Merge branch 'drm-tda998x-devel' of git://git.armlinux.org.uk/~rmk/linux-arm into...
[deliverable/linux.git] / drivers / net / ethernet / ti / cpsw.c
1 /*
2 * Texas Instruments Ethernet Switch Driver
3 *
4 * Copyright (C) 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/timer.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/irqreturn.h>
23 #include <linux/interrupt.h>
24 #include <linux/if_ether.h>
25 #include <linux/etherdevice.h>
26 #include <linux/netdevice.h>
27 #include <linux/net_tstamp.h>
28 #include <linux/phy.h>
29 #include <linux/workqueue.h>
30 #include <linux/delay.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/gpio.h>
33 #include <linux/of.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_device.h>
37 #include <linux/if_vlan.h>
38
39 #include <linux/pinctrl/consumer.h>
40
41 #include "cpsw.h"
42 #include "cpsw_ale.h"
43 #include "cpts.h"
44 #include "davinci_cpdma.h"
45
46 #define CPSW_DEBUG (NETIF_MSG_HW | NETIF_MSG_WOL | \
47 NETIF_MSG_DRV | NETIF_MSG_LINK | \
48 NETIF_MSG_IFUP | NETIF_MSG_INTR | \
49 NETIF_MSG_PROBE | NETIF_MSG_TIMER | \
50 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | \
51 NETIF_MSG_TX_ERR | NETIF_MSG_TX_DONE | \
52 NETIF_MSG_PKTDATA | NETIF_MSG_TX_QUEUED | \
53 NETIF_MSG_RX_STATUS)
54
55 #define cpsw_info(priv, type, format, ...) \
56 do { \
57 if (netif_msg_##type(priv) && net_ratelimit()) \
58 dev_info(priv->dev, format, ## __VA_ARGS__); \
59 } while (0)
60
61 #define cpsw_err(priv, type, format, ...) \
62 do { \
63 if (netif_msg_##type(priv) && net_ratelimit()) \
64 dev_err(priv->dev, format, ## __VA_ARGS__); \
65 } while (0)
66
67 #define cpsw_dbg(priv, type, format, ...) \
68 do { \
69 if (netif_msg_##type(priv) && net_ratelimit()) \
70 dev_dbg(priv->dev, format, ## __VA_ARGS__); \
71 } while (0)
72
73 #define cpsw_notice(priv, type, format, ...) \
74 do { \
75 if (netif_msg_##type(priv) && net_ratelimit()) \
76 dev_notice(priv->dev, format, ## __VA_ARGS__); \
77 } while (0)
78
79 #define ALE_ALL_PORTS 0x7
80
81 #define CPSW_MAJOR_VERSION(reg) (reg >> 8 & 0x7)
82 #define CPSW_MINOR_VERSION(reg) (reg & 0xff)
83 #define CPSW_RTL_VERSION(reg) ((reg >> 11) & 0x1f)
84
85 #define CPSW_VERSION_1 0x19010a
86 #define CPSW_VERSION_2 0x19010c
87 #define CPSW_VERSION_3 0x19010f
88 #define CPSW_VERSION_4 0x190112
89
90 #define HOST_PORT_NUM 0
91 #define SLIVER_SIZE 0x40
92
93 #define CPSW1_HOST_PORT_OFFSET 0x028
94 #define CPSW1_SLAVE_OFFSET 0x050
95 #define CPSW1_SLAVE_SIZE 0x040
96 #define CPSW1_CPDMA_OFFSET 0x100
97 #define CPSW1_STATERAM_OFFSET 0x200
98 #define CPSW1_HW_STATS 0x400
99 #define CPSW1_CPTS_OFFSET 0x500
100 #define CPSW1_ALE_OFFSET 0x600
101 #define CPSW1_SLIVER_OFFSET 0x700
102
103 #define CPSW2_HOST_PORT_OFFSET 0x108
104 #define CPSW2_SLAVE_OFFSET 0x200
105 #define CPSW2_SLAVE_SIZE 0x100
106 #define CPSW2_CPDMA_OFFSET 0x800
107 #define CPSW2_HW_STATS 0x900
108 #define CPSW2_STATERAM_OFFSET 0xa00
109 #define CPSW2_CPTS_OFFSET 0xc00
110 #define CPSW2_ALE_OFFSET 0xd00
111 #define CPSW2_SLIVER_OFFSET 0xd80
112 #define CPSW2_BD_OFFSET 0x2000
113
114 #define CPDMA_RXTHRESH 0x0c0
115 #define CPDMA_RXFREE 0x0e0
116 #define CPDMA_TXHDP 0x00
117 #define CPDMA_RXHDP 0x20
118 #define CPDMA_TXCP 0x40
119 #define CPDMA_RXCP 0x60
120
121 #define CPSW_POLL_WEIGHT 64
122 #define CPSW_MIN_PACKET_SIZE 60
123 #define CPSW_MAX_PACKET_SIZE (1500 + 14 + 4 + 4)
124
125 #define RX_PRIORITY_MAPPING 0x76543210
126 #define TX_PRIORITY_MAPPING 0x33221100
127 #define CPDMA_TX_PRIORITY_MAP 0x76543210
128
129 #define CPSW_VLAN_AWARE BIT(1)
130 #define CPSW_ALE_VLAN_AWARE 1
131
132 #define CPSW_FIFO_NORMAL_MODE (0 << 16)
133 #define CPSW_FIFO_DUAL_MAC_MODE (1 << 16)
134 #define CPSW_FIFO_RATE_LIMIT_MODE (2 << 16)
135
136 #define CPSW_INTPACEEN (0x3f << 16)
137 #define CPSW_INTPRESCALE_MASK (0x7FF << 0)
138 #define CPSW_CMINTMAX_CNT 63
139 #define CPSW_CMINTMIN_CNT 2
140 #define CPSW_CMINTMAX_INTVL (1000 / CPSW_CMINTMIN_CNT)
141 #define CPSW_CMINTMIN_INTVL ((1000 / CPSW_CMINTMAX_CNT) + 1)
142
143 #define cpsw_slave_index(priv) \
144 ((priv->data.dual_emac) ? priv->emac_port : \
145 priv->data.active_slave)
146
147 static int debug_level;
148 module_param(debug_level, int, 0);
149 MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
150
151 static int ale_ageout = 10;
152 module_param(ale_ageout, int, 0);
153 MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
154
155 static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
156 module_param(rx_packet_max, int, 0);
157 MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
158
159 struct cpsw_wr_regs {
160 u32 id_ver;
161 u32 soft_reset;
162 u32 control;
163 u32 int_control;
164 u32 rx_thresh_en;
165 u32 rx_en;
166 u32 tx_en;
167 u32 misc_en;
168 u32 mem_allign1[8];
169 u32 rx_thresh_stat;
170 u32 rx_stat;
171 u32 tx_stat;
172 u32 misc_stat;
173 u32 mem_allign2[8];
174 u32 rx_imax;
175 u32 tx_imax;
176
177 };
178
179 struct cpsw_ss_regs {
180 u32 id_ver;
181 u32 control;
182 u32 soft_reset;
183 u32 stat_port_en;
184 u32 ptype;
185 u32 soft_idle;
186 u32 thru_rate;
187 u32 gap_thresh;
188 u32 tx_start_wds;
189 u32 flow_control;
190 u32 vlan_ltype;
191 u32 ts_ltype;
192 u32 dlr_ltype;
193 };
194
195 /* CPSW_PORT_V1 */
196 #define CPSW1_MAX_BLKS 0x00 /* Maximum FIFO Blocks */
197 #define CPSW1_BLK_CNT 0x04 /* FIFO Block Usage Count (Read Only) */
198 #define CPSW1_TX_IN_CTL 0x08 /* Transmit FIFO Control */
199 #define CPSW1_PORT_VLAN 0x0c /* VLAN Register */
200 #define CPSW1_TX_PRI_MAP 0x10 /* Tx Header Priority to Switch Pri Mapping */
201 #define CPSW1_TS_CTL 0x14 /* Time Sync Control */
202 #define CPSW1_TS_SEQ_LTYPE 0x18 /* Time Sync Sequence ID Offset and Msg Type */
203 #define CPSW1_TS_VLAN 0x1c /* Time Sync VLAN1 and VLAN2 */
204
205 /* CPSW_PORT_V2 */
206 #define CPSW2_CONTROL 0x00 /* Control Register */
207 #define CPSW2_MAX_BLKS 0x08 /* Maximum FIFO Blocks */
208 #define CPSW2_BLK_CNT 0x0c /* FIFO Block Usage Count (Read Only) */
209 #define CPSW2_TX_IN_CTL 0x10 /* Transmit FIFO Control */
210 #define CPSW2_PORT_VLAN 0x14 /* VLAN Register */
211 #define CPSW2_TX_PRI_MAP 0x18 /* Tx Header Priority to Switch Pri Mapping */
212 #define CPSW2_TS_SEQ_MTYPE 0x1c /* Time Sync Sequence ID Offset and Msg Type */
213
214 /* CPSW_PORT_V1 and V2 */
215 #define SA_LO 0x20 /* CPGMAC_SL Source Address Low */
216 #define SA_HI 0x24 /* CPGMAC_SL Source Address High */
217 #define SEND_PERCENT 0x28 /* Transmit Queue Send Percentages */
218
219 /* CPSW_PORT_V2 only */
220 #define RX_DSCP_PRI_MAP0 0x30 /* Rx DSCP Priority to Rx Packet Mapping */
221 #define RX_DSCP_PRI_MAP1 0x34 /* Rx DSCP Priority to Rx Packet Mapping */
222 #define RX_DSCP_PRI_MAP2 0x38 /* Rx DSCP Priority to Rx Packet Mapping */
223 #define RX_DSCP_PRI_MAP3 0x3c /* Rx DSCP Priority to Rx Packet Mapping */
224 #define RX_DSCP_PRI_MAP4 0x40 /* Rx DSCP Priority to Rx Packet Mapping */
225 #define RX_DSCP_PRI_MAP5 0x44 /* Rx DSCP Priority to Rx Packet Mapping */
226 #define RX_DSCP_PRI_MAP6 0x48 /* Rx DSCP Priority to Rx Packet Mapping */
227 #define RX_DSCP_PRI_MAP7 0x4c /* Rx DSCP Priority to Rx Packet Mapping */
228
229 /* Bit definitions for the CPSW2_CONTROL register */
230 #define PASS_PRI_TAGGED (1<<24) /* Pass Priority Tagged */
231 #define VLAN_LTYPE2_EN (1<<21) /* VLAN LTYPE 2 enable */
232 #define VLAN_LTYPE1_EN (1<<20) /* VLAN LTYPE 1 enable */
233 #define DSCP_PRI_EN (1<<16) /* DSCP Priority Enable */
234 #define TS_320 (1<<14) /* Time Sync Dest Port 320 enable */
235 #define TS_319 (1<<13) /* Time Sync Dest Port 319 enable */
236 #define TS_132 (1<<12) /* Time Sync Dest IP Addr 132 enable */
237 #define TS_131 (1<<11) /* Time Sync Dest IP Addr 131 enable */
238 #define TS_130 (1<<10) /* Time Sync Dest IP Addr 130 enable */
239 #define TS_129 (1<<9) /* Time Sync Dest IP Addr 129 enable */
240 #define TS_TTL_NONZERO (1<<8) /* Time Sync Time To Live Non-zero enable */
241 #define TS_ANNEX_F_EN (1<<6) /* Time Sync Annex F enable */
242 #define TS_ANNEX_D_EN (1<<4) /* Time Sync Annex D enable */
243 #define TS_LTYPE2_EN (1<<3) /* Time Sync LTYPE 2 enable */
244 #define TS_LTYPE1_EN (1<<2) /* Time Sync LTYPE 1 enable */
245 #define TS_TX_EN (1<<1) /* Time Sync Transmit Enable */
246 #define TS_RX_EN (1<<0) /* Time Sync Receive Enable */
247
248 #define CTRL_V2_TS_BITS \
249 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
250 TS_TTL_NONZERO | TS_ANNEX_D_EN | TS_LTYPE1_EN)
251
252 #define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
253 #define CTRL_V2_TX_TS_BITS (CTRL_V2_TS_BITS | TS_TX_EN)
254 #define CTRL_V2_RX_TS_BITS (CTRL_V2_TS_BITS | TS_RX_EN)
255
256
257 #define CTRL_V3_TS_BITS \
258 (TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
259 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
260 TS_LTYPE1_EN)
261
262 #define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
263 #define CTRL_V3_TX_TS_BITS (CTRL_V3_TS_BITS | TS_TX_EN)
264 #define CTRL_V3_RX_TS_BITS (CTRL_V3_TS_BITS | TS_RX_EN)
265
266 /* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
267 #define TS_SEQ_ID_OFFSET_SHIFT (16) /* Time Sync Sequence ID Offset */
268 #define TS_SEQ_ID_OFFSET_MASK (0x3f)
269 #define TS_MSG_TYPE_EN_SHIFT (0) /* Time Sync Message Type Enable */
270 #define TS_MSG_TYPE_EN_MASK (0xffff)
271
272 /* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
273 #define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
274
275 /* Bit definitions for the CPSW1_TS_CTL register */
276 #define CPSW_V1_TS_RX_EN BIT(0)
277 #define CPSW_V1_TS_TX_EN BIT(4)
278 #define CPSW_V1_MSG_TYPE_OFS 16
279
280 /* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
281 #define CPSW_V1_SEQ_ID_OFS_SHIFT 16
282
283 struct cpsw_host_regs {
284 u32 max_blks;
285 u32 blk_cnt;
286 u32 tx_in_ctl;
287 u32 port_vlan;
288 u32 tx_pri_map;
289 u32 cpdma_tx_pri_map;
290 u32 cpdma_rx_chan_map;
291 };
292
293 struct cpsw_sliver_regs {
294 u32 id_ver;
295 u32 mac_control;
296 u32 mac_status;
297 u32 soft_reset;
298 u32 rx_maxlen;
299 u32 __reserved_0;
300 u32 rx_pause;
301 u32 tx_pause;
302 u32 __reserved_1;
303 u32 rx_pri_map;
304 };
305
306 struct cpsw_hw_stats {
307 u32 rxgoodframes;
308 u32 rxbroadcastframes;
309 u32 rxmulticastframes;
310 u32 rxpauseframes;
311 u32 rxcrcerrors;
312 u32 rxaligncodeerrors;
313 u32 rxoversizedframes;
314 u32 rxjabberframes;
315 u32 rxundersizedframes;
316 u32 rxfragments;
317 u32 __pad_0[2];
318 u32 rxoctets;
319 u32 txgoodframes;
320 u32 txbroadcastframes;
321 u32 txmulticastframes;
322 u32 txpauseframes;
323 u32 txdeferredframes;
324 u32 txcollisionframes;
325 u32 txsinglecollframes;
326 u32 txmultcollframes;
327 u32 txexcessivecollisions;
328 u32 txlatecollisions;
329 u32 txunderrun;
330 u32 txcarriersenseerrors;
331 u32 txoctets;
332 u32 octetframes64;
333 u32 octetframes65t127;
334 u32 octetframes128t255;
335 u32 octetframes256t511;
336 u32 octetframes512t1023;
337 u32 octetframes1024tup;
338 u32 netoctets;
339 u32 rxsofoverruns;
340 u32 rxmofoverruns;
341 u32 rxdmaoverruns;
342 };
343
344 struct cpsw_slave {
345 void __iomem *regs;
346 struct cpsw_sliver_regs __iomem *sliver;
347 int slave_num;
348 u32 mac_control;
349 struct cpsw_slave_data *data;
350 struct phy_device *phy;
351 struct net_device *ndev;
352 u32 port_vlan;
353 u32 open_stat;
354 };
355
356 static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
357 {
358 return __raw_readl(slave->regs + offset);
359 }
360
361 static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
362 {
363 __raw_writel(val, slave->regs + offset);
364 }
365
366 struct cpsw_priv {
367 struct platform_device *pdev;
368 struct net_device *ndev;
369 struct napi_struct napi_rx;
370 struct napi_struct napi_tx;
371 struct device *dev;
372 struct cpsw_platform_data data;
373 struct cpsw_ss_regs __iomem *regs;
374 struct cpsw_wr_regs __iomem *wr_regs;
375 u8 __iomem *hw_stats;
376 struct cpsw_host_regs __iomem *host_port_regs;
377 u32 msg_enable;
378 u32 version;
379 u32 coal_intvl;
380 u32 bus_freq_mhz;
381 int rx_packet_max;
382 struct clk *clk;
383 u8 mac_addr[ETH_ALEN];
384 struct cpsw_slave *slaves;
385 struct cpdma_ctlr *dma;
386 struct cpdma_chan *txch, *rxch;
387 struct cpsw_ale *ale;
388 bool rx_pause;
389 bool tx_pause;
390 bool quirk_irq;
391 bool rx_irq_disabled;
392 bool tx_irq_disabled;
393 /* snapshot of IRQ numbers */
394 u32 irqs_table[4];
395 u32 num_irqs;
396 struct cpts *cpts;
397 u32 emac_port;
398 };
399
400 struct cpsw_stats {
401 char stat_string[ETH_GSTRING_LEN];
402 int type;
403 int sizeof_stat;
404 int stat_offset;
405 };
406
407 enum {
408 CPSW_STATS,
409 CPDMA_RX_STATS,
410 CPDMA_TX_STATS,
411 };
412
413 #define CPSW_STAT(m) CPSW_STATS, \
414 sizeof(((struct cpsw_hw_stats *)0)->m), \
415 offsetof(struct cpsw_hw_stats, m)
416 #define CPDMA_RX_STAT(m) CPDMA_RX_STATS, \
417 sizeof(((struct cpdma_chan_stats *)0)->m), \
418 offsetof(struct cpdma_chan_stats, m)
419 #define CPDMA_TX_STAT(m) CPDMA_TX_STATS, \
420 sizeof(((struct cpdma_chan_stats *)0)->m), \
421 offsetof(struct cpdma_chan_stats, m)
422
423 static const struct cpsw_stats cpsw_gstrings_stats[] = {
424 { "Good Rx Frames", CPSW_STAT(rxgoodframes) },
425 { "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
426 { "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
427 { "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
428 { "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
429 { "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
430 { "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
431 { "Rx Jabbers", CPSW_STAT(rxjabberframes) },
432 { "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
433 { "Rx Fragments", CPSW_STAT(rxfragments) },
434 { "Rx Octets", CPSW_STAT(rxoctets) },
435 { "Good Tx Frames", CPSW_STAT(txgoodframes) },
436 { "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
437 { "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
438 { "Pause Tx Frames", CPSW_STAT(txpauseframes) },
439 { "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
440 { "Collisions", CPSW_STAT(txcollisionframes) },
441 { "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
442 { "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
443 { "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
444 { "Late Collisions", CPSW_STAT(txlatecollisions) },
445 { "Tx Underrun", CPSW_STAT(txunderrun) },
446 { "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
447 { "Tx Octets", CPSW_STAT(txoctets) },
448 { "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
449 { "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
450 { "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
451 { "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
452 { "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
453 { "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
454 { "Net Octets", CPSW_STAT(netoctets) },
455 { "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
456 { "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
457 { "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
458 { "Rx DMA chan: head_enqueue", CPDMA_RX_STAT(head_enqueue) },
459 { "Rx DMA chan: tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
460 { "Rx DMA chan: pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
461 { "Rx DMA chan: misqueued", CPDMA_RX_STAT(misqueued) },
462 { "Rx DMA chan: desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
463 { "Rx DMA chan: pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
464 { "Rx DMA chan: runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
465 { "Rx DMA chan: runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
466 { "Rx DMA chan: empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
467 { "Rx DMA chan: busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
468 { "Rx DMA chan: good_dequeue", CPDMA_RX_STAT(good_dequeue) },
469 { "Rx DMA chan: requeue", CPDMA_RX_STAT(requeue) },
470 { "Rx DMA chan: teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
471 { "Tx DMA chan: head_enqueue", CPDMA_TX_STAT(head_enqueue) },
472 { "Tx DMA chan: tail_enqueue", CPDMA_TX_STAT(tail_enqueue) },
473 { "Tx DMA chan: pad_enqueue", CPDMA_TX_STAT(pad_enqueue) },
474 { "Tx DMA chan: misqueued", CPDMA_TX_STAT(misqueued) },
475 { "Tx DMA chan: desc_alloc_fail", CPDMA_TX_STAT(desc_alloc_fail) },
476 { "Tx DMA chan: pad_alloc_fail", CPDMA_TX_STAT(pad_alloc_fail) },
477 { "Tx DMA chan: runt_receive_buf", CPDMA_TX_STAT(runt_receive_buff) },
478 { "Tx DMA chan: runt_transmit_buf", CPDMA_TX_STAT(runt_transmit_buff) },
479 { "Tx DMA chan: empty_dequeue", CPDMA_TX_STAT(empty_dequeue) },
480 { "Tx DMA chan: busy_dequeue", CPDMA_TX_STAT(busy_dequeue) },
481 { "Tx DMA chan: good_dequeue", CPDMA_TX_STAT(good_dequeue) },
482 { "Tx DMA chan: requeue", CPDMA_TX_STAT(requeue) },
483 { "Tx DMA chan: teardown_dequeue", CPDMA_TX_STAT(teardown_dequeue) },
484 };
485
486 #define CPSW_STATS_LEN ARRAY_SIZE(cpsw_gstrings_stats)
487
488 #define napi_to_priv(napi) container_of(napi, struct cpsw_priv, napi)
489 #define for_each_slave(priv, func, arg...) \
490 do { \
491 struct cpsw_slave *slave; \
492 int n; \
493 if (priv->data.dual_emac) \
494 (func)((priv)->slaves + priv->emac_port, ##arg);\
495 else \
496 for (n = (priv)->data.slaves, \
497 slave = (priv)->slaves; \
498 n; n--) \
499 (func)(slave++, ##arg); \
500 } while (0)
501 #define cpsw_get_slave_ndev(priv, __slave_no__) \
502 ((__slave_no__ < priv->data.slaves) ? \
503 priv->slaves[__slave_no__].ndev : NULL)
504 #define cpsw_get_slave_priv(priv, __slave_no__) \
505 (((__slave_no__ < priv->data.slaves) && \
506 (priv->slaves[__slave_no__].ndev)) ? \
507 netdev_priv(priv->slaves[__slave_no__].ndev) : NULL) \
508
509 #define cpsw_dual_emac_src_port_detect(status, priv, ndev, skb) \
510 do { \
511 if (!priv->data.dual_emac) \
512 break; \
513 if (CPDMA_RX_SOURCE_PORT(status) == 1) { \
514 ndev = cpsw_get_slave_ndev(priv, 0); \
515 priv = netdev_priv(ndev); \
516 skb->dev = ndev; \
517 } else if (CPDMA_RX_SOURCE_PORT(status) == 2) { \
518 ndev = cpsw_get_slave_ndev(priv, 1); \
519 priv = netdev_priv(ndev); \
520 skb->dev = ndev; \
521 } \
522 } while (0)
523 #define cpsw_add_mcast(priv, addr) \
524 do { \
525 if (priv->data.dual_emac) { \
526 struct cpsw_slave *slave = priv->slaves + \
527 priv->emac_port; \
528 int slave_port = cpsw_get_slave_port(priv, \
529 slave->slave_num); \
530 cpsw_ale_add_mcast(priv->ale, addr, \
531 1 << slave_port | ALE_PORT_HOST, \
532 ALE_VLAN, slave->port_vlan, 0); \
533 } else { \
534 cpsw_ale_add_mcast(priv->ale, addr, \
535 ALE_ALL_PORTS, \
536 0, 0, 0); \
537 } \
538 } while (0)
539
540 static inline int cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num)
541 {
542 return slave_num + 1;
543 }
544
545 static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
546 {
547 struct cpsw_priv *priv = netdev_priv(ndev);
548 struct cpsw_ale *ale = priv->ale;
549 int i;
550
551 if (priv->data.dual_emac) {
552 bool flag = false;
553
554 /* Enabling promiscuous mode for one interface will be
555 * common for both the interface as the interface shares
556 * the same hardware resource.
557 */
558 for (i = 0; i < priv->data.slaves; i++)
559 if (priv->slaves[i].ndev->flags & IFF_PROMISC)
560 flag = true;
561
562 if (!enable && flag) {
563 enable = true;
564 dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
565 }
566
567 if (enable) {
568 /* Enable Bypass */
569 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
570
571 dev_dbg(&ndev->dev, "promiscuity enabled\n");
572 } else {
573 /* Disable Bypass */
574 cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
575 dev_dbg(&ndev->dev, "promiscuity disabled\n");
576 }
577 } else {
578 if (enable) {
579 unsigned long timeout = jiffies + HZ;
580
581 /* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
582 for (i = 0; i <= priv->data.slaves; i++) {
583 cpsw_ale_control_set(ale, i,
584 ALE_PORT_NOLEARN, 1);
585 cpsw_ale_control_set(ale, i,
586 ALE_PORT_NO_SA_UPDATE, 1);
587 }
588
589 /* Clear All Untouched entries */
590 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
591 do {
592 cpu_relax();
593 if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
594 break;
595 } while (time_after(timeout, jiffies));
596 cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
597
598 /* Clear all mcast from ALE */
599 cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
600
601 /* Flood All Unicast Packets to Host port */
602 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
603 dev_dbg(&ndev->dev, "promiscuity enabled\n");
604 } else {
605 /* Don't Flood All Unicast Packets to Host port */
606 cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
607
608 /* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
609 for (i = 0; i <= priv->data.slaves; i++) {
610 cpsw_ale_control_set(ale, i,
611 ALE_PORT_NOLEARN, 0);
612 cpsw_ale_control_set(ale, i,
613 ALE_PORT_NO_SA_UPDATE, 0);
614 }
615 dev_dbg(&ndev->dev, "promiscuity disabled\n");
616 }
617 }
618 }
619
620 static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
621 {
622 struct cpsw_priv *priv = netdev_priv(ndev);
623 int vid;
624
625 if (priv->data.dual_emac)
626 vid = priv->slaves[priv->emac_port].port_vlan;
627 else
628 vid = priv->data.default_vlan;
629
630 if (ndev->flags & IFF_PROMISC) {
631 /* Enable promiscuous mode */
632 cpsw_set_promiscious(ndev, true);
633 cpsw_ale_set_allmulti(priv->ale, IFF_ALLMULTI);
634 return;
635 } else {
636 /* Disable promiscuous mode */
637 cpsw_set_promiscious(ndev, false);
638 }
639
640 /* Restore allmulti on vlans if necessary */
641 cpsw_ale_set_allmulti(priv->ale, priv->ndev->flags & IFF_ALLMULTI);
642
643 /* Clear all mcast from ALE */
644 cpsw_ale_flush_multicast(priv->ale, ALE_ALL_PORTS, vid);
645
646 if (!netdev_mc_empty(ndev)) {
647 struct netdev_hw_addr *ha;
648
649 /* program multicast address list into ALE register */
650 netdev_for_each_mc_addr(ha, ndev) {
651 cpsw_add_mcast(priv, (u8 *)ha->addr);
652 }
653 }
654 }
655
656 static void cpsw_intr_enable(struct cpsw_priv *priv)
657 {
658 __raw_writel(0xFF, &priv->wr_regs->tx_en);
659 __raw_writel(0xFF, &priv->wr_regs->rx_en);
660
661 cpdma_ctlr_int_ctrl(priv->dma, true);
662 return;
663 }
664
665 static void cpsw_intr_disable(struct cpsw_priv *priv)
666 {
667 __raw_writel(0, &priv->wr_regs->tx_en);
668 __raw_writel(0, &priv->wr_regs->rx_en);
669
670 cpdma_ctlr_int_ctrl(priv->dma, false);
671 return;
672 }
673
674 static void cpsw_tx_handler(void *token, int len, int status)
675 {
676 struct sk_buff *skb = token;
677 struct net_device *ndev = skb->dev;
678 struct cpsw_priv *priv = netdev_priv(ndev);
679
680 /* Check whether the queue is stopped due to stalled tx dma, if the
681 * queue is stopped then start the queue as we have free desc for tx
682 */
683 if (unlikely(netif_queue_stopped(ndev)))
684 netif_wake_queue(ndev);
685 cpts_tx_timestamp(priv->cpts, skb);
686 ndev->stats.tx_packets++;
687 ndev->stats.tx_bytes += len;
688 dev_kfree_skb_any(skb);
689 }
690
691 static void cpsw_rx_handler(void *token, int len, int status)
692 {
693 struct sk_buff *skb = token;
694 struct sk_buff *new_skb;
695 struct net_device *ndev = skb->dev;
696 struct cpsw_priv *priv = netdev_priv(ndev);
697 int ret = 0;
698
699 cpsw_dual_emac_src_port_detect(status, priv, ndev, skb);
700
701 if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
702 bool ndev_status = false;
703 struct cpsw_slave *slave = priv->slaves;
704 int n;
705
706 if (priv->data.dual_emac) {
707 /* In dual emac mode check for all interfaces */
708 for (n = priv->data.slaves; n; n--, slave++)
709 if (netif_running(slave->ndev))
710 ndev_status = true;
711 }
712
713 if (ndev_status && (status >= 0)) {
714 /* The packet received is for the interface which
715 * is already down and the other interface is up
716 * and running, instead of freeing which results
717 * in reducing of the number of rx descriptor in
718 * DMA engine, requeue skb back to cpdma.
719 */
720 new_skb = skb;
721 goto requeue;
722 }
723
724 /* the interface is going down, skbs are purged */
725 dev_kfree_skb_any(skb);
726 return;
727 }
728
729 new_skb = netdev_alloc_skb_ip_align(ndev, priv->rx_packet_max);
730 if (new_skb) {
731 skb_put(skb, len);
732 cpts_rx_timestamp(priv->cpts, skb);
733 skb->protocol = eth_type_trans(skb, ndev);
734 netif_receive_skb(skb);
735 ndev->stats.rx_bytes += len;
736 ndev->stats.rx_packets++;
737 } else {
738 ndev->stats.rx_dropped++;
739 new_skb = skb;
740 }
741
742 requeue:
743 ret = cpdma_chan_submit(priv->rxch, new_skb, new_skb->data,
744 skb_tailroom(new_skb), 0);
745 if (WARN_ON(ret < 0))
746 dev_kfree_skb_any(new_skb);
747 }
748
749 static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
750 {
751 struct cpsw_priv *priv = dev_id;
752
753 writel(0, &priv->wr_regs->tx_en);
754 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_TX);
755
756 if (priv->quirk_irq) {
757 disable_irq_nosync(priv->irqs_table[1]);
758 priv->tx_irq_disabled = true;
759 }
760
761 napi_schedule(&priv->napi_tx);
762 return IRQ_HANDLED;
763 }
764
765 static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
766 {
767 struct cpsw_priv *priv = dev_id;
768
769 cpdma_ctlr_eoi(priv->dma, CPDMA_EOI_RX);
770 writel(0, &priv->wr_regs->rx_en);
771
772 if (priv->quirk_irq) {
773 disable_irq_nosync(priv->irqs_table[0]);
774 priv->rx_irq_disabled = true;
775 }
776
777 napi_schedule(&priv->napi_rx);
778 return IRQ_HANDLED;
779 }
780
781 static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
782 {
783 struct cpsw_priv *priv = napi_to_priv(napi_tx);
784 int num_tx;
785
786 num_tx = cpdma_chan_process(priv->txch, budget);
787 if (num_tx < budget) {
788 napi_complete(napi_tx);
789 writel(0xff, &priv->wr_regs->tx_en);
790 if (priv->quirk_irq && priv->tx_irq_disabled) {
791 priv->tx_irq_disabled = false;
792 enable_irq(priv->irqs_table[1]);
793 }
794 }
795
796 if (num_tx)
797 cpsw_dbg(priv, intr, "poll %d tx pkts\n", num_tx);
798
799 return num_tx;
800 }
801
802 static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
803 {
804 struct cpsw_priv *priv = napi_to_priv(napi_rx);
805 int num_rx;
806
807 num_rx = cpdma_chan_process(priv->rxch, budget);
808 if (num_rx < budget) {
809 napi_complete(napi_rx);
810 writel(0xff, &priv->wr_regs->rx_en);
811 if (priv->quirk_irq && priv->rx_irq_disabled) {
812 priv->rx_irq_disabled = false;
813 enable_irq(priv->irqs_table[0]);
814 }
815 }
816
817 if (num_rx)
818 cpsw_dbg(priv, intr, "poll %d rx pkts\n", num_rx);
819
820 return num_rx;
821 }
822
823 static inline void soft_reset(const char *module, void __iomem *reg)
824 {
825 unsigned long timeout = jiffies + HZ;
826
827 __raw_writel(1, reg);
828 do {
829 cpu_relax();
830 } while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));
831
832 WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
833 }
834
835 #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \
836 ((mac)[2] << 16) | ((mac)[3] << 24))
837 #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8))
838
839 static void cpsw_set_slave_mac(struct cpsw_slave *slave,
840 struct cpsw_priv *priv)
841 {
842 slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
843 slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
844 }
845
846 static void _cpsw_adjust_link(struct cpsw_slave *slave,
847 struct cpsw_priv *priv, bool *link)
848 {
849 struct phy_device *phy = slave->phy;
850 u32 mac_control = 0;
851 u32 slave_port;
852
853 if (!phy)
854 return;
855
856 slave_port = cpsw_get_slave_port(priv, slave->slave_num);
857
858 if (phy->link) {
859 mac_control = priv->data.mac_control;
860
861 /* enable forwarding */
862 cpsw_ale_control_set(priv->ale, slave_port,
863 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
864
865 if (phy->speed == 1000)
866 mac_control |= BIT(7); /* GIGABITEN */
867 if (phy->duplex)
868 mac_control |= BIT(0); /* FULLDUPLEXEN */
869
870 /* set speed_in input in case RMII mode is used in 100Mbps */
871 if (phy->speed == 100)
872 mac_control |= BIT(15);
873 else if (phy->speed == 10)
874 mac_control |= BIT(18); /* In Band mode */
875
876 if (priv->rx_pause)
877 mac_control |= BIT(3);
878
879 if (priv->tx_pause)
880 mac_control |= BIT(4);
881
882 *link = true;
883 } else {
884 mac_control = 0;
885 /* disable forwarding */
886 cpsw_ale_control_set(priv->ale, slave_port,
887 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
888 }
889
890 if (mac_control != slave->mac_control) {
891 phy_print_status(phy);
892 __raw_writel(mac_control, &slave->sliver->mac_control);
893 }
894
895 slave->mac_control = mac_control;
896 }
897
898 static void cpsw_adjust_link(struct net_device *ndev)
899 {
900 struct cpsw_priv *priv = netdev_priv(ndev);
901 bool link = false;
902
903 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
904
905 if (link) {
906 netif_carrier_on(ndev);
907 if (netif_running(ndev))
908 netif_wake_queue(ndev);
909 } else {
910 netif_carrier_off(ndev);
911 netif_stop_queue(ndev);
912 }
913 }
914
915 static int cpsw_get_coalesce(struct net_device *ndev,
916 struct ethtool_coalesce *coal)
917 {
918 struct cpsw_priv *priv = netdev_priv(ndev);
919
920 coal->rx_coalesce_usecs = priv->coal_intvl;
921 return 0;
922 }
923
924 static int cpsw_set_coalesce(struct net_device *ndev,
925 struct ethtool_coalesce *coal)
926 {
927 struct cpsw_priv *priv = netdev_priv(ndev);
928 u32 int_ctrl;
929 u32 num_interrupts = 0;
930 u32 prescale = 0;
931 u32 addnl_dvdr = 1;
932 u32 coal_intvl = 0;
933
934 coal_intvl = coal->rx_coalesce_usecs;
935
936 int_ctrl = readl(&priv->wr_regs->int_control);
937 prescale = priv->bus_freq_mhz * 4;
938
939 if (!coal->rx_coalesce_usecs) {
940 int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
941 goto update_return;
942 }
943
944 if (coal_intvl < CPSW_CMINTMIN_INTVL)
945 coal_intvl = CPSW_CMINTMIN_INTVL;
946
947 if (coal_intvl > CPSW_CMINTMAX_INTVL) {
948 /* Interrupt pacer works with 4us Pulse, we can
949 * throttle further by dilating the 4us pulse.
950 */
951 addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;
952
953 if (addnl_dvdr > 1) {
954 prescale *= addnl_dvdr;
955 if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
956 coal_intvl = (CPSW_CMINTMAX_INTVL
957 * addnl_dvdr);
958 } else {
959 addnl_dvdr = 1;
960 coal_intvl = CPSW_CMINTMAX_INTVL;
961 }
962 }
963
964 num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
965 writel(num_interrupts, &priv->wr_regs->rx_imax);
966 writel(num_interrupts, &priv->wr_regs->tx_imax);
967
968 int_ctrl |= CPSW_INTPACEEN;
969 int_ctrl &= (~CPSW_INTPRESCALE_MASK);
970 int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
971
972 update_return:
973 writel(int_ctrl, &priv->wr_regs->int_control);
974
975 cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
976 if (priv->data.dual_emac) {
977 int i;
978
979 for (i = 0; i < priv->data.slaves; i++) {
980 priv = netdev_priv(priv->slaves[i].ndev);
981 priv->coal_intvl = coal_intvl;
982 }
983 } else {
984 priv->coal_intvl = coal_intvl;
985 }
986
987 return 0;
988 }
989
990 static int cpsw_get_sset_count(struct net_device *ndev, int sset)
991 {
992 switch (sset) {
993 case ETH_SS_STATS:
994 return CPSW_STATS_LEN;
995 default:
996 return -EOPNOTSUPP;
997 }
998 }
999
1000 static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1001 {
1002 u8 *p = data;
1003 int i;
1004
1005 switch (stringset) {
1006 case ETH_SS_STATS:
1007 for (i = 0; i < CPSW_STATS_LEN; i++) {
1008 memcpy(p, cpsw_gstrings_stats[i].stat_string,
1009 ETH_GSTRING_LEN);
1010 p += ETH_GSTRING_LEN;
1011 }
1012 break;
1013 }
1014 }
1015
1016 static void cpsw_get_ethtool_stats(struct net_device *ndev,
1017 struct ethtool_stats *stats, u64 *data)
1018 {
1019 struct cpsw_priv *priv = netdev_priv(ndev);
1020 struct cpdma_chan_stats rx_stats;
1021 struct cpdma_chan_stats tx_stats;
1022 u32 val;
1023 u8 *p;
1024 int i;
1025
1026 /* Collect Davinci CPDMA stats for Rx and Tx Channel */
1027 cpdma_chan_get_stats(priv->rxch, &rx_stats);
1028 cpdma_chan_get_stats(priv->txch, &tx_stats);
1029
1030 for (i = 0; i < CPSW_STATS_LEN; i++) {
1031 switch (cpsw_gstrings_stats[i].type) {
1032 case CPSW_STATS:
1033 val = readl(priv->hw_stats +
1034 cpsw_gstrings_stats[i].stat_offset);
1035 data[i] = val;
1036 break;
1037
1038 case CPDMA_RX_STATS:
1039 p = (u8 *)&rx_stats +
1040 cpsw_gstrings_stats[i].stat_offset;
1041 data[i] = *(u32 *)p;
1042 break;
1043
1044 case CPDMA_TX_STATS:
1045 p = (u8 *)&tx_stats +
1046 cpsw_gstrings_stats[i].stat_offset;
1047 data[i] = *(u32 *)p;
1048 break;
1049 }
1050 }
1051 }
1052
1053 static int cpsw_common_res_usage_state(struct cpsw_priv *priv)
1054 {
1055 u32 i;
1056 u32 usage_count = 0;
1057
1058 if (!priv->data.dual_emac)
1059 return 0;
1060
1061 for (i = 0; i < priv->data.slaves; i++)
1062 if (priv->slaves[i].open_stat)
1063 usage_count++;
1064
1065 return usage_count;
1066 }
1067
1068 static inline int cpsw_tx_packet_submit(struct net_device *ndev,
1069 struct cpsw_priv *priv, struct sk_buff *skb)
1070 {
1071 if (!priv->data.dual_emac)
1072 return cpdma_chan_submit(priv->txch, skb, skb->data,
1073 skb->len, 0);
1074
1075 if (ndev == cpsw_get_slave_ndev(priv, 0))
1076 return cpdma_chan_submit(priv->txch, skb, skb->data,
1077 skb->len, 1);
1078 else
1079 return cpdma_chan_submit(priv->txch, skb, skb->data,
1080 skb->len, 2);
1081 }
1082
1083 static inline void cpsw_add_dual_emac_def_ale_entries(
1084 struct cpsw_priv *priv, struct cpsw_slave *slave,
1085 u32 slave_port)
1086 {
1087 u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1088
1089 if (priv->version == CPSW_VERSION_1)
1090 slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
1091 else
1092 slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1093 cpsw_ale_add_vlan(priv->ale, slave->port_vlan, port_mask,
1094 port_mask, port_mask, 0);
1095 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1096 port_mask, ALE_VLAN, slave->port_vlan, 0);
1097 cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1098 HOST_PORT_NUM, ALE_VLAN | ALE_SECURE, slave->port_vlan);
1099 }
1100
1101 static void soft_reset_slave(struct cpsw_slave *slave)
1102 {
1103 char name[32];
1104
1105 snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1106 soft_reset(name, &slave->sliver->soft_reset);
1107 }
1108
1109 static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
1110 {
1111 u32 slave_port;
1112
1113 soft_reset_slave(slave);
1114
1115 /* setup priority mapping */
1116 __raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1117
1118 switch (priv->version) {
1119 case CPSW_VERSION_1:
1120 slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1121 break;
1122 case CPSW_VERSION_2:
1123 case CPSW_VERSION_3:
1124 case CPSW_VERSION_4:
1125 slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1126 break;
1127 }
1128
1129 /* setup max packet size, and mac address */
1130 __raw_writel(priv->rx_packet_max, &slave->sliver->rx_maxlen);
1131 cpsw_set_slave_mac(slave, priv);
1132
1133 slave->mac_control = 0; /* no link yet */
1134
1135 slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1136
1137 if (priv->data.dual_emac)
1138 cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
1139 else
1140 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1141 1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1142
1143 if (slave->data->phy_node) {
1144 slave->phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1145 &cpsw_adjust_link, 0, slave->data->phy_if);
1146 if (!slave->phy) {
1147 dev_err(priv->dev, "phy \"%s\" not found on slave %d\n",
1148 slave->data->phy_node->full_name,
1149 slave->slave_num);
1150 return;
1151 }
1152 } else {
1153 slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1154 &cpsw_adjust_link, slave->data->phy_if);
1155 if (IS_ERR(slave->phy)) {
1156 dev_err(priv->dev,
1157 "phy \"%s\" not found on slave %d, err %ld\n",
1158 slave->data->phy_id, slave->slave_num,
1159 PTR_ERR(slave->phy));
1160 slave->phy = NULL;
1161 return;
1162 }
1163 }
1164
1165 phy_attached_info(slave->phy);
1166
1167 phy_start(slave->phy);
1168
1169 /* Configure GMII_SEL register */
1170 cpsw_phy_sel(&priv->pdev->dev, slave->phy->interface, slave->slave_num);
1171 }
1172
1173 static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
1174 {
1175 const int vlan = priv->data.default_vlan;
1176 u32 reg;
1177 int i;
1178 int unreg_mcast_mask;
1179
1180 reg = (priv->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1181 CPSW2_PORT_VLAN;
1182
1183 writel(vlan, &priv->host_port_regs->port_vlan);
1184
1185 for (i = 0; i < priv->data.slaves; i++)
1186 slave_write(priv->slaves + i, vlan, reg);
1187
1188 if (priv->ndev->flags & IFF_ALLMULTI)
1189 unreg_mcast_mask = ALE_ALL_PORTS;
1190 else
1191 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1192
1193 cpsw_ale_add_vlan(priv->ale, vlan, ALE_ALL_PORTS,
1194 ALE_ALL_PORTS, ALE_ALL_PORTS,
1195 unreg_mcast_mask);
1196 }
1197
1198 static void cpsw_init_host_port(struct cpsw_priv *priv)
1199 {
1200 u32 control_reg;
1201 u32 fifo_mode;
1202
1203 /* soft reset the controller and initialize ale */
1204 soft_reset("cpsw", &priv->regs->soft_reset);
1205 cpsw_ale_start(priv->ale);
1206
1207 /* switch to vlan unaware mode */
1208 cpsw_ale_control_set(priv->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1209 CPSW_ALE_VLAN_AWARE);
1210 control_reg = readl(&priv->regs->control);
1211 control_reg |= CPSW_VLAN_AWARE;
1212 writel(control_reg, &priv->regs->control);
1213 fifo_mode = (priv->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1214 CPSW_FIFO_NORMAL_MODE;
1215 writel(fifo_mode, &priv->host_port_regs->tx_in_ctl);
1216
1217 /* setup host port priority mapping */
1218 __raw_writel(CPDMA_TX_PRIORITY_MAP,
1219 &priv->host_port_regs->cpdma_tx_pri_map);
1220 __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map);
1221
1222 cpsw_ale_control_set(priv->ale, HOST_PORT_NUM,
1223 ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
1224
1225 if (!priv->data.dual_emac) {
1226 cpsw_ale_add_ucast(priv->ale, priv->mac_addr, HOST_PORT_NUM,
1227 0, 0);
1228 cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1229 ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1230 }
1231 }
1232
1233 static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_priv *priv)
1234 {
1235 u32 slave_port;
1236
1237 slave_port = cpsw_get_slave_port(priv, slave->slave_num);
1238
1239 if (!slave->phy)
1240 return;
1241 phy_stop(slave->phy);
1242 phy_disconnect(slave->phy);
1243 slave->phy = NULL;
1244 cpsw_ale_control_set(priv->ale, slave_port,
1245 ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1246 soft_reset_slave(slave);
1247 }
1248
1249 static int cpsw_ndo_open(struct net_device *ndev)
1250 {
1251 struct cpsw_priv *priv = netdev_priv(ndev);
1252 int i, ret;
1253 u32 reg;
1254
1255 ret = pm_runtime_get_sync(&priv->pdev->dev);
1256 if (ret < 0) {
1257 pm_runtime_put_noidle(&priv->pdev->dev);
1258 return ret;
1259 }
1260
1261 if (!cpsw_common_res_usage_state(priv))
1262 cpsw_intr_disable(priv);
1263 netif_carrier_off(ndev);
1264
1265 reg = priv->version;
1266
1267 dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
1268 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
1269 CPSW_RTL_VERSION(reg));
1270
1271 /* initialize host and slave ports */
1272 if (!cpsw_common_res_usage_state(priv))
1273 cpsw_init_host_port(priv);
1274 for_each_slave(priv, cpsw_slave_open, priv);
1275
1276 /* Add default VLAN */
1277 if (!priv->data.dual_emac)
1278 cpsw_add_default_vlan(priv);
1279 else
1280 cpsw_ale_add_vlan(priv->ale, priv->data.default_vlan,
1281 ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1282
1283 if (!cpsw_common_res_usage_state(priv)) {
1284 struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0);
1285 int buf_num;
1286
1287 /* setup tx dma to fixed prio and zero offset */
1288 cpdma_control_set(priv->dma, CPDMA_TX_PRIO_FIXED, 1);
1289 cpdma_control_set(priv->dma, CPDMA_RX_BUFFER_OFFSET, 0);
1290
1291 /* disable priority elevation */
1292 __raw_writel(0, &priv->regs->ptype);
1293
1294 /* enable statistics collection only on all ports */
1295 __raw_writel(0x7, &priv->regs->stat_port_en);
1296
1297 /* Enable internal fifo flow control */
1298 writel(0x7, &priv->regs->flow_control);
1299
1300 napi_enable(&priv_sl0->napi_rx);
1301 napi_enable(&priv_sl0->napi_tx);
1302
1303 if (priv_sl0->tx_irq_disabled) {
1304 priv_sl0->tx_irq_disabled = false;
1305 enable_irq(priv->irqs_table[1]);
1306 }
1307
1308 if (priv_sl0->rx_irq_disabled) {
1309 priv_sl0->rx_irq_disabled = false;
1310 enable_irq(priv->irqs_table[0]);
1311 }
1312
1313 buf_num = cpdma_chan_get_rx_buf_num(priv->dma);
1314 for (i = 0; i < buf_num; i++) {
1315 struct sk_buff *skb;
1316
1317 ret = -ENOMEM;
1318 skb = __netdev_alloc_skb_ip_align(priv->ndev,
1319 priv->rx_packet_max, GFP_KERNEL);
1320 if (!skb)
1321 goto err_cleanup;
1322 ret = cpdma_chan_submit(priv->rxch, skb, skb->data,
1323 skb_tailroom(skb), 0);
1324 if (ret < 0) {
1325 kfree_skb(skb);
1326 goto err_cleanup;
1327 }
1328 }
1329 /* continue even if we didn't manage to submit all
1330 * receive descs
1331 */
1332 cpsw_info(priv, ifup, "submitted %d rx descriptors\n", i);
1333
1334 if (cpts_register(&priv->pdev->dev, priv->cpts,
1335 priv->data.cpts_clock_mult,
1336 priv->data.cpts_clock_shift))
1337 dev_err(priv->dev, "error registering cpts device\n");
1338
1339 }
1340
1341 /* Enable Interrupt pacing if configured */
1342 if (priv->coal_intvl != 0) {
1343 struct ethtool_coalesce coal;
1344
1345 coal.rx_coalesce_usecs = priv->coal_intvl;
1346 cpsw_set_coalesce(ndev, &coal);
1347 }
1348
1349 cpdma_ctlr_start(priv->dma);
1350 cpsw_intr_enable(priv);
1351
1352 if (priv->data.dual_emac)
1353 priv->slaves[priv->emac_port].open_stat = true;
1354 return 0;
1355
1356 err_cleanup:
1357 cpdma_ctlr_stop(priv->dma);
1358 for_each_slave(priv, cpsw_slave_stop, priv);
1359 pm_runtime_put_sync(&priv->pdev->dev);
1360 netif_carrier_off(priv->ndev);
1361 return ret;
1362 }
1363
1364 static int cpsw_ndo_stop(struct net_device *ndev)
1365 {
1366 struct cpsw_priv *priv = netdev_priv(ndev);
1367
1368 cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1369 netif_stop_queue(priv->ndev);
1370 netif_carrier_off(priv->ndev);
1371
1372 if (cpsw_common_res_usage_state(priv) <= 1) {
1373 struct cpsw_priv *priv_sl0 = cpsw_get_slave_priv(priv, 0);
1374
1375 napi_disable(&priv_sl0->napi_rx);
1376 napi_disable(&priv_sl0->napi_tx);
1377 cpts_unregister(priv->cpts);
1378 cpsw_intr_disable(priv);
1379 cpdma_ctlr_stop(priv->dma);
1380 cpsw_ale_stop(priv->ale);
1381 }
1382 for_each_slave(priv, cpsw_slave_stop, priv);
1383 pm_runtime_put_sync(&priv->pdev->dev);
1384 if (priv->data.dual_emac)
1385 priv->slaves[priv->emac_port].open_stat = false;
1386 return 0;
1387 }
1388
1389 static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
1390 struct net_device *ndev)
1391 {
1392 struct cpsw_priv *priv = netdev_priv(ndev);
1393 int ret;
1394
1395 netif_trans_update(ndev);
1396
1397 if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
1398 cpsw_err(priv, tx_err, "packet pad failed\n");
1399 ndev->stats.tx_dropped++;
1400 return NETDEV_TX_OK;
1401 }
1402
1403 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1404 priv->cpts->tx_enable)
1405 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1406
1407 skb_tx_timestamp(skb);
1408
1409 ret = cpsw_tx_packet_submit(ndev, priv, skb);
1410 if (unlikely(ret != 0)) {
1411 cpsw_err(priv, tx_err, "desc submit failed\n");
1412 goto fail;
1413 }
1414
1415 /* If there is no more tx desc left free then we need to
1416 * tell the kernel to stop sending us tx frames.
1417 */
1418 if (unlikely(!cpdma_check_free_tx_desc(priv->txch)))
1419 netif_stop_queue(ndev);
1420
1421 return NETDEV_TX_OK;
1422 fail:
1423 ndev->stats.tx_dropped++;
1424 netif_stop_queue(ndev);
1425 return NETDEV_TX_BUSY;
1426 }
1427
1428 #ifdef CONFIG_TI_CPTS
1429
1430 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
1431 {
1432 struct cpsw_slave *slave = &priv->slaves[priv->data.active_slave];
1433 u32 ts_en, seq_id;
1434
1435 if (!priv->cpts->tx_enable && !priv->cpts->rx_enable) {
1436 slave_write(slave, 0, CPSW1_TS_CTL);
1437 return;
1438 }
1439
1440 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
1441 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
1442
1443 if (priv->cpts->tx_enable)
1444 ts_en |= CPSW_V1_TS_TX_EN;
1445
1446 if (priv->cpts->rx_enable)
1447 ts_en |= CPSW_V1_TS_RX_EN;
1448
1449 slave_write(slave, ts_en, CPSW1_TS_CTL);
1450 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
1451 }
1452
1453 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
1454 {
1455 struct cpsw_slave *slave;
1456 u32 ctrl, mtype;
1457
1458 if (priv->data.dual_emac)
1459 slave = &priv->slaves[priv->emac_port];
1460 else
1461 slave = &priv->slaves[priv->data.active_slave];
1462
1463 ctrl = slave_read(slave, CPSW2_CONTROL);
1464 switch (priv->version) {
1465 case CPSW_VERSION_2:
1466 ctrl &= ~CTRL_V2_ALL_TS_MASK;
1467
1468 if (priv->cpts->tx_enable)
1469 ctrl |= CTRL_V2_TX_TS_BITS;
1470
1471 if (priv->cpts->rx_enable)
1472 ctrl |= CTRL_V2_RX_TS_BITS;
1473 break;
1474 case CPSW_VERSION_3:
1475 default:
1476 ctrl &= ~CTRL_V3_ALL_TS_MASK;
1477
1478 if (priv->cpts->tx_enable)
1479 ctrl |= CTRL_V3_TX_TS_BITS;
1480
1481 if (priv->cpts->rx_enable)
1482 ctrl |= CTRL_V3_RX_TS_BITS;
1483 break;
1484 }
1485
1486 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
1487
1488 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
1489 slave_write(slave, ctrl, CPSW2_CONTROL);
1490 __raw_writel(ETH_P_1588, &priv->regs->ts_ltype);
1491 }
1492
1493 static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1494 {
1495 struct cpsw_priv *priv = netdev_priv(dev);
1496 struct cpts *cpts = priv->cpts;
1497 struct hwtstamp_config cfg;
1498
1499 if (priv->version != CPSW_VERSION_1 &&
1500 priv->version != CPSW_VERSION_2 &&
1501 priv->version != CPSW_VERSION_3)
1502 return -EOPNOTSUPP;
1503
1504 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1505 return -EFAULT;
1506
1507 /* reserved for future extensions */
1508 if (cfg.flags)
1509 return -EINVAL;
1510
1511 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1512 return -ERANGE;
1513
1514 switch (cfg.rx_filter) {
1515 case HWTSTAMP_FILTER_NONE:
1516 cpts->rx_enable = 0;
1517 break;
1518 case HWTSTAMP_FILTER_ALL:
1519 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1520 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1521 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1522 return -ERANGE;
1523 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1524 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1525 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1526 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1527 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1528 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1529 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1530 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1531 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1532 cpts->rx_enable = 1;
1533 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1534 break;
1535 default:
1536 return -ERANGE;
1537 }
1538
1539 cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON;
1540
1541 switch (priv->version) {
1542 case CPSW_VERSION_1:
1543 cpsw_hwtstamp_v1(priv);
1544 break;
1545 case CPSW_VERSION_2:
1546 case CPSW_VERSION_3:
1547 cpsw_hwtstamp_v2(priv);
1548 break;
1549 default:
1550 WARN_ON(1);
1551 }
1552
1553 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1554 }
1555
1556 static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
1557 {
1558 struct cpsw_priv *priv = netdev_priv(dev);
1559 struct cpts *cpts = priv->cpts;
1560 struct hwtstamp_config cfg;
1561
1562 if (priv->version != CPSW_VERSION_1 &&
1563 priv->version != CPSW_VERSION_2 &&
1564 priv->version != CPSW_VERSION_3)
1565 return -EOPNOTSUPP;
1566
1567 cfg.flags = 0;
1568 cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1569 cfg.rx_filter = (cpts->rx_enable ?
1570 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);
1571
1572 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1573 }
1574
1575 #endif /*CONFIG_TI_CPTS*/
1576
1577 static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1578 {
1579 struct cpsw_priv *priv = netdev_priv(dev);
1580 int slave_no = cpsw_slave_index(priv);
1581
1582 if (!netif_running(dev))
1583 return -EINVAL;
1584
1585 switch (cmd) {
1586 #ifdef CONFIG_TI_CPTS
1587 case SIOCSHWTSTAMP:
1588 return cpsw_hwtstamp_set(dev, req);
1589 case SIOCGHWTSTAMP:
1590 return cpsw_hwtstamp_get(dev, req);
1591 #endif
1592 }
1593
1594 if (!priv->slaves[slave_no].phy)
1595 return -EOPNOTSUPP;
1596 return phy_mii_ioctl(priv->slaves[slave_no].phy, req, cmd);
1597 }
1598
1599 static void cpsw_ndo_tx_timeout(struct net_device *ndev)
1600 {
1601 struct cpsw_priv *priv = netdev_priv(ndev);
1602
1603 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1604 ndev->stats.tx_errors++;
1605 cpsw_intr_disable(priv);
1606 cpdma_chan_stop(priv->txch);
1607 cpdma_chan_start(priv->txch);
1608 cpsw_intr_enable(priv);
1609 }
1610
1611 static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
1612 {
1613 struct cpsw_priv *priv = netdev_priv(ndev);
1614 struct sockaddr *addr = (struct sockaddr *)p;
1615 int flags = 0;
1616 u16 vid = 0;
1617 int ret;
1618
1619 if (!is_valid_ether_addr(addr->sa_data))
1620 return -EADDRNOTAVAIL;
1621
1622 ret = pm_runtime_get_sync(&priv->pdev->dev);
1623 if (ret < 0) {
1624 pm_runtime_put_noidle(&priv->pdev->dev);
1625 return ret;
1626 }
1627
1628 if (priv->data.dual_emac) {
1629 vid = priv->slaves[priv->emac_port].port_vlan;
1630 flags = ALE_VLAN;
1631 }
1632
1633 cpsw_ale_del_ucast(priv->ale, priv->mac_addr, HOST_PORT_NUM,
1634 flags, vid);
1635 cpsw_ale_add_ucast(priv->ale, addr->sa_data, HOST_PORT_NUM,
1636 flags, vid);
1637
1638 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
1639 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
1640 for_each_slave(priv, cpsw_set_slave_mac, priv);
1641
1642 pm_runtime_put(&priv->pdev->dev);
1643
1644 return 0;
1645 }
1646
1647 #ifdef CONFIG_NET_POLL_CONTROLLER
1648 static void cpsw_ndo_poll_controller(struct net_device *ndev)
1649 {
1650 struct cpsw_priv *priv = netdev_priv(ndev);
1651
1652 cpsw_intr_disable(priv);
1653 cpsw_rx_interrupt(priv->irqs_table[0], priv);
1654 cpsw_tx_interrupt(priv->irqs_table[1], priv);
1655 cpsw_intr_enable(priv);
1656 }
1657 #endif
1658
1659 static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
1660 unsigned short vid)
1661 {
1662 int ret;
1663 int unreg_mcast_mask = 0;
1664 u32 port_mask;
1665
1666 if (priv->data.dual_emac) {
1667 port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1668
1669 if (priv->ndev->flags & IFF_ALLMULTI)
1670 unreg_mcast_mask = port_mask;
1671 } else {
1672 port_mask = ALE_ALL_PORTS;
1673
1674 if (priv->ndev->flags & IFF_ALLMULTI)
1675 unreg_mcast_mask = ALE_ALL_PORTS;
1676 else
1677 unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
1678 }
1679
1680 ret = cpsw_ale_add_vlan(priv->ale, vid, port_mask, 0, port_mask,
1681 unreg_mcast_mask);
1682 if (ret != 0)
1683 return ret;
1684
1685 ret = cpsw_ale_add_ucast(priv->ale, priv->mac_addr,
1686 HOST_PORT_NUM, ALE_VLAN, vid);
1687 if (ret != 0)
1688 goto clean_vid;
1689
1690 ret = cpsw_ale_add_mcast(priv->ale, priv->ndev->broadcast,
1691 port_mask, ALE_VLAN, vid, 0);
1692 if (ret != 0)
1693 goto clean_vlan_ucast;
1694 return 0;
1695
1696 clean_vlan_ucast:
1697 cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1698 HOST_PORT_NUM, ALE_VLAN, vid);
1699 clean_vid:
1700 cpsw_ale_del_vlan(priv->ale, vid, 0);
1701 return ret;
1702 }
1703
1704 static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1705 __be16 proto, u16 vid)
1706 {
1707 struct cpsw_priv *priv = netdev_priv(ndev);
1708 int ret;
1709
1710 if (vid == priv->data.default_vlan)
1711 return 0;
1712
1713 ret = pm_runtime_get_sync(&priv->pdev->dev);
1714 if (ret < 0) {
1715 pm_runtime_put_noidle(&priv->pdev->dev);
1716 return ret;
1717 }
1718
1719 if (priv->data.dual_emac) {
1720 /* In dual EMAC, reserved VLAN id should not be used for
1721 * creating VLAN interfaces as this can break the dual
1722 * EMAC port separation
1723 */
1724 int i;
1725
1726 for (i = 0; i < priv->data.slaves; i++) {
1727 if (vid == priv->slaves[i].port_vlan)
1728 return -EINVAL;
1729 }
1730 }
1731
1732 dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1733 ret = cpsw_add_vlan_ale_entry(priv, vid);
1734
1735 pm_runtime_put(&priv->pdev->dev);
1736 return ret;
1737 }
1738
1739 static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1740 __be16 proto, u16 vid)
1741 {
1742 struct cpsw_priv *priv = netdev_priv(ndev);
1743 int ret;
1744
1745 if (vid == priv->data.default_vlan)
1746 return 0;
1747
1748 ret = pm_runtime_get_sync(&priv->pdev->dev);
1749 if (ret < 0) {
1750 pm_runtime_put_noidle(&priv->pdev->dev);
1751 return ret;
1752 }
1753
1754 if (priv->data.dual_emac) {
1755 int i;
1756
1757 for (i = 0; i < priv->data.slaves; i++) {
1758 if (vid == priv->slaves[i].port_vlan)
1759 return -EINVAL;
1760 }
1761 }
1762
1763 dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1764 ret = cpsw_ale_del_vlan(priv->ale, vid, 0);
1765 if (ret != 0)
1766 return ret;
1767
1768 ret = cpsw_ale_del_ucast(priv->ale, priv->mac_addr,
1769 HOST_PORT_NUM, ALE_VLAN, vid);
1770 if (ret != 0)
1771 return ret;
1772
1773 ret = cpsw_ale_del_mcast(priv->ale, priv->ndev->broadcast,
1774 0, ALE_VLAN, vid);
1775 pm_runtime_put(&priv->pdev->dev);
1776 return ret;
1777 }
1778
1779 static const struct net_device_ops cpsw_netdev_ops = {
1780 .ndo_open = cpsw_ndo_open,
1781 .ndo_stop = cpsw_ndo_stop,
1782 .ndo_start_xmit = cpsw_ndo_start_xmit,
1783 .ndo_set_mac_address = cpsw_ndo_set_mac_address,
1784 .ndo_do_ioctl = cpsw_ndo_ioctl,
1785 .ndo_validate_addr = eth_validate_addr,
1786 .ndo_change_mtu = eth_change_mtu,
1787 .ndo_tx_timeout = cpsw_ndo_tx_timeout,
1788 .ndo_set_rx_mode = cpsw_ndo_set_rx_mode,
1789 #ifdef CONFIG_NET_POLL_CONTROLLER
1790 .ndo_poll_controller = cpsw_ndo_poll_controller,
1791 #endif
1792 .ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid,
1793 .ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid,
1794 };
1795
1796 static int cpsw_get_regs_len(struct net_device *ndev)
1797 {
1798 struct cpsw_priv *priv = netdev_priv(ndev);
1799
1800 return priv->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
1801 }
1802
1803 static void cpsw_get_regs(struct net_device *ndev,
1804 struct ethtool_regs *regs, void *p)
1805 {
1806 struct cpsw_priv *priv = netdev_priv(ndev);
1807 u32 *reg = p;
1808
1809 /* update CPSW IP version */
1810 regs->version = priv->version;
1811
1812 cpsw_ale_dump(priv->ale, reg);
1813 }
1814
1815 static void cpsw_get_drvinfo(struct net_device *ndev,
1816 struct ethtool_drvinfo *info)
1817 {
1818 struct cpsw_priv *priv = netdev_priv(ndev);
1819
1820 strlcpy(info->driver, "cpsw", sizeof(info->driver));
1821 strlcpy(info->version, "1.0", sizeof(info->version));
1822 strlcpy(info->bus_info, priv->pdev->name, sizeof(info->bus_info));
1823 }
1824
1825 static u32 cpsw_get_msglevel(struct net_device *ndev)
1826 {
1827 struct cpsw_priv *priv = netdev_priv(ndev);
1828 return priv->msg_enable;
1829 }
1830
1831 static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
1832 {
1833 struct cpsw_priv *priv = netdev_priv(ndev);
1834 priv->msg_enable = value;
1835 }
1836
1837 static int cpsw_get_ts_info(struct net_device *ndev,
1838 struct ethtool_ts_info *info)
1839 {
1840 #ifdef CONFIG_TI_CPTS
1841 struct cpsw_priv *priv = netdev_priv(ndev);
1842
1843 info->so_timestamping =
1844 SOF_TIMESTAMPING_TX_HARDWARE |
1845 SOF_TIMESTAMPING_TX_SOFTWARE |
1846 SOF_TIMESTAMPING_RX_HARDWARE |
1847 SOF_TIMESTAMPING_RX_SOFTWARE |
1848 SOF_TIMESTAMPING_SOFTWARE |
1849 SOF_TIMESTAMPING_RAW_HARDWARE;
1850 info->phc_index = priv->cpts->phc_index;
1851 info->tx_types =
1852 (1 << HWTSTAMP_TX_OFF) |
1853 (1 << HWTSTAMP_TX_ON);
1854 info->rx_filters =
1855 (1 << HWTSTAMP_FILTER_NONE) |
1856 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
1857 #else
1858 info->so_timestamping =
1859 SOF_TIMESTAMPING_TX_SOFTWARE |
1860 SOF_TIMESTAMPING_RX_SOFTWARE |
1861 SOF_TIMESTAMPING_SOFTWARE;
1862 info->phc_index = -1;
1863 info->tx_types = 0;
1864 info->rx_filters = 0;
1865 #endif
1866 return 0;
1867 }
1868
1869 static int cpsw_get_settings(struct net_device *ndev,
1870 struct ethtool_cmd *ecmd)
1871 {
1872 struct cpsw_priv *priv = netdev_priv(ndev);
1873 int slave_no = cpsw_slave_index(priv);
1874
1875 if (priv->slaves[slave_no].phy)
1876 return phy_ethtool_gset(priv->slaves[slave_no].phy, ecmd);
1877 else
1878 return -EOPNOTSUPP;
1879 }
1880
1881 static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1882 {
1883 struct cpsw_priv *priv = netdev_priv(ndev);
1884 int slave_no = cpsw_slave_index(priv);
1885
1886 if (priv->slaves[slave_no].phy)
1887 return phy_ethtool_sset(priv->slaves[slave_no].phy, ecmd);
1888 else
1889 return -EOPNOTSUPP;
1890 }
1891
1892 static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1893 {
1894 struct cpsw_priv *priv = netdev_priv(ndev);
1895 int slave_no = cpsw_slave_index(priv);
1896
1897 wol->supported = 0;
1898 wol->wolopts = 0;
1899
1900 if (priv->slaves[slave_no].phy)
1901 phy_ethtool_get_wol(priv->slaves[slave_no].phy, wol);
1902 }
1903
1904 static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1905 {
1906 struct cpsw_priv *priv = netdev_priv(ndev);
1907 int slave_no = cpsw_slave_index(priv);
1908
1909 if (priv->slaves[slave_no].phy)
1910 return phy_ethtool_set_wol(priv->slaves[slave_no].phy, wol);
1911 else
1912 return -EOPNOTSUPP;
1913 }
1914
1915 static void cpsw_get_pauseparam(struct net_device *ndev,
1916 struct ethtool_pauseparam *pause)
1917 {
1918 struct cpsw_priv *priv = netdev_priv(ndev);
1919
1920 pause->autoneg = AUTONEG_DISABLE;
1921 pause->rx_pause = priv->rx_pause ? true : false;
1922 pause->tx_pause = priv->tx_pause ? true : false;
1923 }
1924
1925 static int cpsw_set_pauseparam(struct net_device *ndev,
1926 struct ethtool_pauseparam *pause)
1927 {
1928 struct cpsw_priv *priv = netdev_priv(ndev);
1929 bool link;
1930
1931 priv->rx_pause = pause->rx_pause ? true : false;
1932 priv->tx_pause = pause->tx_pause ? true : false;
1933
1934 for_each_slave(priv, _cpsw_adjust_link, priv, &link);
1935 return 0;
1936 }
1937
1938 static int cpsw_ethtool_op_begin(struct net_device *ndev)
1939 {
1940 struct cpsw_priv *priv = netdev_priv(ndev);
1941 int ret;
1942
1943 ret = pm_runtime_get_sync(&priv->pdev->dev);
1944 if (ret < 0) {
1945 cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
1946 pm_runtime_put_noidle(&priv->pdev->dev);
1947 }
1948
1949 return ret;
1950 }
1951
1952 static void cpsw_ethtool_op_complete(struct net_device *ndev)
1953 {
1954 struct cpsw_priv *priv = netdev_priv(ndev);
1955 int ret;
1956
1957 ret = pm_runtime_put(&priv->pdev->dev);
1958 if (ret < 0)
1959 cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
1960 }
1961
1962 static const struct ethtool_ops cpsw_ethtool_ops = {
1963 .get_drvinfo = cpsw_get_drvinfo,
1964 .get_msglevel = cpsw_get_msglevel,
1965 .set_msglevel = cpsw_set_msglevel,
1966 .get_link = ethtool_op_get_link,
1967 .get_ts_info = cpsw_get_ts_info,
1968 .get_settings = cpsw_get_settings,
1969 .set_settings = cpsw_set_settings,
1970 .get_coalesce = cpsw_get_coalesce,
1971 .set_coalesce = cpsw_set_coalesce,
1972 .get_sset_count = cpsw_get_sset_count,
1973 .get_strings = cpsw_get_strings,
1974 .get_ethtool_stats = cpsw_get_ethtool_stats,
1975 .get_pauseparam = cpsw_get_pauseparam,
1976 .set_pauseparam = cpsw_set_pauseparam,
1977 .get_wol = cpsw_get_wol,
1978 .set_wol = cpsw_set_wol,
1979 .get_regs_len = cpsw_get_regs_len,
1980 .get_regs = cpsw_get_regs,
1981 .begin = cpsw_ethtool_op_begin,
1982 .complete = cpsw_ethtool_op_complete,
1983 };
1984
1985 static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv,
1986 u32 slave_reg_ofs, u32 sliver_reg_ofs)
1987 {
1988 void __iomem *regs = priv->regs;
1989 int slave_num = slave->slave_num;
1990 struct cpsw_slave_data *data = priv->data.slave_data + slave_num;
1991
1992 slave->data = data;
1993 slave->regs = regs + slave_reg_ofs;
1994 slave->sliver = regs + sliver_reg_ofs;
1995 slave->port_vlan = data->dual_emac_res_vlan;
1996 }
1997
1998 static int cpsw_probe_dt(struct cpsw_platform_data *data,
1999 struct platform_device *pdev)
2000 {
2001 struct device_node *node = pdev->dev.of_node;
2002 struct device_node *slave_node;
2003 int i = 0, ret;
2004 u32 prop;
2005
2006 if (!node)
2007 return -EINVAL;
2008
2009 if (of_property_read_u32(node, "slaves", &prop)) {
2010 dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2011 return -EINVAL;
2012 }
2013 data->slaves = prop;
2014
2015 if (of_property_read_u32(node, "active_slave", &prop)) {
2016 dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2017 return -EINVAL;
2018 }
2019 data->active_slave = prop;
2020
2021 if (of_property_read_u32(node, "cpts_clock_mult", &prop)) {
2022 dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n");
2023 return -EINVAL;
2024 }
2025 data->cpts_clock_mult = prop;
2026
2027 if (of_property_read_u32(node, "cpts_clock_shift", &prop)) {
2028 dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n");
2029 return -EINVAL;
2030 }
2031 data->cpts_clock_shift = prop;
2032
2033 data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
2034 * sizeof(struct cpsw_slave_data),
2035 GFP_KERNEL);
2036 if (!data->slave_data)
2037 return -ENOMEM;
2038
2039 if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2040 dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2041 return -EINVAL;
2042 }
2043 data->channels = prop;
2044
2045 if (of_property_read_u32(node, "ale_entries", &prop)) {
2046 dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2047 return -EINVAL;
2048 }
2049 data->ale_entries = prop;
2050
2051 if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2052 dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2053 return -EINVAL;
2054 }
2055 data->bd_ram_size = prop;
2056
2057 if (of_property_read_u32(node, "mac_control", &prop)) {
2058 dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2059 return -EINVAL;
2060 }
2061 data->mac_control = prop;
2062
2063 if (of_property_read_bool(node, "dual_emac"))
2064 data->dual_emac = 1;
2065
2066 /*
2067 * Populate all the child nodes here...
2068 */
2069 ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
2070 /* We do not want to force this, as in some cases may not have child */
2071 if (ret)
2072 dev_warn(&pdev->dev, "Doesn't have any child node\n");
2073
2074 for_each_available_child_of_node(node, slave_node) {
2075 struct cpsw_slave_data *slave_data = data->slave_data + i;
2076 const void *mac_addr = NULL;
2077 int lenp;
2078 const __be32 *parp;
2079
2080 /* This is no slave child node, continue */
2081 if (strcmp(slave_node->name, "slave"))
2082 continue;
2083
2084 slave_data->phy_node = of_parse_phandle(slave_node,
2085 "phy-handle", 0);
2086 parp = of_get_property(slave_node, "phy_id", &lenp);
2087 if (slave_data->phy_node) {
2088 dev_dbg(&pdev->dev,
2089 "slave[%d] using phy-handle=\"%s\"\n",
2090 i, slave_data->phy_node->full_name);
2091 } else if (of_phy_is_fixed_link(slave_node)) {
2092 /* In the case of a fixed PHY, the DT node associated
2093 * to the PHY is the Ethernet MAC DT node.
2094 */
2095 ret = of_phy_register_fixed_link(slave_node);
2096 if (ret)
2097 return ret;
2098 slave_data->phy_node = of_node_get(slave_node);
2099 } else if (parp) {
2100 u32 phyid;
2101 struct device_node *mdio_node;
2102 struct platform_device *mdio;
2103
2104 if (lenp != (sizeof(__be32) * 2)) {
2105 dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
2106 goto no_phy_slave;
2107 }
2108 mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
2109 phyid = be32_to_cpup(parp+1);
2110 mdio = of_find_device_by_node(mdio_node);
2111 of_node_put(mdio_node);
2112 if (!mdio) {
2113 dev_err(&pdev->dev, "Missing mdio platform device\n");
2114 return -EINVAL;
2115 }
2116 snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
2117 PHY_ID_FMT, mdio->name, phyid);
2118 } else {
2119 dev_err(&pdev->dev,
2120 "No slave[%d] phy_id, phy-handle, or fixed-link property\n",
2121 i);
2122 goto no_phy_slave;
2123 }
2124 slave_data->phy_if = of_get_phy_mode(slave_node);
2125 if (slave_data->phy_if < 0) {
2126 dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
2127 i);
2128 return slave_data->phy_if;
2129 }
2130
2131 no_phy_slave:
2132 mac_addr = of_get_mac_address(slave_node);
2133 if (mac_addr) {
2134 memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2135 } else {
2136 ret = ti_cm_get_macid(&pdev->dev, i,
2137 slave_data->mac_addr);
2138 if (ret)
2139 return ret;
2140 }
2141 if (data->dual_emac) {
2142 if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2143 &prop)) {
2144 dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2145 slave_data->dual_emac_res_vlan = i+1;
2146 dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
2147 slave_data->dual_emac_res_vlan, i);
2148 } else {
2149 slave_data->dual_emac_res_vlan = prop;
2150 }
2151 }
2152
2153 i++;
2154 if (i == data->slaves)
2155 break;
2156 }
2157
2158 return 0;
2159 }
2160
2161 static int cpsw_probe_dual_emac(struct platform_device *pdev,
2162 struct cpsw_priv *priv)
2163 {
2164 struct cpsw_platform_data *data = &priv->data;
2165 struct net_device *ndev;
2166 struct cpsw_priv *priv_sl2;
2167 int ret = 0, i;
2168
2169 ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2170 if (!ndev) {
2171 dev_err(&pdev->dev, "cpsw: error allocating net_device\n");
2172 return -ENOMEM;
2173 }
2174
2175 priv_sl2 = netdev_priv(ndev);
2176 priv_sl2->data = *data;
2177 priv_sl2->pdev = pdev;
2178 priv_sl2->ndev = ndev;
2179 priv_sl2->dev = &ndev->dev;
2180 priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2181 priv_sl2->rx_packet_max = max(rx_packet_max, 128);
2182
2183 if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
2184 memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
2185 ETH_ALEN);
2186 dev_info(&pdev->dev, "cpsw: Detected MACID = %pM\n", priv_sl2->mac_addr);
2187 } else {
2188 random_ether_addr(priv_sl2->mac_addr);
2189 dev_info(&pdev->dev, "cpsw: Random MACID = %pM\n", priv_sl2->mac_addr);
2190 }
2191 memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
2192
2193 priv_sl2->slaves = priv->slaves;
2194 priv_sl2->clk = priv->clk;
2195
2196 priv_sl2->coal_intvl = 0;
2197 priv_sl2->bus_freq_mhz = priv->bus_freq_mhz;
2198
2199 priv_sl2->regs = priv->regs;
2200 priv_sl2->host_port_regs = priv->host_port_regs;
2201 priv_sl2->wr_regs = priv->wr_regs;
2202 priv_sl2->hw_stats = priv->hw_stats;
2203 priv_sl2->dma = priv->dma;
2204 priv_sl2->txch = priv->txch;
2205 priv_sl2->rxch = priv->rxch;
2206 priv_sl2->ale = priv->ale;
2207 priv_sl2->emac_port = 1;
2208 priv->slaves[1].ndev = ndev;
2209 priv_sl2->cpts = priv->cpts;
2210 priv_sl2->version = priv->version;
2211
2212 for (i = 0; i < priv->num_irqs; i++) {
2213 priv_sl2->irqs_table[i] = priv->irqs_table[i];
2214 priv_sl2->num_irqs = priv->num_irqs;
2215 }
2216 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2217
2218 ndev->netdev_ops = &cpsw_netdev_ops;
2219 ndev->ethtool_ops = &cpsw_ethtool_ops;
2220
2221 /* register the network device */
2222 SET_NETDEV_DEV(ndev, &pdev->dev);
2223 ret = register_netdev(ndev);
2224 if (ret) {
2225 dev_err(&pdev->dev, "cpsw: error registering net device\n");
2226 free_netdev(ndev);
2227 ret = -ENODEV;
2228 }
2229
2230 return ret;
2231 }
2232
2233 #define CPSW_QUIRK_IRQ BIT(0)
2234
2235 static struct platform_device_id cpsw_devtype[] = {
2236 {
2237 /* keep it for existing comaptibles */
2238 .name = "cpsw",
2239 .driver_data = CPSW_QUIRK_IRQ,
2240 }, {
2241 .name = "am335x-cpsw",
2242 .driver_data = CPSW_QUIRK_IRQ,
2243 }, {
2244 .name = "am4372-cpsw",
2245 .driver_data = 0,
2246 }, {
2247 .name = "dra7-cpsw",
2248 .driver_data = 0,
2249 }, {
2250 /* sentinel */
2251 }
2252 };
2253 MODULE_DEVICE_TABLE(platform, cpsw_devtype);
2254
2255 enum ti_cpsw_type {
2256 CPSW = 0,
2257 AM335X_CPSW,
2258 AM4372_CPSW,
2259 DRA7_CPSW,
2260 };
2261
2262 static const struct of_device_id cpsw_of_mtable[] = {
2263 { .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
2264 { .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
2265 { .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
2266 { .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
2267 { /* sentinel */ },
2268 };
2269 MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
2270
2271 static int cpsw_probe(struct platform_device *pdev)
2272 {
2273 struct cpsw_platform_data *data;
2274 struct net_device *ndev;
2275 struct cpsw_priv *priv;
2276 struct cpdma_params dma_params;
2277 struct cpsw_ale_params ale_params;
2278 void __iomem *ss_regs;
2279 struct resource *res, *ss_res;
2280 const struct of_device_id *of_id;
2281 struct gpio_descs *mode;
2282 u32 slave_offset, sliver_offset, slave_size;
2283 int ret = 0, i;
2284 int irq;
2285
2286 ndev = alloc_etherdev(sizeof(struct cpsw_priv));
2287 if (!ndev) {
2288 dev_err(&pdev->dev, "error allocating net_device\n");
2289 return -ENOMEM;
2290 }
2291
2292 platform_set_drvdata(pdev, ndev);
2293 priv = netdev_priv(ndev);
2294 priv->pdev = pdev;
2295 priv->ndev = ndev;
2296 priv->dev = &ndev->dev;
2297 priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2298 priv->rx_packet_max = max(rx_packet_max, 128);
2299 priv->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL);
2300 if (!priv->cpts) {
2301 dev_err(&pdev->dev, "error allocating cpts\n");
2302 ret = -ENOMEM;
2303 goto clean_ndev_ret;
2304 }
2305
2306 mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
2307 if (IS_ERR(mode)) {
2308 ret = PTR_ERR(mode);
2309 dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
2310 goto clean_ndev_ret;
2311 }
2312
2313 /*
2314 * This may be required here for child devices.
2315 */
2316 pm_runtime_enable(&pdev->dev);
2317
2318 /* Select default pin state */
2319 pinctrl_pm_select_default_state(&pdev->dev);
2320
2321 if (cpsw_probe_dt(&priv->data, pdev)) {
2322 dev_err(&pdev->dev, "cpsw: platform data missing\n");
2323 ret = -ENODEV;
2324 goto clean_runtime_disable_ret;
2325 }
2326 data = &priv->data;
2327
2328 if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
2329 memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2330 dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2331 } else {
2332 eth_random_addr(priv->mac_addr);
2333 dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2334 }
2335
2336 memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
2337
2338 priv->slaves = devm_kzalloc(&pdev->dev,
2339 sizeof(struct cpsw_slave) * data->slaves,
2340 GFP_KERNEL);
2341 if (!priv->slaves) {
2342 ret = -ENOMEM;
2343 goto clean_runtime_disable_ret;
2344 }
2345 for (i = 0; i < data->slaves; i++)
2346 priv->slaves[i].slave_num = i;
2347
2348 priv->slaves[0].ndev = ndev;
2349 priv->emac_port = 0;
2350
2351 priv->clk = devm_clk_get(&pdev->dev, "fck");
2352 if (IS_ERR(priv->clk)) {
2353 dev_err(priv->dev, "fck is not found\n");
2354 ret = -ENODEV;
2355 goto clean_runtime_disable_ret;
2356 }
2357 priv->coal_intvl = 0;
2358 priv->bus_freq_mhz = clk_get_rate(priv->clk) / 1000000;
2359
2360 ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2361 ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
2362 if (IS_ERR(ss_regs)) {
2363 ret = PTR_ERR(ss_regs);
2364 goto clean_runtime_disable_ret;
2365 }
2366 priv->regs = ss_regs;
2367
2368 /* Need to enable clocks with runtime PM api to access module
2369 * registers
2370 */
2371 ret = pm_runtime_get_sync(&pdev->dev);
2372 if (ret < 0) {
2373 pm_runtime_put_noidle(&pdev->dev);
2374 goto clean_runtime_disable_ret;
2375 }
2376 priv->version = readl(&priv->regs->id_ver);
2377 pm_runtime_put_sync(&pdev->dev);
2378
2379 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2380 priv->wr_regs = devm_ioremap_resource(&pdev->dev, res);
2381 if (IS_ERR(priv->wr_regs)) {
2382 ret = PTR_ERR(priv->wr_regs);
2383 goto clean_runtime_disable_ret;
2384 }
2385
2386 memset(&dma_params, 0, sizeof(dma_params));
2387 memset(&ale_params, 0, sizeof(ale_params));
2388
2389 switch (priv->version) {
2390 case CPSW_VERSION_1:
2391 priv->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2392 priv->cpts->reg = ss_regs + CPSW1_CPTS_OFFSET;
2393 priv->hw_stats = ss_regs + CPSW1_HW_STATS;
2394 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET;
2395 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET;
2396 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET;
2397 slave_offset = CPSW1_SLAVE_OFFSET;
2398 slave_size = CPSW1_SLAVE_SIZE;
2399 sliver_offset = CPSW1_SLIVER_OFFSET;
2400 dma_params.desc_mem_phys = 0;
2401 break;
2402 case CPSW_VERSION_2:
2403 case CPSW_VERSION_3:
2404 case CPSW_VERSION_4:
2405 priv->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2406 priv->cpts->reg = ss_regs + CPSW2_CPTS_OFFSET;
2407 priv->hw_stats = ss_regs + CPSW2_HW_STATS;
2408 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET;
2409 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET;
2410 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET;
2411 slave_offset = CPSW2_SLAVE_OFFSET;
2412 slave_size = CPSW2_SLAVE_SIZE;
2413 sliver_offset = CPSW2_SLIVER_OFFSET;
2414 dma_params.desc_mem_phys =
2415 (u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2416 break;
2417 default:
2418 dev_err(priv->dev, "unknown version 0x%08x\n", priv->version);
2419 ret = -ENODEV;
2420 goto clean_runtime_disable_ret;
2421 }
2422 for (i = 0; i < priv->data.slaves; i++) {
2423 struct cpsw_slave *slave = &priv->slaves[i];
2424 cpsw_slave_init(slave, priv, slave_offset, sliver_offset);
2425 slave_offset += slave_size;
2426 sliver_offset += SLIVER_SIZE;
2427 }
2428
2429 dma_params.dev = &pdev->dev;
2430 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH;
2431 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE;
2432 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP;
2433 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP;
2434 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP;
2435
2436 dma_params.num_chan = data->channels;
2437 dma_params.has_soft_reset = true;
2438 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE;
2439 dma_params.desc_mem_size = data->bd_ram_size;
2440 dma_params.desc_align = 16;
2441 dma_params.has_ext_regs = true;
2442 dma_params.desc_hw_addr = dma_params.desc_mem_phys;
2443
2444 priv->dma = cpdma_ctlr_create(&dma_params);
2445 if (!priv->dma) {
2446 dev_err(priv->dev, "error initializing dma\n");
2447 ret = -ENOMEM;
2448 goto clean_runtime_disable_ret;
2449 }
2450
2451 priv->txch = cpdma_chan_create(priv->dma, tx_chan_num(0),
2452 cpsw_tx_handler);
2453 priv->rxch = cpdma_chan_create(priv->dma, rx_chan_num(0),
2454 cpsw_rx_handler);
2455
2456 if (WARN_ON(!priv->txch || !priv->rxch)) {
2457 dev_err(priv->dev, "error initializing dma channels\n");
2458 ret = -ENOMEM;
2459 goto clean_dma_ret;
2460 }
2461
2462 ale_params.dev = &ndev->dev;
2463 ale_params.ale_ageout = ale_ageout;
2464 ale_params.ale_entries = data->ale_entries;
2465 ale_params.ale_ports = data->slaves;
2466
2467 priv->ale = cpsw_ale_create(&ale_params);
2468 if (!priv->ale) {
2469 dev_err(priv->dev, "error initializing ale engine\n");
2470 ret = -ENODEV;
2471 goto clean_dma_ret;
2472 }
2473
2474 ndev->irq = platform_get_irq(pdev, 1);
2475 if (ndev->irq < 0) {
2476 dev_err(priv->dev, "error getting irq resource\n");
2477 ret = ndev->irq;
2478 goto clean_ale_ret;
2479 }
2480
2481 of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
2482 if (of_id) {
2483 pdev->id_entry = of_id->data;
2484 if (pdev->id_entry->driver_data)
2485 priv->quirk_irq = true;
2486 }
2487
2488 /* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
2489 * MISC IRQs which are always kept disabled with this driver so
2490 * we will not request them.
2491 *
2492 * If anyone wants to implement support for those, make sure to
2493 * first request and append them to irqs_table array.
2494 */
2495
2496 /* RX IRQ */
2497 irq = platform_get_irq(pdev, 1);
2498 if (irq < 0) {
2499 ret = irq;
2500 goto clean_ale_ret;
2501 }
2502
2503 priv->irqs_table[0] = irq;
2504 ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
2505 0, dev_name(&pdev->dev), priv);
2506 if (ret < 0) {
2507 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2508 goto clean_ale_ret;
2509 }
2510
2511 /* TX IRQ */
2512 irq = platform_get_irq(pdev, 2);
2513 if (irq < 0) {
2514 ret = irq;
2515 goto clean_ale_ret;
2516 }
2517
2518 priv->irqs_table[1] = irq;
2519 ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
2520 0, dev_name(&pdev->dev), priv);
2521 if (ret < 0) {
2522 dev_err(priv->dev, "error attaching irq (%d)\n", ret);
2523 goto clean_ale_ret;
2524 }
2525 priv->num_irqs = 2;
2526
2527 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2528
2529 ndev->netdev_ops = &cpsw_netdev_ops;
2530 ndev->ethtool_ops = &cpsw_ethtool_ops;
2531 netif_napi_add(ndev, &priv->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
2532 netif_tx_napi_add(ndev, &priv->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
2533
2534 /* register the network device */
2535 SET_NETDEV_DEV(ndev, &pdev->dev);
2536 ret = register_netdev(ndev);
2537 if (ret) {
2538 dev_err(priv->dev, "error registering net device\n");
2539 ret = -ENODEV;
2540 goto clean_ale_ret;
2541 }
2542
2543 cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n",
2544 &ss_res->start, ndev->irq);
2545
2546 if (priv->data.dual_emac) {
2547 ret = cpsw_probe_dual_emac(pdev, priv);
2548 if (ret) {
2549 cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
2550 goto clean_ale_ret;
2551 }
2552 }
2553
2554 return 0;
2555
2556 clean_ale_ret:
2557 cpsw_ale_destroy(priv->ale);
2558 clean_dma_ret:
2559 cpdma_ctlr_destroy(priv->dma);
2560 clean_runtime_disable_ret:
2561 pm_runtime_disable(&pdev->dev);
2562 clean_ndev_ret:
2563 free_netdev(priv->ndev);
2564 return ret;
2565 }
2566
2567 static int cpsw_remove(struct platform_device *pdev)
2568 {
2569 struct net_device *ndev = platform_get_drvdata(pdev);
2570 struct cpsw_priv *priv = netdev_priv(ndev);
2571 int ret;
2572
2573 ret = pm_runtime_get_sync(&pdev->dev);
2574 if (ret < 0) {
2575 pm_runtime_put_noidle(&pdev->dev);
2576 return ret;
2577 }
2578
2579 if (priv->data.dual_emac)
2580 unregister_netdev(cpsw_get_slave_ndev(priv, 1));
2581 unregister_netdev(ndev);
2582
2583 cpsw_ale_destroy(priv->ale);
2584 cpdma_ctlr_destroy(priv->dma);
2585 of_platform_depopulate(&pdev->dev);
2586 pm_runtime_put_sync(&pdev->dev);
2587 pm_runtime_disable(&pdev->dev);
2588 if (priv->data.dual_emac)
2589 free_netdev(cpsw_get_slave_ndev(priv, 1));
2590 free_netdev(ndev);
2591 return 0;
2592 }
2593
2594 #ifdef CONFIG_PM_SLEEP
2595 static int cpsw_suspend(struct device *dev)
2596 {
2597 struct platform_device *pdev = to_platform_device(dev);
2598 struct net_device *ndev = platform_get_drvdata(pdev);
2599 struct cpsw_priv *priv = netdev_priv(ndev);
2600
2601 if (priv->data.dual_emac) {
2602 int i;
2603
2604 for (i = 0; i < priv->data.slaves; i++) {
2605 if (netif_running(priv->slaves[i].ndev))
2606 cpsw_ndo_stop(priv->slaves[i].ndev);
2607 }
2608 } else {
2609 if (netif_running(ndev))
2610 cpsw_ndo_stop(ndev);
2611 }
2612
2613 /* Select sleep pin state */
2614 pinctrl_pm_select_sleep_state(&pdev->dev);
2615
2616 return 0;
2617 }
2618
2619 static int cpsw_resume(struct device *dev)
2620 {
2621 struct platform_device *pdev = to_platform_device(dev);
2622 struct net_device *ndev = platform_get_drvdata(pdev);
2623 struct cpsw_priv *priv = netdev_priv(ndev);
2624
2625 /* Select default pin state */
2626 pinctrl_pm_select_default_state(&pdev->dev);
2627
2628 if (priv->data.dual_emac) {
2629 int i;
2630
2631 for (i = 0; i < priv->data.slaves; i++) {
2632 if (netif_running(priv->slaves[i].ndev))
2633 cpsw_ndo_open(priv->slaves[i].ndev);
2634 }
2635 } else {
2636 if (netif_running(ndev))
2637 cpsw_ndo_open(ndev);
2638 }
2639 return 0;
2640 }
2641 #endif
2642
2643 static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
2644
2645 static struct platform_driver cpsw_driver = {
2646 .driver = {
2647 .name = "cpsw",
2648 .pm = &cpsw_pm_ops,
2649 .of_match_table = cpsw_of_mtable,
2650 },
2651 .probe = cpsw_probe,
2652 .remove = cpsw_remove,
2653 };
2654
2655 module_platform_driver(cpsw_driver);
2656
2657 MODULE_LICENSE("GPL");
2658 MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
2659 MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
2660 MODULE_DESCRIPTION("TI CPSW Ethernet driver");
This page took 0.083417 seconds and 6 git commands to generate.