Merge tag 'drm-intel-fixes-2013-07-11' of git://people.freedesktop.org/~danvet/drm...
[deliverable/linux.git] / drivers / net / ethernet / via / via-rhine.c
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
29
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #define DRV_NAME "via-rhine"
35 #define DRV_VERSION "1.5.0"
36 #define DRV_RELDATE "2010-10-09"
37
38 #include <linux/types.h>
39
40 /* A few user-configurable values.
41 These may be modified when a driver module is loaded. */
42 static int debug = 0;
43 #define RHINE_MSG_DEFAULT \
44 (0x0000)
45
46 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
47 Setting to > 1518 effectively disables this feature. */
48 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
49 defined(CONFIG_SPARC) || defined(__ia64__) || \
50 defined(__sh__) || defined(__mips__)
51 static int rx_copybreak = 1518;
52 #else
53 static int rx_copybreak;
54 #endif
55
56 /* Work-around for broken BIOSes: they are unable to get the chip back out of
57 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
58 static bool avoid_D3;
59
60 /*
61 * In case you are looking for 'options[]' or 'full_duplex[]', they
62 * are gone. Use ethtool(8) instead.
63 */
64
65 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
66 The Rhine has a 64 element 8390-like hash table. */
67 static const int multicast_filter_limit = 32;
68
69
70 /* Operational parameters that are set at compile time. */
71
72 /* Keep the ring sizes a power of two for compile efficiency.
73 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
74 Making the Tx ring too large decreases the effectiveness of channel
75 bonding and packet priority.
76 There are no ill effects from too-large receive rings. */
77 #define TX_RING_SIZE 16
78 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
79 #define RX_RING_SIZE 64
80
81 /* Operational parameters that usually are not changed. */
82
83 /* Time in jiffies before concluding the transmitter is hung. */
84 #define TX_TIMEOUT (2*HZ)
85
86 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
87
88 #include <linux/module.h>
89 #include <linux/moduleparam.h>
90 #include <linux/kernel.h>
91 #include <linux/string.h>
92 #include <linux/timer.h>
93 #include <linux/errno.h>
94 #include <linux/ioport.h>
95 #include <linux/interrupt.h>
96 #include <linux/pci.h>
97 #include <linux/dma-mapping.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/init.h>
102 #include <linux/delay.h>
103 #include <linux/mii.h>
104 #include <linux/ethtool.h>
105 #include <linux/crc32.h>
106 #include <linux/if_vlan.h>
107 #include <linux/bitops.h>
108 #include <linux/workqueue.h>
109 #include <asm/processor.h> /* Processor type for cache alignment. */
110 #include <asm/io.h>
111 #include <asm/irq.h>
112 #include <asm/uaccess.h>
113 #include <linux/dmi.h>
114
115 /* These identify the driver base version and may not be removed. */
116 static const char version[] =
117 "v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker";
118
119 /* This driver was written to use PCI memory space. Some early versions
120 of the Rhine may only work correctly with I/O space accesses. */
121 #ifdef CONFIG_VIA_RHINE_MMIO
122 #define USE_MMIO
123 #else
124 #endif
125
126 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
127 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
128 MODULE_LICENSE("GPL");
129
130 module_param(debug, int, 0);
131 module_param(rx_copybreak, int, 0);
132 module_param(avoid_D3, bool, 0);
133 MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
134 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
135 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
136
137 #define MCAM_SIZE 32
138 #define VCAM_SIZE 32
139
140 /*
141 Theory of Operation
142
143 I. Board Compatibility
144
145 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
146 controller.
147
148 II. Board-specific settings
149
150 Boards with this chip are functional only in a bus-master PCI slot.
151
152 Many operational settings are loaded from the EEPROM to the Config word at
153 offset 0x78. For most of these settings, this driver assumes that they are
154 correct.
155 If this driver is compiled to use PCI memory space operations the EEPROM
156 must be configured to enable memory ops.
157
158 III. Driver operation
159
160 IIIa. Ring buffers
161
162 This driver uses two statically allocated fixed-size descriptor lists
163 formed into rings by a branch from the final descriptor to the beginning of
164 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
165
166 IIIb/c. Transmit/Receive Structure
167
168 This driver attempts to use a zero-copy receive and transmit scheme.
169
170 Alas, all data buffers are required to start on a 32 bit boundary, so
171 the driver must often copy transmit packets into bounce buffers.
172
173 The driver allocates full frame size skbuffs for the Rx ring buffers at
174 open() time and passes the skb->data field to the chip as receive data
175 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
176 a fresh skbuff is allocated and the frame is copied to the new skbuff.
177 When the incoming frame is larger, the skbuff is passed directly up the
178 protocol stack. Buffers consumed this way are replaced by newly allocated
179 skbuffs in the last phase of rhine_rx().
180
181 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
182 using a full-sized skbuff for small frames vs. the copying costs of larger
183 frames. New boards are typically used in generously configured machines
184 and the underfilled buffers have negligible impact compared to the benefit of
185 a single allocation size, so the default value of zero results in never
186 copying packets. When copying is done, the cost is usually mitigated by using
187 a combined copy/checksum routine. Copying also preloads the cache, which is
188 most useful with small frames.
189
190 Since the VIA chips are only able to transfer data to buffers on 32 bit
191 boundaries, the IP header at offset 14 in an ethernet frame isn't
192 longword aligned for further processing. Copying these unaligned buffers
193 has the beneficial effect of 16-byte aligning the IP header.
194
195 IIId. Synchronization
196
197 The driver runs as two independent, single-threaded flows of control. One
198 is the send-packet routine, which enforces single-threaded use by the
199 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
200 which is single threaded by the hardware and interrupt handling software.
201
202 The send packet thread has partial control over the Tx ring. It locks the
203 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
204 the ring is not available it stops the transmit queue by
205 calling netif_stop_queue.
206
207 The interrupt handler has exclusive control over the Rx ring and records stats
208 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
209 empty by incrementing the dirty_tx mark. If at least half of the entries in
210 the Rx ring are available the transmit queue is woken up if it was stopped.
211
212 IV. Notes
213
214 IVb. References
215
216 Preliminary VT86C100A manual from http://www.via.com.tw/
217 http://www.scyld.com/expert/100mbps.html
218 http://www.scyld.com/expert/NWay.html
219 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
220 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
221
222
223 IVc. Errata
224
225 The VT86C100A manual is not reliable information.
226 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
227 in significant performance degradation for bounce buffer copies on transmit
228 and unaligned IP headers on receive.
229 The chip does not pad to minimum transmit length.
230
231 */
232
233
234 /* This table drives the PCI probe routines. It's mostly boilerplate in all
235 of the drivers, and will likely be provided by some future kernel.
236 Note the matching code -- the first table entry matchs all 56** cards but
237 second only the 1234 card.
238 */
239
240 enum rhine_revs {
241 VT86C100A = 0x00,
242 VTunknown0 = 0x20,
243 VT6102 = 0x40,
244 VT8231 = 0x50, /* Integrated MAC */
245 VT8233 = 0x60, /* Integrated MAC */
246 VT8235 = 0x74, /* Integrated MAC */
247 VT8237 = 0x78, /* Integrated MAC */
248 VTunknown1 = 0x7C,
249 VT6105 = 0x80,
250 VT6105_B0 = 0x83,
251 VT6105L = 0x8A,
252 VT6107 = 0x8C,
253 VTunknown2 = 0x8E,
254 VT6105M = 0x90, /* Management adapter */
255 };
256
257 enum rhine_quirks {
258 rqWOL = 0x0001, /* Wake-On-LAN support */
259 rqForceReset = 0x0002,
260 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
261 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
262 rqRhineI = 0x0100, /* See comment below */
263 };
264 /*
265 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
266 * MMIO as well as for the collision counter and the Tx FIFO underflow
267 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
268 */
269
270 /* Beware of PCI posted writes */
271 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
272
273 static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = {
274 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
275 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
276 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
277 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
278 { } /* terminate list */
279 };
280 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
281
282
283 /* Offsets to the device registers. */
284 enum register_offsets {
285 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
286 ChipCmd1=0x09, TQWake=0x0A,
287 IntrStatus=0x0C, IntrEnable=0x0E,
288 MulticastFilter0=0x10, MulticastFilter1=0x14,
289 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
290 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
291 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
292 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
293 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
294 StickyHW=0x83, IntrStatus2=0x84,
295 CamMask=0x88, CamCon=0x92, CamAddr=0x93,
296 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
297 WOLcrClr1=0xA6, WOLcgClr=0xA7,
298 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
299 };
300
301 /* Bits in ConfigD */
302 enum backoff_bits {
303 BackOptional=0x01, BackModify=0x02,
304 BackCaptureEffect=0x04, BackRandom=0x08
305 };
306
307 /* Bits in the TxConfig (TCR) register */
308 enum tcr_bits {
309 TCR_PQEN=0x01,
310 TCR_LB0=0x02, /* loopback[0] */
311 TCR_LB1=0x04, /* loopback[1] */
312 TCR_OFSET=0x08,
313 TCR_RTGOPT=0x10,
314 TCR_RTFT0=0x20,
315 TCR_RTFT1=0x40,
316 TCR_RTSF=0x80,
317 };
318
319 /* Bits in the CamCon (CAMC) register */
320 enum camcon_bits {
321 CAMC_CAMEN=0x01,
322 CAMC_VCAMSL=0x02,
323 CAMC_CAMWR=0x04,
324 CAMC_CAMRD=0x08,
325 };
326
327 /* Bits in the PCIBusConfig1 (BCR1) register */
328 enum bcr1_bits {
329 BCR1_POT0=0x01,
330 BCR1_POT1=0x02,
331 BCR1_POT2=0x04,
332 BCR1_CTFT0=0x08,
333 BCR1_CTFT1=0x10,
334 BCR1_CTSF=0x20,
335 BCR1_TXQNOBK=0x40, /* for VT6105 */
336 BCR1_VIDFR=0x80, /* for VT6105 */
337 BCR1_MED0=0x40, /* for VT6102 */
338 BCR1_MED1=0x80, /* for VT6102 */
339 };
340
341 #ifdef USE_MMIO
342 /* Registers we check that mmio and reg are the same. */
343 static const int mmio_verify_registers[] = {
344 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
345 0
346 };
347 #endif
348
349 /* Bits in the interrupt status/mask registers. */
350 enum intr_status_bits {
351 IntrRxDone = 0x0001,
352 IntrTxDone = 0x0002,
353 IntrRxErr = 0x0004,
354 IntrTxError = 0x0008,
355 IntrRxEmpty = 0x0020,
356 IntrPCIErr = 0x0040,
357 IntrStatsMax = 0x0080,
358 IntrRxEarly = 0x0100,
359 IntrTxUnderrun = 0x0210,
360 IntrRxOverflow = 0x0400,
361 IntrRxDropped = 0x0800,
362 IntrRxNoBuf = 0x1000,
363 IntrTxAborted = 0x2000,
364 IntrLinkChange = 0x4000,
365 IntrRxWakeUp = 0x8000,
366 IntrTxDescRace = 0x080000, /* mapped from IntrStatus2 */
367 IntrNormalSummary = IntrRxDone | IntrTxDone,
368 IntrTxErrSummary = IntrTxDescRace | IntrTxAborted | IntrTxError |
369 IntrTxUnderrun,
370 };
371
372 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
373 enum wol_bits {
374 WOLucast = 0x10,
375 WOLmagic = 0x20,
376 WOLbmcast = 0x30,
377 WOLlnkon = 0x40,
378 WOLlnkoff = 0x80,
379 };
380
381 /* The Rx and Tx buffer descriptors. */
382 struct rx_desc {
383 __le32 rx_status;
384 __le32 desc_length; /* Chain flag, Buffer/frame length */
385 __le32 addr;
386 __le32 next_desc;
387 };
388 struct tx_desc {
389 __le32 tx_status;
390 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
391 __le32 addr;
392 __le32 next_desc;
393 };
394
395 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
396 #define TXDESC 0x00e08000
397
398 enum rx_status_bits {
399 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
400 };
401
402 /* Bits in *_desc.*_status */
403 enum desc_status_bits {
404 DescOwn=0x80000000
405 };
406
407 /* Bits in *_desc.*_length */
408 enum desc_length_bits {
409 DescTag=0x00010000
410 };
411
412 /* Bits in ChipCmd. */
413 enum chip_cmd_bits {
414 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
415 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
416 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
417 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
418 };
419
420 struct rhine_stats {
421 u64 packets;
422 u64 bytes;
423 struct u64_stats_sync syncp;
424 };
425
426 struct rhine_private {
427 /* Bit mask for configured VLAN ids */
428 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
429
430 /* Descriptor rings */
431 struct rx_desc *rx_ring;
432 struct tx_desc *tx_ring;
433 dma_addr_t rx_ring_dma;
434 dma_addr_t tx_ring_dma;
435
436 /* The addresses of receive-in-place skbuffs. */
437 struct sk_buff *rx_skbuff[RX_RING_SIZE];
438 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
439
440 /* The saved address of a sent-in-place packet/buffer, for later free(). */
441 struct sk_buff *tx_skbuff[TX_RING_SIZE];
442 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
443
444 /* Tx bounce buffers (Rhine-I only) */
445 unsigned char *tx_buf[TX_RING_SIZE];
446 unsigned char *tx_bufs;
447 dma_addr_t tx_bufs_dma;
448
449 struct pci_dev *pdev;
450 long pioaddr;
451 struct net_device *dev;
452 struct napi_struct napi;
453 spinlock_t lock;
454 struct mutex task_lock;
455 bool task_enable;
456 struct work_struct slow_event_task;
457 struct work_struct reset_task;
458
459 u32 msg_enable;
460
461 /* Frequently used values: keep some adjacent for cache effect. */
462 u32 quirks;
463 struct rx_desc *rx_head_desc;
464 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
465 unsigned int cur_tx, dirty_tx;
466 unsigned int rx_buf_sz; /* Based on MTU+slack. */
467 struct rhine_stats rx_stats;
468 struct rhine_stats tx_stats;
469 u8 wolopts;
470
471 u8 tx_thresh, rx_thresh;
472
473 struct mii_if_info mii_if;
474 void __iomem *base;
475 };
476
477 #define BYTE_REG_BITS_ON(x, p) do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
478 #define WORD_REG_BITS_ON(x, p) do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
479 #define DWORD_REG_BITS_ON(x, p) do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
480
481 #define BYTE_REG_BITS_IS_ON(x, p) (ioread8((p)) & (x))
482 #define WORD_REG_BITS_IS_ON(x, p) (ioread16((p)) & (x))
483 #define DWORD_REG_BITS_IS_ON(x, p) (ioread32((p)) & (x))
484
485 #define BYTE_REG_BITS_OFF(x, p) do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
486 #define WORD_REG_BITS_OFF(x, p) do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
487 #define DWORD_REG_BITS_OFF(x, p) do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
488
489 #define BYTE_REG_BITS_SET(x, m, p) do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
490 #define WORD_REG_BITS_SET(x, m, p) do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
491 #define DWORD_REG_BITS_SET(x, m, p) do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
492
493
494 static int mdio_read(struct net_device *dev, int phy_id, int location);
495 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
496 static int rhine_open(struct net_device *dev);
497 static void rhine_reset_task(struct work_struct *work);
498 static void rhine_slow_event_task(struct work_struct *work);
499 static void rhine_tx_timeout(struct net_device *dev);
500 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
501 struct net_device *dev);
502 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
503 static void rhine_tx(struct net_device *dev);
504 static int rhine_rx(struct net_device *dev, int limit);
505 static void rhine_set_rx_mode(struct net_device *dev);
506 static struct rtnl_link_stats64 *rhine_get_stats64(struct net_device *dev,
507 struct rtnl_link_stats64 *stats);
508 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
509 static const struct ethtool_ops netdev_ethtool_ops;
510 static int rhine_close(struct net_device *dev);
511 static int rhine_vlan_rx_add_vid(struct net_device *dev,
512 __be16 proto, u16 vid);
513 static int rhine_vlan_rx_kill_vid(struct net_device *dev,
514 __be16 proto, u16 vid);
515 static void rhine_restart_tx(struct net_device *dev);
516
517 static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
518 {
519 void __iomem *ioaddr = rp->base;
520 int i;
521
522 for (i = 0; i < 1024; i++) {
523 bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
524
525 if (low ^ has_mask_bits)
526 break;
527 udelay(10);
528 }
529 if (i > 64) {
530 netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
531 "count: %04d\n", low ? "low" : "high", reg, mask, i);
532 }
533 }
534
535 static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
536 {
537 rhine_wait_bit(rp, reg, mask, false);
538 }
539
540 static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
541 {
542 rhine_wait_bit(rp, reg, mask, true);
543 }
544
545 static u32 rhine_get_events(struct rhine_private *rp)
546 {
547 void __iomem *ioaddr = rp->base;
548 u32 intr_status;
549
550 intr_status = ioread16(ioaddr + IntrStatus);
551 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
552 if (rp->quirks & rqStatusWBRace)
553 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
554 return intr_status;
555 }
556
557 static void rhine_ack_events(struct rhine_private *rp, u32 mask)
558 {
559 void __iomem *ioaddr = rp->base;
560
561 if (rp->quirks & rqStatusWBRace)
562 iowrite8(mask >> 16, ioaddr + IntrStatus2);
563 iowrite16(mask, ioaddr + IntrStatus);
564 mmiowb();
565 }
566
567 /*
568 * Get power related registers into sane state.
569 * Notify user about past WOL event.
570 */
571 static void rhine_power_init(struct net_device *dev)
572 {
573 struct rhine_private *rp = netdev_priv(dev);
574 void __iomem *ioaddr = rp->base;
575 u16 wolstat;
576
577 if (rp->quirks & rqWOL) {
578 /* Make sure chip is in power state D0 */
579 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
580
581 /* Disable "force PME-enable" */
582 iowrite8(0x80, ioaddr + WOLcgClr);
583
584 /* Clear power-event config bits (WOL) */
585 iowrite8(0xFF, ioaddr + WOLcrClr);
586 /* More recent cards can manage two additional patterns */
587 if (rp->quirks & rq6patterns)
588 iowrite8(0x03, ioaddr + WOLcrClr1);
589
590 /* Save power-event status bits */
591 wolstat = ioread8(ioaddr + PwrcsrSet);
592 if (rp->quirks & rq6patterns)
593 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
594
595 /* Clear power-event status bits */
596 iowrite8(0xFF, ioaddr + PwrcsrClr);
597 if (rp->quirks & rq6patterns)
598 iowrite8(0x03, ioaddr + PwrcsrClr1);
599
600 if (wolstat) {
601 char *reason;
602 switch (wolstat) {
603 case WOLmagic:
604 reason = "Magic packet";
605 break;
606 case WOLlnkon:
607 reason = "Link went up";
608 break;
609 case WOLlnkoff:
610 reason = "Link went down";
611 break;
612 case WOLucast:
613 reason = "Unicast packet";
614 break;
615 case WOLbmcast:
616 reason = "Multicast/broadcast packet";
617 break;
618 default:
619 reason = "Unknown";
620 }
621 netdev_info(dev, "Woke system up. Reason: %s\n",
622 reason);
623 }
624 }
625 }
626
627 static void rhine_chip_reset(struct net_device *dev)
628 {
629 struct rhine_private *rp = netdev_priv(dev);
630 void __iomem *ioaddr = rp->base;
631 u8 cmd1;
632
633 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
634 IOSYNC;
635
636 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
637 netdev_info(dev, "Reset not complete yet. Trying harder.\n");
638
639 /* Force reset */
640 if (rp->quirks & rqForceReset)
641 iowrite8(0x40, ioaddr + MiscCmd);
642
643 /* Reset can take somewhat longer (rare) */
644 rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
645 }
646
647 cmd1 = ioread8(ioaddr + ChipCmd1);
648 netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
649 "failed" : "succeeded");
650 }
651
652 #ifdef USE_MMIO
653 static void enable_mmio(long pioaddr, u32 quirks)
654 {
655 int n;
656 if (quirks & rqRhineI) {
657 /* More recent docs say that this bit is reserved ... */
658 n = inb(pioaddr + ConfigA) | 0x20;
659 outb(n, pioaddr + ConfigA);
660 } else {
661 n = inb(pioaddr + ConfigD) | 0x80;
662 outb(n, pioaddr + ConfigD);
663 }
664 }
665 #endif
666
667 /*
668 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
669 * (plus 0x6C for Rhine-I/II)
670 */
671 static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
672 {
673 struct rhine_private *rp = netdev_priv(dev);
674 void __iomem *ioaddr = rp->base;
675 int i;
676
677 outb(0x20, pioaddr + MACRegEEcsr);
678 for (i = 0; i < 1024; i++) {
679 if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
680 break;
681 }
682 if (i > 512)
683 pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
684
685 #ifdef USE_MMIO
686 /*
687 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
688 * MMIO. If reloading EEPROM was done first this could be avoided, but
689 * it is not known if that still works with the "win98-reboot" problem.
690 */
691 enable_mmio(pioaddr, rp->quirks);
692 #endif
693
694 /* Turn off EEPROM-controlled wake-up (magic packet) */
695 if (rp->quirks & rqWOL)
696 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
697
698 }
699
700 #ifdef CONFIG_NET_POLL_CONTROLLER
701 static void rhine_poll(struct net_device *dev)
702 {
703 struct rhine_private *rp = netdev_priv(dev);
704 const int irq = rp->pdev->irq;
705
706 disable_irq(irq);
707 rhine_interrupt(irq, dev);
708 enable_irq(irq);
709 }
710 #endif
711
712 static void rhine_kick_tx_threshold(struct rhine_private *rp)
713 {
714 if (rp->tx_thresh < 0xe0) {
715 void __iomem *ioaddr = rp->base;
716
717 rp->tx_thresh += 0x20;
718 BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
719 }
720 }
721
722 static void rhine_tx_err(struct rhine_private *rp, u32 status)
723 {
724 struct net_device *dev = rp->dev;
725
726 if (status & IntrTxAborted) {
727 netif_info(rp, tx_err, dev,
728 "Abort %08x, frame dropped\n", status);
729 }
730
731 if (status & IntrTxUnderrun) {
732 rhine_kick_tx_threshold(rp);
733 netif_info(rp, tx_err ,dev, "Transmitter underrun, "
734 "Tx threshold now %02x\n", rp->tx_thresh);
735 }
736
737 if (status & IntrTxDescRace)
738 netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
739
740 if ((status & IntrTxError) &&
741 (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
742 rhine_kick_tx_threshold(rp);
743 netif_info(rp, tx_err, dev, "Unspecified error. "
744 "Tx threshold now %02x\n", rp->tx_thresh);
745 }
746
747 rhine_restart_tx(dev);
748 }
749
750 static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
751 {
752 void __iomem *ioaddr = rp->base;
753 struct net_device_stats *stats = &rp->dev->stats;
754
755 stats->rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
756 stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
757
758 /*
759 * Clears the "tally counters" for CRC errors and missed frames(?).
760 * It has been reported that some chips need a write of 0 to clear
761 * these, for others the counters are set to 1 when written to and
762 * instead cleared when read. So we clear them both ways ...
763 */
764 iowrite32(0, ioaddr + RxMissed);
765 ioread16(ioaddr + RxCRCErrs);
766 ioread16(ioaddr + RxMissed);
767 }
768
769 #define RHINE_EVENT_NAPI_RX (IntrRxDone | \
770 IntrRxErr | \
771 IntrRxEmpty | \
772 IntrRxOverflow | \
773 IntrRxDropped | \
774 IntrRxNoBuf | \
775 IntrRxWakeUp)
776
777 #define RHINE_EVENT_NAPI_TX_ERR (IntrTxError | \
778 IntrTxAborted | \
779 IntrTxUnderrun | \
780 IntrTxDescRace)
781 #define RHINE_EVENT_NAPI_TX (IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
782
783 #define RHINE_EVENT_NAPI (RHINE_EVENT_NAPI_RX | \
784 RHINE_EVENT_NAPI_TX | \
785 IntrStatsMax)
786 #define RHINE_EVENT_SLOW (IntrPCIErr | IntrLinkChange)
787 #define RHINE_EVENT (RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
788
789 static int rhine_napipoll(struct napi_struct *napi, int budget)
790 {
791 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
792 struct net_device *dev = rp->dev;
793 void __iomem *ioaddr = rp->base;
794 u16 enable_mask = RHINE_EVENT & 0xffff;
795 int work_done = 0;
796 u32 status;
797
798 status = rhine_get_events(rp);
799 rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
800
801 if (status & RHINE_EVENT_NAPI_RX)
802 work_done += rhine_rx(dev, budget);
803
804 if (status & RHINE_EVENT_NAPI_TX) {
805 if (status & RHINE_EVENT_NAPI_TX_ERR) {
806 /* Avoid scavenging before Tx engine turned off */
807 rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
808 if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
809 netif_warn(rp, tx_err, dev, "Tx still on\n");
810 }
811
812 rhine_tx(dev);
813
814 if (status & RHINE_EVENT_NAPI_TX_ERR)
815 rhine_tx_err(rp, status);
816 }
817
818 if (status & IntrStatsMax) {
819 spin_lock(&rp->lock);
820 rhine_update_rx_crc_and_missed_errord(rp);
821 spin_unlock(&rp->lock);
822 }
823
824 if (status & RHINE_EVENT_SLOW) {
825 enable_mask &= ~RHINE_EVENT_SLOW;
826 schedule_work(&rp->slow_event_task);
827 }
828
829 if (work_done < budget) {
830 napi_complete(napi);
831 iowrite16(enable_mask, ioaddr + IntrEnable);
832 mmiowb();
833 }
834 return work_done;
835 }
836
837 static void rhine_hw_init(struct net_device *dev, long pioaddr)
838 {
839 struct rhine_private *rp = netdev_priv(dev);
840
841 /* Reset the chip to erase previous misconfiguration. */
842 rhine_chip_reset(dev);
843
844 /* Rhine-I needs extra time to recuperate before EEPROM reload */
845 if (rp->quirks & rqRhineI)
846 msleep(5);
847
848 /* Reload EEPROM controlled bytes cleared by soft reset */
849 rhine_reload_eeprom(pioaddr, dev);
850 }
851
852 static const struct net_device_ops rhine_netdev_ops = {
853 .ndo_open = rhine_open,
854 .ndo_stop = rhine_close,
855 .ndo_start_xmit = rhine_start_tx,
856 .ndo_get_stats64 = rhine_get_stats64,
857 .ndo_set_rx_mode = rhine_set_rx_mode,
858 .ndo_change_mtu = eth_change_mtu,
859 .ndo_validate_addr = eth_validate_addr,
860 .ndo_set_mac_address = eth_mac_addr,
861 .ndo_do_ioctl = netdev_ioctl,
862 .ndo_tx_timeout = rhine_tx_timeout,
863 .ndo_vlan_rx_add_vid = rhine_vlan_rx_add_vid,
864 .ndo_vlan_rx_kill_vid = rhine_vlan_rx_kill_vid,
865 #ifdef CONFIG_NET_POLL_CONTROLLER
866 .ndo_poll_controller = rhine_poll,
867 #endif
868 };
869
870 static int rhine_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
871 {
872 struct net_device *dev;
873 struct rhine_private *rp;
874 int i, rc;
875 u32 quirks;
876 long pioaddr;
877 long memaddr;
878 void __iomem *ioaddr;
879 int io_size, phy_id;
880 const char *name;
881 #ifdef USE_MMIO
882 int bar = 1;
883 #else
884 int bar = 0;
885 #endif
886
887 /* when built into the kernel, we only print version if device is found */
888 #ifndef MODULE
889 pr_info_once("%s\n", version);
890 #endif
891
892 io_size = 256;
893 phy_id = 0;
894 quirks = 0;
895 name = "Rhine";
896 if (pdev->revision < VTunknown0) {
897 quirks = rqRhineI;
898 io_size = 128;
899 }
900 else if (pdev->revision >= VT6102) {
901 quirks = rqWOL | rqForceReset;
902 if (pdev->revision < VT6105) {
903 name = "Rhine II";
904 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
905 }
906 else {
907 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
908 if (pdev->revision >= VT6105_B0)
909 quirks |= rq6patterns;
910 if (pdev->revision < VT6105M)
911 name = "Rhine III";
912 else
913 name = "Rhine III (Management Adapter)";
914 }
915 }
916
917 rc = pci_enable_device(pdev);
918 if (rc)
919 goto err_out;
920
921 /* this should always be supported */
922 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
923 if (rc) {
924 dev_err(&pdev->dev,
925 "32-bit PCI DMA addresses not supported by the card!?\n");
926 goto err_out;
927 }
928
929 /* sanity check */
930 if ((pci_resource_len(pdev, 0) < io_size) ||
931 (pci_resource_len(pdev, 1) < io_size)) {
932 rc = -EIO;
933 dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n");
934 goto err_out;
935 }
936
937 pioaddr = pci_resource_start(pdev, 0);
938 memaddr = pci_resource_start(pdev, 1);
939
940 pci_set_master(pdev);
941
942 dev = alloc_etherdev(sizeof(struct rhine_private));
943 if (!dev) {
944 rc = -ENOMEM;
945 goto err_out;
946 }
947 SET_NETDEV_DEV(dev, &pdev->dev);
948
949 rp = netdev_priv(dev);
950 rp->dev = dev;
951 rp->quirks = quirks;
952 rp->pioaddr = pioaddr;
953 rp->pdev = pdev;
954 rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
955
956 rc = pci_request_regions(pdev, DRV_NAME);
957 if (rc)
958 goto err_out_free_netdev;
959
960 ioaddr = pci_iomap(pdev, bar, io_size);
961 if (!ioaddr) {
962 rc = -EIO;
963 dev_err(&pdev->dev,
964 "ioremap failed for device %s, region 0x%X @ 0x%lX\n",
965 pci_name(pdev), io_size, memaddr);
966 goto err_out_free_res;
967 }
968
969 #ifdef USE_MMIO
970 enable_mmio(pioaddr, quirks);
971
972 /* Check that selected MMIO registers match the PIO ones */
973 i = 0;
974 while (mmio_verify_registers[i]) {
975 int reg = mmio_verify_registers[i++];
976 unsigned char a = inb(pioaddr+reg);
977 unsigned char b = readb(ioaddr+reg);
978 if (a != b) {
979 rc = -EIO;
980 dev_err(&pdev->dev,
981 "MMIO do not match PIO [%02x] (%02x != %02x)\n",
982 reg, a, b);
983 goto err_out_unmap;
984 }
985 }
986 #endif /* USE_MMIO */
987
988 rp->base = ioaddr;
989
990 /* Get chip registers into a sane state */
991 rhine_power_init(dev);
992 rhine_hw_init(dev, pioaddr);
993
994 for (i = 0; i < 6; i++)
995 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
996
997 if (!is_valid_ether_addr(dev->dev_addr)) {
998 /* Report it and use a random ethernet address instead */
999 netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
1000 eth_hw_addr_random(dev);
1001 netdev_info(dev, "Using random MAC address: %pM\n",
1002 dev->dev_addr);
1003 }
1004
1005 /* For Rhine-I/II, phy_id is loaded from EEPROM */
1006 if (!phy_id)
1007 phy_id = ioread8(ioaddr + 0x6C);
1008
1009 spin_lock_init(&rp->lock);
1010 mutex_init(&rp->task_lock);
1011 INIT_WORK(&rp->reset_task, rhine_reset_task);
1012 INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
1013
1014 rp->mii_if.dev = dev;
1015 rp->mii_if.mdio_read = mdio_read;
1016 rp->mii_if.mdio_write = mdio_write;
1017 rp->mii_if.phy_id_mask = 0x1f;
1018 rp->mii_if.reg_num_mask = 0x1f;
1019
1020 /* The chip-specific entries in the device structure. */
1021 dev->netdev_ops = &rhine_netdev_ops;
1022 dev->ethtool_ops = &netdev_ethtool_ops,
1023 dev->watchdog_timeo = TX_TIMEOUT;
1024
1025 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
1026
1027 if (rp->quirks & rqRhineI)
1028 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
1029
1030 if (pdev->revision >= VT6105M)
1031 dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1032 NETIF_F_HW_VLAN_CTAG_RX |
1033 NETIF_F_HW_VLAN_CTAG_FILTER;
1034
1035 /* dev->name not defined before register_netdev()! */
1036 rc = register_netdev(dev);
1037 if (rc)
1038 goto err_out_unmap;
1039
1040 netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n",
1041 name,
1042 #ifdef USE_MMIO
1043 memaddr,
1044 #else
1045 (long)ioaddr,
1046 #endif
1047 dev->dev_addr, pdev->irq);
1048
1049 pci_set_drvdata(pdev, dev);
1050
1051 {
1052 u16 mii_cmd;
1053 int mii_status = mdio_read(dev, phy_id, 1);
1054 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
1055 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
1056 if (mii_status != 0xffff && mii_status != 0x0000) {
1057 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
1058 netdev_info(dev,
1059 "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
1060 phy_id,
1061 mii_status, rp->mii_if.advertising,
1062 mdio_read(dev, phy_id, 5));
1063
1064 /* set IFF_RUNNING */
1065 if (mii_status & BMSR_LSTATUS)
1066 netif_carrier_on(dev);
1067 else
1068 netif_carrier_off(dev);
1069
1070 }
1071 }
1072 rp->mii_if.phy_id = phy_id;
1073 if (avoid_D3)
1074 netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
1075
1076 return 0;
1077
1078 err_out_unmap:
1079 pci_iounmap(pdev, ioaddr);
1080 err_out_free_res:
1081 pci_release_regions(pdev);
1082 err_out_free_netdev:
1083 free_netdev(dev);
1084 err_out:
1085 return rc;
1086 }
1087
1088 static int alloc_ring(struct net_device* dev)
1089 {
1090 struct rhine_private *rp = netdev_priv(dev);
1091 void *ring;
1092 dma_addr_t ring_dma;
1093
1094 ring = pci_alloc_consistent(rp->pdev,
1095 RX_RING_SIZE * sizeof(struct rx_desc) +
1096 TX_RING_SIZE * sizeof(struct tx_desc),
1097 &ring_dma);
1098 if (!ring) {
1099 netdev_err(dev, "Could not allocate DMA memory\n");
1100 return -ENOMEM;
1101 }
1102 if (rp->quirks & rqRhineI) {
1103 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
1104 PKT_BUF_SZ * TX_RING_SIZE,
1105 &rp->tx_bufs_dma);
1106 if (rp->tx_bufs == NULL) {
1107 pci_free_consistent(rp->pdev,
1108 RX_RING_SIZE * sizeof(struct rx_desc) +
1109 TX_RING_SIZE * sizeof(struct tx_desc),
1110 ring, ring_dma);
1111 return -ENOMEM;
1112 }
1113 }
1114
1115 rp->rx_ring = ring;
1116 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
1117 rp->rx_ring_dma = ring_dma;
1118 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
1119
1120 return 0;
1121 }
1122
1123 static void free_ring(struct net_device* dev)
1124 {
1125 struct rhine_private *rp = netdev_priv(dev);
1126
1127 pci_free_consistent(rp->pdev,
1128 RX_RING_SIZE * sizeof(struct rx_desc) +
1129 TX_RING_SIZE * sizeof(struct tx_desc),
1130 rp->rx_ring, rp->rx_ring_dma);
1131 rp->tx_ring = NULL;
1132
1133 if (rp->tx_bufs)
1134 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
1135 rp->tx_bufs, rp->tx_bufs_dma);
1136
1137 rp->tx_bufs = NULL;
1138
1139 }
1140
1141 static void alloc_rbufs(struct net_device *dev)
1142 {
1143 struct rhine_private *rp = netdev_priv(dev);
1144 dma_addr_t next;
1145 int i;
1146
1147 rp->dirty_rx = rp->cur_rx = 0;
1148
1149 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1150 rp->rx_head_desc = &rp->rx_ring[0];
1151 next = rp->rx_ring_dma;
1152
1153 /* Init the ring entries */
1154 for (i = 0; i < RX_RING_SIZE; i++) {
1155 rp->rx_ring[i].rx_status = 0;
1156 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
1157 next += sizeof(struct rx_desc);
1158 rp->rx_ring[i].next_desc = cpu_to_le32(next);
1159 rp->rx_skbuff[i] = NULL;
1160 }
1161 /* Mark the last entry as wrapping the ring. */
1162 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
1163
1164 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1165 for (i = 0; i < RX_RING_SIZE; i++) {
1166 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1167 rp->rx_skbuff[i] = skb;
1168 if (skb == NULL)
1169 break;
1170
1171 rp->rx_skbuff_dma[i] =
1172 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
1173 PCI_DMA_FROMDEVICE);
1174 if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[i])) {
1175 rp->rx_skbuff_dma[i] = 0;
1176 dev_kfree_skb(skb);
1177 break;
1178 }
1179 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
1180 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
1181 }
1182 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1183 }
1184
1185 static void free_rbufs(struct net_device* dev)
1186 {
1187 struct rhine_private *rp = netdev_priv(dev);
1188 int i;
1189
1190 /* Free all the skbuffs in the Rx queue. */
1191 for (i = 0; i < RX_RING_SIZE; i++) {
1192 rp->rx_ring[i].rx_status = 0;
1193 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1194 if (rp->rx_skbuff[i]) {
1195 pci_unmap_single(rp->pdev,
1196 rp->rx_skbuff_dma[i],
1197 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1198 dev_kfree_skb(rp->rx_skbuff[i]);
1199 }
1200 rp->rx_skbuff[i] = NULL;
1201 }
1202 }
1203
1204 static void alloc_tbufs(struct net_device* dev)
1205 {
1206 struct rhine_private *rp = netdev_priv(dev);
1207 dma_addr_t next;
1208 int i;
1209
1210 rp->dirty_tx = rp->cur_tx = 0;
1211 next = rp->tx_ring_dma;
1212 for (i = 0; i < TX_RING_SIZE; i++) {
1213 rp->tx_skbuff[i] = NULL;
1214 rp->tx_ring[i].tx_status = 0;
1215 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1216 next += sizeof(struct tx_desc);
1217 rp->tx_ring[i].next_desc = cpu_to_le32(next);
1218 if (rp->quirks & rqRhineI)
1219 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
1220 }
1221 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
1222
1223 }
1224
1225 static void free_tbufs(struct net_device* dev)
1226 {
1227 struct rhine_private *rp = netdev_priv(dev);
1228 int i;
1229
1230 for (i = 0; i < TX_RING_SIZE; i++) {
1231 rp->tx_ring[i].tx_status = 0;
1232 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
1233 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1234 if (rp->tx_skbuff[i]) {
1235 if (rp->tx_skbuff_dma[i]) {
1236 pci_unmap_single(rp->pdev,
1237 rp->tx_skbuff_dma[i],
1238 rp->tx_skbuff[i]->len,
1239 PCI_DMA_TODEVICE);
1240 }
1241 dev_kfree_skb(rp->tx_skbuff[i]);
1242 }
1243 rp->tx_skbuff[i] = NULL;
1244 rp->tx_buf[i] = NULL;
1245 }
1246 }
1247
1248 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1249 {
1250 struct rhine_private *rp = netdev_priv(dev);
1251 void __iomem *ioaddr = rp->base;
1252
1253 mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
1254
1255 if (rp->mii_if.full_duplex)
1256 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1257 ioaddr + ChipCmd1);
1258 else
1259 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1260 ioaddr + ChipCmd1);
1261
1262 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1263 rp->mii_if.force_media, netif_carrier_ok(dev));
1264 }
1265
1266 /* Called after status of force_media possibly changed */
1267 static void rhine_set_carrier(struct mii_if_info *mii)
1268 {
1269 struct net_device *dev = mii->dev;
1270 struct rhine_private *rp = netdev_priv(dev);
1271
1272 if (mii->force_media) {
1273 /* autoneg is off: Link is always assumed to be up */
1274 if (!netif_carrier_ok(dev))
1275 netif_carrier_on(dev);
1276 } else /* Let MMI library update carrier status */
1277 rhine_check_media(dev, 0);
1278
1279 netif_info(rp, link, dev, "force_media %d, carrier %d\n",
1280 mii->force_media, netif_carrier_ok(dev));
1281 }
1282
1283 /**
1284 * rhine_set_cam - set CAM multicast filters
1285 * @ioaddr: register block of this Rhine
1286 * @idx: multicast CAM index [0..MCAM_SIZE-1]
1287 * @addr: multicast address (6 bytes)
1288 *
1289 * Load addresses into multicast filters.
1290 */
1291 static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
1292 {
1293 int i;
1294
1295 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1296 wmb();
1297
1298 /* Paranoid -- idx out of range should never happen */
1299 idx &= (MCAM_SIZE - 1);
1300
1301 iowrite8((u8) idx, ioaddr + CamAddr);
1302
1303 for (i = 0; i < 6; i++, addr++)
1304 iowrite8(*addr, ioaddr + MulticastFilter0 + i);
1305 udelay(10);
1306 wmb();
1307
1308 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1309 udelay(10);
1310
1311 iowrite8(0, ioaddr + CamCon);
1312 }
1313
1314 /**
1315 * rhine_set_vlan_cam - set CAM VLAN filters
1316 * @ioaddr: register block of this Rhine
1317 * @idx: VLAN CAM index [0..VCAM_SIZE-1]
1318 * @addr: VLAN ID (2 bytes)
1319 *
1320 * Load addresses into VLAN filters.
1321 */
1322 static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
1323 {
1324 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1325 wmb();
1326
1327 /* Paranoid -- idx out of range should never happen */
1328 idx &= (VCAM_SIZE - 1);
1329
1330 iowrite8((u8) idx, ioaddr + CamAddr);
1331
1332 iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
1333 udelay(10);
1334 wmb();
1335
1336 iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
1337 udelay(10);
1338
1339 iowrite8(0, ioaddr + CamCon);
1340 }
1341
1342 /**
1343 * rhine_set_cam_mask - set multicast CAM mask
1344 * @ioaddr: register block of this Rhine
1345 * @mask: multicast CAM mask
1346 *
1347 * Mask sets multicast filters active/inactive.
1348 */
1349 static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
1350 {
1351 iowrite8(CAMC_CAMEN, ioaddr + CamCon);
1352 wmb();
1353
1354 /* write mask */
1355 iowrite32(mask, ioaddr + CamMask);
1356
1357 /* disable CAMEN */
1358 iowrite8(0, ioaddr + CamCon);
1359 }
1360
1361 /**
1362 * rhine_set_vlan_cam_mask - set VLAN CAM mask
1363 * @ioaddr: register block of this Rhine
1364 * @mask: VLAN CAM mask
1365 *
1366 * Mask sets VLAN filters active/inactive.
1367 */
1368 static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
1369 {
1370 iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
1371 wmb();
1372
1373 /* write mask */
1374 iowrite32(mask, ioaddr + CamMask);
1375
1376 /* disable CAMEN */
1377 iowrite8(0, ioaddr + CamCon);
1378 }
1379
1380 /**
1381 * rhine_init_cam_filter - initialize CAM filters
1382 * @dev: network device
1383 *
1384 * Initialize (disable) hardware VLAN and multicast support on this
1385 * Rhine.
1386 */
1387 static void rhine_init_cam_filter(struct net_device *dev)
1388 {
1389 struct rhine_private *rp = netdev_priv(dev);
1390 void __iomem *ioaddr = rp->base;
1391
1392 /* Disable all CAMs */
1393 rhine_set_vlan_cam_mask(ioaddr, 0);
1394 rhine_set_cam_mask(ioaddr, 0);
1395
1396 /* disable hardware VLAN support */
1397 BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
1398 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
1399 }
1400
1401 /**
1402 * rhine_update_vcam - update VLAN CAM filters
1403 * @rp: rhine_private data of this Rhine
1404 *
1405 * Update VLAN CAM filters to match configuration change.
1406 */
1407 static void rhine_update_vcam(struct net_device *dev)
1408 {
1409 struct rhine_private *rp = netdev_priv(dev);
1410 void __iomem *ioaddr = rp->base;
1411 u16 vid;
1412 u32 vCAMmask = 0; /* 32 vCAMs (6105M and better) */
1413 unsigned int i = 0;
1414
1415 for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
1416 rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
1417 vCAMmask |= 1 << i;
1418 if (++i >= VCAM_SIZE)
1419 break;
1420 }
1421 rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
1422 }
1423
1424 static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1425 {
1426 struct rhine_private *rp = netdev_priv(dev);
1427
1428 spin_lock_bh(&rp->lock);
1429 set_bit(vid, rp->active_vlans);
1430 rhine_update_vcam(dev);
1431 spin_unlock_bh(&rp->lock);
1432 return 0;
1433 }
1434
1435 static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
1436 {
1437 struct rhine_private *rp = netdev_priv(dev);
1438
1439 spin_lock_bh(&rp->lock);
1440 clear_bit(vid, rp->active_vlans);
1441 rhine_update_vcam(dev);
1442 spin_unlock_bh(&rp->lock);
1443 return 0;
1444 }
1445
1446 static void init_registers(struct net_device *dev)
1447 {
1448 struct rhine_private *rp = netdev_priv(dev);
1449 void __iomem *ioaddr = rp->base;
1450 int i;
1451
1452 for (i = 0; i < 6; i++)
1453 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1454
1455 /* Initialize other registers. */
1456 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1457 /* Configure initial FIFO thresholds. */
1458 iowrite8(0x20, ioaddr + TxConfig);
1459 rp->tx_thresh = 0x20;
1460 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1461
1462 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1463 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1464
1465 rhine_set_rx_mode(dev);
1466
1467 if (rp->pdev->revision >= VT6105M)
1468 rhine_init_cam_filter(dev);
1469
1470 napi_enable(&rp->napi);
1471
1472 iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
1473
1474 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1475 ioaddr + ChipCmd);
1476 rhine_check_media(dev, 1);
1477 }
1478
1479 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1480 static void rhine_enable_linkmon(struct rhine_private *rp)
1481 {
1482 void __iomem *ioaddr = rp->base;
1483
1484 iowrite8(0, ioaddr + MIICmd);
1485 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1486 iowrite8(0x80, ioaddr + MIICmd);
1487
1488 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1489
1490 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1491 }
1492
1493 /* Disable MII link status auto-polling (required for MDIO access) */
1494 static void rhine_disable_linkmon(struct rhine_private *rp)
1495 {
1496 void __iomem *ioaddr = rp->base;
1497
1498 iowrite8(0, ioaddr + MIICmd);
1499
1500 if (rp->quirks & rqRhineI) {
1501 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1502
1503 /* Can be called from ISR. Evil. */
1504 mdelay(1);
1505
1506 /* 0x80 must be set immediately before turning it off */
1507 iowrite8(0x80, ioaddr + MIICmd);
1508
1509 rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
1510
1511 /* Heh. Now clear 0x80 again. */
1512 iowrite8(0, ioaddr + MIICmd);
1513 }
1514 else
1515 rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
1516 }
1517
1518 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1519
1520 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1521 {
1522 struct rhine_private *rp = netdev_priv(dev);
1523 void __iomem *ioaddr = rp->base;
1524 int result;
1525
1526 rhine_disable_linkmon(rp);
1527
1528 /* rhine_disable_linkmon already cleared MIICmd */
1529 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1530 iowrite8(regnum, ioaddr + MIIRegAddr);
1531 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1532 rhine_wait_bit_low(rp, MIICmd, 0x40);
1533 result = ioread16(ioaddr + MIIData);
1534
1535 rhine_enable_linkmon(rp);
1536 return result;
1537 }
1538
1539 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1540 {
1541 struct rhine_private *rp = netdev_priv(dev);
1542 void __iomem *ioaddr = rp->base;
1543
1544 rhine_disable_linkmon(rp);
1545
1546 /* rhine_disable_linkmon already cleared MIICmd */
1547 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1548 iowrite8(regnum, ioaddr + MIIRegAddr);
1549 iowrite16(value, ioaddr + MIIData);
1550 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1551 rhine_wait_bit_low(rp, MIICmd, 0x20);
1552
1553 rhine_enable_linkmon(rp);
1554 }
1555
1556 static void rhine_task_disable(struct rhine_private *rp)
1557 {
1558 mutex_lock(&rp->task_lock);
1559 rp->task_enable = false;
1560 mutex_unlock(&rp->task_lock);
1561
1562 cancel_work_sync(&rp->slow_event_task);
1563 cancel_work_sync(&rp->reset_task);
1564 }
1565
1566 static void rhine_task_enable(struct rhine_private *rp)
1567 {
1568 mutex_lock(&rp->task_lock);
1569 rp->task_enable = true;
1570 mutex_unlock(&rp->task_lock);
1571 }
1572
1573 static int rhine_open(struct net_device *dev)
1574 {
1575 struct rhine_private *rp = netdev_priv(dev);
1576 void __iomem *ioaddr = rp->base;
1577 int rc;
1578
1579 rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name,
1580 dev);
1581 if (rc)
1582 return rc;
1583
1584 netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->pdev->irq);
1585
1586 rc = alloc_ring(dev);
1587 if (rc) {
1588 free_irq(rp->pdev->irq, dev);
1589 return rc;
1590 }
1591 alloc_rbufs(dev);
1592 alloc_tbufs(dev);
1593 rhine_chip_reset(dev);
1594 rhine_task_enable(rp);
1595 init_registers(dev);
1596
1597 netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
1598 __func__, ioread16(ioaddr + ChipCmd),
1599 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1600
1601 netif_start_queue(dev);
1602
1603 return 0;
1604 }
1605
1606 static void rhine_reset_task(struct work_struct *work)
1607 {
1608 struct rhine_private *rp = container_of(work, struct rhine_private,
1609 reset_task);
1610 struct net_device *dev = rp->dev;
1611
1612 mutex_lock(&rp->task_lock);
1613
1614 if (!rp->task_enable)
1615 goto out_unlock;
1616
1617 napi_disable(&rp->napi);
1618 spin_lock_bh(&rp->lock);
1619
1620 /* clear all descriptors */
1621 free_tbufs(dev);
1622 free_rbufs(dev);
1623 alloc_tbufs(dev);
1624 alloc_rbufs(dev);
1625
1626 /* Reinitialize the hardware. */
1627 rhine_chip_reset(dev);
1628 init_registers(dev);
1629
1630 spin_unlock_bh(&rp->lock);
1631
1632 dev->trans_start = jiffies; /* prevent tx timeout */
1633 dev->stats.tx_errors++;
1634 netif_wake_queue(dev);
1635
1636 out_unlock:
1637 mutex_unlock(&rp->task_lock);
1638 }
1639
1640 static void rhine_tx_timeout(struct net_device *dev)
1641 {
1642 struct rhine_private *rp = netdev_priv(dev);
1643 void __iomem *ioaddr = rp->base;
1644
1645 netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
1646 ioread16(ioaddr + IntrStatus),
1647 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1648
1649 schedule_work(&rp->reset_task);
1650 }
1651
1652 static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
1653 struct net_device *dev)
1654 {
1655 struct rhine_private *rp = netdev_priv(dev);
1656 void __iomem *ioaddr = rp->base;
1657 unsigned entry;
1658
1659 /* Caution: the write order is important here, set the field
1660 with the "ownership" bits last. */
1661
1662 /* Calculate the next Tx descriptor entry. */
1663 entry = rp->cur_tx % TX_RING_SIZE;
1664
1665 if (skb_padto(skb, ETH_ZLEN))
1666 return NETDEV_TX_OK;
1667
1668 rp->tx_skbuff[entry] = skb;
1669
1670 if ((rp->quirks & rqRhineI) &&
1671 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1672 /* Must use alignment buffer. */
1673 if (skb->len > PKT_BUF_SZ) {
1674 /* packet too long, drop it */
1675 dev_kfree_skb(skb);
1676 rp->tx_skbuff[entry] = NULL;
1677 dev->stats.tx_dropped++;
1678 return NETDEV_TX_OK;
1679 }
1680
1681 /* Padding is not copied and so must be redone. */
1682 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1683 if (skb->len < ETH_ZLEN)
1684 memset(rp->tx_buf[entry] + skb->len, 0,
1685 ETH_ZLEN - skb->len);
1686 rp->tx_skbuff_dma[entry] = 0;
1687 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1688 (rp->tx_buf[entry] -
1689 rp->tx_bufs));
1690 } else {
1691 rp->tx_skbuff_dma[entry] =
1692 pci_map_single(rp->pdev, skb->data, skb->len,
1693 PCI_DMA_TODEVICE);
1694 if (dma_mapping_error(&rp->pdev->dev, rp->tx_skbuff_dma[entry])) {
1695 dev_kfree_skb(skb);
1696 rp->tx_skbuff_dma[entry] = 0;
1697 dev->stats.tx_dropped++;
1698 return NETDEV_TX_OK;
1699 }
1700 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1701 }
1702
1703 rp->tx_ring[entry].desc_length =
1704 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1705
1706 if (unlikely(vlan_tx_tag_present(skb))) {
1707 rp->tx_ring[entry].tx_status = cpu_to_le32((vlan_tx_tag_get(skb)) << 16);
1708 /* request tagging */
1709 rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
1710 }
1711 else
1712 rp->tx_ring[entry].tx_status = 0;
1713
1714 /* lock eth irq */
1715 wmb();
1716 rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
1717 wmb();
1718
1719 rp->cur_tx++;
1720
1721 /* Non-x86 Todo: explicitly flush cache lines here. */
1722
1723 if (vlan_tx_tag_present(skb))
1724 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
1725 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
1726
1727 /* Wake the potentially-idle transmit channel */
1728 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1729 ioaddr + ChipCmd1);
1730 IOSYNC;
1731
1732 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1733 netif_stop_queue(dev);
1734
1735 netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
1736 rp->cur_tx - 1, entry);
1737
1738 return NETDEV_TX_OK;
1739 }
1740
1741 static void rhine_irq_disable(struct rhine_private *rp)
1742 {
1743 iowrite16(0x0000, rp->base + IntrEnable);
1744 mmiowb();
1745 }
1746
1747 /* The interrupt handler does all of the Rx thread work and cleans up
1748 after the Tx thread. */
1749 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1750 {
1751 struct net_device *dev = dev_instance;
1752 struct rhine_private *rp = netdev_priv(dev);
1753 u32 status;
1754 int handled = 0;
1755
1756 status = rhine_get_events(rp);
1757
1758 netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
1759
1760 if (status & RHINE_EVENT) {
1761 handled = 1;
1762
1763 rhine_irq_disable(rp);
1764 napi_schedule(&rp->napi);
1765 }
1766
1767 if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
1768 netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
1769 status);
1770 }
1771
1772 return IRQ_RETVAL(handled);
1773 }
1774
1775 /* This routine is logically part of the interrupt handler, but isolated
1776 for clarity. */
1777 static void rhine_tx(struct net_device *dev)
1778 {
1779 struct rhine_private *rp = netdev_priv(dev);
1780 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1781
1782 /* find and cleanup dirty tx descriptors */
1783 while (rp->dirty_tx != rp->cur_tx) {
1784 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1785 netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
1786 entry, txstatus);
1787 if (txstatus & DescOwn)
1788 break;
1789 if (txstatus & 0x8000) {
1790 netif_dbg(rp, tx_done, dev,
1791 "Transmit error, Tx status %08x\n", txstatus);
1792 dev->stats.tx_errors++;
1793 if (txstatus & 0x0400)
1794 dev->stats.tx_carrier_errors++;
1795 if (txstatus & 0x0200)
1796 dev->stats.tx_window_errors++;
1797 if (txstatus & 0x0100)
1798 dev->stats.tx_aborted_errors++;
1799 if (txstatus & 0x0080)
1800 dev->stats.tx_heartbeat_errors++;
1801 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1802 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1803 dev->stats.tx_fifo_errors++;
1804 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1805 break; /* Keep the skb - we try again */
1806 }
1807 /* Transmitter restarted in 'abnormal' handler. */
1808 } else {
1809 if (rp->quirks & rqRhineI)
1810 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1811 else
1812 dev->stats.collisions += txstatus & 0x0F;
1813 netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
1814 (txstatus >> 3) & 0xF, txstatus & 0xF);
1815
1816 u64_stats_update_begin(&rp->tx_stats.syncp);
1817 rp->tx_stats.bytes += rp->tx_skbuff[entry]->len;
1818 rp->tx_stats.packets++;
1819 u64_stats_update_end(&rp->tx_stats.syncp);
1820 }
1821 /* Free the original skb. */
1822 if (rp->tx_skbuff_dma[entry]) {
1823 pci_unmap_single(rp->pdev,
1824 rp->tx_skbuff_dma[entry],
1825 rp->tx_skbuff[entry]->len,
1826 PCI_DMA_TODEVICE);
1827 }
1828 dev_kfree_skb(rp->tx_skbuff[entry]);
1829 rp->tx_skbuff[entry] = NULL;
1830 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1831 }
1832 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1833 netif_wake_queue(dev);
1834 }
1835
1836 /**
1837 * rhine_get_vlan_tci - extract TCI from Rx data buffer
1838 * @skb: pointer to sk_buff
1839 * @data_size: used data area of the buffer including CRC
1840 *
1841 * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
1842 * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
1843 * aligned following the CRC.
1844 */
1845 static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
1846 {
1847 u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
1848 return be16_to_cpup((__be16 *)trailer);
1849 }
1850
1851 /* Process up to limit frames from receive ring */
1852 static int rhine_rx(struct net_device *dev, int limit)
1853 {
1854 struct rhine_private *rp = netdev_priv(dev);
1855 int count;
1856 int entry = rp->cur_rx % RX_RING_SIZE;
1857
1858 netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
1859 entry, le32_to_cpu(rp->rx_head_desc->rx_status));
1860
1861 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1862 for (count = 0; count < limit; ++count) {
1863 struct rx_desc *desc = rp->rx_head_desc;
1864 u32 desc_status = le32_to_cpu(desc->rx_status);
1865 u32 desc_length = le32_to_cpu(desc->desc_length);
1866 int data_size = desc_status >> 16;
1867
1868 if (desc_status & DescOwn)
1869 break;
1870
1871 netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
1872 desc_status);
1873
1874 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1875 if ((desc_status & RxWholePkt) != RxWholePkt) {
1876 netdev_warn(dev,
1877 "Oversized Ethernet frame spanned multiple buffers, "
1878 "entry %#x length %d status %08x!\n",
1879 entry, data_size,
1880 desc_status);
1881 netdev_warn(dev,
1882 "Oversized Ethernet frame %p vs %p\n",
1883 rp->rx_head_desc,
1884 &rp->rx_ring[entry]);
1885 dev->stats.rx_length_errors++;
1886 } else if (desc_status & RxErr) {
1887 /* There was a error. */
1888 netif_dbg(rp, rx_err, dev,
1889 "%s() Rx error %08x\n", __func__,
1890 desc_status);
1891 dev->stats.rx_errors++;
1892 if (desc_status & 0x0030)
1893 dev->stats.rx_length_errors++;
1894 if (desc_status & 0x0048)
1895 dev->stats.rx_fifo_errors++;
1896 if (desc_status & 0x0004)
1897 dev->stats.rx_frame_errors++;
1898 if (desc_status & 0x0002) {
1899 /* this can also be updated outside the interrupt handler */
1900 spin_lock(&rp->lock);
1901 dev->stats.rx_crc_errors++;
1902 spin_unlock(&rp->lock);
1903 }
1904 }
1905 } else {
1906 struct sk_buff *skb = NULL;
1907 /* Length should omit the CRC */
1908 int pkt_len = data_size - 4;
1909 u16 vlan_tci = 0;
1910
1911 /* Check if the packet is long enough to accept without
1912 copying to a minimally-sized skbuff. */
1913 if (pkt_len < rx_copybreak)
1914 skb = netdev_alloc_skb_ip_align(dev, pkt_len);
1915 if (skb) {
1916 pci_dma_sync_single_for_cpu(rp->pdev,
1917 rp->rx_skbuff_dma[entry],
1918 rp->rx_buf_sz,
1919 PCI_DMA_FROMDEVICE);
1920
1921 skb_copy_to_linear_data(skb,
1922 rp->rx_skbuff[entry]->data,
1923 pkt_len);
1924 skb_put(skb, pkt_len);
1925 pci_dma_sync_single_for_device(rp->pdev,
1926 rp->rx_skbuff_dma[entry],
1927 rp->rx_buf_sz,
1928 PCI_DMA_FROMDEVICE);
1929 } else {
1930 skb = rp->rx_skbuff[entry];
1931 if (skb == NULL) {
1932 netdev_err(dev, "Inconsistent Rx descriptor chain\n");
1933 break;
1934 }
1935 rp->rx_skbuff[entry] = NULL;
1936 skb_put(skb, pkt_len);
1937 pci_unmap_single(rp->pdev,
1938 rp->rx_skbuff_dma[entry],
1939 rp->rx_buf_sz,
1940 PCI_DMA_FROMDEVICE);
1941 }
1942
1943 if (unlikely(desc_length & DescTag))
1944 vlan_tci = rhine_get_vlan_tci(skb, data_size);
1945
1946 skb->protocol = eth_type_trans(skb, dev);
1947
1948 if (unlikely(desc_length & DescTag))
1949 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
1950 netif_receive_skb(skb);
1951
1952 u64_stats_update_begin(&rp->rx_stats.syncp);
1953 rp->rx_stats.bytes += pkt_len;
1954 rp->rx_stats.packets++;
1955 u64_stats_update_end(&rp->rx_stats.syncp);
1956 }
1957 entry = (++rp->cur_rx) % RX_RING_SIZE;
1958 rp->rx_head_desc = &rp->rx_ring[entry];
1959 }
1960
1961 /* Refill the Rx ring buffers. */
1962 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1963 struct sk_buff *skb;
1964 entry = rp->dirty_rx % RX_RING_SIZE;
1965 if (rp->rx_skbuff[entry] == NULL) {
1966 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1967 rp->rx_skbuff[entry] = skb;
1968 if (skb == NULL)
1969 break; /* Better luck next round. */
1970 rp->rx_skbuff_dma[entry] =
1971 pci_map_single(rp->pdev, skb->data,
1972 rp->rx_buf_sz,
1973 PCI_DMA_FROMDEVICE);
1974 if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[entry])) {
1975 dev_kfree_skb(skb);
1976 rp->rx_skbuff_dma[entry] = 0;
1977 break;
1978 }
1979 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1980 }
1981 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1982 }
1983
1984 return count;
1985 }
1986
1987 static void rhine_restart_tx(struct net_device *dev) {
1988 struct rhine_private *rp = netdev_priv(dev);
1989 void __iomem *ioaddr = rp->base;
1990 int entry = rp->dirty_tx % TX_RING_SIZE;
1991 u32 intr_status;
1992
1993 /*
1994 * If new errors occurred, we need to sort them out before doing Tx.
1995 * In that case the ISR will be back here RSN anyway.
1996 */
1997 intr_status = rhine_get_events(rp);
1998
1999 if ((intr_status & IntrTxErrSummary) == 0) {
2000
2001 /* We know better than the chip where it should continue. */
2002 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
2003 ioaddr + TxRingPtr);
2004
2005 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
2006 ioaddr + ChipCmd);
2007
2008 if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
2009 /* Tx queues are bits 7-0 (first Tx queue: bit 7) */
2010 BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
2011
2012 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
2013 ioaddr + ChipCmd1);
2014 IOSYNC;
2015 }
2016 else {
2017 /* This should never happen */
2018 netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
2019 intr_status);
2020 }
2021
2022 }
2023
2024 static void rhine_slow_event_task(struct work_struct *work)
2025 {
2026 struct rhine_private *rp =
2027 container_of(work, struct rhine_private, slow_event_task);
2028 struct net_device *dev = rp->dev;
2029 u32 intr_status;
2030
2031 mutex_lock(&rp->task_lock);
2032
2033 if (!rp->task_enable)
2034 goto out_unlock;
2035
2036 intr_status = rhine_get_events(rp);
2037 rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
2038
2039 if (intr_status & IntrLinkChange)
2040 rhine_check_media(dev, 0);
2041
2042 if (intr_status & IntrPCIErr)
2043 netif_warn(rp, hw, dev, "PCI error\n");
2044
2045 iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
2046
2047 out_unlock:
2048 mutex_unlock(&rp->task_lock);
2049 }
2050
2051 static struct rtnl_link_stats64 *
2052 rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
2053 {
2054 struct rhine_private *rp = netdev_priv(dev);
2055 unsigned int start;
2056
2057 spin_lock_bh(&rp->lock);
2058 rhine_update_rx_crc_and_missed_errord(rp);
2059 spin_unlock_bh(&rp->lock);
2060
2061 netdev_stats_to_stats64(stats, &dev->stats);
2062
2063 do {
2064 start = u64_stats_fetch_begin_bh(&rp->rx_stats.syncp);
2065 stats->rx_packets = rp->rx_stats.packets;
2066 stats->rx_bytes = rp->rx_stats.bytes;
2067 } while (u64_stats_fetch_retry_bh(&rp->rx_stats.syncp, start));
2068
2069 do {
2070 start = u64_stats_fetch_begin_bh(&rp->tx_stats.syncp);
2071 stats->tx_packets = rp->tx_stats.packets;
2072 stats->tx_bytes = rp->tx_stats.bytes;
2073 } while (u64_stats_fetch_retry_bh(&rp->tx_stats.syncp, start));
2074
2075 return stats;
2076 }
2077
2078 static void rhine_set_rx_mode(struct net_device *dev)
2079 {
2080 struct rhine_private *rp = netdev_priv(dev);
2081 void __iomem *ioaddr = rp->base;
2082 u32 mc_filter[2]; /* Multicast hash filter */
2083 u8 rx_mode = 0x0C; /* Note: 0x02=accept runt, 0x01=accept errs */
2084 struct netdev_hw_addr *ha;
2085
2086 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2087 rx_mode = 0x1C;
2088 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2089 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2090 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2091 (dev->flags & IFF_ALLMULTI)) {
2092 /* Too many to match, or accept all multicasts. */
2093 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
2094 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
2095 } else if (rp->pdev->revision >= VT6105M) {
2096 int i = 0;
2097 u32 mCAMmask = 0; /* 32 mCAMs (6105M and better) */
2098 netdev_for_each_mc_addr(ha, dev) {
2099 if (i == MCAM_SIZE)
2100 break;
2101 rhine_set_cam(ioaddr, i, ha->addr);
2102 mCAMmask |= 1 << i;
2103 i++;
2104 }
2105 rhine_set_cam_mask(ioaddr, mCAMmask);
2106 } else {
2107 memset(mc_filter, 0, sizeof(mc_filter));
2108 netdev_for_each_mc_addr(ha, dev) {
2109 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
2110
2111 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
2112 }
2113 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
2114 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
2115 }
2116 /* enable/disable VLAN receive filtering */
2117 if (rp->pdev->revision >= VT6105M) {
2118 if (dev->flags & IFF_PROMISC)
2119 BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2120 else
2121 BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
2122 }
2123 BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
2124 }
2125
2126 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2127 {
2128 struct rhine_private *rp = netdev_priv(dev);
2129
2130 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2131 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2132 strlcpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info));
2133 }
2134
2135 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2136 {
2137 struct rhine_private *rp = netdev_priv(dev);
2138 int rc;
2139
2140 mutex_lock(&rp->task_lock);
2141 rc = mii_ethtool_gset(&rp->mii_if, cmd);
2142 mutex_unlock(&rp->task_lock);
2143
2144 return rc;
2145 }
2146
2147 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2148 {
2149 struct rhine_private *rp = netdev_priv(dev);
2150 int rc;
2151
2152 mutex_lock(&rp->task_lock);
2153 rc = mii_ethtool_sset(&rp->mii_if, cmd);
2154 rhine_set_carrier(&rp->mii_if);
2155 mutex_unlock(&rp->task_lock);
2156
2157 return rc;
2158 }
2159
2160 static int netdev_nway_reset(struct net_device *dev)
2161 {
2162 struct rhine_private *rp = netdev_priv(dev);
2163
2164 return mii_nway_restart(&rp->mii_if);
2165 }
2166
2167 static u32 netdev_get_link(struct net_device *dev)
2168 {
2169 struct rhine_private *rp = netdev_priv(dev);
2170
2171 return mii_link_ok(&rp->mii_if);
2172 }
2173
2174 static u32 netdev_get_msglevel(struct net_device *dev)
2175 {
2176 struct rhine_private *rp = netdev_priv(dev);
2177
2178 return rp->msg_enable;
2179 }
2180
2181 static void netdev_set_msglevel(struct net_device *dev, u32 value)
2182 {
2183 struct rhine_private *rp = netdev_priv(dev);
2184
2185 rp->msg_enable = value;
2186 }
2187
2188 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2189 {
2190 struct rhine_private *rp = netdev_priv(dev);
2191
2192 if (!(rp->quirks & rqWOL))
2193 return;
2194
2195 spin_lock_irq(&rp->lock);
2196 wol->supported = WAKE_PHY | WAKE_MAGIC |
2197 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2198 wol->wolopts = rp->wolopts;
2199 spin_unlock_irq(&rp->lock);
2200 }
2201
2202 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2203 {
2204 struct rhine_private *rp = netdev_priv(dev);
2205 u32 support = WAKE_PHY | WAKE_MAGIC |
2206 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
2207
2208 if (!(rp->quirks & rqWOL))
2209 return -EINVAL;
2210
2211 if (wol->wolopts & ~support)
2212 return -EINVAL;
2213
2214 spin_lock_irq(&rp->lock);
2215 rp->wolopts = wol->wolopts;
2216 spin_unlock_irq(&rp->lock);
2217
2218 return 0;
2219 }
2220
2221 static const struct ethtool_ops netdev_ethtool_ops = {
2222 .get_drvinfo = netdev_get_drvinfo,
2223 .get_settings = netdev_get_settings,
2224 .set_settings = netdev_set_settings,
2225 .nway_reset = netdev_nway_reset,
2226 .get_link = netdev_get_link,
2227 .get_msglevel = netdev_get_msglevel,
2228 .set_msglevel = netdev_set_msglevel,
2229 .get_wol = rhine_get_wol,
2230 .set_wol = rhine_set_wol,
2231 };
2232
2233 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2234 {
2235 struct rhine_private *rp = netdev_priv(dev);
2236 int rc;
2237
2238 if (!netif_running(dev))
2239 return -EINVAL;
2240
2241 mutex_lock(&rp->task_lock);
2242 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
2243 rhine_set_carrier(&rp->mii_if);
2244 mutex_unlock(&rp->task_lock);
2245
2246 return rc;
2247 }
2248
2249 static int rhine_close(struct net_device *dev)
2250 {
2251 struct rhine_private *rp = netdev_priv(dev);
2252 void __iomem *ioaddr = rp->base;
2253
2254 rhine_task_disable(rp);
2255 napi_disable(&rp->napi);
2256 netif_stop_queue(dev);
2257
2258 netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
2259 ioread16(ioaddr + ChipCmd));
2260
2261 /* Switch to loopback mode to avoid hardware races. */
2262 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
2263
2264 rhine_irq_disable(rp);
2265
2266 /* Stop the chip's Tx and Rx processes. */
2267 iowrite16(CmdStop, ioaddr + ChipCmd);
2268
2269 free_irq(rp->pdev->irq, dev);
2270 free_rbufs(dev);
2271 free_tbufs(dev);
2272 free_ring(dev);
2273
2274 return 0;
2275 }
2276
2277
2278 static void rhine_remove_one(struct pci_dev *pdev)
2279 {
2280 struct net_device *dev = pci_get_drvdata(pdev);
2281 struct rhine_private *rp = netdev_priv(dev);
2282
2283 unregister_netdev(dev);
2284
2285 pci_iounmap(pdev, rp->base);
2286 pci_release_regions(pdev);
2287
2288 free_netdev(dev);
2289 pci_disable_device(pdev);
2290 pci_set_drvdata(pdev, NULL);
2291 }
2292
2293 static void rhine_shutdown (struct pci_dev *pdev)
2294 {
2295 struct net_device *dev = pci_get_drvdata(pdev);
2296 struct rhine_private *rp = netdev_priv(dev);
2297 void __iomem *ioaddr = rp->base;
2298
2299 if (!(rp->quirks & rqWOL))
2300 return; /* Nothing to do for non-WOL adapters */
2301
2302 rhine_power_init(dev);
2303
2304 /* Make sure we use pattern 0, 1 and not 4, 5 */
2305 if (rp->quirks & rq6patterns)
2306 iowrite8(0x04, ioaddr + WOLcgClr);
2307
2308 spin_lock(&rp->lock);
2309
2310 if (rp->wolopts & WAKE_MAGIC) {
2311 iowrite8(WOLmagic, ioaddr + WOLcrSet);
2312 /*
2313 * Turn EEPROM-controlled wake-up back on -- some hardware may
2314 * not cooperate otherwise.
2315 */
2316 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
2317 }
2318
2319 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
2320 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
2321
2322 if (rp->wolopts & WAKE_PHY)
2323 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
2324
2325 if (rp->wolopts & WAKE_UCAST)
2326 iowrite8(WOLucast, ioaddr + WOLcrSet);
2327
2328 if (rp->wolopts) {
2329 /* Enable legacy WOL (for old motherboards) */
2330 iowrite8(0x01, ioaddr + PwcfgSet);
2331 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
2332 }
2333
2334 spin_unlock(&rp->lock);
2335
2336 if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
2337 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
2338
2339 pci_wake_from_d3(pdev, true);
2340 pci_set_power_state(pdev, PCI_D3hot);
2341 }
2342 }
2343
2344 #ifdef CONFIG_PM_SLEEP
2345 static int rhine_suspend(struct device *device)
2346 {
2347 struct pci_dev *pdev = to_pci_dev(device);
2348 struct net_device *dev = pci_get_drvdata(pdev);
2349 struct rhine_private *rp = netdev_priv(dev);
2350
2351 if (!netif_running(dev))
2352 return 0;
2353
2354 rhine_task_disable(rp);
2355 rhine_irq_disable(rp);
2356 napi_disable(&rp->napi);
2357
2358 netif_device_detach(dev);
2359
2360 rhine_shutdown(pdev);
2361
2362 return 0;
2363 }
2364
2365 static int rhine_resume(struct device *device)
2366 {
2367 struct pci_dev *pdev = to_pci_dev(device);
2368 struct net_device *dev = pci_get_drvdata(pdev);
2369 struct rhine_private *rp = netdev_priv(dev);
2370
2371 if (!netif_running(dev))
2372 return 0;
2373
2374 #ifdef USE_MMIO
2375 enable_mmio(rp->pioaddr, rp->quirks);
2376 #endif
2377 rhine_power_init(dev);
2378 free_tbufs(dev);
2379 free_rbufs(dev);
2380 alloc_tbufs(dev);
2381 alloc_rbufs(dev);
2382 rhine_task_enable(rp);
2383 spin_lock_bh(&rp->lock);
2384 init_registers(dev);
2385 spin_unlock_bh(&rp->lock);
2386
2387 netif_device_attach(dev);
2388
2389 return 0;
2390 }
2391
2392 static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
2393 #define RHINE_PM_OPS (&rhine_pm_ops)
2394
2395 #else
2396
2397 #define RHINE_PM_OPS NULL
2398
2399 #endif /* !CONFIG_PM_SLEEP */
2400
2401 static struct pci_driver rhine_driver = {
2402 .name = DRV_NAME,
2403 .id_table = rhine_pci_tbl,
2404 .probe = rhine_init_one,
2405 .remove = rhine_remove_one,
2406 .shutdown = rhine_shutdown,
2407 .driver.pm = RHINE_PM_OPS,
2408 };
2409
2410 static struct dmi_system_id __initdata rhine_dmi_table[] = {
2411 {
2412 .ident = "EPIA-M",
2413 .matches = {
2414 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
2415 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2416 },
2417 },
2418 {
2419 .ident = "KV7",
2420 .matches = {
2421 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2422 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2423 },
2424 },
2425 { NULL }
2426 };
2427
2428 static int __init rhine_init(void)
2429 {
2430 /* when a module, this is printed whether or not devices are found in probe */
2431 #ifdef MODULE
2432 pr_info("%s\n", version);
2433 #endif
2434 if (dmi_check_system(rhine_dmi_table)) {
2435 /* these BIOSes fail at PXE boot if chip is in D3 */
2436 avoid_D3 = true;
2437 pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
2438 }
2439 else if (avoid_D3)
2440 pr_info("avoid_D3 set\n");
2441
2442 return pci_register_driver(&rhine_driver);
2443 }
2444
2445
2446 static void __exit rhine_cleanup(void)
2447 {
2448 pci_unregister_driver(&rhine_driver);
2449 }
2450
2451
2452 module_init(rhine_init);
2453 module_exit(rhine_cleanup);
This page took 0.084185 seconds and 5 git commands to generate.