Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming...
[deliverable/linux.git] / drivers / net / ethernet / ti / cpts.c
1 /*
2 * TI Common Platform Time Sync
3 *
4 * Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20 #include <linux/err.h>
21 #include <linux/if.h>
22 #include <linux/hrtimer.h>
23 #include <linux/module.h>
24 #include <linux/net_tstamp.h>
25 #include <linux/ptp_classify.h>
26 #include <linux/time.h>
27 #include <linux/uaccess.h>
28 #include <linux/workqueue.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31
32 #include "cpts.h"
33
34 #ifdef CONFIG_TI_CPTS
35
36 #define cpts_read32(c, r) __raw_readl(&c->reg->r)
37 #define cpts_write32(c, v, r) __raw_writel(v, &c->reg->r)
38
39 static int event_expired(struct cpts_event *event)
40 {
41 return time_after(jiffies, event->tmo);
42 }
43
44 static int event_type(struct cpts_event *event)
45 {
46 return (event->high >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
47 }
48
49 static int cpts_fifo_pop(struct cpts *cpts, u32 *high, u32 *low)
50 {
51 u32 r = cpts_read32(cpts, intstat_raw);
52
53 if (r & TS_PEND_RAW) {
54 *high = cpts_read32(cpts, event_high);
55 *low = cpts_read32(cpts, event_low);
56 cpts_write32(cpts, EVENT_POP, event_pop);
57 return 0;
58 }
59 return -1;
60 }
61
62 /*
63 * Returns zero if matching event type was found.
64 */
65 static int cpts_fifo_read(struct cpts *cpts, int match)
66 {
67 int i, type = -1;
68 u32 hi, lo;
69 struct cpts_event *event;
70
71 for (i = 0; i < CPTS_FIFO_DEPTH; i++) {
72 if (cpts_fifo_pop(cpts, &hi, &lo))
73 break;
74 if (list_empty(&cpts->pool)) {
75 pr_err("cpts: event pool is empty\n");
76 return -1;
77 }
78 event = list_first_entry(&cpts->pool, struct cpts_event, list);
79 event->tmo = jiffies + 2;
80 event->high = hi;
81 event->low = lo;
82 type = event_type(event);
83 switch (type) {
84 case CPTS_EV_PUSH:
85 case CPTS_EV_RX:
86 case CPTS_EV_TX:
87 list_del_init(&event->list);
88 list_add_tail(&event->list, &cpts->events);
89 break;
90 case CPTS_EV_ROLL:
91 case CPTS_EV_HALF:
92 case CPTS_EV_HW:
93 break;
94 default:
95 pr_err("cpts: unknown event type\n");
96 break;
97 }
98 if (type == match)
99 break;
100 }
101 return type == match ? 0 : -1;
102 }
103
104 static cycle_t cpts_systim_read(const struct cyclecounter *cc)
105 {
106 u64 val = 0;
107 struct cpts_event *event;
108 struct list_head *this, *next;
109 struct cpts *cpts = container_of(cc, struct cpts, cc);
110
111 cpts_write32(cpts, TS_PUSH, ts_push);
112 if (cpts_fifo_read(cpts, CPTS_EV_PUSH))
113 pr_err("cpts: unable to obtain a time stamp\n");
114
115 list_for_each_safe(this, next, &cpts->events) {
116 event = list_entry(this, struct cpts_event, list);
117 if (event_type(event) == CPTS_EV_PUSH) {
118 list_del_init(&event->list);
119 list_add(&event->list, &cpts->pool);
120 val = event->low;
121 break;
122 }
123 }
124
125 return val;
126 }
127
128 /* PTP clock operations */
129
130 static int cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
131 {
132 u64 adj;
133 u32 diff, mult;
134 int neg_adj = 0;
135 unsigned long flags;
136 struct cpts *cpts = container_of(ptp, struct cpts, info);
137
138 if (ppb < 0) {
139 neg_adj = 1;
140 ppb = -ppb;
141 }
142 mult = cpts->cc_mult;
143 adj = mult;
144 adj *= ppb;
145 diff = div_u64(adj, 1000000000ULL);
146
147 spin_lock_irqsave(&cpts->lock, flags);
148
149 timecounter_read(&cpts->tc);
150
151 cpts->cc.mult = neg_adj ? mult - diff : mult + diff;
152
153 spin_unlock_irqrestore(&cpts->lock, flags);
154
155 return 0;
156 }
157
158 static int cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
159 {
160 unsigned long flags;
161 struct cpts *cpts = container_of(ptp, struct cpts, info);
162
163 spin_lock_irqsave(&cpts->lock, flags);
164 timecounter_adjtime(&cpts->tc, delta);
165 spin_unlock_irqrestore(&cpts->lock, flags);
166
167 return 0;
168 }
169
170 static int cpts_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
171 {
172 u64 ns;
173 u32 remainder;
174 unsigned long flags;
175 struct cpts *cpts = container_of(ptp, struct cpts, info);
176
177 spin_lock_irqsave(&cpts->lock, flags);
178 ns = timecounter_read(&cpts->tc);
179 spin_unlock_irqrestore(&cpts->lock, flags);
180
181 ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
182 ts->tv_nsec = remainder;
183
184 return 0;
185 }
186
187 static int cpts_ptp_settime(struct ptp_clock_info *ptp,
188 const struct timespec *ts)
189 {
190 u64 ns;
191 unsigned long flags;
192 struct cpts *cpts = container_of(ptp, struct cpts, info);
193
194 ns = ts->tv_sec * 1000000000ULL;
195 ns += ts->tv_nsec;
196
197 spin_lock_irqsave(&cpts->lock, flags);
198 timecounter_init(&cpts->tc, &cpts->cc, ns);
199 spin_unlock_irqrestore(&cpts->lock, flags);
200
201 return 0;
202 }
203
204 static int cpts_ptp_enable(struct ptp_clock_info *ptp,
205 struct ptp_clock_request *rq, int on)
206 {
207 return -EOPNOTSUPP;
208 }
209
210 static struct ptp_clock_info cpts_info = {
211 .owner = THIS_MODULE,
212 .name = "CTPS timer",
213 .max_adj = 1000000,
214 .n_ext_ts = 0,
215 .n_pins = 0,
216 .pps = 0,
217 .adjfreq = cpts_ptp_adjfreq,
218 .adjtime = cpts_ptp_adjtime,
219 .gettime = cpts_ptp_gettime,
220 .settime = cpts_ptp_settime,
221 .enable = cpts_ptp_enable,
222 };
223
224 static void cpts_overflow_check(struct work_struct *work)
225 {
226 struct timespec ts;
227 struct cpts *cpts = container_of(work, struct cpts, overflow_work.work);
228
229 cpts_write32(cpts, CPTS_EN, control);
230 cpts_write32(cpts, TS_PEND_EN, int_enable);
231 cpts_ptp_gettime(&cpts->info, &ts);
232 pr_debug("cpts overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
233 schedule_delayed_work(&cpts->overflow_work, CPTS_OVERFLOW_PERIOD);
234 }
235
236 static void cpts_clk_init(struct device *dev, struct cpts *cpts)
237 {
238 cpts->refclk = devm_clk_get(dev, "cpts");
239 if (IS_ERR(cpts->refclk)) {
240 dev_err(dev, "Failed to get cpts refclk\n");
241 cpts->refclk = NULL;
242 return;
243 }
244 clk_prepare_enable(cpts->refclk);
245 }
246
247 static void cpts_clk_release(struct cpts *cpts)
248 {
249 clk_disable(cpts->refclk);
250 }
251
252 static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
253 u16 ts_seqid, u8 ts_msgtype)
254 {
255 u16 *seqid;
256 unsigned int offset = 0;
257 u8 *msgtype, *data = skb->data;
258
259 if (ptp_class & PTP_CLASS_VLAN)
260 offset += VLAN_HLEN;
261
262 switch (ptp_class & PTP_CLASS_PMASK) {
263 case PTP_CLASS_IPV4:
264 offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
265 break;
266 case PTP_CLASS_IPV6:
267 offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
268 break;
269 case PTP_CLASS_L2:
270 offset += ETH_HLEN;
271 break;
272 default:
273 return 0;
274 }
275
276 if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
277 return 0;
278
279 if (unlikely(ptp_class & PTP_CLASS_V1))
280 msgtype = data + offset + OFF_PTP_CONTROL;
281 else
282 msgtype = data + offset;
283
284 seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
285
286 return (ts_msgtype == (*msgtype & 0xf) && ts_seqid == ntohs(*seqid));
287 }
288
289 static u64 cpts_find_ts(struct cpts *cpts, struct sk_buff *skb, int ev_type)
290 {
291 u64 ns = 0;
292 struct cpts_event *event;
293 struct list_head *this, *next;
294 unsigned int class = ptp_classify_raw(skb);
295 unsigned long flags;
296 u16 seqid;
297 u8 mtype;
298
299 if (class == PTP_CLASS_NONE)
300 return 0;
301
302 spin_lock_irqsave(&cpts->lock, flags);
303 cpts_fifo_read(cpts, CPTS_EV_PUSH);
304 list_for_each_safe(this, next, &cpts->events) {
305 event = list_entry(this, struct cpts_event, list);
306 if (event_expired(event)) {
307 list_del_init(&event->list);
308 list_add(&event->list, &cpts->pool);
309 continue;
310 }
311 mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
312 seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
313 if (ev_type == event_type(event) &&
314 cpts_match(skb, class, seqid, mtype)) {
315 ns = timecounter_cyc2time(&cpts->tc, event->low);
316 list_del_init(&event->list);
317 list_add(&event->list, &cpts->pool);
318 break;
319 }
320 }
321 spin_unlock_irqrestore(&cpts->lock, flags);
322
323 return ns;
324 }
325
326 void cpts_rx_timestamp(struct cpts *cpts, struct sk_buff *skb)
327 {
328 u64 ns;
329 struct skb_shared_hwtstamps *ssh;
330
331 if (!cpts->rx_enable)
332 return;
333 ns = cpts_find_ts(cpts, skb, CPTS_EV_RX);
334 if (!ns)
335 return;
336 ssh = skb_hwtstamps(skb);
337 memset(ssh, 0, sizeof(*ssh));
338 ssh->hwtstamp = ns_to_ktime(ns);
339 }
340
341 void cpts_tx_timestamp(struct cpts *cpts, struct sk_buff *skb)
342 {
343 u64 ns;
344 struct skb_shared_hwtstamps ssh;
345
346 if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
347 return;
348 ns = cpts_find_ts(cpts, skb, CPTS_EV_TX);
349 if (!ns)
350 return;
351 memset(&ssh, 0, sizeof(ssh));
352 ssh.hwtstamp = ns_to_ktime(ns);
353 skb_tstamp_tx(skb, &ssh);
354 }
355
356 #endif /*CONFIG_TI_CPTS*/
357
358 int cpts_register(struct device *dev, struct cpts *cpts,
359 u32 mult, u32 shift)
360 {
361 #ifdef CONFIG_TI_CPTS
362 int err, i;
363 unsigned long flags;
364
365 cpts->info = cpts_info;
366 cpts->clock = ptp_clock_register(&cpts->info, dev);
367 if (IS_ERR(cpts->clock)) {
368 err = PTR_ERR(cpts->clock);
369 cpts->clock = NULL;
370 return err;
371 }
372 spin_lock_init(&cpts->lock);
373
374 cpts->cc.read = cpts_systim_read;
375 cpts->cc.mask = CLOCKSOURCE_MASK(32);
376 cpts->cc_mult = mult;
377 cpts->cc.mult = mult;
378 cpts->cc.shift = shift;
379
380 INIT_LIST_HEAD(&cpts->events);
381 INIT_LIST_HEAD(&cpts->pool);
382 for (i = 0; i < CPTS_MAX_EVENTS; i++)
383 list_add(&cpts->pool_data[i].list, &cpts->pool);
384
385 cpts_clk_init(dev, cpts);
386 cpts_write32(cpts, CPTS_EN, control);
387 cpts_write32(cpts, TS_PEND_EN, int_enable);
388
389 spin_lock_irqsave(&cpts->lock, flags);
390 timecounter_init(&cpts->tc, &cpts->cc, ktime_to_ns(ktime_get_real()));
391 spin_unlock_irqrestore(&cpts->lock, flags);
392
393 INIT_DELAYED_WORK(&cpts->overflow_work, cpts_overflow_check);
394 schedule_delayed_work(&cpts->overflow_work, CPTS_OVERFLOW_PERIOD);
395
396 cpts->phc_index = ptp_clock_index(cpts->clock);
397 #endif
398 return 0;
399 }
400
401 void cpts_unregister(struct cpts *cpts)
402 {
403 #ifdef CONFIG_TI_CPTS
404 if (cpts->clock) {
405 ptp_clock_unregister(cpts->clock);
406 cancel_delayed_work_sync(&cpts->overflow_work);
407 }
408 if (cpts->refclk)
409 cpts_clk_release(cpts);
410 #endif
411 }
This page took 0.054265 seconds and 6 git commands to generate.