Merge tag 'linux-kselftest-4.8-rc1-update' of git://git.kernel.org/pub/scm/linux...
[deliverable/linux.git] / drivers / net / ethernet / toshiba / tc35815.c
1 /*
2 * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3 *
4 * Based on skelton.c by Donald Becker.
5 *
6 * This driver is a replacement of older and less maintained version.
7 * This is a header of the older version:
8 * -----<snip>-----
9 * Copyright 2001 MontaVista Software Inc.
10 * Author: MontaVista Software, Inc.
11 * ahennessy@mvista.com
12 * Copyright (C) 2000-2001 Toshiba Corporation
13 * static const char *version =
14 * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15 * -----<snip>-----
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file "COPYING" in the main directory of this archive
19 * for more details.
20 *
21 * (C) Copyright TOSHIBA CORPORATION 2004-2005
22 * All Rights Reserved.
23 */
24
25 #define DRV_VERSION "1.39"
26 static const char *version = "tc35815.c:v" DRV_VERSION "\n";
27 #define MODNAME "tc35815"
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/interrupt.h>
34 #include <linux/ioport.h>
35 #include <linux/in.h>
36 #include <linux/if_vlan.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/netdevice.h>
42 #include <linux/etherdevice.h>
43 #include <linux/skbuff.h>
44 #include <linux/delay.h>
45 #include <linux/pci.h>
46 #include <linux/phy.h>
47 #include <linux/workqueue.h>
48 #include <linux/platform_device.h>
49 #include <linux/prefetch.h>
50 #include <asm/io.h>
51 #include <asm/byteorder.h>
52
53 enum tc35815_chiptype {
54 TC35815CF = 0,
55 TC35815_NWU,
56 TC35815_TX4939,
57 };
58
59 /* indexed by tc35815_chiptype, above */
60 static const struct {
61 const char *name;
62 } chip_info[] = {
63 { "TOSHIBA TC35815CF 10/100BaseTX" },
64 { "TOSHIBA TC35815 with Wake on LAN" },
65 { "TOSHIBA TC35815/TX4939" },
66 };
67
68 static const struct pci_device_id tc35815_pci_tbl[] = {
69 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
70 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
71 {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
72 {0,}
73 };
74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
75
76 /* see MODULE_PARM_DESC */
77 static struct tc35815_options {
78 int speed;
79 int duplex;
80 } options;
81
82 /*
83 * Registers
84 */
85 struct tc35815_regs {
86 __u32 DMA_Ctl; /* 0x00 */
87 __u32 TxFrmPtr;
88 __u32 TxThrsh;
89 __u32 TxPollCtr;
90 __u32 BLFrmPtr;
91 __u32 RxFragSize;
92 __u32 Int_En;
93 __u32 FDA_Bas;
94 __u32 FDA_Lim; /* 0x20 */
95 __u32 Int_Src;
96 __u32 unused0[2];
97 __u32 PauseCnt;
98 __u32 RemPauCnt;
99 __u32 TxCtlFrmStat;
100 __u32 unused1;
101 __u32 MAC_Ctl; /* 0x40 */
102 __u32 CAM_Ctl;
103 __u32 Tx_Ctl;
104 __u32 Tx_Stat;
105 __u32 Rx_Ctl;
106 __u32 Rx_Stat;
107 __u32 MD_Data;
108 __u32 MD_CA;
109 __u32 CAM_Adr; /* 0x60 */
110 __u32 CAM_Data;
111 __u32 CAM_Ena;
112 __u32 PROM_Ctl;
113 __u32 PROM_Data;
114 __u32 Algn_Cnt;
115 __u32 CRC_Cnt;
116 __u32 Miss_Cnt;
117 };
118
119 /*
120 * Bit assignments
121 */
122 /* DMA_Ctl bit assign ------------------------------------------------------- */
123 #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */
124 #define DMA_RxAlign_1 0x00400000
125 #define DMA_RxAlign_2 0x00800000
126 #define DMA_RxAlign_3 0x00c00000
127 #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */
128 #define DMA_IntMask 0x00040000 /* 1:Interrupt mask */
129 #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */
130 #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */
131 #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */
132 #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */
133 #define DMA_TestMode 0x00002000 /* 1:Test Mode */
134 #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */
135 #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */
136
137 /* RxFragSize bit assign ---------------------------------------------------- */
138 #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */
139 #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */
140
141 /* MAC_Ctl bit assign ------------------------------------------------------- */
142 #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */
143 #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */
144 #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */
145 #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */
146 #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */
147 #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/
148 #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */
149 #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */
150 #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */
151 #define MAC_Reset 0x00000004 /* 1:Software Reset */
152 #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */
153 #define MAC_HaltReq 0x00000001 /* 1:Halt request */
154
155 /* PROM_Ctl bit assign ------------------------------------------------------ */
156 #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */
157 #define PROM_Read 0x00004000 /*10:Read operation */
158 #define PROM_Write 0x00002000 /*01:Write operation */
159 #define PROM_Erase 0x00006000 /*11:Erase operation */
160 /*00:Enable or Disable Writting, */
161 /* as specified in PROM_Addr. */
162 #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */
163 /*00xxxx: disable */
164
165 /* CAM_Ctl bit assign ------------------------------------------------------- */
166 #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */
167 #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/
168 /* accept other */
169 #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */
170 #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */
171 #define CAM_StationAcc 0x00000001 /* 1:unicast accept */
172
173 /* CAM_Ena bit assign ------------------------------------------------------- */
174 #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */
175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */
176 #define CAM_Ena_Bit(index) (1 << (index))
177 #define CAM_ENTRY_DESTINATION 0
178 #define CAM_ENTRY_SOURCE 1
179 #define CAM_ENTRY_MACCTL 20
180
181 /* Tx_Ctl bit assign -------------------------------------------------------- */
182 #define Tx_En 0x00000001 /* 1:Transmit enable */
183 #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */
184 #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */
185 #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */
186 #define Tx_FBack 0x00000010 /* 1:Fast Back-off */
187 #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */
188 #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */
189 #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */
190 #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */
191 #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */
192 #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */
193 #define Tx_EnComp 0x00004000 /* 1:Enable Completion */
194
195 /* Tx_Stat bit assign ------------------------------------------------------- */
196 #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */
197 #define Tx_ExColl 0x00000010 /* Excessive Collision */
198 #define Tx_TXDefer 0x00000020 /* Transmit Defered */
199 #define Tx_Paused 0x00000040 /* Transmit Paused */
200 #define Tx_IntTx 0x00000080 /* Interrupt on Tx */
201 #define Tx_Under 0x00000100 /* Underrun */
202 #define Tx_Defer 0x00000200 /* Deferral */
203 #define Tx_NCarr 0x00000400 /* No Carrier */
204 #define Tx_10Stat 0x00000800 /* 10Mbps Status */
205 #define Tx_LateColl 0x00001000 /* Late Collision */
206 #define Tx_TxPar 0x00002000 /* Tx Parity Error */
207 #define Tx_Comp 0x00004000 /* Completion */
208 #define Tx_Halted 0x00008000 /* Tx Halted */
209 #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */
210
211 /* Rx_Ctl bit assign -------------------------------------------------------- */
212 #define Rx_EnGood 0x00004000 /* 1:Enable Good */
213 #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */
214 #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */
215 #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */
216 #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */
217 #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */
218 #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */
219 #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */
220 #define Rx_ShortEn 0x00000008 /* 1:Short Enable */
221 #define Rx_LongEn 0x00000004 /* 1:Long Enable */
222 #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */
223 #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */
224
225 /* Rx_Stat bit assign ------------------------------------------------------- */
226 #define Rx_Halted 0x00008000 /* Rx Halted */
227 #define Rx_Good 0x00004000 /* Rx Good */
228 #define Rx_RxPar 0x00002000 /* Rx Parity Error */
229 #define Rx_TypePkt 0x00001000 /* Rx Type Packet */
230 #define Rx_LongErr 0x00000800 /* Rx Long Error */
231 #define Rx_Over 0x00000400 /* Rx Overflow */
232 #define Rx_CRCErr 0x00000200 /* Rx CRC Error */
233 #define Rx_Align 0x00000100 /* Rx Alignment Error */
234 #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */
235 #define Rx_IntRx 0x00000040 /* Rx Interrupt */
236 #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */
237 #define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */
238
239 #define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */
240
241 /* Int_En bit assign -------------------------------------------------------- */
242 #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */
243 #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */
244 #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */
245 #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */
246 #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */
247 #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */
248 #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */
249 #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */
250 #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */
251 #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */
252 #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */
253 #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */
254 /* Exhausted Enable */
255
256 /* Int_Src bit assign ------------------------------------------------------- */
257 #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */
258 #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */
259 #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */
260 #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */
261 #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */
262 #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */
263 #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */
264 #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */
265 #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */
266 #define Int_SWInt 0x00000020 /* 1:Software request & Clear */
267 #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */
268 #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */
269 #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */
270 #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */
271 #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */
272
273 /* MD_CA bit assign --------------------------------------------------------- */
274 #define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */
275 #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */
276 #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */
277
278
279 /*
280 * Descriptors
281 */
282
283 /* Frame descriptor */
284 struct FDesc {
285 volatile __u32 FDNext;
286 volatile __u32 FDSystem;
287 volatile __u32 FDStat;
288 volatile __u32 FDCtl;
289 };
290
291 /* Buffer descriptor */
292 struct BDesc {
293 volatile __u32 BuffData;
294 volatile __u32 BDCtl;
295 };
296
297 #define FD_ALIGN 16
298
299 /* Frame Descriptor bit assign ---------------------------------------------- */
300 #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */
301 #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */
302 #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */
303 #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */
304 #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */
305 #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */
306 #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */
307 #define FD_FrmOpt_Packing 0x04000000 /* Rx only */
308 #define FD_CownsFD 0x80000000 /* FD Controller owner bit */
309 #define FD_Next_EOL 0x00000001 /* FD EOL indicator */
310 #define FD_BDCnt_SHIFT 16
311
312 /* Buffer Descriptor bit assign --------------------------------------------- */
313 #define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */
314 #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */
315 #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */
316 #define BD_CownsBD 0x80000000 /* BD Controller owner bit */
317 #define BD_RxBDID_SHIFT 16
318 #define BD_RxBDSeqN_SHIFT 24
319
320
321 /* Some useful constants. */
322
323 #define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \
324 Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
325 Tx_En) /* maybe 0x7b01 */
326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
327 #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
328 | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
329 #define INT_EN_CMD (Int_NRAbtEn | \
330 Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
331 Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \
332 Int_STargAbtEn | \
333 Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/
334 #define DMA_CTL_CMD DMA_BURST_SIZE
335 #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF)
336
337 /* Tuning parameters */
338 #define DMA_BURST_SIZE 32
339 #define TX_THRESHOLD 1024
340 /* used threshold with packet max byte for low pci transfer ability.*/
341 #define TX_THRESHOLD_MAX 1536
342 /* setting threshold max value when overrun error occurred this count. */
343 #define TX_THRESHOLD_KEEP_LIMIT 10
344
345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
346 #define FD_PAGE_NUM 4
347 #define RX_BUF_NUM 128 /* < 256 */
348 #define RX_FD_NUM 256 /* >= 32 */
349 #define TX_FD_NUM 128
350 #if RX_CTL_CMD & Rx_LongEn
351 #define RX_BUF_SIZE PAGE_SIZE
352 #elif RX_CTL_CMD & Rx_StripCRC
353 #define RX_BUF_SIZE \
354 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
355 #else
356 #define RX_BUF_SIZE \
357 L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
358 #endif
359 #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */
360 #define NAPI_WEIGHT 16
361
362 struct TxFD {
363 struct FDesc fd;
364 struct BDesc bd;
365 struct BDesc unused;
366 };
367
368 struct RxFD {
369 struct FDesc fd;
370 struct BDesc bd[0]; /* variable length */
371 };
372
373 struct FrFD {
374 struct FDesc fd;
375 struct BDesc bd[RX_BUF_NUM];
376 };
377
378
379 #define tc_readl(addr) ioread32(addr)
380 #define tc_writel(d, addr) iowrite32(d, addr)
381
382 #define TC35815_TX_TIMEOUT msecs_to_jiffies(400)
383
384 /* Information that need to be kept for each controller. */
385 struct tc35815_local {
386 struct pci_dev *pci_dev;
387
388 struct net_device *dev;
389 struct napi_struct napi;
390
391 /* statistics */
392 struct {
393 int max_tx_qlen;
394 int tx_ints;
395 int rx_ints;
396 int tx_underrun;
397 } lstats;
398
399 /* Tx control lock. This protects the transmit buffer ring
400 * state along with the "tx full" state of the driver. This
401 * means all netif_queue flow control actions are protected
402 * by this lock as well.
403 */
404 spinlock_t lock;
405 spinlock_t rx_lock;
406
407 struct mii_bus *mii_bus;
408 int duplex;
409 int speed;
410 int link;
411 struct work_struct restart_work;
412
413 /*
414 * Transmitting: Batch Mode.
415 * 1 BD in 1 TxFD.
416 * Receiving: Non-Packing Mode.
417 * 1 circular FD for Free Buffer List.
418 * RX_BUF_NUM BD in Free Buffer FD.
419 * One Free Buffer BD has ETH_FRAME_LEN data buffer.
420 */
421 void *fd_buf; /* for TxFD, RxFD, FrFD */
422 dma_addr_t fd_buf_dma;
423 struct TxFD *tfd_base;
424 unsigned int tfd_start;
425 unsigned int tfd_end;
426 struct RxFD *rfd_base;
427 struct RxFD *rfd_limit;
428 struct RxFD *rfd_cur;
429 struct FrFD *fbl_ptr;
430 unsigned int fbl_count;
431 struct {
432 struct sk_buff *skb;
433 dma_addr_t skb_dma;
434 } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
435 u32 msg_enable;
436 enum tc35815_chiptype chiptype;
437 };
438
439 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
440 {
441 return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
442 }
443 #ifdef DEBUG
444 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
445 {
446 return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
447 }
448 #endif
449 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
450 struct pci_dev *hwdev,
451 dma_addr_t *dma_handle)
452 {
453 struct sk_buff *skb;
454 skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
455 if (!skb)
456 return NULL;
457 *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE,
458 PCI_DMA_FROMDEVICE);
459 if (pci_dma_mapping_error(hwdev, *dma_handle)) {
460 dev_kfree_skb_any(skb);
461 return NULL;
462 }
463 skb_reserve(skb, 2); /* make IP header 4byte aligned */
464 return skb;
465 }
466
467 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
468 {
469 pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE,
470 PCI_DMA_FROMDEVICE);
471 dev_kfree_skb_any(skb);
472 }
473
474 /* Index to functions, as function prototypes. */
475
476 static int tc35815_open(struct net_device *dev);
477 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev);
478 static irqreturn_t tc35815_interrupt(int irq, void *dev_id);
479 static int tc35815_rx(struct net_device *dev, int limit);
480 static int tc35815_poll(struct napi_struct *napi, int budget);
481 static void tc35815_txdone(struct net_device *dev);
482 static int tc35815_close(struct net_device *dev);
483 static struct net_device_stats *tc35815_get_stats(struct net_device *dev);
484 static void tc35815_set_multicast_list(struct net_device *dev);
485 static void tc35815_tx_timeout(struct net_device *dev);
486 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
487 #ifdef CONFIG_NET_POLL_CONTROLLER
488 static void tc35815_poll_controller(struct net_device *dev);
489 #endif
490 static const struct ethtool_ops tc35815_ethtool_ops;
491
492 /* Example routines you must write ;->. */
493 static void tc35815_chip_reset(struct net_device *dev);
494 static void tc35815_chip_init(struct net_device *dev);
495
496 #ifdef DEBUG
497 static void panic_queues(struct net_device *dev);
498 #endif
499
500 static void tc35815_restart_work(struct work_struct *work);
501
502 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
503 {
504 struct net_device *dev = bus->priv;
505 struct tc35815_regs __iomem *tr =
506 (struct tc35815_regs __iomem *)dev->base_addr;
507 unsigned long timeout = jiffies + HZ;
508
509 tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
510 udelay(12); /* it takes 32 x 400ns at least */
511 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
512 if (time_after(jiffies, timeout))
513 return -EIO;
514 cpu_relax();
515 }
516 return tc_readl(&tr->MD_Data) & 0xffff;
517 }
518
519 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
520 {
521 struct net_device *dev = bus->priv;
522 struct tc35815_regs __iomem *tr =
523 (struct tc35815_regs __iomem *)dev->base_addr;
524 unsigned long timeout = jiffies + HZ;
525
526 tc_writel(val, &tr->MD_Data);
527 tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
528 &tr->MD_CA);
529 udelay(12); /* it takes 32 x 400ns at least */
530 while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
531 if (time_after(jiffies, timeout))
532 return -EIO;
533 cpu_relax();
534 }
535 return 0;
536 }
537
538 static void tc_handle_link_change(struct net_device *dev)
539 {
540 struct tc35815_local *lp = netdev_priv(dev);
541 struct phy_device *phydev = dev->phydev;
542 unsigned long flags;
543 int status_change = 0;
544
545 spin_lock_irqsave(&lp->lock, flags);
546 if (phydev->link &&
547 (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
548 struct tc35815_regs __iomem *tr =
549 (struct tc35815_regs __iomem *)dev->base_addr;
550 u32 reg;
551
552 reg = tc_readl(&tr->MAC_Ctl);
553 reg |= MAC_HaltReq;
554 tc_writel(reg, &tr->MAC_Ctl);
555 if (phydev->duplex == DUPLEX_FULL)
556 reg |= MAC_FullDup;
557 else
558 reg &= ~MAC_FullDup;
559 tc_writel(reg, &tr->MAC_Ctl);
560 reg &= ~MAC_HaltReq;
561 tc_writel(reg, &tr->MAC_Ctl);
562
563 /*
564 * TX4939 PCFG.SPEEDn bit will be changed on
565 * NETDEV_CHANGE event.
566 */
567 /*
568 * WORKAROUND: enable LostCrS only if half duplex
569 * operation.
570 * (TX4939 does not have EnLCarr)
571 */
572 if (phydev->duplex == DUPLEX_HALF &&
573 lp->chiptype != TC35815_TX4939)
574 tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
575 &tr->Tx_Ctl);
576
577 lp->speed = phydev->speed;
578 lp->duplex = phydev->duplex;
579 status_change = 1;
580 }
581
582 if (phydev->link != lp->link) {
583 if (phydev->link) {
584 /* delayed promiscuous enabling */
585 if (dev->flags & IFF_PROMISC)
586 tc35815_set_multicast_list(dev);
587 } else {
588 lp->speed = 0;
589 lp->duplex = -1;
590 }
591 lp->link = phydev->link;
592
593 status_change = 1;
594 }
595 spin_unlock_irqrestore(&lp->lock, flags);
596
597 if (status_change && netif_msg_link(lp)) {
598 phy_print_status(phydev);
599 pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
600 dev->name,
601 phy_read(phydev, MII_BMCR),
602 phy_read(phydev, MII_BMSR),
603 phy_read(phydev, MII_LPA));
604 }
605 }
606
607 static int tc_mii_probe(struct net_device *dev)
608 {
609 struct tc35815_local *lp = netdev_priv(dev);
610 struct phy_device *phydev;
611 u32 dropmask;
612
613 phydev = phy_find_first(lp->mii_bus);
614 if (!phydev) {
615 printk(KERN_ERR "%s: no PHY found\n", dev->name);
616 return -ENODEV;
617 }
618
619 /* attach the mac to the phy */
620 phydev = phy_connect(dev, phydev_name(phydev),
621 &tc_handle_link_change,
622 lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
623 if (IS_ERR(phydev)) {
624 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
625 return PTR_ERR(phydev);
626 }
627
628 phy_attached_info(phydev);
629
630 /* mask with MAC supported features */
631 phydev->supported &= PHY_BASIC_FEATURES;
632 dropmask = 0;
633 if (options.speed == 10)
634 dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full;
635 else if (options.speed == 100)
636 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full;
637 if (options.duplex == 1)
638 dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full;
639 else if (options.duplex == 2)
640 dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half;
641 phydev->supported &= ~dropmask;
642 phydev->advertising = phydev->supported;
643
644 lp->link = 0;
645 lp->speed = 0;
646 lp->duplex = -1;
647
648 return 0;
649 }
650
651 static int tc_mii_init(struct net_device *dev)
652 {
653 struct tc35815_local *lp = netdev_priv(dev);
654 int err;
655
656 lp->mii_bus = mdiobus_alloc();
657 if (lp->mii_bus == NULL) {
658 err = -ENOMEM;
659 goto err_out;
660 }
661
662 lp->mii_bus->name = "tc35815_mii_bus";
663 lp->mii_bus->read = tc_mdio_read;
664 lp->mii_bus->write = tc_mdio_write;
665 snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x",
666 (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn);
667 lp->mii_bus->priv = dev;
668 lp->mii_bus->parent = &lp->pci_dev->dev;
669 err = mdiobus_register(lp->mii_bus);
670 if (err)
671 goto err_out_free_mii_bus;
672 err = tc_mii_probe(dev);
673 if (err)
674 goto err_out_unregister_bus;
675 return 0;
676
677 err_out_unregister_bus:
678 mdiobus_unregister(lp->mii_bus);
679 err_out_free_mii_bus:
680 mdiobus_free(lp->mii_bus);
681 err_out:
682 return err;
683 }
684
685 #ifdef CONFIG_CPU_TX49XX
686 /*
687 * Find a platform_device providing a MAC address. The platform code
688 * should provide a "tc35815-mac" device with a MAC address in its
689 * platform_data.
690 */
691 static int tc35815_mac_match(struct device *dev, void *data)
692 {
693 struct platform_device *plat_dev = to_platform_device(dev);
694 struct pci_dev *pci_dev = data;
695 unsigned int id = pci_dev->irq;
696 return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
697 }
698
699 static int tc35815_read_plat_dev_addr(struct net_device *dev)
700 {
701 struct tc35815_local *lp = netdev_priv(dev);
702 struct device *pd = bus_find_device(&platform_bus_type, NULL,
703 lp->pci_dev, tc35815_mac_match);
704 if (pd) {
705 if (pd->platform_data)
706 memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN);
707 put_device(pd);
708 return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
709 }
710 return -ENODEV;
711 }
712 #else
713 static int tc35815_read_plat_dev_addr(struct net_device *dev)
714 {
715 return -ENODEV;
716 }
717 #endif
718
719 static int tc35815_init_dev_addr(struct net_device *dev)
720 {
721 struct tc35815_regs __iomem *tr =
722 (struct tc35815_regs __iomem *)dev->base_addr;
723 int i;
724
725 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
726 ;
727 for (i = 0; i < 6; i += 2) {
728 unsigned short data;
729 tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
730 while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
731 ;
732 data = tc_readl(&tr->PROM_Data);
733 dev->dev_addr[i] = data & 0xff;
734 dev->dev_addr[i+1] = data >> 8;
735 }
736 if (!is_valid_ether_addr(dev->dev_addr))
737 return tc35815_read_plat_dev_addr(dev);
738 return 0;
739 }
740
741 static const struct net_device_ops tc35815_netdev_ops = {
742 .ndo_open = tc35815_open,
743 .ndo_stop = tc35815_close,
744 .ndo_start_xmit = tc35815_send_packet,
745 .ndo_get_stats = tc35815_get_stats,
746 .ndo_set_rx_mode = tc35815_set_multicast_list,
747 .ndo_tx_timeout = tc35815_tx_timeout,
748 .ndo_do_ioctl = tc35815_ioctl,
749 .ndo_validate_addr = eth_validate_addr,
750 .ndo_change_mtu = eth_change_mtu,
751 .ndo_set_mac_address = eth_mac_addr,
752 #ifdef CONFIG_NET_POLL_CONTROLLER
753 .ndo_poll_controller = tc35815_poll_controller,
754 #endif
755 };
756
757 static int tc35815_init_one(struct pci_dev *pdev,
758 const struct pci_device_id *ent)
759 {
760 void __iomem *ioaddr = NULL;
761 struct net_device *dev;
762 struct tc35815_local *lp;
763 int rc;
764
765 static int printed_version;
766 if (!printed_version++) {
767 printk(version);
768 dev_printk(KERN_DEBUG, &pdev->dev,
769 "speed:%d duplex:%d\n",
770 options.speed, options.duplex);
771 }
772
773 if (!pdev->irq) {
774 dev_warn(&pdev->dev, "no IRQ assigned.\n");
775 return -ENODEV;
776 }
777
778 /* dev zeroed in alloc_etherdev */
779 dev = alloc_etherdev(sizeof(*lp));
780 if (dev == NULL)
781 return -ENOMEM;
782
783 SET_NETDEV_DEV(dev, &pdev->dev);
784 lp = netdev_priv(dev);
785 lp->dev = dev;
786
787 /* enable device (incl. PCI PM wakeup), and bus-mastering */
788 rc = pcim_enable_device(pdev);
789 if (rc)
790 goto err_out;
791 rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
792 if (rc)
793 goto err_out;
794 pci_set_master(pdev);
795 ioaddr = pcim_iomap_table(pdev)[1];
796
797 /* Initialize the device structure. */
798 dev->netdev_ops = &tc35815_netdev_ops;
799 dev->ethtool_ops = &tc35815_ethtool_ops;
800 dev->watchdog_timeo = TC35815_TX_TIMEOUT;
801 netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
802
803 dev->irq = pdev->irq;
804 dev->base_addr = (unsigned long)ioaddr;
805
806 INIT_WORK(&lp->restart_work, tc35815_restart_work);
807 spin_lock_init(&lp->lock);
808 spin_lock_init(&lp->rx_lock);
809 lp->pci_dev = pdev;
810 lp->chiptype = ent->driver_data;
811
812 lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
813 pci_set_drvdata(pdev, dev);
814
815 /* Soft reset the chip. */
816 tc35815_chip_reset(dev);
817
818 /* Retrieve the ethernet address. */
819 if (tc35815_init_dev_addr(dev)) {
820 dev_warn(&pdev->dev, "not valid ether addr\n");
821 eth_hw_addr_random(dev);
822 }
823
824 rc = register_netdev(dev);
825 if (rc)
826 goto err_out;
827
828 printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
829 dev->name,
830 chip_info[ent->driver_data].name,
831 dev->base_addr,
832 dev->dev_addr,
833 dev->irq);
834
835 rc = tc_mii_init(dev);
836 if (rc)
837 goto err_out_unregister;
838
839 return 0;
840
841 err_out_unregister:
842 unregister_netdev(dev);
843 err_out:
844 free_netdev(dev);
845 return rc;
846 }
847
848
849 static void tc35815_remove_one(struct pci_dev *pdev)
850 {
851 struct net_device *dev = pci_get_drvdata(pdev);
852 struct tc35815_local *lp = netdev_priv(dev);
853
854 phy_disconnect(dev->phydev);
855 mdiobus_unregister(lp->mii_bus);
856 mdiobus_free(lp->mii_bus);
857 unregister_netdev(dev);
858 free_netdev(dev);
859 }
860
861 static int
862 tc35815_init_queues(struct net_device *dev)
863 {
864 struct tc35815_local *lp = netdev_priv(dev);
865 int i;
866 unsigned long fd_addr;
867
868 if (!lp->fd_buf) {
869 BUG_ON(sizeof(struct FDesc) +
870 sizeof(struct BDesc) * RX_BUF_NUM +
871 sizeof(struct FDesc) * RX_FD_NUM +
872 sizeof(struct TxFD) * TX_FD_NUM >
873 PAGE_SIZE * FD_PAGE_NUM);
874
875 lp->fd_buf = pci_alloc_consistent(lp->pci_dev,
876 PAGE_SIZE * FD_PAGE_NUM,
877 &lp->fd_buf_dma);
878 if (!lp->fd_buf)
879 return -ENOMEM;
880 for (i = 0; i < RX_BUF_NUM; i++) {
881 lp->rx_skbs[i].skb =
882 alloc_rxbuf_skb(dev, lp->pci_dev,
883 &lp->rx_skbs[i].skb_dma);
884 if (!lp->rx_skbs[i].skb) {
885 while (--i >= 0) {
886 free_rxbuf_skb(lp->pci_dev,
887 lp->rx_skbs[i].skb,
888 lp->rx_skbs[i].skb_dma);
889 lp->rx_skbs[i].skb = NULL;
890 }
891 pci_free_consistent(lp->pci_dev,
892 PAGE_SIZE * FD_PAGE_NUM,
893 lp->fd_buf,
894 lp->fd_buf_dma);
895 lp->fd_buf = NULL;
896 return -ENOMEM;
897 }
898 }
899 printk(KERN_DEBUG "%s: FD buf %p DataBuf",
900 dev->name, lp->fd_buf);
901 printk("\n");
902 } else {
903 for (i = 0; i < FD_PAGE_NUM; i++)
904 clear_page((void *)((unsigned long)lp->fd_buf +
905 i * PAGE_SIZE));
906 }
907 fd_addr = (unsigned long)lp->fd_buf;
908
909 /* Free Descriptors (for Receive) */
910 lp->rfd_base = (struct RxFD *)fd_addr;
911 fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
912 for (i = 0; i < RX_FD_NUM; i++)
913 lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
914 lp->rfd_cur = lp->rfd_base;
915 lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
916
917 /* Transmit Descriptors */
918 lp->tfd_base = (struct TxFD *)fd_addr;
919 fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
920 for (i = 0; i < TX_FD_NUM; i++) {
921 lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
922 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
923 lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
924 }
925 lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
926 lp->tfd_start = 0;
927 lp->tfd_end = 0;
928
929 /* Buffer List (for Receive) */
930 lp->fbl_ptr = (struct FrFD *)fd_addr;
931 lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
932 lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
933 /*
934 * move all allocated skbs to head of rx_skbs[] array.
935 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
936 * tc35815_rx() had failed.
937 */
938 lp->fbl_count = 0;
939 for (i = 0; i < RX_BUF_NUM; i++) {
940 if (lp->rx_skbs[i].skb) {
941 if (i != lp->fbl_count) {
942 lp->rx_skbs[lp->fbl_count].skb =
943 lp->rx_skbs[i].skb;
944 lp->rx_skbs[lp->fbl_count].skb_dma =
945 lp->rx_skbs[i].skb_dma;
946 }
947 lp->fbl_count++;
948 }
949 }
950 for (i = 0; i < RX_BUF_NUM; i++) {
951 if (i >= lp->fbl_count) {
952 lp->fbl_ptr->bd[i].BuffData = 0;
953 lp->fbl_ptr->bd[i].BDCtl = 0;
954 continue;
955 }
956 lp->fbl_ptr->bd[i].BuffData =
957 cpu_to_le32(lp->rx_skbs[i].skb_dma);
958 /* BDID is index of FrFD.bd[] */
959 lp->fbl_ptr->bd[i].BDCtl =
960 cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
961 RX_BUF_SIZE);
962 }
963
964 printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
965 dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
966 return 0;
967 }
968
969 static void
970 tc35815_clear_queues(struct net_device *dev)
971 {
972 struct tc35815_local *lp = netdev_priv(dev);
973 int i;
974
975 for (i = 0; i < TX_FD_NUM; i++) {
976 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
977 struct sk_buff *skb =
978 fdsystem != 0xffffffff ?
979 lp->tx_skbs[fdsystem].skb : NULL;
980 #ifdef DEBUG
981 if (lp->tx_skbs[i].skb != skb) {
982 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
983 panic_queues(dev);
984 }
985 #else
986 BUG_ON(lp->tx_skbs[i].skb != skb);
987 #endif
988 if (skb) {
989 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
990 lp->tx_skbs[i].skb = NULL;
991 lp->tx_skbs[i].skb_dma = 0;
992 dev_kfree_skb_any(skb);
993 }
994 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
995 }
996
997 tc35815_init_queues(dev);
998 }
999
1000 static void
1001 tc35815_free_queues(struct net_device *dev)
1002 {
1003 struct tc35815_local *lp = netdev_priv(dev);
1004 int i;
1005
1006 if (lp->tfd_base) {
1007 for (i = 0; i < TX_FD_NUM; i++) {
1008 u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1009 struct sk_buff *skb =
1010 fdsystem != 0xffffffff ?
1011 lp->tx_skbs[fdsystem].skb : NULL;
1012 #ifdef DEBUG
1013 if (lp->tx_skbs[i].skb != skb) {
1014 printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1015 panic_queues(dev);
1016 }
1017 #else
1018 BUG_ON(lp->tx_skbs[i].skb != skb);
1019 #endif
1020 if (skb) {
1021 dev_kfree_skb(skb);
1022 pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE);
1023 lp->tx_skbs[i].skb = NULL;
1024 lp->tx_skbs[i].skb_dma = 0;
1025 }
1026 lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1027 }
1028 }
1029
1030 lp->rfd_base = NULL;
1031 lp->rfd_limit = NULL;
1032 lp->rfd_cur = NULL;
1033 lp->fbl_ptr = NULL;
1034
1035 for (i = 0; i < RX_BUF_NUM; i++) {
1036 if (lp->rx_skbs[i].skb) {
1037 free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1038 lp->rx_skbs[i].skb_dma);
1039 lp->rx_skbs[i].skb = NULL;
1040 }
1041 }
1042 if (lp->fd_buf) {
1043 pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM,
1044 lp->fd_buf, lp->fd_buf_dma);
1045 lp->fd_buf = NULL;
1046 }
1047 }
1048
1049 static void
1050 dump_txfd(struct TxFD *fd)
1051 {
1052 printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1053 le32_to_cpu(fd->fd.FDNext),
1054 le32_to_cpu(fd->fd.FDSystem),
1055 le32_to_cpu(fd->fd.FDStat),
1056 le32_to_cpu(fd->fd.FDCtl));
1057 printk("BD: ");
1058 printk(" %08x %08x",
1059 le32_to_cpu(fd->bd.BuffData),
1060 le32_to_cpu(fd->bd.BDCtl));
1061 printk("\n");
1062 }
1063
1064 static int
1065 dump_rxfd(struct RxFD *fd)
1066 {
1067 int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1068 if (bd_count > 8)
1069 bd_count = 8;
1070 printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1071 le32_to_cpu(fd->fd.FDNext),
1072 le32_to_cpu(fd->fd.FDSystem),
1073 le32_to_cpu(fd->fd.FDStat),
1074 le32_to_cpu(fd->fd.FDCtl));
1075 if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1076 return 0;
1077 printk("BD: ");
1078 for (i = 0; i < bd_count; i++)
1079 printk(" %08x %08x",
1080 le32_to_cpu(fd->bd[i].BuffData),
1081 le32_to_cpu(fd->bd[i].BDCtl));
1082 printk("\n");
1083 return bd_count;
1084 }
1085
1086 #ifdef DEBUG
1087 static void
1088 dump_frfd(struct FrFD *fd)
1089 {
1090 int i;
1091 printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1092 le32_to_cpu(fd->fd.FDNext),
1093 le32_to_cpu(fd->fd.FDSystem),
1094 le32_to_cpu(fd->fd.FDStat),
1095 le32_to_cpu(fd->fd.FDCtl));
1096 printk("BD: ");
1097 for (i = 0; i < RX_BUF_NUM; i++)
1098 printk(" %08x %08x",
1099 le32_to_cpu(fd->bd[i].BuffData),
1100 le32_to_cpu(fd->bd[i].BDCtl));
1101 printk("\n");
1102 }
1103
1104 static void
1105 panic_queues(struct net_device *dev)
1106 {
1107 struct tc35815_local *lp = netdev_priv(dev);
1108 int i;
1109
1110 printk("TxFD base %p, start %u, end %u\n",
1111 lp->tfd_base, lp->tfd_start, lp->tfd_end);
1112 printk("RxFD base %p limit %p cur %p\n",
1113 lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1114 printk("FrFD %p\n", lp->fbl_ptr);
1115 for (i = 0; i < TX_FD_NUM; i++)
1116 dump_txfd(&lp->tfd_base[i]);
1117 for (i = 0; i < RX_FD_NUM; i++) {
1118 int bd_count = dump_rxfd(&lp->rfd_base[i]);
1119 i += (bd_count + 1) / 2; /* skip BDs */
1120 }
1121 dump_frfd(lp->fbl_ptr);
1122 panic("%s: Illegal queue state.", dev->name);
1123 }
1124 #endif
1125
1126 static void print_eth(const u8 *add)
1127 {
1128 printk(KERN_DEBUG "print_eth(%p)\n", add);
1129 printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1130 add + 6, add, add[12], add[13]);
1131 }
1132
1133 static int tc35815_tx_full(struct net_device *dev)
1134 {
1135 struct tc35815_local *lp = netdev_priv(dev);
1136 return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1137 }
1138
1139 static void tc35815_restart(struct net_device *dev)
1140 {
1141 struct tc35815_local *lp = netdev_priv(dev);
1142 int ret;
1143
1144 if (dev->phydev) {
1145 ret = phy_init_hw(dev->phydev);
1146 if (ret)
1147 printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1148 }
1149
1150 spin_lock_bh(&lp->rx_lock);
1151 spin_lock_irq(&lp->lock);
1152 tc35815_chip_reset(dev);
1153 tc35815_clear_queues(dev);
1154 tc35815_chip_init(dev);
1155 /* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1156 tc35815_set_multicast_list(dev);
1157 spin_unlock_irq(&lp->lock);
1158 spin_unlock_bh(&lp->rx_lock);
1159
1160 netif_wake_queue(dev);
1161 }
1162
1163 static void tc35815_restart_work(struct work_struct *work)
1164 {
1165 struct tc35815_local *lp =
1166 container_of(work, struct tc35815_local, restart_work);
1167 struct net_device *dev = lp->dev;
1168
1169 tc35815_restart(dev);
1170 }
1171
1172 static void tc35815_schedule_restart(struct net_device *dev)
1173 {
1174 struct tc35815_local *lp = netdev_priv(dev);
1175 struct tc35815_regs __iomem *tr =
1176 (struct tc35815_regs __iomem *)dev->base_addr;
1177 unsigned long flags;
1178
1179 /* disable interrupts */
1180 spin_lock_irqsave(&lp->lock, flags);
1181 tc_writel(0, &tr->Int_En);
1182 tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1183 schedule_work(&lp->restart_work);
1184 spin_unlock_irqrestore(&lp->lock, flags);
1185 }
1186
1187 static void tc35815_tx_timeout(struct net_device *dev)
1188 {
1189 struct tc35815_regs __iomem *tr =
1190 (struct tc35815_regs __iomem *)dev->base_addr;
1191
1192 printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1193 dev->name, tc_readl(&tr->Tx_Stat));
1194
1195 /* Try to restart the adaptor. */
1196 tc35815_schedule_restart(dev);
1197 dev->stats.tx_errors++;
1198 }
1199
1200 /*
1201 * Open/initialize the controller. This is called (in the current kernel)
1202 * sometime after booting when the 'ifconfig' program is run.
1203 *
1204 * This routine should set everything up anew at each open, even
1205 * registers that "should" only need to be set once at boot, so that
1206 * there is non-reboot way to recover if something goes wrong.
1207 */
1208 static int
1209 tc35815_open(struct net_device *dev)
1210 {
1211 struct tc35815_local *lp = netdev_priv(dev);
1212
1213 /*
1214 * This is used if the interrupt line can turned off (shared).
1215 * See 3c503.c for an example of selecting the IRQ at config-time.
1216 */
1217 if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1218 dev->name, dev))
1219 return -EAGAIN;
1220
1221 tc35815_chip_reset(dev);
1222
1223 if (tc35815_init_queues(dev) != 0) {
1224 free_irq(dev->irq, dev);
1225 return -EAGAIN;
1226 }
1227
1228 napi_enable(&lp->napi);
1229
1230 /* Reset the hardware here. Don't forget to set the station address. */
1231 spin_lock_irq(&lp->lock);
1232 tc35815_chip_init(dev);
1233 spin_unlock_irq(&lp->lock);
1234
1235 netif_carrier_off(dev);
1236 /* schedule a link state check */
1237 phy_start(dev->phydev);
1238
1239 /* We are now ready to accept transmit requeusts from
1240 * the queueing layer of the networking.
1241 */
1242 netif_start_queue(dev);
1243
1244 return 0;
1245 }
1246
1247 /* This will only be invoked if your driver is _not_ in XOFF state.
1248 * What this means is that you need not check it, and that this
1249 * invariant will hold if you make sure that the netif_*_queue()
1250 * calls are done at the proper times.
1251 */
1252 static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1253 {
1254 struct tc35815_local *lp = netdev_priv(dev);
1255 struct TxFD *txfd;
1256 unsigned long flags;
1257
1258 /* If some error occurs while trying to transmit this
1259 * packet, you should return '1' from this function.
1260 * In such a case you _may not_ do anything to the
1261 * SKB, it is still owned by the network queueing
1262 * layer when an error is returned. This means you
1263 * may not modify any SKB fields, you may not free
1264 * the SKB, etc.
1265 */
1266
1267 /* This is the most common case for modern hardware.
1268 * The spinlock protects this code from the TX complete
1269 * hardware interrupt handler. Queue flow control is
1270 * thus managed under this lock as well.
1271 */
1272 spin_lock_irqsave(&lp->lock, flags);
1273
1274 /* failsafe... (handle txdone now if half of FDs are used) */
1275 if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1276 TX_FD_NUM / 2)
1277 tc35815_txdone(dev);
1278
1279 if (netif_msg_pktdata(lp))
1280 print_eth(skb->data);
1281 #ifdef DEBUG
1282 if (lp->tx_skbs[lp->tfd_start].skb) {
1283 printk("%s: tx_skbs conflict.\n", dev->name);
1284 panic_queues(dev);
1285 }
1286 #else
1287 BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1288 #endif
1289 lp->tx_skbs[lp->tfd_start].skb = skb;
1290 lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE);
1291
1292 /*add to ring */
1293 txfd = &lp->tfd_base[lp->tfd_start];
1294 txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1295 txfd->bd.BDCtl = cpu_to_le32(skb->len);
1296 txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1297 txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1298
1299 if (lp->tfd_start == lp->tfd_end) {
1300 struct tc35815_regs __iomem *tr =
1301 (struct tc35815_regs __iomem *)dev->base_addr;
1302 /* Start DMA Transmitter. */
1303 txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1304 txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1305 if (netif_msg_tx_queued(lp)) {
1306 printk("%s: starting TxFD.\n", dev->name);
1307 dump_txfd(txfd);
1308 }
1309 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1310 } else {
1311 txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1312 if (netif_msg_tx_queued(lp)) {
1313 printk("%s: queueing TxFD.\n", dev->name);
1314 dump_txfd(txfd);
1315 }
1316 }
1317 lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1318
1319 /* If we just used up the very last entry in the
1320 * TX ring on this device, tell the queueing
1321 * layer to send no more.
1322 */
1323 if (tc35815_tx_full(dev)) {
1324 if (netif_msg_tx_queued(lp))
1325 printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1326 netif_stop_queue(dev);
1327 }
1328
1329 /* When the TX completion hw interrupt arrives, this
1330 * is when the transmit statistics are updated.
1331 */
1332
1333 spin_unlock_irqrestore(&lp->lock, flags);
1334 return NETDEV_TX_OK;
1335 }
1336
1337 #define FATAL_ERROR_INT \
1338 (Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
1339 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1340 {
1341 static int count;
1342 printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):",
1343 dev->name, status);
1344 if (status & Int_IntPCI)
1345 printk(" IntPCI");
1346 if (status & Int_DmParErr)
1347 printk(" DmParErr");
1348 if (status & Int_IntNRAbt)
1349 printk(" IntNRAbt");
1350 printk("\n");
1351 if (count++ > 100)
1352 panic("%s: Too many fatal errors.", dev->name);
1353 printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1354 /* Try to restart the adaptor. */
1355 tc35815_schedule_restart(dev);
1356 }
1357
1358 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1359 {
1360 struct tc35815_local *lp = netdev_priv(dev);
1361 int ret = -1;
1362
1363 /* Fatal errors... */
1364 if (status & FATAL_ERROR_INT) {
1365 tc35815_fatal_error_interrupt(dev, status);
1366 return 0;
1367 }
1368 /* recoverable errors */
1369 if (status & Int_IntFDAEx) {
1370 if (netif_msg_rx_err(lp))
1371 dev_warn(&dev->dev,
1372 "Free Descriptor Area Exhausted (%#x).\n",
1373 status);
1374 dev->stats.rx_dropped++;
1375 ret = 0;
1376 }
1377 if (status & Int_IntBLEx) {
1378 if (netif_msg_rx_err(lp))
1379 dev_warn(&dev->dev,
1380 "Buffer List Exhausted (%#x).\n",
1381 status);
1382 dev->stats.rx_dropped++;
1383 ret = 0;
1384 }
1385 if (status & Int_IntExBD) {
1386 if (netif_msg_rx_err(lp))
1387 dev_warn(&dev->dev,
1388 "Excessive Buffer Descriptors (%#x).\n",
1389 status);
1390 dev->stats.rx_length_errors++;
1391 ret = 0;
1392 }
1393
1394 /* normal notification */
1395 if (status & Int_IntMacRx) {
1396 /* Got a packet(s). */
1397 ret = tc35815_rx(dev, limit);
1398 lp->lstats.rx_ints++;
1399 }
1400 if (status & Int_IntMacTx) {
1401 /* Transmit complete. */
1402 lp->lstats.tx_ints++;
1403 spin_lock_irq(&lp->lock);
1404 tc35815_txdone(dev);
1405 spin_unlock_irq(&lp->lock);
1406 if (ret < 0)
1407 ret = 0;
1408 }
1409 return ret;
1410 }
1411
1412 /*
1413 * The typical workload of the driver:
1414 * Handle the network interface interrupts.
1415 */
1416 static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1417 {
1418 struct net_device *dev = dev_id;
1419 struct tc35815_local *lp = netdev_priv(dev);
1420 struct tc35815_regs __iomem *tr =
1421 (struct tc35815_regs __iomem *)dev->base_addr;
1422 u32 dmactl = tc_readl(&tr->DMA_Ctl);
1423
1424 if (!(dmactl & DMA_IntMask)) {
1425 /* disable interrupts */
1426 tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1427 if (napi_schedule_prep(&lp->napi))
1428 __napi_schedule(&lp->napi);
1429 else {
1430 printk(KERN_ERR "%s: interrupt taken in poll\n",
1431 dev->name);
1432 BUG();
1433 }
1434 (void)tc_readl(&tr->Int_Src); /* flush */
1435 return IRQ_HANDLED;
1436 }
1437 return IRQ_NONE;
1438 }
1439
1440 #ifdef CONFIG_NET_POLL_CONTROLLER
1441 static void tc35815_poll_controller(struct net_device *dev)
1442 {
1443 disable_irq(dev->irq);
1444 tc35815_interrupt(dev->irq, dev);
1445 enable_irq(dev->irq);
1446 }
1447 #endif
1448
1449 /* We have a good packet(s), get it/them out of the buffers. */
1450 static int
1451 tc35815_rx(struct net_device *dev, int limit)
1452 {
1453 struct tc35815_local *lp = netdev_priv(dev);
1454 unsigned int fdctl;
1455 int i;
1456 int received = 0;
1457
1458 while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1459 int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1460 int pkt_len = fdctl & FD_FDLength_MASK;
1461 int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1462 #ifdef DEBUG
1463 struct RxFD *next_rfd;
1464 #endif
1465 #if (RX_CTL_CMD & Rx_StripCRC) == 0
1466 pkt_len -= ETH_FCS_LEN;
1467 #endif
1468
1469 if (netif_msg_rx_status(lp))
1470 dump_rxfd(lp->rfd_cur);
1471 if (status & Rx_Good) {
1472 struct sk_buff *skb;
1473 unsigned char *data;
1474 int cur_bd;
1475
1476 if (--limit < 0)
1477 break;
1478 BUG_ON(bd_count > 1);
1479 cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1480 & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1481 #ifdef DEBUG
1482 if (cur_bd >= RX_BUF_NUM) {
1483 printk("%s: invalid BDID.\n", dev->name);
1484 panic_queues(dev);
1485 }
1486 BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1487 (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1488 if (!lp->rx_skbs[cur_bd].skb) {
1489 printk("%s: NULL skb.\n", dev->name);
1490 panic_queues(dev);
1491 }
1492 #else
1493 BUG_ON(cur_bd >= RX_BUF_NUM);
1494 #endif
1495 skb = lp->rx_skbs[cur_bd].skb;
1496 prefetch(skb->data);
1497 lp->rx_skbs[cur_bd].skb = NULL;
1498 pci_unmap_single(lp->pci_dev,
1499 lp->rx_skbs[cur_bd].skb_dma,
1500 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1501 if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN)
1502 memmove(skb->data, skb->data - NET_IP_ALIGN,
1503 pkt_len);
1504 data = skb_put(skb, pkt_len);
1505 if (netif_msg_pktdata(lp))
1506 print_eth(data);
1507 skb->protocol = eth_type_trans(skb, dev);
1508 netif_receive_skb(skb);
1509 received++;
1510 dev->stats.rx_packets++;
1511 dev->stats.rx_bytes += pkt_len;
1512 } else {
1513 dev->stats.rx_errors++;
1514 if (netif_msg_rx_err(lp))
1515 dev_info(&dev->dev, "Rx error (status %x)\n",
1516 status & Rx_Stat_Mask);
1517 /* WORKAROUND: LongErr and CRCErr means Overflow. */
1518 if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1519 status &= ~(Rx_LongErr|Rx_CRCErr);
1520 status |= Rx_Over;
1521 }
1522 if (status & Rx_LongErr)
1523 dev->stats.rx_length_errors++;
1524 if (status & Rx_Over)
1525 dev->stats.rx_fifo_errors++;
1526 if (status & Rx_CRCErr)
1527 dev->stats.rx_crc_errors++;
1528 if (status & Rx_Align)
1529 dev->stats.rx_frame_errors++;
1530 }
1531
1532 if (bd_count > 0) {
1533 /* put Free Buffer back to controller */
1534 int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1535 unsigned char id =
1536 (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1537 #ifdef DEBUG
1538 if (id >= RX_BUF_NUM) {
1539 printk("%s: invalid BDID.\n", dev->name);
1540 panic_queues(dev);
1541 }
1542 #else
1543 BUG_ON(id >= RX_BUF_NUM);
1544 #endif
1545 /* free old buffers */
1546 lp->fbl_count--;
1547 while (lp->fbl_count < RX_BUF_NUM)
1548 {
1549 unsigned char curid =
1550 (id + 1 + lp->fbl_count) % RX_BUF_NUM;
1551 struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1552 #ifdef DEBUG
1553 bdctl = le32_to_cpu(bd->BDCtl);
1554 if (bdctl & BD_CownsBD) {
1555 printk("%s: Freeing invalid BD.\n",
1556 dev->name);
1557 panic_queues(dev);
1558 }
1559 #endif
1560 /* pass BD to controller */
1561 if (!lp->rx_skbs[curid].skb) {
1562 lp->rx_skbs[curid].skb =
1563 alloc_rxbuf_skb(dev,
1564 lp->pci_dev,
1565 &lp->rx_skbs[curid].skb_dma);
1566 if (!lp->rx_skbs[curid].skb)
1567 break; /* try on next reception */
1568 bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1569 }
1570 /* Note: BDLength was modified by chip. */
1571 bd->BDCtl = cpu_to_le32(BD_CownsBD |
1572 (curid << BD_RxBDID_SHIFT) |
1573 RX_BUF_SIZE);
1574 lp->fbl_count++;
1575 }
1576 }
1577
1578 /* put RxFD back to controller */
1579 #ifdef DEBUG
1580 next_rfd = fd_bus_to_virt(lp,
1581 le32_to_cpu(lp->rfd_cur->fd.FDNext));
1582 if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1583 printk("%s: RxFD FDNext invalid.\n", dev->name);
1584 panic_queues(dev);
1585 }
1586 #endif
1587 for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1588 /* pass FD to controller */
1589 #ifdef DEBUG
1590 lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1591 #else
1592 lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1593 #endif
1594 lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1595 lp->rfd_cur++;
1596 }
1597 if (lp->rfd_cur > lp->rfd_limit)
1598 lp->rfd_cur = lp->rfd_base;
1599 #ifdef DEBUG
1600 if (lp->rfd_cur != next_rfd)
1601 printk("rfd_cur = %p, next_rfd %p\n",
1602 lp->rfd_cur, next_rfd);
1603 #endif
1604 }
1605
1606 return received;
1607 }
1608
1609 static int tc35815_poll(struct napi_struct *napi, int budget)
1610 {
1611 struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1612 struct net_device *dev = lp->dev;
1613 struct tc35815_regs __iomem *tr =
1614 (struct tc35815_regs __iomem *)dev->base_addr;
1615 int received = 0, handled;
1616 u32 status;
1617
1618 if (budget <= 0)
1619 return received;
1620
1621 spin_lock(&lp->rx_lock);
1622 status = tc_readl(&tr->Int_Src);
1623 do {
1624 /* BLEx, FDAEx will be cleared later */
1625 tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1626 &tr->Int_Src); /* write to clear */
1627
1628 handled = tc35815_do_interrupt(dev, status, budget - received);
1629 if (status & (Int_BLEx | Int_FDAEx))
1630 tc_writel(status & (Int_BLEx | Int_FDAEx),
1631 &tr->Int_Src);
1632 if (handled >= 0) {
1633 received += handled;
1634 if (received >= budget)
1635 break;
1636 }
1637 status = tc_readl(&tr->Int_Src);
1638 } while (status);
1639 spin_unlock(&lp->rx_lock);
1640
1641 if (received < budget) {
1642 napi_complete(napi);
1643 /* enable interrupts */
1644 tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1645 }
1646 return received;
1647 }
1648
1649 #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1650
1651 static void
1652 tc35815_check_tx_stat(struct net_device *dev, int status)
1653 {
1654 struct tc35815_local *lp = netdev_priv(dev);
1655 const char *msg = NULL;
1656
1657 /* count collisions */
1658 if (status & Tx_ExColl)
1659 dev->stats.collisions += 16;
1660 if (status & Tx_TxColl_MASK)
1661 dev->stats.collisions += status & Tx_TxColl_MASK;
1662
1663 /* TX4939 does not have NCarr */
1664 if (lp->chiptype == TC35815_TX4939)
1665 status &= ~Tx_NCarr;
1666 /* WORKAROUND: ignore LostCrS in full duplex operation */
1667 if (!lp->link || lp->duplex == DUPLEX_FULL)
1668 status &= ~Tx_NCarr;
1669
1670 if (!(status & TX_STA_ERR)) {
1671 /* no error. */
1672 dev->stats.tx_packets++;
1673 return;
1674 }
1675
1676 dev->stats.tx_errors++;
1677 if (status & Tx_ExColl) {
1678 dev->stats.tx_aborted_errors++;
1679 msg = "Excessive Collision.";
1680 }
1681 if (status & Tx_Under) {
1682 dev->stats.tx_fifo_errors++;
1683 msg = "Tx FIFO Underrun.";
1684 if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1685 lp->lstats.tx_underrun++;
1686 if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1687 struct tc35815_regs __iomem *tr =
1688 (struct tc35815_regs __iomem *)dev->base_addr;
1689 tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1690 msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1691 }
1692 }
1693 }
1694 if (status & Tx_Defer) {
1695 dev->stats.tx_fifo_errors++;
1696 msg = "Excessive Deferral.";
1697 }
1698 if (status & Tx_NCarr) {
1699 dev->stats.tx_carrier_errors++;
1700 msg = "Lost Carrier Sense.";
1701 }
1702 if (status & Tx_LateColl) {
1703 dev->stats.tx_aborted_errors++;
1704 msg = "Late Collision.";
1705 }
1706 if (status & Tx_TxPar) {
1707 dev->stats.tx_fifo_errors++;
1708 msg = "Transmit Parity Error.";
1709 }
1710 if (status & Tx_SQErr) {
1711 dev->stats.tx_heartbeat_errors++;
1712 msg = "Signal Quality Error.";
1713 }
1714 if (msg && netif_msg_tx_err(lp))
1715 printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1716 }
1717
1718 /* This handles TX complete events posted by the device
1719 * via interrupts.
1720 */
1721 static void
1722 tc35815_txdone(struct net_device *dev)
1723 {
1724 struct tc35815_local *lp = netdev_priv(dev);
1725 struct TxFD *txfd;
1726 unsigned int fdctl;
1727
1728 txfd = &lp->tfd_base[lp->tfd_end];
1729 while (lp->tfd_start != lp->tfd_end &&
1730 !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1731 int status = le32_to_cpu(txfd->fd.FDStat);
1732 struct sk_buff *skb;
1733 unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1734 u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1735
1736 if (netif_msg_tx_done(lp)) {
1737 printk("%s: complete TxFD.\n", dev->name);
1738 dump_txfd(txfd);
1739 }
1740 tc35815_check_tx_stat(dev, status);
1741
1742 skb = fdsystem != 0xffffffff ?
1743 lp->tx_skbs[fdsystem].skb : NULL;
1744 #ifdef DEBUG
1745 if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1746 printk("%s: tx_skbs mismatch.\n", dev->name);
1747 panic_queues(dev);
1748 }
1749 #else
1750 BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1751 #endif
1752 if (skb) {
1753 dev->stats.tx_bytes += skb->len;
1754 pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE);
1755 lp->tx_skbs[lp->tfd_end].skb = NULL;
1756 lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1757 dev_kfree_skb_any(skb);
1758 }
1759 txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1760
1761 lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1762 txfd = &lp->tfd_base[lp->tfd_end];
1763 #ifdef DEBUG
1764 if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1765 printk("%s: TxFD FDNext invalid.\n", dev->name);
1766 panic_queues(dev);
1767 }
1768 #endif
1769 if (fdnext & FD_Next_EOL) {
1770 /* DMA Transmitter has been stopping... */
1771 if (lp->tfd_end != lp->tfd_start) {
1772 struct tc35815_regs __iomem *tr =
1773 (struct tc35815_regs __iomem *)dev->base_addr;
1774 int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1775 struct TxFD *txhead = &lp->tfd_base[head];
1776 int qlen = (lp->tfd_start + TX_FD_NUM
1777 - lp->tfd_end) % TX_FD_NUM;
1778
1779 #ifdef DEBUG
1780 if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1781 printk("%s: TxFD FDCtl invalid.\n", dev->name);
1782 panic_queues(dev);
1783 }
1784 #endif
1785 /* log max queue length */
1786 if (lp->lstats.max_tx_qlen < qlen)
1787 lp->lstats.max_tx_qlen = qlen;
1788
1789
1790 /* start DMA Transmitter again */
1791 txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1792 txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1793 if (netif_msg_tx_queued(lp)) {
1794 printk("%s: start TxFD on queue.\n",
1795 dev->name);
1796 dump_txfd(txfd);
1797 }
1798 tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1799 }
1800 break;
1801 }
1802 }
1803
1804 /* If we had stopped the queue due to a "tx full"
1805 * condition, and space has now been made available,
1806 * wake up the queue.
1807 */
1808 if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1809 netif_wake_queue(dev);
1810 }
1811
1812 /* The inverse routine to tc35815_open(). */
1813 static int
1814 tc35815_close(struct net_device *dev)
1815 {
1816 struct tc35815_local *lp = netdev_priv(dev);
1817
1818 netif_stop_queue(dev);
1819 napi_disable(&lp->napi);
1820 if (dev->phydev)
1821 phy_stop(dev->phydev);
1822 cancel_work_sync(&lp->restart_work);
1823
1824 /* Flush the Tx and disable Rx here. */
1825 tc35815_chip_reset(dev);
1826 free_irq(dev->irq, dev);
1827
1828 tc35815_free_queues(dev);
1829
1830 return 0;
1831
1832 }
1833
1834 /*
1835 * Get the current statistics.
1836 * This may be called with the card open or closed.
1837 */
1838 static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1839 {
1840 struct tc35815_regs __iomem *tr =
1841 (struct tc35815_regs __iomem *)dev->base_addr;
1842 if (netif_running(dev))
1843 /* Update the statistics from the device registers. */
1844 dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1845
1846 return &dev->stats;
1847 }
1848
1849 static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr)
1850 {
1851 struct tc35815_local *lp = netdev_priv(dev);
1852 struct tc35815_regs __iomem *tr =
1853 (struct tc35815_regs __iomem *)dev->base_addr;
1854 int cam_index = index * 6;
1855 u32 cam_data;
1856 u32 saved_addr;
1857
1858 saved_addr = tc_readl(&tr->CAM_Adr);
1859
1860 if (netif_msg_hw(lp))
1861 printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1862 dev->name, index, addr);
1863 if (index & 1) {
1864 /* read modify write */
1865 tc_writel(cam_index - 2, &tr->CAM_Adr);
1866 cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1867 cam_data |= addr[0] << 8 | addr[1];
1868 tc_writel(cam_data, &tr->CAM_Data);
1869 /* write whole word */
1870 tc_writel(cam_index + 2, &tr->CAM_Adr);
1871 cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1872 tc_writel(cam_data, &tr->CAM_Data);
1873 } else {
1874 /* write whole word */
1875 tc_writel(cam_index, &tr->CAM_Adr);
1876 cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1877 tc_writel(cam_data, &tr->CAM_Data);
1878 /* read modify write */
1879 tc_writel(cam_index + 4, &tr->CAM_Adr);
1880 cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1881 cam_data |= addr[4] << 24 | (addr[5] << 16);
1882 tc_writel(cam_data, &tr->CAM_Data);
1883 }
1884
1885 tc_writel(saved_addr, &tr->CAM_Adr);
1886 }
1887
1888
1889 /*
1890 * Set or clear the multicast filter for this adaptor.
1891 * num_addrs == -1 Promiscuous mode, receive all packets
1892 * num_addrs == 0 Normal mode, clear multicast list
1893 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1894 * and do best-effort filtering.
1895 */
1896 static void
1897 tc35815_set_multicast_list(struct net_device *dev)
1898 {
1899 struct tc35815_regs __iomem *tr =
1900 (struct tc35815_regs __iomem *)dev->base_addr;
1901
1902 if (dev->flags & IFF_PROMISC) {
1903 /* With some (all?) 100MHalf HUB, controller will hang
1904 * if we enabled promiscuous mode before linkup... */
1905 struct tc35815_local *lp = netdev_priv(dev);
1906
1907 if (!lp->link)
1908 return;
1909 /* Enable promiscuous mode */
1910 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1911 } else if ((dev->flags & IFF_ALLMULTI) ||
1912 netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1913 /* CAM 0, 1, 20 are reserved. */
1914 /* Disable promiscuous mode, use normal mode. */
1915 tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1916 } else if (!netdev_mc_empty(dev)) {
1917 struct netdev_hw_addr *ha;
1918 int i;
1919 int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1920
1921 tc_writel(0, &tr->CAM_Ctl);
1922 /* Walk the address list, and load the filter */
1923 i = 0;
1924 netdev_for_each_mc_addr(ha, dev) {
1925 /* entry 0,1 is reserved. */
1926 tc35815_set_cam_entry(dev, i + 2, ha->addr);
1927 ena_bits |= CAM_Ena_Bit(i + 2);
1928 i++;
1929 }
1930 tc_writel(ena_bits, &tr->CAM_Ena);
1931 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1932 } else {
1933 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1934 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1935 }
1936 }
1937
1938 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1939 {
1940 struct tc35815_local *lp = netdev_priv(dev);
1941
1942 strlcpy(info->driver, MODNAME, sizeof(info->driver));
1943 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1944 strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1945 }
1946
1947 static u32 tc35815_get_msglevel(struct net_device *dev)
1948 {
1949 struct tc35815_local *lp = netdev_priv(dev);
1950 return lp->msg_enable;
1951 }
1952
1953 static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
1954 {
1955 struct tc35815_local *lp = netdev_priv(dev);
1956 lp->msg_enable = datum;
1957 }
1958
1959 static int tc35815_get_sset_count(struct net_device *dev, int sset)
1960 {
1961 struct tc35815_local *lp = netdev_priv(dev);
1962
1963 switch (sset) {
1964 case ETH_SS_STATS:
1965 return sizeof(lp->lstats) / sizeof(int);
1966 default:
1967 return -EOPNOTSUPP;
1968 }
1969 }
1970
1971 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
1972 {
1973 struct tc35815_local *lp = netdev_priv(dev);
1974 data[0] = lp->lstats.max_tx_qlen;
1975 data[1] = lp->lstats.tx_ints;
1976 data[2] = lp->lstats.rx_ints;
1977 data[3] = lp->lstats.tx_underrun;
1978 }
1979
1980 static struct {
1981 const char str[ETH_GSTRING_LEN];
1982 } ethtool_stats_keys[] = {
1983 { "max_tx_qlen" },
1984 { "tx_ints" },
1985 { "rx_ints" },
1986 { "tx_underrun" },
1987 };
1988
1989 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1990 {
1991 memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
1992 }
1993
1994 static const struct ethtool_ops tc35815_ethtool_ops = {
1995 .get_drvinfo = tc35815_get_drvinfo,
1996 .get_link = ethtool_op_get_link,
1997 .get_msglevel = tc35815_get_msglevel,
1998 .set_msglevel = tc35815_set_msglevel,
1999 .get_strings = tc35815_get_strings,
2000 .get_sset_count = tc35815_get_sset_count,
2001 .get_ethtool_stats = tc35815_get_ethtool_stats,
2002 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2003 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2004 };
2005
2006 static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2007 {
2008 if (!netif_running(dev))
2009 return -EINVAL;
2010 if (!dev->phydev)
2011 return -ENODEV;
2012 return phy_mii_ioctl(dev->phydev, rq, cmd);
2013 }
2014
2015 static void tc35815_chip_reset(struct net_device *dev)
2016 {
2017 struct tc35815_regs __iomem *tr =
2018 (struct tc35815_regs __iomem *)dev->base_addr;
2019 int i;
2020 /* reset the controller */
2021 tc_writel(MAC_Reset, &tr->MAC_Ctl);
2022 udelay(4); /* 3200ns */
2023 i = 0;
2024 while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2025 if (i++ > 100) {
2026 printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2027 break;
2028 }
2029 mdelay(1);
2030 }
2031 tc_writel(0, &tr->MAC_Ctl);
2032
2033 /* initialize registers to default value */
2034 tc_writel(0, &tr->DMA_Ctl);
2035 tc_writel(0, &tr->TxThrsh);
2036 tc_writel(0, &tr->TxPollCtr);
2037 tc_writel(0, &tr->RxFragSize);
2038 tc_writel(0, &tr->Int_En);
2039 tc_writel(0, &tr->FDA_Bas);
2040 tc_writel(0, &tr->FDA_Lim);
2041 tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */
2042 tc_writel(0, &tr->CAM_Ctl);
2043 tc_writel(0, &tr->Tx_Ctl);
2044 tc_writel(0, &tr->Rx_Ctl);
2045 tc_writel(0, &tr->CAM_Ena);
2046 (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */
2047
2048 /* initialize internal SRAM */
2049 tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2050 for (i = 0; i < 0x1000; i += 4) {
2051 tc_writel(i, &tr->CAM_Adr);
2052 tc_writel(0, &tr->CAM_Data);
2053 }
2054 tc_writel(0, &tr->DMA_Ctl);
2055 }
2056
2057 static void tc35815_chip_init(struct net_device *dev)
2058 {
2059 struct tc35815_local *lp = netdev_priv(dev);
2060 struct tc35815_regs __iomem *tr =
2061 (struct tc35815_regs __iomem *)dev->base_addr;
2062 unsigned long txctl = TX_CTL_CMD;
2063
2064 /* load station address to CAM */
2065 tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2066
2067 /* Enable CAM (broadcast and unicast) */
2068 tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2069 tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2070
2071 /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2072 if (HAVE_DMA_RXALIGN(lp))
2073 tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2074 else
2075 tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2076 tc_writel(0, &tr->TxPollCtr); /* Batch mode */
2077 tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2078 tc_writel(INT_EN_CMD, &tr->Int_En);
2079
2080 /* set queues */
2081 tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2082 tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2083 &tr->FDA_Lim);
2084 /*
2085 * Activation method:
2086 * First, enable the MAC Transmitter and the DMA Receive circuits.
2087 * Then enable the DMA Transmitter and the MAC Receive circuits.
2088 */
2089 tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */
2090 tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */
2091
2092 /* start MAC transmitter */
2093 /* TX4939 does not have EnLCarr */
2094 if (lp->chiptype == TC35815_TX4939)
2095 txctl &= ~Tx_EnLCarr;
2096 /* WORKAROUND: ignore LostCrS in full duplex operation */
2097 if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL)
2098 txctl &= ~Tx_EnLCarr;
2099 tc_writel(txctl, &tr->Tx_Ctl);
2100 }
2101
2102 #ifdef CONFIG_PM
2103 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2104 {
2105 struct net_device *dev = pci_get_drvdata(pdev);
2106 struct tc35815_local *lp = netdev_priv(dev);
2107 unsigned long flags;
2108
2109 pci_save_state(pdev);
2110 if (!netif_running(dev))
2111 return 0;
2112 netif_device_detach(dev);
2113 if (dev->phydev)
2114 phy_stop(dev->phydev);
2115 spin_lock_irqsave(&lp->lock, flags);
2116 tc35815_chip_reset(dev);
2117 spin_unlock_irqrestore(&lp->lock, flags);
2118 pci_set_power_state(pdev, PCI_D3hot);
2119 return 0;
2120 }
2121
2122 static int tc35815_resume(struct pci_dev *pdev)
2123 {
2124 struct net_device *dev = pci_get_drvdata(pdev);
2125
2126 pci_restore_state(pdev);
2127 if (!netif_running(dev))
2128 return 0;
2129 pci_set_power_state(pdev, PCI_D0);
2130 tc35815_restart(dev);
2131 netif_carrier_off(dev);
2132 if (dev->phydev)
2133 phy_start(dev->phydev);
2134 netif_device_attach(dev);
2135 return 0;
2136 }
2137 #endif /* CONFIG_PM */
2138
2139 static struct pci_driver tc35815_pci_driver = {
2140 .name = MODNAME,
2141 .id_table = tc35815_pci_tbl,
2142 .probe = tc35815_init_one,
2143 .remove = tc35815_remove_one,
2144 #ifdef CONFIG_PM
2145 .suspend = tc35815_suspend,
2146 .resume = tc35815_resume,
2147 #endif
2148 };
2149
2150 module_param_named(speed, options.speed, int, 0);
2151 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2152 module_param_named(duplex, options.duplex, int, 0);
2153 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2154
2155 module_pci_driver(tc35815_pci_driver);
2156 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2157 MODULE_LICENSE("GPL");
This page took 0.114375 seconds and 5 git commands to generate.