drivers/net: Remove alloc_etherdev error messages
[deliverable/linux.git] / drivers / net / ethernet / via / via-rhine.c
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
29
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #define DRV_NAME "via-rhine"
35 #define DRV_VERSION "1.5.0"
36 #define DRV_RELDATE "2010-10-09"
37
38 #include <linux/types.h>
39
40 /* A few user-configurable values.
41 These may be modified when a driver module is loaded. */
42 static int debug = 0;
43 #define RHINE_MSG_DEFAULT \
44 (0x0000)
45
46 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
47 Setting to > 1518 effectively disables this feature. */
48 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
49 defined(CONFIG_SPARC) || defined(__ia64__) || \
50 defined(__sh__) || defined(__mips__)
51 static int rx_copybreak = 1518;
52 #else
53 static int rx_copybreak;
54 #endif
55
56 /* Work-around for broken BIOSes: they are unable to get the chip back out of
57 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
58 static bool avoid_D3;
59
60 /*
61 * In case you are looking for 'options[]' or 'full_duplex[]', they
62 * are gone. Use ethtool(8) instead.
63 */
64
65 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
66 The Rhine has a 64 element 8390-like hash table. */
67 static const int multicast_filter_limit = 32;
68
69
70 /* Operational parameters that are set at compile time. */
71
72 /* Keep the ring sizes a power of two for compile efficiency.
73 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
74 Making the Tx ring too large decreases the effectiveness of channel
75 bonding and packet priority.
76 There are no ill effects from too-large receive rings. */
77 #define TX_RING_SIZE 16
78 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
79 #define RX_RING_SIZE 64
80
81 /* Operational parameters that usually are not changed. */
82
83 /* Time in jiffies before concluding the transmitter is hung. */
84 #define TX_TIMEOUT (2*HZ)
85
86 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
87
88 #include <linux/module.h>
89 #include <linux/moduleparam.h>
90 #include <linux/kernel.h>
91 #include <linux/string.h>
92 #include <linux/timer.h>
93 #include <linux/errno.h>
94 #include <linux/ioport.h>
95 #include <linux/interrupt.h>
96 #include <linux/pci.h>
97 #include <linux/dma-mapping.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/init.h>
102 #include <linux/delay.h>
103 #include <linux/mii.h>
104 #include <linux/ethtool.h>
105 #include <linux/crc32.h>
106 #include <linux/if_vlan.h>
107 #include <linux/bitops.h>
108 #include <linux/workqueue.h>
109 #include <asm/processor.h> /* Processor type for cache alignment. */
110 #include <asm/io.h>
111 #include <asm/irq.h>
112 #include <asm/uaccess.h>
113 #include <linux/dmi.h>
114
115 /* These identify the driver base version and may not be removed. */
116 static const char version[] __devinitconst =
117 "v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";
118
119 /* This driver was written to use PCI memory space. Some early versions
120 of the Rhine may only work correctly with I/O space accesses. */
121 #ifdef CONFIG_VIA_RHINE_MMIO
122 #define USE_MMIO
123 #else
124 #endif
125
126 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
127 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
128 MODULE_LICENSE("GPL");
129
130 module_param(debug, int, 0);
131 module_param(rx_copybreak, int, 0);
132 module_param(avoid_D3, bool, 0);
133 MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
134 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
135 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
136
137 #define MCAM_SIZE 32
138 #define VCAM_SIZE 32
139
140 /*
141 Theory of Operation
142
143 I. Board Compatibility
144
145 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
146 controller.
147
148 II. Board-specific settings
149
150 Boards with this chip are functional only in a bus-master PCI slot.
151
152 Many operational settings are loaded from the EEPROM to the Config word at
153 offset 0x78. For most of these settings, this driver assumes that they are
154 correct.
155 If this driver is compiled to use PCI memory space operations the EEPROM
156 must be configured to enable memory ops.
157
158 III. Driver operation
159
160 IIIa. Ring buffers
161
162 This driver uses two statically allocated fixed-size descriptor lists
163 formed into rings by a branch from the final descriptor to the beginning of
164 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
165
166 IIIb/c. Transmit/Receive Structure
167
168 This driver attempts to use a zero-copy receive and transmit scheme.
169
170 Alas, all data buffers are required to start on a 32 bit boundary, so
171 the driver must often copy transmit packets into bounce buffers.
172
173 The driver allocates full frame size skbuffs for the Rx ring buffers at
174 open() time and passes the skb->data field to the chip as receive data
175 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
176 a fresh skbuff is allocated and the frame is copied to the new skbuff.
177 When the incoming frame is larger, the skbuff is passed directly up the
178 protocol stack. Buffers consumed this way are replaced by newly allocated
179 skbuffs in the last phase of rhine_rx().
180
181 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
182 using a full-sized skbuff for small frames vs. the copying costs of larger
183 frames. New boards are typically used in generously configured machines
184 and the underfilled buffers have negligible impact compared to the benefit of
185 a single allocation size, so the default value of zero results in never
186 copying packets. When copying is done, the cost is usually mitigated by using
187 a combined copy/checksum routine. Copying also preloads the cache, which is
188 most useful with small frames.
189
190 Since the VIA chips are only able to transfer data to buffers on 32 bit
191 boundaries, the IP header at offset 14 in an ethernet frame isn't
192 longword aligned for further processing. Copying these unaligned buffers
193 has the beneficial effect of 16-byte aligning the IP header.
194
195 IIId. Synchronization
196
197 The driver runs as two independent, single-threaded flows of control. One
198 is the send-packet routine, which enforces single-threaded use by the
199 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
200 which is single threaded by the hardware and interrupt handling software.
201
202 The send packet thread has partial control over the Tx ring. It locks the
203 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
204 the ring is not available it stops the transmit queue by
205 calling netif_stop_queue.
206
207 The interrupt handler has exclusive control over the Rx ring and records stats
208 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
209 empty by incrementing the dirty_tx mark. If at least half of the entries in
210 the Rx ring are available the transmit queue is woken up if it was stopped.
211
212 IV. Notes
213
214 IVb. References
215
216 Preliminary VT86C100A manual from http://www.via.com.tw/
217 http://www.scyld.com/expert/100mbps.html
218 http://www.scyld.com/expert/NWay.html
219 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
220 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
221
222
223 IVc. Errata
224
225 The VT86C100A manual is not reliable information.
226 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
227 in significant performance degradation for bounce buffer copies on transmit
228 and unaligned IP headers on receive.
229 The chip does not pad to minimum transmit length.
230
231 */
232
233
234 /* This table drives the PCI probe routines. It's mostly boilerplate in all
235 of the drivers, and will likely be provided by some future kernel.
236 Note the matching code -- the first table entry matchs all 56** cards but
237 second only the 1234 card.
238 */
239
240 enum rhine_revs {
241 VT86C100A = 0x00,
242 VTunknown0 = 0x20,
243 VT6102 = 0x40,
244 VT8231 = 0x50, /* Integrated MAC */
245 VT8233 = 0x60, /* Integrated MAC */
246 VT8235 = 0x74, /* Integrated MAC */
247 VT8237 = 0x78, /* Integrated MAC */
248 VTunknown1 = 0x7C,
249 VT6105 = 0x80,
250 VT6105_B0 = 0x83,
251 VT6105L = 0x8A,
252 VT6107 = 0x8C,
253 VTunknown2 = 0x8E,
254 VT6105M = 0x90, /* Management adapter */
255 };
256
257 enum rhine_quirks {
258 rqWOL = 0x0001, /* Wake-On-LAN support */
259 rqForceReset = 0x0002,
260 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
261 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
262 rqRhineI = 0x0100, /* See comment below */
263 };
264 /*
265 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
266 * MMIO as well as for the collision counter and the Tx FIFO underflow
267 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
268 */
269
270 /* Beware of PCI posted writes */
271 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
272
273 static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
274 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
275 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
276 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
277 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
278 { } /* terminate list */
279 };
280 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
281
282
283 /* Offsets to the device registers. */
284 enum register_offsets {
285 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
286 ChipCmd1=0x09, TQWake=0x0A,
287 IntrStatus=0x0C, IntrEnable=0x0E,
288 MulticastFilter0=0x10, MulticastFilter1=0x14,
289 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
290 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
291 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
292 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
293 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
294 StickyHW=0x83, IntrStatus2=0x84,
295 CamMask=0x88, CamCon=0x92, CamAddr=0x93,
296 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
297 WOLcrClr1=0xA6, WOLcgClr=0xA7,
298 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
299 };
300
301 /* Bits in ConfigD */
302 enum backoff_bits {
303 BackOptional=0x01, BackModify=0x02,
304 BackCaptureEffect=0x04, BackRandom=0x08
305 };
306
307 /* Bits in the TxConfig (TCR) register */
308 enum tcr_bits {
309 TCR_PQEN=0x01,
310 TCR_LB0=0x02, /* loopback[0] */
311 TCR_LB1=0x04, /* loopback[1] */
312 TCR_OFSET=0x08,
313 TCR_RTGOPT=0x10,
314 TCR_RTFT0=0x20,
315 TCR_RTFT1=0x40,
316 TCR_RTSF=0x80,
317 };
318
319 /* Bits in the CamCon (CAMC) register */
320 enum camcon_bits {
321 CAMC_CAMEN=0x01,
322 CAMC_VCAMSL=0x02,
323 CAMC_CAMWR=0x04,
324 CAMC_CAMRD=0x08,
325 };
326
327 /* Bits in the PCIBusConfig1 (BCR1) register */
328 enum bcr1_bits {
329 BCR1_POT0=0x01,
330 BCR1_POT1=0x02,
331 BCR1_POT2=0x04,
332 BCR1_CTFT0=0x08,
333 BCR1_CTFT1=0x10,
334 BCR1_CTSF=0x20,
335 BCR1_TXQNOBK=0x40, /* for VT6105 */
336 BCR1_VIDFR=0x80, /* for VT6105 */
337 BCR1_MED0=0x40, /* for VT6102 */
338 BCR1_MED1=0x80, /* for VT6102 */
339 };
340
341 #ifdef USE_MMIO
342 /* Registers we check that mmio and reg are the same. */
343 static const int mmio_verify_registers[] = {
344 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
345 0
346 };
347 #endif
348
349 /* Bits in the interrupt status/mask registers. */
350 enum intr_status_bits {
351 IntrRxDone = 0x0001,
352 IntrTxDone = 0x0002,
353 IntrRxErr = 0x0004,
354 IntrTxError = 0x0008,
355 IntrRxEmpty = 0x0020,
356 IntrPCIErr = 0x0040,
357 IntrStatsMax = 0x0080,
358 IntrRxEarly = 0x0100,
359 IntrTxUnderrun = 0x0210,
360 IntrRxOverflow = 0x0400,
361 IntrRxDropped = 0x0800,
362 IntrRxNoBuf = 0x1000,
363 IntrTxAborted = 0x2000,
364 IntrLinkChange = 0x4000,
365 IntrRxWakeUp = 0x8000,
366 IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */
367 IntrNormalSummary = IntrRxDone | IntrTxDone,
368 IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError |
369 IntrTxUnderrun,
370 };
371
372 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
373 enum wol_bits {
374 WOLucast = 0x10,
375 WOLmagic = 0x20,
376 WOLbmcast = 0x30,
377 WOLlnkon = 0x40,
378 WOLlnkoff = 0x80,
379 };
380
381 /* The Rx and Tx buffer descriptors. */
382 struct rx_desc {
383 __le32 rx_status;
384 __le32 desc_length; /* Chain flag, Buffer/frame length */
385 __le32 addr;
386 __le32 next_desc;
387 };
388 struct tx_desc {
389 __le32 tx_status;
390 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
391 __le32 addr;
392 __le32 next_desc;
393 };
394
395 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
396 #define TXDESC 0x00e08000
397
398 enum rx_status_bits {
399 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
400 };
401
402 /* Bits in *_desc.*_status */
403 enum desc_status_bits {
404 DescOwn=0x80000000
405 };
406
407 /* Bits in *_desc.*_length */
408 enum desc_length_bits {
409 DescTag=0x00010000
410 };
411
412 /* Bits in ChipCmd. */
413 enum chip_cmd_bits {
414 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
415 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
416 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
417 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
418 };
419
420 struct rhine_private {
421 /* Bit mask for configured VLAN ids */
422 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
423
424 /* Descriptor rings */
425 struct rx_desc *rx_ring;
426 struct tx_desc *tx_ring;
427 dma_addr_t rx_ring_dma;
428 dma_addr_t tx_ring_dma;
429
430 /* The addresses of receive-in-place skbuffs. */
431 struct sk_buff *rx_skbuff[RX_RING_SIZE];
432 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
433
434 /* The saved address of a sent-in-place packet/buffer, for later free(). */
435 struct sk_buff *tx_skbuff[TX_RING_SIZE];
436 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
437
438 /* Tx bounce buffers (Rhine-I only) */
439 unsigned char *tx_buf[TX_RING_SIZE];
440 unsigned char *tx_bufs;
441 dma_addr_t tx_bufs_dma;
442
443 struct pci_dev *pdev;
444 long pioaddr;
445 struct net_device *dev;
446 struct napi_struct napi;
447 spinlock_t lock;
448 struct mutex task_lock;
449 bool task_enable;
450 struct work_struct slow_event_task;
451 struct work_struct reset_task;
452
453 u32 msg_enable;
454
455 /* Frequently used values: keep some adjacent for cache effect. */
456 u32 quirks;
457 struct rx_desc *rx_head_desc;
458 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
459 unsigned int cur_tx, dirty_tx;
460 unsigned int rx_buf_sz; /* Based on MTU+slack. */
461 u8 wolopts;
462
463 u8 tx_thresh, rx_thresh;
464
465 struct mii_if_info mii_if;
466 void __iomem *base;
467 };
468
469 #define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
470 #define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
471 #define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
472
473 #define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x))
474 #define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x))
475 #define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x))
476
477 #define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
478 #define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
479 #define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
480
481 #define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
482 #define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
483 #define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
484
485
486 static int mdio_read(struct net_device *dev, int phy_id, int location);
487 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
488 static int rhine_open(struct net_device *dev);
489 static void rhine_reset_task(struct work_struct *work);
490 static void rhine_slow_event_task(struct work_struct *work);
491 static void rhine_tx_timeout(struct net_device *dev);
492 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
493 struct net_device *dev);
494 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
495 static void rhine_tx(struct net_device *dev);
496 static int rhine_rx(struct net_device *dev, int limit);
497 static void rhine_set_rx_mode(struct net_device *dev);
498 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
499 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
500 static const struct ethtool_ops netdev_ethtool_ops;
501 static int rhine_close(struct net_device *dev);
502 static int rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid);
503 static int rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid);
504 static void rhine_restart_tx(struct net_device *dev);
505
506 static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool high)
507 {
508 void __iomem *ioaddr = rp->base;
509 int i;
510
511 for (i = 0; i < 1024; i++) {
512 if (high ^ !!(ioread8(ioaddr + reg) & mask))
513 break;
514 udelay(10);
515 }
516 if (i > 64) {
517 netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
518 "count: %04d\n", high ? "high" : "low", reg, mask, i);
519 }
520 }
521
522 static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
523 {
524 rhine_wait_bit(rp, reg, mask, true);
525 }
526
527 static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
528 {
529 rhine_wait_bit(rp, reg, mask, false);
530 }
531
532 static u32 rhine_get_events(struct rhine_private *rp)
533 {
534 void __iomem *ioaddr = rp->base;
535 u32 intr_status;
536
537 intr_status = ioread16(ioaddr + IntrStatus);
538 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
539 if (rp->quirks & rqStatusWBRace)
540 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
541 return intr_status;
542 }
543
544 static void rhine_ack_events(struct rhine_private *rp, u32 mask)
545 {
546 void __iomem *ioaddr = rp->base;
547
548 if (rp->quirks & rqStatusWBRace)
549 iowrite8(mask >> 16, ioaddr + IntrStatus2);
550 iowrite16(mask, ioaddr + IntrStatus);
551 mmiowb();
552 }
553
554 /*
555 * Get power related registers into sane state.
556 * Notify user about past WOL event.
557 */
558 static void rhine_power_init(struct net_device *dev)
559 {
560 struct rhine_private *rp = netdev_priv(dev);
561 void __iomem *ioaddr = rp->base;
562 u16 wolstat;
563
564 if (rp->quirks & rqWOL) {
565 /* Make sure chip is in power state D0 */
566 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
567
568 /* Disable "force PME-enable" */
569 iowrite8(0x80, ioaddr + WOLcgClr);
570
571 /* Clear power-event config bits (WOL) */
572 iowrite8(0xFF, ioaddr + WOLcrClr);
573 /* More recent cards can manage two additional patterns */
574 if (rp->quirks & rq6patterns)
575 iowrite8(0x03, ioaddr + WOLcrClr1);
576
577 /* Save power-event status bits */
578 wolstat = ioread8(ioaddr + PwrcsrSet);
579 if (rp->quirks & rq6patterns)
580 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
581
582 /* Clear power-event status bits */
583 iowrite8(0xFF, ioaddr + PwrcsrClr);
584 if (rp->quirks & rq6patterns)
585 iowrite8(0x03, ioaddr + PwrcsrClr1);
586
587 if (wolstat) {
588 char *reason;
589 switch (wolstat) {
590 case WOLmagic:
591 reason = "Magic packet";
592 break;
593 case WOLlnkon:
594 reason = "Link went up";
595 break;
596 case WOLlnkoff:
597 reason = "Link went down";
598 break;
599 case WOLucast:
600 reason = "Unicast packet";
601 break;
602 case WOLbmcast:
603 reason = "Multicast/broadcast packet";
604 break;
605 default:
606 reason = "Unknown";
607 }
608 netdev_info(dev, "Woke system up. Reason: %s\n",
609 reason);
610 }
611 }
612 }
613
614 static void rhine_chip_reset(struct net_device *dev)
615 {
616 struct rhine_private *rp = netdev_priv(dev);
617 void __iomem *ioaddr = rp->base;
618 u8 cmd1;
619
620 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
621 IOSYNC;
622
623 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
624 netdev_info(dev, "Reset not complete yet. Trying harder.\n");
625
626 /* Force reset */
627 if (rp->quirks & rqForceReset)
628 iowrite8(0x40, ioaddr + MiscCmd);
629
630 /* Reset can take somewhat longer (rare) */
631 rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
632 }
633
634 cmd1 = ioread8(ioaddr + ChipCmd1);
635 netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
636 "failed" : "succeeded");
637 }
638
639 #ifdef USE_MMIO
640 static void enable_mmio(long pioaddr, u32 quirks)
641 {
642 int n;
643 if (quirks & rqRhineI) {
644 /* More recent docs say that this bit is reserved ... */
645 n = inb(pioaddr + ConfigA) | 0x20;
646 outb(n, pioaddr + ConfigA);
647 } else {
648 n = inb(pioaddr + ConfigD) | 0x80;
649 outb(n, pioaddr + ConfigD);
650 }
651 }
652 #endif
653
654 /*
655 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
656 * (plus 0x6C for Rhine-I/II)
657 */
658 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
659 {
660 struct rhine_private *rp = netdev_priv(dev);
661 void __iomem *ioaddr = rp->base;
662 int i;
663
664 outb(0x20, pioaddr + MACRegEEcsr);
665 for (i = 0; i < 1024; i++) {
666 if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
667 break;
668 }
669 if (i > 512)
670 pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
671
672 #ifdef USE_MMIO
673 /*
674 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
675 * MMIO. If reloading EEPROM was done first this could be avoided, but
676 * it is not known if that still works with the "win98-reboot" problem.
677 */
678 enable_mmio(pioaddr, rp->quirks);
679 #endif
680
681 /* Turn off EEPROM-controlled wake-up (magic packet) */
682 if (rp->quirks & rqWOL)
683 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
684
685 }
686
687 #ifdef CONFIG_NET_POLL_CONTROLLER
688 static void rhine_poll(struct net_device *dev)
689 {
690 disable_irq(dev->irq);
691 rhine_interrupt(dev->irq, (void *)dev);
692 enable_irq(dev->irq);
693 }
694 #endif
695
696 static void rhine_kick_tx_threshold(struct rhine_private *rp)
697 {
698 if (rp->tx_thresh < 0xe0) {
699 void __iomem *ioaddr = rp->base;
700
701 rp->tx_thresh += 0x20;
702 BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
703 }
704 }
705
706 static void rhine_tx_err(struct rhine_private *rp, u32 status)
707 {
708 struct net_device *dev = rp->dev;
709
710 if (status & IntrTxAborted) {
711 netif_info(rp, tx_err, dev,
712 "Abort %08x, frame dropped\n", status);
713 }
714
715 if (status & IntrTxUnderrun) {
716 rhine_kick_tx_threshold(rp);
717 netif_info(rp, tx_err ,dev, "Transmitter underrun, "
718 "Tx threshold now %02x\n", rp->tx_thresh);
719 }
720
721 if (status & IntrTxDescRace)
722 netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
723
724 if ((status & IntrTxError) &&
725 (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
726 rhine_kick_tx_threshold(rp);
727 netif_info(rp, tx_err, dev, "Unspecified error. "
728 "Tx threshold now %02x\n", rp->tx_thresh);
729 }
730
731 rhine_restart_tx(dev);
732 }
733
734 static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
735 {
736 void __iomem *ioaddr = rp->base;
737 struct net_device_stats *stats = &rp->dev->stats;
738
739 stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
740 stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
741
742 /*
743 * Clears the "tally counters" for CRC errors and missed frames(?).
744 * It has been reported that some chips need a write of 0 to clear
745 * these, for others the counters are set to 1 when written to and
746 * instead cleared when read. So we clear them both ways ...
747 */
748 iowrite32(0, ioaddr + RxMissed);
749 ioread16(ioaddr + RxCRCErrs);
750 ioread16(ioaddr + RxMissed);
751 }
752
753 #define RHINE_EVENT_NAPI_RX (IntrRxDone | \
754 IntrRxErr | \
755 IntrRxEmpty | \
756 IntrRxOverflow | \
757 IntrRxDropped | \
758 IntrRxNoBuf | \
759 IntrRxWakeUp)
760
761 #define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \
762 IntrTxAborted | \
763 IntrTxUnderrun | \
764 IntrTxDescRace)
765 #define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
766
767 #define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \
768 RHINE_EVENT_NAPI_TX | \
769 IntrStatsMax)
770 #define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange)
771 #define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
772
773 static int rhine_napipoll(struct napi_struct *napi, int budget)
774 {
775 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
776 struct net_device *dev = rp->dev;
777 void __iomem *ioaddr = rp->base;
778 u16 enable_mask = RHINE_EVENT & 0xffff;
779 int work_done = 0;
780 u32 status;
781
782 status = rhine_get_events(rp);
783 rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
784
785 if (status & RHINE_EVENT_NAPI_RX)
786 work_done += rhine_rx(dev, budget);
787
788 if (status & RHINE_EVENT_NAPI_TX) {
789 if (status & RHINE_EVENT_NAPI_TX_ERR) {
790 /* Avoid scavenging before Tx engine turned off */
791 rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
792 if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
793 netif_warn(rp, tx_err, dev, "Tx still on\n");
794 }
795
796 rhine_tx(dev);
797
798 if (status & RHINE_EVENT_NAPI_TX_ERR)
799 rhine_tx_err(rp, status);
800 }
801
802 if (status & IntrStatsMax) {
803 spin_lock(&rp->lock);
804 rhine_update_rx_crc_and_missed_errord(rp);
805 spin_unlock(&rp->lock);
806 }
807
808 if (status & RHINE_EVENT_SLOW) {
809 enable_mask &= ~RHINE_EVENT_SLOW;
810 schedule_work(&rp->slow_event_task);
811 }
812
813 if (work_done < budget) {
814 napi_complete(napi);
815 iowrite16(enable_mask, ioaddr + IntrEnable);
816 mmiowb();
817 }
818 return work_done;
819 }
820
821 static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
822 {
823 struct rhine_private *rp = netdev_priv(dev);
824
825 /* Reset the chip to erase previous misconfiguration. */
826 rhine_chip_reset(dev);
827
828 /* Rhine-I needs extra time to recuperate before EEPROM reload */
829 if (rp->quirks & rqRhineI)
830 msleep(5);
831
832 /* Reload EEPROM controlled bytes cleared by soft reset */
833 rhine_reload_eeprom(pioaddr, dev);
834 }
835
836 static const struct net_device_ops rhine_netdev_ops = {
837 .ndo_open = rhine_open,
838 .ndo_stop = rhine_close,
839 .ndo_start_xmit = rhine_start_tx,
840 .ndo_get_stats = rhine_get_stats,
841 .ndo_set_rx_mode = rhine_set_rx_mode,
842 .ndo_change_mtu = eth_change_mtu,
843 .ndo_validate_addr = eth_validate_addr,
844 .ndo_set_mac_address = eth_mac_addr,
845 .ndo_do_ioctl = netdev_ioctl,
846 .ndo_tx_timeout = rhine_tx_timeout,
847 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid,
848 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid,
849 #ifdef CONFIG_NET_POLL_CONTROLLER
850 .ndo_poll_controller = rhine_poll,
851 #endif
852 };
853
854 static int __devinit rhine_init_one(struct pci_dev *pdev,
855 const struct pci_device_id *ent)
856 {
857 struct net_device *dev;
858 struct rhine_private *rp;
859 int i, rc;
860 u32 quirks;
861 long pioaddr;
862 long memaddr;
863 void __iomem *ioaddr;
864 int io_size, phy_id;
865 const char *name;
866 #ifdef USE_MMIO
867 int bar = 1;
868 #else
869 int bar = 0;
870 #endif
871
872 /* when built into the kernel, we only print version if device is found */
873 #ifndef MODULE
874 pr_info_once("%s\n", version);
875 #endif
876
877 io_size = 256;
878 phy_id = 0;
879 quirks = 0;
880 name = "Rhine";
881 if (pdev->revision < VTunknown0) {
882 quirks = rqRhineI;
883 io_size = 128;
884 }
885 else if (pdev->revision >= VT6102) {
886 quirks = rqWOL | rqForceReset;
887 if (pdev->revision < VT6105) {
888 name = "Rhine II";
889 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
890 }
891 else {
892 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
893 if (pdev->revision >= VT6105_B0)
894 quirks |= rq6patterns;
895 if (pdev->revision < VT6105M)
896 name = "Rhine III";
897 else
898 name = "Rhine III (Management Adapter)";
899 }
900 }
901
902 rc = pci_enable_device(pdev);
903 if (rc)
904 goto err_out;
905
906 /* this should always be supported */
907 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
908 if (rc) {
909 dev_err(&pdev->dev,
910 "32-bit PCI DMA addresses not supported by the card!?\n");
911 goto err_out;
912 }
913
914 /* sanity check */
915 if ((pci_resource_len(pdev, 0) < io_size) ||
916 (pci_resource_len(pdev, 1) < io_size)) {
917 rc = -EIO;
918 dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n");
919 goto err_out;
920 }
921
922 pioaddr = pci_resource_start(pdev, 0);
923 memaddr = pci_resource_start(pdev, 1);
924
925 pci_set_master(pdev);
926
927 dev = alloc_etherdev(sizeof(struct rhine_private));
928 if (!dev) {
929 rc = -ENOMEM;
930 goto err_out;
931 }
932 SET_NETDEV_DEV(dev, &pdev->dev);
933
934 rp = netdev_priv(dev);
935 rp->dev = dev;
936 rp->quirks = quirks;
937 rp->pioaddr = pioaddr;
938 rp->pdev = pdev;
939 rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
940
941 rc = pci_request_regions(pdev, DRV_NAME);
942 if (rc)
943 goto err_out_free_netdev;
944
945 ioaddr = pci_iomap(pdev, bar, io_size);
946 if (!ioaddr) {
947 rc = -EIO;
948 dev_err(&pdev->dev,
949 "ioremap failed for device %s, region 0x%X @ 0x%lX\n",
950 pci_name(pdev), io_size, memaddr);
951 goto err_out_free_res;
952 }
953
954 #ifdef USE_MMIO
955 enable_mmio(pioaddr, quirks);
956
957 /* Check that selected MMIO registers match the PIO ones */
958 i = 0;
959 while (mmio_verify_registers[i]) {
960 int reg = mmio_verify_registers[i++];
961 unsigned char a = inb(pioaddr+reg);
962 unsigned char b = readb(ioaddr+reg);
963 if (a != b) {
964 rc = -EIO;
965 dev_err(&pdev->dev,
966 "MMIO do not match PIO [%02x] (%02x != %02x)\n",
967 reg, a, b);
968 goto err_out_unmap;
969 }
970 }
971 #endif /* USE_MMIO */
972
973 dev->base_addr = (unsigned long)ioaddr;
974 rp->base = ioaddr;
975
976 /* Get chip registers into a sane state */
977 rhine_power_init(dev);
978 rhine_hw_init(dev, pioaddr);
979
980 for (i = 0; i < 6; i++)
981 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
982
983 if (!is_valid_ether_addr(dev->dev_addr)) {
984 /* Report it and use a random ethernet address instead */
985 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
986 random_ether_addr(dev->dev_addr);
987 netdev_info(dev, "Using random MAC address: %pM\n",
988 dev->dev_addr);
989 }
990 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
991
992 /* For Rhine-I/II, phy_id is loaded from EEPROM */
993 if (!phy_id)
994 phy_id = ioread8(ioaddr + 0x6C);
995
996 dev->irq = pdev->irq;
997
998 spin_lock_init(&rp->lock);
999 mutex_init(&rp->task_lock);
1000 INIT_WORK(&rp->reset_task, rhine_reset_task);
1001 INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
1002
1003 rp->mii_if.dev = dev;
1004 rp->mii_if.mdio_read = mdio_read;
1005 rp->mii_if.mdio_write = mdio_write;
1006 rp->mii_if.phy_id_mask = 0x1f;
1007 rp->mii_if.reg_num_mask = 0x1f;
1008
1009 /* The chip-specific entries in the device structure. */
1010 dev->netdev_ops = &rhine_netdev_ops;
1011 dev->ethtool_ops = &netdev_ethtool_ops,
1012 dev->watchdog_timeo = TX_TIMEOUT;
1013
1014 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
1015
1016 if (rp->quirks & rqRhineI)
1017 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
1018
1019 if (pdev->revision >= VT6105M)
1020 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
1021 NETIF_F_HW_VLAN_FILTER;
1022
1023 /* dev->name not defined before register_netdev()! */
1024 rc = register_netdev(dev);
1025 if (rc)
1026 goto err_out_unmap;
1027
1028 netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
1029 name,
1030 #ifdef USE_MMIO
1031 memaddr,
1032 #else
1033 (long)ioaddr,
1034 #endif
1035 dev->dev_addr, pdev->irq);
1036
1037 pci_set_drvdata(pdev, dev);
1038
1039 {
1040 u16 mii_cmd;
1041 int mii_status = mdio_read(dev, phy_id, 1);
1042 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1043 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1044 if (mii_status != 0xffff && mii_status != 0x0000) {
1045 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
1046 netdev_info(dev,
1047 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1048 phy_id,
1049 mii_status, rp->mii_if.advertising,
1050 mdio_read(dev, phy_id, 5));
1051
1052 /* set IFF_RUNNING */
1053 if (mii_status & BMSR_LSTATUS)
1054 netif_carrier_on(dev);
1055 else
1056 netif_carrier_off(dev);
1057
1058 }
1059 }
1060 rp->mii_if.phy_id = phy_id;
1061 if (avoid_D3)
1062 netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1063
1064 return 0;
1065
1066 err_out_unmap:
1067 pci_iounmap(pdev, ioaddr);
1068 err_out_free_res:
1069 pci_release_regions(pdev);
1070 err_out_free_netdev:
1071 free_netdev(dev);
1072 err_out:
1073 return rc;
1074 }
1075
1076 static int alloc_ring(struct net_device* dev)
1077 {
1078 struct rhine_private *rp = netdev_priv(dev);
1079 void *ring;
1080 dma_addr_t ring_dma;
1081
1082 ring = pci_alloc_consistent(rp->pdev,
1083 RX_RING_SIZE * sizeof(struct rx_desc) +
1084 TX_RING_SIZE * sizeof(struct tx_desc),
1085 &ring_dma);
1086 if (!ring) {
1087 netdev_err(dev, "Could not allocate DMA memory\n");
1088 return -ENOMEM;
1089 }
1090 if (rp->quirks & rqRhineI) {
1091 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
1092 PKT_BUF_SZ * TX_RING_SIZE,
1093 &rp->tx_bufs_dma);
1094 if (rp->tx_bufs == NULL) {
1095 pci_free_consistent(rp->pdev,
1096 RX_RING_SIZE * sizeof(struct rx_desc) +
1097 TX_RING_SIZE * sizeof(struct tx_desc),
1098 ring, ring_dma);
1099 return -ENOMEM;
1100 }
1101 }
1102
1103 rp->rx_ring = ring;
1104 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1105 rp->rx_ring_dma = ring_dma;
1106 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1107
1108 return 0;
1109 }
1110
1111 static void free_ring(struct net_device* dev)
1112 {
1113 struct rhine_private *rp = netdev_priv(dev);
1114
1115 pci_free_consistent(rp->pdev,
1116 RX_RING_SIZE * sizeof(struct rx_desc) +
1117 TX_RING_SIZE * sizeof(struct tx_desc),
1118 rp->rx_ring, rp->rx_ring_dma);
1119 rp->tx_ring = NULL;
1120
1121 if (rp->tx_bufs)
1122 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
1123 rp->tx_bufs, rp->tx_bufs_dma);
1124
1125 rp->tx_bufs = NULL;
1126
1127 }
1128
1129 static void alloc_rbufs(struct net_device *dev)
1130 {
1131 struct rhine_private *rp = netdev_priv(dev);
1132 dma_addr_t next;
1133 int i;
1134
1135 rp->dirty_rx = rp->cur_rx = 0;
1136
1137 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1138 rp->rx_head_desc = &rp->rx_ring[0];
1139 next = rp->rx_ring_dma;
1140
1141 /* Init the ring entries */
1142 for (i = 0; i < RX_RING_SIZE; i++) {
1143 rp->rx_ring[i].rx_status = 0;
1144 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1145 next += sizeof(struct rx_desc);
1146 rp->rx_ring[i].next_desc = cpu_to_le32(next);
1147 rp->rx_skbuff[i] = NULL;
1148 }
1149 /* Mark the last entry as wrapping the ring. */
1150 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1151
1152 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1153 for (i = 0; i < RX_RING_SIZE; i++) {
1154 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1155 rp->rx_skbuff[i] = skb;
1156 if (skb == NULL)
1157 break;
1158 skb->dev = dev; /* Mark as being used by this device. */
1159
1160 rp->rx_skbuff_dma[i] =
1161 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1162 PCI_DMA_FROMDEVICE);
1163
1164 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
1165 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1166 }
1167 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1168 }
1169
1170 static void free_rbufs(struct net_device* dev)
1171 {
1172 struct rhine_private *rp = netdev_priv(dev);
1173 int i;
1174
1175 /* Free all the skbuffs in the Rx queue. */
1176 for (i = 0; i < RX_RING_SIZE; i++) {
1177 rp->rx_ring[i].rx_status = 0;
1178 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1179 if (rp->rx_skbuff[i]) {
1180 pci_unmap_single(rp->pdev,
1181 rp->rx_skbuff_dma[i],
1182 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1183 dev_kfree_skb(rp->rx_skbuff[i]);
1184 }
1185 rp->rx_skbuff[i] = NULL;
1186 }
1187 }
1188
1189 static void alloc_tbufs(struct net_device* dev)
1190 {
1191 struct rhine_private *rp = netdev_priv(dev);
1192 dma_addr_t next;
1193 int i;
1194
1195 rp->dirty_tx = rp->cur_tx = 0;
1196 next = rp->tx_ring_dma;
1197 for (i = 0; i < TX_RING_SIZE; i++) {
1198 rp->tx_skbuff[i] = NULL;
1199 rp->tx_ring[i].tx_status = 0;
1200 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1201 next += sizeof(struct tx_desc);
1202 rp->tx_ring[i].next_desc = cpu_to_le32(next);
1203 if (rp->quirks & rqRhineI)
1204 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1205 }
1206 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1207
1208 }
1209
1210 static void free_tbufs(struct net_device* dev)
1211 {
1212 struct rhine_private *rp = netdev_priv(dev);
1213 int i;
1214
1215 for (i = 0; i < TX_RING_SIZE; i++) {
1216 rp->tx_ring[i].tx_status = 0;
1217 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1218 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1219 if (rp->tx_skbuff[i]) {
1220 if (rp->tx_skbuff_dma[i]) {
1221 pci_unmap_single(rp->pdev,
1222 rp->tx_skbuff_dma[i],
1223 rp->tx_skbuff[i]->len,
1224 PCI_DMA_TODEVICE);
1225 }
1226 dev_kfree_skb(rp->tx_skbuff[i]);
1227 }
1228 rp->tx_skbuff[i] = NULL;
1229 rp->tx_buf[i] = NULL;
1230 }
1231 }
1232
1233 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1234 {
1235 struct rhine_private *rp = netdev_priv(dev);
1236 void __iomem *ioaddr = rp->base;
1237
1238 mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1239
1240 if (rp->mii_if.full_duplex)
1241 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1242 ioaddr + ChipCmd1);
1243 else
1244 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1245 ioaddr + ChipCmd1);
1246
1247 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1248 rp->mii_if.force_media, netif_carrier_ok(dev));
1249 }
1250
1251 /* Called after status of force_media possibly changed */
1252 static void rhine_set_carrier(struct mii_if_info *mii)
1253 {
1254 struct net_device *dev = mii->dev;
1255 struct rhine_private *rp = netdev_priv(dev);
1256
1257 if (mii->force_media) {
1258 /* autoneg is off: Link is always assumed to be up */
1259 if (!netif_carrier_ok(dev))
1260 netif_carrier_on(dev);
1261 } else /* Let MMI library update carrier status */
1262 rhine_check_media(dev, 0);
1263
1264 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1265 mii->force_media, netif_carrier_ok(dev));
1266 }
1267
1268 /**
1269 * rhine_set_cam - set CAM multicast filters
1270 * @ioaddr: register block of this Rhine
1271 * @idx: multicast CAM index [0..MCAM_SIZE-1]
1272 * @addr: multicast address (6 bytes)
1273 *
1274 * Load addresses into multicast filters.
1275 */
1276 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1277 {
1278 int i;
1279
1280 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1281 wmb();
1282
1283 /* Paranoid -- idx out of range should never happen */
1284 idx &= (MCAM_SIZE - 1);
1285
1286 iowrite8((u8) idx, ioaddr + CamAddr);
1287
1288 for (i = 0; i < 6; i++, addr++)
1289 iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1290 udelay(10);
1291 wmb();
1292
1293 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1294 udelay(10);
1295
1296 iowrite8(0, ioaddr + CamCon);
1297 }
1298
1299 /**
1300 * rhine_set_vlan_cam - set CAM VLAN filters
1301 * @ioaddr: register block of this Rhine
1302 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1303 * @addr: VLAN ID (2 bytes)
1304 *
1305 * Load addresses into VLAN filters.
1306 */
1307 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1308 {
1309 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1310 wmb();
1311
1312 /* Paranoid -- idx out of range should never happen */
1313 idx &= (VCAM_SIZE - 1);
1314
1315 iowrite8((u8) idx, ioaddr + CamAddr);
1316
1317 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1318 udelay(10);
1319 wmb();
1320
1321 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1322 udelay(10);
1323
1324 iowrite8(0, ioaddr + CamCon);
1325 }
1326
1327 /**
1328 * rhine_set_cam_mask - set multicast CAM mask
1329 * @ioaddr: register block of this Rhine
1330 * @mask: multicast CAM mask
1331 *
1332 * Mask sets multicast filters active/inactive.
1333 */
1334 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1335 {
1336 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1337 wmb();
1338
1339 /* write mask */
1340 iowrite32(mask, ioaddr + CamMask);
1341
1342 /* disable CAMEN */
1343 iowrite8(0, ioaddr + CamCon);
1344 }
1345
1346 /**
1347 * rhine_set_vlan_cam_mask - set VLAN CAM mask
1348 * @ioaddr: register block of this Rhine
1349 * @mask: VLAN CAM mask
1350 *
1351 * Mask sets VLAN filters active/inactive.
1352 */
1353 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1354 {
1355 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1356 wmb();
1357
1358 /* write mask */
1359 iowrite32(mask, ioaddr + CamMask);
1360
1361 /* disable CAMEN */
1362 iowrite8(0, ioaddr + CamCon);
1363 }
1364
1365 /**
1366 * rhine_init_cam_filter - initialize CAM filters
1367 * @dev: network device
1368 *
1369 * Initialize (disable) hardware VLAN and multicast support on this
1370 * Rhine.
1371 */
1372 static void rhine_init_cam_filter(struct net_device *dev)
1373 {
1374 struct rhine_private *rp = netdev_priv(dev);
1375 void __iomem *ioaddr = rp->base;
1376
1377 /* Disable all CAMs */
1378 rhine_set_vlan_cam_mask(ioaddr, 0);
1379 rhine_set_cam_mask(ioaddr, 0);
1380
1381 /* disable hardware VLAN support */
1382 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1383 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1384 }
1385
1386 /**
1387 * rhine_update_vcam - update VLAN CAM filters
1388 * @rp: rhine_private data of this Rhine
1389 *
1390 * Update VLAN CAM filters to match configuration change.
1391 */
1392 static void rhine_update_vcam(struct net_device *dev)
1393 {
1394 struct rhine_private *rp = netdev_priv(dev);
1395 void __iomem *ioaddr = rp->base;
1396 u16 vid;
1397 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */
1398 unsigned int i = 0;
1399
1400 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1401 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1402 vCAMmask |= 1 << i;
1403 if (++i >= VCAM_SIZE)
1404 break;
1405 }
1406 rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1407 }
1408
1409 static int rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
1410 {
1411 struct rhine_private *rp = netdev_priv(dev);
1412
1413 spin_lock_bh(&rp->lock);
1414 set_bit(vid, rp->active_vlans);
1415 rhine_update_vcam(dev);
1416 spin_unlock_bh(&rp->lock);
1417 return 0;
1418 }
1419
1420 static int rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
1421 {
1422 struct rhine_private *rp = netdev_priv(dev);
1423
1424 spin_lock_bh(&rp->lock);
1425 clear_bit(vid, rp->active_vlans);
1426 rhine_update_vcam(dev);
1427 spin_unlock_bh(&rp->lock);
1428 return 0;
1429 }
1430
1431 static void init_registers(struct net_device *dev)
1432 {
1433 struct rhine_private *rp = netdev_priv(dev);
1434 void __iomem *ioaddr = rp->base;
1435 int i;
1436
1437 for (i = 0; i < 6; i++)
1438 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1439
1440 /* Initialize other registers. */
1441 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1442 /* Configure initial FIFO thresholds. */
1443 iowrite8(0x20, ioaddr + TxConfig);
1444 rp->tx_thresh = 0x20;
1445 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1446
1447 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1448 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1449
1450 rhine_set_rx_mode(dev);
1451
1452 if (rp->pdev->revision >= VT6105M)
1453 rhine_init_cam_filter(dev);
1454
1455 napi_enable(&rp->napi);
1456
1457 iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1458
1459 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1460 ioaddr + ChipCmd);
1461 rhine_check_media(dev, 1);
1462 }
1463
1464 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1465 static void rhine_enable_linkmon(struct rhine_private *rp)
1466 {
1467 void __iomem *ioaddr = rp->base;
1468
1469 iowrite8(0, ioaddr + MIICmd);
1470 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1471 iowrite8(0x80, ioaddr + MIICmd);
1472
1473 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1474
1475 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1476 }
1477
1478 /* Disable MII link status auto-polling (required for MDIO access) */
1479 static void rhine_disable_linkmon(struct rhine_private *rp)
1480 {
1481 void __iomem *ioaddr = rp->base;
1482
1483 iowrite8(0, ioaddr + MIICmd);
1484
1485 if (rp->quirks & rqRhineI) {
1486 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1487
1488 /* Can be called from ISR. Evil. */
1489 mdelay(1);
1490
1491 /* 0x80 must be set immediately before turning it off */
1492 iowrite8(0x80, ioaddr + MIICmd);
1493
1494 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1495
1496 /* Heh. Now clear 0x80 again. */
1497 iowrite8(0, ioaddr + MIICmd);
1498 }
1499 else
1500 rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1501 }
1502
1503 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1504
1505 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1506 {
1507 struct rhine_private *rp = netdev_priv(dev);
1508 void __iomem *ioaddr = rp->base;
1509 int result;
1510
1511 rhine_disable_linkmon(rp);
1512
1513 /* rhine_disable_linkmon already cleared MIICmd */
1514 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1515 iowrite8(regnum, ioaddr + MIIRegAddr);
1516 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1517 rhine_wait_bit_low(rp, MIICmd, 0x40);
1518 result = ioread16(ioaddr + MIIData);
1519
1520 rhine_enable_linkmon(rp);
1521 return result;
1522 }
1523
1524 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1525 {
1526 struct rhine_private *rp = netdev_priv(dev);
1527 void __iomem *ioaddr = rp->base;
1528
1529 rhine_disable_linkmon(rp);
1530
1531 /* rhine_disable_linkmon already cleared MIICmd */
1532 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1533 iowrite8(regnum, ioaddr + MIIRegAddr);
1534 iowrite16(value, ioaddr + MIIData);
1535 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1536 rhine_wait_bit_low(rp, MIICmd, 0x20);
1537
1538 rhine_enable_linkmon(rp);
1539 }
1540
1541 static void rhine_task_disable(struct rhine_private *rp)
1542 {
1543 mutex_lock(&rp->task_lock);
1544 rp->task_enable = false;
1545 mutex_unlock(&rp->task_lock);
1546
1547 cancel_work_sync(&rp->slow_event_task);
1548 cancel_work_sync(&rp->reset_task);
1549 }
1550
1551 static void rhine_task_enable(struct rhine_private *rp)
1552 {
1553 mutex_lock(&rp->task_lock);
1554 rp->task_enable = true;
1555 mutex_unlock(&rp->task_lock);
1556 }
1557
1558 static int rhine_open(struct net_device *dev)
1559 {
1560 struct rhine_private *rp = netdev_priv(dev);
1561 void __iomem *ioaddr = rp->base;
1562 int rc;
1563
1564 rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
1565 dev);
1566 if (rc)
1567 return rc;
1568
1569 netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->pdev->irq);
1570
1571 rc = alloc_ring(dev);
1572 if (rc) {
1573 free_irq(rp->pdev->irq, dev);
1574 return rc;
1575 }
1576 alloc_rbufs(dev);
1577 alloc_tbufs(dev);
1578 rhine_chip_reset(dev);
1579 rhine_task_enable(rp);
1580 init_registers(dev);
1581
1582 netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1583 __func__, ioread16(ioaddr + ChipCmd),
1584 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1585
1586 netif_start_queue(dev);
1587
1588 return 0;
1589 }
1590
1591 static void rhine_reset_task(struct work_struct *work)
1592 {
1593 struct rhine_private *rp = container_of(work, struct rhine_private,
1594 reset_task);
1595 struct net_device *dev = rp->dev;
1596
1597 mutex_lock(&rp->task_lock);
1598
1599 if (!rp->task_enable)
1600 goto out_unlock;
1601
1602 napi_disable(&rp->napi);
1603 spin_lock_bh(&rp->lock);
1604
1605 /* clear all descriptors */
1606 free_tbufs(dev);
1607 free_rbufs(dev);
1608 alloc_tbufs(dev);
1609 alloc_rbufs(dev);
1610
1611 /* Reinitialize the hardware. */
1612 rhine_chip_reset(dev);
1613 init_registers(dev);
1614
1615 spin_unlock_bh(&rp->lock);
1616
1617 dev->trans_start = jiffies; /* prevent tx timeout */
1618 dev->stats.tx_errors++;
1619 netif_wake_queue(dev);
1620
1621 out_unlock:
1622 mutex_unlock(&rp->task_lock);
1623 }
1624
1625 static void rhine_tx_timeout(struct net_device *dev)
1626 {
1627 struct rhine_private *rp = netdev_priv(dev);
1628 void __iomem *ioaddr = rp->base;
1629
1630 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1631 ioread16(ioaddr + IntrStatus),
1632 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1633
1634 schedule_work(&rp->reset_task);
1635 }
1636
1637 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1638 struct net_device *dev)
1639 {
1640 struct rhine_private *rp = netdev_priv(dev);
1641 void __iomem *ioaddr = rp->base;
1642 unsigned entry;
1643
1644 /* Caution: the write order is important here, set the field
1645 with the "ownership" bits last. */
1646
1647 /* Calculate the next Tx descriptor entry. */
1648 entry = rp->cur_tx % TX_RING_SIZE;
1649
1650 if (skb_padto(skb, ETH_ZLEN))
1651 return NETDEV_TX_OK;
1652
1653 rp->tx_skbuff[entry] = skb;
1654
1655 if ((rp->quirks & rqRhineI) &&
1656 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1657 /* Must use alignment buffer. */
1658 if (skb->len > PKT_BUF_SZ) {
1659 /* packet too long, drop it */
1660 dev_kfree_skb(skb);
1661 rp->tx_skbuff[entry] = NULL;
1662 dev->stats.tx_dropped++;
1663 return NETDEV_TX_OK;
1664 }
1665
1666 /* Padding is not copied and so must be redone. */
1667 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1668 if (skb->len < ETH_ZLEN)
1669 memset(rp->tx_buf[entry] + skb->len, 0,
1670 ETH_ZLEN - skb->len);
1671 rp->tx_skbuff_dma[entry] = 0;
1672 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1673 (rp->tx_buf[entry] -
1674 rp->tx_bufs));
1675 } else {
1676 rp->tx_skbuff_dma[entry] =
1677 pci_map_single(rp->pdev, skb->data, skb->len,
1678 PCI_DMA_TODEVICE);
1679 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1680 }
1681
1682 rp->tx_ring[entry].desc_length =
1683 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1684
1685 if (unlikely(vlan_tx_tag_present(skb))) {
1686 rp->tx_ring[entry].tx_status = cpu_to_le32((vlan_tx_tag_get(skb)) << 16);
1687 /* request tagging */
1688 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1689 }
1690 else
1691 rp->tx_ring[entry].tx_status = 0;
1692
1693 /* lock eth irq */
1694 wmb();
1695 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1696 wmb();
1697
1698 rp->cur_tx++;
1699
1700 /* Non-x86 Todo: explicitly flush cache lines here. */
1701
1702 if (vlan_tx_tag_present(skb))
1703 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1704 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1705
1706 /* Wake the potentially-idle transmit channel */
1707 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1708 ioaddr + ChipCmd1);
1709 IOSYNC;
1710
1711 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1712 netif_stop_queue(dev);
1713
1714 netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1715 rp->cur_tx - 1, entry);
1716
1717 return NETDEV_TX_OK;
1718 }
1719
1720 static void rhine_irq_disable(struct rhine_private *rp)
1721 {
1722 iowrite16(0x0000, rp->base + IntrEnable);
1723 mmiowb();
1724 }
1725
1726 /* The interrupt handler does all of the Rx thread work and cleans up
1727 after the Tx thread. */
1728 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1729 {
1730 struct net_device *dev = dev_instance;
1731 struct rhine_private *rp = netdev_priv(dev);
1732 u32 status;
1733 int handled = 0;
1734
1735 status = rhine_get_events(rp);
1736
1737 netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
1738
1739 if (status & RHINE_EVENT) {
1740 handled = 1;
1741
1742 rhine_irq_disable(rp);
1743 napi_schedule(&rp->napi);
1744 }
1745
1746 if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
1747 netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1748 status);
1749 }
1750
1751 return IRQ_RETVAL(handled);
1752 }
1753
1754 /* This routine is logically part of the interrupt handler, but isolated
1755 for clarity. */
1756 static void rhine_tx(struct net_device *dev)
1757 {
1758 struct rhine_private *rp = netdev_priv(dev);
1759 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1760
1761 /* find and cleanup dirty tx descriptors */
1762 while (rp->dirty_tx != rp->cur_tx) {
1763 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1764 netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1765 entry, txstatus);
1766 if (txstatus & DescOwn)
1767 break;
1768 if (txstatus & 0x8000) {
1769 netif_dbg(rp, tx_done, dev,
1770 "Transmit error, Tx status %08x\n", txstatus);
1771 dev->stats.tx_errors++;
1772 if (txstatus & 0x0400)
1773 dev->stats.tx_carrier_errors++;
1774 if (txstatus & 0x0200)
1775 dev->stats.tx_window_errors++;
1776 if (txstatus & 0x0100)
1777 dev->stats.tx_aborted_errors++;
1778 if (txstatus & 0x0080)
1779 dev->stats.tx_heartbeat_errors++;
1780 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1781 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1782 dev->stats.tx_fifo_errors++;
1783 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1784 break; /* Keep the skb - we try again */
1785 }
1786 /* Transmitter restarted in 'abnormal' handler. */
1787 } else {
1788 if (rp->quirks & rqRhineI)
1789 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1790 else
1791 dev->stats.collisions += txstatus & 0x0F;
1792 netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1793 (txstatus >> 3) & 0xF, txstatus & 0xF);
1794 dev->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1795 dev->stats.tx_packets++;
1796 }
1797 /* Free the original skb. */
1798 if (rp->tx_skbuff_dma[entry]) {
1799 pci_unmap_single(rp->pdev,
1800 rp->tx_skbuff_dma[entry],
1801 rp->tx_skbuff[entry]->len,
1802 PCI_DMA_TODEVICE);
1803 }
1804 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1805 rp->tx_skbuff[entry] = NULL;
1806 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1807 }
1808 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1809 netif_wake_queue(dev);
1810 }
1811
1812 /**
1813 * rhine_get_vlan_tci - extract TCI from Rx data buffer
1814 * @skb: pointer to sk_buff
1815 * @data_size: used data area of the buffer including CRC
1816 *
1817 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
1818 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
1819 * aligned following the CRC.
1820 */
1821 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
1822 {
1823 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
1824 return be16_to_cpup((__be16 *)trailer);
1825 }
1826
1827 /* Process up to limit frames from receive ring */
1828 static int rhine_rx(struct net_device *dev, int limit)
1829 {
1830 struct rhine_private *rp = netdev_priv(dev);
1831 int count;
1832 int entry = rp->cur_rx % RX_RING_SIZE;
1833
1834 netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
1835 entry, le32_to_cpu(rp->rx_head_desc->rx_status));
1836
1837 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1838 for (count = 0; count < limit; ++count) {
1839 struct rx_desc *desc = rp->rx_head_desc;
1840 u32 desc_status = le32_to_cpu(desc->rx_status);
1841 u32 desc_length = le32_to_cpu(desc->desc_length);
1842 int data_size = desc_status >> 16;
1843
1844 if (desc_status & DescOwn)
1845 break;
1846
1847 netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
1848 desc_status);
1849
1850 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1851 if ((desc_status & RxWholePkt) != RxWholePkt) {
1852 netdev_warn(dev,
1853 "Oversized Ethernet frame spanned multiple buffers, "
1854 "entry %#x length %d status %08x!\n",
1855 entry, data_size,
1856 desc_status);
1857 netdev_warn(dev,
1858 "Oversized Ethernet frame %p vs %p\n",
1859 rp->rx_head_desc,
1860 &rp->rx_ring[entry]);
1861 dev->stats.rx_length_errors++;
1862 } else if (desc_status & RxErr) {
1863 /* There was a error. */
1864 netif_dbg(rp, rx_err, dev,
1865 "%s() Rx error %08x\n", __func__,
1866 desc_status);
1867 dev->stats.rx_errors++;
1868 if (desc_status & 0x0030)
1869 dev->stats.rx_length_errors++;
1870 if (desc_status & 0x0048)
1871 dev->stats.rx_fifo_errors++;
1872 if (desc_status & 0x0004)
1873 dev->stats.rx_frame_errors++;
1874 if (desc_status & 0x0002) {
1875 /* this can also be updated outside the interrupt handler */
1876 spin_lock(&rp->lock);
1877 dev->stats.rx_crc_errors++;
1878 spin_unlock(&rp->lock);
1879 }
1880 }
1881 } else {
1882 struct sk_buff *skb = NULL;
1883 /* Length should omit the CRC */
1884 int pkt_len = data_size - 4;
1885 u16 vlan_tci = 0;
1886
1887 /* Check if the packet is long enough to accept without
1888 copying to a minimally-sized skbuff. */
1889 if (pkt_len < rx_copybreak)
1890 skb = netdev_alloc_skb_ip_align(dev, pkt_len);
1891 if (skb) {
1892 pci_dma_sync_single_for_cpu(rp->pdev,
1893 rp->rx_skbuff_dma[entry],
1894 rp->rx_buf_sz,
1895 PCI_DMA_FROMDEVICE);
1896
1897 skb_copy_to_linear_data(skb,
1898 rp->rx_skbuff[entry]->data,
1899 pkt_len);
1900 skb_put(skb, pkt_len);
1901 pci_dma_sync_single_for_device(rp->pdev,
1902 rp->rx_skbuff_dma[entry],
1903 rp->rx_buf_sz,
1904 PCI_DMA_FROMDEVICE);
1905 } else {
1906 skb = rp->rx_skbuff[entry];
1907 if (skb == NULL) {
1908 netdev_err(dev, "Inconsistent Rx descriptor chain\n");
1909 break;
1910 }
1911 rp->rx_skbuff[entry] = NULL;
1912 skb_put(skb, pkt_len);
1913 pci_unmap_single(rp->pdev,
1914 rp->rx_skbuff_dma[entry],
1915 rp->rx_buf_sz,
1916 PCI_DMA_FROMDEVICE);
1917 }
1918
1919 if (unlikely(desc_length & DescTag))
1920 vlan_tci = rhine_get_vlan_tci(skb, data_size);
1921
1922 skb->protocol = eth_type_trans(skb, dev);
1923
1924 if (unlikely(desc_length & DescTag))
1925 __vlan_hwaccel_put_tag(skb, vlan_tci);
1926 netif_receive_skb(skb);
1927 dev->stats.rx_bytes += pkt_len;
1928 dev->stats.rx_packets++;
1929 }
1930 entry = (++rp->cur_rx) % RX_RING_SIZE;
1931 rp->rx_head_desc = &rp->rx_ring[entry];
1932 }
1933
1934 /* Refill the Rx ring buffers. */
1935 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1936 struct sk_buff *skb;
1937 entry = rp->dirty_rx % RX_RING_SIZE;
1938 if (rp->rx_skbuff[entry] == NULL) {
1939 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1940 rp->rx_skbuff[entry] = skb;
1941 if (skb == NULL)
1942 break; /* Better luck next round. */
1943 skb->dev = dev; /* Mark as being used by this device. */
1944 rp->rx_skbuff_dma[entry] =
1945 pci_map_single(rp->pdev, skb->data,
1946 rp->rx_buf_sz,
1947 PCI_DMA_FROMDEVICE);
1948 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1949 }
1950 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1951 }
1952
1953 return count;
1954 }
1955
1956 static void rhine_restart_tx(struct net_device *dev) {
1957 struct rhine_private *rp = netdev_priv(dev);
1958 void __iomem *ioaddr = rp->base;
1959 int entry = rp->dirty_tx % TX_RING_SIZE;
1960 u32 intr_status;
1961
1962 /*
1963 * If new errors occurred, we need to sort them out before doing Tx.
1964 * In that case the ISR will be back here RSN anyway.
1965 */
1966 intr_status = rhine_get_events(rp);
1967
1968 if ((intr_status & IntrTxErrSummary) == 0) {
1969
1970 /* We know better than the chip where it should continue. */
1971 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1972 ioaddr + TxRingPtr);
1973
1974 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1975 ioaddr + ChipCmd);
1976
1977 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
1978 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1979 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1980
1981 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1982 ioaddr + ChipCmd1);
1983 IOSYNC;
1984 }
1985 else {
1986 /* This should never happen */
1987 netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
1988 intr_status);
1989 }
1990
1991 }
1992
1993 static void rhine_slow_event_task(struct work_struct *work)
1994 {
1995 struct rhine_private *rp =
1996 container_of(work, struct rhine_private, slow_event_task);
1997 struct net_device *dev = rp->dev;
1998 u32 intr_status;
1999
2000 mutex_lock(&rp->task_lock);
2001
2002 if (!rp->task_enable)
2003 goto out_unlock;
2004
2005 intr_status = rhine_get_events(rp);
2006 rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
2007
2008 if (intr_status & IntrLinkChange)
2009 rhine_check_media(dev, 0);
2010
2011 if (intr_status & IntrPCIErr)
2012 netif_warn(rp, hw, dev, "PCI error\n");
2013
2014 napi_disable(&rp->napi);
2015 rhine_irq_disable(rp);
2016 /* Slow and safe. Consider __napi_schedule as a replacement ? */
2017 napi_enable(&rp->napi);
2018 napi_schedule(&rp->napi);
2019
2020 out_unlock:
2021 mutex_unlock(&rp->task_lock);
2022 }
2023
2024 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
2025 {
2026 struct rhine_private *rp = netdev_priv(dev);
2027
2028 spin_lock_bh(&rp->lock);
2029 rhine_update_rx_crc_and_missed_errord(rp);
2030 spin_unlock_bh(&rp->lock);
2031
2032 return &dev->stats;
2033 }
2034
2035 static void rhine_set_rx_mode(struct net_device *dev)
2036 {
2037 struct rhine_private *rp = netdev_priv(dev);
2038 void __iomem *ioaddr = rp->base;
2039 u32 mc_filter[2]; /* Multicast hash filter */
2040 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */
2041 struct netdev_hw_addr *ha;
2042
2043 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2044 rx_mode = 0x1C;
2045 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2046 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2047 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2048 (dev->flags & IFF_ALLMULTI)) {
2049 /* Too many to match, or accept all multicasts. */
2050 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2051 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2052 } else if (rp->pdev->revision >= VT6105M) {
2053 int i = 0;
2054 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */
2055 netdev_for_each_mc_addr(ha, dev) {
2056 if (i == MCAM_SIZE)
2057 break;
2058 rhine_set_cam(ioaddr, i, ha->addr);
2059 mCAMmask |= 1 << i;
2060 i++;
2061 }
2062 rhine_set_cam_mask(ioaddr, mCAMmask);
2063 } else {
2064 memset(mc_filter, 0, sizeof(mc_filter));
2065 netdev_for_each_mc_addr(ha, dev) {
2066 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
2067
2068 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2069 }
2070 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2071 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
2072 }
2073 /* enable/disable VLAN receive filtering */
2074 if (rp->pdev->revision >= VT6105M) {
2075 if (dev->flags & IFF_PROMISC)
2076 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2077 else
2078 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2079 }
2080 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
2081 }
2082
2083 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2084 {
2085 struct rhine_private *rp = netdev_priv(dev);
2086
2087 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2088 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2089 strlcpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info));
2090 }
2091
2092 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2093 {
2094 struct rhine_private *rp = netdev_priv(dev);
2095 int rc;
2096
2097 mutex_lock(&rp->task_lock);
2098 rc = mii_ethtool_gset(&rp->mii_if, cmd);
2099 mutex_unlock(&rp->task_lock);
2100
2101 return rc;
2102 }
2103
2104 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2105 {
2106 struct rhine_private *rp = netdev_priv(dev);
2107 int rc;
2108
2109 mutex_lock(&rp->task_lock);
2110 rc = mii_ethtool_sset(&rp->mii_if, cmd);
2111 rhine_set_carrier(&rp->mii_if);
2112 mutex_unlock(&rp->task_lock);
2113
2114 return rc;
2115 }
2116
2117 static int netdev_nway_reset(struct net_device *dev)
2118 {
2119 struct rhine_private *rp = netdev_priv(dev);
2120
2121 return mii_nway_restart(&rp->mii_if);
2122 }
2123
2124 static u32 netdev_get_link(struct net_device *dev)
2125 {
2126 struct rhine_private *rp = netdev_priv(dev);
2127
2128 return mii_link_ok(&rp->mii_if);
2129 }
2130
2131 static u32 netdev_get_msglevel(struct net_device *dev)
2132 {
2133 struct rhine_private *rp = netdev_priv(dev);
2134
2135 return rp->msg_enable;
2136 }
2137
2138 static void netdev_set_msglevel(struct net_device *dev, u32 value)
2139 {
2140 struct rhine_private *rp = netdev_priv(dev);
2141
2142 rp->msg_enable = value;
2143 }
2144
2145 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2146 {
2147 struct rhine_private *rp = netdev_priv(dev);
2148
2149 if (!(rp->quirks & rqWOL))
2150 return;
2151
2152 spin_lock_irq(&rp->lock);
2153 wol->supported = WAKE_PHY | WAKE_MAGIC |
2154 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2155 wol->wolopts = rp->wolopts;
2156 spin_unlock_irq(&rp->lock);
2157 }
2158
2159 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2160 {
2161 struct rhine_private *rp = netdev_priv(dev);
2162 u32 support = WAKE_PHY | WAKE_MAGIC |
2163 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2164
2165 if (!(rp->quirks & rqWOL))
2166 return -EINVAL;
2167
2168 if (wol->wolopts & ~support)
2169 return -EINVAL;
2170
2171 spin_lock_irq(&rp->lock);
2172 rp->wolopts = wol->wolopts;
2173 spin_unlock_irq(&rp->lock);
2174
2175 return 0;
2176 }
2177
2178 static const struct ethtool_ops netdev_ethtool_ops = {
2179 .get_drvinfo = netdev_get_drvinfo,
2180 .get_settings = netdev_get_settings,
2181 .set_settings = netdev_set_settings,
2182 .nway_reset = netdev_nway_reset,
2183 .get_link = netdev_get_link,
2184 .get_msglevel = netdev_get_msglevel,
2185 .set_msglevel = netdev_set_msglevel,
2186 .get_wol = rhine_get_wol,
2187 .set_wol = rhine_set_wol,
2188 };
2189
2190 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2191 {
2192 struct rhine_private *rp = netdev_priv(dev);
2193 int rc;
2194
2195 if (!netif_running(dev))
2196 return -EINVAL;
2197
2198 mutex_lock(&rp->task_lock);
2199 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
2200 rhine_set_carrier(&rp->mii_if);
2201 mutex_unlock(&rp->task_lock);
2202
2203 return rc;
2204 }
2205
2206 static int rhine_close(struct net_device *dev)
2207 {
2208 struct rhine_private *rp = netdev_priv(dev);
2209 void __iomem *ioaddr = rp->base;
2210
2211 rhine_task_disable(rp);
2212 napi_disable(&rp->napi);
2213 netif_stop_queue(dev);
2214
2215 netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2216 ioread16(ioaddr + ChipCmd));
2217
2218 /* Switch to loopback mode to avoid hardware races. */
2219 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2220
2221 rhine_irq_disable(rp);
2222
2223 /* Stop the chip's Tx and Rx processes. */
2224 iowrite16(CmdStop, ioaddr + ChipCmd);
2225
2226 free_irq(rp->pdev->irq, dev);
2227 free_rbufs(dev);
2228 free_tbufs(dev);
2229 free_ring(dev);
2230
2231 return 0;
2232 }
2233
2234
2235 static void __devexit rhine_remove_one(struct pci_dev *pdev)
2236 {
2237 struct net_device *dev = pci_get_drvdata(pdev);
2238 struct rhine_private *rp = netdev_priv(dev);
2239
2240 unregister_netdev(dev);
2241
2242 pci_iounmap(pdev, rp->base);
2243 pci_release_regions(pdev);
2244
2245 free_netdev(dev);
2246 pci_disable_device(pdev);
2247 pci_set_drvdata(pdev, NULL);
2248 }
2249
2250 static void rhine_shutdown (struct pci_dev *pdev)
2251 {
2252 struct net_device *dev = pci_get_drvdata(pdev);
2253 struct rhine_private *rp = netdev_priv(dev);
2254 void __iomem *ioaddr = rp->base;
2255
2256 if (!(rp->quirks & rqWOL))
2257 return; /* Nothing to do for non-WOL adapters */
2258
2259 rhine_power_init(dev);
2260
2261 /* Make sure we use pattern 0, 1 and not 4, 5 */
2262 if (rp->quirks & rq6patterns)
2263 iowrite8(0x04, ioaddr + WOLcgClr);
2264
2265 spin_lock(&rp->lock);
2266
2267 if (rp->wolopts & WAKE_MAGIC) {
2268 iowrite8(WOLmagic, ioaddr + WOLcrSet);
2269 /*
2270 * Turn EEPROM-controlled wake-up back on -- some hardware may
2271 * not cooperate otherwise.
2272 */
2273 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2274 }
2275
2276 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2277 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2278
2279 if (rp->wolopts & WAKE_PHY)
2280 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2281
2282 if (rp->wolopts & WAKE_UCAST)
2283 iowrite8(WOLucast, ioaddr + WOLcrSet);
2284
2285 if (rp->wolopts) {
2286 /* Enable legacy WOL (for old motherboards) */
2287 iowrite8(0x01, ioaddr + PwcfgSet);
2288 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2289 }
2290
2291 spin_unlock(&rp->lock);
2292
2293 if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
2294 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
2295
2296 pci_wake_from_d3(pdev, true);
2297 pci_set_power_state(pdev, PCI_D3hot);
2298 }
2299 }
2300
2301 #ifdef CONFIG_PM_SLEEP
2302 static int rhine_suspend(struct device *device)
2303 {
2304 struct pci_dev *pdev = to_pci_dev(device);
2305 struct net_device *dev = pci_get_drvdata(pdev);
2306 struct rhine_private *rp = netdev_priv(dev);
2307
2308 if (!netif_running(dev))
2309 return 0;
2310
2311 rhine_task_disable(rp);
2312 rhine_irq_disable(rp);
2313 napi_disable(&rp->napi);
2314
2315 netif_device_detach(dev);
2316
2317 rhine_shutdown(pdev);
2318
2319 return 0;
2320 }
2321
2322 static int rhine_resume(struct device *device)
2323 {
2324 struct pci_dev *pdev = to_pci_dev(device);
2325 struct net_device *dev = pci_get_drvdata(pdev);
2326 struct rhine_private *rp = netdev_priv(dev);
2327
2328 if (!netif_running(dev))
2329 return 0;
2330
2331 #ifdef USE_MMIO
2332 enable_mmio(rp->pioaddr, rp->quirks);
2333 #endif
2334 rhine_power_init(dev);
2335 free_tbufs(dev);
2336 free_rbufs(dev);
2337 alloc_tbufs(dev);
2338 alloc_rbufs(dev);
2339 rhine_task_enable(rp);
2340 spin_lock_bh(&rp->lock);
2341 init_registers(dev);
2342 spin_unlock_bh(&rp->lock);
2343
2344 netif_device_attach(dev);
2345
2346 return 0;
2347 }
2348
2349 static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2350 #define RHINE_PM_OPS (&rhine_pm_ops)
2351
2352 #else
2353
2354 #define RHINE_PM_OPS NULL
2355
2356 #endif /* !CONFIG_PM_SLEEP */
2357
2358 static struct pci_driver rhine_driver = {
2359 .name = DRV_NAME,
2360 .id_table = rhine_pci_tbl,
2361 .probe = rhine_init_one,
2362 .remove = __devexit_p(rhine_remove_one),
2363 .shutdown = rhine_shutdown,
2364 .driver.pm = RHINE_PM_OPS,
2365 };
2366
2367 static struct dmi_system_id __initdata rhine_dmi_table[] = {
2368 {
2369 .ident = "EPIA-M",
2370 .matches = {
2371 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2372 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2373 },
2374 },
2375 {
2376 .ident = "KV7",
2377 .matches = {
2378 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2379 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2380 },
2381 },
2382 { NULL }
2383 };
2384
2385 static int __init rhine_init(void)
2386 {
2387 /* when a module, this is printed whether or not devices are found in probe */
2388 #ifdef MODULE
2389 pr_info("%s\n", version);
2390 #endif
2391 if (dmi_check_system(rhine_dmi_table)) {
2392 /* these BIOSes fail at PXE boot if chip is in D3 */
2393 avoid_D3 = true;
2394 pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
2395 }
2396 else if (avoid_D3)
2397 pr_info("avoid_D3 set\n");
2398
2399 return pci_register_driver(&rhine_driver);
2400 }
2401
2402
2403 static void __exit rhine_cleanup(void)
2404 {
2405 pci_unregister_driver(&rhine_driver);
2406 }
2407
2408
2409 module_init(rhine_init);
2410 module_exit(rhine_cleanup);
This page took 0.10975 seconds and 5 git commands to generate.