net: vlan: rename NETIF_F_HW_VLAN_* feature flags to NETIF_F_HW_VLAN_CTAG_*
[deliverable/linux.git] / drivers / net / ethernet / via / via-rhine.c
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
29
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #define DRV_NAME "via-rhine"
35 #define DRV_VERSION "1.5.0"
36 #define DRV_RELDATE "2010-10-09"
37
38 #include <linux/types.h>
39
40 /* A few user-configurable values.
41 These may be modified when a driver module is loaded. */
42 static int debug = 0;
43 #define RHINE_MSG_DEFAULT \
44 (0x0000)
45
46 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
47 Setting to > 1518 effectively disables this feature. */
48 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
49 defined(CONFIG_SPARC) || defined(__ia64__) || \
50 defined(__sh__) || defined(__mips__)
51 static int rx_copybreak = 1518;
52 #else
53 static int rx_copybreak;
54 #endif
55
56 /* Work-around for broken BIOSes: they are unable to get the chip back out of
57 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
58 static bool avoid_D3;
59
60 /*
61 * In case you are looking for 'options[]' or 'full_duplex[]', they
62 * are gone. Use ethtool(8) instead.
63 */
64
65 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
66 The Rhine has a 64 element 8390-like hash table. */
67 static const int multicast_filter_limit = 32;
68
69
70 /* Operational parameters that are set at compile time. */
71
72 /* Keep the ring sizes a power of two for compile efficiency.
73 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
74 Making the Tx ring too large decreases the effectiveness of channel
75 bonding and packet priority.
76 There are no ill effects from too-large receive rings. */
77 #define TX_RING_SIZE 16
78 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
79 #define RX_RING_SIZE 64
80
81 /* Operational parameters that usually are not changed. */
82
83 /* Time in jiffies before concluding the transmitter is hung. */
84 #define TX_TIMEOUT (2*HZ)
85
86 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
87
88 #include <linux/module.h>
89 #include <linux/moduleparam.h>
90 #include <linux/kernel.h>
91 #include <linux/string.h>
92 #include <linux/timer.h>
93 #include <linux/errno.h>
94 #include <linux/ioport.h>
95 #include <linux/interrupt.h>
96 #include <linux/pci.h>
97 #include <linux/dma-mapping.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/init.h>
102 #include <linux/delay.h>
103 #include <linux/mii.h>
104 #include <linux/ethtool.h>
105 #include <linux/crc32.h>
106 #include <linux/if_vlan.h>
107 #include <linux/bitops.h>
108 #include <linux/workqueue.h>
109 #include <asm/processor.h> /* Processor type for cache alignment. */
110 #include <asm/io.h>
111 #include <asm/irq.h>
112 #include <asm/uaccess.h>
113 #include <linux/dmi.h>
114
115 /* These identify the driver base version and may not be removed. */
116 static const char version[] =
117 "v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";
118
119 /* This driver was written to use PCI memory space. Some early versions
120 of the Rhine may only work correctly with I/O space accesses. */
121 #ifdef CONFIG_VIA_RHINE_MMIO
122 #define USE_MMIO
123 #else
124 #endif
125
126 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
127 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
128 MODULE_LICENSE("GPL");
129
130 module_param(debug, int, 0);
131 module_param(rx_copybreak, int, 0);
132 module_param(avoid_D3, bool, 0);
133 MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
134 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
135 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
136
137 #define MCAM_SIZE 32
138 #define VCAM_SIZE 32
139
140 /*
141 Theory of Operation
142
143 I. Board Compatibility
144
145 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
146 controller.
147
148 II. Board-specific settings
149
150 Boards with this chip are functional only in a bus-master PCI slot.
151
152 Many operational settings are loaded from the EEPROM to the Config word at
153 offset 0x78. For most of these settings, this driver assumes that they are
154 correct.
155 If this driver is compiled to use PCI memory space operations the EEPROM
156 must be configured to enable memory ops.
157
158 III. Driver operation
159
160 IIIa. Ring buffers
161
162 This driver uses two statically allocated fixed-size descriptor lists
163 formed into rings by a branch from the final descriptor to the beginning of
164 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
165
166 IIIb/c. Transmit/Receive Structure
167
168 This driver attempts to use a zero-copy receive and transmit scheme.
169
170 Alas, all data buffers are required to start on a 32 bit boundary, so
171 the driver must often copy transmit packets into bounce buffers.
172
173 The driver allocates full frame size skbuffs for the Rx ring buffers at
174 open() time and passes the skb->data field to the chip as receive data
175 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
176 a fresh skbuff is allocated and the frame is copied to the new skbuff.
177 When the incoming frame is larger, the skbuff is passed directly up the
178 protocol stack. Buffers consumed this way are replaced by newly allocated
179 skbuffs in the last phase of rhine_rx().
180
181 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
182 using a full-sized skbuff for small frames vs. the copying costs of larger
183 frames. New boards are typically used in generously configured machines
184 and the underfilled buffers have negligible impact compared to the benefit of
185 a single allocation size, so the default value of zero results in never
186 copying packets. When copying is done, the cost is usually mitigated by using
187 a combined copy/checksum routine. Copying also preloads the cache, which is
188 most useful with small frames.
189
190 Since the VIA chips are only able to transfer data to buffers on 32 bit
191 boundaries, the IP header at offset 14 in an ethernet frame isn't
192 longword aligned for further processing. Copying these unaligned buffers
193 has the beneficial effect of 16-byte aligning the IP header.
194
195 IIId. Synchronization
196
197 The driver runs as two independent, single-threaded flows of control. One
198 is the send-packet routine, which enforces single-threaded use by the
199 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
200 which is single threaded by the hardware and interrupt handling software.
201
202 The send packet thread has partial control over the Tx ring. It locks the
203 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
204 the ring is not available it stops the transmit queue by
205 calling netif_stop_queue.
206
207 The interrupt handler has exclusive control over the Rx ring and records stats
208 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
209 empty by incrementing the dirty_tx mark. If at least half of the entries in
210 the Rx ring are available the transmit queue is woken up if it was stopped.
211
212 IV. Notes
213
214 IVb. References
215
216 Preliminary VT86C100A manual from http://www.via.com.tw/
217 http://www.scyld.com/expert/100mbps.html
218 http://www.scyld.com/expert/NWay.html
219 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
220 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
221
222
223 IVc. Errata
224
225 The VT86C100A manual is not reliable information.
226 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
227 in significant performance degradation for bounce buffer copies on transmit
228 and unaligned IP headers on receive.
229 The chip does not pad to minimum transmit length.
230
231 */
232
233
234 /* This table drives the PCI probe routines. It's mostly boilerplate in all
235 of the drivers, and will likely be provided by some future kernel.
236 Note the matching code -- the first table entry matchs all 56** cards but
237 second only the 1234 card.
238 */
239
240 enum rhine_revs {
241 VT86C100A = 0x00,
242 VTunknown0 = 0x20,
243 VT6102 = 0x40,
244 VT8231 = 0x50, /* Integrated MAC */
245 VT8233 = 0x60, /* Integrated MAC */
246 VT8235 = 0x74, /* Integrated MAC */
247 VT8237 = 0x78, /* Integrated MAC */
248 VTunknown1 = 0x7C,
249 VT6105 = 0x80,
250 VT6105_B0 = 0x83,
251 VT6105L = 0x8A,
252 VT6107 = 0x8C,
253 VTunknown2 = 0x8E,
254 VT6105M = 0x90, /* Management adapter */
255 };
256
257 enum rhine_quirks {
258 rqWOL = 0x0001, /* Wake-On-LAN support */
259 rqForceReset = 0x0002,
260 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
261 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
262 rqRhineI = 0x0100, /* See comment below */
263 };
264 /*
265 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
266 * MMIO as well as for the collision counter and the Tx FIFO underflow
267 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
268 */
269
270 /* Beware of PCI posted writes */
271 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
272
273 static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
274 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
275 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
276 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
277 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
278 { } /* terminate list */
279 };
280 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
281
282
283 /* Offsets to the device registers. */
284 enum register_offsets {
285 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
286 ChipCmd1=0x09, TQWake=0x0A,
287 IntrStatus=0x0C, IntrEnable=0x0E,
288 MulticastFilter0=0x10, MulticastFilter1=0x14,
289 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
290 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
291 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
292 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
293 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
294 StickyHW=0x83, IntrStatus2=0x84,
295 CamMask=0x88, CamCon=0x92, CamAddr=0x93,
296 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
297 WOLcrClr1=0xA6, WOLcgClr=0xA7,
298 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
299 };
300
301 /* Bits in ConfigD */
302 enum backoff_bits {
303 BackOptional=0x01, BackModify=0x02,
304 BackCaptureEffect=0x04, BackRandom=0x08
305 };
306
307 /* Bits in the TxConfig (TCR) register */
308 enum tcr_bits {
309 TCR_PQEN=0x01,
310 TCR_LB0=0x02, /* loopback[0] */
311 TCR_LB1=0x04, /* loopback[1] */
312 TCR_OFSET=0x08,
313 TCR_RTGOPT=0x10,
314 TCR_RTFT0=0x20,
315 TCR_RTFT1=0x40,
316 TCR_RTSF=0x80,
317 };
318
319 /* Bits in the CamCon (CAMC) register */
320 enum camcon_bits {
321 CAMC_CAMEN=0x01,
322 CAMC_VCAMSL=0x02,
323 CAMC_CAMWR=0x04,
324 CAMC_CAMRD=0x08,
325 };
326
327 /* Bits in the PCIBusConfig1 (BCR1) register */
328 enum bcr1_bits {
329 BCR1_POT0=0x01,
330 BCR1_POT1=0x02,
331 BCR1_POT2=0x04,
332 BCR1_CTFT0=0x08,
333 BCR1_CTFT1=0x10,
334 BCR1_CTSF=0x20,
335 BCR1_TXQNOBK=0x40, /* for VT6105 */
336 BCR1_VIDFR=0x80, /* for VT6105 */
337 BCR1_MED0=0x40, /* for VT6102 */
338 BCR1_MED1=0x80, /* for VT6102 */
339 };
340
341 #ifdef USE_MMIO
342 /* Registers we check that mmio and reg are the same. */
343 static const int mmio_verify_registers[] = {
344 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
345 0
346 };
347 #endif
348
349 /* Bits in the interrupt status/mask registers. */
350 enum intr_status_bits {
351 IntrRxDone = 0x0001,
352 IntrTxDone = 0x0002,
353 IntrRxErr = 0x0004,
354 IntrTxError = 0x0008,
355 IntrRxEmpty = 0x0020,
356 IntrPCIErr = 0x0040,
357 IntrStatsMax = 0x0080,
358 IntrRxEarly = 0x0100,
359 IntrTxUnderrun = 0x0210,
360 IntrRxOverflow = 0x0400,
361 IntrRxDropped = 0x0800,
362 IntrRxNoBuf = 0x1000,
363 IntrTxAborted = 0x2000,
364 IntrLinkChange = 0x4000,
365 IntrRxWakeUp = 0x8000,
366 IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */
367 IntrNormalSummary = IntrRxDone | IntrTxDone,
368 IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError |
369 IntrTxUnderrun,
370 };
371
372 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
373 enum wol_bits {
374 WOLucast = 0x10,
375 WOLmagic = 0x20,
376 WOLbmcast = 0x30,
377 WOLlnkon = 0x40,
378 WOLlnkoff = 0x80,
379 };
380
381 /* The Rx and Tx buffer descriptors. */
382 struct rx_desc {
383 __le32 rx_status;
384 __le32 desc_length; /* Chain flag, Buffer/frame length */
385 __le32 addr;
386 __le32 next_desc;
387 };
388 struct tx_desc {
389 __le32 tx_status;
390 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
391 __le32 addr;
392 __le32 next_desc;
393 };
394
395 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
396 #define TXDESC 0x00e08000
397
398 enum rx_status_bits {
399 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
400 };
401
402 /* Bits in *_desc.*_status */
403 enum desc_status_bits {
404 DescOwn=0x80000000
405 };
406
407 /* Bits in *_desc.*_length */
408 enum desc_length_bits {
409 DescTag=0x00010000
410 };
411
412 /* Bits in ChipCmd. */
413 enum chip_cmd_bits {
414 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
415 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
416 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
417 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
418 };
419
420 struct rhine_stats {
421 u64 packets;
422 u64 bytes;
423 struct u64_stats_sync syncp;
424 };
425
426 struct rhine_private {
427 /* Bit mask for configured VLAN ids */
428 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
429
430 /* Descriptor rings */
431 struct rx_desc *rx_ring;
432 struct tx_desc *tx_ring;
433 dma_addr_t rx_ring_dma;
434 dma_addr_t tx_ring_dma;
435
436 /* The addresses of receive-in-place skbuffs. */
437 struct sk_buff *rx_skbuff[RX_RING_SIZE];
438 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
439
440 /* The saved address of a sent-in-place packet/buffer, for later free(). */
441 struct sk_buff *tx_skbuff[TX_RING_SIZE];
442 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
443
444 /* Tx bounce buffers (Rhine-I only) */
445 unsigned char *tx_buf[TX_RING_SIZE];
446 unsigned char *tx_bufs;
447 dma_addr_t tx_bufs_dma;
448
449 struct pci_dev *pdev;
450 long pioaddr;
451 struct net_device *dev;
452 struct napi_struct napi;
453 spinlock_t lock;
454 struct mutex task_lock;
455 bool task_enable;
456 struct work_struct slow_event_task;
457 struct work_struct reset_task;
458
459 u32 msg_enable;
460
461 /* Frequently used values: keep some adjacent for cache effect. */
462 u32 quirks;
463 struct rx_desc *rx_head_desc;
464 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
465 unsigned int cur_tx, dirty_tx;
466 unsigned int rx_buf_sz; /* Based on MTU+slack. */
467 struct rhine_stats rx_stats;
468 struct rhine_stats tx_stats;
469 u8 wolopts;
470
471 u8 tx_thresh, rx_thresh;
472
473 struct mii_if_info mii_if;
474 void __iomem *base;
475 };
476
477 #define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
478 #define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
479 #define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
480
481 #define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x))
482 #define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x))
483 #define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x))
484
485 #define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
486 #define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
487 #define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
488
489 #define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
490 #define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
491 #define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
492
493
494 static int mdio_read(struct net_device *dev, int phy_id, int location);
495 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
496 static int rhine_open(struct net_device *dev);
497 static void rhine_reset_task(struct work_struct *work);
498 static void rhine_slow_event_task(struct work_struct *work);
499 static void rhine_tx_timeout(struct net_device *dev);
500 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
501 struct net_device *dev);
502 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
503 static void rhine_tx(struct net_device *dev);
504 static int rhine_rx(struct net_device *dev, int limit);
505 static void rhine_set_rx_mode(struct net_device *dev);
506 static struct rtnl_link_stats64 *rhine_get_stats64(struct net_device *dev,
507 struct rtnl_link_stats64 *stats);
508 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
509 static const struct ethtool_ops netdev_ethtool_ops;
510 static int rhine_close(struct net_device *dev);
511 static int rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid);
512 static int rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid);
513 static void rhine_restart_tx(struct net_device *dev);
514
515 static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
516 {
517 void __iomem *ioaddr = rp->base;
518 int i;
519
520 for (i = 0; i < 1024; i++) {
521 bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
522
523 if (low ^ has_mask_bits)
524 break;
525 udelay(10);
526 }
527 if (i > 64) {
528 netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
529 "count: %04d\n", low ? "low" : "high", reg, mask, i);
530 }
531 }
532
533 static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
534 {
535 rhine_wait_bit(rp, reg, mask, false);
536 }
537
538 static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
539 {
540 rhine_wait_bit(rp, reg, mask, true);
541 }
542
543 static u32 rhine_get_events(struct rhine_private *rp)
544 {
545 void __iomem *ioaddr = rp->base;
546 u32 intr_status;
547
548 intr_status = ioread16(ioaddr + IntrStatus);
549 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
550 if (rp->quirks & rqStatusWBRace)
551 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
552 return intr_status;
553 }
554
555 static void rhine_ack_events(struct rhine_private *rp, u32 mask)
556 {
557 void __iomem *ioaddr = rp->base;
558
559 if (rp->quirks & rqStatusWBRace)
560 iowrite8(mask >> 16, ioaddr + IntrStatus2);
561 iowrite16(mask, ioaddr + IntrStatus);
562 mmiowb();
563 }
564
565 /*
566 * Get power related registers into sane state.
567 * Notify user about past WOL event.
568 */
569 static void rhine_power_init(struct net_device *dev)
570 {
571 struct rhine_private *rp = netdev_priv(dev);
572 void __iomem *ioaddr = rp->base;
573 u16 wolstat;
574
575 if (rp->quirks & rqWOL) {
576 /* Make sure chip is in power state D0 */
577 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
578
579 /* Disable "force PME-enable" */
580 iowrite8(0x80, ioaddr + WOLcgClr);
581
582 /* Clear power-event config bits (WOL) */
583 iowrite8(0xFF, ioaddr + WOLcrClr);
584 /* More recent cards can manage two additional patterns */
585 if (rp->quirks & rq6patterns)
586 iowrite8(0x03, ioaddr + WOLcrClr1);
587
588 /* Save power-event status bits */
589 wolstat = ioread8(ioaddr + PwrcsrSet);
590 if (rp->quirks & rq6patterns)
591 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
592
593 /* Clear power-event status bits */
594 iowrite8(0xFF, ioaddr + PwrcsrClr);
595 if (rp->quirks & rq6patterns)
596 iowrite8(0x03, ioaddr + PwrcsrClr1);
597
598 if (wolstat) {
599 char *reason;
600 switch (wolstat) {
601 case WOLmagic:
602 reason = "Magic packet";
603 break;
604 case WOLlnkon:
605 reason = "Link went up";
606 break;
607 case WOLlnkoff:
608 reason = "Link went down";
609 break;
610 case WOLucast:
611 reason = "Unicast packet";
612 break;
613 case WOLbmcast:
614 reason = "Multicast/broadcast packet";
615 break;
616 default:
617 reason = "Unknown";
618 }
619 netdev_info(dev, "Woke system up. Reason: %s\n",
620 reason);
621 }
622 }
623 }
624
625 static void rhine_chip_reset(struct net_device *dev)
626 {
627 struct rhine_private *rp = netdev_priv(dev);
628 void __iomem *ioaddr = rp->base;
629 u8 cmd1;
630
631 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
632 IOSYNC;
633
634 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
635 netdev_info(dev, "Reset not complete yet. Trying harder.\n");
636
637 /* Force reset */
638 if (rp->quirks & rqForceReset)
639 iowrite8(0x40, ioaddr + MiscCmd);
640
641 /* Reset can take somewhat longer (rare) */
642 rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
643 }
644
645 cmd1 = ioread8(ioaddr + ChipCmd1);
646 netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
647 "failed" : "succeeded");
648 }
649
650 #ifdef USE_MMIO
651 static void enable_mmio(long pioaddr, u32 quirks)
652 {
653 int n;
654 if (quirks & rqRhineI) {
655 /* More recent docs say that this bit is reserved ... */
656 n = inb(pioaddr + ConfigA) | 0x20;
657 outb(n, pioaddr + ConfigA);
658 } else {
659 n = inb(pioaddr + ConfigD) | 0x80;
660 outb(n, pioaddr + ConfigD);
661 }
662 }
663 #endif
664
665 /*
666 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
667 * (plus 0x6C for Rhine-I/II)
668 */
669 static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
670 {
671 struct rhine_private *rp = netdev_priv(dev);
672 void __iomem *ioaddr = rp->base;
673 int i;
674
675 outb(0x20, pioaddr + MACRegEEcsr);
676 for (i = 0; i < 1024; i++) {
677 if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
678 break;
679 }
680 if (i > 512)
681 pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
682
683 #ifdef USE_MMIO
684 /*
685 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
686 * MMIO. If reloading EEPROM was done first this could be avoided, but
687 * it is not known if that still works with the "win98-reboot" problem.
688 */
689 enable_mmio(pioaddr, rp->quirks);
690 #endif
691
692 /* Turn off EEPROM-controlled wake-up (magic packet) */
693 if (rp->quirks & rqWOL)
694 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
695
696 }
697
698 #ifdef CONFIG_NET_POLL_CONTROLLER
699 static void rhine_poll(struct net_device *dev)
700 {
701 struct rhine_private *rp = netdev_priv(dev);
702 const int irq = rp->pdev->irq;
703
704 disable_irq(irq);
705 rhine_interrupt(irq, dev);
706 enable_irq(irq);
707 }
708 #endif
709
710 static void rhine_kick_tx_threshold(struct rhine_private *rp)
711 {
712 if (rp->tx_thresh < 0xe0) {
713 void __iomem *ioaddr = rp->base;
714
715 rp->tx_thresh += 0x20;
716 BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
717 }
718 }
719
720 static void rhine_tx_err(struct rhine_private *rp, u32 status)
721 {
722 struct net_device *dev = rp->dev;
723
724 if (status & IntrTxAborted) {
725 netif_info(rp, tx_err, dev,
726 "Abort %08x, frame dropped\n", status);
727 }
728
729 if (status & IntrTxUnderrun) {
730 rhine_kick_tx_threshold(rp);
731 netif_info(rp, tx_err ,dev, "Transmitter underrun, "
732 "Tx threshold now %02x\n", rp->tx_thresh);
733 }
734
735 if (status & IntrTxDescRace)
736 netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
737
738 if ((status & IntrTxError) &&
739 (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
740 rhine_kick_tx_threshold(rp);
741 netif_info(rp, tx_err, dev, "Unspecified error. "
742 "Tx threshold now %02x\n", rp->tx_thresh);
743 }
744
745 rhine_restart_tx(dev);
746 }
747
748 static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
749 {
750 void __iomem *ioaddr = rp->base;
751 struct net_device_stats *stats = &rp->dev->stats;
752
753 stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
754 stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
755
756 /*
757 * Clears the "tally counters" for CRC errors and missed frames(?).
758 * It has been reported that some chips need a write of 0 to clear
759 * these, for others the counters are set to 1 when written to and
760 * instead cleared when read. So we clear them both ways ...
761 */
762 iowrite32(0, ioaddr + RxMissed);
763 ioread16(ioaddr + RxCRCErrs);
764 ioread16(ioaddr + RxMissed);
765 }
766
767 #define RHINE_EVENT_NAPI_RX (IntrRxDone | \
768 IntrRxErr | \
769 IntrRxEmpty | \
770 IntrRxOverflow | \
771 IntrRxDropped | \
772 IntrRxNoBuf | \
773 IntrRxWakeUp)
774
775 #define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \
776 IntrTxAborted | \
777 IntrTxUnderrun | \
778 IntrTxDescRace)
779 #define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
780
781 #define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \
782 RHINE_EVENT_NAPI_TX | \
783 IntrStatsMax)
784 #define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange)
785 #define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
786
787 static int rhine_napipoll(struct napi_struct *napi, int budget)
788 {
789 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
790 struct net_device *dev = rp->dev;
791 void __iomem *ioaddr = rp->base;
792 u16 enable_mask = RHINE_EVENT & 0xffff;
793 int work_done = 0;
794 u32 status;
795
796 status = rhine_get_events(rp);
797 rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
798
799 if (status & RHINE_EVENT_NAPI_RX)
800 work_done += rhine_rx(dev, budget);
801
802 if (status & RHINE_EVENT_NAPI_TX) {
803 if (status & RHINE_EVENT_NAPI_TX_ERR) {
804 /* Avoid scavenging before Tx engine turned off */
805 rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
806 if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
807 netif_warn(rp, tx_err, dev, "Tx still on\n");
808 }
809
810 rhine_tx(dev);
811
812 if (status & RHINE_EVENT_NAPI_TX_ERR)
813 rhine_tx_err(rp, status);
814 }
815
816 if (status & IntrStatsMax) {
817 spin_lock(&rp->lock);
818 rhine_update_rx_crc_and_missed_errord(rp);
819 spin_unlock(&rp->lock);
820 }
821
822 if (status & RHINE_EVENT_SLOW) {
823 enable_mask &= ~RHINE_EVENT_SLOW;
824 schedule_work(&rp->slow_event_task);
825 }
826
827 if (work_done < budget) {
828 napi_complete(napi);
829 iowrite16(enable_mask, ioaddr + IntrEnable);
830 mmiowb();
831 }
832 return work_done;
833 }
834
835 static void rhine_hw_init(struct net_device *dev, long pioaddr)
836 {
837 struct rhine_private *rp = netdev_priv(dev);
838
839 /* Reset the chip to erase previous misconfiguration. */
840 rhine_chip_reset(dev);
841
842 /* Rhine-I needs extra time to recuperate before EEPROM reload */
843 if (rp->quirks & rqRhineI)
844 msleep(5);
845
846 /* Reload EEPROM controlled bytes cleared by soft reset */
847 rhine_reload_eeprom(pioaddr, dev);
848 }
849
850 static const struct net_device_ops rhine_netdev_ops = {
851 .ndo_open = rhine_open,
852 .ndo_stop = rhine_close,
853 .ndo_start_xmit = rhine_start_tx,
854 .ndo_get_stats64 = rhine_get_stats64,
855 .ndo_set_rx_mode = rhine_set_rx_mode,
856 .ndo_change_mtu = eth_change_mtu,
857 .ndo_validate_addr = eth_validate_addr,
858 .ndo_set_mac_address = eth_mac_addr,
859 .ndo_do_ioctl = netdev_ioctl,
860 .ndo_tx_timeout = rhine_tx_timeout,
861 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid,
862 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid,
863 #ifdef CONFIG_NET_POLL_CONTROLLER
864 .ndo_poll_controller = rhine_poll,
865 #endif
866 };
867
868 static int rhine_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
869 {
870 struct net_device *dev;
871 struct rhine_private *rp;
872 int i, rc;
873 u32 quirks;
874 long pioaddr;
875 long memaddr;
876 void __iomem *ioaddr;
877 int io_size, phy_id;
878 const char *name;
879 #ifdef USE_MMIO
880 int bar = 1;
881 #else
882 int bar = 0;
883 #endif
884
885 /* when built into the kernel, we only print version if device is found */
886 #ifndef MODULE
887 pr_info_once("%s\n", version);
888 #endif
889
890 io_size = 256;
891 phy_id = 0;
892 quirks = 0;
893 name = "Rhine";
894 if (pdev->revision < VTunknown0) {
895 quirks = rqRhineI;
896 io_size = 128;
897 }
898 else if (pdev->revision >= VT6102) {
899 quirks = rqWOL | rqForceReset;
900 if (pdev->revision < VT6105) {
901 name = "Rhine II";
902 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
903 }
904 else {
905 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
906 if (pdev->revision >= VT6105_B0)
907 quirks |= rq6patterns;
908 if (pdev->revision < VT6105M)
909 name = "Rhine III";
910 else
911 name = "Rhine III (Management Adapter)";
912 }
913 }
914
915 rc = pci_enable_device(pdev);
916 if (rc)
917 goto err_out;
918
919 /* this should always be supported */
920 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
921 if (rc) {
922 dev_err(&pdev->dev,
923 "32-bit PCI DMA addresses not supported by the card!?\n");
924 goto err_out;
925 }
926
927 /* sanity check */
928 if ((pci_resource_len(pdev, 0) < io_size) ||
929 (pci_resource_len(pdev, 1) < io_size)) {
930 rc = -EIO;
931 dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n");
932 goto err_out;
933 }
934
935 pioaddr = pci_resource_start(pdev, 0);
936 memaddr = pci_resource_start(pdev, 1);
937
938 pci_set_master(pdev);
939
940 dev = alloc_etherdev(sizeof(struct rhine_private));
941 if (!dev) {
942 rc = -ENOMEM;
943 goto err_out;
944 }
945 SET_NETDEV_DEV(dev, &pdev->dev);
946
947 rp = netdev_priv(dev);
948 rp->dev = dev;
949 rp->quirks = quirks;
950 rp->pioaddr = pioaddr;
951 rp->pdev = pdev;
952 rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
953
954 rc = pci_request_regions(pdev, DRV_NAME);
955 if (rc)
956 goto err_out_free_netdev;
957
958 ioaddr = pci_iomap(pdev, bar, io_size);
959 if (!ioaddr) {
960 rc = -EIO;
961 dev_err(&pdev->dev,
962 "ioremap failed for device %s, region 0x%X @ 0x%lX\n",
963 pci_name(pdev), io_size, memaddr);
964 goto err_out_free_res;
965 }
966
967 #ifdef USE_MMIO
968 enable_mmio(pioaddr, quirks);
969
970 /* Check that selected MMIO registers match the PIO ones */
971 i = 0;
972 while (mmio_verify_registers[i]) {
973 int reg = mmio_verify_registers[i++];
974 unsigned char a = inb(pioaddr+reg);
975 unsigned char b = readb(ioaddr+reg);
976 if (a != b) {
977 rc = -EIO;
978 dev_err(&pdev->dev,
979 "MMIO do not match PIO [%02x] (%02x != %02x)\n",
980 reg, a, b);
981 goto err_out_unmap;
982 }
983 }
984 #endif /* USE_MMIO */
985
986 rp->base = ioaddr;
987
988 /* Get chip registers into a sane state */
989 rhine_power_init(dev);
990 rhine_hw_init(dev, pioaddr);
991
992 for (i = 0; i < 6; i++)
993 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
994
995 if (!is_valid_ether_addr(dev->dev_addr)) {
996 /* Report it and use a random ethernet address instead */
997 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
998 eth_hw_addr_random(dev);
999 netdev_info(dev, "Using random MAC address: %pM\n",
1000 dev->dev_addr);
1001 }
1002
1003 /* For Rhine-I/II, phy_id is loaded from EEPROM */
1004 if (!phy_id)
1005 phy_id = ioread8(ioaddr + 0x6C);
1006
1007 spin_lock_init(&rp->lock);
1008 mutex_init(&rp->task_lock);
1009 INIT_WORK(&rp->reset_task, rhine_reset_task);
1010 INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
1011
1012 rp->mii_if.dev = dev;
1013 rp->mii_if.mdio_read = mdio_read;
1014 rp->mii_if.mdio_write = mdio_write;
1015 rp->mii_if.phy_id_mask = 0x1f;
1016 rp->mii_if.reg_num_mask = 0x1f;
1017
1018 /* The chip-specific entries in the device structure. */
1019 dev->netdev_ops = &rhine_netdev_ops;
1020 dev->ethtool_ops = &netdev_ethtool_ops,
1021 dev->watchdog_timeo = TX_TIMEOUT;
1022
1023 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
1024
1025 if (rp->quirks & rqRhineI)
1026 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
1027
1028 if (pdev->revision >= VT6105M)
1029 dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1030 NETIF_F_HW_VLAN_CTAG_RX |
1031 NETIF_F_HW_VLAN_CTAG_FILTER;
1032
1033 /* dev->name not defined before register_netdev()! */
1034 rc = register_netdev(dev);
1035 if (rc)
1036 goto err_out_unmap;
1037
1038 netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
1039 name,
1040 #ifdef USE_MMIO
1041 memaddr,
1042 #else
1043 (long)ioaddr,
1044 #endif
1045 dev->dev_addr, pdev->irq);
1046
1047 pci_set_drvdata(pdev, dev);
1048
1049 {
1050 u16 mii_cmd;
1051 int mii_status = mdio_read(dev, phy_id, 1);
1052 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1053 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1054 if (mii_status != 0xffff && mii_status != 0x0000) {
1055 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
1056 netdev_info(dev,
1057 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1058 phy_id,
1059 mii_status, rp->mii_if.advertising,
1060 mdio_read(dev, phy_id, 5));
1061
1062 /* set IFF_RUNNING */
1063 if (mii_status & BMSR_LSTATUS)
1064 netif_carrier_on(dev);
1065 else
1066 netif_carrier_off(dev);
1067
1068 }
1069 }
1070 rp->mii_if.phy_id = phy_id;
1071 if (avoid_D3)
1072 netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1073
1074 return 0;
1075
1076 err_out_unmap:
1077 pci_iounmap(pdev, ioaddr);
1078 err_out_free_res:
1079 pci_release_regions(pdev);
1080 err_out_free_netdev:
1081 free_netdev(dev);
1082 err_out:
1083 return rc;
1084 }
1085
1086 static int alloc_ring(struct net_device* dev)
1087 {
1088 struct rhine_private *rp = netdev_priv(dev);
1089 void *ring;
1090 dma_addr_t ring_dma;
1091
1092 ring = pci_alloc_consistent(rp->pdev,
1093 RX_RING_SIZE * sizeof(struct rx_desc) +
1094 TX_RING_SIZE * sizeof(struct tx_desc),
1095 &ring_dma);
1096 if (!ring) {
1097 netdev_err(dev, "Could not allocate DMA memory\n");
1098 return -ENOMEM;
1099 }
1100 if (rp->quirks & rqRhineI) {
1101 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
1102 PKT_BUF_SZ * TX_RING_SIZE,
1103 &rp->tx_bufs_dma);
1104 if (rp->tx_bufs == NULL) {
1105 pci_free_consistent(rp->pdev,
1106 RX_RING_SIZE * sizeof(struct rx_desc) +
1107 TX_RING_SIZE * sizeof(struct tx_desc),
1108 ring, ring_dma);
1109 return -ENOMEM;
1110 }
1111 }
1112
1113 rp->rx_ring = ring;
1114 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1115 rp->rx_ring_dma = ring_dma;
1116 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1117
1118 return 0;
1119 }
1120
1121 static void free_ring(struct net_device* dev)
1122 {
1123 struct rhine_private *rp = netdev_priv(dev);
1124
1125 pci_free_consistent(rp->pdev,
1126 RX_RING_SIZE * sizeof(struct rx_desc) +
1127 TX_RING_SIZE * sizeof(struct tx_desc),
1128 rp->rx_ring, rp->rx_ring_dma);
1129 rp->tx_ring = NULL;
1130
1131 if (rp->tx_bufs)
1132 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
1133 rp->tx_bufs, rp->tx_bufs_dma);
1134
1135 rp->tx_bufs = NULL;
1136
1137 }
1138
1139 static void alloc_rbufs(struct net_device *dev)
1140 {
1141 struct rhine_private *rp = netdev_priv(dev);
1142 dma_addr_t next;
1143 int i;
1144
1145 rp->dirty_rx = rp->cur_rx = 0;
1146
1147 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1148 rp->rx_head_desc = &rp->rx_ring[0];
1149 next = rp->rx_ring_dma;
1150
1151 /* Init the ring entries */
1152 for (i = 0; i < RX_RING_SIZE; i++) {
1153 rp->rx_ring[i].rx_status = 0;
1154 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1155 next += sizeof(struct rx_desc);
1156 rp->rx_ring[i].next_desc = cpu_to_le32(next);
1157 rp->rx_skbuff[i] = NULL;
1158 }
1159 /* Mark the last entry as wrapping the ring. */
1160 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1161
1162 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1163 for (i = 0; i < RX_RING_SIZE; i++) {
1164 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1165 rp->rx_skbuff[i] = skb;
1166 if (skb == NULL)
1167 break;
1168
1169 rp->rx_skbuff_dma[i] =
1170 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1171 PCI_DMA_FROMDEVICE);
1172
1173 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
1174 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1175 }
1176 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1177 }
1178
1179 static void free_rbufs(struct net_device* dev)
1180 {
1181 struct rhine_private *rp = netdev_priv(dev);
1182 int i;
1183
1184 /* Free all the skbuffs in the Rx queue. */
1185 for (i = 0; i < RX_RING_SIZE; i++) {
1186 rp->rx_ring[i].rx_status = 0;
1187 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1188 if (rp->rx_skbuff[i]) {
1189 pci_unmap_single(rp->pdev,
1190 rp->rx_skbuff_dma[i],
1191 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1192 dev_kfree_skb(rp->rx_skbuff[i]);
1193 }
1194 rp->rx_skbuff[i] = NULL;
1195 }
1196 }
1197
1198 static void alloc_tbufs(struct net_device* dev)
1199 {
1200 struct rhine_private *rp = netdev_priv(dev);
1201 dma_addr_t next;
1202 int i;
1203
1204 rp->dirty_tx = rp->cur_tx = 0;
1205 next = rp->tx_ring_dma;
1206 for (i = 0; i < TX_RING_SIZE; i++) {
1207 rp->tx_skbuff[i] = NULL;
1208 rp->tx_ring[i].tx_status = 0;
1209 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1210 next += sizeof(struct tx_desc);
1211 rp->tx_ring[i].next_desc = cpu_to_le32(next);
1212 if (rp->quirks & rqRhineI)
1213 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1214 }
1215 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1216
1217 }
1218
1219 static void free_tbufs(struct net_device* dev)
1220 {
1221 struct rhine_private *rp = netdev_priv(dev);
1222 int i;
1223
1224 for (i = 0; i < TX_RING_SIZE; i++) {
1225 rp->tx_ring[i].tx_status = 0;
1226 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1227 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1228 if (rp->tx_skbuff[i]) {
1229 if (rp->tx_skbuff_dma[i]) {
1230 pci_unmap_single(rp->pdev,
1231 rp->tx_skbuff_dma[i],
1232 rp->tx_skbuff[i]->len,
1233 PCI_DMA_TODEVICE);
1234 }
1235 dev_kfree_skb(rp->tx_skbuff[i]);
1236 }
1237 rp->tx_skbuff[i] = NULL;
1238 rp->tx_buf[i] = NULL;
1239 }
1240 }
1241
1242 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1243 {
1244 struct rhine_private *rp = netdev_priv(dev);
1245 void __iomem *ioaddr = rp->base;
1246
1247 mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1248
1249 if (rp->mii_if.full_duplex)
1250 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1251 ioaddr + ChipCmd1);
1252 else
1253 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1254 ioaddr + ChipCmd1);
1255
1256 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1257 rp->mii_if.force_media, netif_carrier_ok(dev));
1258 }
1259
1260 /* Called after status of force_media possibly changed */
1261 static void rhine_set_carrier(struct mii_if_info *mii)
1262 {
1263 struct net_device *dev = mii->dev;
1264 struct rhine_private *rp = netdev_priv(dev);
1265
1266 if (mii->force_media) {
1267 /* autoneg is off: Link is always assumed to be up */
1268 if (!netif_carrier_ok(dev))
1269 netif_carrier_on(dev);
1270 } else /* Let MMI library update carrier status */
1271 rhine_check_media(dev, 0);
1272
1273 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1274 mii->force_media, netif_carrier_ok(dev));
1275 }
1276
1277 /**
1278 * rhine_set_cam - set CAM multicast filters
1279 * @ioaddr: register block of this Rhine
1280 * @idx: multicast CAM index [0..MCAM_SIZE-1]
1281 * @addr: multicast address (6 bytes)
1282 *
1283 * Load addresses into multicast filters.
1284 */
1285 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1286 {
1287 int i;
1288
1289 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1290 wmb();
1291
1292 /* Paranoid -- idx out of range should never happen */
1293 idx &= (MCAM_SIZE - 1);
1294
1295 iowrite8((u8) idx, ioaddr + CamAddr);
1296
1297 for (i = 0; i < 6; i++, addr++)
1298 iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1299 udelay(10);
1300 wmb();
1301
1302 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1303 udelay(10);
1304
1305 iowrite8(0, ioaddr + CamCon);
1306 }
1307
1308 /**
1309 * rhine_set_vlan_cam - set CAM VLAN filters
1310 * @ioaddr: register block of this Rhine
1311 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1312 * @addr: VLAN ID (2 bytes)
1313 *
1314 * Load addresses into VLAN filters.
1315 */
1316 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1317 {
1318 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1319 wmb();
1320
1321 /* Paranoid -- idx out of range should never happen */
1322 idx &= (VCAM_SIZE - 1);
1323
1324 iowrite8((u8) idx, ioaddr + CamAddr);
1325
1326 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1327 udelay(10);
1328 wmb();
1329
1330 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1331 udelay(10);
1332
1333 iowrite8(0, ioaddr + CamCon);
1334 }
1335
1336 /**
1337 * rhine_set_cam_mask - set multicast CAM mask
1338 * @ioaddr: register block of this Rhine
1339 * @mask: multicast CAM mask
1340 *
1341 * Mask sets multicast filters active/inactive.
1342 */
1343 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1344 {
1345 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1346 wmb();
1347
1348 /* write mask */
1349 iowrite32(mask, ioaddr + CamMask);
1350
1351 /* disable CAMEN */
1352 iowrite8(0, ioaddr + CamCon);
1353 }
1354
1355 /**
1356 * rhine_set_vlan_cam_mask - set VLAN CAM mask
1357 * @ioaddr: register block of this Rhine
1358 * @mask: VLAN CAM mask
1359 *
1360 * Mask sets VLAN filters active/inactive.
1361 */
1362 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1363 {
1364 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1365 wmb();
1366
1367 /* write mask */
1368 iowrite32(mask, ioaddr + CamMask);
1369
1370 /* disable CAMEN */
1371 iowrite8(0, ioaddr + CamCon);
1372 }
1373
1374 /**
1375 * rhine_init_cam_filter - initialize CAM filters
1376 * @dev: network device
1377 *
1378 * Initialize (disable) hardware VLAN and multicast support on this
1379 * Rhine.
1380 */
1381 static void rhine_init_cam_filter(struct net_device *dev)
1382 {
1383 struct rhine_private *rp = netdev_priv(dev);
1384 void __iomem *ioaddr = rp->base;
1385
1386 /* Disable all CAMs */
1387 rhine_set_vlan_cam_mask(ioaddr, 0);
1388 rhine_set_cam_mask(ioaddr, 0);
1389
1390 /* disable hardware VLAN support */
1391 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1392 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1393 }
1394
1395 /**
1396 * rhine_update_vcam - update VLAN CAM filters
1397 * @rp: rhine_private data of this Rhine
1398 *
1399 * Update VLAN CAM filters to match configuration change.
1400 */
1401 static void rhine_update_vcam(struct net_device *dev)
1402 {
1403 struct rhine_private *rp = netdev_priv(dev);
1404 void __iomem *ioaddr = rp->base;
1405 u16 vid;
1406 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */
1407 unsigned int i = 0;
1408
1409 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1410 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1411 vCAMmask |= 1 << i;
1412 if (++i >= VCAM_SIZE)
1413 break;
1414 }
1415 rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1416 }
1417
1418 static int rhine_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
1419 {
1420 struct rhine_private *rp = netdev_priv(dev);
1421
1422 spin_lock_bh(&rp->lock);
1423 set_bit(vid, rp->active_vlans);
1424 rhine_update_vcam(dev);
1425 spin_unlock_bh(&rp->lock);
1426 return 0;
1427 }
1428
1429 static int rhine_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
1430 {
1431 struct rhine_private *rp = netdev_priv(dev);
1432
1433 spin_lock_bh(&rp->lock);
1434 clear_bit(vid, rp->active_vlans);
1435 rhine_update_vcam(dev);
1436 spin_unlock_bh(&rp->lock);
1437 return 0;
1438 }
1439
1440 static void init_registers(struct net_device *dev)
1441 {
1442 struct rhine_private *rp = netdev_priv(dev);
1443 void __iomem *ioaddr = rp->base;
1444 int i;
1445
1446 for (i = 0; i < 6; i++)
1447 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1448
1449 /* Initialize other registers. */
1450 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1451 /* Configure initial FIFO thresholds. */
1452 iowrite8(0x20, ioaddr + TxConfig);
1453 rp->tx_thresh = 0x20;
1454 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1455
1456 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1457 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1458
1459 rhine_set_rx_mode(dev);
1460
1461 if (rp->pdev->revision >= VT6105M)
1462 rhine_init_cam_filter(dev);
1463
1464 napi_enable(&rp->napi);
1465
1466 iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1467
1468 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1469 ioaddr + ChipCmd);
1470 rhine_check_media(dev, 1);
1471 }
1472
1473 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1474 static void rhine_enable_linkmon(struct rhine_private *rp)
1475 {
1476 void __iomem *ioaddr = rp->base;
1477
1478 iowrite8(0, ioaddr + MIICmd);
1479 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1480 iowrite8(0x80, ioaddr + MIICmd);
1481
1482 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1483
1484 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1485 }
1486
1487 /* Disable MII link status auto-polling (required for MDIO access) */
1488 static void rhine_disable_linkmon(struct rhine_private *rp)
1489 {
1490 void __iomem *ioaddr = rp->base;
1491
1492 iowrite8(0, ioaddr + MIICmd);
1493
1494 if (rp->quirks & rqRhineI) {
1495 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1496
1497 /* Can be called from ISR. Evil. */
1498 mdelay(1);
1499
1500 /* 0x80 must be set immediately before turning it off */
1501 iowrite8(0x80, ioaddr + MIICmd);
1502
1503 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1504
1505 /* Heh. Now clear 0x80 again. */
1506 iowrite8(0, ioaddr + MIICmd);
1507 }
1508 else
1509 rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1510 }
1511
1512 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1513
1514 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1515 {
1516 struct rhine_private *rp = netdev_priv(dev);
1517 void __iomem *ioaddr = rp->base;
1518 int result;
1519
1520 rhine_disable_linkmon(rp);
1521
1522 /* rhine_disable_linkmon already cleared MIICmd */
1523 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1524 iowrite8(regnum, ioaddr + MIIRegAddr);
1525 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1526 rhine_wait_bit_low(rp, MIICmd, 0x40);
1527 result = ioread16(ioaddr + MIIData);
1528
1529 rhine_enable_linkmon(rp);
1530 return result;
1531 }
1532
1533 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1534 {
1535 struct rhine_private *rp = netdev_priv(dev);
1536 void __iomem *ioaddr = rp->base;
1537
1538 rhine_disable_linkmon(rp);
1539
1540 /* rhine_disable_linkmon already cleared MIICmd */
1541 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1542 iowrite8(regnum, ioaddr + MIIRegAddr);
1543 iowrite16(value, ioaddr + MIIData);
1544 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1545 rhine_wait_bit_low(rp, MIICmd, 0x20);
1546
1547 rhine_enable_linkmon(rp);
1548 }
1549
1550 static void rhine_task_disable(struct rhine_private *rp)
1551 {
1552 mutex_lock(&rp->task_lock);
1553 rp->task_enable = false;
1554 mutex_unlock(&rp->task_lock);
1555
1556 cancel_work_sync(&rp->slow_event_task);
1557 cancel_work_sync(&rp->reset_task);
1558 }
1559
1560 static void rhine_task_enable(struct rhine_private *rp)
1561 {
1562 mutex_lock(&rp->task_lock);
1563 rp->task_enable = true;
1564 mutex_unlock(&rp->task_lock);
1565 }
1566
1567 static int rhine_open(struct net_device *dev)
1568 {
1569 struct rhine_private *rp = netdev_priv(dev);
1570 void __iomem *ioaddr = rp->base;
1571 int rc;
1572
1573 rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
1574 dev);
1575 if (rc)
1576 return rc;
1577
1578 netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->pdev->irq);
1579
1580 rc = alloc_ring(dev);
1581 if (rc) {
1582 free_irq(rp->pdev->irq, dev);
1583 return rc;
1584 }
1585 alloc_rbufs(dev);
1586 alloc_tbufs(dev);
1587 rhine_chip_reset(dev);
1588 rhine_task_enable(rp);
1589 init_registers(dev);
1590
1591 netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1592 __func__, ioread16(ioaddr + ChipCmd),
1593 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1594
1595 netif_start_queue(dev);
1596
1597 return 0;
1598 }
1599
1600 static void rhine_reset_task(struct work_struct *work)
1601 {
1602 struct rhine_private *rp = container_of(work, struct rhine_private,
1603 reset_task);
1604 struct net_device *dev = rp->dev;
1605
1606 mutex_lock(&rp->task_lock);
1607
1608 if (!rp->task_enable)
1609 goto out_unlock;
1610
1611 napi_disable(&rp->napi);
1612 spin_lock_bh(&rp->lock);
1613
1614 /* clear all descriptors */
1615 free_tbufs(dev);
1616 free_rbufs(dev);
1617 alloc_tbufs(dev);
1618 alloc_rbufs(dev);
1619
1620 /* Reinitialize the hardware. */
1621 rhine_chip_reset(dev);
1622 init_registers(dev);
1623
1624 spin_unlock_bh(&rp->lock);
1625
1626 dev->trans_start = jiffies; /* prevent tx timeout */
1627 dev->stats.tx_errors++;
1628 netif_wake_queue(dev);
1629
1630 out_unlock:
1631 mutex_unlock(&rp->task_lock);
1632 }
1633
1634 static void rhine_tx_timeout(struct net_device *dev)
1635 {
1636 struct rhine_private *rp = netdev_priv(dev);
1637 void __iomem *ioaddr = rp->base;
1638
1639 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1640 ioread16(ioaddr + IntrStatus),
1641 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1642
1643 schedule_work(&rp->reset_task);
1644 }
1645
1646 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1647 struct net_device *dev)
1648 {
1649 struct rhine_private *rp = netdev_priv(dev);
1650 void __iomem *ioaddr = rp->base;
1651 unsigned entry;
1652
1653 /* Caution: the write order is important here, set the field
1654 with the "ownership" bits last. */
1655
1656 /* Calculate the next Tx descriptor entry. */
1657 entry = rp->cur_tx % TX_RING_SIZE;
1658
1659 if (skb_padto(skb, ETH_ZLEN))
1660 return NETDEV_TX_OK;
1661
1662 rp->tx_skbuff[entry] = skb;
1663
1664 if ((rp->quirks & rqRhineI) &&
1665 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1666 /* Must use alignment buffer. */
1667 if (skb->len > PKT_BUF_SZ) {
1668 /* packet too long, drop it */
1669 dev_kfree_skb(skb);
1670 rp->tx_skbuff[entry] = NULL;
1671 dev->stats.tx_dropped++;
1672 return NETDEV_TX_OK;
1673 }
1674
1675 /* Padding is not copied and so must be redone. */
1676 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1677 if (skb->len < ETH_ZLEN)
1678 memset(rp->tx_buf[entry] + skb->len, 0,
1679 ETH_ZLEN - skb->len);
1680 rp->tx_skbuff_dma[entry] = 0;
1681 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1682 (rp->tx_buf[entry] -
1683 rp->tx_bufs));
1684 } else {
1685 rp->tx_skbuff_dma[entry] =
1686 pci_map_single(rp->pdev, skb->data, skb->len,
1687 PCI_DMA_TODEVICE);
1688 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1689 }
1690
1691 rp->tx_ring[entry].desc_length =
1692 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1693
1694 if (unlikely(vlan_tx_tag_present(skb))) {
1695 rp->tx_ring[entry].tx_status = cpu_to_le32((vlan_tx_tag_get(skb)) << 16);
1696 /* request tagging */
1697 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1698 }
1699 else
1700 rp->tx_ring[entry].tx_status = 0;
1701
1702 /* lock eth irq */
1703 wmb();
1704 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1705 wmb();
1706
1707 rp->cur_tx++;
1708
1709 /* Non-x86 Todo: explicitly flush cache lines here. */
1710
1711 if (vlan_tx_tag_present(skb))
1712 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1713 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1714
1715 /* Wake the potentially-idle transmit channel */
1716 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1717 ioaddr + ChipCmd1);
1718 IOSYNC;
1719
1720 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1721 netif_stop_queue(dev);
1722
1723 netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1724 rp->cur_tx - 1, entry);
1725
1726 return NETDEV_TX_OK;
1727 }
1728
1729 static void rhine_irq_disable(struct rhine_private *rp)
1730 {
1731 iowrite16(0x0000, rp->base + IntrEnable);
1732 mmiowb();
1733 }
1734
1735 /* The interrupt handler does all of the Rx thread work and cleans up
1736 after the Tx thread. */
1737 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1738 {
1739 struct net_device *dev = dev_instance;
1740 struct rhine_private *rp = netdev_priv(dev);
1741 u32 status;
1742 int handled = 0;
1743
1744 status = rhine_get_events(rp);
1745
1746 netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
1747
1748 if (status & RHINE_EVENT) {
1749 handled = 1;
1750
1751 rhine_irq_disable(rp);
1752 napi_schedule(&rp->napi);
1753 }
1754
1755 if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
1756 netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1757 status);
1758 }
1759
1760 return IRQ_RETVAL(handled);
1761 }
1762
1763 /* This routine is logically part of the interrupt handler, but isolated
1764 for clarity. */
1765 static void rhine_tx(struct net_device *dev)
1766 {
1767 struct rhine_private *rp = netdev_priv(dev);
1768 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1769
1770 /* find and cleanup dirty tx descriptors */
1771 while (rp->dirty_tx != rp->cur_tx) {
1772 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1773 netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1774 entry, txstatus);
1775 if (txstatus & DescOwn)
1776 break;
1777 if (txstatus & 0x8000) {
1778 netif_dbg(rp, tx_done, dev,
1779 "Transmit error, Tx status %08x\n", txstatus);
1780 dev->stats.tx_errors++;
1781 if (txstatus & 0x0400)
1782 dev->stats.tx_carrier_errors++;
1783 if (txstatus & 0x0200)
1784 dev->stats.tx_window_errors++;
1785 if (txstatus & 0x0100)
1786 dev->stats.tx_aborted_errors++;
1787 if (txstatus & 0x0080)
1788 dev->stats.tx_heartbeat_errors++;
1789 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1790 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1791 dev->stats.tx_fifo_errors++;
1792 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1793 break; /* Keep the skb - we try again */
1794 }
1795 /* Transmitter restarted in 'abnormal' handler. */
1796 } else {
1797 if (rp->quirks & rqRhineI)
1798 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1799 else
1800 dev->stats.collisions += txstatus & 0x0F;
1801 netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1802 (txstatus >> 3) & 0xF, txstatus & 0xF);
1803
1804 u64_stats_update_begin(&rp->tx_stats.syncp);
1805 rp->tx_stats.bytes += rp->tx_skbuff[entry]->len;
1806 rp->tx_stats.packets++;
1807 u64_stats_update_end(&rp->tx_stats.syncp);
1808 }
1809 /* Free the original skb. */
1810 if (rp->tx_skbuff_dma[entry]) {
1811 pci_unmap_single(rp->pdev,
1812 rp->tx_skbuff_dma[entry],
1813 rp->tx_skbuff[entry]->len,
1814 PCI_DMA_TODEVICE);
1815 }
1816 dev_kfree_skb(rp->tx_skbuff[entry]);
1817 rp->tx_skbuff[entry] = NULL;
1818 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1819 }
1820 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1821 netif_wake_queue(dev);
1822 }
1823
1824 /**
1825 * rhine_get_vlan_tci - extract TCI from Rx data buffer
1826 * @skb: pointer to sk_buff
1827 * @data_size: used data area of the buffer including CRC
1828 *
1829 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
1830 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
1831 * aligned following the CRC.
1832 */
1833 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
1834 {
1835 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
1836 return be16_to_cpup((__be16 *)trailer);
1837 }
1838
1839 /* Process up to limit frames from receive ring */
1840 static int rhine_rx(struct net_device *dev, int limit)
1841 {
1842 struct rhine_private *rp = netdev_priv(dev);
1843 int count;
1844 int entry = rp->cur_rx % RX_RING_SIZE;
1845
1846 netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
1847 entry, le32_to_cpu(rp->rx_head_desc->rx_status));
1848
1849 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1850 for (count = 0; count < limit; ++count) {
1851 struct rx_desc *desc = rp->rx_head_desc;
1852 u32 desc_status = le32_to_cpu(desc->rx_status);
1853 u32 desc_length = le32_to_cpu(desc->desc_length);
1854 int data_size = desc_status >> 16;
1855
1856 if (desc_status & DescOwn)
1857 break;
1858
1859 netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
1860 desc_status);
1861
1862 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1863 if ((desc_status & RxWholePkt) != RxWholePkt) {
1864 netdev_warn(dev,
1865 "Oversized Ethernet frame spanned multiple buffers, "
1866 "entry %#x length %d status %08x!\n",
1867 entry, data_size,
1868 desc_status);
1869 netdev_warn(dev,
1870 "Oversized Ethernet frame %p vs %p\n",
1871 rp->rx_head_desc,
1872 &rp->rx_ring[entry]);
1873 dev->stats.rx_length_errors++;
1874 } else if (desc_status & RxErr) {
1875 /* There was a error. */
1876 netif_dbg(rp, rx_err, dev,
1877 "%s() Rx error %08x\n", __func__,
1878 desc_status);
1879 dev->stats.rx_errors++;
1880 if (desc_status & 0x0030)
1881 dev->stats.rx_length_errors++;
1882 if (desc_status & 0x0048)
1883 dev->stats.rx_fifo_errors++;
1884 if (desc_status & 0x0004)
1885 dev->stats.rx_frame_errors++;
1886 if (desc_status & 0x0002) {
1887 /* this can also be updated outside the interrupt handler */
1888 spin_lock(&rp->lock);
1889 dev->stats.rx_crc_errors++;
1890 spin_unlock(&rp->lock);
1891 }
1892 }
1893 } else {
1894 struct sk_buff *skb = NULL;
1895 /* Length should omit the CRC */
1896 int pkt_len = data_size - 4;
1897 u16 vlan_tci = 0;
1898
1899 /* Check if the packet is long enough to accept without
1900 copying to a minimally-sized skbuff. */
1901 if (pkt_len < rx_copybreak)
1902 skb = netdev_alloc_skb_ip_align(dev, pkt_len);
1903 if (skb) {
1904 pci_dma_sync_single_for_cpu(rp->pdev,
1905 rp->rx_skbuff_dma[entry],
1906 rp->rx_buf_sz,
1907 PCI_DMA_FROMDEVICE);
1908
1909 skb_copy_to_linear_data(skb,
1910 rp->rx_skbuff[entry]->data,
1911 pkt_len);
1912 skb_put(skb, pkt_len);
1913 pci_dma_sync_single_for_device(rp->pdev,
1914 rp->rx_skbuff_dma[entry],
1915 rp->rx_buf_sz,
1916 PCI_DMA_FROMDEVICE);
1917 } else {
1918 skb = rp->rx_skbuff[entry];
1919 if (skb == NULL) {
1920 netdev_err(dev, "Inconsistent Rx descriptor chain\n");
1921 break;
1922 }
1923 rp->rx_skbuff[entry] = NULL;
1924 skb_put(skb, pkt_len);
1925 pci_unmap_single(rp->pdev,
1926 rp->rx_skbuff_dma[entry],
1927 rp->rx_buf_sz,
1928 PCI_DMA_FROMDEVICE);
1929 }
1930
1931 if (unlikely(desc_length & DescTag))
1932 vlan_tci = rhine_get_vlan_tci(skb, data_size);
1933
1934 skb->protocol = eth_type_trans(skb, dev);
1935
1936 if (unlikely(desc_length & DescTag))
1937 __vlan_hwaccel_put_tag(skb, vlan_tci);
1938 netif_receive_skb(skb);
1939
1940 u64_stats_update_begin(&rp->rx_stats.syncp);
1941 rp->rx_stats.bytes += pkt_len;
1942 rp->rx_stats.packets++;
1943 u64_stats_update_end(&rp->rx_stats.syncp);
1944 }
1945 entry = (++rp->cur_rx) % RX_RING_SIZE;
1946 rp->rx_head_desc = &rp->rx_ring[entry];
1947 }
1948
1949 /* Refill the Rx ring buffers. */
1950 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1951 struct sk_buff *skb;
1952 entry = rp->dirty_rx % RX_RING_SIZE;
1953 if (rp->rx_skbuff[entry] == NULL) {
1954 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1955 rp->rx_skbuff[entry] = skb;
1956 if (skb == NULL)
1957 break; /* Better luck next round. */
1958 rp->rx_skbuff_dma[entry] =
1959 pci_map_single(rp->pdev, skb->data,
1960 rp->rx_buf_sz,
1961 PCI_DMA_FROMDEVICE);
1962 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1963 }
1964 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1965 }
1966
1967 return count;
1968 }
1969
1970 static void rhine_restart_tx(struct net_device *dev) {
1971 struct rhine_private *rp = netdev_priv(dev);
1972 void __iomem *ioaddr = rp->base;
1973 int entry = rp->dirty_tx % TX_RING_SIZE;
1974 u32 intr_status;
1975
1976 /*
1977 * If new errors occurred, we need to sort them out before doing Tx.
1978 * In that case the ISR will be back here RSN anyway.
1979 */
1980 intr_status = rhine_get_events(rp);
1981
1982 if ((intr_status & IntrTxErrSummary) == 0) {
1983
1984 /* We know better than the chip where it should continue. */
1985 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1986 ioaddr + TxRingPtr);
1987
1988 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1989 ioaddr + ChipCmd);
1990
1991 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
1992 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1993 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1994
1995 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1996 ioaddr + ChipCmd1);
1997 IOSYNC;
1998 }
1999 else {
2000 /* This should never happen */
2001 netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
2002 intr_status);
2003 }
2004
2005 }
2006
2007 static void rhine_slow_event_task(struct work_struct *work)
2008 {
2009 struct rhine_private *rp =
2010 container_of(work, struct rhine_private, slow_event_task);
2011 struct net_device *dev = rp->dev;
2012 u32 intr_status;
2013
2014 mutex_lock(&rp->task_lock);
2015
2016 if (!rp->task_enable)
2017 goto out_unlock;
2018
2019 intr_status = rhine_get_events(rp);
2020 rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
2021
2022 if (intr_status & IntrLinkChange)
2023 rhine_check_media(dev, 0);
2024
2025 if (intr_status & IntrPCIErr)
2026 netif_warn(rp, hw, dev, "PCI error\n");
2027
2028 iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
2029
2030 out_unlock:
2031 mutex_unlock(&rp->task_lock);
2032 }
2033
2034 static struct rtnl_link_stats64 *
2035 rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
2036 {
2037 struct rhine_private *rp = netdev_priv(dev);
2038 unsigned int start;
2039
2040 spin_lock_bh(&rp->lock);
2041 rhine_update_rx_crc_and_missed_errord(rp);
2042 spin_unlock_bh(&rp->lock);
2043
2044 netdev_stats_to_stats64(stats, &dev->stats);
2045
2046 do {
2047 start = u64_stats_fetch_begin_bh(&rp->rx_stats.syncp);
2048 stats->rx_packets = rp->rx_stats.packets;
2049 stats->rx_bytes = rp->rx_stats.bytes;
2050 } while (u64_stats_fetch_retry_bh(&rp->rx_stats.syncp, start));
2051
2052 do {
2053 start = u64_stats_fetch_begin_bh(&rp->tx_stats.syncp);
2054 stats->tx_packets = rp->tx_stats.packets;
2055 stats->tx_bytes = rp->tx_stats.bytes;
2056 } while (u64_stats_fetch_retry_bh(&rp->tx_stats.syncp, start));
2057
2058 return stats;
2059 }
2060
2061 static void rhine_set_rx_mode(struct net_device *dev)
2062 {
2063 struct rhine_private *rp = netdev_priv(dev);
2064 void __iomem *ioaddr = rp->base;
2065 u32 mc_filter[2]; /* Multicast hash filter */
2066 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */
2067 struct netdev_hw_addr *ha;
2068
2069 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2070 rx_mode = 0x1C;
2071 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2072 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2073 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2074 (dev->flags & IFF_ALLMULTI)) {
2075 /* Too many to match, or accept all multicasts. */
2076 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2077 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2078 } else if (rp->pdev->revision >= VT6105M) {
2079 int i = 0;
2080 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */
2081 netdev_for_each_mc_addr(ha, dev) {
2082 if (i == MCAM_SIZE)
2083 break;
2084 rhine_set_cam(ioaddr, i, ha->addr);
2085 mCAMmask |= 1 << i;
2086 i++;
2087 }
2088 rhine_set_cam_mask(ioaddr, mCAMmask);
2089 } else {
2090 memset(mc_filter, 0, sizeof(mc_filter));
2091 netdev_for_each_mc_addr(ha, dev) {
2092 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
2093
2094 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2095 }
2096 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2097 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
2098 }
2099 /* enable/disable VLAN receive filtering */
2100 if (rp->pdev->revision >= VT6105M) {
2101 if (dev->flags & IFF_PROMISC)
2102 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2103 else
2104 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2105 }
2106 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
2107 }
2108
2109 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2110 {
2111 struct rhine_private *rp = netdev_priv(dev);
2112
2113 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2114 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2115 strlcpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info));
2116 }
2117
2118 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2119 {
2120 struct rhine_private *rp = netdev_priv(dev);
2121 int rc;
2122
2123 mutex_lock(&rp->task_lock);
2124 rc = mii_ethtool_gset(&rp->mii_if, cmd);
2125 mutex_unlock(&rp->task_lock);
2126
2127 return rc;
2128 }
2129
2130 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2131 {
2132 struct rhine_private *rp = netdev_priv(dev);
2133 int rc;
2134
2135 mutex_lock(&rp->task_lock);
2136 rc = mii_ethtool_sset(&rp->mii_if, cmd);
2137 rhine_set_carrier(&rp->mii_if);
2138 mutex_unlock(&rp->task_lock);
2139
2140 return rc;
2141 }
2142
2143 static int netdev_nway_reset(struct net_device *dev)
2144 {
2145 struct rhine_private *rp = netdev_priv(dev);
2146
2147 return mii_nway_restart(&rp->mii_if);
2148 }
2149
2150 static u32 netdev_get_link(struct net_device *dev)
2151 {
2152 struct rhine_private *rp = netdev_priv(dev);
2153
2154 return mii_link_ok(&rp->mii_if);
2155 }
2156
2157 static u32 netdev_get_msglevel(struct net_device *dev)
2158 {
2159 struct rhine_private *rp = netdev_priv(dev);
2160
2161 return rp->msg_enable;
2162 }
2163
2164 static void netdev_set_msglevel(struct net_device *dev, u32 value)
2165 {
2166 struct rhine_private *rp = netdev_priv(dev);
2167
2168 rp->msg_enable = value;
2169 }
2170
2171 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2172 {
2173 struct rhine_private *rp = netdev_priv(dev);
2174
2175 if (!(rp->quirks & rqWOL))
2176 return;
2177
2178 spin_lock_irq(&rp->lock);
2179 wol->supported = WAKE_PHY | WAKE_MAGIC |
2180 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2181 wol->wolopts = rp->wolopts;
2182 spin_unlock_irq(&rp->lock);
2183 }
2184
2185 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2186 {
2187 struct rhine_private *rp = netdev_priv(dev);
2188 u32 support = WAKE_PHY | WAKE_MAGIC |
2189 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2190
2191 if (!(rp->quirks & rqWOL))
2192 return -EINVAL;
2193
2194 if (wol->wolopts & ~support)
2195 return -EINVAL;
2196
2197 spin_lock_irq(&rp->lock);
2198 rp->wolopts = wol->wolopts;
2199 spin_unlock_irq(&rp->lock);
2200
2201 return 0;
2202 }
2203
2204 static const struct ethtool_ops netdev_ethtool_ops = {
2205 .get_drvinfo = netdev_get_drvinfo,
2206 .get_settings = netdev_get_settings,
2207 .set_settings = netdev_set_settings,
2208 .nway_reset = netdev_nway_reset,
2209 .get_link = netdev_get_link,
2210 .get_msglevel = netdev_get_msglevel,
2211 .set_msglevel = netdev_set_msglevel,
2212 .get_wol = rhine_get_wol,
2213 .set_wol = rhine_set_wol,
2214 };
2215
2216 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2217 {
2218 struct rhine_private *rp = netdev_priv(dev);
2219 int rc;
2220
2221 if (!netif_running(dev))
2222 return -EINVAL;
2223
2224 mutex_lock(&rp->task_lock);
2225 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
2226 rhine_set_carrier(&rp->mii_if);
2227 mutex_unlock(&rp->task_lock);
2228
2229 return rc;
2230 }
2231
2232 static int rhine_close(struct net_device *dev)
2233 {
2234 struct rhine_private *rp = netdev_priv(dev);
2235 void __iomem *ioaddr = rp->base;
2236
2237 rhine_task_disable(rp);
2238 napi_disable(&rp->napi);
2239 netif_stop_queue(dev);
2240
2241 netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2242 ioread16(ioaddr + ChipCmd));
2243
2244 /* Switch to loopback mode to avoid hardware races. */
2245 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2246
2247 rhine_irq_disable(rp);
2248
2249 /* Stop the chip's Tx and Rx processes. */
2250 iowrite16(CmdStop, ioaddr + ChipCmd);
2251
2252 free_irq(rp->pdev->irq, dev);
2253 free_rbufs(dev);
2254 free_tbufs(dev);
2255 free_ring(dev);
2256
2257 return 0;
2258 }
2259
2260
2261 static void rhine_remove_one(struct pci_dev *pdev)
2262 {
2263 struct net_device *dev = pci_get_drvdata(pdev);
2264 struct rhine_private *rp = netdev_priv(dev);
2265
2266 unregister_netdev(dev);
2267
2268 pci_iounmap(pdev, rp->base);
2269 pci_release_regions(pdev);
2270
2271 free_netdev(dev);
2272 pci_disable_device(pdev);
2273 pci_set_drvdata(pdev, NULL);
2274 }
2275
2276 static void rhine_shutdown (struct pci_dev *pdev)
2277 {
2278 struct net_device *dev = pci_get_drvdata(pdev);
2279 struct rhine_private *rp = netdev_priv(dev);
2280 void __iomem *ioaddr = rp->base;
2281
2282 if (!(rp->quirks & rqWOL))
2283 return; /* Nothing to do for non-WOL adapters */
2284
2285 rhine_power_init(dev);
2286
2287 /* Make sure we use pattern 0, 1 and not 4, 5 */
2288 if (rp->quirks & rq6patterns)
2289 iowrite8(0x04, ioaddr + WOLcgClr);
2290
2291 spin_lock(&rp->lock);
2292
2293 if (rp->wolopts & WAKE_MAGIC) {
2294 iowrite8(WOLmagic, ioaddr + WOLcrSet);
2295 /*
2296 * Turn EEPROM-controlled wake-up back on -- some hardware may
2297 * not cooperate otherwise.
2298 */
2299 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2300 }
2301
2302 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2303 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2304
2305 if (rp->wolopts & WAKE_PHY)
2306 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2307
2308 if (rp->wolopts & WAKE_UCAST)
2309 iowrite8(WOLucast, ioaddr + WOLcrSet);
2310
2311 if (rp->wolopts) {
2312 /* Enable legacy WOL (for old motherboards) */
2313 iowrite8(0x01, ioaddr + PwcfgSet);
2314 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2315 }
2316
2317 spin_unlock(&rp->lock);
2318
2319 if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
2320 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
2321
2322 pci_wake_from_d3(pdev, true);
2323 pci_set_power_state(pdev, PCI_D3hot);
2324 }
2325 }
2326
2327 #ifdef CONFIG_PM_SLEEP
2328 static int rhine_suspend(struct device *device)
2329 {
2330 struct pci_dev *pdev = to_pci_dev(device);
2331 struct net_device *dev = pci_get_drvdata(pdev);
2332 struct rhine_private *rp = netdev_priv(dev);
2333
2334 if (!netif_running(dev))
2335 return 0;
2336
2337 rhine_task_disable(rp);
2338 rhine_irq_disable(rp);
2339 napi_disable(&rp->napi);
2340
2341 netif_device_detach(dev);
2342
2343 rhine_shutdown(pdev);
2344
2345 return 0;
2346 }
2347
2348 static int rhine_resume(struct device *device)
2349 {
2350 struct pci_dev *pdev = to_pci_dev(device);
2351 struct net_device *dev = pci_get_drvdata(pdev);
2352 struct rhine_private *rp = netdev_priv(dev);
2353
2354 if (!netif_running(dev))
2355 return 0;
2356
2357 #ifdef USE_MMIO
2358 enable_mmio(rp->pioaddr, rp->quirks);
2359 #endif
2360 rhine_power_init(dev);
2361 free_tbufs(dev);
2362 free_rbufs(dev);
2363 alloc_tbufs(dev);
2364 alloc_rbufs(dev);
2365 rhine_task_enable(rp);
2366 spin_lock_bh(&rp->lock);
2367 init_registers(dev);
2368 spin_unlock_bh(&rp->lock);
2369
2370 netif_device_attach(dev);
2371
2372 return 0;
2373 }
2374
2375 static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2376 #define RHINE_PM_OPS (&rhine_pm_ops)
2377
2378 #else
2379
2380 #define RHINE_PM_OPS NULL
2381
2382 #endif /* !CONFIG_PM_SLEEP */
2383
2384 static struct pci_driver rhine_driver = {
2385 .name = DRV_NAME,
2386 .id_table = rhine_pci_tbl,
2387 .probe = rhine_init_one,
2388 .remove = rhine_remove_one,
2389 .shutdown = rhine_shutdown,
2390 .driver.pm = RHINE_PM_OPS,
2391 };
2392
2393 static struct dmi_system_id __initdata rhine_dmi_table[] = {
2394 {
2395 .ident = "EPIA-M",
2396 .matches = {
2397 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2398 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2399 },
2400 },
2401 {
2402 .ident = "KV7",
2403 .matches = {
2404 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2405 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2406 },
2407 },
2408 { NULL }
2409 };
2410
2411 static int __init rhine_init(void)
2412 {
2413 /* when a module, this is printed whether or not devices are found in probe */
2414 #ifdef MODULE
2415 pr_info("%s\n", version);
2416 #endif
2417 if (dmi_check_system(rhine_dmi_table)) {
2418 /* these BIOSes fail at PXE boot if chip is in D3 */
2419 avoid_D3 = true;
2420 pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
2421 }
2422 else if (avoid_D3)
2423 pr_info("avoid_D3 set\n");
2424
2425 return pci_register_driver(&rhine_driver);
2426 }
2427
2428
2429 static void __exit rhine_cleanup(void)
2430 {
2431 pci_unregister_driver(&rhine_driver);
2432 }
2433
2434
2435 module_init(rhine_init);
2436 module_exit(rhine_cleanup);
This page took 0.42347 seconds and 5 git commands to generate.