f913c97bb8161d3ea85508eecc9d09e62745ca76
[deliverable/linux.git] / drivers / net / fec.c
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/spinlock.h>
37 #include <linux/workqueue.h>
38 #include <linux/bitops.h>
39
40 #include <asm/irq.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/pgtable.h>
44 #include <asm/cacheflush.h>
45
46 #include <asm/coldfire.h>
47 #include <asm/mcfsim.h>
48 #include "fec.h"
49
50 #if defined(CONFIG_FEC2)
51 #define FEC_MAX_PORTS 2
52 #else
53 #define FEC_MAX_PORTS 1
54 #endif
55
56 #if defined(CONFIG_M5272)
57 #define HAVE_mii_link_interrupt
58 #endif
59
60 /*
61 * Define the fixed address of the FEC hardware.
62 */
63 static unsigned int fec_hw[] = {
64 #if defined(CONFIG_M5272)
65 (MCF_MBAR + 0x840),
66 #elif defined(CONFIG_M527x)
67 (MCF_MBAR + 0x1000),
68 (MCF_MBAR + 0x1800),
69 #elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
70 (MCF_MBAR + 0x1000),
71 #elif defined(CONFIG_M520x)
72 (MCF_MBAR+0x30000),
73 #elif defined(CONFIG_M532x)
74 (MCF_MBAR+0xfc030000),
75 #endif
76 };
77
78 static unsigned char fec_mac_default[] = {
79 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
80 };
81
82 /*
83 * Some hardware gets it MAC address out of local flash memory.
84 * if this is non-zero then assume it is the address to get MAC from.
85 */
86 #if defined(CONFIG_NETtel)
87 #define FEC_FLASHMAC 0xf0006006
88 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
89 #define FEC_FLASHMAC 0xf0006000
90 #elif defined(CONFIG_CANCam)
91 #define FEC_FLASHMAC 0xf0020000
92 #elif defined (CONFIG_M5272C3)
93 #define FEC_FLASHMAC (0xffe04000 + 4)
94 #elif defined(CONFIG_MOD5272)
95 #define FEC_FLASHMAC 0xffc0406b
96 #else
97 #define FEC_FLASHMAC 0
98 #endif
99
100 /* Forward declarations of some structures to support different PHYs
101 */
102
103 typedef struct {
104 uint mii_data;
105 void (*funct)(uint mii_reg, struct net_device *dev);
106 } phy_cmd_t;
107
108 typedef struct {
109 uint id;
110 char *name;
111
112 const phy_cmd_t *config;
113 const phy_cmd_t *startup;
114 const phy_cmd_t *ack_int;
115 const phy_cmd_t *shutdown;
116 } phy_info_t;
117
118 /* The number of Tx and Rx buffers. These are allocated from the page
119 * pool. The code may assume these are power of two, so it it best
120 * to keep them that size.
121 * We don't need to allocate pages for the transmitter. We just use
122 * the skbuffer directly.
123 */
124 #define FEC_ENET_RX_PAGES 8
125 #define FEC_ENET_RX_FRSIZE 2048
126 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
127 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
128 #define FEC_ENET_TX_FRSIZE 2048
129 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
130 #define TX_RING_SIZE 16 /* Must be power of two */
131 #define TX_RING_MOD_MASK 15 /* for this to work */
132
133 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
134 #error "FEC: descriptor ring size constants too large"
135 #endif
136
137 /* Interrupt events/masks.
138 */
139 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
140 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
141 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
142 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
143 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
144 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
145 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
146 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
147 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
148 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
149
150 /* The FEC stores dest/src/type, data, and checksum for receive packets.
151 */
152 #define PKT_MAXBUF_SIZE 1518
153 #define PKT_MINBUF_SIZE 64
154 #define PKT_MAXBLR_SIZE 1520
155
156
157 /*
158 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
159 * size bits. Other FEC hardware does not, so we need to take that into
160 * account when setting it.
161 */
162 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
163 defined(CONFIG_M520x) || defined(CONFIG_M532x)
164 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
165 #else
166 #define OPT_FRAME_SIZE 0
167 #endif
168
169 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
170 * tx_bd_base always point to the base of the buffer descriptors. The
171 * cur_rx and cur_tx point to the currently available buffer.
172 * The dirty_tx tracks the current buffer that is being sent by the
173 * controller. The cur_tx and dirty_tx are equal under both completely
174 * empty and completely full conditions. The empty/ready indicator in
175 * the buffer descriptor determines the actual condition.
176 */
177 struct fec_enet_private {
178 /* Hardware registers of the FEC device */
179 volatile fec_t *hwp;
180
181 struct net_device *netdev;
182
183 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
184 unsigned char *tx_bounce[TX_RING_SIZE];
185 struct sk_buff* tx_skbuff[TX_RING_SIZE];
186 ushort skb_cur;
187 ushort skb_dirty;
188
189 /* CPM dual port RAM relative addresses.
190 */
191 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
192 cbd_t *tx_bd_base;
193 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
194 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
195 uint tx_full;
196 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
197 spinlock_t hw_lock;
198 /* hold while accessing the mii_list_t() elements */
199 spinlock_t mii_lock;
200
201 uint phy_id;
202 uint phy_id_done;
203 uint phy_status;
204 uint phy_speed;
205 phy_info_t const *phy;
206 struct work_struct phy_task;
207
208 uint sequence_done;
209 uint mii_phy_task_queued;
210
211 uint phy_addr;
212
213 int index;
214 int opened;
215 int link;
216 int old_link;
217 int full_duplex;
218 };
219
220 static int fec_enet_open(struct net_device *dev);
221 static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
222 static void fec_enet_mii(struct net_device *dev);
223 static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
224 static void fec_enet_tx(struct net_device *dev);
225 static void fec_enet_rx(struct net_device *dev);
226 static int fec_enet_close(struct net_device *dev);
227 static void set_multicast_list(struct net_device *dev);
228 static void fec_restart(struct net_device *dev, int duplex);
229 static void fec_stop(struct net_device *dev);
230 static void fec_set_mac_address(struct net_device *dev);
231
232
233 /* MII processing. We keep this as simple as possible. Requests are
234 * placed on the list (if there is room). When the request is finished
235 * by the MII, an optional function may be called.
236 */
237 typedef struct mii_list {
238 uint mii_regval;
239 void (*mii_func)(uint val, struct net_device *dev);
240 struct mii_list *mii_next;
241 } mii_list_t;
242
243 #define NMII 20
244 static mii_list_t mii_cmds[NMII];
245 static mii_list_t *mii_free;
246 static mii_list_t *mii_head;
247 static mii_list_t *mii_tail;
248
249 static int mii_queue(struct net_device *dev, int request,
250 void (*func)(uint, struct net_device *));
251
252 /* Make MII read/write commands for the FEC.
253 */
254 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
255 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
256 (VAL & 0xffff))
257 #define mk_mii_end 0
258
259 /* Transmitter timeout.
260 */
261 #define TX_TIMEOUT (2*HZ)
262
263 /* Register definitions for the PHY.
264 */
265
266 #define MII_REG_CR 0 /* Control Register */
267 #define MII_REG_SR 1 /* Status Register */
268 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
269 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
270 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
271 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
272 #define MII_REG_ANER 6 /* A-N Expansion Register */
273 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
274 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
275
276 /* values for phy_status */
277
278 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
279 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
280 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
281 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
282 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
283 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
284 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
285
286 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
287 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
288 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
289 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
290 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
291 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
292 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
293 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
294
295
296 static int
297 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
298 {
299 struct fec_enet_private *fep;
300 volatile fec_t *fecp;
301 volatile cbd_t *bdp;
302 unsigned short status;
303 unsigned long flags;
304
305 fep = netdev_priv(dev);
306 fecp = (volatile fec_t*)dev->base_addr;
307
308 if (!fep->link) {
309 /* Link is down or autonegotiation is in progress. */
310 return 1;
311 }
312
313 spin_lock_irqsave(&fep->hw_lock, flags);
314 /* Fill in a Tx ring entry */
315 bdp = fep->cur_tx;
316
317 status = bdp->cbd_sc;
318 #ifndef final_version
319 if (status & BD_ENET_TX_READY) {
320 /* Ooops. All transmit buffers are full. Bail out.
321 * This should not happen, since dev->tbusy should be set.
322 */
323 printk("%s: tx queue full!.\n", dev->name);
324 spin_unlock_irqrestore(&fep->hw_lock, flags);
325 return 1;
326 }
327 #endif
328
329 /* Clear all of the status flags.
330 */
331 status &= ~BD_ENET_TX_STATS;
332
333 /* Set buffer length and buffer pointer.
334 */
335 bdp->cbd_bufaddr = __pa(skb->data);
336 bdp->cbd_datlen = skb->len;
337
338 /*
339 * On some FEC implementations data must be aligned on
340 * 4-byte boundaries. Use bounce buffers to copy data
341 * and get it aligned. Ugh.
342 */
343 if (bdp->cbd_bufaddr & 0x3) {
344 unsigned int index;
345 index = bdp - fep->tx_bd_base;
346 memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
347 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
348 }
349
350 /* Save skb pointer.
351 */
352 fep->tx_skbuff[fep->skb_cur] = skb;
353
354 dev->stats.tx_bytes += skb->len;
355 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
356
357 /* Push the data cache so the CPM does not get stale memory
358 * data.
359 */
360 flush_dcache_range((unsigned long)skb->data,
361 (unsigned long)skb->data + skb->len);
362
363 /* Send it on its way. Tell FEC it's ready, interrupt when done,
364 * it's the last BD of the frame, and to put the CRC on the end.
365 */
366
367 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
368 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
369 bdp->cbd_sc = status;
370
371 dev->trans_start = jiffies;
372
373 /* Trigger transmission start */
374 fecp->fec_x_des_active = 0;
375
376 /* If this was the last BD in the ring, start at the beginning again.
377 */
378 if (status & BD_ENET_TX_WRAP) {
379 bdp = fep->tx_bd_base;
380 } else {
381 bdp++;
382 }
383
384 if (bdp == fep->dirty_tx) {
385 fep->tx_full = 1;
386 netif_stop_queue(dev);
387 }
388
389 fep->cur_tx = (cbd_t *)bdp;
390
391 spin_unlock_irqrestore(&fep->hw_lock, flags);
392
393 return 0;
394 }
395
396 static void
397 fec_timeout(struct net_device *dev)
398 {
399 struct fec_enet_private *fep = netdev_priv(dev);
400
401 printk("%s: transmit timed out.\n", dev->name);
402 dev->stats.tx_errors++;
403 #ifndef final_version
404 {
405 int i;
406 cbd_t *bdp;
407
408 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
409 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
410 (unsigned long)fep->dirty_tx,
411 (unsigned long)fep->cur_rx);
412
413 bdp = fep->tx_bd_base;
414 printk(" tx: %u buffers\n", TX_RING_SIZE);
415 for (i = 0 ; i < TX_RING_SIZE; i++) {
416 printk(" %08x: %04x %04x %08x\n",
417 (uint) bdp,
418 bdp->cbd_sc,
419 bdp->cbd_datlen,
420 (int) bdp->cbd_bufaddr);
421 bdp++;
422 }
423
424 bdp = fep->rx_bd_base;
425 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
426 for (i = 0 ; i < RX_RING_SIZE; i++) {
427 printk(" %08x: %04x %04x %08x\n",
428 (uint) bdp,
429 bdp->cbd_sc,
430 bdp->cbd_datlen,
431 (int) bdp->cbd_bufaddr);
432 bdp++;
433 }
434 }
435 #endif
436 fec_restart(dev, fep->full_duplex);
437 netif_wake_queue(dev);
438 }
439
440 /* The interrupt handler.
441 * This is called from the MPC core interrupt.
442 */
443 static irqreturn_t
444 fec_enet_interrupt(int irq, void * dev_id)
445 {
446 struct net_device *dev = dev_id;
447 volatile fec_t *fecp;
448 uint int_events;
449 irqreturn_t ret = IRQ_NONE;
450
451 fecp = (volatile fec_t*)dev->base_addr;
452
453 /* Get the interrupt events that caused us to be here.
454 */
455 do {
456 int_events = fecp->fec_ievent;
457 fecp->fec_ievent = int_events;
458
459 /* Handle receive event in its own function.
460 */
461 if (int_events & FEC_ENET_RXF) {
462 ret = IRQ_HANDLED;
463 fec_enet_rx(dev);
464 }
465
466 /* Transmit OK, or non-fatal error. Update the buffer
467 descriptors. FEC handles all errors, we just discover
468 them as part of the transmit process.
469 */
470 if (int_events & FEC_ENET_TXF) {
471 ret = IRQ_HANDLED;
472 fec_enet_tx(dev);
473 }
474
475 if (int_events & FEC_ENET_MII) {
476 ret = IRQ_HANDLED;
477 fec_enet_mii(dev);
478 }
479
480 } while (int_events);
481
482 return ret;
483 }
484
485
486 static void
487 fec_enet_tx(struct net_device *dev)
488 {
489 struct fec_enet_private *fep;
490 volatile cbd_t *bdp;
491 unsigned short status;
492 struct sk_buff *skb;
493
494 fep = netdev_priv(dev);
495 spin_lock_irq(&fep->hw_lock);
496 bdp = fep->dirty_tx;
497
498 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
499 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
500
501 skb = fep->tx_skbuff[fep->skb_dirty];
502 /* Check for errors. */
503 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
504 BD_ENET_TX_RL | BD_ENET_TX_UN |
505 BD_ENET_TX_CSL)) {
506 dev->stats.tx_errors++;
507 if (status & BD_ENET_TX_HB) /* No heartbeat */
508 dev->stats.tx_heartbeat_errors++;
509 if (status & BD_ENET_TX_LC) /* Late collision */
510 dev->stats.tx_window_errors++;
511 if (status & BD_ENET_TX_RL) /* Retrans limit */
512 dev->stats.tx_aborted_errors++;
513 if (status & BD_ENET_TX_UN) /* Underrun */
514 dev->stats.tx_fifo_errors++;
515 if (status & BD_ENET_TX_CSL) /* Carrier lost */
516 dev->stats.tx_carrier_errors++;
517 } else {
518 dev->stats.tx_packets++;
519 }
520
521 #ifndef final_version
522 if (status & BD_ENET_TX_READY)
523 printk("HEY! Enet xmit interrupt and TX_READY.\n");
524 #endif
525 /* Deferred means some collisions occurred during transmit,
526 * but we eventually sent the packet OK.
527 */
528 if (status & BD_ENET_TX_DEF)
529 dev->stats.collisions++;
530
531 /* Free the sk buffer associated with this last transmit.
532 */
533 dev_kfree_skb_any(skb);
534 fep->tx_skbuff[fep->skb_dirty] = NULL;
535 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
536
537 /* Update pointer to next buffer descriptor to be transmitted.
538 */
539 if (status & BD_ENET_TX_WRAP)
540 bdp = fep->tx_bd_base;
541 else
542 bdp++;
543
544 /* Since we have freed up a buffer, the ring is no longer
545 * full.
546 */
547 if (fep->tx_full) {
548 fep->tx_full = 0;
549 if (netif_queue_stopped(dev))
550 netif_wake_queue(dev);
551 }
552 }
553 fep->dirty_tx = (cbd_t *)bdp;
554 spin_unlock_irq(&fep->hw_lock);
555 }
556
557
558 /* During a receive, the cur_rx points to the current incoming buffer.
559 * When we update through the ring, if the next incoming buffer has
560 * not been given to the system, we just set the empty indicator,
561 * effectively tossing the packet.
562 */
563 static void
564 fec_enet_rx(struct net_device *dev)
565 {
566 struct fec_enet_private *fep;
567 volatile fec_t *fecp;
568 volatile cbd_t *bdp;
569 unsigned short status;
570 struct sk_buff *skb;
571 ushort pkt_len;
572 __u8 *data;
573
574 #ifdef CONFIG_M532x
575 flush_cache_all();
576 #endif
577
578 fep = netdev_priv(dev);
579 fecp = (volatile fec_t*)dev->base_addr;
580
581 spin_lock_irq(&fep->hw_lock);
582
583 /* First, grab all of the stats for the incoming packet.
584 * These get messed up if we get called due to a busy condition.
585 */
586 bdp = fep->cur_rx;
587
588 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
589
590 #ifndef final_version
591 /* Since we have allocated space to hold a complete frame,
592 * the last indicator should be set.
593 */
594 if ((status & BD_ENET_RX_LAST) == 0)
595 printk("FEC ENET: rcv is not +last\n");
596 #endif
597
598 if (!fep->opened)
599 goto rx_processing_done;
600
601 /* Check for errors. */
602 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
603 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
604 dev->stats.rx_errors++;
605 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
606 /* Frame too long or too short. */
607 dev->stats.rx_length_errors++;
608 }
609 if (status & BD_ENET_RX_NO) /* Frame alignment */
610 dev->stats.rx_frame_errors++;
611 if (status & BD_ENET_RX_CR) /* CRC Error */
612 dev->stats.rx_crc_errors++;
613 if (status & BD_ENET_RX_OV) /* FIFO overrun */
614 dev->stats.rx_fifo_errors++;
615 }
616
617 /* Report late collisions as a frame error.
618 * On this error, the BD is closed, but we don't know what we
619 * have in the buffer. So, just drop this frame on the floor.
620 */
621 if (status & BD_ENET_RX_CL) {
622 dev->stats.rx_errors++;
623 dev->stats.rx_frame_errors++;
624 goto rx_processing_done;
625 }
626
627 /* Process the incoming frame.
628 */
629 dev->stats.rx_packets++;
630 pkt_len = bdp->cbd_datlen;
631 dev->stats.rx_bytes += pkt_len;
632 data = (__u8*)__va(bdp->cbd_bufaddr);
633
634 /* This does 16 byte alignment, exactly what we need.
635 * The packet length includes FCS, but we don't want to
636 * include that when passing upstream as it messes up
637 * bridging applications.
638 */
639 skb = dev_alloc_skb(pkt_len-4);
640
641 if (skb == NULL) {
642 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
643 dev->stats.rx_dropped++;
644 } else {
645 skb_put(skb,pkt_len-4); /* Make room */
646 skb_copy_to_linear_data(skb, data, pkt_len-4);
647 skb->protocol=eth_type_trans(skb,dev);
648 netif_rx(skb);
649 }
650 rx_processing_done:
651
652 /* Clear the status flags for this buffer.
653 */
654 status &= ~BD_ENET_RX_STATS;
655
656 /* Mark the buffer empty.
657 */
658 status |= BD_ENET_RX_EMPTY;
659 bdp->cbd_sc = status;
660
661 /* Update BD pointer to next entry.
662 */
663 if (status & BD_ENET_RX_WRAP)
664 bdp = fep->rx_bd_base;
665 else
666 bdp++;
667
668 #if 1
669 /* Doing this here will keep the FEC running while we process
670 * incoming frames. On a heavily loaded network, we should be
671 * able to keep up at the expense of system resources.
672 */
673 fecp->fec_r_des_active = 0;
674 #endif
675 } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
676 fep->cur_rx = (cbd_t *)bdp;
677
678 #if 0
679 /* Doing this here will allow us to process all frames in the
680 * ring before the FEC is allowed to put more there. On a heavily
681 * loaded network, some frames may be lost. Unfortunately, this
682 * increases the interrupt overhead since we can potentially work
683 * our way back to the interrupt return only to come right back
684 * here.
685 */
686 fecp->fec_r_des_active = 0;
687 #endif
688
689 spin_unlock_irq(&fep->hw_lock);
690 }
691
692
693 /* called from interrupt context */
694 static void
695 fec_enet_mii(struct net_device *dev)
696 {
697 struct fec_enet_private *fep;
698 volatile fec_t *ep;
699 mii_list_t *mip;
700 uint mii_reg;
701
702 fep = netdev_priv(dev);
703 spin_lock_irq(&fep->mii_lock);
704
705 ep = fep->hwp;
706 mii_reg = ep->fec_mii_data;
707
708 if ((mip = mii_head) == NULL) {
709 printk("MII and no head!\n");
710 goto unlock;
711 }
712
713 if (mip->mii_func != NULL)
714 (*(mip->mii_func))(mii_reg, dev);
715
716 mii_head = mip->mii_next;
717 mip->mii_next = mii_free;
718 mii_free = mip;
719
720 if ((mip = mii_head) != NULL)
721 ep->fec_mii_data = mip->mii_regval;
722
723 unlock:
724 spin_unlock_irq(&fep->mii_lock);
725 }
726
727 static int
728 mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
729 {
730 struct fec_enet_private *fep;
731 unsigned long flags;
732 mii_list_t *mip;
733 int retval;
734
735 /* Add PHY address to register command.
736 */
737 fep = netdev_priv(dev);
738 spin_lock_irqsave(&fep->mii_lock, flags);
739
740 regval |= fep->phy_addr << 23;
741 retval = 0;
742
743 if ((mip = mii_free) != NULL) {
744 mii_free = mip->mii_next;
745 mip->mii_regval = regval;
746 mip->mii_func = func;
747 mip->mii_next = NULL;
748 if (mii_head) {
749 mii_tail->mii_next = mip;
750 mii_tail = mip;
751 } else {
752 mii_head = mii_tail = mip;
753 fep->hwp->fec_mii_data = regval;
754 }
755 } else {
756 retval = 1;
757 }
758
759 spin_unlock_irqrestore(&fep->mii_lock, flags);
760 return retval;
761 }
762
763 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
764 {
765 if(!c)
766 return;
767
768 for (; c->mii_data != mk_mii_end; c++)
769 mii_queue(dev, c->mii_data, c->funct);
770 }
771
772 static void mii_parse_sr(uint mii_reg, struct net_device *dev)
773 {
774 struct fec_enet_private *fep = netdev_priv(dev);
775 volatile uint *s = &(fep->phy_status);
776 uint status;
777
778 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
779
780 if (mii_reg & 0x0004)
781 status |= PHY_STAT_LINK;
782 if (mii_reg & 0x0010)
783 status |= PHY_STAT_FAULT;
784 if (mii_reg & 0x0020)
785 status |= PHY_STAT_ANC;
786 *s = status;
787 }
788
789 static void mii_parse_cr(uint mii_reg, struct net_device *dev)
790 {
791 struct fec_enet_private *fep = netdev_priv(dev);
792 volatile uint *s = &(fep->phy_status);
793 uint status;
794
795 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
796
797 if (mii_reg & 0x1000)
798 status |= PHY_CONF_ANE;
799 if (mii_reg & 0x4000)
800 status |= PHY_CONF_LOOP;
801 *s = status;
802 }
803
804 static void mii_parse_anar(uint mii_reg, struct net_device *dev)
805 {
806 struct fec_enet_private *fep = netdev_priv(dev);
807 volatile uint *s = &(fep->phy_status);
808 uint status;
809
810 status = *s & ~(PHY_CONF_SPMASK);
811
812 if (mii_reg & 0x0020)
813 status |= PHY_CONF_10HDX;
814 if (mii_reg & 0x0040)
815 status |= PHY_CONF_10FDX;
816 if (mii_reg & 0x0080)
817 status |= PHY_CONF_100HDX;
818 if (mii_reg & 0x00100)
819 status |= PHY_CONF_100FDX;
820 *s = status;
821 }
822
823 /* ------------------------------------------------------------------------- */
824 /* The Level one LXT970 is used by many boards */
825
826 #define MII_LXT970_MIRROR 16 /* Mirror register */
827 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
828 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
829 #define MII_LXT970_CONFIG 19 /* Configuration Register */
830 #define MII_LXT970_CSR 20 /* Chip Status Register */
831
832 static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
833 {
834 struct fec_enet_private *fep = netdev_priv(dev);
835 volatile uint *s = &(fep->phy_status);
836 uint status;
837
838 status = *s & ~(PHY_STAT_SPMASK);
839 if (mii_reg & 0x0800) {
840 if (mii_reg & 0x1000)
841 status |= PHY_STAT_100FDX;
842 else
843 status |= PHY_STAT_100HDX;
844 } else {
845 if (mii_reg & 0x1000)
846 status |= PHY_STAT_10FDX;
847 else
848 status |= PHY_STAT_10HDX;
849 }
850 *s = status;
851 }
852
853 static phy_cmd_t const phy_cmd_lxt970_config[] = {
854 { mk_mii_read(MII_REG_CR), mii_parse_cr },
855 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
856 { mk_mii_end, }
857 };
858 static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
859 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
860 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
861 { mk_mii_end, }
862 };
863 static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
864 /* read SR and ISR to acknowledge */
865 { mk_mii_read(MII_REG_SR), mii_parse_sr },
866 { mk_mii_read(MII_LXT970_ISR), NULL },
867
868 /* find out the current status */
869 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
870 { mk_mii_end, }
871 };
872 static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
873 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
874 { mk_mii_end, }
875 };
876 static phy_info_t const phy_info_lxt970 = {
877 .id = 0x07810000,
878 .name = "LXT970",
879 .config = phy_cmd_lxt970_config,
880 .startup = phy_cmd_lxt970_startup,
881 .ack_int = phy_cmd_lxt970_ack_int,
882 .shutdown = phy_cmd_lxt970_shutdown
883 };
884
885 /* ------------------------------------------------------------------------- */
886 /* The Level one LXT971 is used on some of my custom boards */
887
888 /* register definitions for the 971 */
889
890 #define MII_LXT971_PCR 16 /* Port Control Register */
891 #define MII_LXT971_SR2 17 /* Status Register 2 */
892 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
893 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
894 #define MII_LXT971_LCR 20 /* LED Control Register */
895 #define MII_LXT971_TCR 30 /* Transmit Control Register */
896
897 /*
898 * I had some nice ideas of running the MDIO faster...
899 * The 971 should support 8MHz and I tried it, but things acted really
900 * weird, so 2.5 MHz ought to be enough for anyone...
901 */
902
903 static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
904 {
905 struct fec_enet_private *fep = netdev_priv(dev);
906 volatile uint *s = &(fep->phy_status);
907 uint status;
908
909 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
910
911 if (mii_reg & 0x0400) {
912 fep->link = 1;
913 status |= PHY_STAT_LINK;
914 } else {
915 fep->link = 0;
916 }
917 if (mii_reg & 0x0080)
918 status |= PHY_STAT_ANC;
919 if (mii_reg & 0x4000) {
920 if (mii_reg & 0x0200)
921 status |= PHY_STAT_100FDX;
922 else
923 status |= PHY_STAT_100HDX;
924 } else {
925 if (mii_reg & 0x0200)
926 status |= PHY_STAT_10FDX;
927 else
928 status |= PHY_STAT_10HDX;
929 }
930 if (mii_reg & 0x0008)
931 status |= PHY_STAT_FAULT;
932
933 *s = status;
934 }
935
936 static phy_cmd_t const phy_cmd_lxt971_config[] = {
937 /* limit to 10MBit because my prototype board
938 * doesn't work with 100. */
939 { mk_mii_read(MII_REG_CR), mii_parse_cr },
940 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
941 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
942 { mk_mii_end, }
943 };
944 static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
945 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
946 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
947 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
948 /* Somehow does the 971 tell me that the link is down
949 * the first read after power-up.
950 * read here to get a valid value in ack_int */
951 { mk_mii_read(MII_REG_SR), mii_parse_sr },
952 { mk_mii_end, }
953 };
954 static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
955 /* acknowledge the int before reading status ! */
956 { mk_mii_read(MII_LXT971_ISR), NULL },
957 /* find out the current status */
958 { mk_mii_read(MII_REG_SR), mii_parse_sr },
959 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
960 { mk_mii_end, }
961 };
962 static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
963 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
964 { mk_mii_end, }
965 };
966 static phy_info_t const phy_info_lxt971 = {
967 .id = 0x0001378e,
968 .name = "LXT971",
969 .config = phy_cmd_lxt971_config,
970 .startup = phy_cmd_lxt971_startup,
971 .ack_int = phy_cmd_lxt971_ack_int,
972 .shutdown = phy_cmd_lxt971_shutdown
973 };
974
975 /* ------------------------------------------------------------------------- */
976 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
977
978 /* register definitions */
979
980 #define MII_QS6612_MCR 17 /* Mode Control Register */
981 #define MII_QS6612_FTR 27 /* Factory Test Register */
982 #define MII_QS6612_MCO 28 /* Misc. Control Register */
983 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
984 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
985 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
986
987 static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
988 {
989 struct fec_enet_private *fep = netdev_priv(dev);
990 volatile uint *s = &(fep->phy_status);
991 uint status;
992
993 status = *s & ~(PHY_STAT_SPMASK);
994
995 switch((mii_reg >> 2) & 7) {
996 case 1: status |= PHY_STAT_10HDX; break;
997 case 2: status |= PHY_STAT_100HDX; break;
998 case 5: status |= PHY_STAT_10FDX; break;
999 case 6: status |= PHY_STAT_100FDX; break;
1000 }
1001
1002 *s = status;
1003 }
1004
1005 static phy_cmd_t const phy_cmd_qs6612_config[] = {
1006 /* The PHY powers up isolated on the RPX,
1007 * so send a command to allow operation.
1008 */
1009 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1010
1011 /* parse cr and anar to get some info */
1012 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1013 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1014 { mk_mii_end, }
1015 };
1016 static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
1017 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1018 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1019 { mk_mii_end, }
1020 };
1021 static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
1022 /* we need to read ISR, SR and ANER to acknowledge */
1023 { mk_mii_read(MII_QS6612_ISR), NULL },
1024 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1025 { mk_mii_read(MII_REG_ANER), NULL },
1026
1027 /* read pcr to get info */
1028 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1029 { mk_mii_end, }
1030 };
1031 static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
1032 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1033 { mk_mii_end, }
1034 };
1035 static phy_info_t const phy_info_qs6612 = {
1036 .id = 0x00181440,
1037 .name = "QS6612",
1038 .config = phy_cmd_qs6612_config,
1039 .startup = phy_cmd_qs6612_startup,
1040 .ack_int = phy_cmd_qs6612_ack_int,
1041 .shutdown = phy_cmd_qs6612_shutdown
1042 };
1043
1044 /* ------------------------------------------------------------------------- */
1045 /* AMD AM79C874 phy */
1046
1047 /* register definitions for the 874 */
1048
1049 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1050 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1051 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1052 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1053 #define MII_AM79C874_MCR 21 /* ModeControl Register */
1054 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1055 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
1056
1057 static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1058 {
1059 struct fec_enet_private *fep = netdev_priv(dev);
1060 volatile uint *s = &(fep->phy_status);
1061 uint status;
1062
1063 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1064
1065 if (mii_reg & 0x0080)
1066 status |= PHY_STAT_ANC;
1067 if (mii_reg & 0x0400)
1068 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1069 else
1070 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1071
1072 *s = status;
1073 }
1074
1075 static phy_cmd_t const phy_cmd_am79c874_config[] = {
1076 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1077 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1078 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1079 { mk_mii_end, }
1080 };
1081 static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
1082 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1083 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1084 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1085 { mk_mii_end, }
1086 };
1087 static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1088 /* find out the current status */
1089 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1090 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1091 /* we only need to read ISR to acknowledge */
1092 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1093 { mk_mii_end, }
1094 };
1095 static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1096 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1097 { mk_mii_end, }
1098 };
1099 static phy_info_t const phy_info_am79c874 = {
1100 .id = 0x00022561,
1101 .name = "AM79C874",
1102 .config = phy_cmd_am79c874_config,
1103 .startup = phy_cmd_am79c874_startup,
1104 .ack_int = phy_cmd_am79c874_ack_int,
1105 .shutdown = phy_cmd_am79c874_shutdown
1106 };
1107
1108
1109 /* ------------------------------------------------------------------------- */
1110 /* Kendin KS8721BL phy */
1111
1112 /* register definitions for the 8721 */
1113
1114 #define MII_KS8721BL_RXERCR 21
1115 #define MII_KS8721BL_ICSR 22
1116 #define MII_KS8721BL_PHYCR 31
1117
1118 static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1119 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1120 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1121 { mk_mii_end, }
1122 };
1123 static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
1124 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1125 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1126 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1127 { mk_mii_end, }
1128 };
1129 static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1130 /* find out the current status */
1131 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1132 /* we only need to read ISR to acknowledge */
1133 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1134 { mk_mii_end, }
1135 };
1136 static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1137 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1138 { mk_mii_end, }
1139 };
1140 static phy_info_t const phy_info_ks8721bl = {
1141 .id = 0x00022161,
1142 .name = "KS8721BL",
1143 .config = phy_cmd_ks8721bl_config,
1144 .startup = phy_cmd_ks8721bl_startup,
1145 .ack_int = phy_cmd_ks8721bl_ack_int,
1146 .shutdown = phy_cmd_ks8721bl_shutdown
1147 };
1148
1149 /* ------------------------------------------------------------------------- */
1150 /* register definitions for the DP83848 */
1151
1152 #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1153
1154 static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1155 {
1156 struct fec_enet_private *fep = netdev_priv(dev);
1157 volatile uint *s = &(fep->phy_status);
1158
1159 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1160
1161 /* Link up */
1162 if (mii_reg & 0x0001) {
1163 fep->link = 1;
1164 *s |= PHY_STAT_LINK;
1165 } else
1166 fep->link = 0;
1167 /* Status of link */
1168 if (mii_reg & 0x0010) /* Autonegotioation complete */
1169 *s |= PHY_STAT_ANC;
1170 if (mii_reg & 0x0002) { /* 10MBps? */
1171 if (mii_reg & 0x0004) /* Full Duplex? */
1172 *s |= PHY_STAT_10FDX;
1173 else
1174 *s |= PHY_STAT_10HDX;
1175 } else { /* 100 Mbps? */
1176 if (mii_reg & 0x0004) /* Full Duplex? */
1177 *s |= PHY_STAT_100FDX;
1178 else
1179 *s |= PHY_STAT_100HDX;
1180 }
1181 if (mii_reg & 0x0008)
1182 *s |= PHY_STAT_FAULT;
1183 }
1184
1185 static phy_info_t phy_info_dp83848= {
1186 0x020005c9,
1187 "DP83848",
1188
1189 (const phy_cmd_t []) { /* config */
1190 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1191 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1192 { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1193 { mk_mii_end, }
1194 },
1195 (const phy_cmd_t []) { /* startup - enable interrupts */
1196 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1197 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1198 { mk_mii_end, }
1199 },
1200 (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1201 { mk_mii_end, }
1202 },
1203 (const phy_cmd_t []) { /* shutdown */
1204 { mk_mii_end, }
1205 },
1206 };
1207
1208 /* ------------------------------------------------------------------------- */
1209
1210 static phy_info_t const * const phy_info[] = {
1211 &phy_info_lxt970,
1212 &phy_info_lxt971,
1213 &phy_info_qs6612,
1214 &phy_info_am79c874,
1215 &phy_info_ks8721bl,
1216 &phy_info_dp83848,
1217 NULL
1218 };
1219
1220 /* ------------------------------------------------------------------------- */
1221 #ifdef HAVE_mii_link_interrupt
1222 static irqreturn_t
1223 mii_link_interrupt(int irq, void * dev_id);
1224 #endif
1225
1226 #if defined(CONFIG_M5272)
1227 /*
1228 * Code specific to Coldfire 5272 setup.
1229 */
1230 static void __inline__ fec_request_intrs(struct net_device *dev)
1231 {
1232 volatile unsigned long *icrp;
1233 static const struct idesc {
1234 char *name;
1235 unsigned short irq;
1236 irq_handler_t handler;
1237 } *idp, id[] = {
1238 { "fec(RX)", 86, fec_enet_interrupt },
1239 { "fec(TX)", 87, fec_enet_interrupt },
1240 { "fec(OTHER)", 88, fec_enet_interrupt },
1241 { "fec(MII)", 66, mii_link_interrupt },
1242 { NULL },
1243 };
1244
1245 /* Setup interrupt handlers. */
1246 for (idp = id; idp->name; idp++) {
1247 if (request_irq(idp->irq, idp->handler, IRQF_DISABLED, idp->name, dev) != 0)
1248 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
1249 }
1250
1251 /* Unmask interrupt at ColdFire 5272 SIM */
1252 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
1253 *icrp = 0x00000ddd;
1254 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1255 *icrp = 0x0d000000;
1256 }
1257
1258 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1259 {
1260 volatile fec_t *fecp;
1261
1262 fecp = fep->hwp;
1263 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1264 fecp->fec_x_cntrl = 0x00;
1265
1266 /*
1267 * Set MII speed to 2.5 MHz
1268 * See 5272 manual section 11.5.8: MSCR
1269 */
1270 fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
1271 fecp->fec_mii_speed = fep->phy_speed;
1272
1273 fec_restart(dev, 0);
1274 }
1275
1276 static void __inline__ fec_get_mac(struct net_device *dev)
1277 {
1278 struct fec_enet_private *fep = netdev_priv(dev);
1279 volatile fec_t *fecp;
1280 unsigned char *iap, tmpaddr[ETH_ALEN];
1281
1282 fecp = fep->hwp;
1283
1284 if (FEC_FLASHMAC) {
1285 /*
1286 * Get MAC address from FLASH.
1287 * If it is all 1's or 0's, use the default.
1288 */
1289 iap = (unsigned char *)FEC_FLASHMAC;
1290 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1291 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1292 iap = fec_mac_default;
1293 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1294 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1295 iap = fec_mac_default;
1296 } else {
1297 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1298 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1299 iap = &tmpaddr[0];
1300 }
1301
1302 memcpy(dev->dev_addr, iap, ETH_ALEN);
1303
1304 /* Adjust MAC if using default MAC address */
1305 if (iap == fec_mac_default)
1306 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1307 }
1308
1309 static void __inline__ fec_disable_phy_intr(void)
1310 {
1311 volatile unsigned long *icrp;
1312 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1313 *icrp = 0x08000000;
1314 }
1315
1316 static void __inline__ fec_phy_ack_intr(void)
1317 {
1318 volatile unsigned long *icrp;
1319 /* Acknowledge the interrupt */
1320 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1321 *icrp = 0x0d000000;
1322 }
1323
1324 /* ------------------------------------------------------------------------- */
1325
1326 #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1327
1328 /*
1329 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1330 * the 5270/5271/5274/5275 and 5280/5282 setups.
1331 */
1332 static void __inline__ fec_request_intrs(struct net_device *dev)
1333 {
1334 struct fec_enet_private *fep;
1335 int b;
1336 static const struct idesc {
1337 char *name;
1338 unsigned short irq;
1339 } *idp, id[] = {
1340 { "fec(TXF)", 23 },
1341 { "fec(RXF)", 27 },
1342 { "fec(MII)", 29 },
1343 { NULL },
1344 };
1345
1346 fep = netdev_priv(dev);
1347 b = (fep->index) ? 128 : 64;
1348
1349 /* Setup interrupt handlers. */
1350 for (idp = id; idp->name; idp++) {
1351 if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name, dev) != 0)
1352 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1353 }
1354
1355 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1356 {
1357 volatile unsigned char *icrp;
1358 volatile unsigned long *imrp;
1359 int i, ilip;
1360
1361 b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
1362 icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
1363 MCFINTC_ICR0);
1364 for (i = 23, ilip = 0x28; (i < 36); i++)
1365 icrp[i] = ilip--;
1366
1367 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1368 MCFINTC_IMRH);
1369 *imrp &= ~0x0000000f;
1370 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1371 MCFINTC_IMRL);
1372 *imrp &= ~0xff800001;
1373 }
1374
1375 #if defined(CONFIG_M528x)
1376 /* Set up gpio outputs for MII lines */
1377 {
1378 volatile u16 *gpio_paspar;
1379 volatile u8 *gpio_pehlpar;
1380
1381 gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
1382 gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
1383 *gpio_paspar |= 0x0f00;
1384 *gpio_pehlpar = 0xc0;
1385 }
1386 #endif
1387
1388 #if defined(CONFIG_M527x)
1389 /* Set up gpio outputs for MII lines */
1390 {
1391 volatile u8 *gpio_par_fec;
1392 volatile u16 *gpio_par_feci2c;
1393
1394 gpio_par_feci2c = (volatile u16 *)(MCF_IPSBAR + 0x100082);
1395 /* Set up gpio outputs for FEC0 MII lines */
1396 gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100078);
1397
1398 *gpio_par_feci2c |= 0x0f00;
1399 *gpio_par_fec |= 0xc0;
1400
1401 #if defined(CONFIG_FEC2)
1402 /* Set up gpio outputs for FEC1 MII lines */
1403 gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100079);
1404
1405 *gpio_par_feci2c |= 0x00a0;
1406 *gpio_par_fec |= 0xc0;
1407 #endif /* CONFIG_FEC2 */
1408 }
1409 #endif /* CONFIG_M527x */
1410 }
1411
1412 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1413 {
1414 volatile fec_t *fecp;
1415
1416 fecp = fep->hwp;
1417 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1418 fecp->fec_x_cntrl = 0x00;
1419
1420 /*
1421 * Set MII speed to 2.5 MHz
1422 * See 5282 manual section 17.5.4.7: MSCR
1423 */
1424 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1425 fecp->fec_mii_speed = fep->phy_speed;
1426
1427 fec_restart(dev, 0);
1428 }
1429
1430 static void __inline__ fec_get_mac(struct net_device *dev)
1431 {
1432 struct fec_enet_private *fep = netdev_priv(dev);
1433 volatile fec_t *fecp;
1434 unsigned char *iap, tmpaddr[ETH_ALEN];
1435
1436 fecp = fep->hwp;
1437
1438 if (FEC_FLASHMAC) {
1439 /*
1440 * Get MAC address from FLASH.
1441 * If it is all 1's or 0's, use the default.
1442 */
1443 iap = FEC_FLASHMAC;
1444 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1445 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1446 iap = fec_mac_default;
1447 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1448 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1449 iap = fec_mac_default;
1450 } else {
1451 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1452 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1453 iap = &tmpaddr[0];
1454 }
1455
1456 memcpy(dev->dev_addr, iap, ETH_ALEN);
1457
1458 /* Adjust MAC if using default MAC address */
1459 if (iap == fec_mac_default)
1460 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1461 }
1462
1463 static void __inline__ fec_disable_phy_intr(void)
1464 {
1465 }
1466
1467 static void __inline__ fec_phy_ack_intr(void)
1468 {
1469 }
1470
1471 /* ------------------------------------------------------------------------- */
1472
1473 #elif defined(CONFIG_M520x)
1474
1475 /*
1476 * Code specific to Coldfire 520x
1477 */
1478 static void __inline__ fec_request_intrs(struct net_device *dev)
1479 {
1480 struct fec_enet_private *fep;
1481 int b;
1482 static const struct idesc {
1483 char *name;
1484 unsigned short irq;
1485 } *idp, id[] = {
1486 { "fec(TXF)", 23 },
1487 { "fec(RXF)", 27 },
1488 { "fec(MII)", 29 },
1489 { NULL },
1490 };
1491
1492 fep = netdev_priv(dev);
1493 b = 64 + 13;
1494
1495 /* Setup interrupt handlers. */
1496 for (idp = id; idp->name; idp++) {
1497 if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1498 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1499 }
1500
1501 /* Unmask interrupts at ColdFire interrupt controller */
1502 {
1503 volatile unsigned char *icrp;
1504 volatile unsigned long *imrp;
1505
1506 icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
1507 MCFINTC_ICR0);
1508 for (b = 36; (b < 49); b++)
1509 icrp[b] = 0x04;
1510 imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
1511 MCFINTC_IMRH);
1512 *imrp &= ~0x0001FFF0;
1513 }
1514 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
1515 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
1516 }
1517
1518 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1519 {
1520 volatile fec_t *fecp;
1521
1522 fecp = fep->hwp;
1523 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1524 fecp->fec_x_cntrl = 0x00;
1525
1526 /*
1527 * Set MII speed to 2.5 MHz
1528 * See 5282 manual section 17.5.4.7: MSCR
1529 */
1530 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1531 fecp->fec_mii_speed = fep->phy_speed;
1532
1533 fec_restart(dev, 0);
1534 }
1535
1536 static void __inline__ fec_get_mac(struct net_device *dev)
1537 {
1538 struct fec_enet_private *fep = netdev_priv(dev);
1539 volatile fec_t *fecp;
1540 unsigned char *iap, tmpaddr[ETH_ALEN];
1541
1542 fecp = fep->hwp;
1543
1544 if (FEC_FLASHMAC) {
1545 /*
1546 * Get MAC address from FLASH.
1547 * If it is all 1's or 0's, use the default.
1548 */
1549 iap = FEC_FLASHMAC;
1550 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1551 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1552 iap = fec_mac_default;
1553 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1554 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1555 iap = fec_mac_default;
1556 } else {
1557 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1558 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1559 iap = &tmpaddr[0];
1560 }
1561
1562 memcpy(dev->dev_addr, iap, ETH_ALEN);
1563
1564 /* Adjust MAC if using default MAC address */
1565 if (iap == fec_mac_default)
1566 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1567 }
1568
1569 static void __inline__ fec_disable_phy_intr(void)
1570 {
1571 }
1572
1573 static void __inline__ fec_phy_ack_intr(void)
1574 {
1575 }
1576
1577 /* ------------------------------------------------------------------------- */
1578
1579 #elif defined(CONFIG_M532x)
1580 /*
1581 * Code specific for M532x
1582 */
1583 static void __inline__ fec_request_intrs(struct net_device *dev)
1584 {
1585 struct fec_enet_private *fep;
1586 int b;
1587 static const struct idesc {
1588 char *name;
1589 unsigned short irq;
1590 } *idp, id[] = {
1591 { "fec(TXF)", 36 },
1592 { "fec(RXF)", 40 },
1593 { "fec(MII)", 42 },
1594 { NULL },
1595 };
1596
1597 fep = netdev_priv(dev);
1598 b = (fep->index) ? 128 : 64;
1599
1600 /* Setup interrupt handlers. */
1601 for (idp = id; idp->name; idp++) {
1602 if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1603 printk("FEC: Could not allocate %s IRQ(%d)!\n",
1604 idp->name, b+idp->irq);
1605 }
1606
1607 /* Unmask interrupts */
1608 MCF_INTC0_ICR36 = 0x2;
1609 MCF_INTC0_ICR37 = 0x2;
1610 MCF_INTC0_ICR38 = 0x2;
1611 MCF_INTC0_ICR39 = 0x2;
1612 MCF_INTC0_ICR40 = 0x2;
1613 MCF_INTC0_ICR41 = 0x2;
1614 MCF_INTC0_ICR42 = 0x2;
1615 MCF_INTC0_ICR43 = 0x2;
1616 MCF_INTC0_ICR44 = 0x2;
1617 MCF_INTC0_ICR45 = 0x2;
1618 MCF_INTC0_ICR46 = 0x2;
1619 MCF_INTC0_ICR47 = 0x2;
1620 MCF_INTC0_ICR48 = 0x2;
1621
1622 MCF_INTC0_IMRH &= ~(
1623 MCF_INTC_IMRH_INT_MASK36 |
1624 MCF_INTC_IMRH_INT_MASK37 |
1625 MCF_INTC_IMRH_INT_MASK38 |
1626 MCF_INTC_IMRH_INT_MASK39 |
1627 MCF_INTC_IMRH_INT_MASK40 |
1628 MCF_INTC_IMRH_INT_MASK41 |
1629 MCF_INTC_IMRH_INT_MASK42 |
1630 MCF_INTC_IMRH_INT_MASK43 |
1631 MCF_INTC_IMRH_INT_MASK44 |
1632 MCF_INTC_IMRH_INT_MASK45 |
1633 MCF_INTC_IMRH_INT_MASK46 |
1634 MCF_INTC_IMRH_INT_MASK47 |
1635 MCF_INTC_IMRH_INT_MASK48 );
1636
1637 /* Set up gpio outputs for MII lines */
1638 MCF_GPIO_PAR_FECI2C |= (0 |
1639 MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
1640 MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
1641 MCF_GPIO_PAR_FEC = (0 |
1642 MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
1643 MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
1644 }
1645
1646 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1647 {
1648 volatile fec_t *fecp;
1649
1650 fecp = fep->hwp;
1651 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1652 fecp->fec_x_cntrl = 0x00;
1653
1654 /*
1655 * Set MII speed to 2.5 MHz
1656 */
1657 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1658 fecp->fec_mii_speed = fep->phy_speed;
1659
1660 fec_restart(dev, 0);
1661 }
1662
1663 static void __inline__ fec_get_mac(struct net_device *dev)
1664 {
1665 struct fec_enet_private *fep = netdev_priv(dev);
1666 volatile fec_t *fecp;
1667 unsigned char *iap, tmpaddr[ETH_ALEN];
1668
1669 fecp = fep->hwp;
1670
1671 if (FEC_FLASHMAC) {
1672 /*
1673 * Get MAC address from FLASH.
1674 * If it is all 1's or 0's, use the default.
1675 */
1676 iap = FEC_FLASHMAC;
1677 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1678 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1679 iap = fec_mac_default;
1680 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1681 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1682 iap = fec_mac_default;
1683 } else {
1684 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1685 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1686 iap = &tmpaddr[0];
1687 }
1688
1689 memcpy(dev->dev_addr, iap, ETH_ALEN);
1690
1691 /* Adjust MAC if using default MAC address */
1692 if (iap == fec_mac_default)
1693 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1694 }
1695
1696 static void __inline__ fec_disable_phy_intr(void)
1697 {
1698 }
1699
1700 static void __inline__ fec_phy_ack_intr(void)
1701 {
1702 }
1703
1704 #endif
1705
1706 /* ------------------------------------------------------------------------- */
1707
1708 static void mii_display_status(struct net_device *dev)
1709 {
1710 struct fec_enet_private *fep = netdev_priv(dev);
1711 volatile uint *s = &(fep->phy_status);
1712
1713 if (!fep->link && !fep->old_link) {
1714 /* Link is still down - don't print anything */
1715 return;
1716 }
1717
1718 printk("%s: status: ", dev->name);
1719
1720 if (!fep->link) {
1721 printk("link down");
1722 } else {
1723 printk("link up");
1724
1725 switch(*s & PHY_STAT_SPMASK) {
1726 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1727 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1728 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1729 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1730 default:
1731 printk(", Unknown speed/duplex");
1732 }
1733
1734 if (*s & PHY_STAT_ANC)
1735 printk(", auto-negotiation complete");
1736 }
1737
1738 if (*s & PHY_STAT_FAULT)
1739 printk(", remote fault");
1740
1741 printk(".\n");
1742 }
1743
1744 static void mii_display_config(struct work_struct *work)
1745 {
1746 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1747 struct net_device *dev = fep->netdev;
1748 uint status = fep->phy_status;
1749
1750 /*
1751 ** When we get here, phy_task is already removed from
1752 ** the workqueue. It is thus safe to allow to reuse it.
1753 */
1754 fep->mii_phy_task_queued = 0;
1755 printk("%s: config: auto-negotiation ", dev->name);
1756
1757 if (status & PHY_CONF_ANE)
1758 printk("on");
1759 else
1760 printk("off");
1761
1762 if (status & PHY_CONF_100FDX)
1763 printk(", 100FDX");
1764 if (status & PHY_CONF_100HDX)
1765 printk(", 100HDX");
1766 if (status & PHY_CONF_10FDX)
1767 printk(", 10FDX");
1768 if (status & PHY_CONF_10HDX)
1769 printk(", 10HDX");
1770 if (!(status & PHY_CONF_SPMASK))
1771 printk(", No speed/duplex selected?");
1772
1773 if (status & PHY_CONF_LOOP)
1774 printk(", loopback enabled");
1775
1776 printk(".\n");
1777
1778 fep->sequence_done = 1;
1779 }
1780
1781 static void mii_relink(struct work_struct *work)
1782 {
1783 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1784 struct net_device *dev = fep->netdev;
1785 int duplex;
1786
1787 /*
1788 ** When we get here, phy_task is already removed from
1789 ** the workqueue. It is thus safe to allow to reuse it.
1790 */
1791 fep->mii_phy_task_queued = 0;
1792 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1793 mii_display_status(dev);
1794 fep->old_link = fep->link;
1795
1796 if (fep->link) {
1797 duplex = 0;
1798 if (fep->phy_status
1799 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1800 duplex = 1;
1801 fec_restart(dev, duplex);
1802 } else
1803 fec_stop(dev);
1804
1805 #if 0
1806 enable_irq(fep->mii_irq);
1807 #endif
1808
1809 }
1810
1811 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
1812 static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1813 {
1814 struct fec_enet_private *fep = netdev_priv(dev);
1815
1816 /*
1817 ** We cannot queue phy_task twice in the workqueue. It
1818 ** would cause an endless loop in the workqueue.
1819 ** Fortunately, if the last mii_relink entry has not yet been
1820 ** executed now, it will do the job for the current interrupt,
1821 ** which is just what we want.
1822 */
1823 if (fep->mii_phy_task_queued)
1824 return;
1825
1826 fep->mii_phy_task_queued = 1;
1827 INIT_WORK(&fep->phy_task, mii_relink);
1828 schedule_work(&fep->phy_task);
1829 }
1830
1831 /* mii_queue_config is called in interrupt context from fec_enet_mii */
1832 static void mii_queue_config(uint mii_reg, struct net_device *dev)
1833 {
1834 struct fec_enet_private *fep = netdev_priv(dev);
1835
1836 if (fep->mii_phy_task_queued)
1837 return;
1838
1839 fep->mii_phy_task_queued = 1;
1840 INIT_WORK(&fep->phy_task, mii_display_config);
1841 schedule_work(&fep->phy_task);
1842 }
1843
1844 phy_cmd_t const phy_cmd_relink[] = {
1845 { mk_mii_read(MII_REG_CR), mii_queue_relink },
1846 { mk_mii_end, }
1847 };
1848 phy_cmd_t const phy_cmd_config[] = {
1849 { mk_mii_read(MII_REG_CR), mii_queue_config },
1850 { mk_mii_end, }
1851 };
1852
1853 /* Read remainder of PHY ID.
1854 */
1855 static void
1856 mii_discover_phy3(uint mii_reg, struct net_device *dev)
1857 {
1858 struct fec_enet_private *fep;
1859 int i;
1860
1861 fep = netdev_priv(dev);
1862 fep->phy_id |= (mii_reg & 0xffff);
1863 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
1864
1865 for(i = 0; phy_info[i]; i++) {
1866 if(phy_info[i]->id == (fep->phy_id >> 4))
1867 break;
1868 }
1869
1870 if (phy_info[i])
1871 printk(" -- %s\n", phy_info[i]->name);
1872 else
1873 printk(" -- unknown PHY!\n");
1874
1875 fep->phy = phy_info[i];
1876 fep->phy_id_done = 1;
1877 }
1878
1879 /* Scan all of the MII PHY addresses looking for someone to respond
1880 * with a valid ID. This usually happens quickly.
1881 */
1882 static void
1883 mii_discover_phy(uint mii_reg, struct net_device *dev)
1884 {
1885 struct fec_enet_private *fep;
1886 volatile fec_t *fecp;
1887 uint phytype;
1888
1889 fep = netdev_priv(dev);
1890 fecp = fep->hwp;
1891
1892 if (fep->phy_addr < 32) {
1893 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
1894
1895 /* Got first part of ID, now get remainder.
1896 */
1897 fep->phy_id = phytype << 16;
1898 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
1899 mii_discover_phy3);
1900 } else {
1901 fep->phy_addr++;
1902 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
1903 mii_discover_phy);
1904 }
1905 } else {
1906 printk("FEC: No PHY device found.\n");
1907 /* Disable external MII interface */
1908 fecp->fec_mii_speed = fep->phy_speed = 0;
1909 fec_disable_phy_intr();
1910 }
1911 }
1912
1913 /* This interrupt occurs when the PHY detects a link change.
1914 */
1915 #ifdef HAVE_mii_link_interrupt
1916 static irqreturn_t
1917 mii_link_interrupt(int irq, void * dev_id)
1918 {
1919 struct net_device *dev = dev_id;
1920 struct fec_enet_private *fep = netdev_priv(dev);
1921
1922 fec_phy_ack_intr();
1923
1924 #if 0
1925 disable_irq(fep->mii_irq); /* disable now, enable later */
1926 #endif
1927
1928 mii_do_cmd(dev, fep->phy->ack_int);
1929 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
1930
1931 return IRQ_HANDLED;
1932 }
1933 #endif
1934
1935 static int
1936 fec_enet_open(struct net_device *dev)
1937 {
1938 struct fec_enet_private *fep = netdev_priv(dev);
1939
1940 /* I should reset the ring buffers here, but I don't yet know
1941 * a simple way to do that.
1942 */
1943 fec_set_mac_address(dev);
1944
1945 fep->sequence_done = 0;
1946 fep->link = 0;
1947
1948 if (fep->phy) {
1949 mii_do_cmd(dev, fep->phy->ack_int);
1950 mii_do_cmd(dev, fep->phy->config);
1951 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
1952
1953 /* Poll until the PHY tells us its configuration
1954 * (not link state).
1955 * Request is initiated by mii_do_cmd above, but answer
1956 * comes by interrupt.
1957 * This should take about 25 usec per register at 2.5 MHz,
1958 * and we read approximately 5 registers.
1959 */
1960 while(!fep->sequence_done)
1961 schedule();
1962
1963 mii_do_cmd(dev, fep->phy->startup);
1964
1965 /* Set the initial link state to true. A lot of hardware
1966 * based on this device does not implement a PHY interrupt,
1967 * so we are never notified of link change.
1968 */
1969 fep->link = 1;
1970 } else {
1971 fep->link = 1; /* lets just try it and see */
1972 /* no phy, go full duplex, it's most likely a hub chip */
1973 fec_restart(dev, 1);
1974 }
1975
1976 netif_start_queue(dev);
1977 fep->opened = 1;
1978 return 0; /* Success */
1979 }
1980
1981 static int
1982 fec_enet_close(struct net_device *dev)
1983 {
1984 struct fec_enet_private *fep = netdev_priv(dev);
1985
1986 /* Don't know what to do yet.
1987 */
1988 fep->opened = 0;
1989 netif_stop_queue(dev);
1990 fec_stop(dev);
1991
1992 return 0;
1993 }
1994
1995 /* Set or clear the multicast filter for this adaptor.
1996 * Skeleton taken from sunlance driver.
1997 * The CPM Ethernet implementation allows Multicast as well as individual
1998 * MAC address filtering. Some of the drivers check to make sure it is
1999 * a group multicast address, and discard those that are not. I guess I
2000 * will do the same for now, but just remove the test if you want
2001 * individual filtering as well (do the upper net layers want or support
2002 * this kind of feature?).
2003 */
2004
2005 #define HASH_BITS 6 /* #bits in hash */
2006 #define CRC32_POLY 0xEDB88320
2007
2008 static void set_multicast_list(struct net_device *dev)
2009 {
2010 struct fec_enet_private *fep;
2011 volatile fec_t *ep;
2012 struct dev_mc_list *dmi;
2013 unsigned int i, j, bit, data, crc;
2014 unsigned char hash;
2015
2016 fep = netdev_priv(dev);
2017 ep = fep->hwp;
2018
2019 if (dev->flags&IFF_PROMISC) {
2020 ep->fec_r_cntrl |= 0x0008;
2021 } else {
2022
2023 ep->fec_r_cntrl &= ~0x0008;
2024
2025 if (dev->flags & IFF_ALLMULTI) {
2026 /* Catch all multicast addresses, so set the
2027 * filter to all 1's.
2028 */
2029 ep->fec_grp_hash_table_high = 0xffffffff;
2030 ep->fec_grp_hash_table_low = 0xffffffff;
2031 } else {
2032 /* Clear filter and add the addresses in hash register.
2033 */
2034 ep->fec_grp_hash_table_high = 0;
2035 ep->fec_grp_hash_table_low = 0;
2036
2037 dmi = dev->mc_list;
2038
2039 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
2040 {
2041 /* Only support group multicast for now.
2042 */
2043 if (!(dmi->dmi_addr[0] & 1))
2044 continue;
2045
2046 /* calculate crc32 value of mac address
2047 */
2048 crc = 0xffffffff;
2049
2050 for (i = 0; i < dmi->dmi_addrlen; i++)
2051 {
2052 data = dmi->dmi_addr[i];
2053 for (bit = 0; bit < 8; bit++, data >>= 1)
2054 {
2055 crc = (crc >> 1) ^
2056 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2057 }
2058 }
2059
2060 /* only upper 6 bits (HASH_BITS) are used
2061 which point to specific bit in he hash registers
2062 */
2063 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2064
2065 if (hash > 31)
2066 ep->fec_grp_hash_table_high |= 1 << (hash - 32);
2067 else
2068 ep->fec_grp_hash_table_low |= 1 << hash;
2069 }
2070 }
2071 }
2072 }
2073
2074 /* Set a MAC change in hardware.
2075 */
2076 static void
2077 fec_set_mac_address(struct net_device *dev)
2078 {
2079 volatile fec_t *fecp;
2080
2081 fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
2082
2083 /* Set station address. */
2084 fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
2085 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
2086 fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
2087 (dev->dev_addr[4] << 24);
2088
2089 }
2090
2091 /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2092 */
2093 /*
2094 * XXX: We need to clean up on failure exits here.
2095 */
2096 int __init fec_enet_init(struct net_device *dev)
2097 {
2098 struct fec_enet_private *fep = netdev_priv(dev);
2099 unsigned long mem_addr;
2100 volatile cbd_t *bdp;
2101 cbd_t *cbd_base;
2102 volatile fec_t *fecp;
2103 int i, j;
2104 static int index = 0;
2105
2106 /* Only allow us to be probed once. */
2107 if (index >= FEC_MAX_PORTS)
2108 return -ENXIO;
2109
2110 /* Allocate memory for buffer descriptors.
2111 */
2112 mem_addr = __get_free_page(GFP_KERNEL);
2113 if (mem_addr == 0) {
2114 printk("FEC: allocate descriptor memory failed?\n");
2115 return -ENOMEM;
2116 }
2117
2118 spin_lock_init(&fep->hw_lock);
2119 spin_lock_init(&fep->mii_lock);
2120
2121 /* Create an Ethernet device instance.
2122 */
2123 fecp = (volatile fec_t *) fec_hw[index];
2124
2125 fep->index = index;
2126 fep->hwp = fecp;
2127 fep->netdev = dev;
2128
2129 /* Whack a reset. We should wait for this.
2130 */
2131 fecp->fec_ecntrl = 1;
2132 udelay(10);
2133
2134 /* Set the Ethernet address. If using multiple Enets on the 8xx,
2135 * this needs some work to get unique addresses.
2136 *
2137 * This is our default MAC address unless the user changes
2138 * it via eth_mac_addr (our dev->set_mac_addr handler).
2139 */
2140 fec_get_mac(dev);
2141
2142 cbd_base = (cbd_t *)mem_addr;
2143 /* XXX: missing check for allocation failure */
2144
2145 /* Set receive and transmit descriptor base.
2146 */
2147 fep->rx_bd_base = cbd_base;
2148 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
2149
2150 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2151 fep->cur_rx = fep->rx_bd_base;
2152
2153 fep->skb_cur = fep->skb_dirty = 0;
2154
2155 /* Initialize the receive buffer descriptors.
2156 */
2157 bdp = fep->rx_bd_base;
2158 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
2159
2160 /* Allocate a page.
2161 */
2162 mem_addr = __get_free_page(GFP_KERNEL);
2163 /* XXX: missing check for allocation failure */
2164
2165 /* Initialize the BD for every fragment in the page.
2166 */
2167 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
2168 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2169 bdp->cbd_bufaddr = __pa(mem_addr);
2170 mem_addr += FEC_ENET_RX_FRSIZE;
2171 bdp++;
2172 }
2173 }
2174
2175 /* Set the last buffer to wrap.
2176 */
2177 bdp--;
2178 bdp->cbd_sc |= BD_SC_WRAP;
2179
2180 /* ...and the same for transmmit.
2181 */
2182 bdp = fep->tx_bd_base;
2183 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
2184 if (j >= FEC_ENET_TX_FRPPG) {
2185 mem_addr = __get_free_page(GFP_KERNEL);
2186 j = 1;
2187 } else {
2188 mem_addr += FEC_ENET_TX_FRSIZE;
2189 j++;
2190 }
2191 fep->tx_bounce[i] = (unsigned char *) mem_addr;
2192
2193 /* Initialize the BD for every fragment in the page.
2194 */
2195 bdp->cbd_sc = 0;
2196 bdp->cbd_bufaddr = 0;
2197 bdp++;
2198 }
2199
2200 /* Set the last buffer to wrap.
2201 */
2202 bdp--;
2203 bdp->cbd_sc |= BD_SC_WRAP;
2204
2205 /* Set receive and transmit descriptor base.
2206 */
2207 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2208 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2209
2210 /* Install our interrupt handlers. This varies depending on
2211 * the architecture.
2212 */
2213 fec_request_intrs(dev);
2214
2215 fecp->fec_grp_hash_table_high = 0;
2216 fecp->fec_grp_hash_table_low = 0;
2217 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2218 fecp->fec_ecntrl = 2;
2219 fecp->fec_r_des_active = 0;
2220 #ifndef CONFIG_M5272
2221 fecp->fec_hash_table_high = 0;
2222 fecp->fec_hash_table_low = 0;
2223 #endif
2224
2225 dev->base_addr = (unsigned long)fecp;
2226
2227 /* The FEC Ethernet specific entries in the device structure. */
2228 dev->open = fec_enet_open;
2229 dev->hard_start_xmit = fec_enet_start_xmit;
2230 dev->tx_timeout = fec_timeout;
2231 dev->watchdog_timeo = TX_TIMEOUT;
2232 dev->stop = fec_enet_close;
2233 dev->set_multicast_list = set_multicast_list;
2234
2235 for (i=0; i<NMII-1; i++)
2236 mii_cmds[i].mii_next = &mii_cmds[i+1];
2237 mii_free = mii_cmds;
2238
2239 /* setup MII interface */
2240 fec_set_mii(dev, fep);
2241
2242 /* Clear and enable interrupts */
2243 fecp->fec_ievent = 0xffc00000;
2244 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
2245
2246 /* Queue up command to detect the PHY and initialize the
2247 * remainder of the interface.
2248 */
2249 fep->phy_id_done = 0;
2250 fep->phy_addr = 0;
2251 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
2252
2253 index++;
2254 return 0;
2255 }
2256
2257 /* This function is called to start or restart the FEC during a link
2258 * change. This only happens when switching between half and full
2259 * duplex.
2260 */
2261 static void
2262 fec_restart(struct net_device *dev, int duplex)
2263 {
2264 struct fec_enet_private *fep;
2265 volatile cbd_t *bdp;
2266 volatile fec_t *fecp;
2267 int i;
2268
2269 fep = netdev_priv(dev);
2270 fecp = fep->hwp;
2271
2272 /* Whack a reset. We should wait for this.
2273 */
2274 fecp->fec_ecntrl = 1;
2275 udelay(10);
2276
2277 /* Clear any outstanding interrupt.
2278 */
2279 fecp->fec_ievent = 0xffc00000;
2280
2281 /* Set station address.
2282 */
2283 fec_set_mac_address(dev);
2284
2285 /* Reset all multicast.
2286 */
2287 fecp->fec_grp_hash_table_high = 0;
2288 fecp->fec_grp_hash_table_low = 0;
2289
2290 /* Set maximum receive buffer size.
2291 */
2292 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2293
2294 /* Set receive and transmit descriptor base.
2295 */
2296 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2297 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2298
2299 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2300 fep->cur_rx = fep->rx_bd_base;
2301
2302 /* Reset SKB transmit buffers.
2303 */
2304 fep->skb_cur = fep->skb_dirty = 0;
2305 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2306 if (fep->tx_skbuff[i] != NULL) {
2307 dev_kfree_skb_any(fep->tx_skbuff[i]);
2308 fep->tx_skbuff[i] = NULL;
2309 }
2310 }
2311
2312 /* Initialize the receive buffer descriptors.
2313 */
2314 bdp = fep->rx_bd_base;
2315 for (i=0; i<RX_RING_SIZE; i++) {
2316
2317 /* Initialize the BD for every fragment in the page.
2318 */
2319 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2320 bdp++;
2321 }
2322
2323 /* Set the last buffer to wrap.
2324 */
2325 bdp--;
2326 bdp->cbd_sc |= BD_SC_WRAP;
2327
2328 /* ...and the same for transmmit.
2329 */
2330 bdp = fep->tx_bd_base;
2331 for (i=0; i<TX_RING_SIZE; i++) {
2332
2333 /* Initialize the BD for every fragment in the page.
2334 */
2335 bdp->cbd_sc = 0;
2336 bdp->cbd_bufaddr = 0;
2337 bdp++;
2338 }
2339
2340 /* Set the last buffer to wrap.
2341 */
2342 bdp--;
2343 bdp->cbd_sc |= BD_SC_WRAP;
2344
2345 /* Enable MII mode.
2346 */
2347 if (duplex) {
2348 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
2349 fecp->fec_x_cntrl = 0x04; /* FD enable */
2350 } else {
2351 /* MII enable|No Rcv on Xmit */
2352 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
2353 fecp->fec_x_cntrl = 0x00;
2354 }
2355 fep->full_duplex = duplex;
2356
2357 /* Set MII speed.
2358 */
2359 fecp->fec_mii_speed = fep->phy_speed;
2360
2361 /* And last, enable the transmit and receive processing.
2362 */
2363 fecp->fec_ecntrl = 2;
2364 fecp->fec_r_des_active = 0;
2365
2366 /* Enable interrupts we wish to service.
2367 */
2368 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
2369 }
2370
2371 static void
2372 fec_stop(struct net_device *dev)
2373 {
2374 volatile fec_t *fecp;
2375 struct fec_enet_private *fep;
2376
2377 fep = netdev_priv(dev);
2378 fecp = fep->hwp;
2379
2380 /*
2381 ** We cannot expect a graceful transmit stop without link !!!
2382 */
2383 if (fep->link)
2384 {
2385 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
2386 udelay(10);
2387 if (!(fecp->fec_ievent & FEC_ENET_GRA))
2388 printk("fec_stop : Graceful transmit stop did not complete !\n");
2389 }
2390
2391 /* Whack a reset. We should wait for this.
2392 */
2393 fecp->fec_ecntrl = 1;
2394 udelay(10);
2395
2396 /* Clear outstanding MII command interrupts.
2397 */
2398 fecp->fec_ievent = FEC_ENET_MII;
2399
2400 fecp->fec_imask = FEC_ENET_MII;
2401 fecp->fec_mii_speed = fep->phy_speed;
2402 }
2403
2404 static int __init fec_enet_module_init(void)
2405 {
2406 struct net_device *dev;
2407 int i, err;
2408
2409 printk("FEC ENET Version 0.2\n");
2410
2411 for (i = 0; (i < FEC_MAX_PORTS); i++) {
2412 dev = alloc_etherdev(sizeof(struct fec_enet_private));
2413 if (!dev)
2414 return -ENOMEM;
2415 err = fec_enet_init(dev);
2416 if (err) {
2417 free_netdev(dev);
2418 continue;
2419 }
2420 if (register_netdev(dev) != 0) {
2421 /* XXX: missing cleanup here */
2422 free_netdev(dev);
2423 return -EIO;
2424 }
2425
2426 printk("%s: ethernet %pM\n", dev->name, dev->dev_addr);
2427 }
2428 return 0;
2429 }
2430
2431 module_init(fec_enet_module_init);
2432
2433 MODULE_LICENSE("GPL");
This page took 0.1431 seconds and 5 git commands to generate.