Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / net / ethernet / ti / cpts.c
1 /*
2 * TI Common Platform Time Sync
3 *
4 * Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20 #include <linux/err.h>
21 #include <linux/if.h>
22 #include <linux/hrtimer.h>
23 #include <linux/module.h>
24 #include <linux/net_tstamp.h>
25 #include <linux/ptp_classify.h>
26 #include <linux/time.h>
27 #include <linux/uaccess.h>
28 #include <linux/workqueue.h>
29
30 #include "cpts.h"
31
32 #ifdef CONFIG_TI_CPTS
33
34 static struct sock_filter ptp_filter[] = {
35 PTP_FILTER
36 };
37
38 #define cpts_read32(c, r) __raw_readl(&c->reg->r)
39 #define cpts_write32(c, v, r) __raw_writel(v, &c->reg->r)
40
41 static int event_expired(struct cpts_event *event)
42 {
43 return time_after(jiffies, event->tmo);
44 }
45
46 static int event_type(struct cpts_event *event)
47 {
48 return (event->high >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
49 }
50
51 static int cpts_fifo_pop(struct cpts *cpts, u32 *high, u32 *low)
52 {
53 u32 r = cpts_read32(cpts, intstat_raw);
54
55 if (r & TS_PEND_RAW) {
56 *high = cpts_read32(cpts, event_high);
57 *low = cpts_read32(cpts, event_low);
58 cpts_write32(cpts, EVENT_POP, event_pop);
59 return 0;
60 }
61 return -1;
62 }
63
64 /*
65 * Returns zero if matching event type was found.
66 */
67 static int cpts_fifo_read(struct cpts *cpts, int match)
68 {
69 int i, type = -1;
70 u32 hi, lo;
71 struct cpts_event *event;
72
73 for (i = 0; i < CPTS_FIFO_DEPTH; i++) {
74 if (cpts_fifo_pop(cpts, &hi, &lo))
75 break;
76 if (list_empty(&cpts->pool)) {
77 pr_err("cpts: event pool is empty\n");
78 return -1;
79 }
80 event = list_first_entry(&cpts->pool, struct cpts_event, list);
81 event->tmo = jiffies + 2;
82 event->high = hi;
83 event->low = lo;
84 type = event_type(event);
85 switch (type) {
86 case CPTS_EV_PUSH:
87 case CPTS_EV_RX:
88 case CPTS_EV_TX:
89 list_del_init(&event->list);
90 list_add_tail(&event->list, &cpts->events);
91 break;
92 case CPTS_EV_ROLL:
93 case CPTS_EV_HALF:
94 case CPTS_EV_HW:
95 break;
96 default:
97 pr_err("cpts: unknown event type\n");
98 break;
99 }
100 if (type == match)
101 break;
102 }
103 return type == match ? 0 : -1;
104 }
105
106 static cycle_t cpts_systim_read(const struct cyclecounter *cc)
107 {
108 u64 val = 0;
109 struct cpts_event *event;
110 struct list_head *this, *next;
111 struct cpts *cpts = container_of(cc, struct cpts, cc);
112
113 cpts_write32(cpts, TS_PUSH, ts_push);
114 if (cpts_fifo_read(cpts, CPTS_EV_PUSH))
115 pr_err("cpts: unable to obtain a time stamp\n");
116
117 list_for_each_safe(this, next, &cpts->events) {
118 event = list_entry(this, struct cpts_event, list);
119 if (event_type(event) == CPTS_EV_PUSH) {
120 list_del_init(&event->list);
121 list_add(&event->list, &cpts->pool);
122 val = event->low;
123 break;
124 }
125 }
126
127 return val;
128 }
129
130 /* PTP clock operations */
131
132 static int cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
133 {
134 u64 adj;
135 u32 diff, mult;
136 int neg_adj = 0;
137 unsigned long flags;
138 struct cpts *cpts = container_of(ptp, struct cpts, info);
139
140 if (ppb < 0) {
141 neg_adj = 1;
142 ppb = -ppb;
143 }
144 mult = cpts->cc_mult;
145 adj = mult;
146 adj *= ppb;
147 diff = div_u64(adj, 1000000000ULL);
148
149 spin_lock_irqsave(&cpts->lock, flags);
150
151 timecounter_read(&cpts->tc);
152
153 cpts->cc.mult = neg_adj ? mult - diff : mult + diff;
154
155 spin_unlock_irqrestore(&cpts->lock, flags);
156
157 return 0;
158 }
159
160 static int cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
161 {
162 s64 now;
163 unsigned long flags;
164 struct cpts *cpts = container_of(ptp, struct cpts, info);
165
166 spin_lock_irqsave(&cpts->lock, flags);
167 now = timecounter_read(&cpts->tc);
168 now += delta;
169 timecounter_init(&cpts->tc, &cpts->cc, now);
170 spin_unlock_irqrestore(&cpts->lock, flags);
171
172 return 0;
173 }
174
175 static int cpts_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
176 {
177 u64 ns;
178 u32 remainder;
179 unsigned long flags;
180 struct cpts *cpts = container_of(ptp, struct cpts, info);
181
182 spin_lock_irqsave(&cpts->lock, flags);
183 ns = timecounter_read(&cpts->tc);
184 spin_unlock_irqrestore(&cpts->lock, flags);
185
186 ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
187 ts->tv_nsec = remainder;
188
189 return 0;
190 }
191
192 static int cpts_ptp_settime(struct ptp_clock_info *ptp,
193 const struct timespec *ts)
194 {
195 u64 ns;
196 unsigned long flags;
197 struct cpts *cpts = container_of(ptp, struct cpts, info);
198
199 ns = ts->tv_sec * 1000000000ULL;
200 ns += ts->tv_nsec;
201
202 spin_lock_irqsave(&cpts->lock, flags);
203 timecounter_init(&cpts->tc, &cpts->cc, ns);
204 spin_unlock_irqrestore(&cpts->lock, flags);
205
206 return 0;
207 }
208
209 static int cpts_ptp_enable(struct ptp_clock_info *ptp,
210 struct ptp_clock_request *rq, int on)
211 {
212 return -EOPNOTSUPP;
213 }
214
215 static struct ptp_clock_info cpts_info = {
216 .owner = THIS_MODULE,
217 .name = "CTPS timer",
218 .max_adj = 1000000,
219 .n_ext_ts = 0,
220 .pps = 0,
221 .adjfreq = cpts_ptp_adjfreq,
222 .adjtime = cpts_ptp_adjtime,
223 .gettime = cpts_ptp_gettime,
224 .settime = cpts_ptp_settime,
225 .enable = cpts_ptp_enable,
226 };
227
228 static void cpts_overflow_check(struct work_struct *work)
229 {
230 struct timespec ts;
231 struct cpts *cpts = container_of(work, struct cpts, overflow_work.work);
232
233 cpts_write32(cpts, CPTS_EN, control);
234 cpts_write32(cpts, TS_PEND_EN, int_enable);
235 cpts_ptp_gettime(&cpts->info, &ts);
236 pr_debug("cpts overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
237 schedule_delayed_work(&cpts->overflow_work, CPTS_OVERFLOW_PERIOD);
238 }
239
240 #define CPTS_REF_CLOCK_NAME "cpsw_cpts_rft_clk"
241
242 static void cpts_clk_init(struct cpts *cpts)
243 {
244 cpts->refclk = clk_get(NULL, CPTS_REF_CLOCK_NAME);
245 if (IS_ERR(cpts->refclk)) {
246 pr_err("Failed to clk_get %s\n", CPTS_REF_CLOCK_NAME);
247 cpts->refclk = NULL;
248 return;
249 }
250 clk_prepare_enable(cpts->refclk);
251 }
252
253 static void cpts_clk_release(struct cpts *cpts)
254 {
255 clk_disable(cpts->refclk);
256 clk_put(cpts->refclk);
257 }
258
259 static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
260 u16 ts_seqid, u8 ts_msgtype)
261 {
262 u16 *seqid;
263 unsigned int offset;
264 u8 *msgtype, *data = skb->data;
265
266 switch (ptp_class) {
267 case PTP_CLASS_V1_IPV4:
268 case PTP_CLASS_V2_IPV4:
269 offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
270 break;
271 case PTP_CLASS_V1_IPV6:
272 case PTP_CLASS_V2_IPV6:
273 offset = OFF_PTP6;
274 break;
275 case PTP_CLASS_V2_L2:
276 offset = ETH_HLEN;
277 break;
278 case PTP_CLASS_V2_VLAN:
279 offset = ETH_HLEN + VLAN_HLEN;
280 break;
281 default:
282 return 0;
283 }
284
285 if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
286 return 0;
287
288 if (unlikely(ptp_class & PTP_CLASS_V1))
289 msgtype = data + offset + OFF_PTP_CONTROL;
290 else
291 msgtype = data + offset;
292
293 seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
294
295 return (ts_msgtype == (*msgtype & 0xf) && ts_seqid == ntohs(*seqid));
296 }
297
298 static u64 cpts_find_ts(struct cpts *cpts, struct sk_buff *skb, int ev_type)
299 {
300 u64 ns = 0;
301 struct cpts_event *event;
302 struct list_head *this, *next;
303 unsigned int class = sk_run_filter(skb, ptp_filter);
304 unsigned long flags;
305 u16 seqid;
306 u8 mtype;
307
308 if (class == PTP_CLASS_NONE)
309 return 0;
310
311 spin_lock_irqsave(&cpts->lock, flags);
312 cpts_fifo_read(cpts, CPTS_EV_PUSH);
313 list_for_each_safe(this, next, &cpts->events) {
314 event = list_entry(this, struct cpts_event, list);
315 if (event_expired(event)) {
316 list_del_init(&event->list);
317 list_add(&event->list, &cpts->pool);
318 continue;
319 }
320 mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
321 seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
322 if (ev_type == event_type(event) &&
323 cpts_match(skb, class, seqid, mtype)) {
324 ns = timecounter_cyc2time(&cpts->tc, event->low);
325 list_del_init(&event->list);
326 list_add(&event->list, &cpts->pool);
327 break;
328 }
329 }
330 spin_unlock_irqrestore(&cpts->lock, flags);
331
332 return ns;
333 }
334
335 void cpts_rx_timestamp(struct cpts *cpts, struct sk_buff *skb)
336 {
337 u64 ns;
338 struct skb_shared_hwtstamps *ssh;
339
340 if (!cpts->rx_enable)
341 return;
342 ns = cpts_find_ts(cpts, skb, CPTS_EV_RX);
343 if (!ns)
344 return;
345 ssh = skb_hwtstamps(skb);
346 memset(ssh, 0, sizeof(*ssh));
347 ssh->hwtstamp = ns_to_ktime(ns);
348 }
349
350 void cpts_tx_timestamp(struct cpts *cpts, struct sk_buff *skb)
351 {
352 u64 ns;
353 struct skb_shared_hwtstamps ssh;
354
355 if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
356 return;
357 ns = cpts_find_ts(cpts, skb, CPTS_EV_TX);
358 if (!ns)
359 return;
360 memset(&ssh, 0, sizeof(ssh));
361 ssh.hwtstamp = ns_to_ktime(ns);
362 skb_tstamp_tx(skb, &ssh);
363 }
364
365 #endif /*CONFIG_TI_CPTS*/
366
367 int cpts_register(struct device *dev, struct cpts *cpts,
368 u32 mult, u32 shift)
369 {
370 #ifdef CONFIG_TI_CPTS
371 int err, i;
372 unsigned long flags;
373
374 if (ptp_filter_init(ptp_filter, ARRAY_SIZE(ptp_filter))) {
375 pr_err("cpts: bad ptp filter\n");
376 return -EINVAL;
377 }
378 cpts->info = cpts_info;
379 cpts->clock = ptp_clock_register(&cpts->info, dev);
380 if (IS_ERR(cpts->clock)) {
381 err = PTR_ERR(cpts->clock);
382 cpts->clock = NULL;
383 return err;
384 }
385 spin_lock_init(&cpts->lock);
386
387 cpts->cc.read = cpts_systim_read;
388 cpts->cc.mask = CLOCKSOURCE_MASK(32);
389 cpts->cc_mult = mult;
390 cpts->cc.mult = mult;
391 cpts->cc.shift = shift;
392
393 INIT_LIST_HEAD(&cpts->events);
394 INIT_LIST_HEAD(&cpts->pool);
395 for (i = 0; i < CPTS_MAX_EVENTS; i++)
396 list_add(&cpts->pool_data[i].list, &cpts->pool);
397
398 cpts_clk_init(cpts);
399 cpts_write32(cpts, CPTS_EN, control);
400 cpts_write32(cpts, TS_PEND_EN, int_enable);
401
402 spin_lock_irqsave(&cpts->lock, flags);
403 timecounter_init(&cpts->tc, &cpts->cc, ktime_to_ns(ktime_get_real()));
404 spin_unlock_irqrestore(&cpts->lock, flags);
405
406 INIT_DELAYED_WORK(&cpts->overflow_work, cpts_overflow_check);
407 schedule_delayed_work(&cpts->overflow_work, CPTS_OVERFLOW_PERIOD);
408
409 cpts->phc_index = ptp_clock_index(cpts->clock);
410 #endif
411 return 0;
412 }
413
414 void cpts_unregister(struct cpts *cpts)
415 {
416 #ifdef CONFIG_TI_CPTS
417 if (cpts->clock) {
418 ptp_clock_unregister(cpts->clock);
419 cancel_delayed_work_sync(&cpts->overflow_work);
420 }
421 if (cpts->refclk)
422 cpts_clk_release(cpts);
423 #endif
424 }
This page took 0.040494 seconds and 5 git commands to generate.