Merge tag 'drm-intel-next-fixes-2016-05-25' of git://anongit.freedesktop.org/drm...
[deliverable/linux.git] / drivers / net / ethernet / toshiba / tc35815.c
1 /*
2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3 *
4 * Based on skelton.c by Donald Becker.
5 *
6 * This driver is a replacement of older and less maintained version.
7 * This is a header of the older version:
8 * -----<snip>-----
9 * Copyright 2001 MontaVista Software Inc.
10 * Author: MontaVista Software, Inc.
11 * ahennessy@mvista.com
12 * Copyright (C) 2000-2001 Toshiba Corporation
13 * static const char *version =
14 * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15 * -----<snip>-----
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file "COPYING" in the main directory of this archive
19 * for more details.
20 *
21 * (C) Copyright TOSHIBA CORPORATION 2004-2005
22 * All Rights Reserved.
23 */
24
25 #define DRV_VERSION "1.39"
26 static const char *version = "tc35815.c:v" DRV_VERSION "\n";
27 #define MODNAME "tc35815"
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/interrupt.h>
34 #include <linux/ioport.h>
35 #include <linux/in.h>
36 #include <linux/if_vlan.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/netdevice.h>
42 #include <linux/etherdevice.h>
43 #include <linux/skbuff.h>
44 #include <linux/delay.h>
45 #include <linux/pci.h>
46 #include <linux/phy.h>
47 #include <linux/workqueue.h>
48 #include <linux/platform_device.h>
49 #include <linux/prefetch.h>
50 #include <asm/io.h>
51 #include <asm/byteorder.h>
52
53 enum tc35815_chiptype {
54 TC35815CF = 0,
55 TC35815_NWU,
56 TC35815_TX4939,
57 };
58
59 /* indexed by tc35815_chiptype, above */
60 static const struct {
61 const char *name;
62 } chip_info[] = {
63 { "TOSHIBA TC35815CF 10/100BaseTX" },
64 { "TOSHIBA TC35815 with Wake on LAN" },
65 { "TOSHIBA TC35815/TX4939" },
66 };
67
68 static const struct pci_device_id tc35815_pci_tbl[] = {
69 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
70 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
71 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
72 {0,}
73 };
74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
75
76 /* see MODULE_PARM_DESC */
77 static struct tc35815_options {
78 int speed;
79 int duplex;
80 } options;
81
82 /*
83 * Registers
84 */
85 struct tc35815_regs {
86 __u32 DMA_Ctl; /* 0x00 */
87 __u32 TxFrmPtr;
88 __u32 TxThrsh;
89 __u32 TxPollCtr;
90 __u32 BLFrmPtr;
91 __u32 RxFragSize;
92 __u32 Int_En;
93 __u32 FDA_Bas;
94 __u32 FDA_Lim; /* 0x20 */
95 __u32 Int_Src;
96 __u32 unused0[2];
97 __u32 PauseCnt;
98 __u32 RemPauCnt;
99 __u32 TxCtlFrmStat;
100 __u32 unused1;
101 __u32 MAC_Ctl; /* 0x40 */
102 __u32 CAM_Ctl;
103 __u32 Tx_Ctl;
104 __u32 Tx_Stat;
105 __u32 Rx_Ctl;
106 __u32 Rx_Stat;
107 __u32 MD_Data;
108 __u32 MD_CA;
109 __u32 CAM_Adr; /* 0x60 */
110 __u32 CAM_Data;
111 __u32 CAM_Ena;
112 __u32 PROM_Ctl;
113 __u32 PROM_Data;
114 __u32 Algn_Cnt;
115 __u32 CRC_Cnt;
116 __u32 Miss_Cnt;
117 };
118
119 /*
120 * Bit assignments
121 */
122 /* DMA_Ctl bit assign ------------------------------------------------------- */
123 #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */
124 #define DMA_RxAlign_1 0x00400000
125 #define DMA_RxAlign_2 0x00800000
126 #define DMA_RxAlign_3 0x00c00000
127 #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */
128 #define DMA_IntMask 0x00040000 /* 1:Interrupt mask */
129 #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
130 #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
131 #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */
132 #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */
133 #define DMA_TestMode 0x00002000 /* 1:Test Mode */
134 #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */
135 #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */
136
137 /* RxFragSize bit assign ---------------------------------------------------- */
138 #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */
139 #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */
140
141 /* MAC_Ctl bit assign ------------------------------------------------------- */
142 #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */
143 #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */
144 #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */
145 #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */
146 #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */
147 #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/
148 #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */
149 #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */
150 #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */
151 #define MAC_Reset 0x00000004 /* 1:Software Reset */
152 #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */
153 #define MAC_HaltReq 0x00000001 /* 1:Halt request */
154
155 /* PROM_Ctl bit assign ------------------------------------------------------ */
156 #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */
157 #define PROM_Read 0x00004000 /*10:Read operation */
158 #define PROM_Write 0x00002000 /*01:Write operation */
159 #define PROM_Erase 0x00006000 /*11:Erase operation */
160 /*00:Enable or Disable Writting, */
161 /* as specified in PROM_Addr. */
162 #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */
163 /*00xxxx: disable */
164
165 /* CAM_Ctl bit assign ------------------------------------------------------- */
166 #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */
167 #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/
168 /* accept other */
169 #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */
170 #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */
171 #define CAM_StationAcc 0x00000001 /* 1:unicast accept */
172
173 /* CAM_Ena bit assign ------------------------------------------------------- */
174 #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */
175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */
176 #define CAM_Ena_Bit(index) (1 << (index))
177 #define CAM_ENTRY_DESTINATION 0
178 #define CAM_ENTRY_SOURCE 1
179 #define CAM_ENTRY_MACCTL 20
180
181 /* Tx_Ctl bit assign -------------------------------------------------------- */
182 #define Tx_En 0x00000001 /* 1:Transmit enable */
183 #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */
184 #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */
185 #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */
186 #define Tx_FBack 0x00000010 /* 1:Fast Back-off */
187 #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */
188 #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */
189 #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */
190 #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */
191 #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */
192 #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */
193 #define Tx_EnComp 0x00004000 /* 1:Enable Completion */
194
195 /* Tx_Stat bit assign ------------------------------------------------------- */
196 #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */
197 #define Tx_ExColl 0x00000010 /* Excessive Collision */
198 #define Tx_TXDefer 0x00000020 /* Transmit Defered */
199 #define Tx_Paused 0x00000040 /* Transmit Paused */
200 #define Tx_IntTx 0x00000080 /* Interrupt on Tx */
201 #define Tx_Under 0x00000100 /* Underrun */
202 #define Tx_Defer 0x00000200 /* Deferral */
203 #define Tx_NCarr 0x00000400 /* No Carrier */
204 #define Tx_10Stat 0x00000800 /* 10Mbps Status */
205 #define Tx_LateColl 0x00001000 /* Late Collision */
206 #define Tx_TxPar 0x00002000 /* Tx Parity Error */
207 #define Tx_Comp 0x00004000 /* Completion */
208 #define Tx_Halted 0x00008000 /* Tx Halted */
209 #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */
210
211 /* Rx_Ctl bit assign -------------------------------------------------------- */
212 #define Rx_EnGood 0x00004000 /* 1:Enable Good */
213 #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */
214 #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */
215 #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */
216 #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */
217 #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */
218 #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */
219 #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */
220 #define Rx_ShortEn 0x00000008 /* 1:Short Enable */
221 #define Rx_LongEn 0x00000004 /* 1:Long Enable */
222 #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */
223 #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */
224
225 /* Rx_Stat bit assign ------------------------------------------------------- */
226 #define Rx_Halted 0x00008000 /* Rx Halted */
227 #define Rx_Good 0x00004000 /* Rx Good */
228 #define Rx_RxPar 0x00002000 /* Rx Parity Error */
229 #define Rx_TypePkt 0x00001000 /* Rx Type Packet */
230 #define Rx_LongErr 0x00000800 /* Rx Long Error */
231 #define Rx_Over 0x00000400 /* Rx Overflow */
232 #define Rx_CRCErr 0x00000200 /* Rx CRC Error */
233 #define Rx_Align 0x00000100 /* Rx Alignment Error */
234 #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */
235 #define Rx_IntRx 0x00000040 /* Rx Interrupt */
236 #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */
237 #define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */
238
239 #define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */
240
241 /* Int_En bit assign -------------------------------------------------------- */
242 #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */
243 #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */
244 #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */
245 #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */
246 #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */
247 #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */
248 #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */
249 #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */
250 #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */
251 #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */
252 #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */
253 #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */
254 /* Exhausted Enable */
255
256 /* Int_Src bit assign ------------------------------------------------------- */
257 #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */
258 #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */
259 #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */
260 #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */
261 #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */
262 #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */
263 #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */
264 #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */
265 #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */
266 #define Int_SWInt 0x00000020 /* 1:Software request & Clear */
267 #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */
268 #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */
269 #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */
270 #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */
271 #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */
272
273 /* MD_CA bit assign --------------------------------------------------------- */
274 #define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */
275 #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */
276 #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
277
278
279 /*
280 * Descriptors
281 */
282
283 /* Frame descripter */
284 struct FDesc {
285 volatile __u32 FDNext;
286 volatile __u32 FDSystem;
287 volatile __u32 FDStat;
288 volatile __u32 FDCtl;
289 };
290
291 /* Buffer descripter */
292 struct BDesc {
293 volatile __u32 BuffData;
294 volatile __u32 BDCtl;
295 };
296
297 #define FD_ALIGN 16
298
299 /* Frame Descripter bit assign ---------------------------------------------- */
300 #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */
301 #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */
302 #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */
303 #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */
304 #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */
305 #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */
306 #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */
307 #define FD_FrmOpt_Packing 0x04000000 /* Rx only */
308 #define FD_CownsFD 0x80000000 /* FD Controller owner bit */
309 #define FD_Next_EOL 0x00000001 /* FD EOL indicator */
310 #define FD_BDCnt_SHIFT 16
311
312 /* Buffer Descripter bit assign --------------------------------------------- */
313 #define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */
314 #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */
315 #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */
316 #define BD_CownsBD 0x80000000 /* BD Controller owner bit */
317 #define BD_RxBDID_SHIFT 16
318 #define BD_RxBDSeqN_SHIFT 24
319
320
321 /* Some useful constants. */
322
323 #define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \
324 Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
325 Tx_En) /* maybe 0x7b01 */
326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
327 #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
328 | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
329 #define INT_EN_CMD (Int_NRAbtEn | \
330 Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
331 Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
332 Int_STargAbtEn | \
333 Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
334 #define DMA_CTL_CMD DMA_BURST_SIZE
335 #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF)
336
337 /* Tuning parameters */
338 #define DMA_BURST_SIZE 32
339 #define TX_THRESHOLD 1024
340 /* used threshold with packet max byte for low pci transfer ability.*/
341 #define TX_THRESHOLD_MAX 1536
342 /* setting threshold max value when overrun error occurred this count. */
343 #define TX_THRESHOLD_KEEP_LIMIT 10
344
345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
346 #define FD_PAGE_NUM 4
347 #define RX_BUF_NUM 128 /* < 256 */
348 #define RX_FD_NUM 256 /* >= 32 */
349 #define TX_FD_NUM 128
350 #if RX_CTL_CMD & Rx_LongEn
351 #define RX_BUF_SIZE PAGE_SIZE
352 #elif RX_CTL_CMD & Rx_StripCRC
353 #define RX_BUF_SIZE \
354 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
355 #else
356 #define RX_BUF_SIZE \
357 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
358 #endif
359 #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */
360 #define NAPI_WEIGHT 16
361
362 struct TxFD {
363 struct FDesc fd;
364 struct BDesc bd;
365 struct BDesc unused;
366 };
367
368 struct RxFD {
369 struct FDesc fd;
370 struct BDesc bd[0]; /* variable length */
371 };
372
373 struct FrFD {
374 struct FDesc fd;
375 struct BDesc bd[RX_BUF_NUM];
376 };
377
378
379 #define tc_readl(addr) ioread32(addr)
380 #define tc_writel(d, addr) iowrite32(d, addr)
381
382 #define TC35815_TX_TIMEOUT msecs_to_jiffies(400)
383
384 /* Information that need to be kept for each controller. */
385 struct tc35815_local {
386 struct pci_dev *pci_dev;
387
388 struct net_device *dev;
389 struct napi_struct napi;
390
391 /* statistics */
392 struct {
393 int max_tx_qlen;
394 int tx_ints;
395 int rx_ints;
396 int tx_underrun;
397 } lstats;
398
399 /* Tx control lock. This protects the transmit buffer ring
400 * state along with the "tx full" state of the driver. This
401 * means all netif_queue flow control actions are protected
402 * by this lock as well.
403 */
404 spinlock_t lock;
405 spinlock_t rx_lock;
406
407 struct mii_bus *mii_bus;
408 struct phy_device *phy_dev;
409 int duplex;
410 int speed;
411 int link;
412 struct work_struct restart_work;
413
414 /*
415 * Transmitting: Batch Mode.
416 * 1 BD in 1 TxFD.
417 * Receiving: Non-Packing Mode.
418 * 1 circular FD for Free Buffer List.
419 * RX_BUF_NUM BD in Free Buffer FD.
420 * One Free Buffer BD has ETH_FRAME_LEN data buffer.
421 */
422 void *fd_buf; /* for TxFD, RxFD, FrFD */
423 dma_addr_t fd_buf_dma;
424 struct TxFD *tfd_base;
425 unsigned int tfd_start;
426 unsigned int tfd_end;
427 struct RxFD *rfd_base;
428 struct RxFD *rfd_limit;
429 struct RxFD *rfd_cur;
430 struct FrFD *fbl_ptr;
431 unsigned int fbl_count;
432 struct {
433 struct sk_buff *skb;
434 dma_addr_t skb_dma;
435 } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
436 u32 msg_enable;
437 enum tc35815_chiptype chiptype;
438 };
439
440 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
441 {
442 return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
443 }
444 #ifdef DEBUG
445 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
446 {
447 return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
448 }
449 #endif
450 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
451 struct pci_dev *hwdev,
452 dma_addr_t *dma_handle)
453 {
454 struct sk_buff *skb;
455 skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
456 if (!skb)
457 return NULL;
458 *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
459 PCI_DMA_FROMDEVICE);
460 if (pci_dma_mapping_error(hwdev, *dma_handle)) {
461 dev_kfree_skb_any(skb);
462 return NULL;
463 }
464 skb_reserve(skb, 2); /* make IP header 4byte aligned */
465 return skb;
466 }
467
468 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
469 {
470 pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
471 PCI_DMA_FROMDEVICE);
472 dev_kfree_skb_any(skb);
473 }
474
475 /* Index to functions, as function prototypes. */
476
477 static int tc35815_open(struct net_device *dev);
478 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
479 static irqreturn_t tc35815_interrupt(int irq, void *dev_id);
480 static int tc35815_rx(struct net_device *dev, int limit);
481 static int tc35815_poll(struct napi_struct *napi, int budget);
482 static void tc35815_txdone(struct net_device *dev);
483 static int tc35815_close(struct net_device *dev);
484 static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
485 static void tc35815_set_multicast_list(struct net_device *dev);
486 static void tc35815_tx_timeout(struct net_device *dev);
487 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
488 #ifdef CONFIG_NET_POLL_CONTROLLER
489 static void tc35815_poll_controller(struct net_device *dev);
490 #endif
491 static const struct ethtool_ops tc35815_ethtool_ops;
492
493 /* Example routines you must write ;->. */
494 static void tc35815_chip_reset(struct net_device *dev);
495 static void tc35815_chip_init(struct net_device *dev);
496
497 #ifdef DEBUG
498 static void panic_queues(struct net_device *dev);
499 #endif
500
501 static void tc35815_restart_work(struct work_struct *work);
502
503 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
504 {
505 struct net_device *dev = bus->priv;
506 struct tc35815_regs __iomem *tr =
507 (struct tc35815_regs __iomem *)dev->base_addr;
508 unsigned long timeout = jiffies + HZ;
509
510 tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
511 udelay(12); /* it takes 32 x 400ns at least */
512 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
513 if (time_after(jiffies, timeout))
514 return -EIO;
515 cpu_relax();
516 }
517 return tc_readl(&tr->MD_Data) & 0xffff;
518 }
519
520 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
521 {
522 struct net_device *dev = bus->priv;
523 struct tc35815_regs __iomem *tr =
524 (struct tc35815_regs __iomem *)dev->base_addr;
525 unsigned long timeout = jiffies + HZ;
526
527 tc_writel(val, &tr->MD_Data);
528 tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
529 &tr->MD_CA);
530 udelay(12); /* it takes 32 x 400ns at least */
531 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
532 if (time_after(jiffies, timeout))
533 return -EIO;
534 cpu_relax();
535 }
536 return 0;
537 }
538
539 static void tc_handle_link_change(struct net_device *dev)
540 {
541 struct tc35815_local *lp = netdev_priv(dev);
542 struct phy_device *phydev = lp->phy_dev;
543 unsigned long flags;
544 int status_change = 0;
545
546 spin_lock_irqsave(&lp->lock, flags);
547 if (phydev->link &&
548 (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
549 struct tc35815_regs __iomem *tr =
550 (struct tc35815_regs __iomem *)dev->base_addr;
551 u32 reg;
552
553 reg = tc_readl(&tr->MAC_Ctl);
554 reg |= MAC_HaltReq;
555 tc_writel(reg, &tr->MAC_Ctl);
556 if (phydev->duplex == DUPLEX_FULL)
557 reg |= MAC_FullDup;
558 else
559 reg &= ~MAC_FullDup;
560 tc_writel(reg, &tr->MAC_Ctl);
561 reg &= ~MAC_HaltReq;
562 tc_writel(reg, &tr->MAC_Ctl);
563
564 /*
565 * TX4939 PCFG.SPEEDn bit will be changed on
566 * NETDEV_CHANGE event.
567 */
568 /*
569 * WORKAROUND: enable LostCrS only if half duplex
570 * operation.
571 * (TX4939 does not have EnLCarr)
572 */
573 if (phydev->duplex == DUPLEX_HALF &&
574 lp->chiptype != TC35815_TX4939)
575 tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
576 &tr->Tx_Ctl);
577
578 lp->speed = phydev->speed;
579 lp->duplex = phydev->duplex;
580 status_change = 1;
581 }
582
583 if (phydev->link != lp->link) {
584 if (phydev->link) {
585 /* delayed promiscuous enabling */
586 if (dev->flags & IFF_PROMISC)
587 tc35815_set_multicast_list(dev);
588 } else {
589 lp->speed = 0;
590 lp->duplex = -1;
591 }
592 lp->link = phydev->link;
593
594 status_change = 1;
595 }
596 spin_unlock_irqrestore(&lp->lock, flags);
597
598 if (status_change && netif_msg_link(lp)) {
599 phy_print_status(phydev);
600 pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
601 dev->name,
602 phy_read(phydev, MII_BMCR),
603 phy_read(phydev, MII_BMSR),
604 phy_read(phydev, MII_LPA));
605 }
606 }
607
608 static int tc_mii_probe(struct net_device *dev)
609 {
610 struct tc35815_local *lp = netdev_priv(dev);
611 struct phy_device *phydev;
612 u32 dropmask;
613
614 phydev = phy_find_first(lp->mii_bus);
615 if (!phydev) {
616 printk(KERN_ERR "%s: no PHY found\n", dev->name);
617 return -ENODEV;
618 }
619
620 /* attach the mac to the phy */
621 phydev = phy_connect(dev, phydev_name(phydev),
622 &tc_handle_link_change,
623 lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
624 if (IS_ERR(phydev)) {
625 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
626 return PTR_ERR(phydev);
627 }
628
629 phy_attached_info(phydev);
630
631 /* mask with MAC supported features */
632 phydev->supported &= PHY_BASIC_FEATURES;
633 dropmask = 0;
634 if (options.speed == 10)
635 dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
636 else if (options.speed == 100)
637 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
638 if (options.duplex == 1)
639 dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
640 else if (options.duplex == 2)
641 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
642 phydev->supported &= ~dropmask;
643 phydev->advertising = phydev->supported;
644
645 lp->link = 0;
646 lp->speed = 0;
647 lp->duplex = -1;
648 lp->phy_dev = phydev;
649
650 return 0;
651 }
652
653 static int tc_mii_init(struct net_device *dev)
654 {
655 struct tc35815_local *lp = netdev_priv(dev);
656 int err;
657
658 lp->mii_bus = mdiobus_alloc();
659 if (lp->mii_bus == NULL) {
660 err = -ENOMEM;
661 goto err_out;
662 }
663
664 lp->mii_bus->name = "tc35815_mii_bus";
665 lp->mii_bus->read = tc_mdio_read;
666 lp->mii_bus->write = tc_mdio_write;
667 snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
668 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
669 lp->mii_bus->priv = dev;
670 lp->mii_bus->parent = &lp->pci_dev->dev;
671 err = mdiobus_register(lp->mii_bus);
672 if (err)
673 goto err_out_free_mii_bus;
674 err = tc_mii_probe(dev);
675 if (err)
676 goto err_out_unregister_bus;
677 return 0;
678
679 err_out_unregister_bus:
680 mdiobus_unregister(lp->mii_bus);
681 err_out_free_mii_bus:
682 mdiobus_free(lp->mii_bus);
683 err_out:
684 return err;
685 }
686
687 #ifdef CONFIG_CPU_TX49XX
688 /*
689 * Find a platform_device providing a MAC address. The platform code
690 * should provide a "tc35815-mac" device with a MAC address in its
691 * platform_data.
692 */
693 static int tc35815_mac_match(struct device *dev, void *data)
694 {
695 struct platform_device *plat_dev = to_platform_device(dev);
696 struct pci_dev *pci_dev = data;
697 unsigned int id = pci_dev->irq;
698 return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
699 }
700
701 static int tc35815_read_plat_dev_addr(struct net_device *dev)
702 {
703 struct tc35815_local *lp = netdev_priv(dev);
704 struct device *pd = bus_find_device(&platform_bus_type, NULL,
705 lp->pci_dev, tc35815_mac_match);
706 if (pd) {
707 if (pd->platform_data)
708 memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
709 put_device(pd);
710 return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
711 }
712 return -ENODEV;
713 }
714 #else
715 static int tc35815_read_plat_dev_addr(struct net_device *dev)
716 {
717 return -ENODEV;
718 }
719 #endif
720
721 static int tc35815_init_dev_addr(struct net_device *dev)
722 {
723 struct tc35815_regs __iomem *tr =
724 (struct tc35815_regs __iomem *)dev->base_addr;
725 int i;
726
727 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
728 ;
729 for (i = 0; i < 6; i += 2) {
730 unsigned short data;
731 tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
732 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
733 ;
734 data = tc_readl(&tr->PROM_Data);
735 dev->dev_addr[i] = data & 0xff;
736 dev->dev_addr[i+1] = data >> 8;
737 }
738 if (!is_valid_ether_addr(dev->dev_addr))
739 return tc35815_read_plat_dev_addr(dev);
740 return 0;
741 }
742
743 static const struct net_device_ops tc35815_netdev_ops = {
744 .ndo_open = tc35815_open,
745 .ndo_stop = tc35815_close,
746 .ndo_start_xmit = tc35815_send_packet,
747 .ndo_get_stats = tc35815_get_stats,
748 .ndo_set_rx_mode = tc35815_set_multicast_list,
749 .ndo_tx_timeout = tc35815_tx_timeout,
750 .ndo_do_ioctl = tc35815_ioctl,
751 .ndo_validate_addr = eth_validate_addr,
752 .ndo_change_mtu = eth_change_mtu,
753 .ndo_set_mac_address = eth_mac_addr,
754 #ifdef CONFIG_NET_POLL_CONTROLLER
755 .ndo_poll_controller = tc35815_poll_controller,
756 #endif
757 };
758
759 static int tc35815_init_one(struct pci_dev *pdev,
760 const struct pci_device_id *ent)
761 {
762 void __iomem *ioaddr = NULL;
763 struct net_device *dev;
764 struct tc35815_local *lp;
765 int rc;
766
767 static int printed_version;
768 if (!printed_version++) {
769 printk(version);
770 dev_printk(KERN_DEBUG, &pdev->dev,
771 "speed:%d duplex:%d\n",
772 options.speed, options.duplex);
773 }
774
775 if (!pdev->irq) {
776 dev_warn(&pdev->dev, "no IRQ assigned.\n");
777 return -ENODEV;
778 }
779
780 /* dev zeroed in alloc_etherdev */
781 dev = alloc_etherdev(sizeof(*lp));
782 if (dev == NULL)
783 return -ENOMEM;
784
785 SET_NETDEV_DEV(dev, &pdev->dev);
786 lp = netdev_priv(dev);
787 lp->dev = dev;
788
789 /* enable device (incl. PCI PM wakeup), and bus-mastering */
790 rc = pcim_enable_device(pdev);
791 if (rc)
792 goto err_out;
793 rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
794 if (rc)
795 goto err_out;
796 pci_set_master(pdev);
797 ioaddr = pcim_iomap_table(pdev)[1];
798
799 /* Initialize the device structure. */
800 dev->netdev_ops = &tc35815_netdev_ops;
801 dev->ethtool_ops = &tc35815_ethtool_ops;
802 dev->watchdog_timeo = TC35815_TX_TIMEOUT;
803 netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
804
805 dev->irq = pdev->irq;
806 dev->base_addr = (unsigned long)ioaddr;
807
808 INIT_WORK(&lp->restart_work, tc35815_restart_work);
809 spin_lock_init(&lp->lock);
810 spin_lock_init(&lp->rx_lock);
811 lp->pci_dev = pdev;
812 lp->chiptype = ent->driver_data;
813
814 lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
815 pci_set_drvdata(pdev, dev);
816
817 /* Soft reset the chip. */
818 tc35815_chip_reset(dev);
819
820 /* Retrieve the ethernet address. */
821 if (tc35815_init_dev_addr(dev)) {
822 dev_warn(&pdev->dev, "not valid ether addr\n");
823 eth_hw_addr_random(dev);
824 }
825
826 rc = register_netdev(dev);
827 if (rc)
828 goto err_out;
829
830 printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
831 dev->name,
832 chip_info[ent->driver_data].name,
833 dev->base_addr,
834 dev->dev_addr,
835 dev->irq);
836
837 rc = tc_mii_init(dev);
838 if (rc)
839 goto err_out_unregister;
840
841 return 0;
842
843 err_out_unregister:
844 unregister_netdev(dev);
845 err_out:
846 free_netdev(dev);
847 return rc;
848 }
849
850
851 static void tc35815_remove_one(struct pci_dev *pdev)
852 {
853 struct net_device *dev = pci_get_drvdata(pdev);
854 struct tc35815_local *lp = netdev_priv(dev);
855
856 phy_disconnect(lp->phy_dev);
857 mdiobus_unregister(lp->mii_bus);
858 mdiobus_free(lp->mii_bus);
859 unregister_netdev(dev);
860 free_netdev(dev);
861 }
862
863 static int
864 tc35815_init_queues(struct net_device *dev)
865 {
866 struct tc35815_local *lp = netdev_priv(dev);
867 int i;
868 unsigned long fd_addr;
869
870 if (!lp->fd_buf) {
871 BUG_ON(sizeof(struct FDesc) +
872 sizeof(struct BDesc) * RX_BUF_NUM +
873 sizeof(struct FDesc) * RX_FD_NUM +
874 sizeof(struct TxFD) * TX_FD_NUM >
875 PAGE_SIZE * FD_PAGE_NUM);
876
877 lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
878 PAGE_SIZE * FD_PAGE_NUM,
879 &lp->fd_buf_dma);
880 if (!lp->fd_buf)
881 return -ENOMEM;
882 for (i = 0; i < RX_BUF_NUM; i++) {
883 lp->rx_skbs[i].skb =
884 alloc_rxbuf_skb(dev, lp->pci_dev,
885 &lp->rx_skbs[i].skb_dma);
886 if (!lp->rx_skbs[i].skb) {
887 while (--i >= 0) {
888 free_rxbuf_skb(lp->pci_dev,
889 lp->rx_skbs[i].skb,
890 lp->rx_skbs[i].skb_dma);
891 lp->rx_skbs[i].skb = NULL;
892 }
893 pci_free_consistent(lp->pci_dev,
894 PAGE_SIZE * FD_PAGE_NUM,
895 lp->fd_buf,
896 lp->fd_buf_dma);
897 lp->fd_buf = NULL;
898 return -ENOMEM;
899 }
900 }
901 printk(KERN_DEBUG "%s: FD buf %p DataBuf",
902 dev->name, lp->fd_buf);
903 printk("\n");
904 } else {
905 for (i = 0; i < FD_PAGE_NUM; i++)
906 clear_page((void *)((unsigned long)lp->fd_buf +
907 i * PAGE_SIZE));
908 }
909 fd_addr = (unsigned long)lp->fd_buf;
910
911 /* Free Descriptors (for Receive) */
912 lp->rfd_base = (struct RxFD *)fd_addr;
913 fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
914 for (i = 0; i < RX_FD_NUM; i++)
915 lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
916 lp->rfd_cur = lp->rfd_base;
917 lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
918
919 /* Transmit Descriptors */
920 lp->tfd_base = (struct TxFD *)fd_addr;
921 fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
922 for (i = 0; i < TX_FD_NUM; i++) {
923 lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
924 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
925 lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
926 }
927 lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
928 lp->tfd_start = 0;
929 lp->tfd_end = 0;
930
931 /* Buffer List (for Receive) */
932 lp->fbl_ptr = (struct FrFD *)fd_addr;
933 lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
934 lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
935 /*
936 * move all allocated skbs to head of rx_skbs[] array.
937 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
938 * tc35815_rx() had failed.
939 */
940 lp->fbl_count = 0;
941 for (i = 0; i < RX_BUF_NUM; i++) {
942 if (lp->rx_skbs[i].skb) {
943 if (i != lp->fbl_count) {
944 lp->rx_skbs[lp->fbl_count].skb =
945 lp->rx_skbs[i].skb;
946 lp->rx_skbs[lp->fbl_count].skb_dma =
947 lp->rx_skbs[i].skb_dma;
948 }
949 lp->fbl_count++;
950 }
951 }
952 for (i = 0; i < RX_BUF_NUM; i++) {
953 if (i >= lp->fbl_count) {
954 lp->fbl_ptr->bd[i].BuffData = 0;
955 lp->fbl_ptr->bd[i].BDCtl = 0;
956 continue;
957 }
958 lp->fbl_ptr->bd[i].BuffData =
959 cpu_to_le32(lp->rx_skbs[i].skb_dma);
960 /* BDID is index of FrFD.bd[] */
961 lp->fbl_ptr->bd[i].BDCtl =
962 cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
963 RX_BUF_SIZE);
964 }
965
966 printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
967 dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
968 return 0;
969 }
970
971 static void
972 tc35815_clear_queues(struct net_device *dev)
973 {
974 struct tc35815_local *lp = netdev_priv(dev);
975 int i;
976
977 for (i = 0; i < TX_FD_NUM; i++) {
978 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
979 struct sk_buff *skb =
980 fdsystem != 0xffffffff ?
981 lp->tx_skbs[fdsystem].skb : NULL;
982 #ifdef DEBUG
983 if (lp->tx_skbs[i].skb != skb) {
984 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
985 panic_queues(dev);
986 }
987 #else
988 BUG_ON(lp->tx_skbs[i].skb != skb);
989 #endif
990 if (skb) {
991 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
992 lp->tx_skbs[i].skb = NULL;
993 lp->tx_skbs[i].skb_dma = 0;
994 dev_kfree_skb_any(skb);
995 }
996 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
997 }
998
999 tc35815_init_queues(dev);
1000 }
1001
1002 static void
1003 tc35815_free_queues(struct net_device *dev)
1004 {
1005 struct tc35815_local *lp = netdev_priv(dev);
1006 int i;
1007
1008 if (lp->tfd_base) {
1009 for (i = 0; i < TX_FD_NUM; i++) {
1010 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1011 struct sk_buff *skb =
1012 fdsystem != 0xffffffff ?
1013 lp->tx_skbs[fdsystem].skb : NULL;
1014 #ifdef DEBUG
1015 if (lp->tx_skbs[i].skb != skb) {
1016 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1017 panic_queues(dev);
1018 }
1019 #else
1020 BUG_ON(lp->tx_skbs[i].skb != skb);
1021 #endif
1022 if (skb) {
1023 dev_kfree_skb(skb);
1024 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1025 lp->tx_skbs[i].skb = NULL;
1026 lp->tx_skbs[i].skb_dma = 0;
1027 }
1028 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1029 }
1030 }
1031
1032 lp->rfd_base = NULL;
1033 lp->rfd_limit = NULL;
1034 lp->rfd_cur = NULL;
1035 lp->fbl_ptr = NULL;
1036
1037 for (i = 0; i < RX_BUF_NUM; i++) {
1038 if (lp->rx_skbs[i].skb) {
1039 free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1040 lp->rx_skbs[i].skb_dma);
1041 lp->rx_skbs[i].skb = NULL;
1042 }
1043 }
1044 if (lp->fd_buf) {
1045 pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
1046 lp->fd_buf, lp->fd_buf_dma);
1047 lp->fd_buf = NULL;
1048 }
1049 }
1050
1051 static void
1052 dump_txfd(struct TxFD *fd)
1053 {
1054 printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1055 le32_to_cpu(fd->fd.FDNext),
1056 le32_to_cpu(fd->fd.FDSystem),
1057 le32_to_cpu(fd->fd.FDStat),
1058 le32_to_cpu(fd->fd.FDCtl));
1059 printk("BD: ");
1060 printk(" %08x %08x",
1061 le32_to_cpu(fd->bd.BuffData),
1062 le32_to_cpu(fd->bd.BDCtl));
1063 printk("\n");
1064 }
1065
1066 static int
1067 dump_rxfd(struct RxFD *fd)
1068 {
1069 int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1070 if (bd_count > 8)
1071 bd_count = 8;
1072 printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1073 le32_to_cpu(fd->fd.FDNext),
1074 le32_to_cpu(fd->fd.FDSystem),
1075 le32_to_cpu(fd->fd.FDStat),
1076 le32_to_cpu(fd->fd.FDCtl));
1077 if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1078 return 0;
1079 printk("BD: ");
1080 for (i = 0; i < bd_count; i++)
1081 printk(" %08x %08x",
1082 le32_to_cpu(fd->bd[i].BuffData),
1083 le32_to_cpu(fd->bd[i].BDCtl));
1084 printk("\n");
1085 return bd_count;
1086 }
1087
1088 #ifdef DEBUG
1089 static void
1090 dump_frfd(struct FrFD *fd)
1091 {
1092 int i;
1093 printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1094 le32_to_cpu(fd->fd.FDNext),
1095 le32_to_cpu(fd->fd.FDSystem),
1096 le32_to_cpu(fd->fd.FDStat),
1097 le32_to_cpu(fd->fd.FDCtl));
1098 printk("BD: ");
1099 for (i = 0; i < RX_BUF_NUM; i++)
1100 printk(" %08x %08x",
1101 le32_to_cpu(fd->bd[i].BuffData),
1102 le32_to_cpu(fd->bd[i].BDCtl));
1103 printk("\n");
1104 }
1105
1106 static void
1107 panic_queues(struct net_device *dev)
1108 {
1109 struct tc35815_local *lp = netdev_priv(dev);
1110 int i;
1111
1112 printk("TxFD base %p, start %u, end %u\n",
1113 lp->tfd_base, lp->tfd_start, lp->tfd_end);
1114 printk("RxFD base %p limit %p cur %p\n",
1115 lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1116 printk("FrFD %p\n", lp->fbl_ptr);
1117 for (i = 0; i < TX_FD_NUM; i++)
1118 dump_txfd(&lp->tfd_base[i]);
1119 for (i = 0; i < RX_FD_NUM; i++) {
1120 int bd_count = dump_rxfd(&lp->rfd_base[i]);
1121 i += (bd_count + 1) / 2; /* skip BDs */
1122 }
1123 dump_frfd(lp->fbl_ptr);
1124 panic("%s: Illegal queue state.", dev->name);
1125 }
1126 #endif
1127
1128 static void print_eth(const u8 *add)
1129 {
1130 printk(KERN_DEBUG "print_eth(%p)\n", add);
1131 printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1132 add + 6, add, add[12], add[13]);
1133 }
1134
1135 static int tc35815_tx_full(struct net_device *dev)
1136 {
1137 struct tc35815_local *lp = netdev_priv(dev);
1138 return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1139 }
1140
1141 static void tc35815_restart(struct net_device *dev)
1142 {
1143 struct tc35815_local *lp = netdev_priv(dev);
1144 int ret;
1145
1146 if (lp->phy_dev) {
1147 ret = phy_init_hw(lp->phy_dev);
1148 if (ret)
1149 printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1150 }
1151
1152 spin_lock_bh(&lp->rx_lock);
1153 spin_lock_irq(&lp->lock);
1154 tc35815_chip_reset(dev);
1155 tc35815_clear_queues(dev);
1156 tc35815_chip_init(dev);
1157 /* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1158 tc35815_set_multicast_list(dev);
1159 spin_unlock_irq(&lp->lock);
1160 spin_unlock_bh(&lp->rx_lock);
1161
1162 netif_wake_queue(dev);
1163 }
1164
1165 static void tc35815_restart_work(struct work_struct *work)
1166 {
1167 struct tc35815_local *lp =
1168 container_of(work, struct tc35815_local, restart_work);
1169 struct net_device *dev = lp->dev;
1170
1171 tc35815_restart(dev);
1172 }
1173
1174 static void tc35815_schedule_restart(struct net_device *dev)
1175 {
1176 struct tc35815_local *lp = netdev_priv(dev);
1177 struct tc35815_regs __iomem *tr =
1178 (struct tc35815_regs __iomem *)dev->base_addr;
1179 unsigned long flags;
1180
1181 /* disable interrupts */
1182 spin_lock_irqsave(&lp->lock, flags);
1183 tc_writel(0, &tr->Int_En);
1184 tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1185 schedule_work(&lp->restart_work);
1186 spin_unlock_irqrestore(&lp->lock, flags);
1187 }
1188
1189 static void tc35815_tx_timeout(struct net_device *dev)
1190 {
1191 struct tc35815_regs __iomem *tr =
1192 (struct tc35815_regs __iomem *)dev->base_addr;
1193
1194 printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1195 dev->name, tc_readl(&tr->Tx_Stat));
1196
1197 /* Try to restart the adaptor. */
1198 tc35815_schedule_restart(dev);
1199 dev->stats.tx_errors++;
1200 }
1201
1202 /*
1203 * Open/initialize the controller. This is called (in the current kernel)
1204 * sometime after booting when the 'ifconfig' program is run.
1205 *
1206 * This routine should set everything up anew at each open, even
1207 * registers that "should" only need to be set once at boot, so that
1208 * there is non-reboot way to recover if something goes wrong.
1209 */
1210 static int
1211 tc35815_open(struct net_device *dev)
1212 {
1213 struct tc35815_local *lp = netdev_priv(dev);
1214
1215 /*
1216 * This is used if the interrupt line can turned off (shared).
1217 * See 3c503.c for an example of selecting the IRQ at config-time.
1218 */
1219 if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1220 dev->name, dev))
1221 return -EAGAIN;
1222
1223 tc35815_chip_reset(dev);
1224
1225 if (tc35815_init_queues(dev) != 0) {
1226 free_irq(dev->irq, dev);
1227 return -EAGAIN;
1228 }
1229
1230 napi_enable(&lp->napi);
1231
1232 /* Reset the hardware here. Don't forget to set the station address. */
1233 spin_lock_irq(&lp->lock);
1234 tc35815_chip_init(dev);
1235 spin_unlock_irq(&lp->lock);
1236
1237 netif_carrier_off(dev);
1238 /* schedule a link state check */
1239 phy_start(lp->phy_dev);
1240
1241 /* We are now ready to accept transmit requeusts from
1242 * the queueing layer of the networking.
1243 */
1244 netif_start_queue(dev);
1245
1246 return 0;
1247 }
1248
1249 /* This will only be invoked if your driver is _not_ in XOFF state.
1250 * What this means is that you need not check it, and that this
1251 * invariant will hold if you make sure that the netif_*_queue()
1252 * calls are done at the proper times.
1253 */
1254 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1255 {
1256 struct tc35815_local *lp = netdev_priv(dev);
1257 struct TxFD *txfd;
1258 unsigned long flags;
1259
1260 /* If some error occurs while trying to transmit this
1261 * packet, you should return '1' from this function.
1262 * In such a case you _may not_ do anything to the
1263 * SKB, it is still owned by the network queueing
1264 * layer when an error is returned. This means you
1265 * may not modify any SKB fields, you may not free
1266 * the SKB, etc.
1267 */
1268
1269 /* This is the most common case for modern hardware.
1270 * The spinlock protects this code from the TX complete
1271 * hardware interrupt handler. Queue flow control is
1272 * thus managed under this lock as well.
1273 */
1274 spin_lock_irqsave(&lp->lock, flags);
1275
1276 /* failsafe... (handle txdone now if half of FDs are used) */
1277 if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1278 TX_FD_NUM / 2)
1279 tc35815_txdone(dev);
1280
1281 if (netif_msg_pktdata(lp))
1282 print_eth(skb->data);
1283 #ifdef DEBUG
1284 if (lp->tx_skbs[lp->tfd_start].skb) {
1285 printk("%s: tx_skbs conflict.\n", dev->name);
1286 panic_queues(dev);
1287 }
1288 #else
1289 BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1290 #endif
1291 lp->tx_skbs[lp->tfd_start].skb = skb;
1292 lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
1293
1294 /*add to ring */
1295 txfd = &lp->tfd_base[lp->tfd_start];
1296 txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1297 txfd->bd.BDCtl = cpu_to_le32(skb->len);
1298 txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1299 txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1300
1301 if (lp->tfd_start == lp->tfd_end) {
1302 struct tc35815_regs __iomem *tr =
1303 (struct tc35815_regs __iomem *)dev->base_addr;
1304 /* Start DMA Transmitter. */
1305 txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1306 txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1307 if (netif_msg_tx_queued(lp)) {
1308 printk("%s: starting TxFD.\n", dev->name);
1309 dump_txfd(txfd);
1310 }
1311 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1312 } else {
1313 txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1314 if (netif_msg_tx_queued(lp)) {
1315 printk("%s: queueing TxFD.\n", dev->name);
1316 dump_txfd(txfd);
1317 }
1318 }
1319 lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1320
1321 /* If we just used up the very last entry in the
1322 * TX ring on this device, tell the queueing
1323 * layer to send no more.
1324 */
1325 if (tc35815_tx_full(dev)) {
1326 if (netif_msg_tx_queued(lp))
1327 printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1328 netif_stop_queue(dev);
1329 }
1330
1331 /* When the TX completion hw interrupt arrives, this
1332 * is when the transmit statistics are updated.
1333 */
1334
1335 spin_unlock_irqrestore(&lp->lock, flags);
1336 return NETDEV_TX_OK;
1337 }
1338
1339 #define FATAL_ERROR_INT \
1340 (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1341 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1342 {
1343 static int count;
1344 printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
1345 dev->name, status);
1346 if (status & Int_IntPCI)
1347 printk(" IntPCI");
1348 if (status & Int_DmParErr)
1349 printk(" DmParErr");
1350 if (status & Int_IntNRAbt)
1351 printk(" IntNRAbt");
1352 printk("\n");
1353 if (count++ > 100)
1354 panic("%s: Too many fatal errors.", dev->name);
1355 printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1356 /* Try to restart the adaptor. */
1357 tc35815_schedule_restart(dev);
1358 }
1359
1360 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1361 {
1362 struct tc35815_local *lp = netdev_priv(dev);
1363 int ret = -1;
1364
1365 /* Fatal errors... */
1366 if (status & FATAL_ERROR_INT) {
1367 tc35815_fatal_error_interrupt(dev, status);
1368 return 0;
1369 }
1370 /* recoverable errors */
1371 if (status & Int_IntFDAEx) {
1372 if (netif_msg_rx_err(lp))
1373 dev_warn(&dev->dev,
1374 "Free Descriptor Area Exhausted (%#x).\n",
1375 status);
1376 dev->stats.rx_dropped++;
1377 ret = 0;
1378 }
1379 if (status & Int_IntBLEx) {
1380 if (netif_msg_rx_err(lp))
1381 dev_warn(&dev->dev,
1382 "Buffer List Exhausted (%#x).\n",
1383 status);
1384 dev->stats.rx_dropped++;
1385 ret = 0;
1386 }
1387 if (status & Int_IntExBD) {
1388 if (netif_msg_rx_err(lp))
1389 dev_warn(&dev->dev,
1390 "Excessive Buffer Descriptiors (%#x).\n",
1391 status);
1392 dev->stats.rx_length_errors++;
1393 ret = 0;
1394 }
1395
1396 /* normal notification */
1397 if (status & Int_IntMacRx) {
1398 /* Got a packet(s). */
1399 ret = tc35815_rx(dev, limit);
1400 lp->lstats.rx_ints++;
1401 }
1402 if (status & Int_IntMacTx) {
1403 /* Transmit complete. */
1404 lp->lstats.tx_ints++;
1405 spin_lock_irq(&lp->lock);
1406 tc35815_txdone(dev);
1407 spin_unlock_irq(&lp->lock);
1408 if (ret < 0)
1409 ret = 0;
1410 }
1411 return ret;
1412 }
1413
1414 /*
1415 * The typical workload of the driver:
1416 * Handle the network interface interrupts.
1417 */
1418 static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1419 {
1420 struct net_device *dev = dev_id;
1421 struct tc35815_local *lp = netdev_priv(dev);
1422 struct tc35815_regs __iomem *tr =
1423 (struct tc35815_regs __iomem *)dev->base_addr;
1424 u32 dmactl = tc_readl(&tr->DMA_Ctl);
1425
1426 if (!(dmactl & DMA_IntMask)) {
1427 /* disable interrupts */
1428 tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1429 if (napi_schedule_prep(&lp->napi))
1430 __napi_schedule(&lp->napi);
1431 else {
1432 printk(KERN_ERR "%s: interrupt taken in poll\n",
1433 dev->name);
1434 BUG();
1435 }
1436 (void)tc_readl(&tr->Int_Src); /* flush */
1437 return IRQ_HANDLED;
1438 }
1439 return IRQ_NONE;
1440 }
1441
1442 #ifdef CONFIG_NET_POLL_CONTROLLER
1443 static void tc35815_poll_controller(struct net_device *dev)
1444 {
1445 disable_irq(dev->irq);
1446 tc35815_interrupt(dev->irq, dev);
1447 enable_irq(dev->irq);
1448 }
1449 #endif
1450
1451 /* We have a good packet(s), get it/them out of the buffers. */
1452 static int
1453 tc35815_rx(struct net_device *dev, int limit)
1454 {
1455 struct tc35815_local *lp = netdev_priv(dev);
1456 unsigned int fdctl;
1457 int i;
1458 int received = 0;
1459
1460 while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1461 int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1462 int pkt_len = fdctl & FD_FDLength_MASK;
1463 int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1464 #ifdef DEBUG
1465 struct RxFD *next_rfd;
1466 #endif
1467 #if (RX_CTL_CMD & Rx_StripCRC) == 0
1468 pkt_len -= ETH_FCS_LEN;
1469 #endif
1470
1471 if (netif_msg_rx_status(lp))
1472 dump_rxfd(lp->rfd_cur);
1473 if (status & Rx_Good) {
1474 struct sk_buff *skb;
1475 unsigned char *data;
1476 int cur_bd;
1477
1478 if (--limit < 0)
1479 break;
1480 BUG_ON(bd_count > 1);
1481 cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1482 & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1483 #ifdef DEBUG
1484 if (cur_bd >= RX_BUF_NUM) {
1485 printk("%s: invalid BDID.\n", dev->name);
1486 panic_queues(dev);
1487 }
1488 BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1489 (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1490 if (!lp->rx_skbs[cur_bd].skb) {
1491 printk("%s: NULL skb.\n", dev->name);
1492 panic_queues(dev);
1493 }
1494 #else
1495 BUG_ON(cur_bd >= RX_BUF_NUM);
1496 #endif
1497 skb = lp->rx_skbs[cur_bd].skb;
1498 prefetch(skb->data);
1499 lp->rx_skbs[cur_bd].skb = NULL;
1500 pci_unmap_single(lp->pci_dev,
1501 lp->rx_skbs[cur_bd].skb_dma,
1502 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1503 if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
1504 memmove(skb->data, skb->data - NET_IP_ALIGN,
1505 pkt_len);
1506 data = skb_put(skb, pkt_len);
1507 if (netif_msg_pktdata(lp))
1508 print_eth(data);
1509 skb->protocol = eth_type_trans(skb, dev);
1510 netif_receive_skb(skb);
1511 received++;
1512 dev->stats.rx_packets++;
1513 dev->stats.rx_bytes += pkt_len;
1514 } else {
1515 dev->stats.rx_errors++;
1516 if (netif_msg_rx_err(lp))
1517 dev_info(&dev->dev, "Rx error (status %x)\n",
1518 status & Rx_Stat_Mask);
1519 /* WORKAROUND: LongErr and CRCErr means Overflow. */
1520 if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1521 status &= ~(Rx_LongErr|Rx_CRCErr);
1522 status |= Rx_Over;
1523 }
1524 if (status & Rx_LongErr)
1525 dev->stats.rx_length_errors++;
1526 if (status & Rx_Over)
1527 dev->stats.rx_fifo_errors++;
1528 if (status & Rx_CRCErr)
1529 dev->stats.rx_crc_errors++;
1530 if (status & Rx_Align)
1531 dev->stats.rx_frame_errors++;
1532 }
1533
1534 if (bd_count > 0) {
1535 /* put Free Buffer back to controller */
1536 int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1537 unsigned char id =
1538 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1539 #ifdef DEBUG
1540 if (id >= RX_BUF_NUM) {
1541 printk("%s: invalid BDID.\n", dev->name);
1542 panic_queues(dev);
1543 }
1544 #else
1545 BUG_ON(id >= RX_BUF_NUM);
1546 #endif
1547 /* free old buffers */
1548 lp->fbl_count--;
1549 while (lp->fbl_count < RX_BUF_NUM)
1550 {
1551 unsigned char curid =
1552 (id + 1 + lp->fbl_count) % RX_BUF_NUM;
1553 struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1554 #ifdef DEBUG
1555 bdctl = le32_to_cpu(bd->BDCtl);
1556 if (bdctl & BD_CownsBD) {
1557 printk("%s: Freeing invalid BD.\n",
1558 dev->name);
1559 panic_queues(dev);
1560 }
1561 #endif
1562 /* pass BD to controller */
1563 if (!lp->rx_skbs[curid].skb) {
1564 lp->rx_skbs[curid].skb =
1565 alloc_rxbuf_skb(dev,
1566 lp->pci_dev,
1567 &lp->rx_skbs[curid].skb_dma);
1568 if (!lp->rx_skbs[curid].skb)
1569 break; /* try on next reception */
1570 bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1571 }
1572 /* Note: BDLength was modified by chip. */
1573 bd->BDCtl = cpu_to_le32(BD_CownsBD |
1574 (curid << BD_RxBDID_SHIFT) |
1575 RX_BUF_SIZE);
1576 lp->fbl_count++;
1577 }
1578 }
1579
1580 /* put RxFD back to controller */
1581 #ifdef DEBUG
1582 next_rfd = fd_bus_to_virt(lp,
1583 le32_to_cpu(lp->rfd_cur->fd.FDNext));
1584 if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1585 printk("%s: RxFD FDNext invalid.\n", dev->name);
1586 panic_queues(dev);
1587 }
1588 #endif
1589 for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1590 /* pass FD to controller */
1591 #ifdef DEBUG
1592 lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1593 #else
1594 lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1595 #endif
1596 lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1597 lp->rfd_cur++;
1598 }
1599 if (lp->rfd_cur > lp->rfd_limit)
1600 lp->rfd_cur = lp->rfd_base;
1601 #ifdef DEBUG
1602 if (lp->rfd_cur != next_rfd)
1603 printk("rfd_cur = %p, next_rfd %p\n",
1604 lp->rfd_cur, next_rfd);
1605 #endif
1606 }
1607
1608 return received;
1609 }
1610
1611 static int tc35815_poll(struct napi_struct *napi, int budget)
1612 {
1613 struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1614 struct net_device *dev = lp->dev;
1615 struct tc35815_regs __iomem *tr =
1616 (struct tc35815_regs __iomem *)dev->base_addr;
1617 int received = 0, handled;
1618 u32 status;
1619
1620 if (budget <= 0)
1621 return received;
1622
1623 spin_lock(&lp->rx_lock);
1624 status = tc_readl(&tr->Int_Src);
1625 do {
1626 /* BLEx, FDAEx will be cleared later */
1627 tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1628 &tr->Int_Src); /* write to clear */
1629
1630 handled = tc35815_do_interrupt(dev, status, budget - received);
1631 if (status & (Int_BLEx | Int_FDAEx))
1632 tc_writel(status & (Int_BLEx | Int_FDAEx),
1633 &tr->Int_Src);
1634 if (handled >= 0) {
1635 received += handled;
1636 if (received >= budget)
1637 break;
1638 }
1639 status = tc_readl(&tr->Int_Src);
1640 } while (status);
1641 spin_unlock(&lp->rx_lock);
1642
1643 if (received < budget) {
1644 napi_complete(napi);
1645 /* enable interrupts */
1646 tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1647 }
1648 return received;
1649 }
1650
1651 #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1652
1653 static void
1654 tc35815_check_tx_stat(struct net_device *dev, int status)
1655 {
1656 struct tc35815_local *lp = netdev_priv(dev);
1657 const char *msg = NULL;
1658
1659 /* count collisions */
1660 if (status & Tx_ExColl)
1661 dev->stats.collisions += 16;
1662 if (status & Tx_TxColl_MASK)
1663 dev->stats.collisions += status & Tx_TxColl_MASK;
1664
1665 /* TX4939 does not have NCarr */
1666 if (lp->chiptype == TC35815_TX4939)
1667 status &= ~Tx_NCarr;
1668 /* WORKAROUND: ignore LostCrS in full duplex operation */
1669 if (!lp->link || lp->duplex == DUPLEX_FULL)
1670 status &= ~Tx_NCarr;
1671
1672 if (!(status & TX_STA_ERR)) {
1673 /* no error. */
1674 dev->stats.tx_packets++;
1675 return;
1676 }
1677
1678 dev->stats.tx_errors++;
1679 if (status & Tx_ExColl) {
1680 dev->stats.tx_aborted_errors++;
1681 msg = "Excessive Collision.";
1682 }
1683 if (status & Tx_Under) {
1684 dev->stats.tx_fifo_errors++;
1685 msg = "Tx FIFO Underrun.";
1686 if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1687 lp->lstats.tx_underrun++;
1688 if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1689 struct tc35815_regs __iomem *tr =
1690 (struct tc35815_regs __iomem *)dev->base_addr;
1691 tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1692 msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1693 }
1694 }
1695 }
1696 if (status & Tx_Defer) {
1697 dev->stats.tx_fifo_errors++;
1698 msg = "Excessive Deferral.";
1699 }
1700 if (status & Tx_NCarr) {
1701 dev->stats.tx_carrier_errors++;
1702 msg = "Lost Carrier Sense.";
1703 }
1704 if (status & Tx_LateColl) {
1705 dev->stats.tx_aborted_errors++;
1706 msg = "Late Collision.";
1707 }
1708 if (status & Tx_TxPar) {
1709 dev->stats.tx_fifo_errors++;
1710 msg = "Transmit Parity Error.";
1711 }
1712 if (status & Tx_SQErr) {
1713 dev->stats.tx_heartbeat_errors++;
1714 msg = "Signal Quality Error.";
1715 }
1716 if (msg && netif_msg_tx_err(lp))
1717 printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1718 }
1719
1720 /* This handles TX complete events posted by the device
1721 * via interrupts.
1722 */
1723 static void
1724 tc35815_txdone(struct net_device *dev)
1725 {
1726 struct tc35815_local *lp = netdev_priv(dev);
1727 struct TxFD *txfd;
1728 unsigned int fdctl;
1729
1730 txfd = &lp->tfd_base[lp->tfd_end];
1731 while (lp->tfd_start != lp->tfd_end &&
1732 !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1733 int status = le32_to_cpu(txfd->fd.FDStat);
1734 struct sk_buff *skb;
1735 unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1736 u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1737
1738 if (netif_msg_tx_done(lp)) {
1739 printk("%s: complete TxFD.\n", dev->name);
1740 dump_txfd(txfd);
1741 }
1742 tc35815_check_tx_stat(dev, status);
1743
1744 skb = fdsystem != 0xffffffff ?
1745 lp->tx_skbs[fdsystem].skb : NULL;
1746 #ifdef DEBUG
1747 if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1748 printk("%s: tx_skbs mismatch.\n", dev->name);
1749 panic_queues(dev);
1750 }
1751 #else
1752 BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1753 #endif
1754 if (skb) {
1755 dev->stats.tx_bytes += skb->len;
1756 pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
1757 lp->tx_skbs[lp->tfd_end].skb = NULL;
1758 lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1759 dev_kfree_skb_any(skb);
1760 }
1761 txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1762
1763 lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1764 txfd = &lp->tfd_base[lp->tfd_end];
1765 #ifdef DEBUG
1766 if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1767 printk("%s: TxFD FDNext invalid.\n", dev->name);
1768 panic_queues(dev);
1769 }
1770 #endif
1771 if (fdnext & FD_Next_EOL) {
1772 /* DMA Transmitter has been stopping... */
1773 if (lp->tfd_end != lp->tfd_start) {
1774 struct tc35815_regs __iomem *tr =
1775 (struct tc35815_regs __iomem *)dev->base_addr;
1776 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1777 struct TxFD *txhead = &lp->tfd_base[head];
1778 int qlen = (lp->tfd_start + TX_FD_NUM
1779 - lp->tfd_end) % TX_FD_NUM;
1780
1781 #ifdef DEBUG
1782 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1783 printk("%s: TxFD FDCtl invalid.\n", dev->name);
1784 panic_queues(dev);
1785 }
1786 #endif
1787 /* log max queue length */
1788 if (lp->lstats.max_tx_qlen < qlen)
1789 lp->lstats.max_tx_qlen = qlen;
1790
1791
1792 /* start DMA Transmitter again */
1793 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1794 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1795 if (netif_msg_tx_queued(lp)) {
1796 printk("%s: start TxFD on queue.\n",
1797 dev->name);
1798 dump_txfd(txfd);
1799 }
1800 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1801 }
1802 break;
1803 }
1804 }
1805
1806 /* If we had stopped the queue due to a "tx full"
1807 * condition, and space has now been made available,
1808 * wake up the queue.
1809 */
1810 if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1811 netif_wake_queue(dev);
1812 }
1813
1814 /* The inverse routine to tc35815_open(). */
1815 static int
1816 tc35815_close(struct net_device *dev)
1817 {
1818 struct tc35815_local *lp = netdev_priv(dev);
1819
1820 netif_stop_queue(dev);
1821 napi_disable(&lp->napi);
1822 if (lp->phy_dev)
1823 phy_stop(lp->phy_dev);
1824 cancel_work_sync(&lp->restart_work);
1825
1826 /* Flush the Tx and disable Rx here. */
1827 tc35815_chip_reset(dev);
1828 free_irq(dev->irq, dev);
1829
1830 tc35815_free_queues(dev);
1831
1832 return 0;
1833
1834 }
1835
1836 /*
1837 * Get the current statistics.
1838 * This may be called with the card open or closed.
1839 */
1840 static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1841 {
1842 struct tc35815_regs __iomem *tr =
1843 (struct tc35815_regs __iomem *)dev->base_addr;
1844 if (netif_running(dev))
1845 /* Update the statistics from the device registers. */
1846 dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1847
1848 return &dev->stats;
1849 }
1850
1851 static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1852 {
1853 struct tc35815_local *lp = netdev_priv(dev);
1854 struct tc35815_regs __iomem *tr =
1855 (struct tc35815_regs __iomem *)dev->base_addr;
1856 int cam_index = index * 6;
1857 u32 cam_data;
1858 u32 saved_addr;
1859
1860 saved_addr = tc_readl(&tr->CAM_Adr);
1861
1862 if (netif_msg_hw(lp))
1863 printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1864 dev->name, index, addr);
1865 if (index & 1) {
1866 /* read modify write */
1867 tc_writel(cam_index - 2, &tr->CAM_Adr);
1868 cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1869 cam_data |= addr[0] << 8 | addr[1];
1870 tc_writel(cam_data, &tr->CAM_Data);
1871 /* write whole word */
1872 tc_writel(cam_index + 2, &tr->CAM_Adr);
1873 cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1874 tc_writel(cam_data, &tr->CAM_Data);
1875 } else {
1876 /* write whole word */
1877 tc_writel(cam_index, &tr->CAM_Adr);
1878 cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1879 tc_writel(cam_data, &tr->CAM_Data);
1880 /* read modify write */
1881 tc_writel(cam_index + 4, &tr->CAM_Adr);
1882 cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1883 cam_data |= addr[4] << 24 | (addr[5] << 16);
1884 tc_writel(cam_data, &tr->CAM_Data);
1885 }
1886
1887 tc_writel(saved_addr, &tr->CAM_Adr);
1888 }
1889
1890
1891 /*
1892 * Set or clear the multicast filter for this adaptor.
1893 * num_addrs == -1 Promiscuous mode, receive all packets
1894 * num_addrs == 0 Normal mode, clear multicast list
1895 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1896 * and do best-effort filtering.
1897 */
1898 static void
1899 tc35815_set_multicast_list(struct net_device *dev)
1900 {
1901 struct tc35815_regs __iomem *tr =
1902 (struct tc35815_regs __iomem *)dev->base_addr;
1903
1904 if (dev->flags & IFF_PROMISC) {
1905 /* With some (all?) 100MHalf HUB, controller will hang
1906 * if we enabled promiscuous mode before linkup... */
1907 struct tc35815_local *lp = netdev_priv(dev);
1908
1909 if (!lp->link)
1910 return;
1911 /* Enable promiscuous mode */
1912 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1913 } else if ((dev->flags & IFF_ALLMULTI) ||
1914 netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1915 /* CAM 0, 1, 20 are reserved. */
1916 /* Disable promiscuous mode, use normal mode. */
1917 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1918 } else if (!netdev_mc_empty(dev)) {
1919 struct netdev_hw_addr *ha;
1920 int i;
1921 int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1922
1923 tc_writel(0, &tr->CAM_Ctl);
1924 /* Walk the address list, and load the filter */
1925 i = 0;
1926 netdev_for_each_mc_addr(ha, dev) {
1927 /* entry 0,1 is reserved. */
1928 tc35815_set_cam_entry(dev, i + 2, ha->addr);
1929 ena_bits |= CAM_Ena_Bit(i + 2);
1930 i++;
1931 }
1932 tc_writel(ena_bits, &tr->CAM_Ena);
1933 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1934 } else {
1935 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1936 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1937 }
1938 }
1939
1940 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1941 {
1942 struct tc35815_local *lp = netdev_priv(dev);
1943
1944 strlcpy(info->driver, MODNAME, sizeof(info->driver));
1945 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1946 strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1947 }
1948
1949 static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1950 {
1951 struct tc35815_local *lp = netdev_priv(dev);
1952
1953 if (!lp->phy_dev)
1954 return -ENODEV;
1955 return phy_ethtool_gset(lp->phy_dev, cmd);
1956 }
1957
1958 static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1959 {
1960 struct tc35815_local *lp = netdev_priv(dev);
1961
1962 if (!lp->phy_dev)
1963 return -ENODEV;
1964 return phy_ethtool_sset(lp->phy_dev, cmd);
1965 }
1966
1967 static u32 tc35815_get_msglevel(struct net_device *dev)
1968 {
1969 struct tc35815_local *lp = netdev_priv(dev);
1970 return lp->msg_enable;
1971 }
1972
1973 static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
1974 {
1975 struct tc35815_local *lp = netdev_priv(dev);
1976 lp->msg_enable = datum;
1977 }
1978
1979 static int tc35815_get_sset_count(struct net_device *dev, int sset)
1980 {
1981 struct tc35815_local *lp = netdev_priv(dev);
1982
1983 switch (sset) {
1984 case ETH_SS_STATS:
1985 return sizeof(lp->lstats) / sizeof(int);
1986 default:
1987 return -EOPNOTSUPP;
1988 }
1989 }
1990
1991 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
1992 {
1993 struct tc35815_local *lp = netdev_priv(dev);
1994 data[0] = lp->lstats.max_tx_qlen;
1995 data[1] = lp->lstats.tx_ints;
1996 data[2] = lp->lstats.rx_ints;
1997 data[3] = lp->lstats.tx_underrun;
1998 }
1999
2000 static struct {
2001 const char str[ETH_GSTRING_LEN];
2002 } ethtool_stats_keys[] = {
2003 { "max_tx_qlen" },
2004 { "tx_ints" },
2005 { "rx_ints" },
2006 { "tx_underrun" },
2007 };
2008
2009 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2010 {
2011 memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2012 }
2013
2014 static const struct ethtool_ops tc35815_ethtool_ops = {
2015 .get_drvinfo = tc35815_get_drvinfo,
2016 .get_settings = tc35815_get_settings,
2017 .set_settings = tc35815_set_settings,
2018 .get_link = ethtool_op_get_link,
2019 .get_msglevel = tc35815_get_msglevel,
2020 .set_msglevel = tc35815_set_msglevel,
2021 .get_strings = tc35815_get_strings,
2022 .get_sset_count = tc35815_get_sset_count,
2023 .get_ethtool_stats = tc35815_get_ethtool_stats,
2024 };
2025
2026 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2027 {
2028 struct tc35815_local *lp = netdev_priv(dev);
2029
2030 if (!netif_running(dev))
2031 return -EINVAL;
2032 if (!lp->phy_dev)
2033 return -ENODEV;
2034 return phy_mii_ioctl(lp->phy_dev, rq, cmd);
2035 }
2036
2037 static void tc35815_chip_reset(struct net_device *dev)
2038 {
2039 struct tc35815_regs __iomem *tr =
2040 (struct tc35815_regs __iomem *)dev->base_addr;
2041 int i;
2042 /* reset the controller */
2043 tc_writel(MAC_Reset, &tr->MAC_Ctl);
2044 udelay(4); /* 3200ns */
2045 i = 0;
2046 while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2047 if (i++ > 100) {
2048 printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2049 break;
2050 }
2051 mdelay(1);
2052 }
2053 tc_writel(0, &tr->MAC_Ctl);
2054
2055 /* initialize registers to default value */
2056 tc_writel(0, &tr->DMA_Ctl);
2057 tc_writel(0, &tr->TxThrsh);
2058 tc_writel(0, &tr->TxPollCtr);
2059 tc_writel(0, &tr->RxFragSize);
2060 tc_writel(0, &tr->Int_En);
2061 tc_writel(0, &tr->FDA_Bas);
2062 tc_writel(0, &tr->FDA_Lim);
2063 tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */
2064 tc_writel(0, &tr->CAM_Ctl);
2065 tc_writel(0, &tr->Tx_Ctl);
2066 tc_writel(0, &tr->Rx_Ctl);
2067 tc_writel(0, &tr->CAM_Ena);
2068 (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
2069
2070 /* initialize internal SRAM */
2071 tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2072 for (i = 0; i < 0x1000; i += 4) {
2073 tc_writel(i, &tr->CAM_Adr);
2074 tc_writel(0, &tr->CAM_Data);
2075 }
2076 tc_writel(0, &tr->DMA_Ctl);
2077 }
2078
2079 static void tc35815_chip_init(struct net_device *dev)
2080 {
2081 struct tc35815_local *lp = netdev_priv(dev);
2082 struct tc35815_regs __iomem *tr =
2083 (struct tc35815_regs __iomem *)dev->base_addr;
2084 unsigned long txctl = TX_CTL_CMD;
2085
2086 /* load station address to CAM */
2087 tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2088
2089 /* Enable CAM (broadcast and unicast) */
2090 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2091 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2092
2093 /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2094 if (HAVE_DMA_RXALIGN(lp))
2095 tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2096 else
2097 tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2098 tc_writel(0, &tr->TxPollCtr); /* Batch mode */
2099 tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2100 tc_writel(INT_EN_CMD, &tr->Int_En);
2101
2102 /* set queues */
2103 tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2104 tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2105 &tr->FDA_Lim);
2106 /*
2107 * Activation method:
2108 * First, enable the MAC Transmitter and the DMA Receive circuits.
2109 * Then enable the DMA Transmitter and the MAC Receive circuits.
2110 */
2111 tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
2112 tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
2113
2114 /* start MAC transmitter */
2115 /* TX4939 does not have EnLCarr */
2116 if (lp->chiptype == TC35815_TX4939)
2117 txctl &= ~Tx_EnLCarr;
2118 /* WORKAROUND: ignore LostCrS in full duplex operation */
2119 if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL)
2120 txctl &= ~Tx_EnLCarr;
2121 tc_writel(txctl, &tr->Tx_Ctl);
2122 }
2123
2124 #ifdef CONFIG_PM
2125 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2126 {
2127 struct net_device *dev = pci_get_drvdata(pdev);
2128 struct tc35815_local *lp = netdev_priv(dev);
2129 unsigned long flags;
2130
2131 pci_save_state(pdev);
2132 if (!netif_running(dev))
2133 return 0;
2134 netif_device_detach(dev);
2135 if (lp->phy_dev)
2136 phy_stop(lp->phy_dev);
2137 spin_lock_irqsave(&lp->lock, flags);
2138 tc35815_chip_reset(dev);
2139 spin_unlock_irqrestore(&lp->lock, flags);
2140 pci_set_power_state(pdev, PCI_D3hot);
2141 return 0;
2142 }
2143
2144 static int tc35815_resume(struct pci_dev *pdev)
2145 {
2146 struct net_device *dev = pci_get_drvdata(pdev);
2147 struct tc35815_local *lp = netdev_priv(dev);
2148
2149 pci_restore_state(pdev);
2150 if (!netif_running(dev))
2151 return 0;
2152 pci_set_power_state(pdev, PCI_D0);
2153 tc35815_restart(dev);
2154 netif_carrier_off(dev);
2155 if (lp->phy_dev)
2156 phy_start(lp->phy_dev);
2157 netif_device_attach(dev);
2158 return 0;
2159 }
2160 #endif /* CONFIG_PM */
2161
2162 static struct pci_driver tc35815_pci_driver = {
2163 .name = MODNAME,
2164 .id_table = tc35815_pci_tbl,
2165 .probe = tc35815_init_one,
2166 .remove = tc35815_remove_one,
2167 #ifdef CONFIG_PM
2168 .suspend = tc35815_suspend,
2169 .resume = tc35815_resume,
2170 #endif
2171 };
2172
2173 module_param_named(speed, options.speed, int, 0);
2174 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2175 module_param_named(duplex, options.duplex, int, 0);
2176 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2177
2178 module_pci_driver(tc35815_pci_driver);
2179 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2180 MODULE_LICENSE("GPL");
This page took 0.1105 seconds and 5 git commands to generate.