAC_RX_LEN_ERR)
1540 cp->net_stats[0].rx_length_errors += 0x10000;
1541
1542 if (stat & MAC_RX_OVERFLOW) {
1543 cp->net_stats[0].rx_over_errors++;
1544 cp->net_stats[0].rx_fifo_errors++;
1545 }
1546
1547 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1548 * events.
1549 */
1550 spin_unlock(&cp->stat_lock[0]);
1551 return 0;
1552 }
1553
1554 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1555 u32 status)
1556 {
1557 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1558
1559 if (!stat)
1560 return 0;
1561
1562 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1563 "mac interrupt, stat: 0x%x\n", stat);
1564
1565 /* This interrupt is just for pause frame and pause
1566 * tracking. It is useful for diagnostics and debug
1567 * but probably by default we will mask these events.
1568 */
1569 if (stat & MAC_CTRL_PAUSE_STATE)
1570 cp->pause_entered++;
1571
1572 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1573 cp->pause_last_time_recvd = (stat >> 16);
1574
1575 return 0;
1576 }
1577
1578
1579 /* Must be invoked under cp->lock. */
1580 static inline int cas_mdio_link_not_up(struct cas *cp)
1581 {
1582 u16 val;
1583
1584 switch (cp->lstate) {
1585 case link_force_ret:
1586 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1587 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1588 cp->timer_ticks = 5;
1589 cp->lstate = link_force_ok;
1590 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1591 break;
1592
1593 case link_aneg:
1594 val = cas_phy_read(cp, MII_BMCR);
1595
1596 /* Try forced modes. we try things in the following order:
1597 * 1000 full -> 100 full/half -> 10 half
1598 */
1599 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1600 val |= BMCR_FULLDPLX;
1601 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1602 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1603 cas_phy_write(cp, MII_BMCR, val);
1604 cp->timer_ticks = 5;
1605 cp->lstate = link_force_try;
1606 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1607 break;
1608
1609 case link_force_try:
1610 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1611 val = cas_phy_read(cp, MII_BMCR);
1612 cp->timer_ticks = 5;
1613 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1614 val &= ~CAS_BMCR_SPEED1000;
1615 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1616 cas_phy_write(cp, MII_BMCR, val);
1617 break;
1618 }
1619
1620 if (val & BMCR_SPEED100) {
1621 if (val & BMCR_FULLDPLX) /* fd failed */
1622 val &= ~BMCR_FULLDPLX;
1623 else { /* 100Mbps failed */
1624 val &= ~BMCR_SPEED100;
1625 }
1626 cas_phy_write(cp, MII_BMCR, val);
1627 break;
1628 }
1629 default:
1630 break;
1631 }
1632 return 0;
1633 }
1634
1635
1636 /* must be invoked with cp->lock held */
1637 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1638 {
1639 int restart;
1640
1641 if (bmsr & BMSR_LSTATUS) {
1642 /* Ok, here we got a link. If we had it due to a forced
1643 * fallback, and we were configured for autoneg, we
1644 * retry a short autoneg pass. If you know your hub is
1645 * broken, use ethtool ;)
1646 */
1647 if ((cp->lstate == link_force_try) &&
1648 (cp->link_cntl & BMCR_ANENABLE)) {
1649 cp->lstate = link_force_ret;
1650 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1651 cas_mif_poll(cp, 0);
1652 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1653 cp->timer_ticks = 5;
1654 if (cp->opened)
1655 netif_info(cp, link, cp->dev,
1656 "Got link after fallback, retrying autoneg once...\n");
1657 cas_phy_write(cp, MII_BMCR,
1658 cp->link_fcntl | BMCR_ANENABLE |
1659 BMCR_ANRESTART);
1660 cas_mif_poll(cp, 1);
1661
1662 } else if (cp->lstate != link_up) {
1663 cp->lstate = link_up;
1664 cp->link_transition = LINK_TRANSITION_LINK_UP;
1665
1666 if (cp->opened) {
1667 cas_set_link_modes(cp);
1668 netif_carrier_on(cp->dev);
1669 }
1670 }
1671 return 0;
1672 }
1673
1674 /* link not up. if the link was previously up, we restart the
1675 * whole process
1676 */
1677 restart = 0;
1678 if (cp->lstate == link_up) {
1679 cp->lstate = link_down;
1680 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1681
1682 netif_carrier_off(cp->dev);
1683 if (cp->opened)
1684 netif_info(cp, link, cp->dev, "Link down\n");
1685 restart = 1;
1686
1687 } else if (++cp->timer_ticks > 10)
1688 cas_mdio_link_not_up(cp);
1689
1690 return restart;
1691 }
1692
1693 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1694 u32 status)
1695 {
1696 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1697 u16 bmsr;
1698
1699 /* check for a link change */
1700 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1701 return 0;
1702
1703 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1704 return cas_mii_link_check(cp, bmsr);
1705 }
1706
1707 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1708 u32 status)
1709 {
1710 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1711
1712 if (!stat)
1713 return 0;
1714
1715 netdev_err(dev, "PCI error [%04x:%04x]",
1716 stat, readl(cp->regs + REG_BIM_DIAG));
1717
1718 /* cassini+ has this reserved */
1719 if ((stat & PCI_ERR_BADACK) &&
1720 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1721 pr_cont(" <No ACK64# during ABS64 cycle>");
1722
1723 if (stat & PCI_ERR_DTRTO)
1724 pr_cont(" <Delayed transaction timeout>");
1725 if (stat & PCI_ERR_OTHER)
1726 pr_cont(" <other>");
1727 if (stat & PCI_ERR_BIM_DMA_WRITE)
1728 pr_cont(" <BIM DMA 0 write req>");
1729 if (stat & PCI_ERR_BIM_DMA_READ)
1730 pr_cont(" <BIM DMA 0 read req>");
1731 pr_cont("\n");
1732
1733 if (stat & PCI_ERR_OTHER) {
1734 u16 cfg;
1735
1736 /* Interrogate PCI config space for the
1737 * true cause.
1738 */
1739 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1740 netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1741 if (cfg & PCI_STATUS_PARITY)
1742 netdev_err(dev, "PCI parity error detected\n");
1743 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1744 netdev_err(dev, "PCI target abort\n");
1745 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1746 netdev_err(dev, "PCI master acks target abort\n");
1747 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1748 netdev_err(dev, "PCI master abort\n");
1749 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1750 netdev_err(dev, "PCI system error SERR#\n");
1751 if (cfg & PCI_STATUS_DETECTED_PARITY)
1752 netdev_err(dev, "PCI parity error\n");
1753
1754 /* Write the error bits back to clear them. */
1755 cfg &= (PCI_STATUS_PARITY |
1756 PCI_STATUS_SIG_TARGET_ABORT |
1757 PCI_STATUS_REC_TARGET_ABORT |
1758 PCI_STATUS_REC_MASTER_ABORT |
1759 PCI_STATUS_SIG_SYSTEM_ERROR |
1760 PCI_STATUS_DETECTED_PARITY);
1761 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1762 }
1763
1764 /* For all PCI errors, we should reset the chip. */
1765 return 1;
1766 }
1767
1768 /* All non-normal interrupt conditions get serviced here.
1769 * Returns non-zero if we should just exit the interrupt
1770 * handler right now (ie. if we reset the card which invalidates
1771 * all of the other original irq status bits).
1772 */
1773 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1774 u32 status)
1775 {
1776 if (status & INTR_RX_TAG_ERROR) {
1777 /* corrupt RX tag framing */
1778 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1779 "corrupt rx tag framing\n");
1780 spin_lock(&cp->stat_lock[0]);
1781 cp->net_stats[0].rx_errors++;
1782 spin_unlock(&cp->stat_lock[0]);
1783 goto do_reset;
1784 }
1785
1786 if (status & INTR_RX_LEN_MISMATCH) {
1787 /* length mismatch. */
1788 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1789 "length mismatch for rx frame\n");
1790 spin_lock(&cp->stat_lock[0]);
1791 cp->net_stats[0].rx_errors++;
1792 spin_unlock(&cp->stat_lock[0]);
1793 goto do_reset;
1794 }
1795
1796 if (status & INTR_PCS_STATUS) {
1797 if (cas_pcs_interrupt(dev, cp, status))
1798 goto do_reset;
1799 }
1800
1801 if (status & INTR_TX_MAC_STATUS) {
1802 if (cas_txmac_interrupt(dev, cp, status))
1803 goto do_reset;
1804 }
1805
1806 if (status & INTR_RX_MAC_STATUS) {
1807 if (cas_rxmac_interrupt(dev, cp, status))
1808 goto do_reset;
1809 }
1810
1811 if (status & INTR_MAC_CTRL_STATUS) {
1812 if (cas_mac_interrupt(dev, cp, status))
1813 goto do_reset;
1814 }
1815
1816 if (status & INTR_MIF_STATUS) {
1817 if (cas_mif_interrupt(dev, cp, status))
1818 goto do_reset;
1819 }
1820
1821 if (status & INTR_PCI_ERROR_STATUS) {
1822 if (cas_pci_interrupt(dev, cp, status))
1823 goto do_reset;
1824 }
1825 return 0;
1826
1827 do_reset:
1828 #if 1
1829 atomic_inc(&cp->reset_task_pending);
1830 atomic_inc(&cp->reset_task_pending_all);
1831 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1832 schedule_work(&cp->reset_task);
1833 #else
1834 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1835 netdev_err(dev, "reset called in cas_abnormal_irq\n");
1836 schedule_work(&cp->reset_task);
1837 #endif
1838 return 1;
1839 }
1840
1841 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1842 * determining whether to do a netif_stop/wakeup
1843 */
1844 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1845 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1846 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1847 const int len)
1848 {
1849 unsigned long off = addr + len;
1850
1851 if (CAS_TABORT(cp) == 1)
1852 return 0;
1853 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1854 return 0;
1855 return TX_TARGET_ABORT_LEN;
1856 }
1857
1858 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1859 {
1860 struct cas_tx_desc *txds;
1861 struct sk_buff **skbs;
1862 struct net_device *dev = cp->dev;
1863 int entry, count;
1864
1865 spin_lock(&cp->tx_lock[ring]);
1866 txds = cp->init_txds[ring];
1867 skbs = cp->tx_skbs[ring];
1868 entry = cp->tx_old[ring];
1869
1870 count = TX_BUFF_COUNT(ring, entry, limit);
1871 while (entry != limit) {
1872 struct sk_buff *skb = skbs[entry];
1873 dma_addr_t daddr;
1874 u32 dlen;
1875 int frag;
1876
1877 if (!skb) {
1878 /* this should never occur */
1879 entry = TX_DESC_NEXT(ring, entry);
1880 continue;
1881 }
1882
1883 /* however, we might get only a partial skb release. */
1884 count -= skb_shinfo(skb)->nr_frags +
1885 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1886 if (count < 0)
1887 break;
1888
1889 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1890 "tx[%d] done, slot %d\n", ring, entry);
1891
1892 skbs[entry] = NULL;
1893 cp->tx_tiny_use[ring][entry].nbufs = 0;
1894
1895 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1896 struct cas_tx_desc *txd = txds + entry;
1897
1898 daddr = le64_to_cpu(txd->buffer);
1899 dlen = CAS_VAL(TX_DESC_BUFLEN,
1900 le64_to_cpu(txd->control));
1901 pci_unmap_page(cp->pdev, daddr, dlen,
1902 PCI_DMA_TODEVICE);
1903 entry = TX_DESC_NEXT(ring, entry);
1904
1905 /* tiny buffer may follow */
1906 if (cp->tx_tiny_use[ring][entry].used) {
1907 cp->tx_tiny_use[ring][entry].used = 0;
1908 entry = TX_DESC_NEXT(ring, entry);
1909 }
1910 }
1911
1912 spin_lock(&cp->stat_lock[ring]);
1913 cp->net_stats[ring].tx_packets++;
1914 cp->net_stats[ring].tx_bytes += skb->len;
1915 spin_unlock(&cp->stat_lock[ring]);
1916 dev_kfree_skb_irq(skb);
1917 }
1918 cp->tx_old[ring] = entry;
1919
1920 /* this is wrong for multiple tx rings. the net device needs
1921 * multiple queues for this to do the right thing. we wait
1922 * for 2*packets to be available when using tiny buffers
1923 */
1924 if (netif_queue_stopped(dev) &&
1925 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1926 netif_wake_queue(dev);
1927 spin_unlock(&cp->tx_lock[ring]);
1928 }
1929
1930 static void cas_tx(struct net_device *dev, struct cas *cp,
1931 u32 status)
1932 {
1933 int limit, ring;
1934 #ifdef USE_TX_COMPWB
1935 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1936 #endif
1937 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1938 "tx interrupt, status: 0x%x, %llx\n",
1939 status, (unsigned long long)compwb);
1940 /* process all the rings */
1941 for (ring = 0; ring < N_TX_RINGS; ring++) {
1942 #ifdef USE_TX_COMPWB
1943 /* use the completion writeback registers */
1944 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1945 CAS_VAL(TX_COMPWB_LSB, compwb);
1946 compwb = TX_COMPWB_NEXT(compwb);
1947 #else
1948 limit = readl(cp->regs + REG_TX_COMPN(ring));
1949 #endif
1950 if (cp->tx_old[ring] != limit)
1951 cas_tx_ringN(cp, ring, limit);
1952 }
1953 }
1954
1955
1956 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1957 int entry, const u64 *words,
1958 struct sk_buff **skbref)
1959 {
1960 int dlen, hlen, len, i, alloclen;
1961 int off, swivel = RX_SWIVEL_OFF_VAL;
1962 struct cas_page *page;
1963 struct sk_buff *skb;
1964 void *addr, *crcaddr;
1965 __sum16 csum;
1966 char *p;
1967
1968 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1969 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1970 len = hlen + dlen;
1971
1972 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1973 alloclen = len;
1974 else
1975 alloclen = max(hlen, RX_COPY_MIN);
1976
1977 skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1978 if (skb == NULL)
1979 return -1;
1980
1981 *skbref = skb;
1982 skb_reserve(skb, swivel);
1983
1984 p = skb->data;
1985 addr = crcaddr = NULL;
1986 if (hlen) { /* always copy header pages */
1987 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1988 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1989 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1990 swivel;
1991
1992 i = hlen;
1993 if (!dlen) /* attach FCS */
1994 i += cp->crc_size;
1995 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1996 PCI_DMA_FROMDEVICE);
1997 addr = cas_page_map(page->buffer);
1998 memcpy(p, addr + off, i);
1999 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2000 PCI_DMA_FROMDEVICE);
2001 cas_page_unmap(addr);
2002 RX_USED_ADD(page, 0x100);
2003 p += hlen;
2004 swivel = 0;
2005 }
2006
2007
2008 if (alloclen < (hlen + dlen)) {
2009 skb_frag_t *frag = skb_shinfo(skb)->frags;
2010
2011 /* normal or jumbo packets. we use frags */
2012 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2013 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2014 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2015
2016 hlen = min(cp->page_size - off, dlen);
2017 if (hlen < 0) {
2018 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2019 "rx page overflow: %d\n", hlen);
2020 dev_kfree_skb_irq(skb);
2021 return -1;
2022 }
2023 i = hlen;
2024 if (i == dlen) /* attach FCS */
2025 i += cp->crc_size;
2026 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2027 PCI_DMA_FROMDEVICE);
2028
2029 /* make sure we always copy a header */
2030 swivel = 0;
2031 if (p == (char *) skb->data) { /* not split */
2032 addr = cas_page_map(page->buffer);
2033 memcpy(p, addr + off, RX_COPY_MIN);
2034 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2035 PCI_DMA_FROMDEVICE);
2036 cas_page_unmap(addr);
2037 off += RX_COPY_MIN;
2038 swivel = RX_COPY_MIN;
2039 RX_USED_ADD(page, cp->mtu_stride);
2040 } else {
2041 RX_USED_ADD(page, hlen);
2042 }
2043 skb_put(skb, alloclen);
2044
2045 skb_shinfo(skb)->nr_frags++;
2046 skb->data_len += hlen - swivel;
2047 skb->truesize += hlen - swivel;
2048 skb->len += hlen - swivel;
2049
2050 __skb_frag_set_page(frag, page->buffer);
2051 __skb_frag_ref(frag);
2052 frag->page_offset = off;
2053 skb_frag_size_set(frag, hlen - swivel);
2054
2055 /* any more data? */
2056 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2057 hlen = dlen;
2058 off = 0;
2059
2060 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2061 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2062 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2063 hlen + cp->crc_size,
2064 PCI_DMA_FROMDEVICE);
2065 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2066 hlen + cp->crc_size,
2067 PCI_DMA_FROMDEVICE);
2068
2069 skb_shinfo(skb)->nr_frags++;
2070 skb->data_len += hlen;
2071 skb->len += hlen;
2072 frag++;
2073
2074 __skb_frag_set_page(frag, page->buffer);
2075 __skb_frag_ref(frag);
2076 frag->page_offset = 0;
2077 skb_frag_size_set(frag, hlen);
2078 RX_USED_ADD(page, hlen + cp->crc_size);
2079 }
2080
2081 if (cp->crc_size) {
2082 addr = cas_page_map(page->buffer);
2083 crcaddr = addr + off + hlen;
2084 }
2085
2086 } else {
2087 /* copying packet */
2088 if (!dlen)
2089 goto end_copy_pkt;
2090
2091 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2092 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2093 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2094 hlen = min(cp->page_size - off, dlen);
2095 if (hlen < 0) {
2096 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2097 "rx page overflow: %d\n", hlen);
2098 dev_kfree_skb_irq(skb);
2099 return -1;
2100 }
2101 i = hlen;
2102 if (i == dlen) /* attach FCS */
2103 i += cp->crc_size;
2104 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2105 PCI_DMA_FROMDEVICE);
2106 addr = cas_page_map(page->buffer);
2107 memcpy(p, addr + off, i);
2108 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2109 PCI_DMA_FROMDEVICE);
2110 cas_page_unmap(addr);
2111 if (p == (char *) skb->data) /* not split */
2112 RX_USED_ADD(page, cp->mtu_stride);
2113 else
2114 RX_USED_ADD(page, i);
2115
2116 /* any more data? */
2117 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2118 p += hlen;
2119 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2120 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2121 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2122 dlen + cp->crc_size,
2123 PCI_DMA_FROMDEVICE);
2124 addr = cas_page_map(page->buffer);
2125 memcpy(p, addr, dlen + cp->crc_size);
2126 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2127 dlen + cp->crc_size,
2128 PCI_DMA_FROMDEVICE);
2129 cas_page_unmap(addr);
2130 RX_USED_ADD(page, dlen + cp->crc_size);
2131 }
2132 end_copy_pkt:
2133 if (cp->crc_size) {
2134 addr = NULL;
2135 crcaddr = skb->data + alloclen;
2136 }
2137 skb_put(skb, alloclen);
2138 }
2139
2140 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2141 if (cp->crc_size) {
2142 /* checksum includes FCS. strip it out. */
2143 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2144 csum_unfold(csum)));
2145 if (addr)
2146 cas_page_unmap(addr);
2147 }
2148 skb->protocol = eth_type_trans(skb, cp->dev);
2149 if (skb->protocol == htons(ETH_P_IP)) {
2150 skb->csum = csum_unfold(~csum);
2151 skb->ip_summed = CHECKSUM_COMPLETE;
2152 } else
2153 skb_checksum_none_assert(skb);
2154 return len;
2155 }
2156
2157
2158 /* we can handle up to 64 rx flows at a time. we do the same thing
2159 * as nonreassm except that we batch up the buffers.
2160 * NOTE: we currently just treat each flow as a bunch of packets that
2161 * we pass up. a better way would be to coalesce the packets
2162 * into a jumbo packet. to do that, we need to do the following:
2163 * 1) the first packet will have a clean split between header and
2164 * data. save both.
2165 * 2) each time the next flow packet comes in, extend the
2166 * data length and merge the checksums.
2167 * 3) on flow release, fix up the header.
2168 * 4) make sure the higher layer doesn't care.
2169 * because packets get coalesced, we shouldn't run into fragment count
2170 * issues.
2171 */
2172 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2173 struct sk_buff *skb)
2174 {
2175 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2176 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2177
2178 /* this is protected at a higher layer, so no need to
2179 * do any additional locking here. stick the buffer
2180 * at the end.
2181 */
2182 __skb_queue_tail(flow, skb);
2183 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2184 while ((skb = __skb_dequeue(flow))) {
2185 cas_skb_release(skb);
2186 }
2187 }
2188 }
2189
2190 /* put rx descriptor back on ring. if a buffer is in use by a higher
2191 * layer, this will need to put in a replacement.
2192 */
2193 static void cas_post_page(struct cas *cp, const int ring, const int index)
2194 {
2195 cas_page_t *new;
2196 int entry;
2197
2198 entry = cp->rx_old[ring];
2199
2200 new = cas_page_swap(cp, ring, index);
2201 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2202 cp->init_rxds[ring][entry].index =
2203 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2204 CAS_BASE(RX_INDEX_RING, ring));
2205
2206 entry = RX_DESC_ENTRY(ring, entry + 1);
2207 cp->rx_old[ring] = entry;
2208
2209 if (entry % 4)
2210 return;
2211
2212 if (ring == 0)
2213 writel(entry, cp->regs + REG_RX_KICK);
2214 else if ((N_RX_DESC_RINGS > 1) &&
2215 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2216 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2217 }
2218
2219
2220 /* only when things are bad */
2221 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2222 {
2223 unsigned int entry, last, count, released;
2224 int cluster;
2225 cas_page_t **page = cp->rx_pages[ring];
2226
2227 entry = cp->rx_old[ring];
2228
2229 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2230 "rxd[%d] interrupt, done: %d\n", ring, entry);
2231
2232 cluster = -1;
2233 count = entry & 0x3;
2234 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2235 released = 0;
2236 while (entry != last) {
2237 /* make a new buffer if it's still in use */
2238 if (page_count(page[entry]->buffer) > 1) {
2239 cas_page_t *new = cas_page_dequeue(cp);
2240 if (!new) {
2241 /* let the timer know that we need to
2242 * do this again
2243 */
2244 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2245 if (!timer_pending(&cp->link_timer))
2246 mod_timer(&cp->link_timer, jiffies +
2247 CAS_LINK_FAST_TIMEOUT);
2248 cp->rx_old[ring] = entry;
2249 cp->rx_last[ring] = num ? num - released : 0;
2250 return -ENOMEM;
2251 }
2252 spin_lock(&cp->rx_inuse_lock);
2253 list_add(&page[entry]->list, &cp->rx_inuse_list);
2254 spin_unlock(&cp->rx_inuse_lock);
2255 cp->init_rxds[ring][entry].buffer =
2256 cpu_to_le64(new->dma_addr);
2257 page[entry] = new;
2258
2259 }
2260
2261 if (++count == 4) {
2262 cluster = entry;
2263 count = 0;
2264 }
2265 released++;
2266 entry = RX_DESC_ENTRY(ring, entry + 1);
2267 }
2268 cp->rx_old[ring] = entry;
2269
2270 if (cluster < 0)
2271 return 0;
2272
2273 if (ring == 0)
2274 writel(cluster, cp->regs + REG_RX_KICK);
2275 else if ((N_RX_DESC_RINGS > 1) &&
2276 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2277 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2278 return 0;
2279 }
2280
2281
2282 /* process a completion ring. packets are set up in three basic ways:
2283 * small packets: should be copied header + data in single buffer.
2284 * large packets: header and data in a single buffer.
2285 * split packets: header in a separate buffer from data.
2286 * data may be in multiple pages. data may be > 256
2287 * bytes but in a single page.
2288 *
2289 * NOTE: RX page posting is done in this routine as well. while there's
2290 * the capability of using multiple RX completion rings, it isn't
2291 * really worthwhile due to the fact that the page posting will
2292 * force serialization on the single descriptor ring.
2293 */
2294 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2295 {
2296 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2297 int entry, drops;
2298 int npackets = 0;
2299
2300 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2301 "rx[%d] interrupt, done: %d/%d\n",
2302 ring,
2303 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2304
2305 entry = cp->rx_new[ring];
2306 drops = 0;
2307 while (1) {
2308 struct cas_rx_comp *rxc = rxcs + entry;
2309 struct sk_buff *uninitialized_var(skb);
2310 int type, len;
2311 u64 words[4];
2312 int i, dring;
2313
2314 words[0] = le64_to_cpu(rxc->word1);
2315 words[1] = le64_to_cpu(rxc->word2);
2316 words[2] = le64_to_cpu(rxc->word3);
2317 words[3] = le64_to_cpu(rxc->word4);
2318
2319 /* don't touch if still owned by hw */
2320 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2321 if (type == 0)
2322 break;
2323
2324 /* hw hasn't cleared the zero bit yet */
2325 if (words[3] & RX_COMP4_ZERO) {
2326 break;
2327 }
2328
2329 /* get info on the packet */
2330 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2331 spin_lock(&cp->stat_lock[ring]);
2332 cp->net_stats[ring].rx_errors++;
2333 if (words[3] & RX_COMP4_LEN_MISMATCH)
2334 cp->net_stats[ring].rx_length_errors++;
2335 if (words[3] & RX_COMP4_BAD)
2336 cp->net_stats[ring].rx_crc_errors++;
2337 spin_unlock(&cp->stat_lock[ring]);
2338
2339 /* We'll just return it to Cassini. */
2340 drop_it:
2341 spin_lock(&cp->stat_lock[ring]);
2342 ++cp->net_stats[ring].rx_dropped;
2343 spin_unlock(&cp->stat_lock[ring]);
2344 goto next;
2345 }
2346
2347 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2348 if (len < 0) {
2349 ++drops;
2350 goto drop_it;
2351 }
2352
2353 /* see if it's a flow re-assembly or not. the driver
2354 * itself handles release back up.
2355 */
2356 if (RX_DONT_BATCH || (type == 0x2)) {
2357 /* non-reassm: these always get released */
2358 cas_skb_release(skb);
2359 } else {
2360 cas_rx_flow_pkt(cp, words, skb);
2361 }
2362
2363 spin_lock(&cp->stat_lock[ring]);
2364 cp->net_stats[ring].rx_packets++;
2365 cp->net_stats[ring].rx_bytes += len;
2366 spin_unlock(&cp->stat_lock[ring]);
2367
2368 next:
2369 npackets++;
2370
2371 /* should it be released? */
2372 if (words[0] & RX_COMP1_RELEASE_HDR) {
2373 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2374 dring = CAS_VAL(RX_INDEX_RING, i);
2375 i = CAS_VAL(RX_INDEX_NUM, i);
2376 cas_post_page(cp, dring, i);
2377 }
2378
2379 if (words[0] & RX_COMP1_RELEASE_DATA) {
2380 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2381 dring = CAS_VAL(RX_INDEX_RING, i);
2382 i = CAS_VAL(RX_INDEX_NUM, i);
2383 cas_post_page(cp, dring, i);
2384 }
2385
2386 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2387 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2388 dring = CAS_VAL(RX_INDEX_RING, i);
2389 i = CAS_VAL(RX_INDEX_NUM, i);
2390 cas_post_page(cp, dring, i);
2391 }
2392
2393 /* skip to the next entry */
2394 entry = RX_COMP_ENTRY(ring, entry + 1 +
2395 CAS_VAL(RX_COMP1_SKIP, words[0]));
2396 #ifdef USE_NAPI
2397 if (budget && (npackets >= budget))
2398 break;
2399 #endif
2400 }
2401 cp->rx_new[ring] = entry;
2402
2403 if (drops)
2404 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2405 return npackets;
2406 }
2407
2408
2409 /* put completion entries back on the ring */
2410 static void cas_post_rxcs_ringN(struct net_device *dev,
2411 struct cas *cp, int ring)
2412 {
2413 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2414 int last, entry;
2415
2416 last = cp->rx_cur[ring];
2417 entry = cp->rx_new[ring];
2418 netif_printk(cp, intr, KERN_DEBUG, dev,
2419 "rxc[%d] interrupt, done: %d/%d\n",
2420 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2421
2422 /* zero and re-mark descriptors */
2423 while (last != entry) {
2424 cas_rxc_init(rxc + last);
2425 last = RX_COMP_ENTRY(ring, last + 1);
2426 }
2427 cp->rx_cur[ring] = last;
2428
2429 if (ring == 0)
2430 writel(last, cp->regs + REG_RX_COMP_TAIL);
2431 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2432 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2433 }
2434
2435
2436
2437 /* cassini can use all four PCI interrupts for the completion ring.
2438 * rings 3 and 4 are identical
2439 */
2440 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2441 static inline void cas_handle_irqN(struct net_device *dev,
2442 struct cas *cp, const u32 status,
2443 const int ring)
2444 {
2445 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2446 cas_post_rxcs_ringN(dev, cp, ring);
2447 }
2448
2449 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2450 {
2451 struct net_device *dev = dev_id;
2452 struct cas *cp = netdev_priv(dev);
2453 unsigned long flags;
2454 int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2455 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2456
2457 /* check for shared irq */
2458 if (status == 0)
2459 return IRQ_NONE;
2460
2461 spin_lock_irqsave(&cp->lock, flags);
2462 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2463 #ifdef USE_NAPI
2464 cas_mask_intr(cp);
2465 napi_schedule(&cp->napi);
2466 #else
2467 cas_rx_ringN(cp, ring, 0);
2468 #endif
2469 status &= ~INTR_RX_DONE_ALT;
2470 }
2471
2472 if (status)
2473 cas_handle_irqN(dev, cp, status, ring);
2474 spin_unlock_irqrestore(&cp->lock, flags);
2475 return IRQ_HANDLED;
2476 }
2477 #endif
2478
2479 #ifdef USE_PCI_INTB
2480 /* everything but rx packets */
2481 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2482 {
2483 if (status & INTR_RX_BUF_UNAVAIL_1) {
2484 /* Frame arrived, no free RX buffers available.
2485 * NOTE: we can get this on a link transition. */
2486 cas_post_rxds_ringN(cp, 1, 0);
2487 spin_lock(&cp->stat_lock[1]);
2488 cp->net_stats[1].rx_dropped++;
2489 spin_unlock(&cp->stat_lock[1]);
2490 }
2491
2492 if (status & INTR_RX_BUF_AE_1)
2493 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2494 RX_AE_FREEN_VAL(1));
2495
2496 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2497 cas_post_rxcs_ringN(cp, 1);
2498 }
2499
2500 /* ring 2 handles a few more events than 3 and 4 */
2501 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2502 {
2503 struct net_device *dev = dev_id;
2504 struct cas *cp = netdev_priv(dev);
2505 unsigned long flags;
2506 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2507
2508 /* check for shared interrupt */
2509 if (status == 0)
2510 return IRQ_NONE;
2511
2512 spin_lock_irqsave(&cp->lock, flags);
2513 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2514 #ifdef USE_NAPI
2515 cas_mask_intr(cp);
2516 napi_schedule(&cp->napi);
2517 #else
2518 cas_rx_ringN(cp, 1, 0);
2519 #endif
2520 status &= ~INTR_RX_DONE_ALT;
2521 }
2522 if (status)
2523 cas_handle_irq1(cp, status);
2524 spin_unlock_irqrestore(&cp->lock, flags);
2525 return IRQ_HANDLED;
2526 }
2527 #endif
2528
2529 static inline void cas_handle_irq(struct net_device *dev,
2530 struct cas *cp, const u32 status)
2531 {
2532 /* housekeeping interrupts */
2533 if (status & INTR_ERROR_MASK)
2534 cas_abnormal_irq(dev, cp, status);
2535
2536 if (status & INTR_RX_BUF_UNAVAIL) {
2537 /* Frame arrived, no free RX buffers available.
2538 * NOTE: we can get this on a link transition.
2539 */
2540 cas_post_rxds_ringN(cp, 0, 0);
2541 spin_lock(&cp->stat_lock[0]);
2542 cp->net_stats[0].rx_dropped++;
2543 spin_unlock(&cp->stat_lock[0]);
2544 } else if (status & INTR_RX_BUF_AE) {
2545 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2546 RX_AE_FREEN_VAL(0));
2547 }
2548
2549 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2550 cas_post_rxcs_ringN(dev, cp, 0);
2551 }
2552
2553 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2554 {
2555 struct net_device *dev = dev_id;
2556 struct cas *cp = netdev_priv(dev);
2557 unsigned long flags;
2558 u32 status = readl(cp->regs + REG_INTR_STATUS);
2559
2560 if (status == 0)
2561 return IRQ_NONE;
2562
2563 spin_lock_irqsave(&cp->lock, flags);
2564 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2565 cas_tx(dev, cp, status);
2566 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2567 }
2568
2569 if (status & INTR_RX_DONE) {
2570 #ifdef USE_NAPI
2571 cas_mask_intr(cp);
2572 napi_schedule(&cp->napi);
2573 #else
2574 cas_rx_ringN(cp, 0, 0);
2575 #endif
2576 status &= ~INTR_RX_DONE;
2577 }
2578
2579 if (status)
2580 cas_handle_irq(dev, cp, status);
2581 spin_unlock_irqrestore(&cp->lock, flags);
2582 return IRQ_HANDLED;
2583 }
2584
2585
2586 #ifdef USE_NAPI
2587 static int cas_poll(struct napi_struct *napi, int budget)
2588 {
2589 struct cas *cp = container_of(napi, struct cas, napi);
2590 struct net_device *dev = cp->dev;
2591 int i, enable_intr, credits;
2592 u32 status = readl(cp->regs + REG_INTR_STATUS);
2593 unsigned long flags;
2594
2595 spin_lock_irqsave(&cp->lock, flags);
2596 cas_tx(dev, cp, status);
2597 spin_unlock_irqrestore(&cp->lock, flags);
2598
2599 /* NAPI rx packets. we spread the credits across all of the
2600 * rxc rings
2601 *
2602 * to make sure we're fair with the work we loop through each
2603 * ring N_RX_COMP_RING times with a request of
2604 * budget / N_RX_COMP_RINGS
2605 */
2606 enable_intr = 1;
2607 credits = 0;
2608 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2609 int j;
2610 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2611 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2612 if (credits >= budget) {
2613 enable_intr = 0;
2614 goto rx_comp;
2615 }
2616 }
2617 }
2618
2619 rx_comp:
2620 /* final rx completion */
2621 spin_lock_irqsave(&cp->lock, flags);
2622 if (status)
2623 cas_handle_irq(dev, cp, status);
2624
2625 #ifdef USE_PCI_INTB
2626 if (N_RX_COMP_RINGS > 1) {
2627 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2628 if (status)
2629 cas_handle_irq1(dev, cp, status);
2630 }
2631 #endif
2632
2633 #ifdef USE_PCI_INTC
2634 if (N_RX_COMP_RINGS > 2) {
2635 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2636 if (status)
2637 cas_handle_irqN(dev, cp, status, 2);
2638 }
2639 #endif
2640
2641 #ifdef USE_PCI_INTD
2642 if (N_RX_COMP_RINGS > 3) {
2643 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2644 if (status)
2645 cas_handle_irqN(dev, cp, status, 3);
2646 }
2647 #endif
2648 spin_unlock_irqrestore(&cp->lock, flags);
2649 if (enable_intr) {
2650 napi_complete(napi);
2651 cas_unmask_intr(cp);
2652 }
2653 return credits;
2654 }
2655 #endif
2656
2657 #ifdef CONFIG_NET_POLL_CONTROLLER
2658 static void cas_netpoll(struct net_device *dev)
2659 {
2660 struct cas *cp = netdev_priv(dev);
2661
2662 cas_disable_irq(cp, 0);
2663 cas_interrupt(cp->pdev->irq, dev);
2664 cas_enable_irq(cp, 0);
2665
2666 #ifdef USE_PCI_INTB
2667 if (N_RX_COMP_RINGS > 1) {
2668 /* cas_interrupt1(); */
2669 }
2670 #endif
2671 #ifdef USE_PCI_INTC
2672 if (N_RX_COMP_RINGS > 2) {
2673 /* cas_interruptN(); */
2674 }
2675 #endif
2676 #ifdef USE_PCI_INTD
2677 if (N_RX_COMP_RINGS > 3) {
2678 /* cas_interruptN(); */
2679 }
2680 #endif
2681 }
2682 #endif
2683
2684 static void cas_tx_timeout(struct net_device *dev)
2685 {
2686 struct cas *cp = netdev_priv(dev);
2687
2688 netdev_err(dev, "transmit timed out, resetting\n");
2689 if (!cp->hw_running) {
2690 netdev_err(dev, "hrm.. hw not running!\n");
2691 return;
2692 }
2693
2694 netdev_err(dev, "MIF_STATE[%08x]\n",
2695 readl(cp->regs + REG_MIF_STATE_MACHINE));
2696
2697 netdev_err(dev, "MAC_STATE[%08x]\n",
2698 readl(cp->regs + REG_MAC_STATE_MACHINE));
2699
2700 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2701 readl(cp->regs + REG_TX_CFG),
2702 readl(cp->regs + REG_MAC_TX_STATUS),
2703 readl(cp->regs + REG_MAC_TX_CFG),
2704 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2705 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2706 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2707 readl(cp->regs + REG_TX_SM_1),
2708 readl(cp->regs + REG_TX_SM_2));
2709
2710 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2711 readl(cp->regs + REG_RX_CFG),
2712 readl(cp->regs + REG_MAC_RX_STATUS),
2713 readl(cp->regs + REG_MAC_RX_CFG));
2714
2715 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2716 readl(cp->regs + REG_HP_STATE_MACHINE),
2717 readl(cp->regs + REG_HP_STATUS0),
2718 readl(cp->regs + REG_HP_STATUS1),
2719 readl(cp->regs + REG_HP_STATUS2));
2720
2721 #if 1
2722 atomic_inc(&cp->reset_task_pending);
2723 atomic_inc(&cp->reset_task_pending_all);
2724 schedule_work(&cp->reset_task);
2725 #else
2726 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2727 schedule_work(&cp->reset_task);
2728 #endif
2729 }
2730
2731 static inline int cas_intme(int ring, int entry)
2732 {
2733 /* Algorithm: IRQ every 1/2 of descriptors. */
2734 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2735 return 1;
2736 return 0;
2737 }
2738
2739
2740 static void cas_write_txd(struct cas *cp, int ring, int entry,
2741 dma_addr_t mapping, int len, u64 ctrl, int last)
2742 {
2743 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2744
2745 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2746 if (cas_intme(ring, entry))
2747 ctrl |= TX_DESC_INTME;
2748 if (last)
2749 ctrl |= TX_DESC_EOF;
2750 txd->control = cpu_to_le64(ctrl);
2751 txd->buffer = cpu_to_le64(mapping);
2752 }
2753
2754 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2755 const int entry)
2756 {
2757 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2758 }
2759
2760 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2761 const int entry, const int tentry)
2762 {
2763 cp->tx_tiny_use[ring][tentry].nbufs++;
2764 cp->tx_tiny_use[ring][entry].used = 1;
2765 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2766 }
2767
2768 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2769 struct sk_buff *skb)
2770 {
2771 struct net_device *dev = cp->dev;
2772 int entry, nr_frags, frag, tabort, tentry;
2773 dma_addr_t mapping;
2774 unsigned long flags;
2775 u64 ctrl;
2776 u32 len;
2777
2778 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2779
2780 /* This is a hard error, log it. */
2781 if (TX_BUFFS_AVAIL(cp, ring) <=
2782 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2783 netif_stop_queue(dev);
2784 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2785 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2786 return 1;
2787 }
2788
2789 ctrl = 0;
2790 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2791 const u64 csum_start_off = skb_checksum_start_offset(skb);
2792 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2793
2794 ctrl = TX_DESC_CSUM_EN |
2795 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2796 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2797 }
2798
2799 entry = cp->tx_new[ring];
2800 cp->tx_skbs[ring][entry] = skb;
2801
2802 nr_frags = skb_shinfo(skb)->nr_frags;
2803 len = skb_headlen(skb);
2804 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2805 offset_in_page(skb->data), len,
2806 PCI_DMA_TODEVICE);
2807
2808 tentry = entry;
2809 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2810 if (unlikely(tabort)) {
2811 /* NOTE: len is always > tabort */
2812 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2813 ctrl | TX_DESC_SOF, 0);
2814 entry = TX_DESC_NEXT(ring, entry);
2815
2816 skb_copy_from_linear_data_offset(skb, len - tabort,
2817 tx_tiny_buf(cp, ring, entry), tabort);
2818 mapping = tx_tiny_map(cp, ring, entry, tentry);
2819 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2820 (nr_frags == 0));
2821 } else {
2822 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2823 TX_DESC_SOF, (nr_frags == 0));
2824 }
2825 entry = TX_DESC_NEXT(ring, entry);
2826
2827 for (frag = 0; frag < nr_frags; frag++) {
2828 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2829
2830 len = skb_frag_size(fragp);
2831 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2832 DMA_TO_DEVICE);
2833
2834 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2835 if (unlikely(tabort)) {
2836 void *addr;
2837
2838 /* NOTE: len is always > tabort */
2839 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2840 ctrl, 0);
2841 entry = TX_DESC_NEXT(ring, entry);
2842
2843 addr = cas_page_map(skb_frag_page(fragp));
2844 memcpy(tx_tiny_buf(cp, ring, entry),
2845 addr + fragp->page_offset + len - tabort,
2846 tabort);
2847 cas_page_unmap(addr);
2848 mapping = tx_tiny_map(cp, ring, entry, tentry);
2849 len = tabort;
2850 }
2851
2852 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2853 (frag + 1 == nr_frags));
2854 entry = TX_DESC_NEXT(ring, entry);
2855 }
2856
2857 cp->tx_new[ring] = entry;
2858 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2859 netif_stop_queue(dev);
2860
2861 netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2862 "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2863 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2864 writel(entry, cp->regs + REG_TX_KICKN(ring));
2865 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2866 return 0;
2867 }
2868
2869 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2870 {
2871 struct cas *cp = netdev_priv(dev);
2872
2873 /* this is only used as a load-balancing hint, so it doesn't
2874 * need to be SMP safe
2875 */
2876 static int ring;
2877
2878 if (skb_padto(skb, cp->min_frame_size))
2879 return NETDEV_TX_OK;
2880
2881 /* XXX: we need some higher-level QoS hooks to steer packets to
2882 * individual queues.
2883 */
2884 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2885 return NETDEV_TX_BUSY;
2886 return NETDEV_TX_OK;
2887 }
2888
2889 static void cas_init_tx_dma(struct cas *cp)
2890 {
2891 u64 desc_dma = cp->block_dvma;
2892 unsigned long off;
2893 u32 val;
2894 int i;
2895
2896 /* set up tx completion writeback registers. must be 8-byte aligned */
2897 #ifdef USE_TX_COMPWB
2898 off = offsetof(struct cas_init_block, tx_compwb);
2899 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2900 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2901 #endif
2902
2903 /* enable completion writebacks, enable paced mode,
2904 * disable read pipe, and disable pre-interrupt compwbs
2905 */
2906 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2907 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2908 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2909 TX_CFG_INTR_COMPWB_DIS;
2910
2911 /* write out tx ring info and tx desc bases */
2912 for (i = 0; i < MAX_TX_RINGS; i++) {
2913 off = (unsigned long) cp->init_txds[i] -
2914 (unsigned long) cp->init_block;
2915
2916 val |= CAS_TX_RINGN_BASE(i);
2917 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2918 writel((desc_dma + off) & 0xffffffff, cp->regs +
2919 REG_TX_DBN_LOW(i));
2920 /* don't zero out the kick register here as the system
2921 * will wedge
2922 */
2923 }
2924 writel(val, cp->regs + REG_TX_CFG);
2925
2926 /* program max burst sizes. these numbers should be different
2927 * if doing QoS.
2928 */
2929 #ifdef USE_QOS
2930 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2931 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2932 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2933 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2934 #else
2935 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2936 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2937 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2938 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2939 #endif
2940 }
2941
2942 /* Must be invoked under cp->lock. */
2943 static inline void cas_init_dma(struct cas *cp)
2944 {
2945 cas_init_tx_dma(cp);
2946 cas_init_rx_dma(cp);
2947 }
2948
2949 static void cas_process_mc_list(struct cas *cp)
2950 {
2951 u16 hash_table[16];
2952 u32 crc;
2953 struct netdev_hw_addr *ha;
2954 int i = 1;
2955
2956 memset(hash_table, 0, sizeof(hash_table));
2957 netdev_for_each_mc_addr(ha, cp->dev) {
2958 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2959 /* use the alternate mac address registers for the
2960 * first 15 multicast addresses
2961 */
2962 writel((ha->addr[4] << 8) | ha->addr[5],
2963 cp->regs + REG_MAC_ADDRN(i*3 + 0));
2964 writel((ha->addr[2] << 8) | ha->addr[3],
2965 cp->regs + REG_MAC_ADDRN(i*3 + 1));
2966 writel((ha->addr[0] << 8) | ha->addr[1],
2967 cp->regs + REG_MAC_ADDRN(i*3 + 2));
2968 i++;
2969 }
2970 else {
2971 /* use hw hash table for the next series of
2972 * multicast addresses
2973 */
2974 crc = ether_crc_le(ETH_ALEN, ha->addr);
2975 crc >>= 24;
2976 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2977 }
2978 }
2979 for (i = 0; i < 16; i++)
2980 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2981 }
2982
2983 /* Must be invoked under cp->lock. */
2984 static u32 cas_setup_multicast(struct cas *cp)
2985 {
2986 u32 rxcfg = 0;
2987 int i;
2988
2989 if (cp->dev->flags & IFF_PROMISC) {
2990 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2991
2992 } else if (cp->dev->flags & IFF_ALLMULTI) {
2993 for (i=0; i < 16; i++)
2994 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2995 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2996
2997 } else {
2998 cas_process_mc_list(cp);
2999 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3000 }
3001
3002 return rxcfg;
3003 }
3004
3005 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3006 static void cas_clear_mac_err(struct cas *cp)
3007 {
3008 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3009 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3010 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3011 writel(0, cp->regs + REG_MAC_COLL_LATE);
3012 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3013 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3014 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3015 writel(0, cp->regs + REG_MAC_LEN_ERR);
3016 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3017 writel(0, cp->regs + REG_MAC_FCS_ERR);
3018 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3019 }
3020
3021
3022 static void cas_mac_reset(struct cas *cp)
3023 {
3024 int i;
3025
3026 /* do both TX and RX reset */
3027 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3028 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3029
3030 /* wait for TX */
3031 i = STOP_TRIES;
3032 while (i-- > 0) {
3033 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3034 break;
3035 udelay(10);
3036 }
3037
3038 /* wait for RX */
3039 i = STOP_TRIES;
3040 while (i-- > 0) {
3041 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3042 break;
3043 udelay(10);
3044 }
3045
3046 if (readl(cp->regs + REG_MAC_TX_RESET) |
3047 readl(cp->regs + REG_MAC_RX_RESET))
3048 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3049 readl(cp->regs + REG_MAC_TX_RESET),
3050 readl(cp->regs + REG_MAC_RX_RESET),
3051 readl(cp->regs + REG_MAC_STATE_MACHINE));
3052 }
3053
3054
3055 /* Must be invoked under cp->lock. */
3056 static void cas_init_mac(struct cas *cp)
3057 {
3058 unsigned char *e = &cp->dev->dev_addr[0];
3059 int i;
3060 cas_mac_reset(cp);
3061
3062 /* setup core arbitration weight register */
3063 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3064
3065 /* XXX Use pci_dma_burst_advice() */
3066 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3067 /* set the infinite burst register for chips that don't have
3068 * pci issues.
3069 */
3070 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3071 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3072 #endif
3073
3074 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3075
3076 writel(0x00, cp->regs + REG_MAC_IPG0);
3077 writel(0x08, cp->regs + REG_MAC_IPG1);
3078 writel(0x04, cp->regs + REG_MAC_IPG2);
3079
3080 /* change later for 802.3z */
3081 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3082
3083 /* min frame + FCS */
3084 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3085
3086 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3087 * specify the maximum frame size to prevent RX tag errors on
3088 * oversized frames.
3089 */
3090 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3091 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3092 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3093 cp->regs + REG_MAC_FRAMESIZE_MAX);
3094
3095 /* NOTE: crc_size is used as a surrogate for half-duplex.
3096 * workaround saturn half-duplex issue by increasing preamble
3097 * size to 65 bytes.
3098 */
3099 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3100 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3101 else
3102 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3103 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3104 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3105 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3106
3107 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3108
3109 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3110 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3111 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3112 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3113 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3114
3115 /* setup mac address in perfect filter array */
3116 for (i = 0; i < 45; i++)
3117 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3118
3119 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3120 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3121 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3122
3123 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3124 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3125 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3126
3127 cp->mac_rx_cfg = cas_setup_multicast(cp);
3128
3129 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3130 cas_clear_mac_err(cp);
3131 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3132
3133 /* Setup MAC interrupts. We want to get all of the interesting
3134 * counter expiration events, but we do not want to hear about
3135 * normal rx/tx as the DMA engine tells us that.
3136 */
3137 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3138 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3139
3140 /* Don't enable even the PAUSE interrupts for now, we
3141 * make no use of those events other than to record them.
3142 */
3143 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3144 }
3145
3146 /* Must be invoked under cp->lock. */
3147 static void cas_init_pause_thresholds(struct cas *cp)
3148 {
3149 /* Calculate pause thresholds. Setting the OFF threshold to the
3150 * full RX fifo size effectively disables PAUSE generation
3151 */
3152 if (cp->rx_fifo_size <= (2 * 1024)) {
3153 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3154 } else {
3155 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3156 if (max_frame * 3 > cp->rx_fifo_size) {
3157 cp->rx_pause_off = 7104;
3158 cp->rx_pause_on = 960;
3159 } else {
3160 int off = (cp->rx_fifo_size - (max_frame * 2));
3161 int on = off - max_frame;
3162 cp->rx_pause_off = off;
3163 cp->rx_pause_on = on;
3164 }
3165 }
3166 }
3167
3168 static int cas_vpd_match(const void __iomem *p, const char *str)
3169 {
3170 int len = strlen(str) + 1;
3171 int i;
3172
3173 for (i = 0; i < len; i++) {
3174 if (readb(p + i) != str[i])
3175 return 0;
3176 }
3177 return 1;
3178 }
3179
3180
3181 /* get the mac address by reading the vpd information in the rom.
3182 * also get the phy type and determine if there's an entropy generator.
3183 * NOTE: this is a bit convoluted for the following reasons:
3184 * 1) vpd info has order-dependent mac addresses for multinic cards
3185 * 2) the only way to determine the nic order is to use the slot
3186 * number.
3187 * 3) fiber cards don't have bridges, so their slot numbers don't
3188 * mean anything.
3189 * 4) we don't actually know we have a fiber card until after
3190 * the mac addresses are parsed.
3191 */
3192 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3193 const int offset)
3194 {
3195 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3196 void __iomem *base, *kstart;
3197 int i, len;
3198 int found = 0;
3199 #define VPD_FOUND_MAC 0x01
3200 #define VPD_FOUND_PHY 0x02
3201
3202 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3203 int mac_off = 0;
3204
3205 #if defined(CONFIG_SPARC)
3206 const unsigned char *addr;
3207 #endif
3208
3209 /* give us access to the PROM */
3210 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3211 cp->regs + REG_BIM_LOCAL_DEV_EN);
3212
3213 /* check for an expansion rom */
3214 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3215 goto use_random_mac_addr;
3216
3217 /* search for beginning of vpd */
3218 base = NULL;
3219 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3220 /* check for PCIR */
3221 if ((readb(p + i + 0) == 0x50) &&
3222 (readb(p + i + 1) == 0x43) &&
3223 (readb(p + i + 2) == 0x49) &&
3224 (readb(p + i + 3) == 0x52)) {
3225 base = p + (readb(p + i + 8) |
3226 (readb(p + i + 9) << 8));
3227 break;
3228 }
3229 }
3230
3231 if (!base || (readb(base) != 0x82))
3232 goto use_random_mac_addr;
3233
3234 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3235 while (i < EXPANSION_ROM_SIZE) {
3236 if (readb(base + i) != 0x90) /* no vpd found */
3237 goto use_random_mac_addr;
3238
3239 /* found a vpd field */
3240 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3241
3242 /* extract keywords */
3243 kstart = base + i + 3;
3244 p = kstart;
3245 while ((p - kstart) < len) {
3246 int klen = readb(p + 2);
3247 int j;
3248 char type;
3249
3250 p += 3;
3251
3252 /* look for the following things:
3253 * -- correct length == 29
3254 * 3 (type) + 2 (size) +
3255 * 18 (strlen("local-mac-address") + 1) +
3256 * 6 (mac addr)
3257 * -- VPD Instance 'I'
3258 * -- VPD Type Bytes 'B'
3259 * -- VPD data length == 6
3260 * -- property string == local-mac-address
3261 *
3262 * -- correct length == 24
3263 * 3 (type) + 2 (size) +
3264 * 12 (strlen("entropy-dev") + 1) +
3265 * 7 (strlen("vms110") + 1)
3266 * -- VPD Instance 'I'
3267 * -- VPD Type String 'B'
3268 * -- VPD data length == 7
3269 * -- property string == entropy-dev
3270 *
3271 * -- correct length == 18
3272 * 3 (type) + 2 (size) +
3273 * 9 (strlen("phy-type") + 1) +
3274 * 4 (strlen("pcs") + 1)
3275 * -- VPD Instance 'I'
3276 * -- VPD Type String 'S'
3277 * -- VPD data length == 4
3278 * -- property string == phy-type
3279 *
3280 * -- correct length == 23
3281 * 3 (type) + 2 (size) +
3282 * 14 (strlen("phy-interface") + 1) +
3283 * 4 (strlen("pcs") + 1)
3284 * -- VPD Instance 'I'
3285 * -- VPD Type String 'S'
3286 * -- VPD data length == 4
3287 * -- property string == phy-interface
3288 */
3289 if (readb(p) != 'I')
3290 goto next;
3291
3292 /* finally, check string and length */
3293 type = readb(p + 3);
3294 if (type == 'B') {
3295 if ((klen == 29) && readb(p + 4) == 6 &&
3296 cas_vpd_match(p + 5,
3297 "local-mac-address")) {
3298 if (mac_off++ > offset)
3299 goto next;
3300
3301 /* set mac address */
3302 for (j = 0; j < 6; j++)
3303 dev_addr[j] =
3304 readb(p + 23 + j);
3305 goto found_mac;
3306 }
3307 }
3308
3309 if (type != 'S')
3310 goto next;
3311
3312 #ifdef USE_ENTROPY_DEV
3313 if ((klen == 24) &&
3314 cas_vpd_match(p + 5, "entropy-dev") &&
3315 cas_vpd_match(p + 17, "vms110")) {
3316 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3317 goto next;
3318 }
3319 #endif
3320
3321 if (found & VPD_FOUND_PHY)
3322 goto next;
3323
3324 if ((klen == 18) && readb(p + 4) == 4 &&
3325 cas_vpd_match(p + 5, "phy-type")) {
3326 if (cas_vpd_match(p + 14, "pcs")) {
3327 phy_type = CAS_PHY_SERDES;
3328 goto found_phy;
3329 }
3330 }
3331
3332 if ((klen == 23) && readb(p + 4) == 4 &&
3333 cas_vpd_match(p + 5, "phy-interface")) {
3334 if (cas_vpd_match(p + 19, "pcs")) {
3335 phy_type = CAS_PHY_SERDES;
3336 goto found_phy;
3337 }
3338 }
3339 found_mac:
3340 found |= VPD_FOUND_MAC;
3341 goto next;
3342
3343 found_phy:
3344 found |= VPD_FOUND_PHY;
3345
3346 next:
3347 p += klen;
3348 }
3349 i += len + 3;
3350 }
3351
3352 use_random_mac_addr:
3353 if (found & VPD_FOUND_MAC)
3354 goto done;
3355
3356 #if defined(CONFIG_SPARC)
3357 addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3358 if (addr != NULL) {
3359 memcpy(dev_addr, addr, 6);
3360 goto done;
3361 }
3362 #endif
3363
3364 /* Sun MAC prefix then 3 random bytes. */
3365 pr_info("MAC address not found in ROM VPD\n");
3366 dev_addr[0] = 0x08;
3367 dev_addr[1] = 0x00;
3368 dev_addr[2] = 0x20;
3369 get_random_bytes(dev_addr + 3, 3);
3370
3371 done:
3372 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3373 return phy_type;
3374 }
3375
3376 /* check pci invariants */
3377 static void cas_check_pci_invariants(struct cas *cp)
3378 {
3379 struct pci_dev *pdev = cp->pdev;
3380
3381 cp->cas_flags = 0;
3382 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3383 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3384 if (pdev->revision >= CAS_ID_REVPLUS)
3385 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3386 if (pdev->revision < CAS_ID_REVPLUS02u)
3387 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3388
3389 /* Original Cassini supports HW CSUM, but it's not
3390 * enabled by default as it can trigger TX hangs.
3391 */
3392 if (pdev->revision < CAS_ID_REV2)
3393 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3394 } else {
3395 /* Only sun has original cassini chips. */
3396 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3397
3398 /* We use a flag because the same phy might be externally
3399 * connected.
3400 */
3401 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3402 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3403 cp->cas_flags |= CAS_FLAG_SATURN;
3404 }
3405 }
3406
3407
3408 static int cas_check_invariants(struct cas *cp)
3409 {
3410 struct pci_dev *pdev = cp->pdev;
3411 u32 cfg;
3412 int i;
3413
3414 /* get page size for rx buffers. */
3415 cp->page_order = 0;
3416 #ifdef USE_PAGE_ORDER
3417 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3418 /* see if we can allocate larger pages */
3419 struct page *page = alloc_pages(GFP_ATOMIC,
3420 CAS_JUMBO_PAGE_SHIFT -
3421 PAGE_SHIFT);
3422 if (page) {
3423 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3424 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3425 } else {
3426 printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3427 }
3428 }
3429 #endif
3430 cp->page_size = (PAGE_SIZE << cp->page_order);
3431
3432 /* Fetch the FIFO configurations. */
3433 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3434 cp->rx_fifo_size = RX_FIFO_SIZE;
3435
3436 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3437 * they're both connected.
3438 */
3439 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3440 PCI_SLOT(pdev->devfn));
3441 if (cp->phy_type & CAS_PHY_SERDES) {
3442 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3443 return 0; /* no more checking needed */
3444 }
3445
3446 /* MII */
3447 cfg = readl(cp->regs + REG_MIF_CFG);
3448 if (cfg & MIF_CFG_MDIO_1) {
3449 cp->phy_type = CAS_PHY_MII_MDIO1;
3450 } else if (cfg & MIF_CFG_MDIO_0) {
3451 cp->phy_type = CAS_PHY_MII_MDIO0;
3452 }
3453
3454 cas_mif_poll(cp, 0);
3455 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3456
3457 for (i = 0; i < 32; i++) {
3458 u32 phy_id;
3459 int j;
3460
3461 for (j = 0; j < 3; j++) {
3462 cp->phy_addr = i;
3463 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3464 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3465 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3466 cp->phy_id = phy_id;
3467 goto done;
3468 }
3469 }
3470 }
3471 pr_err("MII phy did not respond [%08x]\n",
3472 readl(cp->regs + REG_MIF_STATE_MACHINE));
3473 return -1;
3474
3475 done:
3476 /* see if we can do gigabit */
3477 cfg = cas_phy_read(cp, MII_BMSR);
3478 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3479 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3480 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3481 return 0;
3482 }
3483
3484 /* Must be invoked under cp->lock. */
3485 static inline void cas_start_dma(struct cas *cp)
3486 {
3487 int i;
3488 u32 val;
3489 int txfailed = 0;
3490
3491 /* enable dma */
3492 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3493 writel(val, cp->regs + REG_TX_CFG);
3494 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3495 writel(val, cp->regs + REG_RX_CFG);
3496
3497 /* enable the mac */
3498 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3499 writel(val, cp->regs + REG_MAC_TX_CFG);
3500 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3501 writel(val, cp->regs + REG_MAC_RX_CFG);
3502
3503 i = STOP_TRIES;
3504 while (i-- > 0) {
3505 val = readl(cp->regs + REG_MAC_TX_CFG);
3506 if ((val & MAC_TX_CFG_EN))
3507 break;
3508 udelay(10);
3509 }
3510 if (i < 0) txfailed = 1;
3511 i = STOP_TRIES;
3512 while (i-- > 0) {
3513 val = readl(cp->regs + REG_MAC_RX_CFG);
3514 if ((val & MAC_RX_CFG_EN)) {
3515 if (txfailed) {
3516 netdev_err(cp->dev,
3517 "enabling mac failed [tx:%08x:%08x]\n",
3518 readl(cp->regs + REG_MIF_STATE_MACHINE),
3519 readl(cp->regs + REG_MAC_STATE_MACHINE));
3520 }
3521 goto enable_rx_done;
3522 }
3523 udelay(10);
3524 }
3525 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3526 (txfailed ? "tx,rx" : "rx"),
3527 readl(cp->regs + REG_MIF_STATE_MACHINE),
3528 readl(cp->regs + REG_MAC_STATE_MACHINE));
3529
3530 enable_rx_done:
3531 cas_unmask_intr(cp); /* enable interrupts */
3532 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3533 writel(0, cp->regs + REG_RX_COMP_TAIL);
3534
3535 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3536 if (N_RX_DESC_RINGS > 1)
3537 writel(RX_DESC_RINGN_SIZE(1) - 4,
3538 cp->regs + REG_PLUS_RX_KICK1);
3539
3540 for (i = 1; i < N_RX_COMP_RINGS; i++)
3541 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3542 }
3543 }
3544
3545 /* Must be invoked under cp->lock. */
3546 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3547 int *pause)
3548 {
3549 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3550 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3551 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3552 if (val & PCS_MII_LPA_ASYM_PAUSE)
3553 *pause |= 0x10;
3554 *spd = 1000;
3555 }
3556
3557 /* Must be invoked under cp->lock. */
3558 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3559 int *pause)
3560 {
3561 u32 val;
3562
3563 *fd = 0;
3564 *spd = 10;
3565 *pause = 0;
3566
3567 /* use GMII registers */
3568 val = cas_phy_read(cp, MII_LPA);
3569 if (val & CAS_LPA_PAUSE)
3570 *pause = 0x01;
3571
3572 if (val & CAS_LPA_ASYM_PAUSE)
3573 *pause |= 0x10;
3574
3575 if (val & LPA_DUPLEX)
3576 *fd = 1;
3577 if (val & LPA_100)
3578 *spd = 100;
3579
3580 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3581 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3582 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3583 *spd = 1000;
3584 if (val & CAS_LPA_1000FULL)
3585 *fd = 1;
3586 }
3587 }
3588
3589 /* A link-up condition has occurred, initialize and enable the
3590 * rest of the chip.
3591 *
3592 * Must be invoked under cp->lock.
3593 */
3594 static void cas_set_link_modes(struct cas *cp)
3595 {
3596 u32 val;
3597 int full_duplex, speed, pause;
3598
3599 full_duplex = 0;
3600 speed = 10;
3601 pause = 0;
3602
3603 if (CAS_PHY_MII(cp->phy_type)) {
3604 cas_mif_poll(cp, 0);
3605 val = cas_phy_read(cp, MII_BMCR);
3606 if (val & BMCR_ANENABLE) {
3607 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3608 &pause);
3609 } else {
3610 if (val & BMCR_FULLDPLX)
3611 full_duplex = 1;
3612
3613 if (val & BMCR_SPEED100)
3614 speed = 100;
3615 else if (val & CAS_BMCR_SPEED1000)
3616 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3617 1000 : 100;
3618 }
3619 cas_mif_poll(cp, 1);
3620
3621 } else {
3622 val = readl(cp->regs + REG_PCS_MII_CTRL);
3623 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3624 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3625 if (val & PCS_MII_CTRL_DUPLEX)
3626 full_duplex = 1;
3627 }
3628 }
3629
3630 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3631 speed, full_duplex ? "full" : "half");
3632
3633 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3634 if (CAS_PHY_MII(cp->phy_type)) {
3635 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3636 if (!full_duplex)
3637 val |= MAC_XIF_DISABLE_ECHO;
3638 }
3639 if (full_duplex)
3640 val |= MAC_XIF_FDPLX_LED;
3641 if (speed == 1000)
3642 val |= MAC_XIF_GMII_MODE;
3643 writel(val, cp->regs + REG_MAC_XIF_CFG);
3644
3645 /* deal with carrier and collision detect. */
3646 val = MAC_TX_CFG_IPG_EN;
3647 if (full_duplex) {
3648 val |= MAC_TX_CFG_IGNORE_CARRIER;
3649 val |= MAC_TX_CFG_IGNORE_COLL;
3650 } else {
3651 #ifndef USE_CSMA_CD_PROTO
3652 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3653 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3654 #endif
3655 }
3656 /* val now set up for REG_MAC_TX_CFG */
3657
3658 /* If gigabit and half-duplex, enable carrier extension
3659 * mode. increase slot time to 512 bytes as well.
3660 * else, disable it and make sure slot time is 64 bytes.
3661 * also activate checksum bug workaround
3662 */
3663 if ((speed == 1000) && !full_duplex) {
3664 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3665 cp->regs + REG_MAC_TX_CFG);
3666
3667 val = readl(cp->regs + REG_MAC_RX_CFG);
3668 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3669 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3670 cp->regs + REG_MAC_RX_CFG);
3671
3672 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3673
3674 cp->crc_size = 4;
3675 /* minimum size gigabit frame at half duplex */
3676 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3677
3678 } else {
3679 writel(val, cp->regs + REG_MAC_TX_CFG);
3680
3681 /* checksum bug workaround. don't strip FCS when in
3682 * half-duplex mode
3683 */
3684 val = readl(cp->regs + REG_MAC_RX_CFG);
3685 if (full_duplex) {
3686 val |= MAC_RX_CFG_STRIP_FCS;
3687 cp->crc_size = 0;
3688 cp->min_frame_size = CAS_MIN_MTU;
3689 } else {
3690 val &= ~MAC_RX_CFG_STRIP_FCS;
3691 cp->crc_size = 4;
3692 cp->min_frame_size = CAS_MIN_FRAME;
3693 }
3694 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3695 cp->regs + REG_MAC_RX_CFG);
3696 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3697 }
3698
3699 if (netif_msg_link(cp)) {
3700 if (pause & 0x01) {
3701 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3702 cp->rx_fifo_size,
3703 cp->rx_pause_off,
3704 cp->rx_pause_on);
3705 } else if (pause & 0x10) {
3706 netdev_info(cp->dev, "TX pause enabled\n");
3707 } else {
3708 netdev_info(cp->dev, "Pause is disabled\n");
3709 }
3710 }
3711
3712 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3713 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3714 if (pause) { /* symmetric or asymmetric pause */
3715 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3716 if (pause & 0x01) { /* symmetric pause */
3717 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3718 }
3719 }
3720 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3721 cas_start_dma(cp);
3722 }
3723
3724 /* Must be invoked under cp->lock. */
3725 static void cas_init_hw(struct cas *cp, int restart_link)
3726 {
3727 if (restart_link)
3728 cas_phy_init(cp);
3729
3730 cas_init_pause_thresholds(cp);
3731 cas_init_mac(cp);
3732 cas_init_dma(cp);
3733
3734 if (restart_link) {
3735 /* Default aneg parameters */
3736 cp->timer_ticks = 0;
3737 cas_begin_auto_negotiation(cp, NULL);
3738 } else if (cp->lstate == link_up) {
3739 cas_set_link_modes(cp);
3740 netif_carrier_on(cp->dev);
3741 }
3742 }
3743
3744 /* Must be invoked under cp->lock. on earlier cassini boards,
3745 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3746 * let it settle out, and then restore pci state.
3747 */
3748 static void cas_hard_reset(struct cas *cp)
3749 {
3750 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3751 udelay(20);
3752 pci_restore_state(cp->pdev);
3753 }
3754
3755
3756 static void cas_global_reset(struct cas *cp, int blkflag)
3757 {
3758 int limit;
3759
3760 /* issue a global reset. don't use RSTOUT. */
3761 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3762 /* For PCS, when the blkflag is set, we should set the
3763 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3764 * the last autonegotiation from being cleared. We'll
3765 * need some special handling if the chip is set into a
3766 * loopback mode.
3767 */
3768 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3769 cp->regs + REG_SW_RESET);
3770 } else {
3771 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3772 }
3773
3774 /* need to wait at least 3ms before polling register */
3775 mdelay(3);
3776
3777 limit = STOP_TRIES;
3778 while (limit-- > 0) {
3779 u32 val = readl(cp->regs + REG_SW_RESET);
3780 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3781 goto done;
3782 udelay(10);
3783 }
3784 netdev_err(cp->dev, "sw reset failed\n");
3785
3786 done:
3787 /* enable various BIM interrupts */
3788 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3789 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3790
3791 /* clear out pci error status mask for handled errors.
3792 * we don't deal with DMA counter overflows as they happen
3793 * all the time.
3794 */
3795 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3796 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3797 PCI_ERR_BIM_DMA_READ), cp->regs +
3798 REG_PCI_ERR_STATUS_MASK);
3799
3800 /* set up for MII by default to address mac rx reset timeout
3801 * issue
3802 */
3803 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3804 }
3805
3806 static void cas_reset(struct cas *cp, int blkflag)
3807 {
3808 u32 val;
3809
3810 cas_mask_intr(cp);
3811 cas_global_reset(cp, blkflag);
3812 cas_mac_reset(cp);
3813 cas_entropy_reset(cp);
3814
3815 /* disable dma engines. */
3816 val = readl(cp->regs + REG_TX_CFG);
3817 val &= ~TX_CFG_DMA_EN;
3818 writel(val, cp->regs + REG_TX_CFG);
3819
3820 val = readl(cp->regs + REG_RX_CFG);
3821 val &= ~RX_CFG_DMA_EN;
3822 writel(val, cp->regs + REG_RX_CFG);
3823
3824 /* program header parser */
3825 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3826 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3827 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3828 } else {
3829 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3830 }
3831
3832 /* clear out error registers */
3833 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3834 cas_clear_mac_err(cp);
3835 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3836 }
3837
3838 /* Shut down the chip, must be called with pm_mutex held. */
3839 static void cas_shutdown(struct cas *cp)
3840 {
3841 unsigned long flags;
3842
3843 /* Make us not-running to avoid timers respawning */
3844 cp->hw_running = 0;
3845
3846 del_timer_sync(&cp->link_timer);
3847
3848 /* Stop the reset task */
3849 #if 0
3850 while (atomic_read(&cp->reset_task_pending_mtu) ||
3851 atomic_read(&cp->reset_task_pending_spare) ||
3852 atomic_read(&cp->reset_task_pending_all))
3853 schedule();
3854
3855 #else
3856 while (atomic_read(&cp->reset_task_pending))
3857 schedule();
3858 #endif
3859 /* Actually stop the chip */
3860 cas_lock_all_save(cp, flags);
3861 cas_reset(cp, 0);
3862 if (cp->cas_flags & CAS_FLAG_SATURN)
3863 cas_phy_powerdown(cp);
3864 cas_unlock_all_restore(cp, flags);
3865 }
3866
3867 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3868 {
3869 struct cas *cp = netdev_priv(dev);
3870
3871 if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3872 return -EINVAL;
3873
3874 dev->mtu = new_mtu;
3875 if (!netif_running(dev) || !netif_device_present(dev))
3876 return 0;
3877
3878 /* let the reset task handle it */
3879 #if 1
3880 atomic_inc(&cp->reset_task_pending);
3881 if ((cp->phy_type & CAS_PHY_SERDES)) {
3882 atomic_inc(&cp->reset_task_pending_all);
3883 } else {
3884 atomic_inc(&cp->reset_task_pending_mtu);
3885 }
3886 schedule_work(&cp->reset_task);
3887 #else
3888 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3889 CAS_RESET_ALL : CAS_RESET_MTU);
3890 pr_err("reset called in cas_change_mtu\n");
3891 schedule_work(&cp->reset_task);
3892 #endif
3893
3894 flush_work_sync(&cp->reset_task);
3895 return 0;
3896 }
3897
3898 static void cas_clean_txd(struct cas *cp, int ring)
3899 {
3900 struct cas_tx_desc *txd = cp->init_txds[ring];
3901 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3902 u64 daddr, dlen;
3903 int i, size;
3904
3905 size = TX_DESC_RINGN_SIZE(ring);
3906 for (i = 0; i < size; i++) {
3907 int frag;
3908
3909 if (skbs[i] == NULL)
3910 continue;
3911
3912 skb = skbs[i];
3913 skbs[i] = NULL;
3914
3915 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3916 int ent = i & (size - 1);
3917
3918 /* first buffer is never a tiny buffer and so
3919 * needs to be unmapped.
3920 */
3921 daddr = le64_to_cpu(txd[ent].buffer);
3922 dlen = CAS_VAL(TX_DESC_BUFLEN,
3923 le64_to_cpu(txd[ent].control));
3924 pci_unmap_page(cp->pdev, daddr, dlen,
3925 PCI_DMA_TODEVICE);
3926
3927 if (frag != skb_shinfo(skb)->nr_frags) {
3928 i++;
3929
3930 /* next buffer might by a tiny buffer.
3931 * skip past it.
3932 */
3933 ent = i & (size - 1);
3934 if (cp->tx_tiny_use[ring][ent].used)
3935 i++;
3936 }
3937 }
3938 dev_kfree_skb_any(skb);
3939 }
3940
3941 /* zero out tiny buf usage */
3942 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3943 }
3944
3945 /* freed on close */
3946 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3947 {
3948 cas_page_t **page = cp->rx_pages[ring];
3949 int i, size;
3950
3951 size = RX_DESC_RINGN_SIZE(ring);
3952 for (i = 0; i < size; i++) {
3953 if (page[i]) {
3954 cas_page_free(cp, page[i]);
3955 page[i] = NULL;
3956 }
3957 }
3958 }
3959
3960 static void cas_free_rxds(struct cas *cp)
3961 {
3962 int i;
3963
3964 for (i = 0; i < N_RX_DESC_RINGS; i++)
3965 cas_free_rx_desc(cp, i);
3966 }
3967
3968 /* Must be invoked under cp->lock. */
3969 static void cas_clean_rings(struct cas *cp)
3970 {
3971 int i;
3972
3973 /* need to clean all tx rings */
3974 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3975 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3976 for (i = 0; i < N_TX_RINGS; i++)
3977 cas_clean_txd(cp, i);
3978
3979 /* zero out init block */
3980 memset(cp->init_block, 0, sizeof(struct cas_init_block));
3981 cas_clean_rxds(cp);
3982 cas_clean_rxcs(cp);
3983 }
3984
3985 /* allocated on open */
3986 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3987 {
3988 cas_page_t **page = cp->rx_pages[ring];
3989 int size, i = 0;
3990
3991 size = RX_DESC_RINGN_SIZE(ring);
3992 for (i = 0; i < size; i++) {
3993 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3994 return -1;
3995 }
3996 return 0;
3997 }
3998
3999 static int cas_alloc_rxds(struct cas *cp)
4000 {
4001 int i;
4002
4003 for (i = 0; i < N_RX_DESC_RINGS; i++) {
4004 if (cas_alloc_rx_desc(cp, i) < 0) {
4005 cas_free_rxds(cp);
4006 return -1;
4007 }
4008 }
4009 return 0;
4010 }
4011
4012 static void cas_reset_task(struct work_struct *work)
4013 {
4014 struct cas *cp = container_of(work, struct cas, reset_task);
4015 #if 0
4016 int pending = atomic_read(&cp->reset_task_pending);
4017 #else
4018 int pending_all = atomic_read(&cp->reset_task_pending_all);
4019 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4020 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4021
4022 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4023 /* We can have more tasks scheduled than actually
4024 * needed.
4025 */
4026 atomic_dec(&cp->reset_task_pending);
4027 return;
4028 }
4029 #endif
4030 /* The link went down, we reset the ring, but keep
4031 * DMA stopped. Use this function for reset
4032 * on error as well.
4033 */
4034 if (cp->hw_running) {
4035 unsigned long flags;
4036
4037 /* Make sure we don't get interrupts or tx packets */
4038 netif_device_detach(cp->dev);
4039 cas_lock_all_save(cp, flags);
4040
4041 if (cp->opened) {
4042 /* We call cas_spare_recover when we call cas_open.
4043 * but we do not initialize the lists cas_spare_recover
4044 * uses until cas_open is called.
4045 */
4046 cas_spare_recover(cp, GFP_ATOMIC);
4047 }
4048 #if 1
4049 /* test => only pending_spare set */
4050 if (!pending_all && !pending_mtu)
4051 goto done;
4052 #else
4053 if (pending == CAS_RESET_SPARE)
4054 goto done;
4055 #endif
4056 /* when pending == CAS_RESET_ALL, the following
4057 * call to cas_init_hw will restart auto negotiation.
4058 * Setting the second argument of cas_reset to
4059 * !(pending == CAS_RESET_ALL) will set this argument
4060 * to 1 (avoiding reinitializing the PHY for the normal
4061 * PCS case) when auto negotiation is not restarted.
4062 */
4063 #if 1
4064 cas_reset(cp, !(pending_all > 0));
4065 if (cp->opened)
4066 cas_clean_rings(cp);
4067 cas_init_hw(cp, (pending_all > 0));
4068 #else
4069 cas_reset(cp, !(pending == CAS_RESET_ALL));
4070 if (cp->opened)
4071 cas_clean_rings(cp);
4072 cas_init_hw(cp, pending == CAS_RESET_ALL);
4073 #endif
4074
4075 done:
4076 cas_unlock_all_restore(cp, flags);
4077 netif_device_attach(cp->dev);
4078 }
4079 #if 1
4080 atomic_sub(pending_all, &cp->reset_task_pending_all);
4081 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4082 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4083 atomic_dec(&cp->reset_task_pending);
4084 #else
4085 atomic_set(&cp->reset_task_pending, 0);
4086 #endif
4087 }
4088
4089 static void cas_link_timer(unsigned long data)
4090 {
4091 struct cas *cp = (struct cas *) data;
4092 int mask, pending = 0, reset = 0;
4093 unsigned long flags;
4094
4095 if (link_transition_timeout != 0 &&
4096 cp->link_transition_jiffies_valid &&
4097 ((jiffies - cp->link_transition_jiffies) >
4098 (link_transition_timeout))) {
4099 /* One-second counter so link-down workaround doesn't
4100 * cause resets to occur so fast as to fool the switch
4101 * into thinking the link is down.
4102 */
4103 cp->link_transition_jiffies_valid = 0;
4104 }
4105
4106 if (!cp->hw_running)
4107 return;
4108
4109 spin_lock_irqsave(&cp->lock, flags);
4110 cas_lock_tx(cp);
4111 cas_entropy_gather(cp);
4112
4113 /* If the link task is still pending, we just
4114 * reschedule the link timer
4115 */
4116 #if 1
4117 if (atomic_read(&cp->reset_task_pending_all) ||
4118 atomic_read(&cp->reset_task_pending_spare) ||
4119 atomic_read(&cp->reset_task_pending_mtu))
4120 goto done;
4121 #else
4122 if (atomic_read(&cp->reset_task_pending))
4123 goto done;
4124 #endif
4125
4126 /* check for rx cleaning */
4127 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4128 int i, rmask;
4129
4130 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4131 rmask = CAS_FLAG_RXD_POST(i);
4132 if ((mask & rmask) == 0)
4133 continue;
4134
4135 /* post_rxds will do a mod_timer */
4136 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4137 pending = 1;
4138 continue;
4139 }
4140 cp->cas_flags &= ~rmask;
4141 }
4142 }
4143
4144 if (CAS_PHY_MII(cp->phy_type)) {
4145 u16 bmsr;
4146 cas_mif_poll(cp, 0);
4147 bmsr = cas_phy_read(cp, MII_BMSR);
4148 /* WTZ: Solaris driver reads this twice, but that
4149 * may be due to the PCS case and the use of a
4150 * common implementation. Read it twice here to be
4151 * safe.
4152 */
4153 bmsr = cas_phy_read(cp, MII_BMSR);
4154 cas_mif_poll(cp, 1);
4155 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4156 reset = cas_mii_link_check(cp, bmsr);
4157 } else {
4158 reset = cas_pcs_link_check(cp);
4159 }
4160
4161 if (reset)
4162 goto done;
4163
4164 /* check for tx state machine confusion */
4165 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4166 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4167 u32 wptr, rptr;
4168 int tlm = CAS_VAL(MAC_SM_TLM, val);
4169
4170 if (((tlm == 0x5) || (tlm == 0x3)) &&
4171 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4172 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4173 "tx err: MAC_STATE[%08x]\n", val);
4174 reset = 1;
4175 goto done;
4176 }
4177
4178 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4179 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4180 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4181 if ((val == 0) && (wptr != rptr)) {
4182 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4183 "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4184 val, wptr, rptr);
4185 reset = 1;
4186 }
4187
4188 if (reset)
4189 cas_hard_reset(cp);
4190 }
4191
4192 done:
4193 if (reset) {
4194 #if 1
4195 atomic_inc(&cp->reset_task_pending);
4196 atomic_inc(&cp->reset_task_pending_all);
4197 schedule_work(&cp->reset_task);
4198 #else
4199 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4200 pr_err("reset called in cas_link_timer\n");
4201 schedule_work(&cp->reset_task);
4202 #endif
4203 }
4204
4205 if (!pending)
4206 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4207 cas_unlock_tx(cp);
4208 spin_unlock_irqrestore(&cp->lock, flags);
4209 }
4210
4211 /* tiny buffers are used to avoid target abort issues with
4212 * older cassini's
4213 */
4214 static void cas_tx_tiny_free(struct cas *cp)
4215 {
4216 struct pci_dev *pdev = cp->pdev;
4217 int i;
4218
4219 for (i = 0; i < N_TX_RINGS; i++) {
4220 if (!cp->tx_tiny_bufs[i])
4221 continue;
4222
4223 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4224 cp->tx_tiny_bufs[i],
4225 cp->tx_tiny_dvma[i]);
4226 cp->tx_tiny_bufs[i] = NULL;
4227 }
4228 }
4229
4230 static int cas_tx_tiny_alloc(struct cas *cp)
4231 {
4232 struct pci_dev *pdev = cp->pdev;
4233 int i;
4234
4235 for (i = 0; i < N_TX_RINGS; i++) {
4236 cp->tx_tiny_bufs[i] =
4237 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4238 &cp->tx_tiny_dvma[i]);
4239 if (!cp->tx_tiny_bufs[i]) {
4240 cas_tx_tiny_free(cp);
4241 return -1;
4242 }
4243 }
4244 return 0;
4245 }
4246
4247
4248 static int cas_open(struct net_device *dev)
4249 {
4250 struct cas *cp = netdev_priv(dev);
4251 int hw_was_up, err;
4252 unsigned long flags;
4253
4254 mutex_lock(&cp->pm_mutex);
4255
4256 hw_was_up = cp->hw_running;
4257
4258 /* The power-management mutex protects the hw_running
4259 * etc. state so it is safe to do this bit without cp->lock
4260 */
4261 if (!cp->hw_running) {
4262 /* Reset the chip */
4263 cas_lock_all_save(cp, flags);
4264 /* We set the second arg to cas_reset to zero
4265 * because cas_init_hw below will have its second
4266 * argument set to non-zero, which will force
4267 * autonegotiation to start.
4268 */
4269 cas_reset(cp, 0);
4270 cp->hw_running = 1;
4271 cas_unlock_all_restore(cp, flags);
4272 }
4273
4274 err = -ENOMEM;
4275 if (cas_tx_tiny_alloc(cp) < 0)
4276 goto err_unlock;
4277
4278 /* alloc rx descriptors */
4279 if (cas_alloc_rxds(cp) < 0)
4280 goto err_tx_tiny;
4281
4282 /* allocate spares */
4283 cas_spare_init(cp);
4284 cas_spare_recover(cp, GFP_KERNEL);
4285
4286 /* We can now request the interrupt as we know it's masked
4287 * on the controller. cassini+ has up to 4 interrupts
4288 * that can be used, but you need to do explicit pci interrupt
4289 * mapping to expose them
4290 */
4291 if (request_irq(cp->pdev->irq, cas_interrupt,
4292 IRQF_SHARED, dev->name, (void *) dev)) {
4293 netdev_err(cp->dev, "failed to request irq !\n");
4294 err = -EAGAIN;
4295 goto err_spare;
4296 }
4297
4298 #ifdef USE_NAPI
4299 napi_enable(&cp->napi);
4300 #endif
4301 /* init hw */
4302 cas_lock_all_save(cp, flags);
4303 cas_clean_rings(cp);
4304 cas_init_hw(cp, !hw_was_up);
4305 cp->opened = 1;
4306 cas_unlock_all_restore(cp, flags);
4307
4308 netif_start_queue(dev);
4309 mutex_unlock(&cp->pm_mutex);
4310 return 0;
4311
4312 err_spare:
4313 cas_spare_free(cp);
4314 cas_free_rxds(cp);
4315 err_tx_tiny:
4316 cas_tx_tiny_free(cp);
4317 err_unlock:
4318 mutex_unlock(&cp->pm_mutex);
4319 return err;
4320 }
4321
4322 static int cas_close(struct net_device *dev)
4323 {
4324 unsigned long flags;
4325 struct cas *cp = netdev_priv(dev);
4326
4327 #ifdef USE_NAPI
4328 napi_disable(&cp->napi);
4329 #endif
4330 /* Make sure we don't get distracted by suspend/resume */
4331 mutex_lock(&cp->pm_mutex);
4332
4333 netif_stop_queue(dev);
4334
4335 /* Stop traffic, mark us closed */
4336 cas_lock_all_save(cp, flags);
4337 cp->opened = 0;
4338 cas_reset(cp, 0);
4339 cas_phy_init(cp);
4340 cas_begin_auto_negotiation(cp, NULL);
4341 cas_clean_rings(cp);
4342 cas_unlock_all_restore(cp, flags);
4343
4344 free_irq(cp->pdev->irq, (void *) dev);
4345 cas_spare_free(cp);
4346 cas_free_rxds(cp);
4347 cas_tx_tiny_free(cp);
4348 mutex_unlock(&cp->pm_mutex);
4349 return 0;
4350 }
4351
4352 static struct {
4353 const char name[ETH_GSTRING_LEN];
4354 } ethtool_cassini_statnames[] = {
4355 {"collisions"},
4356 {"rx_bytes"},
4357 {"rx_crc_errors"},
4358 {"rx_dropped"},
4359 {"rx_errors"},
4360 {"rx_fifo_errors"},
4361 {"rx_frame_errors"},
4362 {"rx_length_errors"},
4363 {"rx_over_errors"},
4364 {"rx_packets"},
4365 {"tx_aborted_errors"},
4366 {"tx_bytes"},
4367 {"tx_dropped"},
4368 {"tx_errors"},
4369 {"tx_fifo_errors"},
4370 {"tx_packets"}
4371 };
4372 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4373
4374 static struct {
4375 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4376 } ethtool_register_table[] = {
4377 {-MII_BMSR},
4378 {-MII_BMCR},
4379 {REG_CAWR},
4380 {REG_INF_BURST},
4381 {REG_BIM_CFG},
4382 {REG_RX_CFG},
4383 {REG_HP_CFG},
4384 {REG_MAC_TX_CFG},
4385 {REG_MAC_RX_CFG},
4386 {REG_MAC_CTRL_CFG},
4387 {REG_MAC_XIF_CFG},
4388 {REG_MIF_CFG},
4389 {REG_PCS_CFG},
4390 {REG_SATURN_PCFG},
4391 {REG_PCS_MII_STATUS},
4392 {REG_PCS_STATE_MACHINE},
4393 {REG_MAC_COLL_EXCESS},
4394 {REG_MAC_COLL_LATE}
4395 };
4396 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4397 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4398
4399 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4400 {
4401 u8 *p;
4402 int i;
4403 unsigned long flags;
4404
4405 spin_lock_irqsave(&cp->lock, flags);
4406 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4407 u16 hval;
4408 u32 val;
4409 if (ethtool_register_table[i].offsets < 0) {
4410 hval = cas_phy_read(cp,
4411 -ethtool_register_table[i].offsets);
4412 val = hval;
4413 } else {
4414 val= readl(cp->regs+ethtool_register_table[i].offsets);
4415 }
4416 memcpy(p, (u8 *)&val, sizeof(u32));
4417 }
4418 spin_unlock_irqrestore(&cp->lock, flags);
4419 }
4420
4421 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4422 {
4423 struct cas *cp = netdev_priv(dev);
4424 struct net_device_stats *stats = cp->net_stats;
4425 unsigned long flags;
4426 int i;
4427 unsigned long tmp;
4428
4429 /* we collate all of the stats into net_stats[N_TX_RING] */
4430 if (!cp->hw_running)
4431 return stats + N_TX_RINGS;
4432
4433 /* collect outstanding stats */
4434 /* WTZ: the Cassini spec gives these as 16 bit counters but
4435 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4436 * in case the chip somehow puts any garbage in the other bits.
4437 * Also, counter usage didn't seem to mach what Adrian did
4438 * in the parts of the code that set these quantities. Made
4439 * that consistent.
4440 */
4441 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4442 stats[N_TX_RINGS].rx_crc_errors +=
4443 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4444 stats[N_TX_RINGS].rx_frame_errors +=
4445 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4446 stats[N_TX_RINGS].rx_length_errors +=
4447 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4448 #if 1
4449 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4450 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4451 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4452 stats[N_TX_RINGS].collisions +=
4453 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4454 #else
4455 stats[N_TX_RINGS].tx_aborted_errors +=
4456 readl(cp->regs + REG_MAC_COLL_EXCESS);
4457 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4458 readl(cp->regs + REG_MAC_COLL_LATE);
4459 #endif
4460 cas_clear_mac_err(cp);
4461
4462 /* saved bits that are unique to ring 0 */
4463 spin_lock(&cp->stat_lock[0]);
4464 stats[N_TX_RINGS].collisions += stats[0].collisions;
4465 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4466 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4467 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4468 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4469 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4470 spin_unlock(&cp->stat_lock[0]);
4471
4472 for (i = 0; i < N_TX_RINGS; i++) {
4473 spin_lock(&cp->stat_lock[i]);
4474 stats[N_TX_RINGS].rx_length_errors +=
4475 stats[i].rx_length_errors;
4476 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4477 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4478 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4479 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4480 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4481 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4482 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4483 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4484 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4485 memset(stats + i, 0, sizeof(struct net_device_stats));
4486 spin_unlock(&cp->stat_lock[i]);
4487 }
4488 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4489 return stats + N_TX_RINGS;
4490 }
4491
4492
4493 static void cas_set_multicast(struct net_device *dev)
4494 {
4495 struct cas *cp = netdev_priv(dev);
4496 u32 rxcfg, rxcfg_new;
4497 unsigned long flags;
4498 int limit = STOP_TRIES;
4499
4500 if (!cp->hw_running)
4501 return;
4502
4503 spin_lock_irqsave(&cp->lock, flags);
4504 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4505
4506 /* disable RX MAC and wait for completion */
4507 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4508 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4509 if (!limit--)
4510 break;
4511 udelay(10);
4512 }
4513
4514 /* disable hash filter and wait for completion */
4515 limit = STOP_TRIES;
4516 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4517 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4518 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4519 if (!limit--)
4520 break;
4521 udelay(10);
4522 }
4523
4524 /* program hash filters */
4525 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4526 rxcfg |= rxcfg_new;
4527 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4528 spin_unlock_irqrestore(&cp->lock, flags);
4529 }
4530
4531 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4532 {
4533 struct cas *cp = netdev_priv(dev);
4534 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4535 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4536 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4537 info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4538 cp->casreg_len : CAS_MAX_REGS;
4539 info->n_stats = CAS_NUM_STAT_KEYS;
4540 }
4541
4542 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4543 {
4544 struct cas *cp = netdev_priv(dev);
4545 u16 bmcr;
4546 int full_duplex, speed, pause;
4547 unsigned long flags;
4548 enum link_state linkstate = link_up;
4549
4550 cmd->advertising = 0;
4551 cmd->supported = SUPPORTED_Autoneg;
4552 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4553 cmd->supported |= SUPPORTED_1000baseT_Full;
4554 cmd->advertising |= ADVERTISED_1000baseT_Full;
4555 }
4556
4557 /* Record PHY settings if HW is on. */
4558 spin_lock_irqsave(&cp->lock, flags);
4559 bmcr = 0;
4560 linkstate = cp->lstate;
4561 if (CAS_PHY_MII(cp->phy_type)) {
4562 cmd->port = PORT_MII;
4563 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4564 XCVR_INTERNAL : XCVR_EXTERNAL;
4565 cmd->phy_address = cp->phy_addr;
4566 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4567 ADVERTISED_10baseT_Half |
4568 ADVERTISED_10baseT_Full |
4569 ADVERTISED_100baseT_Half |
4570 ADVERTISED_100baseT_Full;
4571
4572 cmd->supported |=
4573 (SUPPORTED_10baseT_Half |
4574 SUPPORTED_10baseT_Full |
4575 SUPPORTED_100baseT_Half |
4576 SUPPORTED_100baseT_Full |
4577 SUPPORTED_TP | SUPPORTED_MII);
4578
4579 if (cp->hw_running) {
4580 cas_mif_poll(cp, 0);
4581 bmcr = cas_phy_read(cp, MII_BMCR);
4582 cas_read_mii_link_mode(cp, &full_duplex,
4583 &speed, &pause);
4584 cas_mif_poll(cp, 1);
4585 }
4586
4587 } else {
4588 cmd->port = PORT_FIBRE;
4589 cmd->transceiver = XCVR_INTERNAL;
4590 cmd->phy_address = 0;
4591 cmd->supported |= SUPPORTED_FIBRE;
4592 cmd->advertising |= ADVERTISED_FIBRE;
4593
4594 if (cp->hw_running) {
4595 /* pcs uses the same bits as mii */
4596 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4597 cas_read_pcs_link_mode(cp, &full_duplex,
4598 &speed, &pause);
4599 }
4600 }
4601 spin_unlock_irqrestore(&cp->lock, flags);
4602
4603 if (bmcr & BMCR_ANENABLE) {
4604 cmd->advertising |= ADVERTISED_Autoneg;
4605 cmd->autoneg = AUTONEG_ENABLE;
4606 ethtool_cmd_speed_set(cmd, ((speed == 10) ?
4607 SPEED_10 :
4608 ((speed == 1000) ?
4609 SPEED_1000 : SPEED_100)));
4610 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4611 } else {
4612 cmd->autoneg = AUTONEG_DISABLE;
4613 ethtool_cmd_speed_set(cmd, ((bmcr & CAS_BMCR_SPEED1000) ?
4614 SPEED_1000 :
4615 ((bmcr & BMCR_SPEED100) ?
4616 SPEED_100 : SPEED_10)));
4617 cmd->duplex =
4618 (bmcr & BMCR_FULLDPLX) ?
4619 DUPLEX_FULL : DUPLEX_HALF;
4620 }
4621 if (linkstate != link_up) {
4622 /* Force these to "unknown" if the link is not up and
4623 * autonogotiation in enabled. We can set the link
4624 * speed to 0, but not cmd->duplex,
4625 * because its legal values are 0 and 1. Ethtool will
4626 * print the value reported in parentheses after the
4627 * word "Unknown" for unrecognized values.
4628 *
4629 * If in forced mode, we report the speed and duplex
4630 * settings that we configured.
4631 */
4632 if (cp->link_cntl & BMCR_ANENABLE) {
4633 ethtool_cmd_speed_set(cmd, 0);
4634 cmd->duplex = 0xff;
4635 } else {
4636 ethtool_cmd_speed_set(cmd, SPEED_10);
4637 if (cp->link_cntl & BMCR_SPEED100) {
4638 ethtool_cmd_speed_set(cmd, SPEED_100);
4639 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4640 ethtool_cmd_speed_set(cmd, SPEED_1000);
4641 }
4642 cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4643 DUPLEX_FULL : DUPLEX_HALF;
4644 }
4645 }
4646 return 0;
4647 }
4648
4649 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4650 {
4651 struct cas *cp = netdev_priv(dev);
4652 unsigned long flags;
4653 u32 speed = ethtool_cmd_speed(cmd);
4654
4655 /* Verify the settings we care about. */
4656 if (cmd->autoneg != AUTONEG_ENABLE &&
4657 cmd->autoneg != AUTONEG_DISABLE)
4658 return -EINVAL;
4659
4660 if (cmd->autoneg == AUTONEG_DISABLE &&
4661 ((speed != SPEED_1000 &&
4662 speed != SPEED_100 &&
4663 speed != SPEED_10) ||
4664 (cmd->duplex != DUPLEX_HALF &&
4665 cmd->duplex != DUPLEX_FULL)))
4666 return -EINVAL;
4667
4668 /* Apply settings and restart link process. */
4669 spin_lock_irqsave(&cp->lock, flags);
4670 cas_begin_auto_negotiation(cp, cmd);
4671 spin_unlock_irqrestore(&cp->lock, flags);
4672 return 0;
4673 }
4674
4675 static int cas_nway_reset(struct net_device *dev)
4676 {
4677 struct cas *cp = netdev_priv(dev);
4678 unsigned long flags;
4679
4680 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4681 return -EINVAL;
4682
4683 /* Restart link process. */
4684 spin_lock_irqsave(&cp->lock, flags);
4685 cas_begin_auto_negotiation(cp, NULL);
4686 spin_unlock_irqrestore(&cp->lock, flags);
4687
4688 return 0;
4689 }
4690
4691 static u32 cas_get_link(struct net_device *dev)
4692 {
4693 struct cas *cp = netdev_priv(dev);
4694 return cp->lstate == link_up;
4695 }
4696
4697 static u32 cas_get_msglevel(struct net_device *dev)
4698 {
4699 struct cas *cp = netdev_priv(dev);
4700 return cp->msg_enable;
4701 }
4702
4703 static void cas_set_msglevel(struct net_device *dev, u32 value)
4704 {
4705 struct cas *cp = netdev_priv(dev);
4706 cp->msg_enable = value;
4707 }
4708
4709 static int cas_get_regs_len(struct net_device *dev)
4710 {
4711 struct cas *cp = netdev_priv(dev);
4712 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4713 }
4714
4715 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4716 void *p)
4717 {
4718 struct cas *cp = netdev_priv(dev);
4719 regs->version = 0;
4720 /* cas_read_regs handles locks (cp->lock). */
4721 cas_read_regs(cp, p, regs->len / sizeof(u32));
4722 }
4723
4724 static int cas_get_sset_count(struct net_device *dev, int sset)
4725 {
4726 switch (sset) {
4727 case ETH_SS_STATS:
4728 return CAS_NUM_STAT_KEYS;
4729 default:
4730 return -EOPNOTSUPP;
4731 }
4732 }
4733
4734 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4735 {
4736 memcpy(data, &ethtool_cassini_statnames,
4737 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4738 }
4739
4740 static void cas_get_ethtool_stats(struct net_device *dev,
4741 struct ethtool_stats *estats, u64 *data)
4742 {
4743 struct cas *cp = netdev_priv(dev);
4744 struct net_device_stats *stats = cas_get_stats(cp->dev);
4745 int i = 0;
4746 data[i++] = stats->collisions;
4747 data[i++] = stats->rx_bytes;
4748 data[i++] = stats->rx_crc_errors;
4749 data[i++] = stats->rx_dropped;
4750 data[i++] = stats->rx_errors;
4751 data[i++] = stats->rx_fifo_errors;
4752 data[i++] = stats->rx_frame_errors;
4753 data[i++] = stats->rx_length_errors;
4754 data[i++] = stats->rx_over_errors;
4755 data[i++] = stats->rx_packets;
4756 data[i++] = stats->tx_aborted_errors;
4757 data[i++] = stats->tx_bytes;
4758 data[i++] = stats->tx_dropped;
4759 data[i++] = stats->tx_errors;
4760 data[i++] = stats->tx_fifo_errors;
4761 data[i++] = stats->tx_packets;
4762 BUG_ON(i != CAS_NUM_STAT_KEYS);
4763 }
4764
4765 static const struct ethtool_ops cas_ethtool_ops = {
4766 .get_drvinfo = cas_get_drvinfo,
4767 .get_settings = cas_get_settings,
4768 .set_settings = cas_set_settings,
4769 .nway_reset = cas_nway_reset,
4770 .get_link = cas_get_link,
4771 .get_msglevel = cas_get_msglevel,
4772 .set_msglevel = cas_set_msglevel,
4773 .get_regs_len = cas_get_regs_len,
4774 .get_regs = cas_get_regs,
4775 .get_sset_count = cas_get_sset_count,
4776 .get_strings = cas_get_strings,
4777 .get_ethtool_stats = cas_get_ethtool_stats,
4778 };
4779
4780 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4781 {
4782 struct cas *cp = netdev_priv(dev);
4783 struct mii_ioctl_data *data = if_mii(ifr);
4784 unsigned long flags;
4785 int rc = -EOPNOTSUPP;
4786
4787 /* Hold the PM mutex while doing ioctl's or we may collide
4788 * with open/close and power management and oops.
4789 */
4790 mutex_lock(&cp->pm_mutex);
4791 switch (cmd) {
4792 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4793 data->phy_id = cp->phy_addr;
4794 /* Fallthrough... */
4795
4796 case SIOCGMIIREG: /* Read MII PHY register. */
4797 spin_lock_irqsave(&cp->lock, flags);
4798 cas_mif_poll(cp, 0);
4799 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4800 cas_mif_poll(cp, 1);
4801 spin_unlock_irqrestore(&cp->lock, flags);
4802 rc = 0;
4803 break;
4804
4805 case SIOCSMIIREG: /* Write MII PHY register. */
4806 spin_lock_irqsave(&cp->lock, flags);
4807 cas_mif_poll(cp, 0);
4808 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4809 cas_mif_poll(cp, 1);
4810 spin_unlock_irqrestore(&cp->lock, flags);
4811 break;
4812 default:
4813 break;
4814 }
4815
4816 mutex_unlock(&cp->pm_mutex);
4817 return rc;
4818 }
4819
4820 /* When this chip sits underneath an Intel 31154 bridge, it is the
4821 * only subordinate device and we can tweak the bridge settings to
4822 * reflect that fact.
4823 */
4824 static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4825 {
4826 struct pci_dev *pdev = cas_pdev->bus->self;
4827 u32 val;
4828
4829 if (!pdev)
4830 return;
4831
4832 if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4833 return;
4834
4835 /* Clear bit 10 (Bus Parking Control) in the Secondary
4836 * Arbiter Control/Status Register which lives at offset
4837 * 0x41. Using a 32-bit word read/modify/write at 0x40
4838 * is much simpler so that's how we do this.
4839 */
4840 pci_read_config_dword(pdev, 0x40, &val);
4841 val &= ~0x00040000;
4842 pci_write_config_dword(pdev, 0x40, val);
4843
4844 /* Max out the Multi-Transaction Timer settings since
4845 * Cassini is the only device present.
4846 *
4847 * The register is 16-bit and lives at 0x50. When the
4848 * settings are enabled, it extends the GRANT# signal
4849 * for a requestor after a transaction is complete. This
4850 * allows the next request to run without first needing
4851 * to negotiate the GRANT# signal back.
4852 *
4853 * Bits 12:10 define the grant duration:
4854 *
4855 * 1 -- 16 clocks
4856 * 2 -- 32 clocks
4857 * 3 -- 64 clocks
4858 * 4 -- 128 clocks
4859 * 5 -- 256 clocks
4860 *
4861 * All other values are illegal.
4862 *
4863 * Bits 09:00 define which REQ/GNT signal pairs get the
4864 * GRANT# signal treatment. We set them all.
4865 */
4866 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4867
4868 /* The Read Prefecth Policy register is 16-bit and sits at
4869 * offset 0x52. It enables a "smart" pre-fetch policy. We
4870 * enable it and max out all of the settings since only one
4871 * device is sitting underneath and thus bandwidth sharing is
4872 * not an issue.
4873 *
4874 * The register has several 3 bit fields, which indicates a
4875 * multiplier applied to the base amount of prefetching the
4876 * chip would do. These fields are at:
4877 *
4878 * 15:13 --- ReRead Primary Bus
4879 * 12:10 --- FirstRead Primary Bus
4880 * 09:07 --- ReRead Secondary Bus
4881 * 06:04 --- FirstRead Secondary Bus
4882 *
4883 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4884 * get enabled on. Bit 3 is a grouped enabler which controls
4885 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4886 * the individual REQ/GNT pairs [2:0].
4887 */
4888 pci_write_config_word(pdev, 0x52,
4889 (0x7 << 13) |
4890 (0x7 << 10) |
4891 (0x7 << 7) |
4892 (0x7 << 4) |
4893 (0xf << 0));
4894
4895 /* Force cacheline size to 0x8 */
4896 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4897
4898 /* Force latency timer to maximum setting so Cassini can
4899 * sit on the bus as long as it likes.
4900 */
4901 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4902 }
4903
4904 static const struct net_device_ops cas_netdev_ops = {
4905 .ndo_open = cas_open,
4906 .ndo_stop = cas_close,
4907 .ndo_start_xmit = cas_start_xmit,
4908 .ndo_get_stats = cas_get_stats,
4909 .ndo_set_rx_mode = cas_set_multicast,
4910 .ndo_do_ioctl = cas_ioctl,
4911 .ndo_tx_timeout = cas_tx_timeout,
4912 .ndo_change_mtu = cas_change_mtu,
4913 .ndo_set_mac_address = eth_mac_addr,
4914 .ndo_validate_addr = eth_validate_addr,
4915 #ifdef CONFIG_NET_POLL_CONTROLLER
4916 .ndo_poll_controller = cas_netpoll,
4917 #endif
4918 };
4919
4920 static int __devinit cas_init_one(struct pci_dev *pdev,
4921 const struct pci_device_id *ent)
4922 {
4923 static int cas_version_printed = 0;
4924 unsigned long casreg_len;
4925 struct net_device *dev;
4926 struct cas *cp;
4927 int i, err, pci_using_dac;
4928 u16 pci_cmd;
4929 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4930
4931 if (cas_version_printed++ == 0)
4932 pr_info("%s", version);
4933
4934 err = pci_enable_device(pdev);
4935 if (err) {
4936 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4937 return err;
4938 }
4939
4940 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4941 dev_err(&pdev->dev, "Cannot find proper PCI device "
4942 "base address, aborting\n");
4943 err = -ENODEV;
4944 goto err_out_disable_pdev;
4945 }
4946
4947 dev = alloc_etherdev(sizeof(*cp));
4948 if (!dev) {
4949 err = -ENOMEM;
4950 goto err_out_disable_pdev;
4951 }
4952 SET_NETDEV_DEV(dev, &pdev->dev);
4953
4954 err = pci_request_regions(pdev, dev->name);
4955 if (err) {
4956 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4957 goto err_out_free_netdev;
4958 }
4959 pci_set_master(pdev);
4960
4961 /* we must always turn on parity response or else parity
4962 * doesn't get generated properly. disable SERR/PERR as well.
4963 * in addition, we want to turn MWI on.
4964 */
4965 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4966 pci_cmd &= ~PCI_COMMAND_SERR;
4967 pci_cmd |= PCI_COMMAND_PARITY;
4968 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4969 if (pci_try_set_mwi(pdev))
4970 pr_warning("Could not enable MWI for %s\n", pci_name(pdev));
4971
4972 cas_program_bridge(pdev);
4973
4974 /*
4975 * On some architectures, the default cache line size set
4976 * by pci_try_set_mwi reduces perforamnce. We have to increase
4977 * it for this case. To start, we'll print some configuration
4978 * data.
4979 */
4980 #if 1
4981 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4982 &orig_cacheline_size);
4983 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4984 cas_cacheline_size =
4985 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4986 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4987 if (pci_write_config_byte(pdev,
4988 PCI_CACHE_LINE_SIZE,
4989 cas_cacheline_size)) {
4990 dev_err(&pdev->dev, "Could not set PCI cache "
4991 "line size\n");
4992 goto err_write_cacheline;
4993 }
4994 }
4995 #endif
4996
4997
4998 /* Configure DMA attributes. */
4999 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5000 pci_using_dac = 1;
5001 err = pci_set_consistent_dma_mask(pdev,
5002 DMA_BIT_MASK(64));
5003 if (err < 0) {
5004 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5005 "for consistent allocations\n");
5006 goto err_out_free_res;
5007 }
5008
5009 } else {
5010 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5011 if (err) {
5012 dev_err(&pdev->dev, "No usable DMA configuration, "
5013 "aborting\n");
5014 goto err_out_free_res;
5015 }
5016 pci_using_dac = 0;
5017 }
5018
5019 casreg_len = pci_resource_len(pdev, 0);
5020
5021 cp = netdev_priv(dev);
5022 cp->pdev = pdev;
5023 #if 1
5024 /* A value of 0 indicates we never explicitly set it */
5025 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5026 #endif
5027 cp->dev = dev;
5028 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5029 cassini_debug;
5030
5031 #if defined(CONFIG_SPARC)
5032 cp->of_node = pci_device_to_OF_node(pdev);
5033 #endif
5034
5035 cp->link_transition = LINK_TRANSITION_UNKNOWN;
5036 cp->link_transition_jiffies_valid = 0;
5037
5038 spin_lock_init(&cp->lock);
5039 spin_lock_init(&cp->rx_inuse_lock);
5040 spin_lock_init(&cp->rx_spare_lock);
5041 for (i = 0; i < N_TX_RINGS; i++) {
5042 spin_lock_init(&cp->stat_lock[i]);
5043 spin_lock_init(&cp->tx_lock[i]);
5044 }
5045 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5046 mutex_init(&cp->pm_mutex);
5047
5048 init_timer(&cp->link_timer);
5049 cp->link_timer.function = cas_link_timer;
5050 cp->link_timer.data = (unsigned long) cp;
5051
5052 #if 1
5053 /* Just in case the implementation of atomic operations
5054 * change so that an explicit initialization is necessary.
5055 */
5056 atomic_set(&cp->reset_task_pending, 0);
5057 atomic_set(&cp->reset_task_pending_all, 0);
5058 atomic_set(&cp->reset_task_pending_spare, 0);
5059 atomic_set(&cp->reset_task_pending_mtu, 0);
5060 #endif
5061 INIT_WORK(&cp->reset_task, cas_reset_task);
5062
5063 /* Default link parameters */
5064 if (link_mode >= 0 && link_mode < 6)
5065 cp->link_cntl = link_modes[link_mode];
5066 else
5067 cp->link_cntl = BMCR_ANENABLE;
5068 cp->lstate = link_down;
5069 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5070 netif_carrier_off(cp->dev);
5071 cp->timer_ticks = 0;
5072
5073 /* give us access to cassini registers */
5074 cp->regs = pci_iomap(pdev, 0, casreg_len);
5075 if (!cp->regs) {
5076 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5077 goto err_out_free_res;
5078 }
5079 cp->casreg_len = casreg_len;
5080
5081 pci_save_state(pdev);
5082 cas_check_pci_invariants(cp);
5083 cas_hard_reset(cp);
5084 cas_reset(cp, 0);
5085 if (cas_check_invariants(cp))
5086 goto err_out_iounmap;
5087 if (cp->cas_flags & CAS_FLAG_SATURN)
5088 if (cas_saturn_firmware_init(cp))
5089 goto err_out_iounmap;
5090
5091 cp->init_block = (struct cas_init_block *)
5092 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5093 &cp->block_dvma);
5094 if (!cp->init_block) {
5095 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5096 goto err_out_iounmap;
5097 }
5098
5099 for (i = 0; i < N_TX_RINGS; i++)
5100 cp->init_txds[i] = cp->init_block->txds[i];
5101
5102 for (i = 0; i < N_RX_DESC_RINGS; i++)
5103 cp->init_rxds[i] = cp->init_block->rxds[i];
5104
5105 for (i = 0; i < N_RX_COMP_RINGS; i++)
5106 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5107
5108 for (i = 0; i < N_RX_FLOWS; i++)
5109 skb_queue_head_init(&cp->rx_flows[i]);
5110
5111 dev->netdev_ops = &cas_netdev_ops;
5112 dev->ethtool_ops = &cas_ethtool_ops;
5113 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5114
5115 #ifdef USE_NAPI
5116 netif_napi_add(dev, &cp->napi, cas_poll, 64);
5117 #endif
5118 dev->irq = pdev->irq;
5119 dev->dma = 0;
5120
5121 /* Cassini features. */
5122 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5123 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5124
5125 if (pci_using_dac)
5126 dev->features |= NETIF_F_HIGHDMA;
5127
5128 if (register_netdev(dev)) {
5129 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5130 goto err_out_free_consistent;
5131 }
5132
5133 i = readl(cp->regs + REG_BIM_CFG);
5134 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5135 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5136 (i & BIM_CFG_32BIT) ? "32" : "64",
5137 (i & BIM_CFG_66MHZ) ? "66" : "33",
5138 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5139 dev->dev_addr);
5140
5141 pci_set_drvdata(pdev, dev);
5142 cp->hw_running = 1;
5143 cas_entropy_reset(cp);
5144 cas_phy_init(cp);
5145 cas_begin_auto_negotiation(cp, NULL);
5146 return 0;
5147
5148 err_out_free_consistent:
5149 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5150 cp->init_block, cp->block_dvma);
5151
5152 err_out_iounmap:
5153 mutex_lock(&cp->pm_mutex);
5154 if (cp->hw_running)
5155 cas_shutdown(cp);
5156 mutex_unlock(&cp->pm_mutex);
5157
5158 pci_iounmap(pdev, cp->regs);
5159
5160
5161 err_out_free_res:
5162 pci_release_regions(pdev);
5163
5164 err_write_cacheline:
5165 /* Try to restore it in case the error occurred after we
5166 * set it.
5167 */
5168 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5169
5170 err_out_free_netdev:
5171 free_netdev(dev);
5172
5173 err_out_disable_pdev:
5174 pci_disable_device(pdev);
5175 pci_set_drvdata(pdev, NULL);
5176 return -ENODEV;
5177 }
5178
5179 static void __devexit cas_remove_one(struct pci_dev *pdev)
5180 {
5181 struct net_device *dev = pci_get_drvdata(pdev);
5182 struct cas *cp;
5183 if (!dev)
5184 return;
5185
5186 cp = netdev_priv(dev);
5187 unregister_netdev(dev);
5188
5189 if (cp->fw_data)
5190 vfree(cp->fw_data);
5191
5192 mutex_lock(&cp->pm_mutex);
5193 cancel_work_sync(&cp->reset_task);
5194 if (cp->hw_running)
5195 cas_shutdown(cp);
5196 mutex_unlock(&cp->pm_mutex);
5197
5198 #if 1
5199 if (cp->orig_cacheline_size) {
5200 /* Restore the cache line size if we had modified
5201 * it.
5202 */
5203 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5204 cp->orig_cacheline_size);
5205 }
5206 #endif
5207 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5208 cp->init_block, cp->block_dvma);
5209 pci_iounmap(pdev, cp->regs);
5210 free_netdev(dev);
5211 pci_release_regions(pdev);
5212 pci_disable_device(pdev);
5213 pci_set_drvdata(pdev, NULL);
5214 }
5215
5216 #ifdef CONFIG_PM
5217 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5218 {
5219 struct net_device *dev = pci_get_drvdata(pdev);
5220 struct cas *cp = netdev_priv(dev);
5221 unsigned long flags;
5222
5223 mutex_lock(&cp->pm_mutex);
5224
5225 /* If the driver is opened, we stop the DMA */
5226 if (cp->opened) {
5227 netif_device_detach(dev);
5228
5229 cas_lock_all_save(cp, flags);
5230
5231 /* We can set the second arg of cas_reset to 0
5232 * because on resume, we'll call cas_init_hw with
5233 * its second arg set so that autonegotiation is
5234 * restarted.
5235 */
5236 cas_reset(cp, 0);
5237 cas_clean_rings(cp);
5238 cas_unlock_all_restore(cp, flags);
5239 }
5240
5241 if (cp->hw_running)
5242 cas_shutdown(cp);
5243 mutex_unlock(&cp->pm_mutex);
5244
5245 return 0;
5246 }
5247
5248 static int cas_resume(struct pci_dev *pdev)
5249 {
5250 struct net_device *dev = pci_get_drvdata(pdev);
5251 struct cas *cp = netdev_priv(dev);
5252
5253 netdev_info(dev, "resuming\n");
5254
5255 mutex_lock(&cp->pm_mutex);
5256 cas_hard_reset(cp);
5257 if (cp->opened) {
5258 unsigned long flags;
5259 cas_lock_all_save(cp, flags);
5260 cas_reset(cp, 0);
5261 cp->hw_running = 1;
5262 cas_clean_rings(cp);
5263 cas_init_hw(cp, 1);
5264 cas_unlock_all_restore(cp, flags);
5265
5266 netif_device_attach(dev);
5267 }
5268 mutex_unlock(&cp->pm_mutex);
5269 return 0;
5270 }
5271 #endif /* CONFIG_PM */
5272
5273 static struct pci_driver cas_driver = {
5274 .name = DRV_MODULE_NAME,
5275 .id_table = cas_pci_tbl,
5276 .probe = cas_init_one,
5277 .remove = __devexit_p(cas_remove_one),
5278 #ifdef CONFIG_PM
5279 .suspend = cas_suspend,
5280 .resume = cas_resume
5281 #endif
5282 };
5283
5284 static int __init cas_init(void)
5285 {
5286 if (linkdown_timeout > 0)
5287 link_transition_timeout = linkdown_timeout * HZ;
5288 else
5289 link_transition_timeout = 0;
5290
5291 return pci_register_driver(&cas_driver);
5292 }
5293
5294 static void __exit cas_cleanup(void)
5295 {
5296 pci_unregister_driver(&cas_driver);
5297 }
5298
5299 module_init(cas_init);
5300 module_exit(cas_cleanup);
This page took 0.565912 seconds and 5 git commands to generate.