Merge remote-tracking branches 'regulator/topic/load', 'regulator/topic/max77802...
[deliverable/linux.git] / drivers / net / ethernet / ti / cpsw.c
1 /*
2 * Texas Instruments Ethernet Switch Driver
3 *
4 * Copyright (C) 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/of.h>
33 #include <linux/of_mdio.h>
34 #include <linux/of_net.h>
35 #include <linux/of_device.h>
36 #include <linux/if_vlan.h>
37
38 #include <linux/pinctrl/consumer.h>
39
40 #include "cpsw.h"
41 #include "cpsw_ale.h"
42 #include "cpts.h"
43 #include "davinci_cpdma.h"
44
45 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
46 NETIF_MSG_DRV | NETIF_MSG_LINK | \
47 NETIF_MSG_IFUP | NETIF_MSG_INTR | \
48 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
49 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
50 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
51 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
52 NETIF_MSG_RX_STATUS)
53
54 #define cpsw_info(priv, type, format, ...) \
55 do { \
56 if (netif_msg_##type(priv) && net_ratelimit()) \
57 dev_info(priv->dev, format, ## __VA_ARGS__); \
58 } while (0)
59
60 #define cpsw_err(priv, type, format, ...) \
61 do { \
62 if (netif_msg_##type(priv) && net_ratelimit()) \
63 dev_err(priv->dev, format, ## __VA_ARGS__); \
64 } while (0)
65
66 #define cpsw_dbg(priv, type, format, ...) \
67 do { \
68 if (netif_msg_##type(priv) && net_ratelimit()) \
69 dev_dbg(priv->dev, format, ## __VA_ARGS__); \
70 } while (0)
71
72 #define cpsw_notice(priv, type, format, ...) \
73 do { \
74 if (netif_msg_##type(priv) && net_ratelimit()) \
75 dev_notice(priv->dev, format, ## __VA_ARGS__); \
76 } while (0)
77
78 #define ALE_ALL_PORTS 0x7
79
80 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7)
81 #define CPSW_MINOR_VERSION(reg) (reg & 0xff)
82 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f)
83
84 #define CPSW_VERSION_1 0x19010a
85 #define CPSW_VERSION_2 0x19010c
86 #define CPSW_VERSION_3 0x19010f
87 #define CPSW_VERSION_4 0x190112
88
89 #define HOST_PORT_NUM 0
90 #define SLIVER_SIZE 0x40
91
92 #define CPSW1_HOST_PORT_OFFSET 0x028
93 #define CPSW1_SLAVE_OFFSET 0x050
94 #define CPSW1_SLAVE_SIZE 0x040
95 #define CPSW1_CPDMA_OFFSET 0x100
96 #define CPSW1_STATERAM_OFFSET 0x200
97 #define CPSW1_HW_STATS 0x400
98 #define CPSW1_CPTS_OFFSET 0x500
99 #define CPSW1_ALE_OFFSET 0x600
100 #define CPSW1_SLIVER_OFFSET 0x700
101
102 #define CPSW2_HOST_PORT_OFFSET 0x108
103 #define CPSW2_SLAVE_OFFSET 0x200
104 #define CPSW2_SLAVE_SIZE 0x100
105 #define CPSW2_CPDMA_OFFSET 0x800
106 #define CPSW2_HW_STATS 0x900
107 #define CPSW2_STATERAM_OFFSET 0xa00
108 #define CPSW2_CPTS_OFFSET 0xc00
109 #define CPSW2_ALE_OFFSET 0xd00
110 #define CPSW2_SLIVER_OFFSET 0xd80
111 #define CPSW2_BD_OFFSET 0x2000
112
113 #define CPDMA_RXTHRESH 0x0c0
114 #define CPDMA_RXFREE 0x0e0
115 #define CPDMA_TXHDP 0x00
116 #define CPDMA_RXHDP 0x20
117 #define CPDMA_TXCP 0x40
118 #define CPDMA_RXCP 0x60
119
120 #define CPSW_POLL_WEIGHT 64
121 #define CPSW_MIN_PACKET_SIZE 60
122 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4)
123
124 #define RX_PRIORITY_MAPPING 0x76543210
125 #define TX_PRIORITY_MAPPING 0x33221100
126 #define CPDMA_TX_PRIORITY_MAP 0x76543210
127
128 #define CPSW_VLAN_AWARE BIT(1)
129 #define CPSW_ALE_VLAN_AWARE 1
130
131 #define CPSW_FIFO_NORMAL_MODE (0 << 16)
132 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16)
133 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16)
134
135 #define CPSW_INTPACEEN (0x3f << 16)
136 #define CPSW_INTPRESCALE_MASK (0x7FF << 0)
137 #define CPSW_CMINTMAX_CNT 63
138 #define CPSW_CMINTMIN_CNT 2
139 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT)
140 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1)
141
142 #define cpsw_slave_index(priv) \
143 ((priv->data.dual_emac) ? priv->emac_port : \
144 priv->data.active_slave)
145
146 static int debug_level;
147 module_param(debug_level, int, 0);
148 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
149
150 static int ale_ageout = 10;
151 module_param(ale_ageout, int, 0);
152 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
153
154 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
155 module_param(rx_packet_max, int, 0);
156 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
157
158 struct cpsw_wr_regs {
159 u32 id_ver;
160 u32 soft_reset;
161 u32 control;
162 u32 int_control;
163 u32 rx_thresh_en;
164 u32 rx_en;
165 u32 tx_en;
166 u32 misc_en;
167 u32 mem_allign1[8];
168 u32 rx_thresh_stat;
169 u32 rx_stat;
170 u32 tx_stat;
171 u32 misc_stat;
172 u32 mem_allign2[8];
173 u32 rx_imax;
174 u32 tx_imax;
175
176 };
177
178 struct cpsw_ss_regs {
179 u32 id_ver;
180 u32 control;
181 u32 soft_reset;
182 u32 stat_port_en;
183 u32 ptype;
184 u32 soft_idle;
185 u32 thru_rate;
186 u32 gap_thresh;
187 u32 tx_start_wds;
188 u32 flow_control;
189 u32 vlan_ltype;
190 u32 ts_ltype;
191 u32 dlr_ltype;
192 };
193
194 /* CPSW_PORT_V1 */
195 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */
196 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */
197 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */
198 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */
199 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */
200 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */
201 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */
202 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */
203
204 /* CPSW_PORT_V2 */
205 #define CPSW2_CONTROL 0x00 /* Control Register */
206 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */
207 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */
208 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */
209 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */
210 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */
211 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */
212
213 /* CPSW_PORT_V1 and V2 */
214 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */
215 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */
216 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */
217
218 /* CPSW_PORT_V2 only */
219 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */
220 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */
221 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */
222 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */
223 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */
224 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */
225 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */
226 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */
227
228 /* Bit definitions for the CPSW2_CONTROL register */
229 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */
230 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */
231 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */
232 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */
233 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */
234 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */
235 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */
236 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */
237 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */
238 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */
239 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */
240 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */
241 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */
242 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */
243 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */
244 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */
245 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */
246
247 #define CTRL_V2_TS_BITS \
248 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
249 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN)
250
251 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
252 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN)
253 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN)
254
255
256 #define CTRL_V3_TS_BITS \
257 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
258 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
259 TS_LTYPE1_EN)
260
261 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
262 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN)
263 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN)
264
265 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
266 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */
267 #define TS_SEQ_ID_OFFSET_MASK (0x3f)
268 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */
269 #define TS_MSG_TYPE_EN_MASK (0xffff)
270
271 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
272 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
273
274 /* Bit definitions for the CPSW1_TS_CTL register */
275 #define CPSW_V1_TS_RX_EN BIT(0)
276 #define CPSW_V1_TS_TX_EN BIT(4)
277 #define CPSW_V1_MSG_TYPE_OFS 16
278
279 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
280 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16
281
282 struct cpsw_host_regs {
283 u32 max_blks;
284 u32 blk_cnt;
285 u32 tx_in_ctl;
286 u32 port_vlan;
287 u32 tx_pri_map;
288 u32 cpdma_tx_pri_map;
289 u32 cpdma_rx_chan_map;
290 };
291
292 struct cpsw_sliver_regs {
293 u32 id_ver;
294 u32 mac_control;
295 u32 mac_status;
296 u32 soft_reset;
297 u32 rx_maxlen;
298 u32 __reserved_0;
299 u32 rx_pause;
300 u32 tx_pause;
301 u32 __reserved_1;
302 u32 rx_pri_map;
303 };
304
305 struct cpsw_hw_stats {
306 u32 rxgoodframes;
307 u32 rxbroadcastframes;
308 u32 rxmulticastframes;
309 u32 rxpauseframes;
310 u32 rxcrcerrors;
311 u32 rxaligncodeerrors;
312 u32 rxoversizedframes;
313 u32 rxjabberframes;
314 u32 rxundersizedframes;
315 u32 rxfragments;
316 u32 __pad_0[2];
317 u32 rxoctets;
318 u32 txgoodframes;
319 u32 txbroadcastframes;
320 u32 txmulticastframes;
321 u32 txpauseframes;
322 u32 txdeferredframes;
323 u32 txcollisionframes;
324 u32 txsinglecollframes;
325 u32 txmultcollframes;
326 u32 txexcessivecollisions;
327 u32 txlatecollisions;
328 u32 txunderrun;
329 u32 txcarriersenseerrors;
330 u32 txoctets;
331 u32 octetframes64;
332 u32 octetframes65t127;
333 u32 octetframes128t255;
334 u32 octetframes256t511;
335 u32 octetframes512t1023;
336 u32 octetframes1024tup;
337 u32 netoctets;
338 u32 rxsofoverruns;
339 u32 rxmofoverruns;
340 u32 rxdmaoverruns;
341 };
342
343 struct cpsw_slave {
344 void __iomem *regs;
345 struct cpsw_sliver_regs __iomem *sliver;
346 int slave_num;
347 u32 mac_control;
348 struct cpsw_slave_data *data;
349 struct phy_device *phy;
350 struct net_device *ndev;
351 u32 port_vlan;
352 u32 open_stat;
353 };
354
355 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
356 {
357 return __raw_readl(slave->regs + offset);
358 }
359
360 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
361 {
362 __raw_writel(val, slave->regs + offset);
363 }
364
365 struct cpsw_priv {
366 spinlock_t lock;
367 struct platform_device *pdev;
368 struct net_device *ndev;
369 struct device_node *phy_node;
370 struct napi_struct napi_rx;
371 struct napi_struct napi_tx;
372 struct device *dev;
373 struct cpsw_platform_data data;
374 struct cpsw_ss_regs __iomem *regs;
375 struct cpsw_wr_regs __iomem *wr_regs;
376 u8 __iomem *hw_stats;
377 struct cpsw_host_regs __iomem *host_port_regs;
378 u32 msg_enable;
379 u32 version;
380 u32 coal_intvl;
381 u32 bus_freq_mhz;
382 int rx_packet_max;
383 int host_port;
384 struct clk *clk;
385 u8 mac_addr[ETH_ALEN];
386 struct cpsw_slave *slaves;
387 struct cpdma_ctlr *dma;
388 struct cpdma_chan *txch, *rxch;
389 struct cpsw_ale *ale;
390 bool rx_pause;
391 bool tx_pause;
392 bool quirk_irq;
393 bool rx_irq_disabled;
394 bool tx_irq_disabled;
395 /* snapshot of IRQ numbers */
396 u32 irqs_table[4];
397 u32 num_irqs;
398 struct cpts *cpts;
399 u32 emac_port;
400 };
401
402 struct cpsw_stats {
403 char stat_string[ETH_GSTRING_LEN];
404 int type;
405 int sizeof_stat;
406 int stat_offset;
407 };
408
409 enum {
410 CPSW_STATS,
411 CPDMA_RX_STATS,
412 CPDMA_TX_STATS,
413 };
414
415 #define CPSW_STAT(m) CPSW_STATS, \
416 sizeof(((struct cpsw_hw_stats *)0)->m), \
417 offsetof(struct cpsw_hw_stats, m)
418 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \
419 sizeof(((struct cpdma_chan_stats *)0)->m), \
420 offsetof(struct cpdma_chan_stats, m)
421 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \
422 sizeof(((struct cpdma_chan_stats *)0)->m), \
423 offsetof(struct cpdma_chan_stats, m)
424
425 static const struct cpsw_stats cpsw_gstrings_stats[] = {
426 { "Good Rx Frames", CPSW_STAT(rxgoodframes) },
427 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
428 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
429 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
430 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
431 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
432 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
433 { "Rx Jabbers", CPSW_STAT(rxjabberframes) },
434 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
435 { "Rx Fragments", CPSW_STAT(rxfragments) },
436 { "Rx Octets", CPSW_STAT(rxoctets) },
437 { "Good Tx Frames", CPSW_STAT(txgoodframes) },
438 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
439 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
440 { "Pause Tx Frames", CPSW_STAT(txpauseframes) },
441 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
442 { "Collisions", CPSW_STAT(txcollisionframes) },
443 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
444 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
445 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
446 { "Late Collisions", CPSW_STAT(txlatecollisions) },
447 { "Tx Underrun", CPSW_STAT(txunderrun) },
448 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
449 { "Tx Octets", CPSW_STAT(txoctets) },
450 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
451 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
452 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
453 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
454 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
455 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
456 { "Net Octets", CPSW_STAT(netoctets) },
457 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
458 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
459 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
460 { "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) },
461 { "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
462 { "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
463 { "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) },
464 { "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
465 { "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
466 { "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
467 { "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
468 { "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
469 { "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
470 { "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) },
471 { "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) },
472 { "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
473 { "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) },
474 { "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) },
475 { "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) },
476 { "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) },
477 { "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) },
478 { "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) },
479 { "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) },
480 { "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) },
481 { "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) },
482 { "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) },
483 { "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) },
484 { "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) },
485 { "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) },
486 };
487
488 #define CPSW_STATS_LEN ARRAY_SIZE(cpsw_gstrings_stats)
489
490 #define napi_to_priv(napi) container_of(napi, struct cpsw_priv, napi)
491 #define for_each_slave(priv, func, arg...) \
492 do { \
493 struct cpsw_slave *slave; \
494 int n; \
495 if (priv->data.dual_emac) \
496 (func)((priv)->slaves + priv->emac_port, ##arg);\
497 else \
498 for (n = (priv)->data.slaves, \
499 slave = (priv)->slaves; \
500 n; n--) \
501 (func)(slave++, ##arg); \
502 } while (0)
503 #define cpsw_get_slave_ndev(priv, __slave_no__) \
504 ((__slave_no__ < priv->data.slaves) ? \
505 priv->slaves[__slave_no__].ndev : NULL)
506 #define cpsw_get_slave_priv(priv, __slave_no__) \
507 (((__slave_no__ < priv->data.slaves) && \
508 (priv->slaves[__slave_no__].ndev)) ? \
509 netdev_priv(priv->slaves[__slave_no__].ndev) : NULL) \
510
511 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb) \
512 do { \
513 if (!priv->data.dual_emac) \
514 break; \
515 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \
516 ndev = cpsw_get_slave_ndev(priv, 0); \
517 priv = netdev_priv(ndev); \
518 skb->dev = ndev; \
519 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \
520 ndev = cpsw_get_slave_ndev(priv, 1); \
521 priv = netdev_priv(ndev); \
522 skb->dev = ndev; \
523 } \
524 } while (0)
525 #define cpsw_add_mcast(priv, addr) \
526 do { \
527 if (priv->data.dual_emac) { \
528 struct cpsw_slave *slave = priv->slaves + \
529 priv->emac_port; \
530 int slave_port = cpsw_get_slave_port(priv, \
531 slave->slave_num); \
532 cpsw_ale_add_mcast(priv->ale, addr, \
533 1 << slave_port | 1 << priv->host_port, \
534 ALE_VLAN, slave->port_vlan, 0); \
535 } else { \
536 cpsw_ale_add_mcast(priv->ale, addr, \
537 ALE_ALL_PORTS << priv->host_port, \
538 0, 0, 0); \
539 } \
540 } while (0)
541
542 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
543 {
544 if (priv->host_port == 0)
545 return slave_num + 1;
546 else
547 return slave_num;
548 }
549
550 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
551 {
552 struct cpsw_priv *priv = netdev_priv(ndev);
553 struct cpsw_ale *ale = priv->ale;
554 int i;
555
556 if (priv->data.dual_emac) {
557 bool flag = false;
558
559 /* Enabling promiscuous mode for one interface will be
560 * common for both the interface as the interface shares
561 * the same hardware resource.
562 */
563 for (i = 0; i < priv->data.slaves; i++)
564 if (priv->slaves[i].ndev->flags & IFF_PROMISC)
565 flag = true;
566
567 if (!enable && flag) {
568 enable = true;
569 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
570 }
571
572 if (enable) {
573 /* Enable Bypass */
574 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
575
576 dev_dbg(&ndev->dev, "promiscuity enabled\n");
577 } else {
578 /* Disable Bypass */
579 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
580 dev_dbg(&ndev->dev, "promiscuity disabled\n");
581 }
582 } else {
583 if (enable) {
584 unsigned long timeout = jiffies + HZ;
585
586 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
587 for (i = 0; i <= priv->data.slaves; i++) {
588 cpsw_ale_control_set(ale, i,
589 ALE_PORT_NOLEARN, 1);
590 cpsw_ale_control_set(ale, i,
591 ALE_PORT_NO_SA_UPDATE, 1);
592 }
593
594 /* Clear All Untouched entries */
595 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
596 do {
597 cpu_relax();
598 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
599 break;
600 } while (time_after(timeout, jiffies));
601 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
602
603 /* Clear all mcast from ALE */
604 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS <<
605 priv->host_port, -1);
606
607 /* Flood All Unicast Packets to Host port */
608 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
609 dev_dbg(&ndev->dev, "promiscuity enabled\n");
610 } else {
611 /* Don't Flood All Unicast Packets to Host port */
612 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
613
614 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
615 for (i = 0; i <= priv->data.slaves; i++) {
616 cpsw_ale_control_set(ale, i,
617 ALE_PORT_NOLEARN, 0);
618 cpsw_ale_control_set(ale, i,
619 ALE_PORT_NO_SA_UPDATE, 0);
620 }
621 dev_dbg(&ndev->dev, "promiscuity disabled\n");
622 }
623 }
624 }
625
626 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
627 {
628 struct cpsw_priv *priv = netdev_priv(ndev);
629 int vid;
630
631 if (priv->data.dual_emac)
632 vid = priv->slaves[priv->emac_port].port_vlan;
633 else
634 vid = priv->data.default_vlan;
635
636 if (ndev->flags & IFF_PROMISC) {
637 /* Enable promiscuous mode */
638 cpsw_set_promiscious(ndev, true);
639 cpsw_ale_set_allmulti(priv->ale, IFF_ALLMULTI);
640 return;
641 } else {
642 /* Disable promiscuous mode */
643 cpsw_set_promiscious(ndev, false);
644 }
645
646 /* Restore allmulti on vlans if necessary */
647 cpsw_ale_set_allmulti(priv->ale, priv->ndev->flags & IFF_ALLMULTI);
648
649 /* Clear all mcast from ALE */
650 cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS << priv->host_port,
651 vid);
652
653 if (!netdev_mc_empty(ndev)) {
654 struct netdev_hw_addr *ha;
655
656 /* program multicast address list into ALE register */
657 netdev_for_each_mc_addr(ha, ndev) {
658 cpsw_add_mcast(priv, (u8 *)ha->addr);
659 }
660 }
661 }
662
663 static void cpsw_intr_enable(struct cpsw_priv *priv)
664 {
665 __raw_writel(0xFF, &priv->wr_regs->tx_en);
666 __raw_writel(0xFF, &priv->wr_regs->rx_en);
667
668 cpdma_ctlr_int_ctrl(priv->dma, true);
669 return;
670 }
671
672 static void cpsw_intr_disable(struct cpsw_priv *priv)
673 {
674 __raw_writel(0, &priv->wr_regs->tx_en);
675 __raw_writel(0, &priv->wr_regs->rx_en);
676
677 cpdma_ctlr_int_ctrl(priv->dma, false);
678 return;
679 }
680
681 static void cpsw_tx_handler(void *token, int len, int status)
682 {
683 struct sk_buff *skb = token;
684 struct net_device *ndev = skb->dev;
685 struct cpsw_priv *priv = netdev_priv(ndev);
686
687 /* Check whether the queue is stopped due to stalled tx dma, if the
688 * queue is stopped then start the queue as we have free desc for tx
689 */
690 if (unlikely(netif_queue_stopped(ndev)))
691 netif_wake_queue(ndev);
692 cpts_tx_timestamp(priv->cpts, skb);
693 ndev->stats.tx_packets++;
694 ndev->stats.tx_bytes += len;
695 dev_kfree_skb_any(skb);
696 }
697
698 static void cpsw_rx_handler(void *token, int len, int status)
699 {
700 struct sk_buff *skb = token;
701 struct sk_buff *new_skb;
702 struct net_device *ndev = skb->dev;
703 struct cpsw_priv *priv = netdev_priv(ndev);
704 int ret = 0;
705
706 cpsw_dual_emac_src_port_detect(status, priv, ndev, skb);
707
708 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
709 bool ndev_status = false;
710 struct cpsw_slave *slave = priv->slaves;
711 int n;
712
713 if (priv->data.dual_emac) {
714 /* In dual emac mode check for all interfaces */
715 for (n = priv->data.slaves; n; n--, slave++)
716 if (netif_running(slave->ndev))
717 ndev_status = true;
718 }
719
720 if (ndev_status && (status >= 0)) {
721 /* The packet received is for the interface which
722 * is already down and the other interface is up
723 * and running, instead of freeing which results
724 * in reducing of the number of rx descriptor in
725 * DMA engine, requeue skb back to cpdma.
726 */
727 new_skb = skb;
728 goto requeue;
729 }
730
731 /* the interface is going down, skbs are purged */
732 dev_kfree_skb_any(skb);
733 return;
734 }
735
736 new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max);
737 if (new_skb) {
738 skb_put(skb, len);
739 cpts_rx_timestamp(priv->cpts, skb);
740 skb->protocol = eth_type_trans(skb, ndev);
741 netif_receive_skb(skb);
742 ndev->stats.rx_bytes += len;
743 ndev->stats.rx_packets++;
744 } else {
745 ndev->stats.rx_dropped++;
746 new_skb = skb;
747 }
748
749 requeue:
750 ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data,
751 skb_tailroom(new_skb), 0);
752 if (WARN_ON(ret < 0))
753 dev_kfree_skb_any(new_skb);
754 }
755
756 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
757 {
758 struct cpsw_priv *priv = dev_id;
759
760 writel(0, &priv->wr_regs->tx_en);
761 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX);
762
763 if (priv->quirk_irq) {
764 disable_irq_nosync(priv->irqs_table[1]);
765 priv->tx_irq_disabled = true;
766 }
767
768 napi_schedule(&priv->napi_tx);
769 return IRQ_HANDLED;
770 }
771
772 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
773 {
774 struct cpsw_priv *priv = dev_id;
775
776 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX);
777 writel(0, &priv->wr_regs->rx_en);
778
779 if (priv->quirk_irq) {
780 disable_irq_nosync(priv->irqs_table[0]);
781 priv->rx_irq_disabled = true;
782 }
783
784 napi_schedule(&priv->napi_rx);
785 return IRQ_HANDLED;
786 }
787
788 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
789 {
790 struct cpsw_priv *priv = napi_to_priv(napi_tx);
791 int num_tx;
792
793 num_tx = cpdma_chan_process(priv->txch, budget);
794 if (num_tx < budget) {
795 napi_complete(napi_tx);
796 writel(0xff, &priv->wr_regs->tx_en);
797 if (priv->quirk_irq && priv->tx_irq_disabled) {
798 priv->tx_irq_disabled = false;
799 enable_irq(priv->irqs_table[1]);
800 }
801 }
802
803 if (num_tx)
804 cpsw_dbg(priv, intr, "poll %d tx pkts\n", num_tx);
805
806 return num_tx;
807 }
808
809 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
810 {
811 struct cpsw_priv *priv = napi_to_priv(napi_rx);
812 int num_rx;
813
814 num_rx = cpdma_chan_process(priv->rxch, budget);
815 if (num_rx < budget) {
816 napi_complete(napi_rx);
817 writel(0xff, &priv->wr_regs->rx_en);
818 if (priv->quirk_irq && priv->rx_irq_disabled) {
819 priv->rx_irq_disabled = false;
820 enable_irq(priv->irqs_table[0]);
821 }
822 }
823
824 if (num_rx)
825 cpsw_dbg(priv, intr, "poll %d rx pkts\n", num_rx);
826
827 return num_rx;
828 }
829
830 static inline void soft_reset(const char *module, void __iomem *reg)
831 {
832 unsigned long timeout = jiffies + HZ;
833
834 __raw_writel(1, reg);
835 do {
836 cpu_relax();
837 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
838
839 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
840 }
841
842 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \
843 ((mac)[2] << 16) | ((mac)[3] << 24))
844 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8))
845
846 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
847 struct cpsw_priv *priv)
848 {
849 slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
850 slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
851 }
852
853 static void _cpsw_adjust_link(struct cpsw_slave *slave,
854 struct cpsw_priv *priv, bool *link)
855 {
856 struct phy_device *phy = slave->phy;
857 u32 mac_control = 0;
858 u32 slave_port;
859
860 if (!phy)
861 return;
862
863 slave_port = cpsw_get_slave_port(priv, slave->slave_num);
864
865 if (phy->link) {
866 mac_control = priv->data.mac_control;
867
868 /* enable forwarding */
869 cpsw_ale_control_set(priv->ale, slave_port,
870 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
871
872 if (phy->speed == 1000)
873 mac_control |= BIT(7); /* GIGABITEN */
874 if (phy->duplex)
875 mac_control |= BIT(0); /* FULLDUPLEXEN */
876
877 /* set speed_in input in case RMII mode is used in 100Mbps */
878 if (phy->speed == 100)
879 mac_control |= BIT(15);
880 else if (phy->speed == 10)
881 mac_control |= BIT(18); /* In Band mode */
882
883 if (priv->rx_pause)
884 mac_control |= BIT(3);
885
886 if (priv->tx_pause)
887 mac_control |= BIT(4);
888
889 *link = true;
890 } else {
891 mac_control = 0;
892 /* disable forwarding */
893 cpsw_ale_control_set(priv->ale, slave_port,
894 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
895 }
896
897 if (mac_control != slave->mac_control) {
898 phy_print_status(phy);
899 __raw_writel(mac_control, &slave->sliver->mac_control);
900 }
901
902 slave->mac_control = mac_control;
903 }
904
905 static void cpsw_adjust_link(struct net_device *ndev)
906 {
907 struct cpsw_priv *priv = netdev_priv(ndev);
908 bool link = false;
909
910 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
911
912 if (link) {
913 netif_carrier_on(ndev);
914 if (netif_running(ndev))
915 netif_wake_queue(ndev);
916 } else {
917 netif_carrier_off(ndev);
918 netif_stop_queue(ndev);
919 }
920 }
921
922 static int cpsw_get_coalesce(struct net_device *ndev,
923 struct ethtool_coalesce *coal)
924 {
925 struct cpsw_priv *priv = netdev_priv(ndev);
926
927 coal->rx_coalesce_usecs = priv->coal_intvl;
928 return 0;
929 }
930
931 static int cpsw_set_coalesce(struct net_device *ndev,
932 struct ethtool_coalesce *coal)
933 {
934 struct cpsw_priv *priv = netdev_priv(ndev);
935 u32 int_ctrl;
936 u32 num_interrupts = 0;
937 u32 prescale = 0;
938 u32 addnl_dvdr = 1;
939 u32 coal_intvl = 0;
940
941 coal_intvl = coal->rx_coalesce_usecs;
942
943 int_ctrl = readl(&priv->wr_regs->int_control);
944 prescale = priv->bus_freq_mhz * 4;
945
946 if (!coal->rx_coalesce_usecs) {
947 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
948 goto update_return;
949 }
950
951 if (coal_intvl < CPSW_CMINTMIN_INTVL)
952 coal_intvl = CPSW_CMINTMIN_INTVL;
953
954 if (coal_intvl > CPSW_CMINTMAX_INTVL) {
955 /* Interrupt pacer works with 4us Pulse, we can
956 * throttle further by dilating the 4us pulse.
957 */
958 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
959
960 if (addnl_dvdr > 1) {
961 prescale *= addnl_dvdr;
962 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
963 coal_intvl = (CPSW_CMINTMAX_INTVL
964 * addnl_dvdr);
965 } else {
966 addnl_dvdr = 1;
967 coal_intvl = CPSW_CMINTMAX_INTVL;
968 }
969 }
970
971 num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
972 writel(num_interrupts, &priv->wr_regs->rx_imax);
973 writel(num_interrupts, &priv->wr_regs->tx_imax);
974
975 int_ctrl |= CPSW_INTPACEEN;
976 int_ctrl &= (~CPSW_INTPRESCALE_MASK);
977 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
978
979 update_return:
980 writel(int_ctrl, &priv->wr_regs->int_control);
981
982 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
983 if (priv->data.dual_emac) {
984 int i;
985
986 for (i = 0; i < priv->data.slaves; i++) {
987 priv = netdev_priv(priv->slaves[i].ndev);
988 priv->coal_intvl = coal_intvl;
989 }
990 } else {
991 priv->coal_intvl = coal_intvl;
992 }
993
994 return 0;
995 }
996
997 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
998 {
999 switch (sset) {
1000 case ETH_SS_STATS:
1001 return CPSW_STATS_LEN;
1002 default:
1003 return -EOPNOTSUPP;
1004 }
1005 }
1006
1007 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1008 {
1009 u8 *p = data;
1010 int i;
1011
1012 switch (stringset) {
1013 case ETH_SS_STATS:
1014 for (i = 0; i < CPSW_STATS_LEN; i++) {
1015 memcpy(p, cpsw_gstrings_stats[i].stat_string,
1016 ETH_GSTRING_LEN);
1017 p += ETH_GSTRING_LEN;
1018 }
1019 break;
1020 }
1021 }
1022
1023 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1024 struct ethtool_stats *stats, u64 *data)
1025 {
1026 struct cpsw_priv *priv = netdev_priv(ndev);
1027 struct cpdma_chan_stats rx_stats;
1028 struct cpdma_chan_stats tx_stats;
1029 u32 val;
1030 u8 *p;
1031 int i;
1032
1033 /* Collect Davinci CPDMA stats for Rx and Tx Channel */
1034 cpdma_chan_get_stats(priv->rxch, &rx_stats);
1035 cpdma_chan_get_stats(priv->txch, &tx_stats);
1036
1037 for (i = 0; i < CPSW_STATS_LEN; i++) {
1038 switch (cpsw_gstrings_stats[i].type) {
1039 case CPSW_STATS:
1040 val = readl(priv->hw_stats +
1041 cpsw_gstrings_stats[i].stat_offset);
1042 data[i] = val;
1043 break;
1044
1045 case CPDMA_RX_STATS:
1046 p = (u8 *)&rx_stats +
1047 cpsw_gstrings_stats[i].stat_offset;
1048 data[i] = *(u32 *)p;
1049 break;
1050
1051 case CPDMA_TX_STATS:
1052 p = (u8 *)&tx_stats +
1053 cpsw_gstrings_stats[i].stat_offset;
1054 data[i] = *(u32 *)p;
1055 break;
1056 }
1057 }
1058 }
1059
1060 static int cpsw_common_res_usage_state(struct cpsw_priv *priv)
1061 {
1062 u32 i;
1063 u32 usage_count = 0;
1064
1065 if (!priv->data.dual_emac)
1066 return 0;
1067
1068 for (i = 0; i < priv->data.slaves; i++)
1069 if (priv->slaves[i].open_stat)
1070 usage_count++;
1071
1072 return usage_count;
1073 }
1074
1075 static inline int cpsw_tx_packet_submit(struct net_device *ndev,
1076 struct cpsw_priv *priv, struct sk_buff *skb)
1077 {
1078 if (!priv->data.dual_emac)
1079 return cpdma_chan_submit(priv->txch, skb, skb->data,
1080 skb->len, 0);
1081
1082 if (ndev == cpsw_get_slave_ndev(priv, 0))
1083 return cpdma_chan_submit(priv->txch, skb, skb->data,
1084 skb->len, 1);
1085 else
1086 return cpdma_chan_submit(priv->txch, skb, skb->data,
1087 skb->len, 2);
1088 }
1089
1090 static inline void cpsw_add_dual_emac_def_ale_entries(
1091 struct cpsw_priv *priv, struct cpsw_slave *slave,
1092 u32 slave_port)
1093 {
1094 u32 port_mask = 1 << slave_port | 1 << priv->host_port;
1095
1096 if (priv->version == CPSW_VERSION_1)
1097 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1098 else
1099 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1100 cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask,
1101 port_mask, port_mask, 0);
1102 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1103 port_mask, ALE_VLAN, slave->port_vlan, 0);
1104 cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1105 priv->host_port, ALE_VLAN | ALE_SECURE, slave->port_vlan);
1106 }
1107
1108 static void soft_reset_slave(struct cpsw_slave *slave)
1109 {
1110 char name[32];
1111
1112 snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1113 soft_reset(name, &slave->sliver->soft_reset);
1114 }
1115
1116 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1117 {
1118 u32 slave_port;
1119
1120 soft_reset_slave(slave);
1121
1122 /* setup priority mapping */
1123 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1124
1125 switch (priv->version) {
1126 case CPSW_VERSION_1:
1127 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1128 break;
1129 case CPSW_VERSION_2:
1130 case CPSW_VERSION_3:
1131 case CPSW_VERSION_4:
1132 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1133 break;
1134 }
1135
1136 /* setup max packet size, and mac address */
1137 __raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen);
1138 cpsw_set_slave_mac(slave, priv);
1139
1140 slave->mac_control = 0; /* no link yet */
1141
1142 slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1143
1144 if (priv->data.dual_emac)
1145 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1146 else
1147 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1148 1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1149
1150 if (priv->phy_node)
1151 slave->phy = of_phy_connect(priv->ndev, priv->phy_node,
1152 &cpsw_adjust_link, 0, slave->data->phy_if);
1153 else
1154 slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1155 &cpsw_adjust_link, slave->data->phy_if);
1156 if (IS_ERR(slave->phy)) {
1157 dev_err(priv->dev, "phy %s not found on slave %d\n",
1158 slave->data->phy_id, slave->slave_num);
1159 slave->phy = NULL;
1160 } else {
1161 dev_info(priv->dev, "phy found : id is : 0x%x\n",
1162 slave->phy->phy_id);
1163 phy_start(slave->phy);
1164
1165 /* Configure GMII_SEL register */
1166 cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface,
1167 slave->slave_num);
1168 }
1169 }
1170
1171 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1172 {
1173 const int vlan = priv->data.default_vlan;
1174 const int port = priv->host_port;
1175 u32 reg;
1176 int i;
1177 int unreg_mcast_mask;
1178
1179 reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1180 CPSW2_PORT_VLAN;
1181
1182 writel(vlan, &priv->host_port_regs->port_vlan);
1183
1184 for (i = 0; i < priv->data.slaves; i++)
1185 slave_write(priv->slaves + i, vlan, reg);
1186
1187 if (priv->ndev->flags & IFF_ALLMULTI)
1188 unreg_mcast_mask = ALE_ALL_PORTS;
1189 else
1190 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1191
1192 cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS << port,
1193 ALE_ALL_PORTS << port, ALE_ALL_PORTS << port,
1194 unreg_mcast_mask << port);
1195 }
1196
1197 static void cpsw_init_host_port(struct cpsw_priv *priv)
1198 {
1199 u32 control_reg;
1200 u32 fifo_mode;
1201
1202 /* soft reset the controller and initialize ale */
1203 soft_reset("cpsw", &priv->regs->soft_reset);
1204 cpsw_ale_start(priv->ale);
1205
1206 /* switch to vlan unaware mode */
1207 cpsw_ale_control_set(priv->ale, priv->host_port, ALE_VLAN_AWARE,
1208 CPSW_ALE_VLAN_AWARE);
1209 control_reg = readl(&priv->regs->control);
1210 control_reg |= CPSW_VLAN_AWARE;
1211 writel(control_reg, &priv->regs->control);
1212 fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1213 CPSW_FIFO_NORMAL_MODE;
1214 writel(fifo_mode, &priv->host_port_regs->tx_in_ctl);
1215
1216 /* setup host port priority mapping */
1217 __raw_writel(CPDMA_TX_PRIORITY_MAP,
1218 &priv->host_port_regs->cpdma_tx_pri_map);
1219 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
1220
1221 cpsw_ale_control_set(priv->ale, priv->host_port,
1222 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1223
1224 if (!priv->data.dual_emac) {
1225 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, priv->host_port,
1226 0, 0);
1227 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1228 1 << priv->host_port, 0, 0, ALE_MCAST_FWD_2);
1229 }
1230 }
1231
1232 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv)
1233 {
1234 u32 slave_port;
1235
1236 slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1237
1238 if (!slave->phy)
1239 return;
1240 phy_stop(slave->phy);
1241 phy_disconnect(slave->phy);
1242 slave->phy = NULL;
1243 cpsw_ale_control_set(priv->ale, slave_port,
1244 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1245 }
1246
1247 static int cpsw_ndo_open(struct net_device *ndev)
1248 {
1249 struct cpsw_priv *priv = netdev_priv(ndev);
1250 int i, ret;
1251 u32 reg;
1252
1253 if (!cpsw_common_res_usage_state(priv))
1254 cpsw_intr_disable(priv);
1255 netif_carrier_off(ndev);
1256
1257 pm_runtime_get_sync(&priv->pdev->dev);
1258
1259 reg = priv->version;
1260
1261 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1262 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1263 CPSW_RTL_VERSION(reg));
1264
1265 /* initialize host and slave ports */
1266 if (!cpsw_common_res_usage_state(priv))
1267 cpsw_init_host_port(priv);
1268 for_each_slave(priv, cpsw_slave_open, priv);
1269
1270 /* Add default VLAN */
1271 if (!priv->data.dual_emac)
1272 cpsw_add_default_vlan(priv);
1273 else
1274 cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan,
1275 ALE_ALL_PORTS << priv->host_port,
1276 ALE_ALL_PORTS << priv->host_port, 0, 0);
1277
1278 if (!cpsw_common_res_usage_state(priv)) {
1279 struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0);
1280
1281 /* setup tx dma to fixed prio and zero offset */
1282 cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1);
1283 cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0);
1284
1285 /* disable priority elevation */
1286 __raw_writel(0, &priv->regs->ptype);
1287
1288 /* enable statistics collection only on all ports */
1289 __raw_writel(0x7, &priv->regs->stat_port_en);
1290
1291 /* Enable internal fifo flow control */
1292 writel(0x7, &priv->regs->flow_control);
1293
1294 napi_enable(&priv_sl0->napi_rx);
1295 napi_enable(&priv_sl0->napi_tx);
1296
1297 if (priv_sl0->tx_irq_disabled) {
1298 priv_sl0->tx_irq_disabled = false;
1299 enable_irq(priv->irqs_table[1]);
1300 }
1301
1302 if (priv_sl0->rx_irq_disabled) {
1303 priv_sl0->rx_irq_disabled = false;
1304 enable_irq(priv->irqs_table[0]);
1305 }
1306
1307 if (WARN_ON(!priv->data.rx_descs))
1308 priv->data.rx_descs = 128;
1309
1310 for (i = 0; i < priv->data.rx_descs; i++) {
1311 struct sk_buff *skb;
1312
1313 ret = -ENOMEM;
1314 skb = __netdev_alloc_skb_ip_align(priv->ndev,
1315 priv->rx_packet_max, GFP_KERNEL);
1316 if (!skb)
1317 goto err_cleanup;
1318 ret = cpdma_chan_submit(priv->rxch, skb, skb->data,
1319 skb_tailroom(skb), 0);
1320 if (ret < 0) {
1321 kfree_skb(skb);
1322 goto err_cleanup;
1323 }
1324 }
1325 /* continue even if we didn't manage to submit all
1326 * receive descs
1327 */
1328 cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i);
1329
1330 if (cpts_register(&priv->pdev->dev, priv->cpts,
1331 priv->data.cpts_clock_mult,
1332 priv->data.cpts_clock_shift))
1333 dev_err(priv->dev, "error registering cpts device\n");
1334
1335 }
1336
1337 /* Enable Interrupt pacing if configured */
1338 if (priv->coal_intvl != 0) {
1339 struct ethtool_coalesce coal;
1340
1341 coal.rx_coalesce_usecs = (priv->coal_intvl << 4);
1342 cpsw_set_coalesce(ndev, &coal);
1343 }
1344
1345 cpdma_ctlr_start(priv->dma);
1346 cpsw_intr_enable(priv);
1347
1348 if (priv->data.dual_emac)
1349 priv->slaves[priv->emac_port].open_stat = true;
1350 return 0;
1351
1352 err_cleanup:
1353 cpdma_ctlr_stop(priv->dma);
1354 for_each_slave(priv, cpsw_slave_stop, priv);
1355 pm_runtime_put_sync(&priv->pdev->dev);
1356 netif_carrier_off(priv->ndev);
1357 return ret;
1358 }
1359
1360 static int cpsw_ndo_stop(struct net_device *ndev)
1361 {
1362 struct cpsw_priv *priv = netdev_priv(ndev);
1363
1364 cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1365 netif_stop_queue(priv->ndev);
1366 netif_carrier_off(priv->ndev);
1367
1368 if (cpsw_common_res_usage_state(priv) <= 1) {
1369 struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0);
1370
1371 napi_disable(&priv_sl0->napi_rx);
1372 napi_disable(&priv_sl0->napi_tx);
1373 cpts_unregister(priv->cpts);
1374 cpsw_intr_disable(priv);
1375 cpdma_ctlr_stop(priv->dma);
1376 cpsw_ale_stop(priv->ale);
1377 }
1378 for_each_slave(priv, cpsw_slave_stop, priv);
1379 pm_runtime_put_sync(&priv->pdev->dev);
1380 if (priv->data.dual_emac)
1381 priv->slaves[priv->emac_port].open_stat = false;
1382 return 0;
1383 }
1384
1385 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1386 struct net_device *ndev)
1387 {
1388 struct cpsw_priv *priv = netdev_priv(ndev);
1389 int ret;
1390
1391 ndev->trans_start = jiffies;
1392
1393 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1394 cpsw_err(priv, tx_err, "packet pad failed\n");
1395 ndev->stats.tx_dropped++;
1396 return NETDEV_TX_OK;
1397 }
1398
1399 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1400 priv->cpts->tx_enable)
1401 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1402
1403 skb_tx_timestamp(skb);
1404
1405 ret = cpsw_tx_packet_submit(ndev, priv, skb);
1406 if (unlikely(ret != 0)) {
1407 cpsw_err(priv, tx_err, "desc submit failed\n");
1408 goto fail;
1409 }
1410
1411 /* If there is no more tx desc left free then we need to
1412 * tell the kernel to stop sending us tx frames.
1413 */
1414 if (unlikely(!cpdma_check_free_tx_desc(priv->txch)))
1415 netif_stop_queue(ndev);
1416
1417 return NETDEV_TX_OK;
1418 fail:
1419 ndev->stats.tx_dropped++;
1420 netif_stop_queue(ndev);
1421 return NETDEV_TX_BUSY;
1422 }
1423
1424 #ifdef CONFIG_TI_CPTS
1425
1426 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
1427 {
1428 struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave];
1429 u32 ts_en, seq_id;
1430
1431 if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) {
1432 slave_write(slave, 0, CPSW1_TS_CTL);
1433 return;
1434 }
1435
1436 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1437 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1438
1439 if (priv->cpts->tx_enable)
1440 ts_en |= CPSW_V1_TS_TX_EN;
1441
1442 if (priv->cpts->rx_enable)
1443 ts_en |= CPSW_V1_TS_RX_EN;
1444
1445 slave_write(slave, ts_en, CPSW1_TS_CTL);
1446 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1447 }
1448
1449 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1450 {
1451 struct cpsw_slave *slave;
1452 u32 ctrl, mtype;
1453
1454 if (priv->data.dual_emac)
1455 slave = &priv->slaves[priv->emac_port];
1456 else
1457 slave = &priv->slaves[priv->data.active_slave];
1458
1459 ctrl = slave_read(slave, CPSW2_CONTROL);
1460 switch (priv->version) {
1461 case CPSW_VERSION_2:
1462 ctrl &= ~CTRL_V2_ALL_TS_MASK;
1463
1464 if (priv->cpts->tx_enable)
1465 ctrl |= CTRL_V2_TX_TS_BITS;
1466
1467 if (priv->cpts->rx_enable)
1468 ctrl |= CTRL_V2_RX_TS_BITS;
1469 break;
1470 case CPSW_VERSION_3:
1471 default:
1472 ctrl &= ~CTRL_V3_ALL_TS_MASK;
1473
1474 if (priv->cpts->tx_enable)
1475 ctrl |= CTRL_V3_TX_TS_BITS;
1476
1477 if (priv->cpts->rx_enable)
1478 ctrl |= CTRL_V3_RX_TS_BITS;
1479 break;
1480 }
1481
1482 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1483
1484 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1485 slave_write(slave, ctrl, CPSW2_CONTROL);
1486 __raw_writel(ETH_P_1588, &priv->regs->ts_ltype);
1487 }
1488
1489 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1490 {
1491 struct cpsw_priv *priv = netdev_priv(dev);
1492 struct cpts *cpts = priv->cpts;
1493 struct hwtstamp_config cfg;
1494
1495 if (priv->version != CPSW_VERSION_1 &&
1496 priv->version != CPSW_VERSION_2 &&
1497 priv->version != CPSW_VERSION_3)
1498 return -EOPNOTSUPP;
1499
1500 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1501 return -EFAULT;
1502
1503 /* reserved for future extensions */
1504 if (cfg.flags)
1505 return -EINVAL;
1506
1507 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1508 return -ERANGE;
1509
1510 switch (cfg.rx_filter) {
1511 case HWTSTAMP_FILTER_NONE:
1512 cpts->rx_enable = 0;
1513 break;
1514 case HWTSTAMP_FILTER_ALL:
1515 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1516 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1517 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1518 return -ERANGE;
1519 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1520 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1521 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1522 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1523 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1524 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1525 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1526 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1527 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1528 cpts->rx_enable = 1;
1529 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1530 break;
1531 default:
1532 return -ERANGE;
1533 }
1534
1535 cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON;
1536
1537 switch (priv->version) {
1538 case CPSW_VERSION_1:
1539 cpsw_hwtstamp_v1(priv);
1540 break;
1541 case CPSW_VERSION_2:
1542 case CPSW_VERSION_3:
1543 cpsw_hwtstamp_v2(priv);
1544 break;
1545 default:
1546 WARN_ON(1);
1547 }
1548
1549 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1550 }
1551
1552 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1553 {
1554 struct cpsw_priv *priv = netdev_priv(dev);
1555 struct cpts *cpts = priv->cpts;
1556 struct hwtstamp_config cfg;
1557
1558 if (priv->version != CPSW_VERSION_1 &&
1559 priv->version != CPSW_VERSION_2 &&
1560 priv->version != CPSW_VERSION_3)
1561 return -EOPNOTSUPP;
1562
1563 cfg.flags = 0;
1564 cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1565 cfg.rx_filter = (cpts->rx_enable ?
1566 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);
1567
1568 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1569 }
1570
1571 #endif /*CONFIG_TI_CPTS*/
1572
1573 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1574 {
1575 struct cpsw_priv *priv = netdev_priv(dev);
1576 int slave_no = cpsw_slave_index(priv);
1577
1578 if (!netif_running(dev))
1579 return -EINVAL;
1580
1581 switch (cmd) {
1582 #ifdef CONFIG_TI_CPTS
1583 case SIOCSHWTSTAMP:
1584 return cpsw_hwtstamp_set(dev, req);
1585 case SIOCGHWTSTAMP:
1586 return cpsw_hwtstamp_get(dev, req);
1587 #endif
1588 }
1589
1590 if (!priv->slaves[slave_no].phy)
1591 return -EOPNOTSUPP;
1592 return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd);
1593 }
1594
1595 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1596 {
1597 struct cpsw_priv *priv = netdev_priv(ndev);
1598
1599 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1600 ndev->stats.tx_errors++;
1601 cpsw_intr_disable(priv);
1602 cpdma_chan_stop(priv->txch);
1603 cpdma_chan_start(priv->txch);
1604 cpsw_intr_enable(priv);
1605 }
1606
1607 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1608 {
1609 struct cpsw_priv *priv = netdev_priv(ndev);
1610 struct sockaddr *addr = (struct sockaddr *)p;
1611 int flags = 0;
1612 u16 vid = 0;
1613
1614 if (!is_valid_ether_addr(addr->sa_data))
1615 return -EADDRNOTAVAIL;
1616
1617 if (priv->data.dual_emac) {
1618 vid = priv->slaves[priv->emac_port].port_vlan;
1619 flags = ALE_VLAN;
1620 }
1621
1622 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, priv->host_port,
1623 flags, vid);
1624 cpsw_ale_add_ucast(priv->ale, addr->sa_data, priv->host_port,
1625 flags, vid);
1626
1627 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1628 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1629 for_each_slave(priv, cpsw_set_slave_mac, priv);
1630
1631 return 0;
1632 }
1633
1634 #ifdef CONFIG_NET_POLL_CONTROLLER
1635 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1636 {
1637 struct cpsw_priv *priv = netdev_priv(ndev);
1638
1639 cpsw_intr_disable(priv);
1640 cpsw_rx_interrupt(priv->irqs_table[0], priv);
1641 cpsw_tx_interrupt(priv->irqs_table[1], priv);
1642 cpsw_intr_enable(priv);
1643 }
1644 #endif
1645
1646 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1647 unsigned short vid)
1648 {
1649 int ret;
1650 int unreg_mcast_mask = 0;
1651 u32 port_mask;
1652
1653 if (priv->data.dual_emac) {
1654 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1655
1656 if (priv->ndev->flags & IFF_ALLMULTI)
1657 unreg_mcast_mask = port_mask;
1658 } else {
1659 port_mask = ALE_ALL_PORTS;
1660
1661 if (priv->ndev->flags & IFF_ALLMULTI)
1662 unreg_mcast_mask = ALE_ALL_PORTS;
1663 else
1664 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1665 }
1666
1667 ret = cpsw_ale_add_vlan(priv->ale, vid, port_mask, 0, port_mask,
1668 unreg_mcast_mask << priv->host_port);
1669 if (ret != 0)
1670 return ret;
1671
1672 ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1673 priv->host_port, ALE_VLAN, vid);
1674 if (ret != 0)
1675 goto clean_vid;
1676
1677 ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1678 port_mask, ALE_VLAN, vid, 0);
1679 if (ret != 0)
1680 goto clean_vlan_ucast;
1681 return 0;
1682
1683 clean_vlan_ucast:
1684 cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1685 priv->host_port, ALE_VLAN, vid);
1686 clean_vid:
1687 cpsw_ale_del_vlan(priv->ale, vid, 0);
1688 return ret;
1689 }
1690
1691 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1692 __be16 proto, u16 vid)
1693 {
1694 struct cpsw_priv *priv = netdev_priv(ndev);
1695
1696 if (vid == priv->data.default_vlan)
1697 return 0;
1698
1699 if (priv->data.dual_emac) {
1700 /* In dual EMAC, reserved VLAN id should not be used for
1701 * creating VLAN interfaces as this can break the dual
1702 * EMAC port separation
1703 */
1704 int i;
1705
1706 for (i = 0; i < priv->data.slaves; i++) {
1707 if (vid == priv->slaves[i].port_vlan)
1708 return -EINVAL;
1709 }
1710 }
1711
1712 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1713 return cpsw_add_vlan_ale_entry(priv, vid);
1714 }
1715
1716 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1717 __be16 proto, u16 vid)
1718 {
1719 struct cpsw_priv *priv = netdev_priv(ndev);
1720 int ret;
1721
1722 if (vid == priv->data.default_vlan)
1723 return 0;
1724
1725 if (priv->data.dual_emac) {
1726 int i;
1727
1728 for (i = 0; i < priv->data.slaves; i++) {
1729 if (vid == priv->slaves[i].port_vlan)
1730 return -EINVAL;
1731 }
1732 }
1733
1734 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1735 ret = cpsw_ale_del_vlan(priv->ale, vid, 0);
1736 if (ret != 0)
1737 return ret;
1738
1739 ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1740 priv->host_port, ALE_VLAN, vid);
1741 if (ret != 0)
1742 return ret;
1743
1744 return cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast,
1745 0, ALE_VLAN, vid);
1746 }
1747
1748 static const struct net_device_ops cpsw_netdev_ops = {
1749 .ndo_open = cpsw_ndo_open,
1750 .ndo_stop = cpsw_ndo_stop,
1751 .ndo_start_xmit = cpsw_ndo_start_xmit,
1752 .ndo_set_mac_address = cpsw_ndo_set_mac_address,
1753 .ndo_do_ioctl = cpsw_ndo_ioctl,
1754 .ndo_validate_addr = eth_validate_addr,
1755 .ndo_change_mtu = eth_change_mtu,
1756 .ndo_tx_timeout = cpsw_ndo_tx_timeout,
1757 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode,
1758 #ifdef CONFIG_NET_POLL_CONTROLLER
1759 .ndo_poll_controller = cpsw_ndo_poll_controller,
1760 #endif
1761 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid,
1762 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid,
1763 };
1764
1765 static int cpsw_get_regs_len(struct net_device *ndev)
1766 {
1767 struct cpsw_priv *priv = netdev_priv(ndev);
1768
1769 return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
1770 }
1771
1772 static void cpsw_get_regs(struct net_device *ndev,
1773 struct ethtool_regs *regs, void *p)
1774 {
1775 struct cpsw_priv *priv = netdev_priv(ndev);
1776 u32 *reg = p;
1777
1778 /* update CPSW IP version */
1779 regs->version = priv->version;
1780
1781 cpsw_ale_dump(priv->ale, reg);
1782 }
1783
1784 static void cpsw_get_drvinfo(struct net_device *ndev,
1785 struct ethtool_drvinfo *info)
1786 {
1787 struct cpsw_priv *priv = netdev_priv(ndev);
1788
1789 strlcpy(info->driver, "cpsw", sizeof(info->driver));
1790 strlcpy(info->version, "1.0", sizeof(info->version));
1791 strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info));
1792 info->regdump_len = cpsw_get_regs_len(ndev);
1793 }
1794
1795 static u32 cpsw_get_msglevel(struct net_device *ndev)
1796 {
1797 struct cpsw_priv *priv = netdev_priv(ndev);
1798 return priv->msg_enable;
1799 }
1800
1801 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
1802 {
1803 struct cpsw_priv *priv = netdev_priv(ndev);
1804 priv->msg_enable = value;
1805 }
1806
1807 static int cpsw_get_ts_info(struct net_device *ndev,
1808 struct ethtool_ts_info *info)
1809 {
1810 #ifdef CONFIG_TI_CPTS
1811 struct cpsw_priv *priv = netdev_priv(ndev);
1812
1813 info->so_timestamping =
1814 SOF_TIMESTAMPING_TX_HARDWARE |
1815 SOF_TIMESTAMPING_TX_SOFTWARE |
1816 SOF_TIMESTAMPING_RX_HARDWARE |
1817 SOF_TIMESTAMPING_RX_SOFTWARE |
1818 SOF_TIMESTAMPING_SOFTWARE |
1819 SOF_TIMESTAMPING_RAW_HARDWARE;
1820 info->phc_index = priv->cpts->phc_index;
1821 info->tx_types =
1822 (1 << HWTSTAMP_TX_OFF) |
1823 (1 << HWTSTAMP_TX_ON);
1824 info->rx_filters =
1825 (1 << HWTSTAMP_FILTER_NONE) |
1826 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
1827 #else
1828 info->so_timestamping =
1829 SOF_TIMESTAMPING_TX_SOFTWARE |
1830 SOF_TIMESTAMPING_RX_SOFTWARE |
1831 SOF_TIMESTAMPING_SOFTWARE;
1832 info->phc_index = -1;
1833 info->tx_types = 0;
1834 info->rx_filters = 0;
1835 #endif
1836 return 0;
1837 }
1838
1839 static int cpsw_get_settings(struct net_device *ndev,
1840 struct ethtool_cmd *ecmd)
1841 {
1842 struct cpsw_priv *priv = netdev_priv(ndev);
1843 int slave_no = cpsw_slave_index(priv);
1844
1845 if (priv->slaves[slave_no].phy)
1846 return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd);
1847 else
1848 return -EOPNOTSUPP;
1849 }
1850
1851 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1852 {
1853 struct cpsw_priv *priv = netdev_priv(ndev);
1854 int slave_no = cpsw_slave_index(priv);
1855
1856 if (priv->slaves[slave_no].phy)
1857 return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd);
1858 else
1859 return -EOPNOTSUPP;
1860 }
1861
1862 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1863 {
1864 struct cpsw_priv *priv = netdev_priv(ndev);
1865 int slave_no = cpsw_slave_index(priv);
1866
1867 wol->supported = 0;
1868 wol->wolopts = 0;
1869
1870 if (priv->slaves[slave_no].phy)
1871 phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol);
1872 }
1873
1874 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1875 {
1876 struct cpsw_priv *priv = netdev_priv(ndev);
1877 int slave_no = cpsw_slave_index(priv);
1878
1879 if (priv->slaves[slave_no].phy)
1880 return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol);
1881 else
1882 return -EOPNOTSUPP;
1883 }
1884
1885 static void cpsw_get_pauseparam(struct net_device *ndev,
1886 struct ethtool_pauseparam *pause)
1887 {
1888 struct cpsw_priv *priv = netdev_priv(ndev);
1889
1890 pause->autoneg = AUTONEG_DISABLE;
1891 pause->rx_pause = priv->rx_pause ? true : false;
1892 pause->tx_pause = priv->tx_pause ? true : false;
1893 }
1894
1895 static int cpsw_set_pauseparam(struct net_device *ndev,
1896 struct ethtool_pauseparam *pause)
1897 {
1898 struct cpsw_priv *priv = netdev_priv(ndev);
1899 bool link;
1900
1901 priv->rx_pause = pause->rx_pause ? true : false;
1902 priv->tx_pause = pause->tx_pause ? true : false;
1903
1904 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1905
1906 return 0;
1907 }
1908
1909 static const struct ethtool_ops cpsw_ethtool_ops = {
1910 .get_drvinfo = cpsw_get_drvinfo,
1911 .get_msglevel = cpsw_get_msglevel,
1912 .set_msglevel = cpsw_set_msglevel,
1913 .get_link = ethtool_op_get_link,
1914 .get_ts_info = cpsw_get_ts_info,
1915 .get_settings = cpsw_get_settings,
1916 .set_settings = cpsw_set_settings,
1917 .get_coalesce = cpsw_get_coalesce,
1918 .set_coalesce = cpsw_set_coalesce,
1919 .get_sset_count = cpsw_get_sset_count,
1920 .get_strings = cpsw_get_strings,
1921 .get_ethtool_stats = cpsw_get_ethtool_stats,
1922 .get_pauseparam = cpsw_get_pauseparam,
1923 .set_pauseparam = cpsw_set_pauseparam,
1924 .get_wol = cpsw_get_wol,
1925 .set_wol = cpsw_set_wol,
1926 .get_regs_len = cpsw_get_regs_len,
1927 .get_regs = cpsw_get_regs,
1928 };
1929
1930 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv,
1931 u32 slave_reg_ofs, u32 sliver_reg_ofs)
1932 {
1933 void __iomem *regs = priv->regs;
1934 int slave_num = slave->slave_num;
1935 struct cpsw_slave_data *data = priv->data.slave_data + slave_num;
1936
1937 slave->data = data;
1938 slave->regs = regs + slave_reg_ofs;
1939 slave->sliver = regs + sliver_reg_ofs;
1940 slave->port_vlan = data->dual_emac_res_vlan;
1941 }
1942
1943 static int cpsw_probe_dt(struct cpsw_priv *priv,
1944 struct platform_device *pdev)
1945 {
1946 struct device_node *node = pdev->dev.of_node;
1947 struct device_node *slave_node;
1948 struct cpsw_platform_data *data = &priv->data;
1949 int i = 0, ret;
1950 u32 prop;
1951
1952 if (!node)
1953 return -EINVAL;
1954
1955 if (of_property_read_u32(node, "slaves", &prop)) {
1956 dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
1957 return -EINVAL;
1958 }
1959 data->slaves = prop;
1960
1961 if (of_property_read_u32(node, "active_slave", &prop)) {
1962 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
1963 return -EINVAL;
1964 }
1965 data->active_slave = prop;
1966
1967 if (of_property_read_u32(node, "cpts_clock_mult", &prop)) {
1968 dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n");
1969 return -EINVAL;
1970 }
1971 data->cpts_clock_mult = prop;
1972
1973 if (of_property_read_u32(node, "cpts_clock_shift", &prop)) {
1974 dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n");
1975 return -EINVAL;
1976 }
1977 data->cpts_clock_shift = prop;
1978
1979 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
1980 * sizeof(struct cpsw_slave_data),
1981 GFP_KERNEL);
1982 if (!data->slave_data)
1983 return -ENOMEM;
1984
1985 if (of_property_read_u32(node, "cpdma_channels", &prop)) {
1986 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
1987 return -EINVAL;
1988 }
1989 data->channels = prop;
1990
1991 if (of_property_read_u32(node, "ale_entries", &prop)) {
1992 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
1993 return -EINVAL;
1994 }
1995 data->ale_entries = prop;
1996
1997 if (of_property_read_u32(node, "bd_ram_size", &prop)) {
1998 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
1999 return -EINVAL;
2000 }
2001 data->bd_ram_size = prop;
2002
2003 if (of_property_read_u32(node, "rx_descs", &prop)) {
2004 dev_err(&pdev->dev, "Missing rx_descs property in the DT.\n");
2005 return -EINVAL;
2006 }
2007 data->rx_descs = prop;
2008
2009 if (of_property_read_u32(node, "mac_control", &prop)) {
2010 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2011 return -EINVAL;
2012 }
2013 data->mac_control = prop;
2014
2015 if (of_property_read_bool(node, "dual_emac"))
2016 data->dual_emac = 1;
2017
2018 /*
2019 * Populate all the child nodes here...
2020 */
2021 ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2022 /* We do not want to force this, as in some cases may not have child */
2023 if (ret)
2024 dev_warn(&pdev->dev, "Doesn't have any child node\n");
2025
2026 for_each_child_of_node(node, slave_node) {
2027 struct cpsw_slave_data *slave_data = data->slave_data + i;
2028 const void *mac_addr = NULL;
2029 u32 phyid;
2030 int lenp;
2031 const __be32 *parp;
2032 struct device_node *mdio_node;
2033 struct platform_device *mdio;
2034
2035 /* This is no slave child node, continue */
2036 if (strcmp(slave_node->name, "slave"))
2037 continue;
2038
2039 priv->phy_node = of_parse_phandle(slave_node, "phy-handle", 0);
2040 parp = of_get_property(slave_node, "phy_id", &lenp);
2041 if ((parp == NULL) || (lenp != (sizeof(void *) * 2))) {
2042 dev_err(&pdev->dev, "Missing slave[%d] phy_id property\n", i);
2043 goto no_phy_slave;
2044 }
2045 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2046 phyid = be32_to_cpup(parp+1);
2047 mdio = of_find_device_by_node(mdio_node);
2048 of_node_put(mdio_node);
2049 if (!mdio) {
2050 dev_err(&pdev->dev, "Missing mdio platform device\n");
2051 return -EINVAL;
2052 }
2053 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2054 PHY_ID_FMT, mdio->name, phyid);
2055 slave_data->phy_if = of_get_phy_mode(slave_node);
2056 if (slave_data->phy_if < 0) {
2057 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2058 i);
2059 return slave_data->phy_if;
2060 }
2061
2062 no_phy_slave:
2063 mac_addr = of_get_mac_address(slave_node);
2064 if (mac_addr) {
2065 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2066 } else {
2067 if (of_machine_is_compatible("ti,am33xx")) {
2068 ret = cpsw_am33xx_cm_get_macid(&pdev->dev,
2069 0x630, i,
2070 slave_data->mac_addr);
2071 if (ret)
2072 return ret;
2073 }
2074 }
2075 if (data->dual_emac) {
2076 if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2077 &prop)) {
2078 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2079 slave_data->dual_emac_res_vlan = i+1;
2080 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2081 slave_data->dual_emac_res_vlan, i);
2082 } else {
2083 slave_data->dual_emac_res_vlan = prop;
2084 }
2085 }
2086
2087 i++;
2088 if (i == data->slaves)
2089 break;
2090 }
2091
2092 return 0;
2093 }
2094
2095 static int cpsw_probe_dual_emac(struct platform_device *pdev,
2096 struct cpsw_priv *priv)
2097 {
2098 struct cpsw_platform_data *data = &priv->data;
2099 struct net_device *ndev;
2100 struct cpsw_priv *priv_sl2;
2101 int ret = 0, i;
2102
2103 ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2104 if (!ndev) {
2105 dev_err(&pdev->dev, "cpsw: error allocating net_device\n");
2106 return -ENOMEM;
2107 }
2108
2109 priv_sl2 = netdev_priv(ndev);
2110 spin_lock_init(&priv_sl2->lock);
2111 priv_sl2->data = *data;
2112 priv_sl2->pdev = pdev;
2113 priv_sl2->ndev = ndev;
2114 priv_sl2->dev = &ndev->dev;
2115 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2116 priv_sl2->rx_packet_max = max(rx_packet_max, 128);
2117
2118 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2119 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2120 ETH_ALEN);
2121 dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr);
2122 } else {
2123 random_ether_addr(priv_sl2->mac_addr);
2124 dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr);
2125 }
2126 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2127
2128 priv_sl2->slaves = priv->slaves;
2129 priv_sl2->clk = priv->clk;
2130
2131 priv_sl2->coal_intvl = 0;
2132 priv_sl2->bus_freq_mhz = priv->bus_freq_mhz;
2133
2134 priv_sl2->regs = priv->regs;
2135 priv_sl2->host_port = priv->host_port;
2136 priv_sl2->host_port_regs = priv->host_port_regs;
2137 priv_sl2->wr_regs = priv->wr_regs;
2138 priv_sl2->hw_stats = priv->hw_stats;
2139 priv_sl2->dma = priv->dma;
2140 priv_sl2->txch = priv->txch;
2141 priv_sl2->rxch = priv->rxch;
2142 priv_sl2->ale = priv->ale;
2143 priv_sl2->emac_port = 1;
2144 priv->slaves[1].ndev = ndev;
2145 priv_sl2->cpts = priv->cpts;
2146 priv_sl2->version = priv->version;
2147
2148 for (i = 0; i < priv->num_irqs; i++) {
2149 priv_sl2->irqs_table[i] = priv->irqs_table[i];
2150 priv_sl2->num_irqs = priv->num_irqs;
2151 }
2152 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2153
2154 ndev->netdev_ops = &cpsw_netdev_ops;
2155 ndev->ethtool_ops = &cpsw_ethtool_ops;
2156
2157 /* register the network device */
2158 SET_NETDEV_DEV(ndev, &pdev->dev);
2159 ret = register_netdev(ndev);
2160 if (ret) {
2161 dev_err(&pdev->dev, "cpsw: error registering net device\n");
2162 free_netdev(ndev);
2163 ret = -ENODEV;
2164 }
2165
2166 return ret;
2167 }
2168
2169 #define CPSW_QUIRK_IRQ BIT(0)
2170
2171 static struct platform_device_id cpsw_devtype[] = {
2172 {
2173 /* keep it for existing comaptibles */
2174 .name = "cpsw",
2175 .driver_data = CPSW_QUIRK_IRQ,
2176 }, {
2177 .name = "am335x-cpsw",
2178 .driver_data = CPSW_QUIRK_IRQ,
2179 }, {
2180 .name = "am4372-cpsw",
2181 .driver_data = 0,
2182 }, {
2183 .name = "dra7-cpsw",
2184 .driver_data = 0,
2185 }, {
2186 /* sentinel */
2187 }
2188 };
2189 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2190
2191 enum ti_cpsw_type {
2192 CPSW = 0,
2193 AM335X_CPSW,
2194 AM4372_CPSW,
2195 DRA7_CPSW,
2196 };
2197
2198 static const struct of_device_id cpsw_of_mtable[] = {
2199 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2200 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2201 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2202 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2203 { /* sentinel */ },
2204 };
2205 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2206
2207 static int cpsw_probe(struct platform_device *pdev)
2208 {
2209 struct cpsw_platform_data *data;
2210 struct net_device *ndev;
2211 struct cpsw_priv *priv;
2212 struct cpdma_params dma_params;
2213 struct cpsw_ale_params ale_params;
2214 void __iomem *ss_regs;
2215 struct resource *res, *ss_res;
2216 const struct of_device_id *of_id;
2217 u32 slave_offset, sliver_offset, slave_size;
2218 int ret = 0, i;
2219 int irq;
2220
2221 ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2222 if (!ndev) {
2223 dev_err(&pdev->dev, "error allocating net_device\n");
2224 return -ENOMEM;
2225 }
2226
2227 platform_set_drvdata(pdev, ndev);
2228 priv = netdev_priv(ndev);
2229 spin_lock_init(&priv->lock);
2230 priv->pdev = pdev;
2231 priv->ndev = ndev;
2232 priv->dev = &ndev->dev;
2233 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2234 priv->rx_packet_max = max(rx_packet_max, 128);
2235 priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL);
2236 if (!priv->cpts) {
2237 dev_err(&pdev->dev, "error allocating cpts\n");
2238 ret = -ENOMEM;
2239 goto clean_ndev_ret;
2240 }
2241
2242 /*
2243 * This may be required here for child devices.
2244 */
2245 pm_runtime_enable(&pdev->dev);
2246
2247 /* Select default pin state */
2248 pinctrl_pm_select_default_state(&pdev->dev);
2249
2250 if (cpsw_probe_dt(priv, pdev)) {
2251 dev_err(&pdev->dev, "cpsw: platform data missing\n");
2252 ret = -ENODEV;
2253 goto clean_runtime_disable_ret;
2254 }
2255 data = &priv->data;
2256
2257 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2258 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2259 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2260 } else {
2261 eth_random_addr(priv->mac_addr);
2262 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2263 }
2264
2265 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2266
2267 priv->slaves = devm_kzalloc(&pdev->dev,
2268 sizeof(struct cpsw_slave) * data->slaves,
2269 GFP_KERNEL);
2270 if (!priv->slaves) {
2271 ret = -ENOMEM;
2272 goto clean_runtime_disable_ret;
2273 }
2274 for (i = 0; i < data->slaves; i++)
2275 priv->slaves[i].slave_num = i;
2276
2277 priv->slaves[0].ndev = ndev;
2278 priv->emac_port = 0;
2279
2280 priv->clk = devm_clk_get(&pdev->dev, "fck");
2281 if (IS_ERR(priv->clk)) {
2282 dev_err(priv->dev, "fck is not found\n");
2283 ret = -ENODEV;
2284 goto clean_runtime_disable_ret;
2285 }
2286 priv->coal_intvl = 0;
2287 priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000;
2288
2289 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2290 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2291 if (IS_ERR(ss_regs)) {
2292 ret = PTR_ERR(ss_regs);
2293 goto clean_runtime_disable_ret;
2294 }
2295 priv->regs = ss_regs;
2296 priv->host_port = HOST_PORT_NUM;
2297
2298 /* Need to enable clocks with runtime PM api to access module
2299 * registers
2300 */
2301 pm_runtime_get_sync(&pdev->dev);
2302 priv->version = readl(&priv->regs->id_ver);
2303 pm_runtime_put_sync(&pdev->dev);
2304
2305 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2306 priv->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2307 if (IS_ERR(priv->wr_regs)) {
2308 ret = PTR_ERR(priv->wr_regs);
2309 goto clean_runtime_disable_ret;
2310 }
2311
2312 memset(&dma_params, 0, sizeof(dma_params));
2313 memset(&ale_params, 0, sizeof(ale_params));
2314
2315 switch (priv->version) {
2316 case CPSW_VERSION_1:
2317 priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2318 priv->cpts->reg = ss_regs + CPSW1_CPTS_OFFSET;
2319 priv->hw_stats = ss_regs + CPSW1_HW_STATS;
2320 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET;
2321 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET;
2322 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET;
2323 slave_offset = CPSW1_SLAVE_OFFSET;
2324 slave_size = CPSW1_SLAVE_SIZE;
2325 sliver_offset = CPSW1_SLIVER_OFFSET;
2326 dma_params.desc_mem_phys = 0;
2327 break;
2328 case CPSW_VERSION_2:
2329 case CPSW_VERSION_3:
2330 case CPSW_VERSION_4:
2331 priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2332 priv->cpts->reg = ss_regs + CPSW2_CPTS_OFFSET;
2333 priv->hw_stats = ss_regs + CPSW2_HW_STATS;
2334 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET;
2335 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET;
2336 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET;
2337 slave_offset = CPSW2_SLAVE_OFFSET;
2338 slave_size = CPSW2_SLAVE_SIZE;
2339 sliver_offset = CPSW2_SLIVER_OFFSET;
2340 dma_params.desc_mem_phys =
2341 (u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2342 break;
2343 default:
2344 dev_err(priv->dev, "unknown version 0x%08x\n", priv->version);
2345 ret = -ENODEV;
2346 goto clean_runtime_disable_ret;
2347 }
2348 for (i = 0; i < priv->data.slaves; i++) {
2349 struct cpsw_slave *slave = &priv->slaves[i];
2350 cpsw_slave_init(slave, priv, slave_offset, sliver_offset);
2351 slave_offset += slave_size;
2352 sliver_offset += SLIVER_SIZE;
2353 }
2354
2355 dma_params.dev = &pdev->dev;
2356 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH;
2357 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE;
2358 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP;
2359 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP;
2360 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP;
2361
2362 dma_params.num_chan = data->channels;
2363 dma_params.has_soft_reset = true;
2364 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE;
2365 dma_params.desc_mem_size = data->bd_ram_size;
2366 dma_params.desc_align = 16;
2367 dma_params.has_ext_regs = true;
2368 dma_params.desc_hw_addr = dma_params.desc_mem_phys;
2369
2370 priv->dma = cpdma_ctlr_create(&dma_params);
2371 if (!priv->dma) {
2372 dev_err(priv->dev, "error initializing dma\n");
2373 ret = -ENOMEM;
2374 goto clean_runtime_disable_ret;
2375 }
2376
2377 priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0),
2378 cpsw_tx_handler);
2379 priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0),
2380 cpsw_rx_handler);
2381
2382 if (WARN_ON(!priv->txch || !priv->rxch)) {
2383 dev_err(priv->dev, "error initializing dma channels\n");
2384 ret = -ENOMEM;
2385 goto clean_dma_ret;
2386 }
2387
2388 ale_params.dev = &ndev->dev;
2389 ale_params.ale_ageout = ale_ageout;
2390 ale_params.ale_entries = data->ale_entries;
2391 ale_params.ale_ports = data->slaves;
2392
2393 priv->ale = cpsw_ale_create(&ale_params);
2394 if (!priv->ale) {
2395 dev_err(priv->dev, "error initializing ale engine\n");
2396 ret = -ENODEV;
2397 goto clean_dma_ret;
2398 }
2399
2400 ndev->irq = platform_get_irq(pdev, 1);
2401 if (ndev->irq < 0) {
2402 dev_err(priv->dev, "error getting irq resource\n");
2403 ret = -ENOENT;
2404 goto clean_ale_ret;
2405 }
2406
2407 of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
2408 if (of_id) {
2409 pdev->id_entry = of_id->data;
2410 if (pdev->id_entry->driver_data)
2411 priv->quirk_irq = true;
2412 }
2413
2414 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
2415 * MISC IRQs which are always kept disabled with this driver so
2416 * we will not request them.
2417 *
2418 * If anyone wants to implement support for those, make sure to
2419 * first request and append them to irqs_table array.
2420 */
2421
2422 /* RX IRQ */
2423 irq = platform_get_irq(pdev, 1);
2424 if (irq < 0)
2425 goto clean_ale_ret;
2426
2427 priv->irqs_table[0] = irq;
2428 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
2429 0, dev_name(&pdev->dev), priv);
2430 if (ret < 0) {
2431 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2432 goto clean_ale_ret;
2433 }
2434
2435 /* TX IRQ */
2436 irq = platform_get_irq(pdev, 2);
2437 if (irq < 0)
2438 goto clean_ale_ret;
2439
2440 priv->irqs_table[1] = irq;
2441 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
2442 0, dev_name(&pdev->dev), priv);
2443 if (ret < 0) {
2444 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2445 goto clean_ale_ret;
2446 }
2447 priv->num_irqs = 2;
2448
2449 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2450
2451 ndev->netdev_ops = &cpsw_netdev_ops;
2452 ndev->ethtool_ops = &cpsw_ethtool_ops;
2453 netif_napi_add(ndev, &priv->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
2454 netif_napi_add(ndev, &priv->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
2455
2456 /* register the network device */
2457 SET_NETDEV_DEV(ndev, &pdev->dev);
2458 ret = register_netdev(ndev);
2459 if (ret) {
2460 dev_err(priv->dev, "error registering net device\n");
2461 ret = -ENODEV;
2462 goto clean_ale_ret;
2463 }
2464
2465 cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n",
2466 &ss_res->start, ndev->irq);
2467
2468 if (priv->data.dual_emac) {
2469 ret = cpsw_probe_dual_emac(pdev, priv);
2470 if (ret) {
2471 cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
2472 goto clean_ale_ret;
2473 }
2474 }
2475
2476 return 0;
2477
2478 clean_ale_ret:
2479 cpsw_ale_destroy(priv->ale);
2480 clean_dma_ret:
2481 cpdma_chan_destroy(priv->txch);
2482 cpdma_chan_destroy(priv->rxch);
2483 cpdma_ctlr_destroy(priv->dma);
2484 clean_runtime_disable_ret:
2485 pm_runtime_disable(&pdev->dev);
2486 clean_ndev_ret:
2487 free_netdev(priv->ndev);
2488 return ret;
2489 }
2490
2491 static int cpsw_remove_child_device(struct device *dev, void *c)
2492 {
2493 struct platform_device *pdev = to_platform_device(dev);
2494
2495 of_device_unregister(pdev);
2496
2497 return 0;
2498 }
2499
2500 static int cpsw_remove(struct platform_device *pdev)
2501 {
2502 struct net_device *ndev = platform_get_drvdata(pdev);
2503 struct cpsw_priv *priv = netdev_priv(ndev);
2504
2505 if (priv->data.dual_emac)
2506 unregister_netdev(cpsw_get_slave_ndev(priv, 1));
2507 unregister_netdev(ndev);
2508
2509 cpsw_ale_destroy(priv->ale);
2510 cpdma_chan_destroy(priv->txch);
2511 cpdma_chan_destroy(priv->rxch);
2512 cpdma_ctlr_destroy(priv->dma);
2513 pm_runtime_disable(&pdev->dev);
2514 device_for_each_child(&pdev->dev, NULL, cpsw_remove_child_device);
2515 if (priv->data.dual_emac)
2516 free_netdev(cpsw_get_slave_ndev(priv, 1));
2517 free_netdev(ndev);
2518 return 0;
2519 }
2520
2521 #ifdef CONFIG_PM_SLEEP
2522 static int cpsw_suspend(struct device *dev)
2523 {
2524 struct platform_device *pdev = to_platform_device(dev);
2525 struct net_device *ndev = platform_get_drvdata(pdev);
2526 struct cpsw_priv *priv = netdev_priv(ndev);
2527
2528 if (priv->data.dual_emac) {
2529 int i;
2530
2531 for (i = 0; i < priv->data.slaves; i++) {
2532 if (netif_running(priv->slaves[i].ndev))
2533 cpsw_ndo_stop(priv->slaves[i].ndev);
2534 soft_reset_slave(priv->slaves + i);
2535 }
2536 } else {
2537 if (netif_running(ndev))
2538 cpsw_ndo_stop(ndev);
2539 for_each_slave(priv, soft_reset_slave);
2540 }
2541
2542 pm_runtime_put_sync(&pdev->dev);
2543
2544 /* Select sleep pin state */
2545 pinctrl_pm_select_sleep_state(&pdev->dev);
2546
2547 return 0;
2548 }
2549
2550 static int cpsw_resume(struct device *dev)
2551 {
2552 struct platform_device *pdev = to_platform_device(dev);
2553 struct net_device *ndev = platform_get_drvdata(pdev);
2554 struct cpsw_priv *priv = netdev_priv(ndev);
2555
2556 pm_runtime_get_sync(&pdev->dev);
2557
2558 /* Select default pin state */
2559 pinctrl_pm_select_default_state(&pdev->dev);
2560
2561 if (priv->data.dual_emac) {
2562 int i;
2563
2564 for (i = 0; i < priv->data.slaves; i++) {
2565 if (netif_running(priv->slaves[i].ndev))
2566 cpsw_ndo_open(priv->slaves[i].ndev);
2567 }
2568 } else {
2569 if (netif_running(ndev))
2570 cpsw_ndo_open(ndev);
2571 }
2572 return 0;
2573 }
2574 #endif
2575
2576 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
2577
2578 static struct platform_driver cpsw_driver = {
2579 .driver = {
2580 .name = "cpsw",
2581 .pm = &cpsw_pm_ops,
2582 .of_match_table = cpsw_of_mtable,
2583 },
2584 .probe = cpsw_probe,
2585 .remove = cpsw_remove,
2586 };
2587
2588 static int __init cpsw_init(void)
2589 {
2590 return platform_driver_register(&cpsw_driver);
2591 }
2592 late_initcall(cpsw_init);
2593
2594 static void __exit cpsw_exit(void)
2595 {
2596 platform_driver_unregister(&cpsw_driver);
2597 }
2598 module_exit(cpsw_exit);
2599
2600 MODULE_LICENSE("GPL");
2601 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
2602 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
2603 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
This page took 0.18371 seconds and 5 git commands to generate.