net: batch of last_rx update avoidance in ethernet drivers.
[deliverable/linux.git] / drivers / net / ethernet / tile / tilepro.c
1 /*
2 * Copyright 2011 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/moduleparam.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h> /* printk() */
20 #include <linux/slab.h> /* kmalloc() */
21 #include <linux/errno.h> /* error codes */
22 #include <linux/types.h> /* size_t */
23 #include <linux/interrupt.h>
24 #include <linux/in.h>
25 #include <linux/netdevice.h> /* struct device, and other headers */
26 #include <linux/etherdevice.h> /* eth_type_trans */
27 #include <linux/skbuff.h>
28 #include <linux/ioctl.h>
29 #include <linux/cdev.h>
30 #include <linux/hugetlb.h>
31 #include <linux/in6.h>
32 #include <linux/timer.h>
33 #include <linux/io.h>
34 #include <linux/u64_stats_sync.h>
35 #include <asm/checksum.h>
36 #include <asm/homecache.h>
37
38 #include <hv/drv_xgbe_intf.h>
39 #include <hv/drv_xgbe_impl.h>
40 #include <hv/hypervisor.h>
41 #include <hv/netio_intf.h>
42
43 /* For TSO */
44 #include <linux/ip.h>
45 #include <linux/tcp.h>
46
47
48 /*
49 * First, "tile_net_init_module()" initializes all four "devices" which
50 * can be used by linux.
51 *
52 * Then, "ifconfig DEVICE up" calls "tile_net_open()", which analyzes
53 * the network cpus, then uses "tile_net_open_aux()" to initialize
54 * LIPP/LEPP, and then uses "tile_net_open_inner()" to register all
55 * the tiles, provide buffers to LIPP, allow ingress to start, and
56 * turn on hypervisor interrupt handling (and NAPI) on all tiles.
57 *
58 * If registration fails due to the link being down, then "retry_work"
59 * is used to keep calling "tile_net_open_inner()" until it succeeds.
60 *
61 * If "ifconfig DEVICE down" is called, it uses "tile_net_stop()" to
62 * stop egress, drain the LIPP buffers, unregister all the tiles, stop
63 * LIPP/LEPP, and wipe the LEPP queue.
64 *
65 * We start out with the ingress interrupt enabled on each CPU. When
66 * this interrupt fires, we disable it, and call "napi_schedule()".
67 * This will cause "tile_net_poll()" to be called, which will pull
68 * packets from the netio queue, filtering them out, or passing them
69 * to "netif_receive_skb()". If our budget is exhausted, we will
70 * return, knowing we will be called again later. Otherwise, we
71 * reenable the ingress interrupt, and call "napi_complete()".
72 *
73 * HACK: Since disabling the ingress interrupt is not reliable, we
74 * ignore the interrupt if the global "active" flag is false.
75 *
76 *
77 * NOTE: The use of "native_driver" ensures that EPP exists, and that
78 * we are using "LIPP" and "LEPP".
79 *
80 * NOTE: Failing to free completions for an arbitrarily long time
81 * (which is defined to be illegal) does in fact cause bizarre
82 * problems. The "egress_timer" helps prevent this from happening.
83 */
84
85
86 /* HACK: Allow use of "jumbo" packets. */
87 /* This should be 1500 if "jumbo" is not set in LIPP. */
88 /* This should be at most 10226 (10240 - 14) if "jumbo" is set in LIPP. */
89 /* ISSUE: This has not been thoroughly tested (except at 1500). */
90 #define TILE_NET_MTU 1500
91
92 /* HACK: Define this to verify incoming packets. */
93 /* #define TILE_NET_VERIFY_INGRESS */
94
95 /* Use 3000 to enable the Linux Traffic Control (QoS) layer, else 0. */
96 #define TILE_NET_TX_QUEUE_LEN 0
97
98 /* Define to dump packets (prints out the whole packet on tx and rx). */
99 /* #define TILE_NET_DUMP_PACKETS */
100
101 /* Define to enable debug spew (all PDEBUG's are enabled). */
102 /* #define TILE_NET_DEBUG */
103
104
105 /* Define to activate paranoia checks. */
106 /* #define TILE_NET_PARANOIA */
107
108 /* Default transmit lockup timeout period, in jiffies. */
109 #define TILE_NET_TIMEOUT (5 * HZ)
110
111 /* Default retry interval for bringing up the NetIO interface, in jiffies. */
112 #define TILE_NET_RETRY_INTERVAL (5 * HZ)
113
114 /* Number of ports (xgbe0, xgbe1, gbe0, gbe1). */
115 #define TILE_NET_DEVS 4
116
117
118
119 /* Paranoia. */
120 #if NET_IP_ALIGN != LIPP_PACKET_PADDING
121 #error "NET_IP_ALIGN must match LIPP_PACKET_PADDING."
122 #endif
123
124
125 /* Debug print. */
126 #ifdef TILE_NET_DEBUG
127 #define PDEBUG(fmt, args...) net_printk(fmt, ## args)
128 #else
129 #define PDEBUG(fmt, args...)
130 #endif
131
132
133 MODULE_AUTHOR("Tilera");
134 MODULE_LICENSE("GPL");
135
136
137 /*
138 * Queue of incoming packets for a specific cpu and device.
139 *
140 * Includes a pointer to the "system" data, and the actual "user" data.
141 */
142 struct tile_netio_queue {
143 netio_queue_impl_t *__system_part;
144 netio_queue_user_impl_t __user_part;
145
146 };
147
148
149 /*
150 * Statistics counters for a specific cpu and device.
151 */
152 struct tile_net_stats_t {
153 struct u64_stats_sync syncp;
154 u64 rx_packets; /* total packets received */
155 u64 tx_packets; /* total packets transmitted */
156 u64 rx_bytes; /* total bytes received */
157 u64 tx_bytes; /* total bytes transmitted */
158 u64 rx_errors; /* packets truncated or marked bad by hw */
159 u64 rx_dropped; /* packets not for us or intf not up */
160 };
161
162
163 /*
164 * Info for a specific cpu and device.
165 *
166 * ISSUE: There is a "dev" pointer in "napi" as well.
167 */
168 struct tile_net_cpu {
169 /* The NAPI struct. */
170 struct napi_struct napi;
171 /* Packet queue. */
172 struct tile_netio_queue queue;
173 /* Statistics. */
174 struct tile_net_stats_t stats;
175 /* True iff NAPI is enabled. */
176 bool napi_enabled;
177 /* True if this tile has successfully registered with the IPP. */
178 bool registered;
179 /* True if the link was down last time we tried to register. */
180 bool link_down;
181 /* True if "egress_timer" is scheduled. */
182 bool egress_timer_scheduled;
183 /* Number of small sk_buffs which must still be provided. */
184 unsigned int num_needed_small_buffers;
185 /* Number of large sk_buffs which must still be provided. */
186 unsigned int num_needed_large_buffers;
187 /* A timer for handling egress completions. */
188 struct timer_list egress_timer;
189 };
190
191
192 /*
193 * Info for a specific device.
194 */
195 struct tile_net_priv {
196 /* Our network device. */
197 struct net_device *dev;
198 /* Pages making up the egress queue. */
199 struct page *eq_pages;
200 /* Address of the actual egress queue. */
201 lepp_queue_t *eq;
202 /* Protects "eq". */
203 spinlock_t eq_lock;
204 /* The hypervisor handle for this interface. */
205 int hv_devhdl;
206 /* The intr bit mask that IDs this device. */
207 u32 intr_id;
208 /* True iff "tile_net_open_aux()" has succeeded. */
209 bool partly_opened;
210 /* True iff the device is "active". */
211 bool active;
212 /* Effective network cpus. */
213 struct cpumask network_cpus_map;
214 /* Number of network cpus. */
215 int network_cpus_count;
216 /* Credits per network cpu. */
217 int network_cpus_credits;
218 /* For NetIO bringup retries. */
219 struct delayed_work retry_work;
220 /* Quick access to per cpu data. */
221 struct tile_net_cpu *cpu[NR_CPUS];
222 };
223
224 /* Log2 of the number of small pages needed for the egress queue. */
225 #define EQ_ORDER get_order(sizeof(lepp_queue_t))
226 /* Size of the egress queue's pages. */
227 #define EQ_SIZE (1 << (PAGE_SHIFT + EQ_ORDER))
228
229 /*
230 * The actual devices (xgbe0, xgbe1, gbe0, gbe1).
231 */
232 static struct net_device *tile_net_devs[TILE_NET_DEVS];
233
234 /*
235 * The "tile_net_cpu" structures for each device.
236 */
237 static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe0);
238 static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe1);
239 static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe0);
240 static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe1);
241
242
243 /*
244 * True if "network_cpus" was specified.
245 */
246 static bool network_cpus_used;
247
248 /*
249 * The actual cpus in "network_cpus".
250 */
251 static struct cpumask network_cpus_map;
252
253
254
255 #ifdef TILE_NET_DEBUG
256 /*
257 * printk with extra stuff.
258 *
259 * We print the CPU we're running in brackets.
260 */
261 static void net_printk(char *fmt, ...)
262 {
263 int i;
264 int len;
265 va_list args;
266 static char buf[256];
267
268 len = sprintf(buf, "tile_net[%2.2d]: ", smp_processor_id());
269 va_start(args, fmt);
270 i = vscnprintf(buf + len, sizeof(buf) - len - 1, fmt, args);
271 va_end(args);
272 buf[255] = '\0';
273 pr_notice(buf);
274 }
275 #endif
276
277
278 #ifdef TILE_NET_DUMP_PACKETS
279 /*
280 * Dump a packet.
281 */
282 static void dump_packet(unsigned char *data, unsigned long length, char *s)
283 {
284 int my_cpu = smp_processor_id();
285
286 unsigned long i;
287 char buf[128];
288
289 static unsigned int count;
290
291 pr_info("dump_packet(data %p, length 0x%lx s %s count 0x%x)\n",
292 data, length, s, count++);
293
294 pr_info("\n");
295
296 for (i = 0; i < length; i++) {
297 if ((i & 0xf) == 0)
298 sprintf(buf, "[%02d] %8.8lx:", my_cpu, i);
299 sprintf(buf + strlen(buf), " %2.2x", data[i]);
300 if ((i & 0xf) == 0xf || i == length - 1) {
301 strcat(buf, "\n");
302 pr_info("%s", buf);
303 }
304 }
305 }
306 #endif
307
308
309 /*
310 * Provide support for the __netio_fastio1() swint
311 * (see <hv/drv_xgbe_intf.h> for how it is used).
312 *
313 * The fastio swint2 call may clobber all the caller-saved registers.
314 * It rarely clobbers memory, but we allow for the possibility in
315 * the signature just to be on the safe side.
316 *
317 * Also, gcc doesn't seem to allow an input operand to be
318 * clobbered, so we fake it with dummy outputs.
319 *
320 * This function can't be static because of the way it is declared
321 * in the netio header.
322 */
323 inline int __netio_fastio1(u32 fastio_index, u32 arg0)
324 {
325 long result, clobber_r1, clobber_r10;
326 asm volatile("swint2"
327 : "=R00" (result),
328 "=R01" (clobber_r1), "=R10" (clobber_r10)
329 : "R10" (fastio_index), "R01" (arg0)
330 : "memory", "r2", "r3", "r4",
331 "r5", "r6", "r7", "r8", "r9",
332 "r11", "r12", "r13", "r14",
333 "r15", "r16", "r17", "r18", "r19",
334 "r20", "r21", "r22", "r23", "r24",
335 "r25", "r26", "r27", "r28", "r29");
336 return result;
337 }
338
339
340 static void tile_net_return_credit(struct tile_net_cpu *info)
341 {
342 struct tile_netio_queue *queue = &info->queue;
343 netio_queue_user_impl_t *qup = &queue->__user_part;
344
345 /* Return four credits after every fourth packet. */
346 if (--qup->__receive_credit_remaining == 0) {
347 u32 interval = qup->__receive_credit_interval;
348 qup->__receive_credit_remaining = interval;
349 __netio_fastio_return_credits(qup->__fastio_index, interval);
350 }
351 }
352
353
354
355 /*
356 * Provide a linux buffer to LIPP.
357 */
358 static void tile_net_provide_linux_buffer(struct tile_net_cpu *info,
359 void *va, bool small)
360 {
361 struct tile_netio_queue *queue = &info->queue;
362
363 /* Convert "va" and "small" to "linux_buffer_t". */
364 unsigned int buffer = ((unsigned int)(__pa(va) >> 7) << 1) + small;
365
366 __netio_fastio_free_buffer(queue->__user_part.__fastio_index, buffer);
367 }
368
369
370 /*
371 * Provide a linux buffer for LIPP.
372 *
373 * Note that the ACTUAL allocation for each buffer is a "struct sk_buff",
374 * plus a chunk of memory that includes not only the requested bytes, but
375 * also NET_SKB_PAD bytes of initial padding, and a "struct skb_shared_info".
376 *
377 * Note that "struct skb_shared_info" is 88 bytes with 64K pages and
378 * 268 bytes with 4K pages (since the frags[] array needs 18 entries).
379 *
380 * Without jumbo packets, the maximum packet size will be 1536 bytes,
381 * and we use 2 bytes (NET_IP_ALIGN) of padding. ISSUE: If we told
382 * the hardware to clip at 1518 bytes instead of 1536 bytes, then we
383 * could save an entire cache line, but in practice, we don't need it.
384 *
385 * Since CPAs are 38 bits, and we can only encode the high 31 bits in
386 * a "linux_buffer_t", the low 7 bits must be zero, and thus, we must
387 * align the actual "va" mod 128.
388 *
389 * We assume that the underlying "head" will be aligned mod 64. Note
390 * that in practice, we have seen "head" NOT aligned mod 128 even when
391 * using 2048 byte allocations, which is surprising.
392 *
393 * If "head" WAS always aligned mod 128, we could change LIPP to
394 * assume that the low SIX bits are zero, and the 7th bit is one, that
395 * is, align the actual "va" mod 128 plus 64, which would be "free".
396 *
397 * For now, the actual "head" pointer points at NET_SKB_PAD bytes of
398 * padding, plus 28 or 92 bytes of extra padding, plus the sk_buff
399 * pointer, plus the NET_IP_ALIGN padding, plus 126 or 1536 bytes for
400 * the actual packet, plus 62 bytes of empty padding, plus some
401 * padding and the "struct skb_shared_info".
402 *
403 * With 64K pages, a large buffer thus needs 32+92+4+2+1536+62+88
404 * bytes, or 1816 bytes, which fits comfortably into 2048 bytes.
405 *
406 * With 64K pages, a small buffer thus needs 32+92+4+2+126+88
407 * bytes, or 344 bytes, which means we are wasting 64+ bytes, and
408 * could presumably increase the size of small buffers.
409 *
410 * With 4K pages, a large buffer thus needs 32+92+4+2+1536+62+268
411 * bytes, or 1996 bytes, which fits comfortably into 2048 bytes.
412 *
413 * With 4K pages, a small buffer thus needs 32+92+4+2+126+268
414 * bytes, or 524 bytes, which is annoyingly wasteful.
415 *
416 * Maybe we should increase LIPP_SMALL_PACKET_SIZE to 192?
417 *
418 * ISSUE: Maybe we should increase "NET_SKB_PAD" to 64?
419 */
420 static bool tile_net_provide_needed_buffer(struct tile_net_cpu *info,
421 bool small)
422 {
423 #if TILE_NET_MTU <= 1536
424 /* Without "jumbo", 2 + 1536 should be sufficient. */
425 unsigned int large_size = NET_IP_ALIGN + 1536;
426 #else
427 /* ISSUE: This has not been tested. */
428 unsigned int large_size = NET_IP_ALIGN + TILE_NET_MTU + 100;
429 #endif
430
431 /* Avoid "false sharing" with last cache line. */
432 /* ISSUE: This is already done by "netdev_alloc_skb()". */
433 unsigned int len =
434 (((small ? LIPP_SMALL_PACKET_SIZE : large_size) +
435 CHIP_L2_LINE_SIZE() - 1) & -CHIP_L2_LINE_SIZE());
436
437 unsigned int padding = 128 - NET_SKB_PAD;
438 unsigned int align;
439
440 struct sk_buff *skb;
441 void *va;
442
443 struct sk_buff **skb_ptr;
444
445 /* Request 96 extra bytes for alignment purposes. */
446 skb = netdev_alloc_skb(info->napi.dev, len + padding);
447 if (skb == NULL)
448 return false;
449
450 /* Skip 32 or 96 bytes to align "data" mod 128. */
451 align = -(long)skb->data & (128 - 1);
452 BUG_ON(align > padding);
453 skb_reserve(skb, align);
454
455 /* This address is given to IPP. */
456 va = skb->data;
457
458 /* Buffers must not span a huge page. */
459 BUG_ON(((((long)va & ~HPAGE_MASK) + len) & HPAGE_MASK) != 0);
460
461 #ifdef TILE_NET_PARANOIA
462 #if CHIP_HAS_CBOX_HOME_MAP()
463 if (hash_default) {
464 HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)va);
465 if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
466 panic("Non-HFH ingress buffer! VA=%p Mode=%d PTE=%llx",
467 va, hv_pte_get_mode(pte), hv_pte_val(pte));
468 }
469 #endif
470 #endif
471
472 /* Invalidate the packet buffer. */
473 if (!hash_default)
474 __inv_buffer(va, len);
475
476 /* Skip two bytes to satisfy LIPP assumptions. */
477 /* Note that this aligns IP on a 16 byte boundary. */
478 /* ISSUE: Do this when the packet arrives? */
479 skb_reserve(skb, NET_IP_ALIGN);
480
481 /* Save a back-pointer to 'skb'. */
482 skb_ptr = va - sizeof(*skb_ptr);
483 *skb_ptr = skb;
484
485 /* Make sure "skb_ptr" has been flushed. */
486 __insn_mf();
487
488 /* Provide the new buffer. */
489 tile_net_provide_linux_buffer(info, va, small);
490
491 return true;
492 }
493
494
495 /*
496 * Provide linux buffers for LIPP.
497 */
498 static void tile_net_provide_needed_buffers(struct tile_net_cpu *info)
499 {
500 while (info->num_needed_small_buffers != 0) {
501 if (!tile_net_provide_needed_buffer(info, true))
502 goto oops;
503 info->num_needed_small_buffers--;
504 }
505
506 while (info->num_needed_large_buffers != 0) {
507 if (!tile_net_provide_needed_buffer(info, false))
508 goto oops;
509 info->num_needed_large_buffers--;
510 }
511
512 return;
513
514 oops:
515
516 /* Add a description to the page allocation failure dump. */
517 pr_notice("Could not provide a linux buffer to LIPP.\n");
518 }
519
520
521 /*
522 * Grab some LEPP completions, and store them in "comps", of size
523 * "comps_size", and return the number of completions which were
524 * stored, so the caller can free them.
525 */
526 static unsigned int tile_net_lepp_grab_comps(lepp_queue_t *eq,
527 struct sk_buff *comps[],
528 unsigned int comps_size,
529 unsigned int min_size)
530 {
531 unsigned int n = 0;
532
533 unsigned int comp_head = eq->comp_head;
534 unsigned int comp_busy = eq->comp_busy;
535
536 while (comp_head != comp_busy && n < comps_size) {
537 comps[n++] = eq->comps[comp_head];
538 LEPP_QINC(comp_head);
539 }
540
541 if (n < min_size)
542 return 0;
543
544 eq->comp_head = comp_head;
545
546 return n;
547 }
548
549
550 /*
551 * Free some comps, and return true iff there are still some pending.
552 */
553 static bool tile_net_lepp_free_comps(struct net_device *dev, bool all)
554 {
555 struct tile_net_priv *priv = netdev_priv(dev);
556
557 lepp_queue_t *eq = priv->eq;
558
559 struct sk_buff *olds[64];
560 unsigned int wanted = 64;
561 unsigned int i, n;
562 bool pending;
563
564 spin_lock(&priv->eq_lock);
565
566 if (all)
567 eq->comp_busy = eq->comp_tail;
568
569 n = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
570
571 pending = (eq->comp_head != eq->comp_tail);
572
573 spin_unlock(&priv->eq_lock);
574
575 for (i = 0; i < n; i++)
576 kfree_skb(olds[i]);
577
578 return pending;
579 }
580
581
582 /*
583 * Make sure the egress timer is scheduled.
584 *
585 * Note that we use "schedule if not scheduled" logic instead of the more
586 * obvious "reschedule" logic, because "reschedule" is fairly expensive.
587 */
588 static void tile_net_schedule_egress_timer(struct tile_net_cpu *info)
589 {
590 if (!info->egress_timer_scheduled) {
591 mod_timer_pinned(&info->egress_timer, jiffies + 1);
592 info->egress_timer_scheduled = true;
593 }
594 }
595
596
597 /*
598 * The "function" for "info->egress_timer".
599 *
600 * This timer will reschedule itself as long as there are any pending
601 * completions expected (on behalf of any tile).
602 *
603 * ISSUE: Realistically, will the timer ever stop scheduling itself?
604 *
605 * ISSUE: This timer is almost never actually needed, so just use a global
606 * timer that can run on any tile.
607 *
608 * ISSUE: Maybe instead track number of expected completions, and free
609 * only that many, resetting to zero if "pending" is ever false.
610 */
611 static void tile_net_handle_egress_timer(unsigned long arg)
612 {
613 struct tile_net_cpu *info = (struct tile_net_cpu *)arg;
614 struct net_device *dev = info->napi.dev;
615
616 /* The timer is no longer scheduled. */
617 info->egress_timer_scheduled = false;
618
619 /* Free comps, and reschedule timer if more are pending. */
620 if (tile_net_lepp_free_comps(dev, false))
621 tile_net_schedule_egress_timer(info);
622 }
623
624
625 static void tile_net_discard_aux(struct tile_net_cpu *info, int index)
626 {
627 struct tile_netio_queue *queue = &info->queue;
628 netio_queue_impl_t *qsp = queue->__system_part;
629 netio_queue_user_impl_t *qup = &queue->__user_part;
630
631 int index2_aux = index + sizeof(netio_pkt_t);
632 int index2 =
633 ((index2_aux ==
634 qsp->__packet_receive_queue.__last_packet_plus_one) ?
635 0 : index2_aux);
636
637 netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index);
638
639 /* Extract the "linux_buffer_t". */
640 unsigned int buffer = pkt->__packet.word;
641
642 /* Convert "linux_buffer_t" to "va". */
643 void *va = __va((phys_addr_t)(buffer >> 1) << 7);
644
645 /* Acquire the associated "skb". */
646 struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
647 struct sk_buff *skb = *skb_ptr;
648
649 kfree_skb(skb);
650
651 /* Consume this packet. */
652 qup->__packet_receive_read = index2;
653 }
654
655
656 /*
657 * Like "tile_net_poll()", but just discard packets.
658 */
659 static void tile_net_discard_packets(struct net_device *dev)
660 {
661 struct tile_net_priv *priv = netdev_priv(dev);
662 int my_cpu = smp_processor_id();
663 struct tile_net_cpu *info = priv->cpu[my_cpu];
664 struct tile_netio_queue *queue = &info->queue;
665 netio_queue_impl_t *qsp = queue->__system_part;
666 netio_queue_user_impl_t *qup = &queue->__user_part;
667
668 while (qup->__packet_receive_read !=
669 qsp->__packet_receive_queue.__packet_write) {
670 int index = qup->__packet_receive_read;
671 tile_net_discard_aux(info, index);
672 }
673 }
674
675
676 /*
677 * Handle the next packet. Return true if "processed", false if "filtered".
678 */
679 static bool tile_net_poll_aux(struct tile_net_cpu *info, int index)
680 {
681 struct net_device *dev = info->napi.dev;
682
683 struct tile_netio_queue *queue = &info->queue;
684 netio_queue_impl_t *qsp = queue->__system_part;
685 netio_queue_user_impl_t *qup = &queue->__user_part;
686 struct tile_net_stats_t *stats = &info->stats;
687
688 int filter;
689
690 int index2_aux = index + sizeof(netio_pkt_t);
691 int index2 =
692 ((index2_aux ==
693 qsp->__packet_receive_queue.__last_packet_plus_one) ?
694 0 : index2_aux);
695
696 netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index);
697
698 netio_pkt_metadata_t *metadata = NETIO_PKT_METADATA(pkt);
699 netio_pkt_status_t pkt_status = NETIO_PKT_STATUS_M(metadata, pkt);
700
701 /* Extract the packet size. FIXME: Shouldn't the second line */
702 /* get subtracted? Mostly moot, since it should be "zero". */
703 unsigned long len =
704 (NETIO_PKT_CUSTOM_LENGTH(pkt) +
705 NET_IP_ALIGN - NETIO_PACKET_PADDING);
706
707 /* Extract the "linux_buffer_t". */
708 unsigned int buffer = pkt->__packet.word;
709
710 /* Extract "small" (vs "large"). */
711 bool small = ((buffer & 1) != 0);
712
713 /* Convert "linux_buffer_t" to "va". */
714 void *va = __va((phys_addr_t)(buffer >> 1) << 7);
715
716 /* Extract the packet data pointer. */
717 /* Compare to "NETIO_PKT_CUSTOM_DATA(pkt)". */
718 unsigned char *buf = va + NET_IP_ALIGN;
719
720 /* Invalidate the packet buffer. */
721 if (!hash_default)
722 __inv_buffer(buf, len);
723
724 #ifdef TILE_NET_DUMP_PACKETS
725 dump_packet(buf, len, "rx");
726 #endif /* TILE_NET_DUMP_PACKETS */
727
728 #ifdef TILE_NET_VERIFY_INGRESS
729 if (pkt_status == NETIO_PKT_STATUS_OVERSIZE && len >= 64) {
730 dump_packet(buf, len, "rx");
731 panic("Unexpected OVERSIZE.");
732 }
733 #endif
734
735 filter = 0;
736
737 if (pkt_status == NETIO_PKT_STATUS_BAD) {
738 /* Handle CRC error and hardware truncation. */
739 filter = 2;
740 } else if (!(dev->flags & IFF_UP)) {
741 /* Filter packets received before we're up. */
742 filter = 1;
743 } else if (NETIO_PKT_ETHERTYPE_RECOGNIZED_M(metadata, pkt) &&
744 pkt_status == NETIO_PKT_STATUS_UNDERSIZE) {
745 /* Filter "truncated" packets. */
746 filter = 2;
747 } else if (!(dev->flags & IFF_PROMISC)) {
748 if (!is_multicast_ether_addr(buf)) {
749 /* Filter packets not for our address. */
750 const u8 *mine = dev->dev_addr;
751 filter = !ether_addr_equal(mine, buf);
752 }
753 }
754
755 u64_stats_update_begin(&stats->syncp);
756
757 if (filter != 0) {
758
759 if (filter == 1)
760 stats->rx_dropped++;
761 else
762 stats->rx_errors++;
763
764 tile_net_provide_linux_buffer(info, va, small);
765
766 } else {
767
768 /* Acquire the associated "skb". */
769 struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
770 struct sk_buff *skb = *skb_ptr;
771
772 /* Paranoia. */
773 if (skb->data != buf)
774 panic("Corrupt linux buffer from LIPP! "
775 "VA=%p, skb=%p, skb->data=%p\n",
776 va, skb, skb->data);
777
778 /* Encode the actual packet length. */
779 skb_put(skb, len);
780
781 /* NOTE: This call also sets "skb->dev = dev". */
782 skb->protocol = eth_type_trans(skb, dev);
783
784 /* Avoid recomputing "good" TCP/UDP checksums. */
785 if (NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt))
786 skb->ip_summed = CHECKSUM_UNNECESSARY;
787
788 netif_receive_skb(skb);
789
790 stats->rx_packets++;
791 stats->rx_bytes += len;
792 }
793
794 u64_stats_update_end(&stats->syncp);
795
796 /* ISSUE: It would be nice to defer this until the packet has */
797 /* actually been processed. */
798 tile_net_return_credit(info);
799
800 /* Consume this packet. */
801 qup->__packet_receive_read = index2;
802
803 return !filter;
804 }
805
806
807 /*
808 * Handle some packets for the given device on the current CPU.
809 *
810 * If "tile_net_stop()" is called on some other tile while this
811 * function is running, we will return, hopefully before that
812 * other tile asks us to call "napi_disable()".
813 *
814 * The "rotting packet" race condition occurs if a packet arrives
815 * during the extremely narrow window between the queue appearing to
816 * be empty, and the ingress interrupt being re-enabled. This happens
817 * a LOT under heavy network load.
818 */
819 static int tile_net_poll(struct napi_struct *napi, int budget)
820 {
821 struct net_device *dev = napi->dev;
822 struct tile_net_priv *priv = netdev_priv(dev);
823 int my_cpu = smp_processor_id();
824 struct tile_net_cpu *info = priv->cpu[my_cpu];
825 struct tile_netio_queue *queue = &info->queue;
826 netio_queue_impl_t *qsp = queue->__system_part;
827 netio_queue_user_impl_t *qup = &queue->__user_part;
828
829 unsigned int work = 0;
830
831 if (budget <= 0)
832 goto done;
833
834 while (priv->active) {
835 int index = qup->__packet_receive_read;
836 if (index == qsp->__packet_receive_queue.__packet_write)
837 break;
838
839 if (tile_net_poll_aux(info, index)) {
840 if (++work >= budget)
841 goto done;
842 }
843 }
844
845 napi_complete(&info->napi);
846
847 if (!priv->active)
848 goto done;
849
850 /* Re-enable the ingress interrupt. */
851 enable_percpu_irq(priv->intr_id, 0);
852
853 /* HACK: Avoid the "rotting packet" problem (see above). */
854 if (qup->__packet_receive_read !=
855 qsp->__packet_receive_queue.__packet_write) {
856 /* ISSUE: Sometimes this returns zero, presumably */
857 /* because an interrupt was handled for this tile. */
858 (void)napi_reschedule(&info->napi);
859 }
860
861 done:
862
863 if (priv->active)
864 tile_net_provide_needed_buffers(info);
865
866 return work;
867 }
868
869
870 /*
871 * Handle an ingress interrupt for the given device on the current cpu.
872 *
873 * ISSUE: Sometimes this gets called after "disable_percpu_irq()" has
874 * been called! This is probably due to "pending hypervisor downcalls".
875 *
876 * ISSUE: Is there any race condition between the "napi_schedule()" here
877 * and the "napi_complete()" call above?
878 */
879 static irqreturn_t tile_net_handle_ingress_interrupt(int irq, void *dev_ptr)
880 {
881 struct net_device *dev = (struct net_device *)dev_ptr;
882 struct tile_net_priv *priv = netdev_priv(dev);
883 int my_cpu = smp_processor_id();
884 struct tile_net_cpu *info = priv->cpu[my_cpu];
885
886 /* Disable the ingress interrupt. */
887 disable_percpu_irq(priv->intr_id);
888
889 /* Ignore unwanted interrupts. */
890 if (!priv->active)
891 return IRQ_HANDLED;
892
893 /* ISSUE: Sometimes "info->napi_enabled" is false here. */
894
895 napi_schedule(&info->napi);
896
897 return IRQ_HANDLED;
898 }
899
900
901 /*
902 * One time initialization per interface.
903 */
904 static int tile_net_open_aux(struct net_device *dev)
905 {
906 struct tile_net_priv *priv = netdev_priv(dev);
907
908 int ret;
909 int dummy;
910 unsigned int epp_lotar;
911
912 /*
913 * Find out where EPP memory should be homed.
914 */
915 ret = hv_dev_pread(priv->hv_devhdl, 0,
916 (HV_VirtAddr)&epp_lotar, sizeof(epp_lotar),
917 NETIO_EPP_SHM_OFF);
918 if (ret < 0) {
919 pr_err("could not read epp_shm_queue lotar.\n");
920 return -EIO;
921 }
922
923 /*
924 * Home the page on the EPP.
925 */
926 {
927 int epp_home = hv_lotar_to_cpu(epp_lotar);
928 homecache_change_page_home(priv->eq_pages, EQ_ORDER, epp_home);
929 }
930
931 /*
932 * Register the EPP shared memory queue.
933 */
934 {
935 netio_ipp_address_t ea = {
936 .va = 0,
937 .pa = __pa(priv->eq),
938 .pte = hv_pte(0),
939 .size = EQ_SIZE,
940 };
941 ea.pte = hv_pte_set_lotar(ea.pte, epp_lotar);
942 ea.pte = hv_pte_set_mode(ea.pte, HV_PTE_MODE_CACHE_TILE_L3);
943 ret = hv_dev_pwrite(priv->hv_devhdl, 0,
944 (HV_VirtAddr)&ea,
945 sizeof(ea),
946 NETIO_EPP_SHM_OFF);
947 if (ret < 0)
948 return -EIO;
949 }
950
951 /*
952 * Start LIPP/LEPP.
953 */
954 if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
955 sizeof(dummy), NETIO_IPP_START_SHIM_OFF) < 0) {
956 pr_warn("Failed to start LIPP/LEPP\n");
957 return -EIO;
958 }
959
960 return 0;
961 }
962
963
964 /*
965 * Register with hypervisor on the current CPU.
966 *
967 * Strangely, this function does important things even if it "fails",
968 * which is especially common if the link is not up yet. Hopefully
969 * these things are all "harmless" if done twice!
970 */
971 static void tile_net_register(void *dev_ptr)
972 {
973 struct net_device *dev = (struct net_device *)dev_ptr;
974 struct tile_net_priv *priv = netdev_priv(dev);
975 int my_cpu = smp_processor_id();
976 struct tile_net_cpu *info;
977
978 struct tile_netio_queue *queue;
979
980 /* Only network cpus can receive packets. */
981 int queue_id =
982 cpumask_test_cpu(my_cpu, &priv->network_cpus_map) ? 0 : 255;
983
984 netio_input_config_t config = {
985 .flags = 0,
986 .num_receive_packets = priv->network_cpus_credits,
987 .queue_id = queue_id
988 };
989
990 int ret = 0;
991 netio_queue_impl_t *queuep;
992
993 PDEBUG("tile_net_register(queue_id %d)\n", queue_id);
994
995 if (!strcmp(dev->name, "xgbe0"))
996 info = this_cpu_ptr(&hv_xgbe0);
997 else if (!strcmp(dev->name, "xgbe1"))
998 info = this_cpu_ptr(&hv_xgbe1);
999 else if (!strcmp(dev->name, "gbe0"))
1000 info = this_cpu_ptr(&hv_gbe0);
1001 else if (!strcmp(dev->name, "gbe1"))
1002 info = this_cpu_ptr(&hv_gbe1);
1003 else
1004 BUG();
1005
1006 /* Initialize the egress timer. */
1007 init_timer(&info->egress_timer);
1008 info->egress_timer.data = (long)info;
1009 info->egress_timer.function = tile_net_handle_egress_timer;
1010
1011 u64_stats_init(&info->stats.syncp);
1012
1013 priv->cpu[my_cpu] = info;
1014
1015 /*
1016 * Register ourselves with LIPP. This does a lot of stuff,
1017 * including invoking the LIPP registration code.
1018 */
1019 ret = hv_dev_pwrite(priv->hv_devhdl, 0,
1020 (HV_VirtAddr)&config,
1021 sizeof(netio_input_config_t),
1022 NETIO_IPP_INPUT_REGISTER_OFF);
1023 PDEBUG("hv_dev_pwrite(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1024 ret);
1025 if (ret < 0) {
1026 if (ret != NETIO_LINK_DOWN) {
1027 printk(KERN_DEBUG "hv_dev_pwrite "
1028 "NETIO_IPP_INPUT_REGISTER_OFF failure %d\n",
1029 ret);
1030 }
1031 info->link_down = (ret == NETIO_LINK_DOWN);
1032 return;
1033 }
1034
1035 /*
1036 * Get the pointer to our queue's system part.
1037 */
1038
1039 ret = hv_dev_pread(priv->hv_devhdl, 0,
1040 (HV_VirtAddr)&queuep,
1041 sizeof(netio_queue_impl_t *),
1042 NETIO_IPP_INPUT_REGISTER_OFF);
1043 PDEBUG("hv_dev_pread(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n",
1044 ret);
1045 PDEBUG("queuep %p\n", queuep);
1046 if (ret <= 0) {
1047 /* ISSUE: Shouldn't this be a fatal error? */
1048 pr_err("hv_dev_pread NETIO_IPP_INPUT_REGISTER_OFF failure\n");
1049 return;
1050 }
1051
1052 queue = &info->queue;
1053
1054 queue->__system_part = queuep;
1055
1056 memset(&queue->__user_part, 0, sizeof(netio_queue_user_impl_t));
1057
1058 /* This is traditionally "config.num_receive_packets / 2". */
1059 queue->__user_part.__receive_credit_interval = 4;
1060 queue->__user_part.__receive_credit_remaining =
1061 queue->__user_part.__receive_credit_interval;
1062
1063 /*
1064 * Get a fastio index from the hypervisor.
1065 * ISSUE: Shouldn't this check the result?
1066 */
1067 ret = hv_dev_pread(priv->hv_devhdl, 0,
1068 (HV_VirtAddr)&queue->__user_part.__fastio_index,
1069 sizeof(queue->__user_part.__fastio_index),
1070 NETIO_IPP_GET_FASTIO_OFF);
1071 PDEBUG("hv_dev_pread(NETIO_IPP_GET_FASTIO_OFF) returned %d\n", ret);
1072
1073 /* Now we are registered. */
1074 info->registered = true;
1075 }
1076
1077
1078 /*
1079 * Deregister with hypervisor on the current CPU.
1080 *
1081 * This simply discards all our credits, so no more packets will be
1082 * delivered to this tile. There may still be packets in our queue.
1083 *
1084 * Also, disable the ingress interrupt.
1085 */
1086 static void tile_net_deregister(void *dev_ptr)
1087 {
1088 struct net_device *dev = (struct net_device *)dev_ptr;
1089 struct tile_net_priv *priv = netdev_priv(dev);
1090 int my_cpu = smp_processor_id();
1091 struct tile_net_cpu *info = priv->cpu[my_cpu];
1092
1093 /* Disable the ingress interrupt. */
1094 disable_percpu_irq(priv->intr_id);
1095
1096 /* Do nothing else if not registered. */
1097 if (info == NULL || !info->registered)
1098 return;
1099
1100 {
1101 struct tile_netio_queue *queue = &info->queue;
1102 netio_queue_user_impl_t *qup = &queue->__user_part;
1103
1104 /* Discard all our credits. */
1105 __netio_fastio_return_credits(qup->__fastio_index, -1);
1106 }
1107 }
1108
1109
1110 /*
1111 * Unregister with hypervisor on the current CPU.
1112 *
1113 * Also, disable the ingress interrupt.
1114 */
1115 static void tile_net_unregister(void *dev_ptr)
1116 {
1117 struct net_device *dev = (struct net_device *)dev_ptr;
1118 struct tile_net_priv *priv = netdev_priv(dev);
1119 int my_cpu = smp_processor_id();
1120 struct tile_net_cpu *info = priv->cpu[my_cpu];
1121
1122 int ret;
1123 int dummy = 0;
1124
1125 /* Disable the ingress interrupt. */
1126 disable_percpu_irq(priv->intr_id);
1127
1128 /* Do nothing else if not registered. */
1129 if (info == NULL || !info->registered)
1130 return;
1131
1132 /* Unregister ourselves with LIPP/LEPP. */
1133 ret = hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1134 sizeof(dummy), NETIO_IPP_INPUT_UNREGISTER_OFF);
1135 if (ret < 0)
1136 panic("Failed to unregister with LIPP/LEPP!\n");
1137
1138 /* Discard all packets still in our NetIO queue. */
1139 tile_net_discard_packets(dev);
1140
1141 /* Reset state. */
1142 info->num_needed_small_buffers = 0;
1143 info->num_needed_large_buffers = 0;
1144
1145 /* Cancel egress timer. */
1146 del_timer(&info->egress_timer);
1147 info->egress_timer_scheduled = false;
1148 }
1149
1150
1151 /*
1152 * Helper function for "tile_net_stop()".
1153 *
1154 * Also used to handle registration failure in "tile_net_open_inner()",
1155 * when the various extra steps in "tile_net_stop()" are not necessary.
1156 */
1157 static void tile_net_stop_aux(struct net_device *dev)
1158 {
1159 struct tile_net_priv *priv = netdev_priv(dev);
1160 int i;
1161
1162 int dummy = 0;
1163
1164 /*
1165 * Unregister all tiles, so LIPP will stop delivering packets.
1166 * Also, delete all the "napi" objects (sequentially, to protect
1167 * "dev->napi_list").
1168 */
1169 on_each_cpu(tile_net_unregister, (void *)dev, 1);
1170 for_each_online_cpu(i) {
1171 struct tile_net_cpu *info = priv->cpu[i];
1172 if (info != NULL && info->registered) {
1173 netif_napi_del(&info->napi);
1174 info->registered = false;
1175 }
1176 }
1177
1178 /* Stop LIPP/LEPP. */
1179 if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1180 sizeof(dummy), NETIO_IPP_STOP_SHIM_OFF) < 0)
1181 panic("Failed to stop LIPP/LEPP!\n");
1182
1183 priv->partly_opened = false;
1184 }
1185
1186
1187 /*
1188 * Disable NAPI for the given device on the current cpu.
1189 */
1190 static void tile_net_stop_disable(void *dev_ptr)
1191 {
1192 struct net_device *dev = (struct net_device *)dev_ptr;
1193 struct tile_net_priv *priv = netdev_priv(dev);
1194 int my_cpu = smp_processor_id();
1195 struct tile_net_cpu *info = priv->cpu[my_cpu];
1196
1197 /* Disable NAPI if needed. */
1198 if (info != NULL && info->napi_enabled) {
1199 napi_disable(&info->napi);
1200 info->napi_enabled = false;
1201 }
1202 }
1203
1204
1205 /*
1206 * Enable NAPI and the ingress interrupt for the given device
1207 * on the current cpu.
1208 *
1209 * ISSUE: Only do this for "network cpus"?
1210 */
1211 static void tile_net_open_enable(void *dev_ptr)
1212 {
1213 struct net_device *dev = (struct net_device *)dev_ptr;
1214 struct tile_net_priv *priv = netdev_priv(dev);
1215 int my_cpu = smp_processor_id();
1216 struct tile_net_cpu *info = priv->cpu[my_cpu];
1217
1218 /* Enable NAPI. */
1219 napi_enable(&info->napi);
1220 info->napi_enabled = true;
1221
1222 /* Enable the ingress interrupt. */
1223 enable_percpu_irq(priv->intr_id, 0);
1224 }
1225
1226
1227 /*
1228 * tile_net_open_inner does most of the work of bringing up the interface.
1229 * It's called from tile_net_open(), and also from tile_net_retry_open().
1230 * The return value is 0 if the interface was brought up, < 0 if
1231 * tile_net_open() should return the return value as an error, and > 0 if
1232 * tile_net_open() should return success and schedule a work item to
1233 * periodically retry the bringup.
1234 */
1235 static int tile_net_open_inner(struct net_device *dev)
1236 {
1237 struct tile_net_priv *priv = netdev_priv(dev);
1238 int my_cpu = smp_processor_id();
1239 struct tile_net_cpu *info;
1240 struct tile_netio_queue *queue;
1241 int result = 0;
1242 int i;
1243 int dummy = 0;
1244
1245 /*
1246 * First try to register just on the local CPU, and handle any
1247 * semi-expected "link down" failure specially. Note that we
1248 * do NOT call "tile_net_stop_aux()", unlike below.
1249 */
1250 tile_net_register(dev);
1251 info = priv->cpu[my_cpu];
1252 if (!info->registered) {
1253 if (info->link_down)
1254 return 1;
1255 return -EAGAIN;
1256 }
1257
1258 /*
1259 * Now register everywhere else. If any registration fails,
1260 * even for "link down" (which might not be possible), we
1261 * clean up using "tile_net_stop_aux()". Also, add all the
1262 * "napi" objects (sequentially, to protect "dev->napi_list").
1263 * ISSUE: Only use "netif_napi_add()" for "network cpus"?
1264 */
1265 smp_call_function(tile_net_register, (void *)dev, 1);
1266 for_each_online_cpu(i) {
1267 struct tile_net_cpu *info = priv->cpu[i];
1268 if (info->registered)
1269 netif_napi_add(dev, &info->napi, tile_net_poll, 64);
1270 else
1271 result = -EAGAIN;
1272 }
1273 if (result != 0) {
1274 tile_net_stop_aux(dev);
1275 return result;
1276 }
1277
1278 queue = &info->queue;
1279
1280 if (priv->intr_id == 0) {
1281 unsigned int irq;
1282
1283 /*
1284 * Acquire the irq allocated by the hypervisor. Every
1285 * queue gets the same irq. The "__intr_id" field is
1286 * "1 << irq", so we use "__ffs()" to extract "irq".
1287 */
1288 priv->intr_id = queue->__system_part->__intr_id;
1289 BUG_ON(priv->intr_id == 0);
1290 irq = __ffs(priv->intr_id);
1291
1292 /*
1293 * Register the ingress interrupt handler for this
1294 * device, permanently.
1295 *
1296 * We used to call "free_irq()" in "tile_net_stop()",
1297 * and then re-register the handler here every time,
1298 * but that caused DNP errors in "handle_IRQ_event()"
1299 * because "desc->action" was NULL. See bug 9143.
1300 */
1301 tile_irq_activate(irq, TILE_IRQ_PERCPU);
1302 BUG_ON(request_irq(irq, tile_net_handle_ingress_interrupt,
1303 0, dev->name, (void *)dev) != 0);
1304 }
1305
1306 {
1307 /* Allocate initial buffers. */
1308
1309 int max_buffers =
1310 priv->network_cpus_count * priv->network_cpus_credits;
1311
1312 info->num_needed_small_buffers =
1313 min(LIPP_SMALL_BUFFERS, max_buffers);
1314
1315 info->num_needed_large_buffers =
1316 min(LIPP_LARGE_BUFFERS, max_buffers);
1317
1318 tile_net_provide_needed_buffers(info);
1319
1320 if (info->num_needed_small_buffers != 0 ||
1321 info->num_needed_large_buffers != 0)
1322 panic("Insufficient memory for buffer stack!");
1323 }
1324
1325 /* We are about to be active. */
1326 priv->active = true;
1327
1328 /* Make sure "active" is visible to all tiles. */
1329 mb();
1330
1331 /* On each tile, enable NAPI and the ingress interrupt. */
1332 on_each_cpu(tile_net_open_enable, (void *)dev, 1);
1333
1334 /* Start LIPP/LEPP and activate "ingress" at the shim. */
1335 if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy,
1336 sizeof(dummy), NETIO_IPP_INPUT_INIT_OFF) < 0)
1337 panic("Failed to activate the LIPP Shim!\n");
1338
1339 /* Start our transmit queue. */
1340 netif_start_queue(dev);
1341
1342 return 0;
1343 }
1344
1345
1346 /*
1347 * Called periodically to retry bringing up the NetIO interface,
1348 * if it doesn't come up cleanly during tile_net_open().
1349 */
1350 static void tile_net_open_retry(struct work_struct *w)
1351 {
1352 struct delayed_work *dw =
1353 container_of(w, struct delayed_work, work);
1354
1355 struct tile_net_priv *priv =
1356 container_of(dw, struct tile_net_priv, retry_work);
1357
1358 /*
1359 * Try to bring the NetIO interface up. If it fails, reschedule
1360 * ourselves to try again later; otherwise, tell Linux we now have
1361 * a working link. ISSUE: What if the return value is negative?
1362 */
1363 if (tile_net_open_inner(priv->dev) != 0)
1364 schedule_delayed_work(&priv->retry_work,
1365 TILE_NET_RETRY_INTERVAL);
1366 else
1367 netif_carrier_on(priv->dev);
1368 }
1369
1370
1371 /*
1372 * Called when a network interface is made active.
1373 *
1374 * Returns 0 on success, negative value on failure.
1375 *
1376 * The open entry point is called when a network interface is made
1377 * active by the system (IFF_UP). At this point all resources needed
1378 * for transmit and receive operations are allocated, the interrupt
1379 * handler is registered with the OS (if needed), the watchdog timer
1380 * is started, and the stack is notified that the interface is ready.
1381 *
1382 * If the actual link is not available yet, then we tell Linux that
1383 * we have no carrier, and we keep checking until the link comes up.
1384 */
1385 static int tile_net_open(struct net_device *dev)
1386 {
1387 int ret = 0;
1388 struct tile_net_priv *priv = netdev_priv(dev);
1389
1390 /*
1391 * We rely on priv->partly_opened to tell us if this is the
1392 * first time this interface is being brought up. If it is
1393 * set, the IPP was already initialized and should not be
1394 * initialized again.
1395 */
1396 if (!priv->partly_opened) {
1397
1398 int count;
1399 int credits;
1400
1401 /* Initialize LIPP/LEPP, and start the Shim. */
1402 ret = tile_net_open_aux(dev);
1403 if (ret < 0) {
1404 pr_err("tile_net_open_aux failed: %d\n", ret);
1405 return ret;
1406 }
1407
1408 /* Analyze the network cpus. */
1409
1410 if (network_cpus_used)
1411 cpumask_copy(&priv->network_cpus_map,
1412 &network_cpus_map);
1413 else
1414 cpumask_copy(&priv->network_cpus_map, cpu_online_mask);
1415
1416
1417 count = cpumask_weight(&priv->network_cpus_map);
1418
1419 /* Limit credits to available buffers, and apply min. */
1420 credits = max(16, (LIPP_LARGE_BUFFERS / count) & ~1);
1421
1422 /* Apply "GBE" max limit. */
1423 /* ISSUE: Use higher limit for XGBE? */
1424 credits = min(NETIO_MAX_RECEIVE_PKTS, credits);
1425
1426 priv->network_cpus_count = count;
1427 priv->network_cpus_credits = credits;
1428
1429 #ifdef TILE_NET_DEBUG
1430 pr_info("Using %d network cpus, with %d credits each\n",
1431 priv->network_cpus_count, priv->network_cpus_credits);
1432 #endif
1433
1434 priv->partly_opened = true;
1435
1436 } else {
1437 /* FIXME: Is this possible? */
1438 /* printk("Already partly opened.\n"); */
1439 }
1440
1441 /*
1442 * Attempt to bring up the link.
1443 */
1444 ret = tile_net_open_inner(dev);
1445 if (ret <= 0) {
1446 if (ret == 0)
1447 netif_carrier_on(dev);
1448 return ret;
1449 }
1450
1451 /*
1452 * We were unable to bring up the NetIO interface, but we want to
1453 * try again in a little bit. Tell Linux that we have no carrier
1454 * so it doesn't try to use the interface before the link comes up
1455 * and then remember to try again later.
1456 */
1457 netif_carrier_off(dev);
1458 schedule_delayed_work(&priv->retry_work, TILE_NET_RETRY_INTERVAL);
1459
1460 return 0;
1461 }
1462
1463
1464 static int tile_net_drain_lipp_buffers(struct tile_net_priv *priv)
1465 {
1466 int n = 0;
1467
1468 /* Drain all the LIPP buffers. */
1469 while (true) {
1470 unsigned int buffer;
1471
1472 /* NOTE: This should never fail. */
1473 if (hv_dev_pread(priv->hv_devhdl, 0, (HV_VirtAddr)&buffer,
1474 sizeof(buffer), NETIO_IPP_DRAIN_OFF) < 0)
1475 break;
1476
1477 /* Stop when done. */
1478 if (buffer == 0)
1479 break;
1480
1481 {
1482 /* Convert "linux_buffer_t" to "va". */
1483 void *va = __va((phys_addr_t)(buffer >> 1) << 7);
1484
1485 /* Acquire the associated "skb". */
1486 struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
1487 struct sk_buff *skb = *skb_ptr;
1488
1489 kfree_skb(skb);
1490 }
1491
1492 n++;
1493 }
1494
1495 return n;
1496 }
1497
1498
1499 /*
1500 * Disables a network interface.
1501 *
1502 * Returns 0, this is not allowed to fail.
1503 *
1504 * The close entry point is called when an interface is de-activated
1505 * by the OS. The hardware is still under the drivers control, but
1506 * needs to be disabled. A global MAC reset is issued to stop the
1507 * hardware, and all transmit and receive resources are freed.
1508 *
1509 * ISSUE: How closely does "netif_running(dev)" mirror "priv->active"?
1510 *
1511 * Before we are called by "__dev_close()", "netif_running()" will
1512 * have been cleared, so no NEW calls to "tile_net_poll()" will be
1513 * made by "netpoll_poll_dev()".
1514 *
1515 * Often, this can cause some tiles to still have packets in their
1516 * queues, so we must call "tile_net_discard_packets()" later.
1517 *
1518 * Note that some other tile may still be INSIDE "tile_net_poll()",
1519 * and in fact, many will be, if there is heavy network load.
1520 *
1521 * Calling "on_each_cpu(tile_net_stop_disable, (void *)dev, 1)" when
1522 * any tile is still "napi_schedule()"'d will induce a horrible crash
1523 * when "msleep()" is called. This includes tiles which are inside
1524 * "tile_net_poll()" which have not yet called "napi_complete()".
1525 *
1526 * So, we must first try to wait long enough for other tiles to finish
1527 * with any current "tile_net_poll()" call, and, hopefully, to clear
1528 * the "scheduled" flag. ISSUE: It is unclear what happens to tiles
1529 * which have called "napi_schedule()" but which had not yet tried to
1530 * call "tile_net_poll()", or which exhausted their budget inside
1531 * "tile_net_poll()" just before this function was called.
1532 */
1533 static int tile_net_stop(struct net_device *dev)
1534 {
1535 struct tile_net_priv *priv = netdev_priv(dev);
1536
1537 PDEBUG("tile_net_stop()\n");
1538
1539 /* Start discarding packets. */
1540 priv->active = false;
1541
1542 /* Make sure "active" is visible to all tiles. */
1543 mb();
1544
1545 /*
1546 * On each tile, make sure no NEW packets get delivered, and
1547 * disable the ingress interrupt.
1548 *
1549 * Note that the ingress interrupt can fire AFTER this,
1550 * presumably due to packets which were recently delivered,
1551 * but it will have no effect.
1552 */
1553 on_each_cpu(tile_net_deregister, (void *)dev, 1);
1554
1555 /* Optimistically drain LIPP buffers. */
1556 (void)tile_net_drain_lipp_buffers(priv);
1557
1558 /* ISSUE: Only needed if not yet fully open. */
1559 cancel_delayed_work_sync(&priv->retry_work);
1560
1561 /* Can't transmit any more. */
1562 netif_stop_queue(dev);
1563
1564 /* Disable NAPI on each tile. */
1565 on_each_cpu(tile_net_stop_disable, (void *)dev, 1);
1566
1567 /*
1568 * Drain any remaining LIPP buffers. NOTE: This "printk()"
1569 * has never been observed, but in theory it could happen.
1570 */
1571 if (tile_net_drain_lipp_buffers(priv) != 0)
1572 printk("Had to drain some extra LIPP buffers!\n");
1573
1574 /* Stop LIPP/LEPP. */
1575 tile_net_stop_aux(dev);
1576
1577 /*
1578 * ISSUE: It appears that, in practice anyway, by the time we
1579 * get here, there are no pending completions, but just in case,
1580 * we free (all of) them anyway.
1581 */
1582 while (tile_net_lepp_free_comps(dev, true))
1583 /* loop */;
1584
1585 /* Wipe the EPP queue, and wait till the stores hit the EPP. */
1586 memset(priv->eq, 0, sizeof(lepp_queue_t));
1587 mb();
1588
1589 return 0;
1590 }
1591
1592
1593 /*
1594 * Prepare the "frags" info for the resulting LEPP command.
1595 *
1596 * If needed, flush the memory used by the frags.
1597 */
1598 static unsigned int tile_net_tx_frags(lepp_frag_t *frags,
1599 struct sk_buff *skb,
1600 void *b_data, unsigned int b_len)
1601 {
1602 unsigned int i, n = 0;
1603
1604 struct skb_shared_info *sh = skb_shinfo(skb);
1605
1606 phys_addr_t cpa;
1607
1608 if (b_len != 0) {
1609
1610 if (!hash_default)
1611 finv_buffer_remote(b_data, b_len, 0);
1612
1613 cpa = __pa(b_data);
1614 frags[n].cpa_lo = cpa;
1615 frags[n].cpa_hi = cpa >> 32;
1616 frags[n].length = b_len;
1617 frags[n].hash_for_home = hash_default;
1618 n++;
1619 }
1620
1621 for (i = 0; i < sh->nr_frags; i++) {
1622
1623 skb_frag_t *f = &sh->frags[i];
1624 unsigned long pfn = page_to_pfn(skb_frag_page(f));
1625
1626 /* FIXME: Compute "hash_for_home" properly. */
1627 /* ISSUE: The hypervisor checks CHIP_HAS_REV1_DMA_PACKETS(). */
1628 int hash_for_home = hash_default;
1629
1630 /* FIXME: Hmmm. */
1631 if (!hash_default) {
1632 void *va = pfn_to_kaddr(pfn) + f->page_offset;
1633 BUG_ON(PageHighMem(skb_frag_page(f)));
1634 finv_buffer_remote(va, skb_frag_size(f), 0);
1635 }
1636
1637 cpa = ((phys_addr_t)pfn << PAGE_SHIFT) + f->page_offset;
1638 frags[n].cpa_lo = cpa;
1639 frags[n].cpa_hi = cpa >> 32;
1640 frags[n].length = skb_frag_size(f);
1641 frags[n].hash_for_home = hash_for_home;
1642 n++;
1643 }
1644
1645 return n;
1646 }
1647
1648
1649 /*
1650 * This function takes "skb", consisting of a header template and a
1651 * payload, and hands it to LEPP, to emit as one or more segments,
1652 * each consisting of a possibly modified header, plus a piece of the
1653 * payload, via a process known as "tcp segmentation offload".
1654 *
1655 * Usually, "data" will contain the header template, of size "sh_len",
1656 * and "sh->frags" will contain "skb->data_len" bytes of payload, and
1657 * there will be "sh->gso_segs" segments.
1658 *
1659 * Sometimes, if "sendfile()" requires copying, we will be called with
1660 * "data" containing the header and payload, with "frags" being empty.
1661 *
1662 * Sometimes, for example when using NFS over TCP, a single segment can
1663 * span 3 fragments, which must be handled carefully in LEPP.
1664 *
1665 * See "emulate_large_send_offload()" for some reference code, which
1666 * does not handle checksumming.
1667 *
1668 * ISSUE: How do we make sure that high memory DMA does not migrate?
1669 */
1670 static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
1671 {
1672 struct tile_net_priv *priv = netdev_priv(dev);
1673 int my_cpu = smp_processor_id();
1674 struct tile_net_cpu *info = priv->cpu[my_cpu];
1675 struct tile_net_stats_t *stats = &info->stats;
1676
1677 struct skb_shared_info *sh = skb_shinfo(skb);
1678
1679 unsigned char *data = skb->data;
1680
1681 /* The ip header follows the ethernet header. */
1682 struct iphdr *ih = ip_hdr(skb);
1683 unsigned int ih_len = ih->ihl * 4;
1684
1685 /* Note that "nh == ih", by definition. */
1686 unsigned char *nh = skb_network_header(skb);
1687 unsigned int eh_len = nh - data;
1688
1689 /* The tcp header follows the ip header. */
1690 struct tcphdr *th = (struct tcphdr *)(nh + ih_len);
1691 unsigned int th_len = th->doff * 4;
1692
1693 /* The total number of header bytes. */
1694 /* NOTE: This may be less than skb_headlen(skb). */
1695 unsigned int sh_len = eh_len + ih_len + th_len;
1696
1697 /* The number of payload bytes at "skb->data + sh_len". */
1698 /* This is non-zero for sendfile() without HIGHDMA. */
1699 unsigned int b_len = skb_headlen(skb) - sh_len;
1700
1701 /* The total number of payload bytes. */
1702 unsigned int d_len = b_len + skb->data_len;
1703
1704 /* The maximum payload size. */
1705 unsigned int p_len = sh->gso_size;
1706
1707 /* The total number of segments. */
1708 unsigned int num_segs = sh->gso_segs;
1709
1710 /* The temporary copy of the command. */
1711 u32 cmd_body[(LEPP_MAX_CMD_SIZE + 3) / 4];
1712 lepp_tso_cmd_t *cmd = (lepp_tso_cmd_t *)cmd_body;
1713
1714 /* Analyze the "frags". */
1715 unsigned int num_frags =
1716 tile_net_tx_frags(cmd->frags, skb, data + sh_len, b_len);
1717
1718 /* The size of the command, including frags and header. */
1719 size_t cmd_size = LEPP_TSO_CMD_SIZE(num_frags, sh_len);
1720
1721 /* The command header. */
1722 lepp_tso_cmd_t cmd_init = {
1723 .tso = true,
1724 .header_size = sh_len,
1725 .ip_offset = eh_len,
1726 .tcp_offset = eh_len + ih_len,
1727 .payload_size = p_len,
1728 .num_frags = num_frags,
1729 };
1730
1731 unsigned long irqflags;
1732
1733 lepp_queue_t *eq = priv->eq;
1734
1735 struct sk_buff *olds[8];
1736 unsigned int wanted = 8;
1737 unsigned int i, nolds = 0;
1738
1739 unsigned int cmd_head, cmd_tail, cmd_next;
1740 unsigned int comp_tail;
1741
1742
1743 /* Paranoia. */
1744 BUG_ON(skb->protocol != htons(ETH_P_IP));
1745 BUG_ON(ih->protocol != IPPROTO_TCP);
1746 BUG_ON(skb->ip_summed != CHECKSUM_PARTIAL);
1747 BUG_ON(num_frags > LEPP_MAX_FRAGS);
1748 /*--BUG_ON(num_segs != (d_len + (p_len - 1)) / p_len); */
1749 BUG_ON(num_segs <= 1);
1750
1751
1752 /* Finish preparing the command. */
1753
1754 /* Copy the command header. */
1755 *cmd = cmd_init;
1756
1757 /* Copy the "header". */
1758 memcpy(&cmd->frags[num_frags], data, sh_len);
1759
1760
1761 /* Prefetch and wait, to minimize time spent holding the spinlock. */
1762 prefetch_L1(&eq->comp_tail);
1763 prefetch_L1(&eq->cmd_tail);
1764 mb();
1765
1766
1767 /* Enqueue the command. */
1768
1769 spin_lock_irqsave(&priv->eq_lock, irqflags);
1770
1771 /* Handle completions if needed to make room. */
1772 /* NOTE: Return NETDEV_TX_BUSY if there is still no room. */
1773 if (lepp_num_free_comp_slots(eq) == 0) {
1774 nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
1775 if (nolds == 0) {
1776 busy:
1777 spin_unlock_irqrestore(&priv->eq_lock, irqflags);
1778 return NETDEV_TX_BUSY;
1779 }
1780 }
1781
1782 cmd_head = eq->cmd_head;
1783 cmd_tail = eq->cmd_tail;
1784
1785 /* Prepare to advance, detecting full queue. */
1786 /* NOTE: Return NETDEV_TX_BUSY if the queue is full. */
1787 cmd_next = cmd_tail + cmd_size;
1788 if (cmd_tail < cmd_head && cmd_next >= cmd_head)
1789 goto busy;
1790 if (cmd_next > LEPP_CMD_LIMIT) {
1791 cmd_next = 0;
1792 if (cmd_next == cmd_head)
1793 goto busy;
1794 }
1795
1796 /* Copy the command. */
1797 memcpy(&eq->cmds[cmd_tail], cmd, cmd_size);
1798
1799 /* Advance. */
1800 cmd_tail = cmd_next;
1801
1802 /* Record "skb" for eventual freeing. */
1803 comp_tail = eq->comp_tail;
1804 eq->comps[comp_tail] = skb;
1805 LEPP_QINC(comp_tail);
1806 eq->comp_tail = comp_tail;
1807
1808 /* Flush before allowing LEPP to handle the command. */
1809 /* ISSUE: Is this the optimal location for the flush? */
1810 __insn_mf();
1811
1812 eq->cmd_tail = cmd_tail;
1813
1814 /* NOTE: Using "4" here is more efficient than "0" or "2", */
1815 /* and, strangely, more efficient than pre-checking the number */
1816 /* of available completions, and comparing it to 4. */
1817 if (nolds == 0)
1818 nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4);
1819
1820 spin_unlock_irqrestore(&priv->eq_lock, irqflags);
1821
1822 /* Handle completions. */
1823 for (i = 0; i < nolds; i++)
1824 dev_consume_skb_any(olds[i]);
1825
1826 /* Update stats. */
1827 u64_stats_update_begin(&stats->syncp);
1828 stats->tx_packets += num_segs;
1829 stats->tx_bytes += (num_segs * sh_len) + d_len;
1830 u64_stats_update_end(&stats->syncp);
1831
1832 /* Make sure the egress timer is scheduled. */
1833 tile_net_schedule_egress_timer(info);
1834
1835 return NETDEV_TX_OK;
1836 }
1837
1838
1839 /*
1840 * Transmit a packet (called by the kernel via "hard_start_xmit" hook).
1841 */
1842 static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
1843 {
1844 struct tile_net_priv *priv = netdev_priv(dev);
1845 int my_cpu = smp_processor_id();
1846 struct tile_net_cpu *info = priv->cpu[my_cpu];
1847 struct tile_net_stats_t *stats = &info->stats;
1848
1849 unsigned long irqflags;
1850
1851 struct skb_shared_info *sh = skb_shinfo(skb);
1852
1853 unsigned int len = skb->len;
1854 unsigned char *data = skb->data;
1855
1856 unsigned int csum_start = skb_checksum_start_offset(skb);
1857
1858 lepp_frag_t frags[1 + MAX_SKB_FRAGS];
1859
1860 unsigned int num_frags;
1861
1862 lepp_queue_t *eq = priv->eq;
1863
1864 struct sk_buff *olds[8];
1865 unsigned int wanted = 8;
1866 unsigned int i, nolds = 0;
1867
1868 unsigned int cmd_size = sizeof(lepp_cmd_t);
1869
1870 unsigned int cmd_head, cmd_tail, cmd_next;
1871 unsigned int comp_tail;
1872
1873 lepp_cmd_t cmds[1 + MAX_SKB_FRAGS];
1874
1875
1876 /*
1877 * This is paranoia, since we think that if the link doesn't come
1878 * up, telling Linux we have no carrier will keep it from trying
1879 * to transmit. If it does, though, we can't execute this routine,
1880 * since data structures we depend on aren't set up yet.
1881 */
1882 if (!info->registered)
1883 return NETDEV_TX_BUSY;
1884
1885
1886 /* Save the timestamp. */
1887 dev->trans_start = jiffies;
1888
1889
1890 #ifdef TILE_NET_PARANOIA
1891 #if CHIP_HAS_CBOX_HOME_MAP()
1892 if (hash_default) {
1893 HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)data);
1894 if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3)
1895 panic("Non-HFH egress buffer! VA=%p Mode=%d PTE=%llx",
1896 data, hv_pte_get_mode(pte), hv_pte_val(pte));
1897 }
1898 #endif
1899 #endif
1900
1901
1902 #ifdef TILE_NET_DUMP_PACKETS
1903 /* ISSUE: Does not dump the "frags". */
1904 dump_packet(data, skb_headlen(skb), "tx");
1905 #endif /* TILE_NET_DUMP_PACKETS */
1906
1907
1908 if (sh->gso_size != 0)
1909 return tile_net_tx_tso(skb, dev);
1910
1911
1912 /* Prepare the commands. */
1913
1914 num_frags = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
1915
1916 for (i = 0; i < num_frags; i++) {
1917
1918 bool final = (i == num_frags - 1);
1919
1920 lepp_cmd_t cmd = {
1921 .cpa_lo = frags[i].cpa_lo,
1922 .cpa_hi = frags[i].cpa_hi,
1923 .length = frags[i].length,
1924 .hash_for_home = frags[i].hash_for_home,
1925 .send_completion = final,
1926 .end_of_packet = final
1927 };
1928
1929 if (i == 0 && skb->ip_summed == CHECKSUM_PARTIAL) {
1930 cmd.compute_checksum = 1;
1931 cmd.checksum_data.bits.start_byte = csum_start;
1932 cmd.checksum_data.bits.count = len - csum_start;
1933 cmd.checksum_data.bits.destination_byte =
1934 csum_start + skb->csum_offset;
1935 }
1936
1937 cmds[i] = cmd;
1938 }
1939
1940
1941 /* Prefetch and wait, to minimize time spent holding the spinlock. */
1942 prefetch_L1(&eq->comp_tail);
1943 prefetch_L1(&eq->cmd_tail);
1944 mb();
1945
1946
1947 /* Enqueue the commands. */
1948
1949 spin_lock_irqsave(&priv->eq_lock, irqflags);
1950
1951 /* Handle completions if needed to make room. */
1952 /* NOTE: Return NETDEV_TX_BUSY if there is still no room. */
1953 if (lepp_num_free_comp_slots(eq) == 0) {
1954 nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0);
1955 if (nolds == 0) {
1956 busy:
1957 spin_unlock_irqrestore(&priv->eq_lock, irqflags);
1958 return NETDEV_TX_BUSY;
1959 }
1960 }
1961
1962 cmd_head = eq->cmd_head;
1963 cmd_tail = eq->cmd_tail;
1964
1965 /* Copy the commands, or fail. */
1966 /* NOTE: Return NETDEV_TX_BUSY if the queue is full. */
1967 for (i = 0; i < num_frags; i++) {
1968
1969 /* Prepare to advance, detecting full queue. */
1970 cmd_next = cmd_tail + cmd_size;
1971 if (cmd_tail < cmd_head && cmd_next >= cmd_head)
1972 goto busy;
1973 if (cmd_next > LEPP_CMD_LIMIT) {
1974 cmd_next = 0;
1975 if (cmd_next == cmd_head)
1976 goto busy;
1977 }
1978
1979 /* Copy the command. */
1980 *(lepp_cmd_t *)&eq->cmds[cmd_tail] = cmds[i];
1981
1982 /* Advance. */
1983 cmd_tail = cmd_next;
1984 }
1985
1986 /* Record "skb" for eventual freeing. */
1987 comp_tail = eq->comp_tail;
1988 eq->comps[comp_tail] = skb;
1989 LEPP_QINC(comp_tail);
1990 eq->comp_tail = comp_tail;
1991
1992 /* Flush before allowing LEPP to handle the command. */
1993 /* ISSUE: Is this the optimal location for the flush? */
1994 __insn_mf();
1995
1996 eq->cmd_tail = cmd_tail;
1997
1998 /* NOTE: Using "4" here is more efficient than "0" or "2", */
1999 /* and, strangely, more efficient than pre-checking the number */
2000 /* of available completions, and comparing it to 4. */
2001 if (nolds == 0)
2002 nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4);
2003
2004 spin_unlock_irqrestore(&priv->eq_lock, irqflags);
2005
2006 /* Handle completions. */
2007 for (i = 0; i < nolds; i++)
2008 dev_consume_skb_any(olds[i]);
2009
2010 /* HACK: Track "expanded" size for short packets (e.g. 42 < 60). */
2011 u64_stats_update_begin(&stats->syncp);
2012 stats->tx_packets++;
2013 stats->tx_bytes += ((len >= ETH_ZLEN) ? len : ETH_ZLEN);
2014 u64_stats_update_end(&stats->syncp);
2015
2016 /* Make sure the egress timer is scheduled. */
2017 tile_net_schedule_egress_timer(info);
2018
2019 return NETDEV_TX_OK;
2020 }
2021
2022
2023 /*
2024 * Deal with a transmit timeout.
2025 */
2026 static void tile_net_tx_timeout(struct net_device *dev)
2027 {
2028 PDEBUG("tile_net_tx_timeout()\n");
2029 PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies,
2030 jiffies - dev->trans_start);
2031
2032 /* XXX: ISSUE: This doesn't seem useful for us. */
2033 netif_wake_queue(dev);
2034 }
2035
2036
2037 /*
2038 * Ioctl commands.
2039 */
2040 static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2041 {
2042 return -EOPNOTSUPP;
2043 }
2044
2045
2046 /*
2047 * Get System Network Statistics.
2048 *
2049 * Returns the address of the device statistics structure.
2050 */
2051 static struct rtnl_link_stats64 *tile_net_get_stats64(struct net_device *dev,
2052 struct rtnl_link_stats64 *stats)
2053 {
2054 struct tile_net_priv *priv = netdev_priv(dev);
2055 u64 rx_packets = 0, tx_packets = 0;
2056 u64 rx_bytes = 0, tx_bytes = 0;
2057 u64 rx_errors = 0, rx_dropped = 0;
2058 int i;
2059
2060 for_each_online_cpu(i) {
2061 struct tile_net_stats_t *cpu_stats;
2062 u64 trx_packets, ttx_packets, trx_bytes, ttx_bytes;
2063 u64 trx_errors, trx_dropped;
2064 unsigned int start;
2065
2066 if (priv->cpu[i] == NULL)
2067 continue;
2068 cpu_stats = &priv->cpu[i]->stats;
2069
2070 do {
2071 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
2072 trx_packets = cpu_stats->rx_packets;
2073 ttx_packets = cpu_stats->tx_packets;
2074 trx_bytes = cpu_stats->rx_bytes;
2075 ttx_bytes = cpu_stats->tx_bytes;
2076 trx_errors = cpu_stats->rx_errors;
2077 trx_dropped = cpu_stats->rx_dropped;
2078 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
2079
2080 rx_packets += trx_packets;
2081 tx_packets += ttx_packets;
2082 rx_bytes += trx_bytes;
2083 tx_bytes += ttx_bytes;
2084 rx_errors += trx_errors;
2085 rx_dropped += trx_dropped;
2086 }
2087
2088 stats->rx_packets = rx_packets;
2089 stats->tx_packets = tx_packets;
2090 stats->rx_bytes = rx_bytes;
2091 stats->tx_bytes = tx_bytes;
2092 stats->rx_errors = rx_errors;
2093 stats->rx_dropped = rx_dropped;
2094
2095 return stats;
2096 }
2097
2098
2099 /*
2100 * Change the "mtu".
2101 *
2102 * The "change_mtu" method is usually not needed.
2103 * If you need it, it must be like this.
2104 */
2105 static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
2106 {
2107 PDEBUG("tile_net_change_mtu()\n");
2108
2109 /* Check ranges. */
2110 if ((new_mtu < 68) || (new_mtu > 1500))
2111 return -EINVAL;
2112
2113 /* Accept the value. */
2114 dev->mtu = new_mtu;
2115
2116 return 0;
2117 }
2118
2119
2120 /*
2121 * Change the Ethernet Address of the NIC.
2122 *
2123 * The hypervisor driver does not support changing MAC address. However,
2124 * the IPP does not do anything with the MAC address, so the address which
2125 * gets used on outgoing packets, and which is accepted on incoming packets,
2126 * is completely up to the NetIO program or kernel driver which is actually
2127 * handling them.
2128 *
2129 * Returns 0 on success, negative on failure.
2130 */
2131 static int tile_net_set_mac_address(struct net_device *dev, void *p)
2132 {
2133 struct sockaddr *addr = p;
2134
2135 if (!is_valid_ether_addr(addr->sa_data))
2136 return -EADDRNOTAVAIL;
2137
2138 /* ISSUE: Note that "dev_addr" is now a pointer. */
2139 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2140
2141 return 0;
2142 }
2143
2144
2145 /*
2146 * Obtain the MAC address from the hypervisor.
2147 * This must be done before opening the device.
2148 */
2149 static int tile_net_get_mac(struct net_device *dev)
2150 {
2151 struct tile_net_priv *priv = netdev_priv(dev);
2152
2153 char hv_dev_name[32];
2154 int len;
2155
2156 __netio_getset_offset_t offset = { .word = NETIO_IPP_PARAM_OFF };
2157
2158 int ret;
2159
2160 /* For example, "xgbe0". */
2161 strcpy(hv_dev_name, dev->name);
2162 len = strlen(hv_dev_name);
2163
2164 /* For example, "xgbe/0". */
2165 hv_dev_name[len] = hv_dev_name[len - 1];
2166 hv_dev_name[len - 1] = '/';
2167 len++;
2168
2169 /* For example, "xgbe/0/native_hash". */
2170 strcpy(hv_dev_name + len, hash_default ? "/native_hash" : "/native");
2171
2172 /* Get the hypervisor handle for this device. */
2173 priv->hv_devhdl = hv_dev_open((HV_VirtAddr)hv_dev_name, 0);
2174 PDEBUG("hv_dev_open(%s) returned %d %p\n",
2175 hv_dev_name, priv->hv_devhdl, &priv->hv_devhdl);
2176 if (priv->hv_devhdl < 0) {
2177 if (priv->hv_devhdl == HV_ENODEV)
2178 printk(KERN_DEBUG "Ignoring unconfigured device %s\n",
2179 hv_dev_name);
2180 else
2181 printk(KERN_DEBUG "hv_dev_open(%s) returned %d\n",
2182 hv_dev_name, priv->hv_devhdl);
2183 return -1;
2184 }
2185
2186 /*
2187 * Read the hardware address from the hypervisor.
2188 * ISSUE: Note that "dev_addr" is now a pointer.
2189 */
2190 offset.bits.class = NETIO_PARAM;
2191 offset.bits.addr = NETIO_PARAM_MAC;
2192 ret = hv_dev_pread(priv->hv_devhdl, 0,
2193 (HV_VirtAddr)dev->dev_addr, dev->addr_len,
2194 offset.word);
2195 PDEBUG("hv_dev_pread(NETIO_PARAM_MAC) returned %d\n", ret);
2196 if (ret <= 0) {
2197 printk(KERN_DEBUG "hv_dev_pread(NETIO_PARAM_MAC) %s failed\n",
2198 dev->name);
2199 /*
2200 * Since the device is configured by the hypervisor but we
2201 * can't get its MAC address, we are most likely running
2202 * the simulator, so let's generate a random MAC address.
2203 */
2204 eth_hw_addr_random(dev);
2205 }
2206
2207 return 0;
2208 }
2209
2210
2211 #ifdef CONFIG_NET_POLL_CONTROLLER
2212 /*
2213 * Polling 'interrupt' - used by things like netconsole to send skbs
2214 * without having to re-enable interrupts. It's not called while
2215 * the interrupt routine is executing.
2216 */
2217 static void tile_net_netpoll(struct net_device *dev)
2218 {
2219 struct tile_net_priv *priv = netdev_priv(dev);
2220 disable_percpu_irq(priv->intr_id);
2221 tile_net_handle_ingress_interrupt(priv->intr_id, dev);
2222 enable_percpu_irq(priv->intr_id, 0);
2223 }
2224 #endif
2225
2226
2227 static const struct net_device_ops tile_net_ops = {
2228 .ndo_open = tile_net_open,
2229 .ndo_stop = tile_net_stop,
2230 .ndo_start_xmit = tile_net_tx,
2231 .ndo_do_ioctl = tile_net_ioctl,
2232 .ndo_get_stats64 = tile_net_get_stats64,
2233 .ndo_change_mtu = tile_net_change_mtu,
2234 .ndo_tx_timeout = tile_net_tx_timeout,
2235 .ndo_set_mac_address = tile_net_set_mac_address,
2236 #ifdef CONFIG_NET_POLL_CONTROLLER
2237 .ndo_poll_controller = tile_net_netpoll,
2238 #endif
2239 };
2240
2241
2242 /*
2243 * The setup function.
2244 *
2245 * This uses ether_setup() to assign various fields in dev, including
2246 * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
2247 */
2248 static void tile_net_setup(struct net_device *dev)
2249 {
2250 netdev_features_t features = 0;
2251
2252 ether_setup(dev);
2253 dev->netdev_ops = &tile_net_ops;
2254 dev->watchdog_timeo = TILE_NET_TIMEOUT;
2255 dev->tx_queue_len = TILE_NET_TX_QUEUE_LEN;
2256 dev->mtu = TILE_NET_MTU;
2257
2258 features |= NETIF_F_HW_CSUM;
2259 features |= NETIF_F_SG;
2260
2261 /* We support TSO iff the HV supports sufficient frags. */
2262 if (LEPP_MAX_FRAGS >= 1 + MAX_SKB_FRAGS)
2263 features |= NETIF_F_TSO;
2264
2265 /* We can't support HIGHDMA without hash_default, since we need
2266 * to be able to finv() with a VA if we don't have hash_default.
2267 */
2268 if (hash_default)
2269 features |= NETIF_F_HIGHDMA;
2270
2271 dev->hw_features |= features;
2272 dev->vlan_features |= features;
2273 dev->features |= features;
2274 }
2275
2276
2277 /*
2278 * Allocate the device structure, register the device, and obtain the
2279 * MAC address from the hypervisor.
2280 */
2281 static struct net_device *tile_net_dev_init(const char *name)
2282 {
2283 int ret;
2284 struct net_device *dev;
2285 struct tile_net_priv *priv;
2286
2287 /*
2288 * Allocate the device structure. This allocates "priv", calls
2289 * tile_net_setup(), and saves "name". Normally, "name" is a
2290 * template, instantiated by register_netdev(), but not for us.
2291 */
2292 dev = alloc_netdev(sizeof(*priv), name, NET_NAME_UNKNOWN,
2293 tile_net_setup);
2294 if (!dev) {
2295 pr_err("alloc_netdev(%s) failed\n", name);
2296 return NULL;
2297 }
2298
2299 priv = netdev_priv(dev);
2300
2301 /* Initialize "priv". */
2302
2303 memset(priv, 0, sizeof(*priv));
2304
2305 /* Save "dev" for "tile_net_open_retry()". */
2306 priv->dev = dev;
2307
2308 INIT_DELAYED_WORK(&priv->retry_work, tile_net_open_retry);
2309
2310 spin_lock_init(&priv->eq_lock);
2311
2312 /* Allocate "eq". */
2313 priv->eq_pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, EQ_ORDER);
2314 if (!priv->eq_pages) {
2315 free_netdev(dev);
2316 return NULL;
2317 }
2318 priv->eq = page_address(priv->eq_pages);
2319
2320 /* Register the network device. */
2321 ret = register_netdev(dev);
2322 if (ret) {
2323 pr_err("register_netdev %s failed %d\n", dev->name, ret);
2324 __free_pages(priv->eq_pages, EQ_ORDER);
2325 free_netdev(dev);
2326 return NULL;
2327 }
2328
2329 /* Get the MAC address. */
2330 ret = tile_net_get_mac(dev);
2331 if (ret < 0) {
2332 unregister_netdev(dev);
2333 __free_pages(priv->eq_pages, EQ_ORDER);
2334 free_netdev(dev);
2335 return NULL;
2336 }
2337
2338 return dev;
2339 }
2340
2341
2342 /*
2343 * Module cleanup.
2344 *
2345 * FIXME: If compiled as a module, this module cannot be "unloaded",
2346 * because the "ingress interrupt handler" is registered permanently.
2347 */
2348 static void tile_net_cleanup(void)
2349 {
2350 int i;
2351
2352 for (i = 0; i < TILE_NET_DEVS; i++) {
2353 if (tile_net_devs[i]) {
2354 struct net_device *dev = tile_net_devs[i];
2355 struct tile_net_priv *priv = netdev_priv(dev);
2356 unregister_netdev(dev);
2357 finv_buffer_remote(priv->eq, EQ_SIZE, 0);
2358 __free_pages(priv->eq_pages, EQ_ORDER);
2359 free_netdev(dev);
2360 }
2361 }
2362 }
2363
2364
2365 /*
2366 * Module initialization.
2367 */
2368 static int tile_net_init_module(void)
2369 {
2370 pr_info("Tilera Network Driver\n");
2371
2372 tile_net_devs[0] = tile_net_dev_init("xgbe0");
2373 tile_net_devs[1] = tile_net_dev_init("xgbe1");
2374 tile_net_devs[2] = tile_net_dev_init("gbe0");
2375 tile_net_devs[3] = tile_net_dev_init("gbe1");
2376
2377 return 0;
2378 }
2379
2380
2381 module_init(tile_net_init_module);
2382 module_exit(tile_net_cleanup);
2383
2384
2385 #ifndef MODULE
2386
2387 /*
2388 * The "network_cpus" boot argument specifies the cpus that are dedicated
2389 * to handle ingress packets.
2390 *
2391 * The parameter should be in the form "network_cpus=m-n[,x-y]", where
2392 * m, n, x, y are integer numbers that represent the cpus that can be
2393 * neither a dedicated cpu nor a dataplane cpu.
2394 */
2395 static int __init network_cpus_setup(char *str)
2396 {
2397 int rc = cpulist_parse_crop(str, &network_cpus_map);
2398 if (rc != 0) {
2399 pr_warn("network_cpus=%s: malformed cpu list\n", str);
2400 } else {
2401
2402 /* Remove dedicated cpus. */
2403 cpumask_and(&network_cpus_map, &network_cpus_map,
2404 cpu_possible_mask);
2405
2406
2407 if (cpumask_empty(&network_cpus_map)) {
2408 pr_warn("Ignoring network_cpus='%s'\n", str);
2409 } else {
2410 pr_info("Linux network CPUs: %*pbl\n",
2411 cpumask_pr_args(&network_cpus_map));
2412 network_cpus_used = true;
2413 }
2414 }
2415
2416 return 0;
2417 }
2418 __setup("network_cpus=", network_cpus_setup);
2419
2420 #endif
This page took 0.088337 seconds and 5 git commands to generate.