net: vlan: rename NETIF_F_HW_VLAN_* feature flags to NETIF_F_HW_VLAN_CTAG_*
[deliverable/linux.git] / drivers / net / ethernet / via / via-velocity.c
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
5 *
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
9 *
10 * TODO
11 * rx_copybreak/alignment
12 * More testing
13 *
14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
15 * Additional fixes and clean up: Francois Romieu
16 *
17 * This source has not been verified for use in safety critical systems.
18 *
19 * Please direct queries about the revamped driver to the linux-kernel
20 * list not VIA.
21 *
22 * Original code:
23 *
24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
25 * All rights reserved.
26 *
27 * This software may be redistributed and/or modified under
28 * the terms of the GNU General Public License as published by the Free
29 * Software Foundation; either version 2 of the License, or
30 * any later version.
31 *
32 * This program is distributed in the hope that it will be useful, but
33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
35 * for more details.
36 *
37 * Author: Chuang Liang-Shing, AJ Jiang
38 *
39 * Date: Jan 24, 2003
40 *
41 * MODULE_LICENSE("GPL");
42 *
43 */
44
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/bitops.h>
48 #include <linux/init.h>
49 #include <linux/mm.h>
50 #include <linux/errno.h>
51 #include <linux/ioport.h>
52 #include <linux/pci.h>
53 #include <linux/kernel.h>
54 #include <linux/netdevice.h>
55 #include <linux/etherdevice.h>
56 #include <linux/skbuff.h>
57 #include <linux/delay.h>
58 #include <linux/timer.h>
59 #include <linux/slab.h>
60 #include <linux/interrupt.h>
61 #include <linux/string.h>
62 #include <linux/wait.h>
63 #include <linux/io.h>
64 #include <linux/if.h>
65 #include <linux/uaccess.h>
66 #include <linux/proc_fs.h>
67 #include <linux/inetdevice.h>
68 #include <linux/reboot.h>
69 #include <linux/ethtool.h>
70 #include <linux/mii.h>
71 #include <linux/in.h>
72 #include <linux/if_arp.h>
73 #include <linux/if_vlan.h>
74 #include <linux/ip.h>
75 #include <linux/tcp.h>
76 #include <linux/udp.h>
77 #include <linux/crc-ccitt.h>
78 #include <linux/crc32.h>
79
80 #include "via-velocity.h"
81
82
83 static int velocity_nics;
84 static int msglevel = MSG_LEVEL_INFO;
85
86 /**
87 * mac_get_cam_mask - Read a CAM mask
88 * @regs: register block for this velocity
89 * @mask: buffer to store mask
90 *
91 * Fetch the mask bits of the selected CAM and store them into the
92 * provided mask buffer.
93 */
94 static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
95 {
96 int i;
97
98 /* Select CAM mask */
99 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
100
101 writeb(0, &regs->CAMADDR);
102
103 /* read mask */
104 for (i = 0; i < 8; i++)
105 *mask++ = readb(&(regs->MARCAM[i]));
106
107 /* disable CAMEN */
108 writeb(0, &regs->CAMADDR);
109
110 /* Select mar */
111 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
112 }
113
114 /**
115 * mac_set_cam_mask - Set a CAM mask
116 * @regs: register block for this velocity
117 * @mask: CAM mask to load
118 *
119 * Store a new mask into a CAM
120 */
121 static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
122 {
123 int i;
124 /* Select CAM mask */
125 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
126
127 writeb(CAMADDR_CAMEN, &regs->CAMADDR);
128
129 for (i = 0; i < 8; i++)
130 writeb(*mask++, &(regs->MARCAM[i]));
131
132 /* disable CAMEN */
133 writeb(0, &regs->CAMADDR);
134
135 /* Select mar */
136 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
137 }
138
139 static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
140 {
141 int i;
142 /* Select CAM mask */
143 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
144
145 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
146
147 for (i = 0; i < 8; i++)
148 writeb(*mask++, &(regs->MARCAM[i]));
149
150 /* disable CAMEN */
151 writeb(0, &regs->CAMADDR);
152
153 /* Select mar */
154 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
155 }
156
157 /**
158 * mac_set_cam - set CAM data
159 * @regs: register block of this velocity
160 * @idx: Cam index
161 * @addr: 2 or 6 bytes of CAM data
162 *
163 * Load an address or vlan tag into a CAM
164 */
165 static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
166 {
167 int i;
168
169 /* Select CAM mask */
170 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
171
172 idx &= (64 - 1);
173
174 writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
175
176 for (i = 0; i < 6; i++)
177 writeb(*addr++, &(regs->MARCAM[i]));
178
179 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
180
181 udelay(10);
182
183 writeb(0, &regs->CAMADDR);
184
185 /* Select mar */
186 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
187 }
188
189 static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
190 const u8 *addr)
191 {
192
193 /* Select CAM mask */
194 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
195
196 idx &= (64 - 1);
197
198 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
199 writew(*((u16 *) addr), &regs->MARCAM[0]);
200
201 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
202
203 udelay(10);
204
205 writeb(0, &regs->CAMADDR);
206
207 /* Select mar */
208 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
209 }
210
211
212 /**
213 * mac_wol_reset - reset WOL after exiting low power
214 * @regs: register block of this velocity
215 *
216 * Called after we drop out of wake on lan mode in order to
217 * reset the Wake on lan features. This function doesn't restore
218 * the rest of the logic from the result of sleep/wakeup
219 */
220 static void mac_wol_reset(struct mac_regs __iomem *regs)
221 {
222
223 /* Turn off SWPTAG right after leaving power mode */
224 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
225 /* clear sticky bits */
226 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
227
228 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
229 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
230 /* disable force PME-enable */
231 writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
232 /* disable power-event config bit */
233 writew(0xFFFF, &regs->WOLCRClr);
234 /* clear power status */
235 writew(0xFFFF, &regs->WOLSRClr);
236 }
237
238 static const struct ethtool_ops velocity_ethtool_ops;
239
240 /*
241 Define module options
242 */
243
244 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
245 MODULE_LICENSE("GPL");
246 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
247
248 #define VELOCITY_PARAM(N, D) \
249 static int N[MAX_UNITS] = OPTION_DEFAULT;\
250 module_param_array(N, int, NULL, 0); \
251 MODULE_PARM_DESC(N, D);
252
253 #define RX_DESC_MIN 64
254 #define RX_DESC_MAX 255
255 #define RX_DESC_DEF 64
256 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
257
258 #define TX_DESC_MIN 16
259 #define TX_DESC_MAX 256
260 #define TX_DESC_DEF 64
261 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
262
263 #define RX_THRESH_MIN 0
264 #define RX_THRESH_MAX 3
265 #define RX_THRESH_DEF 0
266 /* rx_thresh[] is used for controlling the receive fifo threshold.
267 0: indicate the rxfifo threshold is 128 bytes.
268 1: indicate the rxfifo threshold is 512 bytes.
269 2: indicate the rxfifo threshold is 1024 bytes.
270 3: indicate the rxfifo threshold is store & forward.
271 */
272 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
273
274 #define DMA_LENGTH_MIN 0
275 #define DMA_LENGTH_MAX 7
276 #define DMA_LENGTH_DEF 6
277
278 /* DMA_length[] is used for controlling the DMA length
279 0: 8 DWORDs
280 1: 16 DWORDs
281 2: 32 DWORDs
282 3: 64 DWORDs
283 4: 128 DWORDs
284 5: 256 DWORDs
285 6: SF(flush till emply)
286 7: SF(flush till emply)
287 */
288 VELOCITY_PARAM(DMA_length, "DMA length");
289
290 #define IP_ALIG_DEF 0
291 /* IP_byte_align[] is used for IP header DWORD byte aligned
292 0: indicate the IP header won't be DWORD byte aligned.(Default) .
293 1: indicate the IP header will be DWORD byte aligned.
294 In some environment, the IP header should be DWORD byte aligned,
295 or the packet will be droped when we receive it. (eg: IPVS)
296 */
297 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
298
299 #define FLOW_CNTL_DEF 1
300 #define FLOW_CNTL_MIN 1
301 #define FLOW_CNTL_MAX 5
302
303 /* flow_control[] is used for setting the flow control ability of NIC.
304 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
305 2: enable TX flow control.
306 3: enable RX flow control.
307 4: enable RX/TX flow control.
308 5: disable
309 */
310 VELOCITY_PARAM(flow_control, "Enable flow control ability");
311
312 #define MED_LNK_DEF 0
313 #define MED_LNK_MIN 0
314 #define MED_LNK_MAX 5
315 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
316 0: indicate autonegotiation for both speed and duplex mode
317 1: indicate 100Mbps half duplex mode
318 2: indicate 100Mbps full duplex mode
319 3: indicate 10Mbps half duplex mode
320 4: indicate 10Mbps full duplex mode
321 5: indicate 1000Mbps full duplex mode
322
323 Note:
324 if EEPROM have been set to the force mode, this option is ignored
325 by driver.
326 */
327 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
328
329 #define VAL_PKT_LEN_DEF 0
330 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
331 0: Receive frame with invalid layer 2 length (Default)
332 1: Drop frame with invalid layer 2 length
333 */
334 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
335
336 #define WOL_OPT_DEF 0
337 #define WOL_OPT_MIN 0
338 #define WOL_OPT_MAX 7
339 /* wol_opts[] is used for controlling wake on lan behavior.
340 0: Wake up if recevied a magic packet. (Default)
341 1: Wake up if link status is on/off.
342 2: Wake up if recevied an arp packet.
343 4: Wake up if recevied any unicast packet.
344 Those value can be sumed up to support more than one option.
345 */
346 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
347
348 static int rx_copybreak = 200;
349 module_param(rx_copybreak, int, 0644);
350 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
351
352 /*
353 * Internal board variants. At the moment we have only one
354 */
355 static struct velocity_info_tbl chip_info_table[] = {
356 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
357 { }
358 };
359
360 /*
361 * Describe the PCI device identifiers that we support in this
362 * device driver. Used for hotplug autoloading.
363 */
364 static DEFINE_PCI_DEVICE_TABLE(velocity_id_table) = {
365 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
366 { }
367 };
368
369 MODULE_DEVICE_TABLE(pci, velocity_id_table);
370
371 /**
372 * get_chip_name - identifier to name
373 * @id: chip identifier
374 *
375 * Given a chip identifier return a suitable description. Returns
376 * a pointer a static string valid while the driver is loaded.
377 */
378 static const char *get_chip_name(enum chip_type chip_id)
379 {
380 int i;
381 for (i = 0; chip_info_table[i].name != NULL; i++)
382 if (chip_info_table[i].chip_id == chip_id)
383 break;
384 return chip_info_table[i].name;
385 }
386
387 /**
388 * velocity_remove1 - device unplug
389 * @pdev: PCI device being removed
390 *
391 * Device unload callback. Called on an unplug or on module
392 * unload for each active device that is present. Disconnects
393 * the device from the network layer and frees all the resources
394 */
395 static void velocity_remove1(struct pci_dev *pdev)
396 {
397 struct net_device *dev = pci_get_drvdata(pdev);
398 struct velocity_info *vptr = netdev_priv(dev);
399
400 unregister_netdev(dev);
401 iounmap(vptr->mac_regs);
402 pci_release_regions(pdev);
403 pci_disable_device(pdev);
404 pci_set_drvdata(pdev, NULL);
405 free_netdev(dev);
406
407 velocity_nics--;
408 }
409
410 /**
411 * velocity_set_int_opt - parser for integer options
412 * @opt: pointer to option value
413 * @val: value the user requested (or -1 for default)
414 * @min: lowest value allowed
415 * @max: highest value allowed
416 * @def: default value
417 * @name: property name
418 * @dev: device name
419 *
420 * Set an integer property in the module options. This function does
421 * all the verification and checking as well as reporting so that
422 * we don't duplicate code for each option.
423 */
424 static void velocity_set_int_opt(int *opt, int val, int min, int max, int def,
425 char *name, const char *devname)
426 {
427 if (val == -1)
428 *opt = def;
429 else if (val < min || val > max) {
430 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
431 devname, name, min, max);
432 *opt = def;
433 } else {
434 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
435 devname, name, val);
436 *opt = val;
437 }
438 }
439
440 /**
441 * velocity_set_bool_opt - parser for boolean options
442 * @opt: pointer to option value
443 * @val: value the user requested (or -1 for default)
444 * @def: default value (yes/no)
445 * @flag: numeric value to set for true.
446 * @name: property name
447 * @dev: device name
448 *
449 * Set a boolean property in the module options. This function does
450 * all the verification and checking as well as reporting so that
451 * we don't duplicate code for each option.
452 */
453 static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag,
454 char *name, const char *devname)
455 {
456 (*opt) &= (~flag);
457 if (val == -1)
458 *opt |= (def ? flag : 0);
459 else if (val < 0 || val > 1) {
460 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
461 devname, name);
462 *opt |= (def ? flag : 0);
463 } else {
464 printk(KERN_INFO "%s: set parameter %s to %s\n",
465 devname, name, val ? "TRUE" : "FALSE");
466 *opt |= (val ? flag : 0);
467 }
468 }
469
470 /**
471 * velocity_get_options - set options on device
472 * @opts: option structure for the device
473 * @index: index of option to use in module options array
474 * @devname: device name
475 *
476 * Turn the module and command options into a single structure
477 * for the current device
478 */
479 static void velocity_get_options(struct velocity_opt *opts, int index,
480 const char *devname)
481 {
482
483 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
484 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
485 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
486 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
487
488 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
489 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
490 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
491 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
492 velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
493 opts->numrx = (opts->numrx & ~3);
494 }
495
496 /**
497 * velocity_init_cam_filter - initialise CAM
498 * @vptr: velocity to program
499 *
500 * Initialize the content addressable memory used for filters. Load
501 * appropriately according to the presence of VLAN
502 */
503 static void velocity_init_cam_filter(struct velocity_info *vptr)
504 {
505 struct mac_regs __iomem *regs = vptr->mac_regs;
506 unsigned int vid, i = 0;
507
508 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
509 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
510 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
511
512 /* Disable all CAMs */
513 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
514 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
515 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
516 mac_set_cam_mask(regs, vptr->mCAMmask);
517
518 /* Enable VCAMs */
519 for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
520 mac_set_vlan_cam(regs, i, (u8 *) &vid);
521 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
522 if (++i >= VCAM_SIZE)
523 break;
524 }
525 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
526 }
527
528 static int velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
529 {
530 struct velocity_info *vptr = netdev_priv(dev);
531
532 spin_lock_irq(&vptr->lock);
533 set_bit(vid, vptr->active_vlans);
534 velocity_init_cam_filter(vptr);
535 spin_unlock_irq(&vptr->lock);
536 return 0;
537 }
538
539 static int velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
540 {
541 struct velocity_info *vptr = netdev_priv(dev);
542
543 spin_lock_irq(&vptr->lock);
544 clear_bit(vid, vptr->active_vlans);
545 velocity_init_cam_filter(vptr);
546 spin_unlock_irq(&vptr->lock);
547 return 0;
548 }
549
550 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
551 {
552 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
553 }
554
555 /**
556 * velocity_rx_reset - handle a receive reset
557 * @vptr: velocity we are resetting
558 *
559 * Reset the ownership and status for the receive ring side.
560 * Hand all the receive queue to the NIC.
561 */
562 static void velocity_rx_reset(struct velocity_info *vptr)
563 {
564
565 struct mac_regs __iomem *regs = vptr->mac_regs;
566 int i;
567
568 velocity_init_rx_ring_indexes(vptr);
569
570 /*
571 * Init state, all RD entries belong to the NIC
572 */
573 for (i = 0; i < vptr->options.numrx; ++i)
574 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
575
576 writew(vptr->options.numrx, &regs->RBRDU);
577 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
578 writew(0, &regs->RDIdx);
579 writew(vptr->options.numrx - 1, &regs->RDCSize);
580 }
581
582 /**
583 * velocity_get_opt_media_mode - get media selection
584 * @vptr: velocity adapter
585 *
586 * Get the media mode stored in EEPROM or module options and load
587 * mii_status accordingly. The requested link state information
588 * is also returned.
589 */
590 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
591 {
592 u32 status = 0;
593
594 switch (vptr->options.spd_dpx) {
595 case SPD_DPX_AUTO:
596 status = VELOCITY_AUTONEG_ENABLE;
597 break;
598 case SPD_DPX_100_FULL:
599 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
600 break;
601 case SPD_DPX_10_FULL:
602 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
603 break;
604 case SPD_DPX_100_HALF:
605 status = VELOCITY_SPEED_100;
606 break;
607 case SPD_DPX_10_HALF:
608 status = VELOCITY_SPEED_10;
609 break;
610 case SPD_DPX_1000_FULL:
611 status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
612 break;
613 }
614 vptr->mii_status = status;
615 return status;
616 }
617
618 /**
619 * safe_disable_mii_autopoll - autopoll off
620 * @regs: velocity registers
621 *
622 * Turn off the autopoll and wait for it to disable on the chip
623 */
624 static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
625 {
626 u16 ww;
627
628 /* turn off MAUTO */
629 writeb(0, &regs->MIICR);
630 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
631 udelay(1);
632 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
633 break;
634 }
635 }
636
637 /**
638 * enable_mii_autopoll - turn on autopolling
639 * @regs: velocity registers
640 *
641 * Enable the MII link status autopoll feature on the Velocity
642 * hardware. Wait for it to enable.
643 */
644 static void enable_mii_autopoll(struct mac_regs __iomem *regs)
645 {
646 int ii;
647
648 writeb(0, &(regs->MIICR));
649 writeb(MIIADR_SWMPL, &regs->MIIADR);
650
651 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
652 udelay(1);
653 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
654 break;
655 }
656
657 writeb(MIICR_MAUTO, &regs->MIICR);
658
659 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
660 udelay(1);
661 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
662 break;
663 }
664
665 }
666
667 /**
668 * velocity_mii_read - read MII data
669 * @regs: velocity registers
670 * @index: MII register index
671 * @data: buffer for received data
672 *
673 * Perform a single read of an MII 16bit register. Returns zero
674 * on success or -ETIMEDOUT if the PHY did not respond.
675 */
676 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
677 {
678 u16 ww;
679
680 /*
681 * Disable MIICR_MAUTO, so that mii addr can be set normally
682 */
683 safe_disable_mii_autopoll(regs);
684
685 writeb(index, &regs->MIIADR);
686
687 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
688
689 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
690 if (!(readb(&regs->MIICR) & MIICR_RCMD))
691 break;
692 }
693
694 *data = readw(&regs->MIIDATA);
695
696 enable_mii_autopoll(regs);
697 if (ww == W_MAX_TIMEOUT)
698 return -ETIMEDOUT;
699 return 0;
700 }
701
702 /**
703 * mii_check_media_mode - check media state
704 * @regs: velocity registers
705 *
706 * Check the current MII status and determine the link status
707 * accordingly
708 */
709 static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
710 {
711 u32 status = 0;
712 u16 ANAR;
713
714 if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
715 status |= VELOCITY_LINK_FAIL;
716
717 if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
718 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
719 else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
720 status |= (VELOCITY_SPEED_1000);
721 else {
722 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
723 if (ANAR & ADVERTISE_100FULL)
724 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
725 else if (ANAR & ADVERTISE_100HALF)
726 status |= VELOCITY_SPEED_100;
727 else if (ANAR & ADVERTISE_10FULL)
728 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
729 else
730 status |= (VELOCITY_SPEED_10);
731 }
732
733 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
734 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
735 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
736 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
737 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
738 status |= VELOCITY_AUTONEG_ENABLE;
739 }
740 }
741
742 return status;
743 }
744
745 /**
746 * velocity_mii_write - write MII data
747 * @regs: velocity registers
748 * @index: MII register index
749 * @data: 16bit data for the MII register
750 *
751 * Perform a single write to an MII 16bit register. Returns zero
752 * on success or -ETIMEDOUT if the PHY did not respond.
753 */
754 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
755 {
756 u16 ww;
757
758 /*
759 * Disable MIICR_MAUTO, so that mii addr can be set normally
760 */
761 safe_disable_mii_autopoll(regs);
762
763 /* MII reg offset */
764 writeb(mii_addr, &regs->MIIADR);
765 /* set MII data */
766 writew(data, &regs->MIIDATA);
767
768 /* turn on MIICR_WCMD */
769 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
770
771 /* W_MAX_TIMEOUT is the timeout period */
772 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
773 udelay(5);
774 if (!(readb(&regs->MIICR) & MIICR_WCMD))
775 break;
776 }
777 enable_mii_autopoll(regs);
778
779 if (ww == W_MAX_TIMEOUT)
780 return -ETIMEDOUT;
781 return 0;
782 }
783
784 /**
785 * set_mii_flow_control - flow control setup
786 * @vptr: velocity interface
787 *
788 * Set up the flow control on this interface according to
789 * the supplied user/eeprom options.
790 */
791 static void set_mii_flow_control(struct velocity_info *vptr)
792 {
793 /*Enable or Disable PAUSE in ANAR */
794 switch (vptr->options.flow_cntl) {
795 case FLOW_CNTL_TX:
796 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
797 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
798 break;
799
800 case FLOW_CNTL_RX:
801 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
802 MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
803 break;
804
805 case FLOW_CNTL_TX_RX:
806 MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
807 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
808 break;
809
810 case FLOW_CNTL_DISABLE:
811 MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
812 MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
813 break;
814 default:
815 break;
816 }
817 }
818
819 /**
820 * mii_set_auto_on - autonegotiate on
821 * @vptr: velocity
822 *
823 * Enable autonegotation on this interface
824 */
825 static void mii_set_auto_on(struct velocity_info *vptr)
826 {
827 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
828 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
829 else
830 MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
831 }
832
833 static u32 check_connection_type(struct mac_regs __iomem *regs)
834 {
835 u32 status = 0;
836 u8 PHYSR0;
837 u16 ANAR;
838 PHYSR0 = readb(&regs->PHYSR0);
839
840 /*
841 if (!(PHYSR0 & PHYSR0_LINKGD))
842 status|=VELOCITY_LINK_FAIL;
843 */
844
845 if (PHYSR0 & PHYSR0_FDPX)
846 status |= VELOCITY_DUPLEX_FULL;
847
848 if (PHYSR0 & PHYSR0_SPDG)
849 status |= VELOCITY_SPEED_1000;
850 else if (PHYSR0 & PHYSR0_SPD10)
851 status |= VELOCITY_SPEED_10;
852 else
853 status |= VELOCITY_SPEED_100;
854
855 if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
856 velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
857 if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
858 == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
859 if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
860 status |= VELOCITY_AUTONEG_ENABLE;
861 }
862 }
863
864 return status;
865 }
866
867 /**
868 * velocity_set_media_mode - set media mode
869 * @mii_status: old MII link state
870 *
871 * Check the media link state and configure the flow control
872 * PHY and also velocity hardware setup accordingly. In particular
873 * we need to set up CD polling and frame bursting.
874 */
875 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
876 {
877 u32 curr_status;
878 struct mac_regs __iomem *regs = vptr->mac_regs;
879
880 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
881 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
882
883 /* Set mii link status */
884 set_mii_flow_control(vptr);
885
886 /*
887 Check if new status is consistent with current status
888 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
889 (mii_status==curr_status)) {
890 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
891 vptr->mii_status=check_connection_type(vptr->mac_regs);
892 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
893 return 0;
894 }
895 */
896
897 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
898 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
899
900 /*
901 * If connection type is AUTO
902 */
903 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
904 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
905 /* clear force MAC mode bit */
906 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
907 /* set duplex mode of MAC according to duplex mode of MII */
908 MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
909 MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
910 MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
911
912 /* enable AUTO-NEGO mode */
913 mii_set_auto_on(vptr);
914 } else {
915 u16 CTRL1000;
916 u16 ANAR;
917 u8 CHIPGCR;
918
919 /*
920 * 1. if it's 3119, disable frame bursting in halfduplex mode
921 * and enable it in fullduplex mode
922 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
923 * 3. only enable CD heart beat counter in 10HD mode
924 */
925
926 /* set force MAC mode bit */
927 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
928
929 CHIPGCR = readb(&regs->CHIPGCR);
930
931 if (mii_status & VELOCITY_SPEED_1000)
932 CHIPGCR |= CHIPGCR_FCGMII;
933 else
934 CHIPGCR &= ~CHIPGCR_FCGMII;
935
936 if (mii_status & VELOCITY_DUPLEX_FULL) {
937 CHIPGCR |= CHIPGCR_FCFDX;
938 writeb(CHIPGCR, &regs->CHIPGCR);
939 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
940 if (vptr->rev_id < REV_ID_VT3216_A0)
941 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
942 } else {
943 CHIPGCR &= ~CHIPGCR_FCFDX;
944 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
945 writeb(CHIPGCR, &regs->CHIPGCR);
946 if (vptr->rev_id < REV_ID_VT3216_A0)
947 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
948 }
949
950 velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
951 CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
952 if ((mii_status & VELOCITY_SPEED_1000) &&
953 (mii_status & VELOCITY_DUPLEX_FULL)) {
954 CTRL1000 |= ADVERTISE_1000FULL;
955 }
956 velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
957
958 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
959 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
960 else
961 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
962
963 /* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
964 velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
965 ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
966 if (mii_status & VELOCITY_SPEED_100) {
967 if (mii_status & VELOCITY_DUPLEX_FULL)
968 ANAR |= ADVERTISE_100FULL;
969 else
970 ANAR |= ADVERTISE_100HALF;
971 } else if (mii_status & VELOCITY_SPEED_10) {
972 if (mii_status & VELOCITY_DUPLEX_FULL)
973 ANAR |= ADVERTISE_10FULL;
974 else
975 ANAR |= ADVERTISE_10HALF;
976 }
977 velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
978 /* enable AUTO-NEGO mode */
979 mii_set_auto_on(vptr);
980 /* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
981 }
982 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
983 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
984 return VELOCITY_LINK_CHANGE;
985 }
986
987 /**
988 * velocity_print_link_status - link status reporting
989 * @vptr: velocity to report on
990 *
991 * Turn the link status of the velocity card into a kernel log
992 * description of the new link state, detailing speed and duplex
993 * status
994 */
995 static void velocity_print_link_status(struct velocity_info *vptr)
996 {
997
998 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
999 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1000 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1001 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
1002
1003 if (vptr->mii_status & VELOCITY_SPEED_1000)
1004 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1005 else if (vptr->mii_status & VELOCITY_SPEED_100)
1006 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1007 else
1008 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1009
1010 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1011 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1012 else
1013 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1014 } else {
1015 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1016 switch (vptr->options.spd_dpx) {
1017 case SPD_DPX_1000_FULL:
1018 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1019 break;
1020 case SPD_DPX_100_HALF:
1021 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1022 break;
1023 case SPD_DPX_100_FULL:
1024 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1025 break;
1026 case SPD_DPX_10_HALF:
1027 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1028 break;
1029 case SPD_DPX_10_FULL:
1030 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1031 break;
1032 default:
1033 break;
1034 }
1035 }
1036 }
1037
1038 /**
1039 * enable_flow_control_ability - flow control
1040 * @vptr: veloity to configure
1041 *
1042 * Set up flow control according to the flow control options
1043 * determined by the eeprom/configuration.
1044 */
1045 static void enable_flow_control_ability(struct velocity_info *vptr)
1046 {
1047
1048 struct mac_regs __iomem *regs = vptr->mac_regs;
1049
1050 switch (vptr->options.flow_cntl) {
1051
1052 case FLOW_CNTL_DEFAULT:
1053 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1054 writel(CR0_FDXRFCEN, &regs->CR0Set);
1055 else
1056 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1057
1058 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1059 writel(CR0_FDXTFCEN, &regs->CR0Set);
1060 else
1061 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1062 break;
1063
1064 case FLOW_CNTL_TX:
1065 writel(CR0_FDXTFCEN, &regs->CR0Set);
1066 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1067 break;
1068
1069 case FLOW_CNTL_RX:
1070 writel(CR0_FDXRFCEN, &regs->CR0Set);
1071 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1072 break;
1073
1074 case FLOW_CNTL_TX_RX:
1075 writel(CR0_FDXTFCEN, &regs->CR0Set);
1076 writel(CR0_FDXRFCEN, &regs->CR0Set);
1077 break;
1078
1079 case FLOW_CNTL_DISABLE:
1080 writel(CR0_FDXRFCEN, &regs->CR0Clr);
1081 writel(CR0_FDXTFCEN, &regs->CR0Clr);
1082 break;
1083
1084 default:
1085 break;
1086 }
1087
1088 }
1089
1090 /**
1091 * velocity_soft_reset - soft reset
1092 * @vptr: velocity to reset
1093 *
1094 * Kick off a soft reset of the velocity adapter and then poll
1095 * until the reset sequence has completed before returning.
1096 */
1097 static int velocity_soft_reset(struct velocity_info *vptr)
1098 {
1099 struct mac_regs __iomem *regs = vptr->mac_regs;
1100 int i = 0;
1101
1102 writel(CR0_SFRST, &regs->CR0Set);
1103
1104 for (i = 0; i < W_MAX_TIMEOUT; i++) {
1105 udelay(5);
1106 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1107 break;
1108 }
1109
1110 if (i == W_MAX_TIMEOUT) {
1111 writel(CR0_FORSRST, &regs->CR0Set);
1112 /* FIXME: PCI POSTING */
1113 /* delay 2ms */
1114 mdelay(2);
1115 }
1116 return 0;
1117 }
1118
1119 /**
1120 * velocity_set_multi - filter list change callback
1121 * @dev: network device
1122 *
1123 * Called by the network layer when the filter lists need to change
1124 * for a velocity adapter. Reload the CAMs with the new address
1125 * filter ruleset.
1126 */
1127 static void velocity_set_multi(struct net_device *dev)
1128 {
1129 struct velocity_info *vptr = netdev_priv(dev);
1130 struct mac_regs __iomem *regs = vptr->mac_regs;
1131 u8 rx_mode;
1132 int i;
1133 struct netdev_hw_addr *ha;
1134
1135 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1136 writel(0xffffffff, &regs->MARCAM[0]);
1137 writel(0xffffffff, &regs->MARCAM[4]);
1138 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1139 } else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1140 (dev->flags & IFF_ALLMULTI)) {
1141 writel(0xffffffff, &regs->MARCAM[0]);
1142 writel(0xffffffff, &regs->MARCAM[4]);
1143 rx_mode = (RCR_AM | RCR_AB);
1144 } else {
1145 int offset = MCAM_SIZE - vptr->multicast_limit;
1146 mac_get_cam_mask(regs, vptr->mCAMmask);
1147
1148 i = 0;
1149 netdev_for_each_mc_addr(ha, dev) {
1150 mac_set_cam(regs, i + offset, ha->addr);
1151 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1152 i++;
1153 }
1154
1155 mac_set_cam_mask(regs, vptr->mCAMmask);
1156 rx_mode = RCR_AM | RCR_AB | RCR_AP;
1157 }
1158 if (dev->mtu > 1500)
1159 rx_mode |= RCR_AL;
1160
1161 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1162
1163 }
1164
1165 /*
1166 * MII access , media link mode setting functions
1167 */
1168
1169 /**
1170 * mii_init - set up MII
1171 * @vptr: velocity adapter
1172 * @mii_status: links tatus
1173 *
1174 * Set up the PHY for the current link state.
1175 */
1176 static void mii_init(struct velocity_info *vptr, u32 mii_status)
1177 {
1178 u16 BMCR;
1179
1180 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1181 case PHYID_CICADA_CS8201:
1182 /*
1183 * Reset to hardware default
1184 */
1185 MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1186 /*
1187 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1188 * off it in NWay-forced half mode for NWay-forced v.s.
1189 * legacy-forced issue.
1190 */
1191 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1192 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1193 else
1194 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1195 /*
1196 * Turn on Link/Activity LED enable bit for CIS8201
1197 */
1198 MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1199 break;
1200 case PHYID_VT3216_32BIT:
1201 case PHYID_VT3216_64BIT:
1202 /*
1203 * Reset to hardware default
1204 */
1205 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1206 /*
1207 * Turn on ECHODIS bit in NWay-forced full mode and turn it
1208 * off it in NWay-forced half mode for NWay-forced v.s.
1209 * legacy-forced issue
1210 */
1211 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1212 MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1213 else
1214 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1215 break;
1216
1217 case PHYID_MARVELL_1000:
1218 case PHYID_MARVELL_1000S:
1219 /*
1220 * Assert CRS on Transmit
1221 */
1222 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1223 /*
1224 * Reset to hardware default
1225 */
1226 MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1227 break;
1228 default:
1229 ;
1230 }
1231 velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1232 if (BMCR & BMCR_ISOLATE) {
1233 BMCR &= ~BMCR_ISOLATE;
1234 velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1235 }
1236 }
1237
1238 /**
1239 * setup_queue_timers - Setup interrupt timers
1240 *
1241 * Setup interrupt frequency during suppression (timeout if the frame
1242 * count isn't filled).
1243 */
1244 static void setup_queue_timers(struct velocity_info *vptr)
1245 {
1246 /* Only for newer revisions */
1247 if (vptr->rev_id >= REV_ID_VT3216_A0) {
1248 u8 txqueue_timer = 0;
1249 u8 rxqueue_timer = 0;
1250
1251 if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1252 VELOCITY_SPEED_100)) {
1253 txqueue_timer = vptr->options.txqueue_timer;
1254 rxqueue_timer = vptr->options.rxqueue_timer;
1255 }
1256
1257 writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1258 writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1259 }
1260 }
1261
1262 /**
1263 * setup_adaptive_interrupts - Setup interrupt suppression
1264 *
1265 * @vptr velocity adapter
1266 *
1267 * The velocity is able to suppress interrupt during high interrupt load.
1268 * This function turns on that feature.
1269 */
1270 static void setup_adaptive_interrupts(struct velocity_info *vptr)
1271 {
1272 struct mac_regs __iomem *regs = vptr->mac_regs;
1273 u16 tx_intsup = vptr->options.tx_intsup;
1274 u16 rx_intsup = vptr->options.rx_intsup;
1275
1276 /* Setup default interrupt mask (will be changed below) */
1277 vptr->int_mask = INT_MASK_DEF;
1278
1279 /* Set Tx Interrupt Suppression Threshold */
1280 writeb(CAMCR_PS0, &regs->CAMCR);
1281 if (tx_intsup != 0) {
1282 vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1283 ISR_PTX2I | ISR_PTX3I);
1284 writew(tx_intsup, &regs->ISRCTL);
1285 } else
1286 writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1287
1288 /* Set Rx Interrupt Suppression Threshold */
1289 writeb(CAMCR_PS1, &regs->CAMCR);
1290 if (rx_intsup != 0) {
1291 vptr->int_mask &= ~ISR_PRXI;
1292 writew(rx_intsup, &regs->ISRCTL);
1293 } else
1294 writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1295
1296 /* Select page to interrupt hold timer */
1297 writeb(0, &regs->CAMCR);
1298 }
1299
1300 /**
1301 * velocity_init_registers - initialise MAC registers
1302 * @vptr: velocity to init
1303 * @type: type of initialisation (hot or cold)
1304 *
1305 * Initialise the MAC on a reset or on first set up on the
1306 * hardware.
1307 */
1308 static void velocity_init_registers(struct velocity_info *vptr,
1309 enum velocity_init_type type)
1310 {
1311 struct mac_regs __iomem *regs = vptr->mac_regs;
1312 int i, mii_status;
1313
1314 mac_wol_reset(regs);
1315
1316 switch (type) {
1317 case VELOCITY_INIT_RESET:
1318 case VELOCITY_INIT_WOL:
1319
1320 netif_stop_queue(vptr->dev);
1321
1322 /*
1323 * Reset RX to prevent RX pointer not on the 4X location
1324 */
1325 velocity_rx_reset(vptr);
1326 mac_rx_queue_run(regs);
1327 mac_rx_queue_wake(regs);
1328
1329 mii_status = velocity_get_opt_media_mode(vptr);
1330 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1331 velocity_print_link_status(vptr);
1332 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1333 netif_wake_queue(vptr->dev);
1334 }
1335
1336 enable_flow_control_ability(vptr);
1337
1338 mac_clear_isr(regs);
1339 writel(CR0_STOP, &regs->CR0Clr);
1340 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1341 &regs->CR0Set);
1342
1343 break;
1344
1345 case VELOCITY_INIT_COLD:
1346 default:
1347 /*
1348 * Do reset
1349 */
1350 velocity_soft_reset(vptr);
1351 mdelay(5);
1352
1353 mac_eeprom_reload(regs);
1354 for (i = 0; i < 6; i++)
1355 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
1356
1357 /*
1358 * clear Pre_ACPI bit.
1359 */
1360 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1361 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1362 mac_set_dma_length(regs, vptr->options.DMA_length);
1363
1364 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1365 /*
1366 * Back off algorithm use original IEEE standard
1367 */
1368 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1369
1370 /*
1371 * Init CAM filter
1372 */
1373 velocity_init_cam_filter(vptr);
1374
1375 /*
1376 * Set packet filter: Receive directed and broadcast address
1377 */
1378 velocity_set_multi(vptr->dev);
1379
1380 /*
1381 * Enable MII auto-polling
1382 */
1383 enable_mii_autopoll(regs);
1384
1385 setup_adaptive_interrupts(vptr);
1386
1387 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1388 writew(vptr->options.numrx - 1, &regs->RDCSize);
1389 mac_rx_queue_run(regs);
1390 mac_rx_queue_wake(regs);
1391
1392 writew(vptr->options.numtx - 1, &regs->TDCSize);
1393
1394 for (i = 0; i < vptr->tx.numq; i++) {
1395 writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1396 mac_tx_queue_run(regs, i);
1397 }
1398
1399 init_flow_control_register(vptr);
1400
1401 writel(CR0_STOP, &regs->CR0Clr);
1402 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1403
1404 mii_status = velocity_get_opt_media_mode(vptr);
1405 netif_stop_queue(vptr->dev);
1406
1407 mii_init(vptr, mii_status);
1408
1409 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1410 velocity_print_link_status(vptr);
1411 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1412 netif_wake_queue(vptr->dev);
1413 }
1414
1415 enable_flow_control_ability(vptr);
1416 mac_hw_mibs_init(regs);
1417 mac_write_int_mask(vptr->int_mask, regs);
1418 mac_clear_isr(regs);
1419
1420 }
1421 }
1422
1423 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1424 {
1425 struct mac_regs __iomem *regs = vptr->mac_regs;
1426 int avail, dirty, unusable;
1427
1428 /*
1429 * RD number must be equal to 4X per hardware spec
1430 * (programming guide rev 1.20, p.13)
1431 */
1432 if (vptr->rx.filled < 4)
1433 return;
1434
1435 wmb();
1436
1437 unusable = vptr->rx.filled & 0x0003;
1438 dirty = vptr->rx.dirty - unusable;
1439 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1440 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1441 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1442 }
1443
1444 writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1445 vptr->rx.filled = unusable;
1446 }
1447
1448 /**
1449 * velocity_init_dma_rings - set up DMA rings
1450 * @vptr: Velocity to set up
1451 *
1452 * Allocate PCI mapped DMA rings for the receive and transmit layer
1453 * to use.
1454 */
1455 static int velocity_init_dma_rings(struct velocity_info *vptr)
1456 {
1457 struct velocity_opt *opt = &vptr->options;
1458 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1459 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1460 struct pci_dev *pdev = vptr->pdev;
1461 dma_addr_t pool_dma;
1462 void *pool;
1463 unsigned int i;
1464
1465 /*
1466 * Allocate all RD/TD rings a single pool.
1467 *
1468 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1469 * alignment
1470 */
1471 pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq +
1472 rx_ring_size, &pool_dma);
1473 if (!pool) {
1474 dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1475 vptr->dev->name);
1476 return -ENOMEM;
1477 }
1478
1479 vptr->rx.ring = pool;
1480 vptr->rx.pool_dma = pool_dma;
1481
1482 pool += rx_ring_size;
1483 pool_dma += rx_ring_size;
1484
1485 for (i = 0; i < vptr->tx.numq; i++) {
1486 vptr->tx.rings[i] = pool;
1487 vptr->tx.pool_dma[i] = pool_dma;
1488 pool += tx_ring_size;
1489 pool_dma += tx_ring_size;
1490 }
1491
1492 return 0;
1493 }
1494
1495 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1496 {
1497 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1498 }
1499
1500 /**
1501 * velocity_alloc_rx_buf - allocate aligned receive buffer
1502 * @vptr: velocity
1503 * @idx: ring index
1504 *
1505 * Allocate a new full sized buffer for the reception of a frame and
1506 * map it into PCI space for the hardware to use. The hardware
1507 * requires *64* byte alignment of the buffer which makes life
1508 * less fun than would be ideal.
1509 */
1510 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1511 {
1512 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1513 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1514
1515 rd_info->skb = netdev_alloc_skb(vptr->dev, vptr->rx.buf_sz + 64);
1516 if (rd_info->skb == NULL)
1517 return -ENOMEM;
1518
1519 /*
1520 * Do the gymnastics to get the buffer head for data at
1521 * 64byte alignment.
1522 */
1523 skb_reserve(rd_info->skb,
1524 64 - ((unsigned long) rd_info->skb->data & 63));
1525 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data,
1526 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1527
1528 /*
1529 * Fill in the descriptor to match
1530 */
1531
1532 *((u32 *) & (rd->rdesc0)) = 0;
1533 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1534 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1535 rd->pa_high = 0;
1536 return 0;
1537 }
1538
1539
1540 static int velocity_rx_refill(struct velocity_info *vptr)
1541 {
1542 int dirty = vptr->rx.dirty, done = 0;
1543
1544 do {
1545 struct rx_desc *rd = vptr->rx.ring + dirty;
1546
1547 /* Fine for an all zero Rx desc at init time as well */
1548 if (rd->rdesc0.len & OWNED_BY_NIC)
1549 break;
1550
1551 if (!vptr->rx.info[dirty].skb) {
1552 if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1553 break;
1554 }
1555 done++;
1556 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1557 } while (dirty != vptr->rx.curr);
1558
1559 if (done) {
1560 vptr->rx.dirty = dirty;
1561 vptr->rx.filled += done;
1562 }
1563
1564 return done;
1565 }
1566
1567 /**
1568 * velocity_free_rd_ring - free receive ring
1569 * @vptr: velocity to clean up
1570 *
1571 * Free the receive buffers for each ring slot and any
1572 * attached socket buffers that need to go away.
1573 */
1574 static void velocity_free_rd_ring(struct velocity_info *vptr)
1575 {
1576 int i;
1577
1578 if (vptr->rx.info == NULL)
1579 return;
1580
1581 for (i = 0; i < vptr->options.numrx; i++) {
1582 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1583 struct rx_desc *rd = vptr->rx.ring + i;
1584
1585 memset(rd, 0, sizeof(*rd));
1586
1587 if (!rd_info->skb)
1588 continue;
1589 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1590 PCI_DMA_FROMDEVICE);
1591 rd_info->skb_dma = 0;
1592
1593 dev_kfree_skb(rd_info->skb);
1594 rd_info->skb = NULL;
1595 }
1596
1597 kfree(vptr->rx.info);
1598 vptr->rx.info = NULL;
1599 }
1600
1601 /**
1602 * velocity_init_rd_ring - set up receive ring
1603 * @vptr: velocity to configure
1604 *
1605 * Allocate and set up the receive buffers for each ring slot and
1606 * assign them to the network adapter.
1607 */
1608 static int velocity_init_rd_ring(struct velocity_info *vptr)
1609 {
1610 int ret = -ENOMEM;
1611
1612 vptr->rx.info = kcalloc(vptr->options.numrx,
1613 sizeof(struct velocity_rd_info), GFP_KERNEL);
1614 if (!vptr->rx.info)
1615 goto out;
1616
1617 velocity_init_rx_ring_indexes(vptr);
1618
1619 if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1620 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1621 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1622 velocity_free_rd_ring(vptr);
1623 goto out;
1624 }
1625
1626 ret = 0;
1627 out:
1628 return ret;
1629 }
1630
1631 /**
1632 * velocity_init_td_ring - set up transmit ring
1633 * @vptr: velocity
1634 *
1635 * Set up the transmit ring and chain the ring pointers together.
1636 * Returns zero on success or a negative posix errno code for
1637 * failure.
1638 */
1639 static int velocity_init_td_ring(struct velocity_info *vptr)
1640 {
1641 int j;
1642
1643 /* Init the TD ring entries */
1644 for (j = 0; j < vptr->tx.numq; j++) {
1645
1646 vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1647 sizeof(struct velocity_td_info),
1648 GFP_KERNEL);
1649 if (!vptr->tx.infos[j]) {
1650 while (--j >= 0)
1651 kfree(vptr->tx.infos[j]);
1652 return -ENOMEM;
1653 }
1654
1655 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1656 }
1657 return 0;
1658 }
1659
1660 /**
1661 * velocity_free_dma_rings - free PCI ring pointers
1662 * @vptr: Velocity to free from
1663 *
1664 * Clean up the PCI ring buffers allocated to this velocity.
1665 */
1666 static void velocity_free_dma_rings(struct velocity_info *vptr)
1667 {
1668 const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1669 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1670
1671 pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma);
1672 }
1673
1674 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1675 {
1676 int ret;
1677
1678 velocity_set_rxbufsize(vptr, mtu);
1679
1680 ret = velocity_init_dma_rings(vptr);
1681 if (ret < 0)
1682 goto out;
1683
1684 ret = velocity_init_rd_ring(vptr);
1685 if (ret < 0)
1686 goto err_free_dma_rings_0;
1687
1688 ret = velocity_init_td_ring(vptr);
1689 if (ret < 0)
1690 goto err_free_rd_ring_1;
1691 out:
1692 return ret;
1693
1694 err_free_rd_ring_1:
1695 velocity_free_rd_ring(vptr);
1696 err_free_dma_rings_0:
1697 velocity_free_dma_rings(vptr);
1698 goto out;
1699 }
1700
1701 /**
1702 * velocity_free_tx_buf - free transmit buffer
1703 * @vptr: velocity
1704 * @tdinfo: buffer
1705 *
1706 * Release an transmit buffer. If the buffer was preallocated then
1707 * recycle it, if not then unmap the buffer.
1708 */
1709 static void velocity_free_tx_buf(struct velocity_info *vptr,
1710 struct velocity_td_info *tdinfo, struct tx_desc *td)
1711 {
1712 struct sk_buff *skb = tdinfo->skb;
1713
1714 /*
1715 * Don't unmap the pre-allocated tx_bufs
1716 */
1717 if (tdinfo->skb_dma) {
1718 int i;
1719
1720 for (i = 0; i < tdinfo->nskb_dma; i++) {
1721 size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1722
1723 /* For scatter-gather */
1724 if (skb_shinfo(skb)->nr_frags > 0)
1725 pktlen = max_t(size_t, pktlen,
1726 td->td_buf[i].size & ~TD_QUEUE);
1727
1728 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i],
1729 le16_to_cpu(pktlen), PCI_DMA_TODEVICE);
1730 }
1731 }
1732 dev_kfree_skb_irq(skb);
1733 tdinfo->skb = NULL;
1734 }
1735
1736 /*
1737 * FIXME: could we merge this with velocity_free_tx_buf ?
1738 */
1739 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1740 int q, int n)
1741 {
1742 struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1743 int i;
1744
1745 if (td_info == NULL)
1746 return;
1747
1748 if (td_info->skb) {
1749 for (i = 0; i < td_info->nskb_dma; i++) {
1750 if (td_info->skb_dma[i]) {
1751 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1752 td_info->skb->len, PCI_DMA_TODEVICE);
1753 td_info->skb_dma[i] = 0;
1754 }
1755 }
1756 dev_kfree_skb(td_info->skb);
1757 td_info->skb = NULL;
1758 }
1759 }
1760
1761 /**
1762 * velocity_free_td_ring - free td ring
1763 * @vptr: velocity
1764 *
1765 * Free up the transmit ring for this particular velocity adapter.
1766 * We free the ring contents but not the ring itself.
1767 */
1768 static void velocity_free_td_ring(struct velocity_info *vptr)
1769 {
1770 int i, j;
1771
1772 for (j = 0; j < vptr->tx.numq; j++) {
1773 if (vptr->tx.infos[j] == NULL)
1774 continue;
1775 for (i = 0; i < vptr->options.numtx; i++)
1776 velocity_free_td_ring_entry(vptr, j, i);
1777
1778 kfree(vptr->tx.infos[j]);
1779 vptr->tx.infos[j] = NULL;
1780 }
1781 }
1782
1783 static void velocity_free_rings(struct velocity_info *vptr)
1784 {
1785 velocity_free_td_ring(vptr);
1786 velocity_free_rd_ring(vptr);
1787 velocity_free_dma_rings(vptr);
1788 }
1789
1790 /**
1791 * velocity_error - handle error from controller
1792 * @vptr: velocity
1793 * @status: card status
1794 *
1795 * Process an error report from the hardware and attempt to recover
1796 * the card itself. At the moment we cannot recover from some
1797 * theoretically impossible errors but this could be fixed using
1798 * the pci_device_failed logic to bounce the hardware
1799 *
1800 */
1801 static void velocity_error(struct velocity_info *vptr, int status)
1802 {
1803
1804 if (status & ISR_TXSTLI) {
1805 struct mac_regs __iomem *regs = vptr->mac_regs;
1806
1807 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1808 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1809 writew(TRDCSR_RUN, &regs->TDCSRClr);
1810 netif_stop_queue(vptr->dev);
1811
1812 /* FIXME: port over the pci_device_failed code and use it
1813 here */
1814 }
1815
1816 if (status & ISR_SRCI) {
1817 struct mac_regs __iomem *regs = vptr->mac_regs;
1818 int linked;
1819
1820 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1821 vptr->mii_status = check_connection_type(regs);
1822
1823 /*
1824 * If it is a 3119, disable frame bursting in
1825 * halfduplex mode and enable it in fullduplex
1826 * mode
1827 */
1828 if (vptr->rev_id < REV_ID_VT3216_A0) {
1829 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1830 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1831 else
1832 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1833 }
1834 /*
1835 * Only enable CD heart beat counter in 10HD mode
1836 */
1837 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1838 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1839 else
1840 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1841
1842 setup_queue_timers(vptr);
1843 }
1844 /*
1845 * Get link status from PHYSR0
1846 */
1847 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1848
1849 if (linked) {
1850 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1851 netif_carrier_on(vptr->dev);
1852 } else {
1853 vptr->mii_status |= VELOCITY_LINK_FAIL;
1854 netif_carrier_off(vptr->dev);
1855 }
1856
1857 velocity_print_link_status(vptr);
1858 enable_flow_control_ability(vptr);
1859
1860 /*
1861 * Re-enable auto-polling because SRCI will disable
1862 * auto-polling
1863 */
1864
1865 enable_mii_autopoll(regs);
1866
1867 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1868 netif_stop_queue(vptr->dev);
1869 else
1870 netif_wake_queue(vptr->dev);
1871
1872 }
1873 if (status & ISR_MIBFI)
1874 velocity_update_hw_mibs(vptr);
1875 if (status & ISR_LSTEI)
1876 mac_rx_queue_wake(vptr->mac_regs);
1877 }
1878
1879 /**
1880 * tx_srv - transmit interrupt service
1881 * @vptr; Velocity
1882 *
1883 * Scan the queues looking for transmitted packets that
1884 * we can complete and clean up. Update any statistics as
1885 * necessary/
1886 */
1887 static int velocity_tx_srv(struct velocity_info *vptr)
1888 {
1889 struct tx_desc *td;
1890 int qnum;
1891 int full = 0;
1892 int idx;
1893 int works = 0;
1894 struct velocity_td_info *tdinfo;
1895 struct net_device_stats *stats = &vptr->dev->stats;
1896
1897 for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1898 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1899 idx = (idx + 1) % vptr->options.numtx) {
1900
1901 /*
1902 * Get Tx Descriptor
1903 */
1904 td = &(vptr->tx.rings[qnum][idx]);
1905 tdinfo = &(vptr->tx.infos[qnum][idx]);
1906
1907 if (td->tdesc0.len & OWNED_BY_NIC)
1908 break;
1909
1910 if ((works++ > 15))
1911 break;
1912
1913 if (td->tdesc0.TSR & TSR0_TERR) {
1914 stats->tx_errors++;
1915 stats->tx_dropped++;
1916 if (td->tdesc0.TSR & TSR0_CDH)
1917 stats->tx_heartbeat_errors++;
1918 if (td->tdesc0.TSR & TSR0_CRS)
1919 stats->tx_carrier_errors++;
1920 if (td->tdesc0.TSR & TSR0_ABT)
1921 stats->tx_aborted_errors++;
1922 if (td->tdesc0.TSR & TSR0_OWC)
1923 stats->tx_window_errors++;
1924 } else {
1925 stats->tx_packets++;
1926 stats->tx_bytes += tdinfo->skb->len;
1927 }
1928 velocity_free_tx_buf(vptr, tdinfo, td);
1929 vptr->tx.used[qnum]--;
1930 }
1931 vptr->tx.tail[qnum] = idx;
1932
1933 if (AVAIL_TD(vptr, qnum) < 1)
1934 full = 1;
1935 }
1936 /*
1937 * Look to see if we should kick the transmit network
1938 * layer for more work.
1939 */
1940 if (netif_queue_stopped(vptr->dev) && (full == 0) &&
1941 (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1942 netif_wake_queue(vptr->dev);
1943 }
1944 return works;
1945 }
1946
1947 /**
1948 * velocity_rx_csum - checksum process
1949 * @rd: receive packet descriptor
1950 * @skb: network layer packet buffer
1951 *
1952 * Process the status bits for the received packet and determine
1953 * if the checksum was computed and verified by the hardware
1954 */
1955 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1956 {
1957 skb_checksum_none_assert(skb);
1958
1959 if (rd->rdesc1.CSM & CSM_IPKT) {
1960 if (rd->rdesc1.CSM & CSM_IPOK) {
1961 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1962 (rd->rdesc1.CSM & CSM_UDPKT)) {
1963 if (!(rd->rdesc1.CSM & CSM_TUPOK))
1964 return;
1965 }
1966 skb->ip_summed = CHECKSUM_UNNECESSARY;
1967 }
1968 }
1969 }
1970
1971 /**
1972 * velocity_rx_copy - in place Rx copy for small packets
1973 * @rx_skb: network layer packet buffer candidate
1974 * @pkt_size: received data size
1975 * @rd: receive packet descriptor
1976 * @dev: network device
1977 *
1978 * Replace the current skb that is scheduled for Rx processing by a
1979 * shorter, immediately allocated skb, if the received packet is small
1980 * enough. This function returns a negative value if the received
1981 * packet is too big or if memory is exhausted.
1982 */
1983 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1984 struct velocity_info *vptr)
1985 {
1986 int ret = -1;
1987 if (pkt_size < rx_copybreak) {
1988 struct sk_buff *new_skb;
1989
1990 new_skb = netdev_alloc_skb_ip_align(vptr->dev, pkt_size);
1991 if (new_skb) {
1992 new_skb->ip_summed = rx_skb[0]->ip_summed;
1993 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
1994 *rx_skb = new_skb;
1995 ret = 0;
1996 }
1997
1998 }
1999 return ret;
2000 }
2001
2002 /**
2003 * velocity_iph_realign - IP header alignment
2004 * @vptr: velocity we are handling
2005 * @skb: network layer packet buffer
2006 * @pkt_size: received data size
2007 *
2008 * Align IP header on a 2 bytes boundary. This behavior can be
2009 * configured by the user.
2010 */
2011 static inline void velocity_iph_realign(struct velocity_info *vptr,
2012 struct sk_buff *skb, int pkt_size)
2013 {
2014 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2015 memmove(skb->data + 2, skb->data, pkt_size);
2016 skb_reserve(skb, 2);
2017 }
2018 }
2019
2020 /**
2021 * velocity_receive_frame - received packet processor
2022 * @vptr: velocity we are handling
2023 * @idx: ring index
2024 *
2025 * A packet has arrived. We process the packet and if appropriate
2026 * pass the frame up the network stack
2027 */
2028 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2029 {
2030 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
2031 struct net_device_stats *stats = &vptr->dev->stats;
2032 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2033 struct rx_desc *rd = &(vptr->rx.ring[idx]);
2034 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2035 struct sk_buff *skb;
2036
2037 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
2038 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
2039 stats->rx_length_errors++;
2040 return -EINVAL;
2041 }
2042
2043 if (rd->rdesc0.RSR & RSR_MAR)
2044 stats->multicast++;
2045
2046 skb = rd_info->skb;
2047
2048 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
2049 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
2050
2051 /*
2052 * Drop frame not meeting IEEE 802.3
2053 */
2054
2055 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
2056 if (rd->rdesc0.RSR & RSR_RL) {
2057 stats->rx_length_errors++;
2058 return -EINVAL;
2059 }
2060 }
2061
2062 pci_action = pci_dma_sync_single_for_device;
2063
2064 velocity_rx_csum(rd, skb);
2065
2066 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2067 velocity_iph_realign(vptr, skb, pkt_len);
2068 pci_action = pci_unmap_single;
2069 rd_info->skb = NULL;
2070 }
2071
2072 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
2073 PCI_DMA_FROMDEVICE);
2074
2075 skb_put(skb, pkt_len - 4);
2076 skb->protocol = eth_type_trans(skb, vptr->dev);
2077
2078 if (rd->rdesc0.RSR & RSR_DETAG) {
2079 u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2080
2081 __vlan_hwaccel_put_tag(skb, vid);
2082 }
2083 netif_rx(skb);
2084
2085 stats->rx_bytes += pkt_len;
2086 stats->rx_packets++;
2087
2088 return 0;
2089 }
2090
2091 /**
2092 * velocity_rx_srv - service RX interrupt
2093 * @vptr: velocity
2094 *
2095 * Walk the receive ring of the velocity adapter and remove
2096 * any received packets from the receive queue. Hand the ring
2097 * slots back to the adapter for reuse.
2098 */
2099 static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2100 {
2101 struct net_device_stats *stats = &vptr->dev->stats;
2102 int rd_curr = vptr->rx.curr;
2103 int works = 0;
2104
2105 while (works < budget_left) {
2106 struct rx_desc *rd = vptr->rx.ring + rd_curr;
2107
2108 if (!vptr->rx.info[rd_curr].skb)
2109 break;
2110
2111 if (rd->rdesc0.len & OWNED_BY_NIC)
2112 break;
2113
2114 rmb();
2115
2116 /*
2117 * Don't drop CE or RL error frame although RXOK is off
2118 */
2119 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2120 if (velocity_receive_frame(vptr, rd_curr) < 0)
2121 stats->rx_dropped++;
2122 } else {
2123 if (rd->rdesc0.RSR & RSR_CRC)
2124 stats->rx_crc_errors++;
2125 if (rd->rdesc0.RSR & RSR_FAE)
2126 stats->rx_frame_errors++;
2127
2128 stats->rx_dropped++;
2129 }
2130
2131 rd->size |= RX_INTEN;
2132
2133 rd_curr++;
2134 if (rd_curr >= vptr->options.numrx)
2135 rd_curr = 0;
2136 works++;
2137 }
2138
2139 vptr->rx.curr = rd_curr;
2140
2141 if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2142 velocity_give_many_rx_descs(vptr);
2143
2144 VAR_USED(stats);
2145 return works;
2146 }
2147
2148 static int velocity_poll(struct napi_struct *napi, int budget)
2149 {
2150 struct velocity_info *vptr = container_of(napi,
2151 struct velocity_info, napi);
2152 unsigned int rx_done;
2153 unsigned long flags;
2154
2155 spin_lock_irqsave(&vptr->lock, flags);
2156 /*
2157 * Do rx and tx twice for performance (taken from the VIA
2158 * out-of-tree driver).
2159 */
2160 rx_done = velocity_rx_srv(vptr, budget / 2);
2161 velocity_tx_srv(vptr);
2162 rx_done += velocity_rx_srv(vptr, budget - rx_done);
2163 velocity_tx_srv(vptr);
2164
2165 /* If budget not fully consumed, exit the polling mode */
2166 if (rx_done < budget) {
2167 napi_complete(napi);
2168 mac_enable_int(vptr->mac_regs);
2169 }
2170 spin_unlock_irqrestore(&vptr->lock, flags);
2171
2172 return rx_done;
2173 }
2174
2175 /**
2176 * velocity_intr - interrupt callback
2177 * @irq: interrupt number
2178 * @dev_instance: interrupting device
2179 *
2180 * Called whenever an interrupt is generated by the velocity
2181 * adapter IRQ line. We may not be the source of the interrupt
2182 * and need to identify initially if we are, and if not exit as
2183 * efficiently as possible.
2184 */
2185 static irqreturn_t velocity_intr(int irq, void *dev_instance)
2186 {
2187 struct net_device *dev = dev_instance;
2188 struct velocity_info *vptr = netdev_priv(dev);
2189 u32 isr_status;
2190
2191 spin_lock(&vptr->lock);
2192 isr_status = mac_read_isr(vptr->mac_regs);
2193
2194 /* Not us ? */
2195 if (isr_status == 0) {
2196 spin_unlock(&vptr->lock);
2197 return IRQ_NONE;
2198 }
2199
2200 /* Ack the interrupt */
2201 mac_write_isr(vptr->mac_regs, isr_status);
2202
2203 if (likely(napi_schedule_prep(&vptr->napi))) {
2204 mac_disable_int(vptr->mac_regs);
2205 __napi_schedule(&vptr->napi);
2206 }
2207
2208 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2209 velocity_error(vptr, isr_status);
2210
2211 spin_unlock(&vptr->lock);
2212
2213 return IRQ_HANDLED;
2214 }
2215
2216 /**
2217 * velocity_open - interface activation callback
2218 * @dev: network layer device to open
2219 *
2220 * Called when the network layer brings the interface up. Returns
2221 * a negative posix error code on failure, or zero on success.
2222 *
2223 * All the ring allocation and set up is done on open for this
2224 * adapter to minimise memory usage when inactive
2225 */
2226 static int velocity_open(struct net_device *dev)
2227 {
2228 struct velocity_info *vptr = netdev_priv(dev);
2229 int ret;
2230
2231 ret = velocity_init_rings(vptr, dev->mtu);
2232 if (ret < 0)
2233 goto out;
2234
2235 /* Ensure chip is running */
2236 pci_set_power_state(vptr->pdev, PCI_D0);
2237
2238 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2239
2240 ret = request_irq(vptr->pdev->irq, velocity_intr, IRQF_SHARED,
2241 dev->name, dev);
2242 if (ret < 0) {
2243 /* Power down the chip */
2244 pci_set_power_state(vptr->pdev, PCI_D3hot);
2245 velocity_free_rings(vptr);
2246 goto out;
2247 }
2248
2249 velocity_give_many_rx_descs(vptr);
2250
2251 mac_enable_int(vptr->mac_regs);
2252 netif_start_queue(dev);
2253 napi_enable(&vptr->napi);
2254 vptr->flags |= VELOCITY_FLAGS_OPENED;
2255 out:
2256 return ret;
2257 }
2258
2259 /**
2260 * velocity_shutdown - shut down the chip
2261 * @vptr: velocity to deactivate
2262 *
2263 * Shuts down the internal operations of the velocity and
2264 * disables interrupts, autopolling, transmit and receive
2265 */
2266 static void velocity_shutdown(struct velocity_info *vptr)
2267 {
2268 struct mac_regs __iomem *regs = vptr->mac_regs;
2269 mac_disable_int(regs);
2270 writel(CR0_STOP, &regs->CR0Set);
2271 writew(0xFFFF, &regs->TDCSRClr);
2272 writeb(0xFF, &regs->RDCSRClr);
2273 safe_disable_mii_autopoll(regs);
2274 mac_clear_isr(regs);
2275 }
2276
2277 /**
2278 * velocity_change_mtu - MTU change callback
2279 * @dev: network device
2280 * @new_mtu: desired MTU
2281 *
2282 * Handle requests from the networking layer for MTU change on
2283 * this interface. It gets called on a change by the network layer.
2284 * Return zero for success or negative posix error code.
2285 */
2286 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2287 {
2288 struct velocity_info *vptr = netdev_priv(dev);
2289 int ret = 0;
2290
2291 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2292 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2293 vptr->dev->name);
2294 ret = -EINVAL;
2295 goto out_0;
2296 }
2297
2298 if (!netif_running(dev)) {
2299 dev->mtu = new_mtu;
2300 goto out_0;
2301 }
2302
2303 if (dev->mtu != new_mtu) {
2304 struct velocity_info *tmp_vptr;
2305 unsigned long flags;
2306 struct rx_info rx;
2307 struct tx_info tx;
2308
2309 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2310 if (!tmp_vptr) {
2311 ret = -ENOMEM;
2312 goto out_0;
2313 }
2314
2315 tmp_vptr->dev = dev;
2316 tmp_vptr->pdev = vptr->pdev;
2317 tmp_vptr->options = vptr->options;
2318 tmp_vptr->tx.numq = vptr->tx.numq;
2319
2320 ret = velocity_init_rings(tmp_vptr, new_mtu);
2321 if (ret < 0)
2322 goto out_free_tmp_vptr_1;
2323
2324 spin_lock_irqsave(&vptr->lock, flags);
2325
2326 netif_stop_queue(dev);
2327 velocity_shutdown(vptr);
2328
2329 rx = vptr->rx;
2330 tx = vptr->tx;
2331
2332 vptr->rx = tmp_vptr->rx;
2333 vptr->tx = tmp_vptr->tx;
2334
2335 tmp_vptr->rx = rx;
2336 tmp_vptr->tx = tx;
2337
2338 dev->mtu = new_mtu;
2339
2340 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2341
2342 velocity_give_many_rx_descs(vptr);
2343
2344 mac_enable_int(vptr->mac_regs);
2345 netif_start_queue(dev);
2346
2347 spin_unlock_irqrestore(&vptr->lock, flags);
2348
2349 velocity_free_rings(tmp_vptr);
2350
2351 out_free_tmp_vptr_1:
2352 kfree(tmp_vptr);
2353 }
2354 out_0:
2355 return ret;
2356 }
2357
2358 /**
2359 * velocity_mii_ioctl - MII ioctl handler
2360 * @dev: network device
2361 * @ifr: the ifreq block for the ioctl
2362 * @cmd: the command
2363 *
2364 * Process MII requests made via ioctl from the network layer. These
2365 * are used by tools like kudzu to interrogate the link state of the
2366 * hardware
2367 */
2368 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2369 {
2370 struct velocity_info *vptr = netdev_priv(dev);
2371 struct mac_regs __iomem *regs = vptr->mac_regs;
2372 unsigned long flags;
2373 struct mii_ioctl_data *miidata = if_mii(ifr);
2374 int err;
2375
2376 switch (cmd) {
2377 case SIOCGMIIPHY:
2378 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2379 break;
2380 case SIOCGMIIREG:
2381 if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2382 return -ETIMEDOUT;
2383 break;
2384 case SIOCSMIIREG:
2385 spin_lock_irqsave(&vptr->lock, flags);
2386 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2387 spin_unlock_irqrestore(&vptr->lock, flags);
2388 check_connection_type(vptr->mac_regs);
2389 if (err)
2390 return err;
2391 break;
2392 default:
2393 return -EOPNOTSUPP;
2394 }
2395 return 0;
2396 }
2397
2398 /**
2399 * velocity_ioctl - ioctl entry point
2400 * @dev: network device
2401 * @rq: interface request ioctl
2402 * @cmd: command code
2403 *
2404 * Called when the user issues an ioctl request to the network
2405 * device in question. The velocity interface supports MII.
2406 */
2407 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2408 {
2409 struct velocity_info *vptr = netdev_priv(dev);
2410 int ret;
2411
2412 /* If we are asked for information and the device is power
2413 saving then we need to bring the device back up to talk to it */
2414
2415 if (!netif_running(dev))
2416 pci_set_power_state(vptr->pdev, PCI_D0);
2417
2418 switch (cmd) {
2419 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2420 case SIOCGMIIREG: /* Read MII PHY register. */
2421 case SIOCSMIIREG: /* Write to MII PHY register. */
2422 ret = velocity_mii_ioctl(dev, rq, cmd);
2423 break;
2424
2425 default:
2426 ret = -EOPNOTSUPP;
2427 }
2428 if (!netif_running(dev))
2429 pci_set_power_state(vptr->pdev, PCI_D3hot);
2430
2431
2432 return ret;
2433 }
2434
2435 /**
2436 * velocity_get_status - statistics callback
2437 * @dev: network device
2438 *
2439 * Callback from the network layer to allow driver statistics
2440 * to be resynchronized with hardware collected state. In the
2441 * case of the velocity we need to pull the MIB counters from
2442 * the hardware into the counters before letting the network
2443 * layer display them.
2444 */
2445 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2446 {
2447 struct velocity_info *vptr = netdev_priv(dev);
2448
2449 /* If the hardware is down, don't touch MII */
2450 if (!netif_running(dev))
2451 return &dev->stats;
2452
2453 spin_lock_irq(&vptr->lock);
2454 velocity_update_hw_mibs(vptr);
2455 spin_unlock_irq(&vptr->lock);
2456
2457 dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2458 dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2459 dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2460
2461 // unsigned long rx_dropped; /* no space in linux buffers */
2462 dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2463 /* detailed rx_errors: */
2464 // unsigned long rx_length_errors;
2465 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2466 dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2467 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2468 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2469 // unsigned long rx_missed_errors; /* receiver missed packet */
2470
2471 /* detailed tx_errors */
2472 // unsigned long tx_fifo_errors;
2473
2474 return &dev->stats;
2475 }
2476
2477 /**
2478 * velocity_close - close adapter callback
2479 * @dev: network device
2480 *
2481 * Callback from the network layer when the velocity is being
2482 * deactivated by the network layer
2483 */
2484 static int velocity_close(struct net_device *dev)
2485 {
2486 struct velocity_info *vptr = netdev_priv(dev);
2487
2488 napi_disable(&vptr->napi);
2489 netif_stop_queue(dev);
2490 velocity_shutdown(vptr);
2491
2492 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2493 velocity_get_ip(vptr);
2494
2495 free_irq(vptr->pdev->irq, dev);
2496
2497 velocity_free_rings(vptr);
2498
2499 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2500 return 0;
2501 }
2502
2503 /**
2504 * velocity_xmit - transmit packet callback
2505 * @skb: buffer to transmit
2506 * @dev: network device
2507 *
2508 * Called by the networ layer to request a packet is queued to
2509 * the velocity. Returns zero on success.
2510 */
2511 static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2512 struct net_device *dev)
2513 {
2514 struct velocity_info *vptr = netdev_priv(dev);
2515 int qnum = 0;
2516 struct tx_desc *td_ptr;
2517 struct velocity_td_info *tdinfo;
2518 unsigned long flags;
2519 int pktlen;
2520 int index, prev;
2521 int i = 0;
2522
2523 if (skb_padto(skb, ETH_ZLEN))
2524 goto out;
2525
2526 /* The hardware can handle at most 7 memory segments, so merge
2527 * the skb if there are more */
2528 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2529 kfree_skb(skb);
2530 return NETDEV_TX_OK;
2531 }
2532
2533 pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2534 max_t(unsigned int, skb->len, ETH_ZLEN) :
2535 skb_headlen(skb);
2536
2537 spin_lock_irqsave(&vptr->lock, flags);
2538
2539 index = vptr->tx.curr[qnum];
2540 td_ptr = &(vptr->tx.rings[qnum][index]);
2541 tdinfo = &(vptr->tx.infos[qnum][index]);
2542
2543 td_ptr->tdesc1.TCR = TCR0_TIC;
2544 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2545
2546 /*
2547 * Map the linear network buffer into PCI space and
2548 * add it to the transmit ring.
2549 */
2550 tdinfo->skb = skb;
2551 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2552 td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2553 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2554 td_ptr->td_buf[0].pa_high = 0;
2555 td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2556
2557 /* Handle fragments */
2558 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2559 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2560
2561 tdinfo->skb_dma[i + 1] = skb_frag_dma_map(&vptr->pdev->dev,
2562 frag, 0,
2563 skb_frag_size(frag),
2564 DMA_TO_DEVICE);
2565
2566 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2567 td_ptr->td_buf[i + 1].pa_high = 0;
2568 td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2569 }
2570 tdinfo->nskb_dma = i + 1;
2571
2572 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2573
2574 if (vlan_tx_tag_present(skb)) {
2575 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2576 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2577 }
2578
2579 /*
2580 * Handle hardware checksum
2581 */
2582 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2583 const struct iphdr *ip = ip_hdr(skb);
2584 if (ip->protocol == IPPROTO_TCP)
2585 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2586 else if (ip->protocol == IPPROTO_UDP)
2587 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2588 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2589 }
2590
2591 prev = index - 1;
2592 if (prev < 0)
2593 prev = vptr->options.numtx - 1;
2594 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2595 vptr->tx.used[qnum]++;
2596 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2597
2598 if (AVAIL_TD(vptr, qnum) < 1)
2599 netif_stop_queue(dev);
2600
2601 td_ptr = &(vptr->tx.rings[qnum][prev]);
2602 td_ptr->td_buf[0].size |= TD_QUEUE;
2603 mac_tx_queue_wake(vptr->mac_regs, qnum);
2604
2605 spin_unlock_irqrestore(&vptr->lock, flags);
2606 out:
2607 return NETDEV_TX_OK;
2608 }
2609
2610 static const struct net_device_ops velocity_netdev_ops = {
2611 .ndo_open = velocity_open,
2612 .ndo_stop = velocity_close,
2613 .ndo_start_xmit = velocity_xmit,
2614 .ndo_get_stats = velocity_get_stats,
2615 .ndo_validate_addr = eth_validate_addr,
2616 .ndo_set_mac_address = eth_mac_addr,
2617 .ndo_set_rx_mode = velocity_set_multi,
2618 .ndo_change_mtu = velocity_change_mtu,
2619 .ndo_do_ioctl = velocity_ioctl,
2620 .ndo_vlan_rx_add_vid = velocity_vlan_rx_add_vid,
2621 .ndo_vlan_rx_kill_vid = velocity_vlan_rx_kill_vid,
2622 };
2623
2624 /**
2625 * velocity_init_info - init private data
2626 * @pdev: PCI device
2627 * @vptr: Velocity info
2628 * @info: Board type
2629 *
2630 * Set up the initial velocity_info struct for the device that has been
2631 * discovered.
2632 */
2633 static void velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr,
2634 const struct velocity_info_tbl *info)
2635 {
2636 memset(vptr, 0, sizeof(struct velocity_info));
2637
2638 vptr->pdev = pdev;
2639 vptr->chip_id = info->chip_id;
2640 vptr->tx.numq = info->txqueue;
2641 vptr->multicast_limit = MCAM_SIZE;
2642 spin_lock_init(&vptr->lock);
2643 }
2644
2645 /**
2646 * velocity_get_pci_info - retrieve PCI info for device
2647 * @vptr: velocity device
2648 * @pdev: PCI device it matches
2649 *
2650 * Retrieve the PCI configuration space data that interests us from
2651 * the kernel PCI layer
2652 */
2653 static int velocity_get_pci_info(struct velocity_info *vptr,
2654 struct pci_dev *pdev)
2655 {
2656 vptr->rev_id = pdev->revision;
2657
2658 pci_set_master(pdev);
2659
2660 vptr->ioaddr = pci_resource_start(pdev, 0);
2661 vptr->memaddr = pci_resource_start(pdev, 1);
2662
2663 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2664 dev_err(&pdev->dev,
2665 "region #0 is not an I/O resource, aborting.\n");
2666 return -EINVAL;
2667 }
2668
2669 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2670 dev_err(&pdev->dev,
2671 "region #1 is an I/O resource, aborting.\n");
2672 return -EINVAL;
2673 }
2674
2675 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2676 dev_err(&pdev->dev, "region #1 is too small.\n");
2677 return -EINVAL;
2678 }
2679 vptr->pdev = pdev;
2680
2681 return 0;
2682 }
2683
2684 /**
2685 * velocity_print_info - per driver data
2686 * @vptr: velocity
2687 *
2688 * Print per driver data as the kernel driver finds Velocity
2689 * hardware
2690 */
2691 static void velocity_print_info(struct velocity_info *vptr)
2692 {
2693 struct net_device *dev = vptr->dev;
2694
2695 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2696 printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2697 dev->name, dev->dev_addr);
2698 }
2699
2700 static u32 velocity_get_link(struct net_device *dev)
2701 {
2702 struct velocity_info *vptr = netdev_priv(dev);
2703 struct mac_regs __iomem *regs = vptr->mac_regs;
2704 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2705 }
2706
2707 /**
2708 * velocity_found1 - set up discovered velocity card
2709 * @pdev: PCI device
2710 * @ent: PCI device table entry that matched
2711 *
2712 * Configure a discovered adapter from scratch. Return a negative
2713 * errno error code on failure paths.
2714 */
2715 static int velocity_found1(struct pci_dev *pdev,
2716 const struct pci_device_id *ent)
2717 {
2718 static int first = 1;
2719 struct net_device *dev;
2720 int i;
2721 const char *drv_string;
2722 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
2723 struct velocity_info *vptr;
2724 struct mac_regs __iomem *regs;
2725 int ret = -ENOMEM;
2726
2727 /* FIXME: this driver, like almost all other ethernet drivers,
2728 * can support more than MAX_UNITS.
2729 */
2730 if (velocity_nics >= MAX_UNITS) {
2731 dev_notice(&pdev->dev, "already found %d NICs.\n",
2732 velocity_nics);
2733 return -ENODEV;
2734 }
2735
2736 dev = alloc_etherdev(sizeof(struct velocity_info));
2737 if (!dev)
2738 goto out;
2739
2740 /* Chain it all together */
2741
2742 SET_NETDEV_DEV(dev, &pdev->dev);
2743 vptr = netdev_priv(dev);
2744
2745
2746 if (first) {
2747 printk(KERN_INFO "%s Ver. %s\n",
2748 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2749 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2750 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2751 first = 0;
2752 }
2753
2754 velocity_init_info(pdev, vptr, info);
2755
2756 vptr->dev = dev;
2757
2758 ret = pci_enable_device(pdev);
2759 if (ret < 0)
2760 goto err_free_dev;
2761
2762 ret = velocity_get_pci_info(vptr, pdev);
2763 if (ret < 0) {
2764 /* error message already printed */
2765 goto err_disable;
2766 }
2767
2768 ret = pci_request_regions(pdev, VELOCITY_NAME);
2769 if (ret < 0) {
2770 dev_err(&pdev->dev, "No PCI resources.\n");
2771 goto err_disable;
2772 }
2773
2774 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2775 if (regs == NULL) {
2776 ret = -EIO;
2777 goto err_release_res;
2778 }
2779
2780 vptr->mac_regs = regs;
2781
2782 mac_wol_reset(regs);
2783
2784 for (i = 0; i < 6; i++)
2785 dev->dev_addr[i] = readb(&regs->PAR[i]);
2786
2787
2788 drv_string = dev_driver_string(&pdev->dev);
2789
2790 velocity_get_options(&vptr->options, velocity_nics, drv_string);
2791
2792 /*
2793 * Mask out the options cannot be set to the chip
2794 */
2795
2796 vptr->options.flags &= info->flags;
2797
2798 /*
2799 * Enable the chip specified capbilities
2800 */
2801
2802 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2803
2804 vptr->wol_opts = vptr->options.wol_opts;
2805 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2806
2807 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2808
2809 dev->netdev_ops = &velocity_netdev_ops;
2810 dev->ethtool_ops = &velocity_ethtool_ops;
2811 netif_napi_add(dev, &vptr->napi, velocity_poll, VELOCITY_NAPI_WEIGHT);
2812
2813 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2814 NETIF_F_HW_VLAN_CTAG_TX;
2815 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_FILTER |
2816 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_IP_CSUM;
2817
2818 ret = register_netdev(dev);
2819 if (ret < 0)
2820 goto err_iounmap;
2821
2822 if (!velocity_get_link(dev)) {
2823 netif_carrier_off(dev);
2824 vptr->mii_status |= VELOCITY_LINK_FAIL;
2825 }
2826
2827 velocity_print_info(vptr);
2828 pci_set_drvdata(pdev, dev);
2829
2830 /* and leave the chip powered down */
2831
2832 pci_set_power_state(pdev, PCI_D3hot);
2833 velocity_nics++;
2834 out:
2835 return ret;
2836
2837 err_iounmap:
2838 iounmap(regs);
2839 err_release_res:
2840 pci_release_regions(pdev);
2841 err_disable:
2842 pci_disable_device(pdev);
2843 err_free_dev:
2844 free_netdev(dev);
2845 goto out;
2846 }
2847
2848 #ifdef CONFIG_PM
2849 /**
2850 * wol_calc_crc - WOL CRC
2851 * @pattern: data pattern
2852 * @mask_pattern: mask
2853 *
2854 * Compute the wake on lan crc hashes for the packet header
2855 * we are interested in.
2856 */
2857 static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2858 {
2859 u16 crc = 0xFFFF;
2860 u8 mask;
2861 int i, j;
2862
2863 for (i = 0; i < size; i++) {
2864 mask = mask_pattern[i];
2865
2866 /* Skip this loop if the mask equals to zero */
2867 if (mask == 0x00)
2868 continue;
2869
2870 for (j = 0; j < 8; j++) {
2871 if ((mask & 0x01) == 0) {
2872 mask >>= 1;
2873 continue;
2874 }
2875 mask >>= 1;
2876 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
2877 }
2878 }
2879 /* Finally, invert the result once to get the correct data */
2880 crc = ~crc;
2881 return bitrev32(crc) >> 16;
2882 }
2883
2884 /**
2885 * velocity_set_wol - set up for wake on lan
2886 * @vptr: velocity to set WOL status on
2887 *
2888 * Set a card up for wake on lan either by unicast or by
2889 * ARP packet.
2890 *
2891 * FIXME: check static buffer is safe here
2892 */
2893 static int velocity_set_wol(struct velocity_info *vptr)
2894 {
2895 struct mac_regs __iomem *regs = vptr->mac_regs;
2896 enum speed_opt spd_dpx = vptr->options.spd_dpx;
2897 static u8 buf[256];
2898 int i;
2899
2900 static u32 mask_pattern[2][4] = {
2901 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
2902 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
2903 };
2904
2905 writew(0xFFFF, &regs->WOLCRClr);
2906 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
2907 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
2908
2909 /*
2910 if (vptr->wol_opts & VELOCITY_WOL_PHY)
2911 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
2912 */
2913
2914 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2915 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
2916
2917 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
2918 struct arp_packet *arp = (struct arp_packet *) buf;
2919 u16 crc;
2920 memset(buf, 0, sizeof(struct arp_packet) + 7);
2921
2922 for (i = 0; i < 4; i++)
2923 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
2924
2925 arp->type = htons(ETH_P_ARP);
2926 arp->ar_op = htons(1);
2927
2928 memcpy(arp->ar_tip, vptr->ip_addr, 4);
2929
2930 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
2931 (u8 *) & mask_pattern[0][0]);
2932
2933 writew(crc, &regs->PatternCRC[0]);
2934 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
2935 }
2936
2937 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
2938 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
2939
2940 writew(0x0FFF, &regs->WOLSRClr);
2941
2942 if (spd_dpx == SPD_DPX_1000_FULL)
2943 goto mac_done;
2944
2945 if (spd_dpx != SPD_DPX_AUTO)
2946 goto advertise_done;
2947
2948 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
2949 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
2950 MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
2951
2952 MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
2953 }
2954
2955 if (vptr->mii_status & VELOCITY_SPEED_1000)
2956 MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
2957
2958 advertise_done:
2959 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2960
2961 {
2962 u8 GCR;
2963 GCR = readb(&regs->CHIPGCR);
2964 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
2965 writeb(GCR, &regs->CHIPGCR);
2966 }
2967
2968 mac_done:
2969 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
2970 /* Turn on SWPTAG just before entering power mode */
2971 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
2972 /* Go to bed ..... */
2973 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
2974
2975 return 0;
2976 }
2977
2978 /**
2979 * velocity_save_context - save registers
2980 * @vptr: velocity
2981 * @context: buffer for stored context
2982 *
2983 * Retrieve the current configuration from the velocity hardware
2984 * and stash it in the context structure, for use by the context
2985 * restore functions. This allows us to save things we need across
2986 * power down states
2987 */
2988 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
2989 {
2990 struct mac_regs __iomem *regs = vptr->mac_regs;
2991 u16 i;
2992 u8 __iomem *ptr = (u8 __iomem *)regs;
2993
2994 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
2995 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
2996
2997 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
2998 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
2999
3000 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3001 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3002
3003 }
3004
3005 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3006 {
3007 struct net_device *dev = pci_get_drvdata(pdev);
3008 struct velocity_info *vptr = netdev_priv(dev);
3009 unsigned long flags;
3010
3011 if (!netif_running(vptr->dev))
3012 return 0;
3013
3014 netif_device_detach(vptr->dev);
3015
3016 spin_lock_irqsave(&vptr->lock, flags);
3017 pci_save_state(pdev);
3018
3019 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3020 velocity_get_ip(vptr);
3021 velocity_save_context(vptr, &vptr->context);
3022 velocity_shutdown(vptr);
3023 velocity_set_wol(vptr);
3024 pci_enable_wake(pdev, PCI_D3hot, 1);
3025 pci_set_power_state(pdev, PCI_D3hot);
3026 } else {
3027 velocity_save_context(vptr, &vptr->context);
3028 velocity_shutdown(vptr);
3029 pci_disable_device(pdev);
3030 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3031 }
3032
3033 spin_unlock_irqrestore(&vptr->lock, flags);
3034 return 0;
3035 }
3036
3037 /**
3038 * velocity_restore_context - restore registers
3039 * @vptr: velocity
3040 * @context: buffer for stored context
3041 *
3042 * Reload the register configuration from the velocity context
3043 * created by velocity_save_context.
3044 */
3045 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3046 {
3047 struct mac_regs __iomem *regs = vptr->mac_regs;
3048 int i;
3049 u8 __iomem *ptr = (u8 __iomem *)regs;
3050
3051 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3052 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3053
3054 /* Just skip cr0 */
3055 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3056 /* Clear */
3057 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3058 /* Set */
3059 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3060 }
3061
3062 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3063 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3064
3065 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3066 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3067
3068 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3069 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3070 }
3071
3072 static int velocity_resume(struct pci_dev *pdev)
3073 {
3074 struct net_device *dev = pci_get_drvdata(pdev);
3075 struct velocity_info *vptr = netdev_priv(dev);
3076 unsigned long flags;
3077 int i;
3078
3079 if (!netif_running(vptr->dev))
3080 return 0;
3081
3082 pci_set_power_state(pdev, PCI_D0);
3083 pci_enable_wake(pdev, 0, 0);
3084 pci_restore_state(pdev);
3085
3086 mac_wol_reset(vptr->mac_regs);
3087
3088 spin_lock_irqsave(&vptr->lock, flags);
3089 velocity_restore_context(vptr, &vptr->context);
3090 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3091 mac_disable_int(vptr->mac_regs);
3092
3093 velocity_tx_srv(vptr);
3094
3095 for (i = 0; i < vptr->tx.numq; i++) {
3096 if (vptr->tx.used[i])
3097 mac_tx_queue_wake(vptr->mac_regs, i);
3098 }
3099
3100 mac_enable_int(vptr->mac_regs);
3101 spin_unlock_irqrestore(&vptr->lock, flags);
3102 netif_device_attach(vptr->dev);
3103
3104 return 0;
3105 }
3106 #endif
3107
3108 /*
3109 * Definition for our device driver. The PCI layer interface
3110 * uses this to handle all our card discover and plugging
3111 */
3112 static struct pci_driver velocity_driver = {
3113 .name = VELOCITY_NAME,
3114 .id_table = velocity_id_table,
3115 .probe = velocity_found1,
3116 .remove = velocity_remove1,
3117 #ifdef CONFIG_PM
3118 .suspend = velocity_suspend,
3119 .resume = velocity_resume,
3120 #endif
3121 };
3122
3123
3124 /**
3125 * velocity_ethtool_up - pre hook for ethtool
3126 * @dev: network device
3127 *
3128 * Called before an ethtool operation. We need to make sure the
3129 * chip is out of D3 state before we poke at it.
3130 */
3131 static int velocity_ethtool_up(struct net_device *dev)
3132 {
3133 struct velocity_info *vptr = netdev_priv(dev);
3134 if (!netif_running(dev))
3135 pci_set_power_state(vptr->pdev, PCI_D0);
3136 return 0;
3137 }
3138
3139 /**
3140 * velocity_ethtool_down - post hook for ethtool
3141 * @dev: network device
3142 *
3143 * Called after an ethtool operation. Restore the chip back to D3
3144 * state if it isn't running.
3145 */
3146 static void velocity_ethtool_down(struct net_device *dev)
3147 {
3148 struct velocity_info *vptr = netdev_priv(dev);
3149 if (!netif_running(dev))
3150 pci_set_power_state(vptr->pdev, PCI_D3hot);
3151 }
3152
3153 static int velocity_get_settings(struct net_device *dev,
3154 struct ethtool_cmd *cmd)
3155 {
3156 struct velocity_info *vptr = netdev_priv(dev);
3157 struct mac_regs __iomem *regs = vptr->mac_regs;
3158 u32 status;
3159 status = check_connection_type(vptr->mac_regs);
3160
3161 cmd->supported = SUPPORTED_TP |
3162 SUPPORTED_Autoneg |
3163 SUPPORTED_10baseT_Half |
3164 SUPPORTED_10baseT_Full |
3165 SUPPORTED_100baseT_Half |
3166 SUPPORTED_100baseT_Full |
3167 SUPPORTED_1000baseT_Half |
3168 SUPPORTED_1000baseT_Full;
3169
3170 cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3171 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3172 cmd->advertising |=
3173 ADVERTISED_10baseT_Half |
3174 ADVERTISED_10baseT_Full |
3175 ADVERTISED_100baseT_Half |
3176 ADVERTISED_100baseT_Full |
3177 ADVERTISED_1000baseT_Half |
3178 ADVERTISED_1000baseT_Full;
3179 } else {
3180 switch (vptr->options.spd_dpx) {
3181 case SPD_DPX_1000_FULL:
3182 cmd->advertising |= ADVERTISED_1000baseT_Full;
3183 break;
3184 case SPD_DPX_100_HALF:
3185 cmd->advertising |= ADVERTISED_100baseT_Half;
3186 break;
3187 case SPD_DPX_100_FULL:
3188 cmd->advertising |= ADVERTISED_100baseT_Full;
3189 break;
3190 case SPD_DPX_10_HALF:
3191 cmd->advertising |= ADVERTISED_10baseT_Half;
3192 break;
3193 case SPD_DPX_10_FULL:
3194 cmd->advertising |= ADVERTISED_10baseT_Full;
3195 break;
3196 default:
3197 break;
3198 }
3199 }
3200
3201 if (status & VELOCITY_SPEED_1000)
3202 ethtool_cmd_speed_set(cmd, SPEED_1000);
3203 else if (status & VELOCITY_SPEED_100)
3204 ethtool_cmd_speed_set(cmd, SPEED_100);
3205 else
3206 ethtool_cmd_speed_set(cmd, SPEED_10);
3207
3208 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3209 cmd->port = PORT_TP;
3210 cmd->transceiver = XCVR_INTERNAL;
3211 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3212
3213 if (status & VELOCITY_DUPLEX_FULL)
3214 cmd->duplex = DUPLEX_FULL;
3215 else
3216 cmd->duplex = DUPLEX_HALF;
3217
3218 return 0;
3219 }
3220
3221 static int velocity_set_settings(struct net_device *dev,
3222 struct ethtool_cmd *cmd)
3223 {
3224 struct velocity_info *vptr = netdev_priv(dev);
3225 u32 speed = ethtool_cmd_speed(cmd);
3226 u32 curr_status;
3227 u32 new_status = 0;
3228 int ret = 0;
3229
3230 curr_status = check_connection_type(vptr->mac_regs);
3231 curr_status &= (~VELOCITY_LINK_FAIL);
3232
3233 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3234 new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3235 new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3236 new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3237 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3238
3239 if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3240 (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3241 ret = -EINVAL;
3242 } else {
3243 enum speed_opt spd_dpx;
3244
3245 if (new_status & VELOCITY_AUTONEG_ENABLE)
3246 spd_dpx = SPD_DPX_AUTO;
3247 else if ((new_status & VELOCITY_SPEED_1000) &&
3248 (new_status & VELOCITY_DUPLEX_FULL)) {
3249 spd_dpx = SPD_DPX_1000_FULL;
3250 } else if (new_status & VELOCITY_SPEED_100)
3251 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3252 SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3253 else if (new_status & VELOCITY_SPEED_10)
3254 spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3255 SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3256 else
3257 return -EOPNOTSUPP;
3258
3259 vptr->options.spd_dpx = spd_dpx;
3260
3261 velocity_set_media_mode(vptr, new_status);
3262 }
3263
3264 return ret;
3265 }
3266
3267 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3268 {
3269 struct velocity_info *vptr = netdev_priv(dev);
3270 strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver));
3271 strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version));
3272 strlcpy(info->bus_info, pci_name(vptr->pdev), sizeof(info->bus_info));
3273 }
3274
3275 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3276 {
3277 struct velocity_info *vptr = netdev_priv(dev);
3278 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3279 wol->wolopts |= WAKE_MAGIC;
3280 /*
3281 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3282 wol.wolopts|=WAKE_PHY;
3283 */
3284 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3285 wol->wolopts |= WAKE_UCAST;
3286 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3287 wol->wolopts |= WAKE_ARP;
3288 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3289 }
3290
3291 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3292 {
3293 struct velocity_info *vptr = netdev_priv(dev);
3294
3295 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3296 return -EFAULT;
3297 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3298
3299 /*
3300 if (wol.wolopts & WAKE_PHY) {
3301 vptr->wol_opts|=VELOCITY_WOL_PHY;
3302 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3303 }
3304 */
3305
3306 if (wol->wolopts & WAKE_MAGIC) {
3307 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3308 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3309 }
3310 if (wol->wolopts & WAKE_UCAST) {
3311 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3312 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3313 }
3314 if (wol->wolopts & WAKE_ARP) {
3315 vptr->wol_opts |= VELOCITY_WOL_ARP;
3316 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3317 }
3318 memcpy(vptr->wol_passwd, wol->sopass, 6);
3319 return 0;
3320 }
3321
3322 static u32 velocity_get_msglevel(struct net_device *dev)
3323 {
3324 return msglevel;
3325 }
3326
3327 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3328 {
3329 msglevel = value;
3330 }
3331
3332 static int get_pending_timer_val(int val)
3333 {
3334 int mult_bits = val >> 6;
3335 int mult = 1;
3336
3337 switch (mult_bits)
3338 {
3339 case 1:
3340 mult = 4; break;
3341 case 2:
3342 mult = 16; break;
3343 case 3:
3344 mult = 64; break;
3345 case 0:
3346 default:
3347 break;
3348 }
3349
3350 return (val & 0x3f) * mult;
3351 }
3352
3353 static void set_pending_timer_val(int *val, u32 us)
3354 {
3355 u8 mult = 0;
3356 u8 shift = 0;
3357
3358 if (us >= 0x3f) {
3359 mult = 1; /* mult with 4 */
3360 shift = 2;
3361 }
3362 if (us >= 0x3f * 4) {
3363 mult = 2; /* mult with 16 */
3364 shift = 4;
3365 }
3366 if (us >= 0x3f * 16) {
3367 mult = 3; /* mult with 64 */
3368 shift = 6;
3369 }
3370
3371 *val = (mult << 6) | ((us >> shift) & 0x3f);
3372 }
3373
3374
3375 static int velocity_get_coalesce(struct net_device *dev,
3376 struct ethtool_coalesce *ecmd)
3377 {
3378 struct velocity_info *vptr = netdev_priv(dev);
3379
3380 ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3381 ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3382
3383 ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3384 ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3385
3386 return 0;
3387 }
3388
3389 static int velocity_set_coalesce(struct net_device *dev,
3390 struct ethtool_coalesce *ecmd)
3391 {
3392 struct velocity_info *vptr = netdev_priv(dev);
3393 int max_us = 0x3f * 64;
3394 unsigned long flags;
3395
3396 /* 6 bits of */
3397 if (ecmd->tx_coalesce_usecs > max_us)
3398 return -EINVAL;
3399 if (ecmd->rx_coalesce_usecs > max_us)
3400 return -EINVAL;
3401
3402 if (ecmd->tx_max_coalesced_frames > 0xff)
3403 return -EINVAL;
3404 if (ecmd->rx_max_coalesced_frames > 0xff)
3405 return -EINVAL;
3406
3407 vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3408 vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3409
3410 set_pending_timer_val(&vptr->options.rxqueue_timer,
3411 ecmd->rx_coalesce_usecs);
3412 set_pending_timer_val(&vptr->options.txqueue_timer,
3413 ecmd->tx_coalesce_usecs);
3414
3415 /* Setup the interrupt suppression and queue timers */
3416 spin_lock_irqsave(&vptr->lock, flags);
3417 mac_disable_int(vptr->mac_regs);
3418 setup_adaptive_interrupts(vptr);
3419 setup_queue_timers(vptr);
3420
3421 mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3422 mac_clear_isr(vptr->mac_regs);
3423 mac_enable_int(vptr->mac_regs);
3424 spin_unlock_irqrestore(&vptr->lock, flags);
3425
3426 return 0;
3427 }
3428
3429 static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3430 "rx_all",
3431 "rx_ok",
3432 "tx_ok",
3433 "rx_error",
3434 "rx_runt_ok",
3435 "rx_runt_err",
3436 "rx_64",
3437 "tx_64",
3438 "rx_65_to_127",
3439 "tx_65_to_127",
3440 "rx_128_to_255",
3441 "tx_128_to_255",
3442 "rx_256_to_511",
3443 "tx_256_to_511",
3444 "rx_512_to_1023",
3445 "tx_512_to_1023",
3446 "rx_1024_to_1518",
3447 "tx_1024_to_1518",
3448 "tx_ether_collisions",
3449 "rx_crc_errors",
3450 "rx_jumbo",
3451 "tx_jumbo",
3452 "rx_mac_control_frames",
3453 "tx_mac_control_frames",
3454 "rx_frame_alignement_errors",
3455 "rx_long_ok",
3456 "rx_long_err",
3457 "tx_sqe_errors",
3458 "rx_no_buf",
3459 "rx_symbol_errors",
3460 "in_range_length_errors",
3461 "late_collisions"
3462 };
3463
3464 static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3465 {
3466 switch (sset) {
3467 case ETH_SS_STATS:
3468 memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3469 break;
3470 }
3471 }
3472
3473 static int velocity_get_sset_count(struct net_device *dev, int sset)
3474 {
3475 switch (sset) {
3476 case ETH_SS_STATS:
3477 return ARRAY_SIZE(velocity_gstrings);
3478 default:
3479 return -EOPNOTSUPP;
3480 }
3481 }
3482
3483 static void velocity_get_ethtool_stats(struct net_device *dev,
3484 struct ethtool_stats *stats, u64 *data)
3485 {
3486 if (netif_running(dev)) {
3487 struct velocity_info *vptr = netdev_priv(dev);
3488 u32 *p = vptr->mib_counter;
3489 int i;
3490
3491 spin_lock_irq(&vptr->lock);
3492 velocity_update_hw_mibs(vptr);
3493 spin_unlock_irq(&vptr->lock);
3494
3495 for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3496 *data++ = *p++;
3497 }
3498 }
3499
3500 static const struct ethtool_ops velocity_ethtool_ops = {
3501 .get_settings = velocity_get_settings,
3502 .set_settings = velocity_set_settings,
3503 .get_drvinfo = velocity_get_drvinfo,
3504 .get_wol = velocity_ethtool_get_wol,
3505 .set_wol = velocity_ethtool_set_wol,
3506 .get_msglevel = velocity_get_msglevel,
3507 .set_msglevel = velocity_set_msglevel,
3508 .get_link = velocity_get_link,
3509 .get_strings = velocity_get_strings,
3510 .get_sset_count = velocity_get_sset_count,
3511 .get_ethtool_stats = velocity_get_ethtool_stats,
3512 .get_coalesce = velocity_get_coalesce,
3513 .set_coalesce = velocity_set_coalesce,
3514 .begin = velocity_ethtool_up,
3515 .complete = velocity_ethtool_down
3516 };
3517
3518 #if defined(CONFIG_PM) && defined(CONFIG_INET)
3519 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3520 {
3521 struct in_ifaddr *ifa = ptr;
3522 struct net_device *dev = ifa->ifa_dev->dev;
3523
3524 if (dev_net(dev) == &init_net &&
3525 dev->netdev_ops == &velocity_netdev_ops)
3526 velocity_get_ip(netdev_priv(dev));
3527
3528 return NOTIFY_DONE;
3529 }
3530
3531 static struct notifier_block velocity_inetaddr_notifier = {
3532 .notifier_call = velocity_netdev_event,
3533 };
3534
3535 static void velocity_register_notifier(void)
3536 {
3537 register_inetaddr_notifier(&velocity_inetaddr_notifier);
3538 }
3539
3540 static void velocity_unregister_notifier(void)
3541 {
3542 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3543 }
3544
3545 #else
3546
3547 #define velocity_register_notifier() do {} while (0)
3548 #define velocity_unregister_notifier() do {} while (0)
3549
3550 #endif /* defined(CONFIG_PM) && defined(CONFIG_INET) */
3551
3552 /**
3553 * velocity_init_module - load time function
3554 *
3555 * Called when the velocity module is loaded. The PCI driver
3556 * is registered with the PCI layer, and in turn will call
3557 * the probe functions for each velocity adapter installed
3558 * in the system.
3559 */
3560 static int __init velocity_init_module(void)
3561 {
3562 int ret;
3563
3564 velocity_register_notifier();
3565 ret = pci_register_driver(&velocity_driver);
3566 if (ret < 0)
3567 velocity_unregister_notifier();
3568 return ret;
3569 }
3570
3571 /**
3572 * velocity_cleanup - module unload
3573 *
3574 * When the velocity hardware is unloaded this function is called.
3575 * It will clean up the notifiers and the unregister the PCI
3576 * driver interface for this hardware. This in turn cleans up
3577 * all discovered interfaces before returning from the function
3578 */
3579 static void __exit velocity_cleanup_module(void)
3580 {
3581 velocity_unregister_notifier();
3582 pci_unregister_driver(&velocity_driver);
3583 }
3584
3585 module_init(velocity_init_module);
3586 module_exit(velocity_cleanup_module);
This page took 0.174793 seconds and 5 git commands to generate.