iwlwifi: define structures and functions externally for customization
[deliverable/linux.git] / drivers / net / forcedeth.c
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey.
7 *
8 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9 * trademarks of NVIDIA Corporation in the United States and other
10 * countries.
11 *
12 * Copyright (C) 2003,4,5 Manfred Spraul
13 * Copyright (C) 2004 Andrew de Quincey (wol support)
14 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15 * IRQ rate fixes, bigendian fixes, cleanups, verification)
16 * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * (at your option) any later version.
22 *
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
27 *
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, write to the Free Software
30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 *
32 * Known bugs:
33 * We suspect that on some hardware no TX done interrupts are generated.
34 * This means recovery from netif_stop_queue only happens if the hw timer
35 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
36 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
37 * If your hardware reliably generates tx done interrupts, then you can remove
38 * DEV_NEED_TIMERIRQ from the driver_data flags.
39 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
40 * superfluous timer interrupts from the nic.
41 */
42 #define FORCEDETH_VERSION "0.63"
43 #define DRV_NAME "forcedeth"
44
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/pci.h>
48 #include <linux/interrupt.h>
49 #include <linux/netdevice.h>
50 #include <linux/etherdevice.h>
51 #include <linux/delay.h>
52 #include <linux/spinlock.h>
53 #include <linux/ethtool.h>
54 #include <linux/timer.h>
55 #include <linux/skbuff.h>
56 #include <linux/mii.h>
57 #include <linux/random.h>
58 #include <linux/init.h>
59 #include <linux/if_vlan.h>
60 #include <linux/dma-mapping.h>
61
62 #include <asm/irq.h>
63 #include <asm/io.h>
64 #include <asm/uaccess.h>
65 #include <asm/system.h>
66
67 #if 0
68 #define dprintk printk
69 #else
70 #define dprintk(x...) do { } while (0)
71 #endif
72
73 #define TX_WORK_PER_LOOP 64
74 #define RX_WORK_PER_LOOP 64
75
76 /*
77 * Hardware access:
78 */
79
80 #define DEV_NEED_TIMERIRQ 0x000001 /* set the timer irq flag in the irq mask */
81 #define DEV_NEED_LINKTIMER 0x000002 /* poll link settings. Relies on the timer irq */
82 #define DEV_HAS_LARGEDESC 0x000004 /* device supports jumbo frames and needs packet format 2 */
83 #define DEV_HAS_HIGH_DMA 0x000008 /* device supports 64bit dma */
84 #define DEV_HAS_CHECKSUM 0x000010 /* device supports tx and rx checksum offloads */
85 #define DEV_HAS_VLAN 0x000020 /* device supports vlan tagging and striping */
86 #define DEV_HAS_MSI 0x000040 /* device supports MSI */
87 #define DEV_HAS_MSI_X 0x000080 /* device supports MSI-X */
88 #define DEV_HAS_POWER_CNTRL 0x000100 /* device supports power savings */
89 #define DEV_HAS_STATISTICS_V1 0x000200 /* device supports hw statistics version 1 */
90 #define DEV_HAS_STATISTICS_V2 0x000400 /* device supports hw statistics version 2 */
91 #define DEV_HAS_STATISTICS_V3 0x000800 /* device supports hw statistics version 3 */
92 #define DEV_HAS_TEST_EXTENDED 0x001000 /* device supports extended diagnostic test */
93 #define DEV_HAS_MGMT_UNIT 0x002000 /* device supports management unit */
94 #define DEV_HAS_CORRECT_MACADDR 0x004000 /* device supports correct mac address order */
95 #define DEV_HAS_COLLISION_FIX 0x008000 /* device supports tx collision fix */
96 #define DEV_HAS_PAUSEFRAME_TX_V1 0x010000 /* device supports tx pause frames version 1 */
97 #define DEV_HAS_PAUSEFRAME_TX_V2 0x020000 /* device supports tx pause frames version 2 */
98 #define DEV_HAS_PAUSEFRAME_TX_V3 0x040000 /* device supports tx pause frames version 3 */
99 #define DEV_NEED_TX_LIMIT 0x080000 /* device needs to limit tx */
100 #define DEV_HAS_GEAR_MODE 0x100000 /* device supports gear mode */
101
102 enum {
103 NvRegIrqStatus = 0x000,
104 #define NVREG_IRQSTAT_MIIEVENT 0x040
105 #define NVREG_IRQSTAT_MASK 0x83ff
106 NvRegIrqMask = 0x004,
107 #define NVREG_IRQ_RX_ERROR 0x0001
108 #define NVREG_IRQ_RX 0x0002
109 #define NVREG_IRQ_RX_NOBUF 0x0004
110 #define NVREG_IRQ_TX_ERR 0x0008
111 #define NVREG_IRQ_TX_OK 0x0010
112 #define NVREG_IRQ_TIMER 0x0020
113 #define NVREG_IRQ_LINK 0x0040
114 #define NVREG_IRQ_RX_FORCED 0x0080
115 #define NVREG_IRQ_TX_FORCED 0x0100
116 #define NVREG_IRQ_RECOVER_ERROR 0x8200
117 #define NVREG_IRQMASK_THROUGHPUT 0x00df
118 #define NVREG_IRQMASK_CPU 0x0060
119 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
120 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
121 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
122
123 #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
124 NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
125 NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
126
127 NvRegUnknownSetupReg6 = 0x008,
128 #define NVREG_UNKSETUP6_VAL 3
129
130 /*
131 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
132 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
133 */
134 NvRegPollingInterval = 0x00c,
135 #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
136 #define NVREG_POLL_DEFAULT_CPU 13
137 NvRegMSIMap0 = 0x020,
138 NvRegMSIMap1 = 0x024,
139 NvRegMSIIrqMask = 0x030,
140 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
141 NvRegMisc1 = 0x080,
142 #define NVREG_MISC1_PAUSE_TX 0x01
143 #define NVREG_MISC1_HD 0x02
144 #define NVREG_MISC1_FORCE 0x3b0f3c
145
146 NvRegMacReset = 0x34,
147 #define NVREG_MAC_RESET_ASSERT 0x0F3
148 NvRegTransmitterControl = 0x084,
149 #define NVREG_XMITCTL_START 0x01
150 #define NVREG_XMITCTL_MGMT_ST 0x40000000
151 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
152 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
153 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
154 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
155 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
156 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
157 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
158 #define NVREG_XMITCTL_HOST_LOADED 0x00004000
159 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
160 #define NVREG_XMITCTL_DATA_START 0x00100000
161 #define NVREG_XMITCTL_DATA_READY 0x00010000
162 #define NVREG_XMITCTL_DATA_ERROR 0x00020000
163 NvRegTransmitterStatus = 0x088,
164 #define NVREG_XMITSTAT_BUSY 0x01
165
166 NvRegPacketFilterFlags = 0x8c,
167 #define NVREG_PFF_PAUSE_RX 0x08
168 #define NVREG_PFF_ALWAYS 0x7F0000
169 #define NVREG_PFF_PROMISC 0x80
170 #define NVREG_PFF_MYADDR 0x20
171 #define NVREG_PFF_LOOPBACK 0x10
172
173 NvRegOffloadConfig = 0x90,
174 #define NVREG_OFFLOAD_HOMEPHY 0x601
175 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
176 NvRegReceiverControl = 0x094,
177 #define NVREG_RCVCTL_START 0x01
178 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
179 NvRegReceiverStatus = 0x98,
180 #define NVREG_RCVSTAT_BUSY 0x01
181
182 NvRegSlotTime = 0x9c,
183 #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
184 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
185 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
186 #define NVREG_SLOTTIME_HALF 0x0000ff00
187 #define NVREG_SLOTTIME_DEFAULT 0x00007f00
188 #define NVREG_SLOTTIME_MASK 0x000000ff
189
190 NvRegTxDeferral = 0xA0,
191 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
192 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
193 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
194 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
195 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
196 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
197 NvRegRxDeferral = 0xA4,
198 #define NVREG_RX_DEFERRAL_DEFAULT 0x16
199 NvRegMacAddrA = 0xA8,
200 NvRegMacAddrB = 0xAC,
201 NvRegMulticastAddrA = 0xB0,
202 #define NVREG_MCASTADDRA_FORCE 0x01
203 NvRegMulticastAddrB = 0xB4,
204 NvRegMulticastMaskA = 0xB8,
205 #define NVREG_MCASTMASKA_NONE 0xffffffff
206 NvRegMulticastMaskB = 0xBC,
207 #define NVREG_MCASTMASKB_NONE 0xffff
208
209 NvRegPhyInterface = 0xC0,
210 #define PHY_RGMII 0x10000000
211 NvRegBackOffControl = 0xC4,
212 #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
213 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
214 #define NVREG_BKOFFCTRL_SELECT 24
215 #define NVREG_BKOFFCTRL_GEAR 12
216
217 NvRegTxRingPhysAddr = 0x100,
218 NvRegRxRingPhysAddr = 0x104,
219 NvRegRingSizes = 0x108,
220 #define NVREG_RINGSZ_TXSHIFT 0
221 #define NVREG_RINGSZ_RXSHIFT 16
222 NvRegTransmitPoll = 0x10c,
223 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
224 NvRegLinkSpeed = 0x110,
225 #define NVREG_LINKSPEED_FORCE 0x10000
226 #define NVREG_LINKSPEED_10 1000
227 #define NVREG_LINKSPEED_100 100
228 #define NVREG_LINKSPEED_1000 50
229 #define NVREG_LINKSPEED_MASK (0xFFF)
230 NvRegUnknownSetupReg5 = 0x130,
231 #define NVREG_UNKSETUP5_BIT31 (1<<31)
232 NvRegTxWatermark = 0x13c,
233 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
234 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
235 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
236 NvRegTxRxControl = 0x144,
237 #define NVREG_TXRXCTL_KICK 0x0001
238 #define NVREG_TXRXCTL_BIT1 0x0002
239 #define NVREG_TXRXCTL_BIT2 0x0004
240 #define NVREG_TXRXCTL_IDLE 0x0008
241 #define NVREG_TXRXCTL_RESET 0x0010
242 #define NVREG_TXRXCTL_RXCHECK 0x0400
243 #define NVREG_TXRXCTL_DESC_1 0
244 #define NVREG_TXRXCTL_DESC_2 0x002100
245 #define NVREG_TXRXCTL_DESC_3 0xc02200
246 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
247 #define NVREG_TXRXCTL_VLANINS 0x00080
248 NvRegTxRingPhysAddrHigh = 0x148,
249 NvRegRxRingPhysAddrHigh = 0x14C,
250 NvRegTxPauseFrame = 0x170,
251 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
252 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
253 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
254 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
255 NvRegTxPauseFrameLimit = 0x174,
256 #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
257 NvRegMIIStatus = 0x180,
258 #define NVREG_MIISTAT_ERROR 0x0001
259 #define NVREG_MIISTAT_LINKCHANGE 0x0008
260 #define NVREG_MIISTAT_MASK_RW 0x0007
261 #define NVREG_MIISTAT_MASK_ALL 0x000f
262 NvRegMIIMask = 0x184,
263 #define NVREG_MII_LINKCHANGE 0x0008
264
265 NvRegAdapterControl = 0x188,
266 #define NVREG_ADAPTCTL_START 0x02
267 #define NVREG_ADAPTCTL_LINKUP 0x04
268 #define NVREG_ADAPTCTL_PHYVALID 0x40000
269 #define NVREG_ADAPTCTL_RUNNING 0x100000
270 #define NVREG_ADAPTCTL_PHYSHIFT 24
271 NvRegMIISpeed = 0x18c,
272 #define NVREG_MIISPEED_BIT8 (1<<8)
273 #define NVREG_MIIDELAY 5
274 NvRegMIIControl = 0x190,
275 #define NVREG_MIICTL_INUSE 0x08000
276 #define NVREG_MIICTL_WRITE 0x00400
277 #define NVREG_MIICTL_ADDRSHIFT 5
278 NvRegMIIData = 0x194,
279 NvRegTxUnicast = 0x1a0,
280 NvRegTxMulticast = 0x1a4,
281 NvRegTxBroadcast = 0x1a8,
282 NvRegWakeUpFlags = 0x200,
283 #define NVREG_WAKEUPFLAGS_VAL 0x7770
284 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
285 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
286 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
287 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
288 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
289 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
290 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
291 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
292 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
293 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
294
295 NvRegMgmtUnitGetVersion = 0x204,
296 #define NVREG_MGMTUNITGETVERSION 0x01
297 NvRegMgmtUnitVersion = 0x208,
298 #define NVREG_MGMTUNITVERSION 0x08
299 NvRegPowerCap = 0x268,
300 #define NVREG_POWERCAP_D3SUPP (1<<30)
301 #define NVREG_POWERCAP_D2SUPP (1<<26)
302 #define NVREG_POWERCAP_D1SUPP (1<<25)
303 NvRegPowerState = 0x26c,
304 #define NVREG_POWERSTATE_POWEREDUP 0x8000
305 #define NVREG_POWERSTATE_VALID 0x0100
306 #define NVREG_POWERSTATE_MASK 0x0003
307 #define NVREG_POWERSTATE_D0 0x0000
308 #define NVREG_POWERSTATE_D1 0x0001
309 #define NVREG_POWERSTATE_D2 0x0002
310 #define NVREG_POWERSTATE_D3 0x0003
311 NvRegMgmtUnitControl = 0x278,
312 #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
313 NvRegTxCnt = 0x280,
314 NvRegTxZeroReXmt = 0x284,
315 NvRegTxOneReXmt = 0x288,
316 NvRegTxManyReXmt = 0x28c,
317 NvRegTxLateCol = 0x290,
318 NvRegTxUnderflow = 0x294,
319 NvRegTxLossCarrier = 0x298,
320 NvRegTxExcessDef = 0x29c,
321 NvRegTxRetryErr = 0x2a0,
322 NvRegRxFrameErr = 0x2a4,
323 NvRegRxExtraByte = 0x2a8,
324 NvRegRxLateCol = 0x2ac,
325 NvRegRxRunt = 0x2b0,
326 NvRegRxFrameTooLong = 0x2b4,
327 NvRegRxOverflow = 0x2b8,
328 NvRegRxFCSErr = 0x2bc,
329 NvRegRxFrameAlignErr = 0x2c0,
330 NvRegRxLenErr = 0x2c4,
331 NvRegRxUnicast = 0x2c8,
332 NvRegRxMulticast = 0x2cc,
333 NvRegRxBroadcast = 0x2d0,
334 NvRegTxDef = 0x2d4,
335 NvRegTxFrame = 0x2d8,
336 NvRegRxCnt = 0x2dc,
337 NvRegTxPause = 0x2e0,
338 NvRegRxPause = 0x2e4,
339 NvRegRxDropFrame = 0x2e8,
340 NvRegVlanControl = 0x300,
341 #define NVREG_VLANCONTROL_ENABLE 0x2000
342 NvRegMSIXMap0 = 0x3e0,
343 NvRegMSIXMap1 = 0x3e4,
344 NvRegMSIXIrqStatus = 0x3f0,
345
346 NvRegPowerState2 = 0x600,
347 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
348 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
349 #define NVREG_POWERSTATE2_PHY_RESET 0x0004
350 };
351
352 /* Big endian: should work, but is untested */
353 struct ring_desc {
354 __le32 buf;
355 __le32 flaglen;
356 };
357
358 struct ring_desc_ex {
359 __le32 bufhigh;
360 __le32 buflow;
361 __le32 txvlan;
362 __le32 flaglen;
363 };
364
365 union ring_type {
366 struct ring_desc* orig;
367 struct ring_desc_ex* ex;
368 };
369
370 #define FLAG_MASK_V1 0xffff0000
371 #define FLAG_MASK_V2 0xffffc000
372 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
373 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
374
375 #define NV_TX_LASTPACKET (1<<16)
376 #define NV_TX_RETRYERROR (1<<19)
377 #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
378 #define NV_TX_FORCED_INTERRUPT (1<<24)
379 #define NV_TX_DEFERRED (1<<26)
380 #define NV_TX_CARRIERLOST (1<<27)
381 #define NV_TX_LATECOLLISION (1<<28)
382 #define NV_TX_UNDERFLOW (1<<29)
383 #define NV_TX_ERROR (1<<30)
384 #define NV_TX_VALID (1<<31)
385
386 #define NV_TX2_LASTPACKET (1<<29)
387 #define NV_TX2_RETRYERROR (1<<18)
388 #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
389 #define NV_TX2_FORCED_INTERRUPT (1<<30)
390 #define NV_TX2_DEFERRED (1<<25)
391 #define NV_TX2_CARRIERLOST (1<<26)
392 #define NV_TX2_LATECOLLISION (1<<27)
393 #define NV_TX2_UNDERFLOW (1<<28)
394 /* error and valid are the same for both */
395 #define NV_TX2_ERROR (1<<30)
396 #define NV_TX2_VALID (1<<31)
397 #define NV_TX2_TSO (1<<28)
398 #define NV_TX2_TSO_SHIFT 14
399 #define NV_TX2_TSO_MAX_SHIFT 14
400 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
401 #define NV_TX2_CHECKSUM_L3 (1<<27)
402 #define NV_TX2_CHECKSUM_L4 (1<<26)
403
404 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
405
406 #define NV_RX_DESCRIPTORVALID (1<<16)
407 #define NV_RX_MISSEDFRAME (1<<17)
408 #define NV_RX_SUBSTRACT1 (1<<18)
409 #define NV_RX_ERROR1 (1<<23)
410 #define NV_RX_ERROR2 (1<<24)
411 #define NV_RX_ERROR3 (1<<25)
412 #define NV_RX_ERROR4 (1<<26)
413 #define NV_RX_CRCERR (1<<27)
414 #define NV_RX_OVERFLOW (1<<28)
415 #define NV_RX_FRAMINGERR (1<<29)
416 #define NV_RX_ERROR (1<<30)
417 #define NV_RX_AVAIL (1<<31)
418 #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
419
420 #define NV_RX2_CHECKSUMMASK (0x1C000000)
421 #define NV_RX2_CHECKSUM_IP (0x10000000)
422 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
423 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
424 #define NV_RX2_DESCRIPTORVALID (1<<29)
425 #define NV_RX2_SUBSTRACT1 (1<<25)
426 #define NV_RX2_ERROR1 (1<<18)
427 #define NV_RX2_ERROR2 (1<<19)
428 #define NV_RX2_ERROR3 (1<<20)
429 #define NV_RX2_ERROR4 (1<<21)
430 #define NV_RX2_CRCERR (1<<22)
431 #define NV_RX2_OVERFLOW (1<<23)
432 #define NV_RX2_FRAMINGERR (1<<24)
433 /* error and avail are the same for both */
434 #define NV_RX2_ERROR (1<<30)
435 #define NV_RX2_AVAIL (1<<31)
436 #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
437
438 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
439 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
440
441 /* Miscelaneous hardware related defines: */
442 #define NV_PCI_REGSZ_VER1 0x270
443 #define NV_PCI_REGSZ_VER2 0x2d4
444 #define NV_PCI_REGSZ_VER3 0x604
445 #define NV_PCI_REGSZ_MAX 0x604
446
447 /* various timeout delays: all in usec */
448 #define NV_TXRX_RESET_DELAY 4
449 #define NV_TXSTOP_DELAY1 10
450 #define NV_TXSTOP_DELAY1MAX 500000
451 #define NV_TXSTOP_DELAY2 100
452 #define NV_RXSTOP_DELAY1 10
453 #define NV_RXSTOP_DELAY1MAX 500000
454 #define NV_RXSTOP_DELAY2 100
455 #define NV_SETUP5_DELAY 5
456 #define NV_SETUP5_DELAYMAX 50000
457 #define NV_POWERUP_DELAY 5
458 #define NV_POWERUP_DELAYMAX 5000
459 #define NV_MIIBUSY_DELAY 50
460 #define NV_MIIPHY_DELAY 10
461 #define NV_MIIPHY_DELAYMAX 10000
462 #define NV_MAC_RESET_DELAY 64
463
464 #define NV_WAKEUPPATTERNS 5
465 #define NV_WAKEUPMASKENTRIES 4
466
467 /* General driver defaults */
468 #define NV_WATCHDOG_TIMEO (5*HZ)
469
470 #define RX_RING_DEFAULT 128
471 #define TX_RING_DEFAULT 256
472 #define RX_RING_MIN 128
473 #define TX_RING_MIN 64
474 #define RING_MAX_DESC_VER_1 1024
475 #define RING_MAX_DESC_VER_2_3 16384
476
477 /* rx/tx mac addr + type + vlan + align + slack*/
478 #define NV_RX_HEADERS (64)
479 /* even more slack. */
480 #define NV_RX_ALLOC_PAD (64)
481
482 /* maximum mtu size */
483 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
484 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
485
486 #define OOM_REFILL (1+HZ/20)
487 #define POLL_WAIT (1+HZ/100)
488 #define LINK_TIMEOUT (3*HZ)
489 #define STATS_INTERVAL (10*HZ)
490
491 /*
492 * desc_ver values:
493 * The nic supports three different descriptor types:
494 * - DESC_VER_1: Original
495 * - DESC_VER_2: support for jumbo frames.
496 * - DESC_VER_3: 64-bit format.
497 */
498 #define DESC_VER_1 1
499 #define DESC_VER_2 2
500 #define DESC_VER_3 3
501
502 /* PHY defines */
503 #define PHY_OUI_MARVELL 0x5043
504 #define PHY_OUI_CICADA 0x03f1
505 #define PHY_OUI_VITESSE 0x01c1
506 #define PHY_OUI_REALTEK 0x0732
507 #define PHY_OUI_REALTEK2 0x0020
508 #define PHYID1_OUI_MASK 0x03ff
509 #define PHYID1_OUI_SHFT 6
510 #define PHYID2_OUI_MASK 0xfc00
511 #define PHYID2_OUI_SHFT 10
512 #define PHYID2_MODEL_MASK 0x03f0
513 #define PHY_MODEL_REALTEK_8211 0x0110
514 #define PHY_REV_MASK 0x0001
515 #define PHY_REV_REALTEK_8211B 0x0000
516 #define PHY_REV_REALTEK_8211C 0x0001
517 #define PHY_MODEL_REALTEK_8201 0x0200
518 #define PHY_MODEL_MARVELL_E3016 0x0220
519 #define PHY_MARVELL_E3016_INITMASK 0x0300
520 #define PHY_CICADA_INIT1 0x0f000
521 #define PHY_CICADA_INIT2 0x0e00
522 #define PHY_CICADA_INIT3 0x01000
523 #define PHY_CICADA_INIT4 0x0200
524 #define PHY_CICADA_INIT5 0x0004
525 #define PHY_CICADA_INIT6 0x02000
526 #define PHY_VITESSE_INIT_REG1 0x1f
527 #define PHY_VITESSE_INIT_REG2 0x10
528 #define PHY_VITESSE_INIT_REG3 0x11
529 #define PHY_VITESSE_INIT_REG4 0x12
530 #define PHY_VITESSE_INIT_MSK1 0xc
531 #define PHY_VITESSE_INIT_MSK2 0x0180
532 #define PHY_VITESSE_INIT1 0x52b5
533 #define PHY_VITESSE_INIT2 0xaf8a
534 #define PHY_VITESSE_INIT3 0x8
535 #define PHY_VITESSE_INIT4 0x8f8a
536 #define PHY_VITESSE_INIT5 0xaf86
537 #define PHY_VITESSE_INIT6 0x8f86
538 #define PHY_VITESSE_INIT7 0xaf82
539 #define PHY_VITESSE_INIT8 0x0100
540 #define PHY_VITESSE_INIT9 0x8f82
541 #define PHY_VITESSE_INIT10 0x0
542 #define PHY_REALTEK_INIT_REG1 0x1f
543 #define PHY_REALTEK_INIT_REG2 0x19
544 #define PHY_REALTEK_INIT_REG3 0x13
545 #define PHY_REALTEK_INIT_REG4 0x14
546 #define PHY_REALTEK_INIT_REG5 0x18
547 #define PHY_REALTEK_INIT_REG6 0x11
548 #define PHY_REALTEK_INIT_REG7 0x01
549 #define PHY_REALTEK_INIT1 0x0000
550 #define PHY_REALTEK_INIT2 0x8e00
551 #define PHY_REALTEK_INIT3 0x0001
552 #define PHY_REALTEK_INIT4 0xad17
553 #define PHY_REALTEK_INIT5 0xfb54
554 #define PHY_REALTEK_INIT6 0xf5c7
555 #define PHY_REALTEK_INIT7 0x1000
556 #define PHY_REALTEK_INIT8 0x0003
557 #define PHY_REALTEK_INIT9 0x0008
558 #define PHY_REALTEK_INIT10 0x0005
559 #define PHY_REALTEK_INIT11 0x0200
560 #define PHY_REALTEK_INIT_MSK1 0x0003
561
562 #define PHY_GIGABIT 0x0100
563
564 #define PHY_TIMEOUT 0x1
565 #define PHY_ERROR 0x2
566
567 #define PHY_100 0x1
568 #define PHY_1000 0x2
569 #define PHY_HALF 0x100
570
571 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
572 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
573 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
574 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
575 #define NV_PAUSEFRAME_RX_REQ 0x0010
576 #define NV_PAUSEFRAME_TX_REQ 0x0020
577 #define NV_PAUSEFRAME_AUTONEG 0x0040
578
579 /* MSI/MSI-X defines */
580 #define NV_MSI_X_MAX_VECTORS 8
581 #define NV_MSI_X_VECTORS_MASK 0x000f
582 #define NV_MSI_CAPABLE 0x0010
583 #define NV_MSI_X_CAPABLE 0x0020
584 #define NV_MSI_ENABLED 0x0040
585 #define NV_MSI_X_ENABLED 0x0080
586
587 #define NV_MSI_X_VECTOR_ALL 0x0
588 #define NV_MSI_X_VECTOR_RX 0x0
589 #define NV_MSI_X_VECTOR_TX 0x1
590 #define NV_MSI_X_VECTOR_OTHER 0x2
591
592 #define NV_MSI_PRIV_OFFSET 0x68
593 #define NV_MSI_PRIV_VALUE 0xffffffff
594
595 #define NV_RESTART_TX 0x1
596 #define NV_RESTART_RX 0x2
597
598 #define NV_TX_LIMIT_COUNT 16
599
600 /* statistics */
601 struct nv_ethtool_str {
602 char name[ETH_GSTRING_LEN];
603 };
604
605 static const struct nv_ethtool_str nv_estats_str[] = {
606 { "tx_bytes" },
607 { "tx_zero_rexmt" },
608 { "tx_one_rexmt" },
609 { "tx_many_rexmt" },
610 { "tx_late_collision" },
611 { "tx_fifo_errors" },
612 { "tx_carrier_errors" },
613 { "tx_excess_deferral" },
614 { "tx_retry_error" },
615 { "rx_frame_error" },
616 { "rx_extra_byte" },
617 { "rx_late_collision" },
618 { "rx_runt" },
619 { "rx_frame_too_long" },
620 { "rx_over_errors" },
621 { "rx_crc_errors" },
622 { "rx_frame_align_error" },
623 { "rx_length_error" },
624 { "rx_unicast" },
625 { "rx_multicast" },
626 { "rx_broadcast" },
627 { "rx_packets" },
628 { "rx_errors_total" },
629 { "tx_errors_total" },
630
631 /* version 2 stats */
632 { "tx_deferral" },
633 { "tx_packets" },
634 { "rx_bytes" },
635 { "tx_pause" },
636 { "rx_pause" },
637 { "rx_drop_frame" },
638
639 /* version 3 stats */
640 { "tx_unicast" },
641 { "tx_multicast" },
642 { "tx_broadcast" }
643 };
644
645 struct nv_ethtool_stats {
646 u64 tx_bytes;
647 u64 tx_zero_rexmt;
648 u64 tx_one_rexmt;
649 u64 tx_many_rexmt;
650 u64 tx_late_collision;
651 u64 tx_fifo_errors;
652 u64 tx_carrier_errors;
653 u64 tx_excess_deferral;
654 u64 tx_retry_error;
655 u64 rx_frame_error;
656 u64 rx_extra_byte;
657 u64 rx_late_collision;
658 u64 rx_runt;
659 u64 rx_frame_too_long;
660 u64 rx_over_errors;
661 u64 rx_crc_errors;
662 u64 rx_frame_align_error;
663 u64 rx_length_error;
664 u64 rx_unicast;
665 u64 rx_multicast;
666 u64 rx_broadcast;
667 u64 rx_packets;
668 u64 rx_errors_total;
669 u64 tx_errors_total;
670
671 /* version 2 stats */
672 u64 tx_deferral;
673 u64 tx_packets;
674 u64 rx_bytes;
675 u64 tx_pause;
676 u64 rx_pause;
677 u64 rx_drop_frame;
678
679 /* version 3 stats */
680 u64 tx_unicast;
681 u64 tx_multicast;
682 u64 tx_broadcast;
683 };
684
685 #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
686 #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
687 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
688
689 /* diagnostics */
690 #define NV_TEST_COUNT_BASE 3
691 #define NV_TEST_COUNT_EXTENDED 4
692
693 static const struct nv_ethtool_str nv_etests_str[] = {
694 { "link (online/offline)" },
695 { "register (offline) " },
696 { "interrupt (offline) " },
697 { "loopback (offline) " }
698 };
699
700 struct register_test {
701 __u32 reg;
702 __u32 mask;
703 };
704
705 static const struct register_test nv_registers_test[] = {
706 { NvRegUnknownSetupReg6, 0x01 },
707 { NvRegMisc1, 0x03c },
708 { NvRegOffloadConfig, 0x03ff },
709 { NvRegMulticastAddrA, 0xffffffff },
710 { NvRegTxWatermark, 0x0ff },
711 { NvRegWakeUpFlags, 0x07777 },
712 { 0,0 }
713 };
714
715 struct nv_skb_map {
716 struct sk_buff *skb;
717 dma_addr_t dma;
718 unsigned int dma_len;
719 struct ring_desc_ex *first_tx_desc;
720 struct nv_skb_map *next_tx_ctx;
721 };
722
723 /*
724 * SMP locking:
725 * All hardware access under netdev_priv(dev)->lock, except the performance
726 * critical parts:
727 * - rx is (pseudo-) lockless: it relies on the single-threading provided
728 * by the arch code for interrupts.
729 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
730 * needs netdev_priv(dev)->lock :-(
731 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
732 */
733
734 /* in dev: base, irq */
735 struct fe_priv {
736 spinlock_t lock;
737
738 struct net_device *dev;
739 struct napi_struct napi;
740
741 /* General data:
742 * Locking: spin_lock(&np->lock); */
743 struct nv_ethtool_stats estats;
744 int in_shutdown;
745 u32 linkspeed;
746 int duplex;
747 int autoneg;
748 int fixed_mode;
749 int phyaddr;
750 int wolenabled;
751 unsigned int phy_oui;
752 unsigned int phy_model;
753 unsigned int phy_rev;
754 u16 gigabit;
755 int intr_test;
756 int recover_error;
757
758 /* General data: RO fields */
759 dma_addr_t ring_addr;
760 struct pci_dev *pci_dev;
761 u32 orig_mac[2];
762 u32 irqmask;
763 u32 desc_ver;
764 u32 txrxctl_bits;
765 u32 vlanctl_bits;
766 u32 driver_data;
767 u32 device_id;
768 u32 register_size;
769 int rx_csum;
770 u32 mac_in_use;
771 int mgmt_version;
772 int mgmt_sema;
773
774 void __iomem *base;
775
776 /* rx specific fields.
777 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
778 */
779 union ring_type get_rx, put_rx, first_rx, last_rx;
780 struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
781 struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
782 struct nv_skb_map *rx_skb;
783
784 union ring_type rx_ring;
785 unsigned int rx_buf_sz;
786 unsigned int pkt_limit;
787 struct timer_list oom_kick;
788 struct timer_list nic_poll;
789 struct timer_list stats_poll;
790 u32 nic_poll_irq;
791 int rx_ring_size;
792
793 /* media detection workaround.
794 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
795 */
796 int need_linktimer;
797 unsigned long link_timeout;
798 /*
799 * tx specific fields.
800 */
801 union ring_type get_tx, put_tx, first_tx, last_tx;
802 struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
803 struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
804 struct nv_skb_map *tx_skb;
805
806 union ring_type tx_ring;
807 u32 tx_flags;
808 int tx_ring_size;
809 int tx_limit;
810 u32 tx_pkts_in_progress;
811 struct nv_skb_map *tx_change_owner;
812 struct nv_skb_map *tx_end_flip;
813 int tx_stop;
814
815 /* vlan fields */
816 struct vlan_group *vlangrp;
817
818 /* msi/msi-x fields */
819 u32 msi_flags;
820 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
821
822 /* flow control */
823 u32 pause_flags;
824
825 /* power saved state */
826 u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
827
828 /* for different msi-x irq type */
829 char name_rx[IFNAMSIZ + 3]; /* -rx */
830 char name_tx[IFNAMSIZ + 3]; /* -tx */
831 char name_other[IFNAMSIZ + 6]; /* -other */
832 };
833
834 /*
835 * Maximum number of loops until we assume that a bit in the irq mask
836 * is stuck. Overridable with module param.
837 */
838 static int max_interrupt_work = 15;
839
840 /*
841 * Optimization can be either throuput mode or cpu mode
842 *
843 * Throughput Mode: Every tx and rx packet will generate an interrupt.
844 * CPU Mode: Interrupts are controlled by a timer.
845 */
846 enum {
847 NV_OPTIMIZATION_MODE_THROUGHPUT,
848 NV_OPTIMIZATION_MODE_CPU
849 };
850 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
851
852 /*
853 * Poll interval for timer irq
854 *
855 * This interval determines how frequent an interrupt is generated.
856 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
857 * Min = 0, and Max = 65535
858 */
859 static int poll_interval = -1;
860
861 /*
862 * MSI interrupts
863 */
864 enum {
865 NV_MSI_INT_DISABLED,
866 NV_MSI_INT_ENABLED
867 };
868 static int msi = NV_MSI_INT_ENABLED;
869
870 /*
871 * MSIX interrupts
872 */
873 enum {
874 NV_MSIX_INT_DISABLED,
875 NV_MSIX_INT_ENABLED
876 };
877 static int msix = NV_MSIX_INT_ENABLED;
878
879 /*
880 * DMA 64bit
881 */
882 enum {
883 NV_DMA_64BIT_DISABLED,
884 NV_DMA_64BIT_ENABLED
885 };
886 static int dma_64bit = NV_DMA_64BIT_ENABLED;
887
888 /*
889 * Crossover Detection
890 * Realtek 8201 phy + some OEM boards do not work properly.
891 */
892 enum {
893 NV_CROSSOVER_DETECTION_DISABLED,
894 NV_CROSSOVER_DETECTION_ENABLED
895 };
896 static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
897
898 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
899 {
900 return netdev_priv(dev);
901 }
902
903 static inline u8 __iomem *get_hwbase(struct net_device *dev)
904 {
905 return ((struct fe_priv *)netdev_priv(dev))->base;
906 }
907
908 static inline void pci_push(u8 __iomem *base)
909 {
910 /* force out pending posted writes */
911 readl(base);
912 }
913
914 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
915 {
916 return le32_to_cpu(prd->flaglen)
917 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
918 }
919
920 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
921 {
922 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
923 }
924
925 static bool nv_optimized(struct fe_priv *np)
926 {
927 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
928 return false;
929 return true;
930 }
931
932 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
933 int delay, int delaymax, const char *msg)
934 {
935 u8 __iomem *base = get_hwbase(dev);
936
937 pci_push(base);
938 do {
939 udelay(delay);
940 delaymax -= delay;
941 if (delaymax < 0) {
942 if (msg)
943 printk(msg);
944 return 1;
945 }
946 } while ((readl(base + offset) & mask) != target);
947 return 0;
948 }
949
950 #define NV_SETUP_RX_RING 0x01
951 #define NV_SETUP_TX_RING 0x02
952
953 static inline u32 dma_low(dma_addr_t addr)
954 {
955 return addr;
956 }
957
958 static inline u32 dma_high(dma_addr_t addr)
959 {
960 return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
961 }
962
963 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
964 {
965 struct fe_priv *np = get_nvpriv(dev);
966 u8 __iomem *base = get_hwbase(dev);
967
968 if (!nv_optimized(np)) {
969 if (rxtx_flags & NV_SETUP_RX_RING) {
970 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
971 }
972 if (rxtx_flags & NV_SETUP_TX_RING) {
973 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
974 }
975 } else {
976 if (rxtx_flags & NV_SETUP_RX_RING) {
977 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
978 writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
979 }
980 if (rxtx_flags & NV_SETUP_TX_RING) {
981 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
982 writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
983 }
984 }
985 }
986
987 static void free_rings(struct net_device *dev)
988 {
989 struct fe_priv *np = get_nvpriv(dev);
990
991 if (!nv_optimized(np)) {
992 if (np->rx_ring.orig)
993 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
994 np->rx_ring.orig, np->ring_addr);
995 } else {
996 if (np->rx_ring.ex)
997 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
998 np->rx_ring.ex, np->ring_addr);
999 }
1000 if (np->rx_skb)
1001 kfree(np->rx_skb);
1002 if (np->tx_skb)
1003 kfree(np->tx_skb);
1004 }
1005
1006 static int using_multi_irqs(struct net_device *dev)
1007 {
1008 struct fe_priv *np = get_nvpriv(dev);
1009
1010 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1011 ((np->msi_flags & NV_MSI_X_ENABLED) &&
1012 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
1013 return 0;
1014 else
1015 return 1;
1016 }
1017
1018 static void nv_enable_irq(struct net_device *dev)
1019 {
1020 struct fe_priv *np = get_nvpriv(dev);
1021
1022 if (!using_multi_irqs(dev)) {
1023 if (np->msi_flags & NV_MSI_X_ENABLED)
1024 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1025 else
1026 enable_irq(np->pci_dev->irq);
1027 } else {
1028 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1029 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1030 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1031 }
1032 }
1033
1034 static void nv_disable_irq(struct net_device *dev)
1035 {
1036 struct fe_priv *np = get_nvpriv(dev);
1037
1038 if (!using_multi_irqs(dev)) {
1039 if (np->msi_flags & NV_MSI_X_ENABLED)
1040 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1041 else
1042 disable_irq(np->pci_dev->irq);
1043 } else {
1044 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1045 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1046 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1047 }
1048 }
1049
1050 /* In MSIX mode, a write to irqmask behaves as XOR */
1051 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
1052 {
1053 u8 __iomem *base = get_hwbase(dev);
1054
1055 writel(mask, base + NvRegIrqMask);
1056 }
1057
1058 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
1059 {
1060 struct fe_priv *np = get_nvpriv(dev);
1061 u8 __iomem *base = get_hwbase(dev);
1062
1063 if (np->msi_flags & NV_MSI_X_ENABLED) {
1064 writel(mask, base + NvRegIrqMask);
1065 } else {
1066 if (np->msi_flags & NV_MSI_ENABLED)
1067 writel(0, base + NvRegMSIIrqMask);
1068 writel(0, base + NvRegIrqMask);
1069 }
1070 }
1071
1072 #define MII_READ (-1)
1073 /* mii_rw: read/write a register on the PHY.
1074 *
1075 * Caller must guarantee serialization
1076 */
1077 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1078 {
1079 u8 __iomem *base = get_hwbase(dev);
1080 u32 reg;
1081 int retval;
1082
1083 writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
1084
1085 reg = readl(base + NvRegMIIControl);
1086 if (reg & NVREG_MIICTL_INUSE) {
1087 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1088 udelay(NV_MIIBUSY_DELAY);
1089 }
1090
1091 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1092 if (value != MII_READ) {
1093 writel(value, base + NvRegMIIData);
1094 reg |= NVREG_MIICTL_WRITE;
1095 }
1096 writel(reg, base + NvRegMIIControl);
1097
1098 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1099 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1100 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1101 dev->name, miireg, addr);
1102 retval = -1;
1103 } else if (value != MII_READ) {
1104 /* it was a write operation - fewer failures are detectable */
1105 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1106 dev->name, value, miireg, addr);
1107 retval = 0;
1108 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1109 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1110 dev->name, miireg, addr);
1111 retval = -1;
1112 } else {
1113 retval = readl(base + NvRegMIIData);
1114 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1115 dev->name, miireg, addr, retval);
1116 }
1117
1118 return retval;
1119 }
1120
1121 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1122 {
1123 struct fe_priv *np = netdev_priv(dev);
1124 u32 miicontrol;
1125 unsigned int tries = 0;
1126
1127 miicontrol = BMCR_RESET | bmcr_setup;
1128 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1129 return -1;
1130 }
1131
1132 /* wait for 500ms */
1133 msleep(500);
1134
1135 /* must wait till reset is deasserted */
1136 while (miicontrol & BMCR_RESET) {
1137 msleep(10);
1138 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1139 /* FIXME: 100 tries seem excessive */
1140 if (tries++ > 100)
1141 return -1;
1142 }
1143 return 0;
1144 }
1145
1146 static int phy_init(struct net_device *dev)
1147 {
1148 struct fe_priv *np = get_nvpriv(dev);
1149 u8 __iomem *base = get_hwbase(dev);
1150 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1151
1152 /* phy errata for E3016 phy */
1153 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1154 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1155 reg &= ~PHY_MARVELL_E3016_INITMASK;
1156 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1157 printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1158 return PHY_ERROR;
1159 }
1160 }
1161 if (np->phy_oui == PHY_OUI_REALTEK) {
1162 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1163 np->phy_rev == PHY_REV_REALTEK_8211B) {
1164 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1165 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1166 return PHY_ERROR;
1167 }
1168 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1169 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1170 return PHY_ERROR;
1171 }
1172 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1173 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1174 return PHY_ERROR;
1175 }
1176 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1177 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1178 return PHY_ERROR;
1179 }
1180 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
1181 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1182 return PHY_ERROR;
1183 }
1184 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
1185 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1186 return PHY_ERROR;
1187 }
1188 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1189 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1190 return PHY_ERROR;
1191 }
1192 }
1193 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1194 np->phy_rev == PHY_REV_REALTEK_8211C) {
1195 u32 powerstate = readl(base + NvRegPowerState2);
1196
1197 /* need to perform hw phy reset */
1198 powerstate |= NVREG_POWERSTATE2_PHY_RESET;
1199 writel(powerstate, base + NvRegPowerState2);
1200 msleep(25);
1201
1202 powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
1203 writel(powerstate, base + NvRegPowerState2);
1204 msleep(25);
1205
1206 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1207 reg |= PHY_REALTEK_INIT9;
1208 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
1209 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1210 return PHY_ERROR;
1211 }
1212 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
1213 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1214 return PHY_ERROR;
1215 }
1216 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
1217 if (!(reg & PHY_REALTEK_INIT11)) {
1218 reg |= PHY_REALTEK_INIT11;
1219 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
1220 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1221 return PHY_ERROR;
1222 }
1223 }
1224 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1225 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1226 return PHY_ERROR;
1227 }
1228 }
1229 if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1230 if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
1231 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
1232 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
1233 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
1234 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
1235 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
1236 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
1237 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
1238 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1239 phy_reserved |= PHY_REALTEK_INIT7;
1240 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
1241 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1242 return PHY_ERROR;
1243 }
1244 }
1245 }
1246 }
1247
1248 /* set advertise register */
1249 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1250 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1251 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1252 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1253 return PHY_ERROR;
1254 }
1255
1256 /* get phy interface type */
1257 phyinterface = readl(base + NvRegPhyInterface);
1258
1259 /* see if gigabit phy */
1260 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1261 if (mii_status & PHY_GIGABIT) {
1262 np->gigabit = PHY_GIGABIT;
1263 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1264 mii_control_1000 &= ~ADVERTISE_1000HALF;
1265 if (phyinterface & PHY_RGMII)
1266 mii_control_1000 |= ADVERTISE_1000FULL;
1267 else
1268 mii_control_1000 &= ~ADVERTISE_1000FULL;
1269
1270 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1271 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1272 return PHY_ERROR;
1273 }
1274 }
1275 else
1276 np->gigabit = 0;
1277
1278 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1279 mii_control |= BMCR_ANENABLE;
1280
1281 if (np->phy_oui == PHY_OUI_REALTEK &&
1282 np->phy_model == PHY_MODEL_REALTEK_8211 &&
1283 np->phy_rev == PHY_REV_REALTEK_8211C) {
1284 /* start autoneg since we already performed hw reset above */
1285 mii_control |= BMCR_ANRESTART;
1286 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1287 printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
1288 return PHY_ERROR;
1289 }
1290 } else {
1291 /* reset the phy
1292 * (certain phys need bmcr to be setup with reset)
1293 */
1294 if (phy_reset(dev, mii_control)) {
1295 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1296 return PHY_ERROR;
1297 }
1298 }
1299
1300 /* phy vendor specific configuration */
1301 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1302 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1303 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
1304 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
1305 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1306 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1307 return PHY_ERROR;
1308 }
1309 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1310 phy_reserved |= PHY_CICADA_INIT5;
1311 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1312 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1313 return PHY_ERROR;
1314 }
1315 }
1316 if (np->phy_oui == PHY_OUI_CICADA) {
1317 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1318 phy_reserved |= PHY_CICADA_INIT6;
1319 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1320 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1321 return PHY_ERROR;
1322 }
1323 }
1324 if (np->phy_oui == PHY_OUI_VITESSE) {
1325 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
1326 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1327 return PHY_ERROR;
1328 }
1329 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
1330 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1331 return PHY_ERROR;
1332 }
1333 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1334 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1335 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1336 return PHY_ERROR;
1337 }
1338 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1339 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1340 phy_reserved |= PHY_VITESSE_INIT3;
1341 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1342 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1343 return PHY_ERROR;
1344 }
1345 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
1346 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1347 return PHY_ERROR;
1348 }
1349 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
1350 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1351 return PHY_ERROR;
1352 }
1353 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1354 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1355 phy_reserved |= PHY_VITESSE_INIT3;
1356 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1357 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1358 return PHY_ERROR;
1359 }
1360 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1361 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1362 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1363 return PHY_ERROR;
1364 }
1365 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
1366 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1367 return PHY_ERROR;
1368 }
1369 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
1370 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1371 return PHY_ERROR;
1372 }
1373 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1374 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1375 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1376 return PHY_ERROR;
1377 }
1378 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1379 phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
1380 phy_reserved |= PHY_VITESSE_INIT8;
1381 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1382 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1383 return PHY_ERROR;
1384 }
1385 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
1386 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1387 return PHY_ERROR;
1388 }
1389 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
1390 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1391 return PHY_ERROR;
1392 }
1393 }
1394 if (np->phy_oui == PHY_OUI_REALTEK) {
1395 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1396 np->phy_rev == PHY_REV_REALTEK_8211B) {
1397 /* reset could have cleared these out, set them back */
1398 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1399 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1400 return PHY_ERROR;
1401 }
1402 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1403 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1404 return PHY_ERROR;
1405 }
1406 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1407 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1408 return PHY_ERROR;
1409 }
1410 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1411 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1412 return PHY_ERROR;
1413 }
1414 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
1415 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1416 return PHY_ERROR;
1417 }
1418 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
1419 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1420 return PHY_ERROR;
1421 }
1422 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1423 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1424 return PHY_ERROR;
1425 }
1426 }
1427 if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1428 if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
1429 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
1430 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
1431 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
1432 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
1433 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
1434 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
1435 np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
1436 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1437 phy_reserved |= PHY_REALTEK_INIT7;
1438 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
1439 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1440 return PHY_ERROR;
1441 }
1442 }
1443 if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
1444 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1445 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1446 return PHY_ERROR;
1447 }
1448 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
1449 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
1450 phy_reserved |= PHY_REALTEK_INIT3;
1451 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
1452 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1453 return PHY_ERROR;
1454 }
1455 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1456 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1457 return PHY_ERROR;
1458 }
1459 }
1460 }
1461 }
1462
1463 /* some phys clear out pause advertisment on reset, set it back */
1464 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1465
1466 /* restart auto negotiation, power down phy */
1467 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1468 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE | BMCR_PDOWN);
1469 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1470 return PHY_ERROR;
1471 }
1472
1473 return 0;
1474 }
1475
1476 static void nv_start_rx(struct net_device *dev)
1477 {
1478 struct fe_priv *np = netdev_priv(dev);
1479 u8 __iomem *base = get_hwbase(dev);
1480 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1481
1482 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1483 /* Already running? Stop it. */
1484 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1485 rx_ctrl &= ~NVREG_RCVCTL_START;
1486 writel(rx_ctrl, base + NvRegReceiverControl);
1487 pci_push(base);
1488 }
1489 writel(np->linkspeed, base + NvRegLinkSpeed);
1490 pci_push(base);
1491 rx_ctrl |= NVREG_RCVCTL_START;
1492 if (np->mac_in_use)
1493 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1494 writel(rx_ctrl, base + NvRegReceiverControl);
1495 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1496 dev->name, np->duplex, np->linkspeed);
1497 pci_push(base);
1498 }
1499
1500 static void nv_stop_rx(struct net_device *dev)
1501 {
1502 struct fe_priv *np = netdev_priv(dev);
1503 u8 __iomem *base = get_hwbase(dev);
1504 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1505
1506 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1507 if (!np->mac_in_use)
1508 rx_ctrl &= ~NVREG_RCVCTL_START;
1509 else
1510 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1511 writel(rx_ctrl, base + NvRegReceiverControl);
1512 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1513 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1514 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1515
1516 udelay(NV_RXSTOP_DELAY2);
1517 if (!np->mac_in_use)
1518 writel(0, base + NvRegLinkSpeed);
1519 }
1520
1521 static void nv_start_tx(struct net_device *dev)
1522 {
1523 struct fe_priv *np = netdev_priv(dev);
1524 u8 __iomem *base = get_hwbase(dev);
1525 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1526
1527 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1528 tx_ctrl |= NVREG_XMITCTL_START;
1529 if (np->mac_in_use)
1530 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1531 writel(tx_ctrl, base + NvRegTransmitterControl);
1532 pci_push(base);
1533 }
1534
1535 static void nv_stop_tx(struct net_device *dev)
1536 {
1537 struct fe_priv *np = netdev_priv(dev);
1538 u8 __iomem *base = get_hwbase(dev);
1539 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1540
1541 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1542 if (!np->mac_in_use)
1543 tx_ctrl &= ~NVREG_XMITCTL_START;
1544 else
1545 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1546 writel(tx_ctrl, base + NvRegTransmitterControl);
1547 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1548 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1549 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1550
1551 udelay(NV_TXSTOP_DELAY2);
1552 if (!np->mac_in_use)
1553 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1554 base + NvRegTransmitPoll);
1555 }
1556
1557 static void nv_start_rxtx(struct net_device *dev)
1558 {
1559 nv_start_rx(dev);
1560 nv_start_tx(dev);
1561 }
1562
1563 static void nv_stop_rxtx(struct net_device *dev)
1564 {
1565 nv_stop_rx(dev);
1566 nv_stop_tx(dev);
1567 }
1568
1569 static void nv_txrx_reset(struct net_device *dev)
1570 {
1571 struct fe_priv *np = netdev_priv(dev);
1572 u8 __iomem *base = get_hwbase(dev);
1573
1574 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1575 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1576 pci_push(base);
1577 udelay(NV_TXRX_RESET_DELAY);
1578 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1579 pci_push(base);
1580 }
1581
1582 static void nv_mac_reset(struct net_device *dev)
1583 {
1584 struct fe_priv *np = netdev_priv(dev);
1585 u8 __iomem *base = get_hwbase(dev);
1586 u32 temp1, temp2, temp3;
1587
1588 dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1589
1590 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1591 pci_push(base);
1592
1593 /* save registers since they will be cleared on reset */
1594 temp1 = readl(base + NvRegMacAddrA);
1595 temp2 = readl(base + NvRegMacAddrB);
1596 temp3 = readl(base + NvRegTransmitPoll);
1597
1598 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1599 pci_push(base);
1600 udelay(NV_MAC_RESET_DELAY);
1601 writel(0, base + NvRegMacReset);
1602 pci_push(base);
1603 udelay(NV_MAC_RESET_DELAY);
1604
1605 /* restore saved registers */
1606 writel(temp1, base + NvRegMacAddrA);
1607 writel(temp2, base + NvRegMacAddrB);
1608 writel(temp3, base + NvRegTransmitPoll);
1609
1610 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1611 pci_push(base);
1612 }
1613
1614 static void nv_get_hw_stats(struct net_device *dev)
1615 {
1616 struct fe_priv *np = netdev_priv(dev);
1617 u8 __iomem *base = get_hwbase(dev);
1618
1619 np->estats.tx_bytes += readl(base + NvRegTxCnt);
1620 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1621 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1622 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1623 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1624 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1625 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1626 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1627 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1628 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1629 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1630 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1631 np->estats.rx_runt += readl(base + NvRegRxRunt);
1632 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1633 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1634 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1635 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1636 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1637 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1638 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1639 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1640 np->estats.rx_packets =
1641 np->estats.rx_unicast +
1642 np->estats.rx_multicast +
1643 np->estats.rx_broadcast;
1644 np->estats.rx_errors_total =
1645 np->estats.rx_crc_errors +
1646 np->estats.rx_over_errors +
1647 np->estats.rx_frame_error +
1648 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1649 np->estats.rx_late_collision +
1650 np->estats.rx_runt +
1651 np->estats.rx_frame_too_long;
1652 np->estats.tx_errors_total =
1653 np->estats.tx_late_collision +
1654 np->estats.tx_fifo_errors +
1655 np->estats.tx_carrier_errors +
1656 np->estats.tx_excess_deferral +
1657 np->estats.tx_retry_error;
1658
1659 if (np->driver_data & DEV_HAS_STATISTICS_V2) {
1660 np->estats.tx_deferral += readl(base + NvRegTxDef);
1661 np->estats.tx_packets += readl(base + NvRegTxFrame);
1662 np->estats.rx_bytes += readl(base + NvRegRxCnt);
1663 np->estats.tx_pause += readl(base + NvRegTxPause);
1664 np->estats.rx_pause += readl(base + NvRegRxPause);
1665 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1666 }
1667
1668 if (np->driver_data & DEV_HAS_STATISTICS_V3) {
1669 np->estats.tx_unicast += readl(base + NvRegTxUnicast);
1670 np->estats.tx_multicast += readl(base + NvRegTxMulticast);
1671 np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
1672 }
1673 }
1674
1675 /*
1676 * nv_get_stats: dev->get_stats function
1677 * Get latest stats value from the nic.
1678 * Called with read_lock(&dev_base_lock) held for read -
1679 * only synchronized against unregister_netdevice.
1680 */
1681 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1682 {
1683 struct fe_priv *np = netdev_priv(dev);
1684
1685 /* If the nic supports hw counters then retrieve latest values */
1686 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
1687 nv_get_hw_stats(dev);
1688
1689 /* copy to net_device stats */
1690 dev->stats.tx_bytes = np->estats.tx_bytes;
1691 dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
1692 dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
1693 dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
1694 dev->stats.rx_over_errors = np->estats.rx_over_errors;
1695 dev->stats.rx_errors = np->estats.rx_errors_total;
1696 dev->stats.tx_errors = np->estats.tx_errors_total;
1697 }
1698
1699 return &dev->stats;
1700 }
1701
1702 /*
1703 * nv_alloc_rx: fill rx ring entries.
1704 * Return 1 if the allocations for the skbs failed and the
1705 * rx engine is without Available descriptors
1706 */
1707 static int nv_alloc_rx(struct net_device *dev)
1708 {
1709 struct fe_priv *np = netdev_priv(dev);
1710 struct ring_desc* less_rx;
1711
1712 less_rx = np->get_rx.orig;
1713 if (less_rx-- == np->first_rx.orig)
1714 less_rx = np->last_rx.orig;
1715
1716 while (np->put_rx.orig != less_rx) {
1717 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1718 if (skb) {
1719 np->put_rx_ctx->skb = skb;
1720 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1721 skb->data,
1722 skb_tailroom(skb),
1723 PCI_DMA_FROMDEVICE);
1724 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1725 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1726 wmb();
1727 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1728 if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1729 np->put_rx.orig = np->first_rx.orig;
1730 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1731 np->put_rx_ctx = np->first_rx_ctx;
1732 } else {
1733 return 1;
1734 }
1735 }
1736 return 0;
1737 }
1738
1739 static int nv_alloc_rx_optimized(struct net_device *dev)
1740 {
1741 struct fe_priv *np = netdev_priv(dev);
1742 struct ring_desc_ex* less_rx;
1743
1744 less_rx = np->get_rx.ex;
1745 if (less_rx-- == np->first_rx.ex)
1746 less_rx = np->last_rx.ex;
1747
1748 while (np->put_rx.ex != less_rx) {
1749 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1750 if (skb) {
1751 np->put_rx_ctx->skb = skb;
1752 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1753 skb->data,
1754 skb_tailroom(skb),
1755 PCI_DMA_FROMDEVICE);
1756 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1757 np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
1758 np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
1759 wmb();
1760 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1761 if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1762 np->put_rx.ex = np->first_rx.ex;
1763 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1764 np->put_rx_ctx = np->first_rx_ctx;
1765 } else {
1766 return 1;
1767 }
1768 }
1769 return 0;
1770 }
1771
1772 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1773 #ifdef CONFIG_FORCEDETH_NAPI
1774 static void nv_do_rx_refill(unsigned long data)
1775 {
1776 struct net_device *dev = (struct net_device *) data;
1777 struct fe_priv *np = netdev_priv(dev);
1778
1779 /* Just reschedule NAPI rx processing */
1780 napi_schedule(&np->napi);
1781 }
1782 #else
1783 static void nv_do_rx_refill(unsigned long data)
1784 {
1785 struct net_device *dev = (struct net_device *) data;
1786 struct fe_priv *np = netdev_priv(dev);
1787 int retcode;
1788
1789 if (!using_multi_irqs(dev)) {
1790 if (np->msi_flags & NV_MSI_X_ENABLED)
1791 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1792 else
1793 disable_irq(np->pci_dev->irq);
1794 } else {
1795 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1796 }
1797 if (!nv_optimized(np))
1798 retcode = nv_alloc_rx(dev);
1799 else
1800 retcode = nv_alloc_rx_optimized(dev);
1801 if (retcode) {
1802 spin_lock_irq(&np->lock);
1803 if (!np->in_shutdown)
1804 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1805 spin_unlock_irq(&np->lock);
1806 }
1807 if (!using_multi_irqs(dev)) {
1808 if (np->msi_flags & NV_MSI_X_ENABLED)
1809 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1810 else
1811 enable_irq(np->pci_dev->irq);
1812 } else {
1813 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1814 }
1815 }
1816 #endif
1817
1818 static void nv_init_rx(struct net_device *dev)
1819 {
1820 struct fe_priv *np = netdev_priv(dev);
1821 int i;
1822
1823 np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
1824
1825 if (!nv_optimized(np))
1826 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1827 else
1828 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1829 np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
1830 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1831
1832 for (i = 0; i < np->rx_ring_size; i++) {
1833 if (!nv_optimized(np)) {
1834 np->rx_ring.orig[i].flaglen = 0;
1835 np->rx_ring.orig[i].buf = 0;
1836 } else {
1837 np->rx_ring.ex[i].flaglen = 0;
1838 np->rx_ring.ex[i].txvlan = 0;
1839 np->rx_ring.ex[i].bufhigh = 0;
1840 np->rx_ring.ex[i].buflow = 0;
1841 }
1842 np->rx_skb[i].skb = NULL;
1843 np->rx_skb[i].dma = 0;
1844 }
1845 }
1846
1847 static void nv_init_tx(struct net_device *dev)
1848 {
1849 struct fe_priv *np = netdev_priv(dev);
1850 int i;
1851
1852 np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
1853
1854 if (!nv_optimized(np))
1855 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1856 else
1857 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1858 np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
1859 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1860 np->tx_pkts_in_progress = 0;
1861 np->tx_change_owner = NULL;
1862 np->tx_end_flip = NULL;
1863
1864 for (i = 0; i < np->tx_ring_size; i++) {
1865 if (!nv_optimized(np)) {
1866 np->tx_ring.orig[i].flaglen = 0;
1867 np->tx_ring.orig[i].buf = 0;
1868 } else {
1869 np->tx_ring.ex[i].flaglen = 0;
1870 np->tx_ring.ex[i].txvlan = 0;
1871 np->tx_ring.ex[i].bufhigh = 0;
1872 np->tx_ring.ex[i].buflow = 0;
1873 }
1874 np->tx_skb[i].skb = NULL;
1875 np->tx_skb[i].dma = 0;
1876 np->tx_skb[i].dma_len = 0;
1877 np->tx_skb[i].first_tx_desc = NULL;
1878 np->tx_skb[i].next_tx_ctx = NULL;
1879 }
1880 }
1881
1882 static int nv_init_ring(struct net_device *dev)
1883 {
1884 struct fe_priv *np = netdev_priv(dev);
1885
1886 nv_init_tx(dev);
1887 nv_init_rx(dev);
1888
1889 if (!nv_optimized(np))
1890 return nv_alloc_rx(dev);
1891 else
1892 return nv_alloc_rx_optimized(dev);
1893 }
1894
1895 static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
1896 {
1897 struct fe_priv *np = netdev_priv(dev);
1898
1899 if (tx_skb->dma) {
1900 pci_unmap_page(np->pci_dev, tx_skb->dma,
1901 tx_skb->dma_len,
1902 PCI_DMA_TODEVICE);
1903 tx_skb->dma = 0;
1904 }
1905 if (tx_skb->skb) {
1906 dev_kfree_skb_any(tx_skb->skb);
1907 tx_skb->skb = NULL;
1908 return 1;
1909 } else {
1910 return 0;
1911 }
1912 }
1913
1914 static void nv_drain_tx(struct net_device *dev)
1915 {
1916 struct fe_priv *np = netdev_priv(dev);
1917 unsigned int i;
1918
1919 for (i = 0; i < np->tx_ring_size; i++) {
1920 if (!nv_optimized(np)) {
1921 np->tx_ring.orig[i].flaglen = 0;
1922 np->tx_ring.orig[i].buf = 0;
1923 } else {
1924 np->tx_ring.ex[i].flaglen = 0;
1925 np->tx_ring.ex[i].txvlan = 0;
1926 np->tx_ring.ex[i].bufhigh = 0;
1927 np->tx_ring.ex[i].buflow = 0;
1928 }
1929 if (nv_release_txskb(dev, &np->tx_skb[i]))
1930 dev->stats.tx_dropped++;
1931 np->tx_skb[i].dma = 0;
1932 np->tx_skb[i].dma_len = 0;
1933 np->tx_skb[i].first_tx_desc = NULL;
1934 np->tx_skb[i].next_tx_ctx = NULL;
1935 }
1936 np->tx_pkts_in_progress = 0;
1937 np->tx_change_owner = NULL;
1938 np->tx_end_flip = NULL;
1939 }
1940
1941 static void nv_drain_rx(struct net_device *dev)
1942 {
1943 struct fe_priv *np = netdev_priv(dev);
1944 int i;
1945
1946 for (i = 0; i < np->rx_ring_size; i++) {
1947 if (!nv_optimized(np)) {
1948 np->rx_ring.orig[i].flaglen = 0;
1949 np->rx_ring.orig[i].buf = 0;
1950 } else {
1951 np->rx_ring.ex[i].flaglen = 0;
1952 np->rx_ring.ex[i].txvlan = 0;
1953 np->rx_ring.ex[i].bufhigh = 0;
1954 np->rx_ring.ex[i].buflow = 0;
1955 }
1956 wmb();
1957 if (np->rx_skb[i].skb) {
1958 pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
1959 (skb_end_pointer(np->rx_skb[i].skb) -
1960 np->rx_skb[i].skb->data),
1961 PCI_DMA_FROMDEVICE);
1962 dev_kfree_skb(np->rx_skb[i].skb);
1963 np->rx_skb[i].skb = NULL;
1964 }
1965 }
1966 }
1967
1968 static void nv_drain_rxtx(struct net_device *dev)
1969 {
1970 nv_drain_tx(dev);
1971 nv_drain_rx(dev);
1972 }
1973
1974 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
1975 {
1976 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
1977 }
1978
1979 static void nv_legacybackoff_reseed(struct net_device *dev)
1980 {
1981 u8 __iomem *base = get_hwbase(dev);
1982 u32 reg;
1983 u32 low;
1984 int tx_status = 0;
1985
1986 reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
1987 get_random_bytes(&low, sizeof(low));
1988 reg |= low & NVREG_SLOTTIME_MASK;
1989
1990 /* Need to stop tx before change takes effect.
1991 * Caller has already gained np->lock.
1992 */
1993 tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
1994 if (tx_status)
1995 nv_stop_tx(dev);
1996 nv_stop_rx(dev);
1997 writel(reg, base + NvRegSlotTime);
1998 if (tx_status)
1999 nv_start_tx(dev);
2000 nv_start_rx(dev);
2001 }
2002
2003 /* Gear Backoff Seeds */
2004 #define BACKOFF_SEEDSET_ROWS 8
2005 #define BACKOFF_SEEDSET_LFSRS 15
2006
2007 /* Known Good seed sets */
2008 static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2009 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2010 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
2011 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2012 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
2013 {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
2014 {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
2015 {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
2016 {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
2017
2018 static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2019 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2020 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2021 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
2022 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2023 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2024 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2025 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2026 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
2027
2028 static void nv_gear_backoff_reseed(struct net_device *dev)
2029 {
2030 u8 __iomem *base = get_hwbase(dev);
2031 u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
2032 u32 temp, seedset, combinedSeed;
2033 int i;
2034
2035 /* Setup seed for free running LFSR */
2036 /* We are going to read the time stamp counter 3 times
2037 and swizzle bits around to increase randomness */
2038 get_random_bytes(&miniseed1, sizeof(miniseed1));
2039 miniseed1 &= 0x0fff;
2040 if (miniseed1 == 0)
2041 miniseed1 = 0xabc;
2042
2043 get_random_bytes(&miniseed2, sizeof(miniseed2));
2044 miniseed2 &= 0x0fff;
2045 if (miniseed2 == 0)
2046 miniseed2 = 0xabc;
2047 miniseed2_reversed =
2048 ((miniseed2 & 0xF00) >> 8) |
2049 (miniseed2 & 0x0F0) |
2050 ((miniseed2 & 0x00F) << 8);
2051
2052 get_random_bytes(&miniseed3, sizeof(miniseed3));
2053 miniseed3 &= 0x0fff;
2054 if (miniseed3 == 0)
2055 miniseed3 = 0xabc;
2056 miniseed3_reversed =
2057 ((miniseed3 & 0xF00) >> 8) |
2058 (miniseed3 & 0x0F0) |
2059 ((miniseed3 & 0x00F) << 8);
2060
2061 combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
2062 (miniseed2 ^ miniseed3_reversed);
2063
2064 /* Seeds can not be zero */
2065 if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
2066 combinedSeed |= 0x08;
2067 if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
2068 combinedSeed |= 0x8000;
2069
2070 /* No need to disable tx here */
2071 temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
2072 temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
2073 temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
2074 writel(temp,base + NvRegBackOffControl);
2075
2076 /* Setup seeds for all gear LFSRs. */
2077 get_random_bytes(&seedset, sizeof(seedset));
2078 seedset = seedset % BACKOFF_SEEDSET_ROWS;
2079 for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
2080 {
2081 temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
2082 temp |= main_seedset[seedset][i-1] & 0x3ff;
2083 temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
2084 writel(temp, base + NvRegBackOffControl);
2085 }
2086 }
2087
2088 /*
2089 * nv_start_xmit: dev->hard_start_xmit function
2090 * Called with netif_tx_lock held.
2091 */
2092 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
2093 {
2094 struct fe_priv *np = netdev_priv(dev);
2095 u32 tx_flags = 0;
2096 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
2097 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2098 unsigned int i;
2099 u32 offset = 0;
2100 u32 bcnt;
2101 u32 size = skb->len-skb->data_len;
2102 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2103 u32 empty_slots;
2104 struct ring_desc* put_tx;
2105 struct ring_desc* start_tx;
2106 struct ring_desc* prev_tx;
2107 struct nv_skb_map* prev_tx_ctx;
2108 unsigned long flags;
2109
2110 /* add fragments to entries count */
2111 for (i = 0; i < fragments; i++) {
2112 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
2113 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2114 }
2115
2116 spin_lock_irqsave(&np->lock, flags);
2117 empty_slots = nv_get_empty_tx_slots(np);
2118 if (unlikely(empty_slots <= entries)) {
2119 netif_stop_queue(dev);
2120 np->tx_stop = 1;
2121 spin_unlock_irqrestore(&np->lock, flags);
2122 return NETDEV_TX_BUSY;
2123 }
2124 spin_unlock_irqrestore(&np->lock, flags);
2125
2126 start_tx = put_tx = np->put_tx.orig;
2127
2128 /* setup the header buffer */
2129 do {
2130 prev_tx = put_tx;
2131 prev_tx_ctx = np->put_tx_ctx;
2132 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2133 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2134 PCI_DMA_TODEVICE);
2135 np->put_tx_ctx->dma_len = bcnt;
2136 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2137 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2138
2139 tx_flags = np->tx_flags;
2140 offset += bcnt;
2141 size -= bcnt;
2142 if (unlikely(put_tx++ == np->last_tx.orig))
2143 put_tx = np->first_tx.orig;
2144 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2145 np->put_tx_ctx = np->first_tx_ctx;
2146 } while (size);
2147
2148 /* setup the fragments */
2149 for (i = 0; i < fragments; i++) {
2150 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2151 u32 size = frag->size;
2152 offset = 0;
2153
2154 do {
2155 prev_tx = put_tx;
2156 prev_tx_ctx = np->put_tx_ctx;
2157 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2158 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
2159 PCI_DMA_TODEVICE);
2160 np->put_tx_ctx->dma_len = bcnt;
2161 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2162 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2163
2164 offset += bcnt;
2165 size -= bcnt;
2166 if (unlikely(put_tx++ == np->last_tx.orig))
2167 put_tx = np->first_tx.orig;
2168 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2169 np->put_tx_ctx = np->first_tx_ctx;
2170 } while (size);
2171 }
2172
2173 /* set last fragment flag */
2174 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
2175
2176 /* save skb in this slot's context area */
2177 prev_tx_ctx->skb = skb;
2178
2179 if (skb_is_gso(skb))
2180 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2181 else
2182 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2183 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2184
2185 spin_lock_irqsave(&np->lock, flags);
2186
2187 /* set tx flags */
2188 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2189 np->put_tx.orig = put_tx;
2190
2191 spin_unlock_irqrestore(&np->lock, flags);
2192
2193 dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
2194 dev->name, entries, tx_flags_extra);
2195 {
2196 int j;
2197 for (j=0; j<64; j++) {
2198 if ((j%16) == 0)
2199 dprintk("\n%03x:", j);
2200 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2201 }
2202 dprintk("\n");
2203 }
2204
2205 dev->trans_start = jiffies;
2206 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2207 return NETDEV_TX_OK;
2208 }
2209
2210 static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
2211 {
2212 struct fe_priv *np = netdev_priv(dev);
2213 u32 tx_flags = 0;
2214 u32 tx_flags_extra;
2215 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2216 unsigned int i;
2217 u32 offset = 0;
2218 u32 bcnt;
2219 u32 size = skb->len-skb->data_len;
2220 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2221 u32 empty_slots;
2222 struct ring_desc_ex* put_tx;
2223 struct ring_desc_ex* start_tx;
2224 struct ring_desc_ex* prev_tx;
2225 struct nv_skb_map* prev_tx_ctx;
2226 struct nv_skb_map* start_tx_ctx;
2227 unsigned long flags;
2228
2229 /* add fragments to entries count */
2230 for (i = 0; i < fragments; i++) {
2231 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
2232 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2233 }
2234
2235 spin_lock_irqsave(&np->lock, flags);
2236 empty_slots = nv_get_empty_tx_slots(np);
2237 if (unlikely(empty_slots <= entries)) {
2238 netif_stop_queue(dev);
2239 np->tx_stop = 1;
2240 spin_unlock_irqrestore(&np->lock, flags);
2241 return NETDEV_TX_BUSY;
2242 }
2243 spin_unlock_irqrestore(&np->lock, flags);
2244
2245 start_tx = put_tx = np->put_tx.ex;
2246 start_tx_ctx = np->put_tx_ctx;
2247
2248 /* setup the header buffer */
2249 do {
2250 prev_tx = put_tx;
2251 prev_tx_ctx = np->put_tx_ctx;
2252 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2253 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2254 PCI_DMA_TODEVICE);
2255 np->put_tx_ctx->dma_len = bcnt;
2256 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2257 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2258 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2259
2260 tx_flags = NV_TX2_VALID;
2261 offset += bcnt;
2262 size -= bcnt;
2263 if (unlikely(put_tx++ == np->last_tx.ex))
2264 put_tx = np->first_tx.ex;
2265 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2266 np->put_tx_ctx = np->first_tx_ctx;
2267 } while (size);
2268
2269 /* setup the fragments */
2270 for (i = 0; i < fragments; i++) {
2271 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2272 u32 size = frag->size;
2273 offset = 0;
2274
2275 do {
2276 prev_tx = put_tx;
2277 prev_tx_ctx = np->put_tx_ctx;
2278 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2279 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
2280 PCI_DMA_TODEVICE);
2281 np->put_tx_ctx->dma_len = bcnt;
2282 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2283 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2284 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2285
2286 offset += bcnt;
2287 size -= bcnt;
2288 if (unlikely(put_tx++ == np->last_tx.ex))
2289 put_tx = np->first_tx.ex;
2290 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2291 np->put_tx_ctx = np->first_tx_ctx;
2292 } while (size);
2293 }
2294
2295 /* set last fragment flag */
2296 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
2297
2298 /* save skb in this slot's context area */
2299 prev_tx_ctx->skb = skb;
2300
2301 if (skb_is_gso(skb))
2302 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2303 else
2304 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2305 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2306
2307 /* vlan tag */
2308 if (likely(!np->vlangrp)) {
2309 start_tx->txvlan = 0;
2310 } else {
2311 if (vlan_tx_tag_present(skb))
2312 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
2313 else
2314 start_tx->txvlan = 0;
2315 }
2316
2317 spin_lock_irqsave(&np->lock, flags);
2318
2319 if (np->tx_limit) {
2320 /* Limit the number of outstanding tx. Setup all fragments, but
2321 * do not set the VALID bit on the first descriptor. Save a pointer
2322 * to that descriptor and also for next skb_map element.
2323 */
2324
2325 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
2326 if (!np->tx_change_owner)
2327 np->tx_change_owner = start_tx_ctx;
2328
2329 /* remove VALID bit */
2330 tx_flags &= ~NV_TX2_VALID;
2331 start_tx_ctx->first_tx_desc = start_tx;
2332 start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
2333 np->tx_end_flip = np->put_tx_ctx;
2334 } else {
2335 np->tx_pkts_in_progress++;
2336 }
2337 }
2338
2339 /* set tx flags */
2340 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2341 np->put_tx.ex = put_tx;
2342
2343 spin_unlock_irqrestore(&np->lock, flags);
2344
2345 dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
2346 dev->name, entries, tx_flags_extra);
2347 {
2348 int j;
2349 for (j=0; j<64; j++) {
2350 if ((j%16) == 0)
2351 dprintk("\n%03x:", j);
2352 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2353 }
2354 dprintk("\n");
2355 }
2356
2357 dev->trans_start = jiffies;
2358 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2359 return NETDEV_TX_OK;
2360 }
2361
2362 static inline void nv_tx_flip_ownership(struct net_device *dev)
2363 {
2364 struct fe_priv *np = netdev_priv(dev);
2365
2366 np->tx_pkts_in_progress--;
2367 if (np->tx_change_owner) {
2368 np->tx_change_owner->first_tx_desc->flaglen |=
2369 cpu_to_le32(NV_TX2_VALID);
2370 np->tx_pkts_in_progress++;
2371
2372 np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
2373 if (np->tx_change_owner == np->tx_end_flip)
2374 np->tx_change_owner = NULL;
2375
2376 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2377 }
2378 }
2379
2380 /*
2381 * nv_tx_done: check for completed packets, release the skbs.
2382 *
2383 * Caller must own np->lock.
2384 */
2385 static void nv_tx_done(struct net_device *dev)
2386 {
2387 struct fe_priv *np = netdev_priv(dev);
2388 u32 flags;
2389 struct ring_desc* orig_get_tx = np->get_tx.orig;
2390
2391 while ((np->get_tx.orig != np->put_tx.orig) &&
2392 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
2393
2394 dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
2395 dev->name, flags);
2396
2397 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
2398 np->get_tx_ctx->dma_len,
2399 PCI_DMA_TODEVICE);
2400 np->get_tx_ctx->dma = 0;
2401
2402 if (np->desc_ver == DESC_VER_1) {
2403 if (flags & NV_TX_LASTPACKET) {
2404 if (flags & NV_TX_ERROR) {
2405 if (flags & NV_TX_UNDERFLOW)
2406 dev->stats.tx_fifo_errors++;
2407 if (flags & NV_TX_CARRIERLOST)
2408 dev->stats.tx_carrier_errors++;
2409 if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
2410 nv_legacybackoff_reseed(dev);
2411 dev->stats.tx_errors++;
2412 } else {
2413 dev->stats.tx_packets++;
2414 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2415 }
2416 dev_kfree_skb_any(np->get_tx_ctx->skb);
2417 np->get_tx_ctx->skb = NULL;
2418 }
2419 } else {
2420 if (flags & NV_TX2_LASTPACKET) {
2421 if (flags & NV_TX2_ERROR) {
2422 if (flags & NV_TX2_UNDERFLOW)
2423 dev->stats.tx_fifo_errors++;
2424 if (flags & NV_TX2_CARRIERLOST)
2425 dev->stats.tx_carrier_errors++;
2426 if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
2427 nv_legacybackoff_reseed(dev);
2428 dev->stats.tx_errors++;
2429 } else {
2430 dev->stats.tx_packets++;
2431 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2432 }
2433 dev_kfree_skb_any(np->get_tx_ctx->skb);
2434 np->get_tx_ctx->skb = NULL;
2435 }
2436 }
2437 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
2438 np->get_tx.orig = np->first_tx.orig;
2439 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2440 np->get_tx_ctx = np->first_tx_ctx;
2441 }
2442 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
2443 np->tx_stop = 0;
2444 netif_wake_queue(dev);
2445 }
2446 }
2447
2448 static void nv_tx_done_optimized(struct net_device *dev, int limit)
2449 {
2450 struct fe_priv *np = netdev_priv(dev);
2451 u32 flags;
2452 struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
2453
2454 while ((np->get_tx.ex != np->put_tx.ex) &&
2455 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
2456 (limit-- > 0)) {
2457
2458 dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
2459 dev->name, flags);
2460
2461 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
2462 np->get_tx_ctx->dma_len,
2463 PCI_DMA_TODEVICE);
2464 np->get_tx_ctx->dma = 0;
2465
2466 if (flags & NV_TX2_LASTPACKET) {
2467 if (!(flags & NV_TX2_ERROR))
2468 dev->stats.tx_packets++;
2469 else {
2470 if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
2471 if (np->driver_data & DEV_HAS_GEAR_MODE)
2472 nv_gear_backoff_reseed(dev);
2473 else
2474 nv_legacybackoff_reseed(dev);
2475 }
2476 }
2477
2478 dev_kfree_skb_any(np->get_tx_ctx->skb);
2479 np->get_tx_ctx->skb = NULL;
2480
2481 if (np->tx_limit) {
2482 nv_tx_flip_ownership(dev);
2483 }
2484 }
2485 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
2486 np->get_tx.ex = np->first_tx.ex;
2487 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2488 np->get_tx_ctx = np->first_tx_ctx;
2489 }
2490 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
2491 np->tx_stop = 0;
2492 netif_wake_queue(dev);
2493 }
2494 }
2495
2496 /*
2497 * nv_tx_timeout: dev->tx_timeout function
2498 * Called with netif_tx_lock held.
2499 */
2500 static void nv_tx_timeout(struct net_device *dev)
2501 {
2502 struct fe_priv *np = netdev_priv(dev);
2503 u8 __iomem *base = get_hwbase(dev);
2504 u32 status;
2505
2506 if (np->msi_flags & NV_MSI_X_ENABLED)
2507 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2508 else
2509 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2510
2511 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
2512
2513 {
2514 int i;
2515
2516 printk(KERN_INFO "%s: Ring at %lx\n",
2517 dev->name, (unsigned long)np->ring_addr);
2518 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
2519 for (i=0;i<=np->register_size;i+= 32) {
2520 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
2521 i,
2522 readl(base + i + 0), readl(base + i + 4),
2523 readl(base + i + 8), readl(base + i + 12),
2524 readl(base + i + 16), readl(base + i + 20),
2525 readl(base + i + 24), readl(base + i + 28));
2526 }
2527 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
2528 for (i=0;i<np->tx_ring_size;i+= 4) {
2529 if (!nv_optimized(np)) {
2530 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
2531 i,
2532 le32_to_cpu(np->tx_ring.orig[i].buf),
2533 le32_to_cpu(np->tx_ring.orig[i].flaglen),
2534 le32_to_cpu(np->tx_ring.orig[i+1].buf),
2535 le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2536 le32_to_cpu(np->tx_ring.orig[i+2].buf),
2537 le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2538 le32_to_cpu(np->tx_ring.orig[i+3].buf),
2539 le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2540 } else {
2541 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
2542 i,
2543 le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2544 le32_to_cpu(np->tx_ring.ex[i].buflow),
2545 le32_to_cpu(np->tx_ring.ex[i].flaglen),
2546 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2547 le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2548 le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2549 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2550 le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2551 le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2552 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2553 le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2554 le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2555 }
2556 }
2557 }
2558
2559 spin_lock_irq(&np->lock);
2560
2561 /* 1) stop tx engine */
2562 nv_stop_tx(dev);
2563
2564 /* 2) check that the packets were not sent already: */
2565 if (!nv_optimized(np))
2566 nv_tx_done(dev);
2567 else
2568 nv_tx_done_optimized(dev, np->tx_ring_size);
2569
2570 /* 3) if there are dead entries: clear everything */
2571 if (np->get_tx_ctx != np->put_tx_ctx) {
2572 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
2573 nv_drain_tx(dev);
2574 nv_init_tx(dev);
2575 setup_hw_rings(dev, NV_SETUP_TX_RING);
2576 }
2577
2578 netif_wake_queue(dev);
2579
2580 /* 4) restart tx engine */
2581 nv_start_tx(dev);
2582 spin_unlock_irq(&np->lock);
2583 }
2584
2585 /*
2586 * Called when the nic notices a mismatch between the actual data len on the
2587 * wire and the len indicated in the 802 header
2588 */
2589 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2590 {
2591 int hdrlen; /* length of the 802 header */
2592 int protolen; /* length as stored in the proto field */
2593
2594 /* 1) calculate len according to header */
2595 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2596 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
2597 hdrlen = VLAN_HLEN;
2598 } else {
2599 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
2600 hdrlen = ETH_HLEN;
2601 }
2602 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
2603 dev->name, datalen, protolen, hdrlen);
2604 if (protolen > ETH_DATA_LEN)
2605 return datalen; /* Value in proto field not a len, no checks possible */
2606
2607 protolen += hdrlen;
2608 /* consistency checks: */
2609 if (datalen > ETH_ZLEN) {
2610 if (datalen >= protolen) {
2611 /* more data on wire than in 802 header, trim of
2612 * additional data.
2613 */
2614 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2615 dev->name, protolen);
2616 return protolen;
2617 } else {
2618 /* less data on wire than mentioned in header.
2619 * Discard the packet.
2620 */
2621 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
2622 dev->name);
2623 return -1;
2624 }
2625 } else {
2626 /* short packet. Accept only if 802 values are also short */
2627 if (protolen > ETH_ZLEN) {
2628 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
2629 dev->name);
2630 return -1;
2631 }
2632 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2633 dev->name, datalen);
2634 return datalen;
2635 }
2636 }
2637
2638 static int nv_rx_process(struct net_device *dev, int limit)
2639 {
2640 struct fe_priv *np = netdev_priv(dev);
2641 u32 flags;
2642 int rx_work = 0;
2643 struct sk_buff *skb;
2644 int len;
2645
2646 while((np->get_rx.orig != np->put_rx.orig) &&
2647 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2648 (rx_work < limit)) {
2649
2650 dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
2651 dev->name, flags);
2652
2653 /*
2654 * the packet is for us - immediately tear down the pci mapping.
2655 * TODO: check if a prefetch of the first cacheline improves
2656 * the performance.
2657 */
2658 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2659 np->get_rx_ctx->dma_len,
2660 PCI_DMA_FROMDEVICE);
2661 skb = np->get_rx_ctx->skb;
2662 np->get_rx_ctx->skb = NULL;
2663
2664 {
2665 int j;
2666 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2667 for (j=0; j<64; j++) {
2668 if ((j%16) == 0)
2669 dprintk("\n%03x:", j);
2670 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2671 }
2672 dprintk("\n");
2673 }
2674 /* look at what we actually got: */
2675 if (np->desc_ver == DESC_VER_1) {
2676 if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2677 len = flags & LEN_MASK_V1;
2678 if (unlikely(flags & NV_RX_ERROR)) {
2679 if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
2680 len = nv_getlen(dev, skb->data, len);
2681 if (len < 0) {
2682 dev->stats.rx_errors++;
2683 dev_kfree_skb(skb);
2684 goto next_pkt;
2685 }
2686 }
2687 /* framing errors are soft errors */
2688 else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
2689 if (flags & NV_RX_SUBSTRACT1) {
2690 len--;
2691 }
2692 }
2693 /* the rest are hard errors */
2694 else {
2695 if (flags & NV_RX_MISSEDFRAME)
2696 dev->stats.rx_missed_errors++;
2697 if (flags & NV_RX_CRCERR)
2698 dev->stats.rx_crc_errors++;
2699 if (flags & NV_RX_OVERFLOW)
2700 dev->stats.rx_over_errors++;
2701 dev->stats.rx_errors++;
2702 dev_kfree_skb(skb);
2703 goto next_pkt;
2704 }
2705 }
2706 } else {
2707 dev_kfree_skb(skb);
2708 goto next_pkt;
2709 }
2710 } else {
2711 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2712 len = flags & LEN_MASK_V2;
2713 if (unlikely(flags & NV_RX2_ERROR)) {
2714 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2715 len = nv_getlen(dev, skb->data, len);
2716 if (len < 0) {
2717 dev->stats.rx_errors++;
2718 dev_kfree_skb(skb);
2719 goto next_pkt;
2720 }
2721 }
2722 /* framing errors are soft errors */
2723 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2724 if (flags & NV_RX2_SUBSTRACT1) {
2725 len--;
2726 }
2727 }
2728 /* the rest are hard errors */
2729 else {
2730 if (flags & NV_RX2_CRCERR)
2731 dev->stats.rx_crc_errors++;
2732 if (flags & NV_RX2_OVERFLOW)
2733 dev->stats.rx_over_errors++;
2734 dev->stats.rx_errors++;
2735 dev_kfree_skb(skb);
2736 goto next_pkt;
2737 }
2738 }
2739 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2740 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2741 skb->ip_summed = CHECKSUM_UNNECESSARY;
2742 } else {
2743 dev_kfree_skb(skb);
2744 goto next_pkt;
2745 }
2746 }
2747 /* got a valid packet - forward it to the network core */
2748 skb_put(skb, len);
2749 skb->protocol = eth_type_trans(skb, dev);
2750 dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
2751 dev->name, len, skb->protocol);
2752 #ifdef CONFIG_FORCEDETH_NAPI
2753 netif_receive_skb(skb);
2754 #else
2755 netif_rx(skb);
2756 #endif
2757 dev->stats.rx_packets++;
2758 dev->stats.rx_bytes += len;
2759 next_pkt:
2760 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2761 np->get_rx.orig = np->first_rx.orig;
2762 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2763 np->get_rx_ctx = np->first_rx_ctx;
2764
2765 rx_work++;
2766 }
2767
2768 return rx_work;
2769 }
2770
2771 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2772 {
2773 struct fe_priv *np = netdev_priv(dev);
2774 u32 flags;
2775 u32 vlanflags = 0;
2776 int rx_work = 0;
2777 struct sk_buff *skb;
2778 int len;
2779
2780 while((np->get_rx.ex != np->put_rx.ex) &&
2781 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2782 (rx_work < limit)) {
2783
2784 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
2785 dev->name, flags);
2786
2787 /*
2788 * the packet is for us - immediately tear down the pci mapping.
2789 * TODO: check if a prefetch of the first cacheline improves
2790 * the performance.
2791 */
2792 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2793 np->get_rx_ctx->dma_len,
2794 PCI_DMA_FROMDEVICE);
2795 skb = np->get_rx_ctx->skb;
2796 np->get_rx_ctx->skb = NULL;
2797
2798 {
2799 int j;
2800 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2801 for (j=0; j<64; j++) {
2802 if ((j%16) == 0)
2803 dprintk("\n%03x:", j);
2804 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2805 }
2806 dprintk("\n");
2807 }
2808 /* look at what we actually got: */
2809 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2810 len = flags & LEN_MASK_V2;
2811 if (unlikely(flags & NV_RX2_ERROR)) {
2812 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2813 len = nv_getlen(dev, skb->data, len);
2814 if (len < 0) {
2815 dev_kfree_skb(skb);
2816 goto next_pkt;
2817 }
2818 }
2819 /* framing errors are soft errors */
2820 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2821 if (flags & NV_RX2_SUBSTRACT1) {
2822 len--;
2823 }
2824 }
2825 /* the rest are hard errors */
2826 else {
2827 dev_kfree_skb(skb);
2828 goto next_pkt;
2829 }
2830 }
2831
2832 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2833 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2834 skb->ip_summed = CHECKSUM_UNNECESSARY;
2835
2836 /* got a valid packet - forward it to the network core */
2837 skb_put(skb, len);
2838 skb->protocol = eth_type_trans(skb, dev);
2839 prefetch(skb->data);
2840
2841 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
2842 dev->name, len, skb->protocol);
2843
2844 if (likely(!np->vlangrp)) {
2845 #ifdef CONFIG_FORCEDETH_NAPI
2846 netif_receive_skb(skb);
2847 #else
2848 netif_rx(skb);
2849 #endif
2850 } else {
2851 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
2852 if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
2853 #ifdef CONFIG_FORCEDETH_NAPI
2854 vlan_hwaccel_receive_skb(skb, np->vlangrp,
2855 vlanflags & NV_RX3_VLAN_TAG_MASK);
2856 #else
2857 vlan_hwaccel_rx(skb, np->vlangrp,
2858 vlanflags & NV_RX3_VLAN_TAG_MASK);
2859 #endif
2860 } else {
2861 #ifdef CONFIG_FORCEDETH_NAPI
2862 netif_receive_skb(skb);
2863 #else
2864 netif_rx(skb);
2865 #endif
2866 }
2867 }
2868
2869 dev->stats.rx_packets++;
2870 dev->stats.rx_bytes += len;
2871 } else {
2872 dev_kfree_skb(skb);
2873 }
2874 next_pkt:
2875 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
2876 np->get_rx.ex = np->first_rx.ex;
2877 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2878 np->get_rx_ctx = np->first_rx_ctx;
2879
2880 rx_work++;
2881 }
2882
2883 return rx_work;
2884 }
2885
2886 static void set_bufsize(struct net_device *dev)
2887 {
2888 struct fe_priv *np = netdev_priv(dev);
2889
2890 if (dev->mtu <= ETH_DATA_LEN)
2891 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
2892 else
2893 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
2894 }
2895
2896 /*
2897 * nv_change_mtu: dev->change_mtu function
2898 * Called with dev_base_lock held for read.
2899 */
2900 static int nv_change_mtu(struct net_device *dev, int new_mtu)
2901 {
2902 struct fe_priv *np = netdev_priv(dev);
2903 int old_mtu;
2904
2905 if (new_mtu < 64 || new_mtu > np->pkt_limit)
2906 return -EINVAL;
2907
2908 old_mtu = dev->mtu;
2909 dev->mtu = new_mtu;
2910
2911 /* return early if the buffer sizes will not change */
2912 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
2913 return 0;
2914 if (old_mtu == new_mtu)
2915 return 0;
2916
2917 /* synchronized against open : rtnl_lock() held by caller */
2918 if (netif_running(dev)) {
2919 u8 __iomem *base = get_hwbase(dev);
2920 /*
2921 * It seems that the nic preloads valid ring entries into an
2922 * internal buffer. The procedure for flushing everything is
2923 * guessed, there is probably a simpler approach.
2924 * Changing the MTU is a rare event, it shouldn't matter.
2925 */
2926 nv_disable_irq(dev);
2927 netif_tx_lock_bh(dev);
2928 netif_addr_lock(dev);
2929 spin_lock(&np->lock);
2930 /* stop engines */
2931 nv_stop_rxtx(dev);
2932 nv_txrx_reset(dev);
2933 /* drain rx queue */
2934 nv_drain_rxtx(dev);
2935 /* reinit driver view of the rx queue */
2936 set_bufsize(dev);
2937 if (nv_init_ring(dev)) {
2938 if (!np->in_shutdown)
2939 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2940 }
2941 /* reinit nic view of the rx queue */
2942 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2943 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2944 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
2945 base + NvRegRingSizes);
2946 pci_push(base);
2947 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2948 pci_push(base);
2949
2950 /* restart rx engine */
2951 nv_start_rxtx(dev);
2952 spin_unlock(&np->lock);
2953 netif_addr_unlock(dev);
2954 netif_tx_unlock_bh(dev);
2955 nv_enable_irq(dev);
2956 }
2957 return 0;
2958 }
2959
2960 static void nv_copy_mac_to_hw(struct net_device *dev)
2961 {
2962 u8 __iomem *base = get_hwbase(dev);
2963 u32 mac[2];
2964
2965 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
2966 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
2967 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
2968
2969 writel(mac[0], base + NvRegMacAddrA);
2970 writel(mac[1], base + NvRegMacAddrB);
2971 }
2972
2973 /*
2974 * nv_set_mac_address: dev->set_mac_address function
2975 * Called with rtnl_lock() held.
2976 */
2977 static int nv_set_mac_address(struct net_device *dev, void *addr)
2978 {
2979 struct fe_priv *np = netdev_priv(dev);
2980 struct sockaddr *macaddr = (struct sockaddr*)addr;
2981
2982 if (!is_valid_ether_addr(macaddr->sa_data))
2983 return -EADDRNOTAVAIL;
2984
2985 /* synchronized against open : rtnl_lock() held by caller */
2986 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
2987
2988 if (netif_running(dev)) {
2989 netif_tx_lock_bh(dev);
2990 netif_addr_lock(dev);
2991 spin_lock_irq(&np->lock);
2992
2993 /* stop rx engine */
2994 nv_stop_rx(dev);
2995
2996 /* set mac address */
2997 nv_copy_mac_to_hw(dev);
2998
2999 /* restart rx engine */
3000 nv_start_rx(dev);
3001 spin_unlock_irq(&np->lock);
3002 netif_addr_unlock(dev);
3003 netif_tx_unlock_bh(dev);
3004 } else {
3005 nv_copy_mac_to_hw(dev);
3006 }
3007 return 0;
3008 }
3009
3010 /*
3011 * nv_set_multicast: dev->set_multicast function
3012 * Called with netif_tx_lock held.
3013 */
3014 static void nv_set_multicast(struct net_device *dev)
3015 {
3016 struct fe_priv *np = netdev_priv(dev);
3017 u8 __iomem *base = get_hwbase(dev);
3018 u32 addr[2];
3019 u32 mask[2];
3020 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
3021
3022 memset(addr, 0, sizeof(addr));
3023 memset(mask, 0, sizeof(mask));
3024
3025 if (dev->flags & IFF_PROMISC) {
3026 pff |= NVREG_PFF_PROMISC;
3027 } else {
3028 pff |= NVREG_PFF_MYADDR;
3029
3030 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
3031 u32 alwaysOff[2];
3032 u32 alwaysOn[2];
3033
3034 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
3035 if (dev->flags & IFF_ALLMULTI) {
3036 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
3037 } else {
3038 struct dev_mc_list *walk;
3039
3040 walk = dev->mc_list;
3041 while (walk != NULL) {
3042 u32 a, b;
3043 a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
3044 b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
3045 alwaysOn[0] &= a;
3046 alwaysOff[0] &= ~a;
3047 alwaysOn[1] &= b;
3048 alwaysOff[1] &= ~b;
3049 walk = walk->next;
3050 }
3051 }
3052 addr[0] = alwaysOn[0];
3053 addr[1] = alwaysOn[1];
3054 mask[0] = alwaysOn[0] | alwaysOff[0];
3055 mask[1] = alwaysOn[1] | alwaysOff[1];
3056 } else {
3057 mask[0] = NVREG_MCASTMASKA_NONE;
3058 mask[1] = NVREG_MCASTMASKB_NONE;
3059 }
3060 }
3061 addr[0] |= NVREG_MCASTADDRA_FORCE;
3062 pff |= NVREG_PFF_ALWAYS;
3063 spin_lock_irq(&np->lock);
3064 nv_stop_rx(dev);
3065 writel(addr[0], base + NvRegMulticastAddrA);
3066 writel(addr[1], base + NvRegMulticastAddrB);
3067 writel(mask[0], base + NvRegMulticastMaskA);
3068 writel(mask[1], base + NvRegMulticastMaskB);
3069 writel(pff, base + NvRegPacketFilterFlags);
3070 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
3071 dev->name);
3072 nv_start_rx(dev);
3073 spin_unlock_irq(&np->lock);
3074 }
3075
3076 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
3077 {
3078 struct fe_priv *np = netdev_priv(dev);
3079 u8 __iomem *base = get_hwbase(dev);
3080
3081 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
3082
3083 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
3084 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
3085 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
3086 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
3087 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3088 } else {
3089 writel(pff, base + NvRegPacketFilterFlags);
3090 }
3091 }
3092 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
3093 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
3094 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
3095 u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
3096 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
3097 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
3098 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
3099 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
3100 /* limit the number of tx pause frames to a default of 8 */
3101 writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
3102 }
3103 writel(pause_enable, base + NvRegTxPauseFrame);
3104 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
3105 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3106 } else {
3107 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
3108 writel(regmisc, base + NvRegMisc1);
3109 }
3110 }
3111 }
3112
3113 /**
3114 * nv_update_linkspeed: Setup the MAC according to the link partner
3115 * @dev: Network device to be configured
3116 *
3117 * The function queries the PHY and checks if there is a link partner.
3118 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
3119 * set to 10 MBit HD.
3120 *
3121 * The function returns 0 if there is no link partner and 1 if there is
3122 * a good link partner.
3123 */
3124 static int nv_update_linkspeed(struct net_device *dev)
3125 {
3126 struct fe_priv *np = netdev_priv(dev);
3127 u8 __iomem *base = get_hwbase(dev);
3128 int adv = 0;
3129 int lpa = 0;
3130 int adv_lpa, adv_pause, lpa_pause;
3131 int newls = np->linkspeed;
3132 int newdup = np->duplex;
3133 int mii_status;
3134 int retval = 0;
3135 u32 control_1000, status_1000, phyreg, pause_flags, txreg;
3136 u32 txrxFlags = 0;
3137 u32 phy_exp;
3138
3139 /* BMSR_LSTATUS is latched, read it twice:
3140 * we want the current value.
3141 */
3142 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3143 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3144
3145 if (!(mii_status & BMSR_LSTATUS)) {
3146 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
3147 dev->name);
3148 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3149 newdup = 0;
3150 retval = 0;
3151 goto set_speed;
3152 }
3153
3154 if (np->autoneg == 0) {
3155 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
3156 dev->name, np->fixed_mode);
3157 if (np->fixed_mode & LPA_100FULL) {
3158 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3159 newdup = 1;
3160 } else if (np->fixed_mode & LPA_100HALF) {
3161 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3162 newdup = 0;
3163 } else if (np->fixed_mode & LPA_10FULL) {
3164 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3165 newdup = 1;
3166 } else {
3167 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3168 newdup = 0;
3169 }
3170 retval = 1;
3171 goto set_speed;
3172 }
3173 /* check auto negotiation is complete */
3174 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
3175 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
3176 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3177 newdup = 0;
3178 retval = 0;
3179 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
3180 goto set_speed;
3181 }
3182
3183 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3184 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
3185 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
3186 dev->name, adv, lpa);
3187
3188 retval = 1;
3189 if (np->gigabit == PHY_GIGABIT) {
3190 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3191 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
3192
3193 if ((control_1000 & ADVERTISE_1000FULL) &&
3194 (status_1000 & LPA_1000FULL)) {
3195 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
3196 dev->name);
3197 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
3198 newdup = 1;
3199 goto set_speed;
3200 }
3201 }
3202
3203 /* FIXME: handle parallel detection properly */
3204 adv_lpa = lpa & adv;
3205 if (adv_lpa & LPA_100FULL) {
3206 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3207 newdup = 1;
3208 } else if (adv_lpa & LPA_100HALF) {
3209 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3210 newdup = 0;
3211 } else if (adv_lpa & LPA_10FULL) {
3212 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3213 newdup = 1;
3214 } else if (adv_lpa & LPA_10HALF) {
3215 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3216 newdup = 0;
3217 } else {
3218 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
3219 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3220 newdup = 0;
3221 }
3222
3223 set_speed:
3224 if (np->duplex == newdup && np->linkspeed == newls)
3225 return retval;
3226
3227 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
3228 dev->name, np->linkspeed, np->duplex, newls, newdup);
3229
3230 np->duplex = newdup;
3231 np->linkspeed = newls;
3232
3233 /* The transmitter and receiver must be restarted for safe update */
3234 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
3235 txrxFlags |= NV_RESTART_TX;
3236 nv_stop_tx(dev);
3237 }
3238 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
3239 txrxFlags |= NV_RESTART_RX;
3240 nv_stop_rx(dev);
3241 }
3242
3243 if (np->gigabit == PHY_GIGABIT) {
3244 phyreg = readl(base + NvRegSlotTime);
3245 phyreg &= ~(0x3FF00);
3246 if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
3247 ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
3248 phyreg |= NVREG_SLOTTIME_10_100_FULL;
3249 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
3250 phyreg |= NVREG_SLOTTIME_1000_FULL;
3251 writel(phyreg, base + NvRegSlotTime);
3252 }
3253
3254 phyreg = readl(base + NvRegPhyInterface);
3255 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
3256 if (np->duplex == 0)
3257 phyreg |= PHY_HALF;
3258 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
3259 phyreg |= PHY_100;
3260 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3261 phyreg |= PHY_1000;
3262 writel(phyreg, base + NvRegPhyInterface);
3263
3264 phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
3265 if (phyreg & PHY_RGMII) {
3266 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
3267 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
3268 } else {
3269 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
3270 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
3271 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
3272 else
3273 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
3274 } else {
3275 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
3276 }
3277 }
3278 } else {
3279 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
3280 txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
3281 else
3282 txreg = NVREG_TX_DEFERRAL_DEFAULT;
3283 }
3284 writel(txreg, base + NvRegTxDeferral);
3285
3286 if (np->desc_ver == DESC_VER_1) {
3287 txreg = NVREG_TX_WM_DESC1_DEFAULT;
3288 } else {
3289 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3290 txreg = NVREG_TX_WM_DESC2_3_1000;
3291 else
3292 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
3293 }
3294 writel(txreg, base + NvRegTxWatermark);
3295
3296 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
3297 base + NvRegMisc1);
3298 pci_push(base);
3299 writel(np->linkspeed, base + NvRegLinkSpeed);
3300 pci_push(base);
3301
3302 pause_flags = 0;
3303 /* setup pause frame */
3304 if (np->duplex != 0) {
3305 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
3306 adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
3307 lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
3308
3309 switch (adv_pause) {
3310 case ADVERTISE_PAUSE_CAP:
3311 if (lpa_pause & LPA_PAUSE_CAP) {
3312 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3313 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3314 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3315 }
3316 break;
3317 case ADVERTISE_PAUSE_ASYM:
3318 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
3319 {
3320 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3321 }
3322 break;
3323 case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
3324 if (lpa_pause & LPA_PAUSE_CAP)
3325 {
3326 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3327 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3328 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3329 }
3330 if (lpa_pause == LPA_PAUSE_ASYM)
3331 {
3332 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3333 }
3334 break;
3335 }
3336 } else {
3337 pause_flags = np->pause_flags;
3338 }
3339 }
3340 nv_update_pause(dev, pause_flags);
3341
3342 if (txrxFlags & NV_RESTART_TX)
3343 nv_start_tx(dev);
3344 if (txrxFlags & NV_RESTART_RX)
3345 nv_start_rx(dev);
3346
3347 return retval;
3348 }
3349
3350 static void nv_linkchange(struct net_device *dev)
3351 {
3352 if (nv_update_linkspeed(dev)) {
3353 if (!netif_carrier_ok(dev)) {
3354 netif_carrier_on(dev);
3355 printk(KERN_INFO "%s: link up.\n", dev->name);
3356 nv_start_rx(dev);
3357 }
3358 } else {
3359 if (netif_carrier_ok(dev)) {
3360 netif_carrier_off(dev);
3361 printk(KERN_INFO "%s: link down.\n", dev->name);
3362 nv_stop_rx(dev);
3363 }
3364 }
3365 }
3366
3367 static void nv_link_irq(struct net_device *dev)
3368 {
3369 u8 __iomem *base = get_hwbase(dev);
3370 u32 miistat;
3371
3372 miistat = readl(base + NvRegMIIStatus);
3373 writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
3374 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
3375
3376 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
3377 nv_linkchange(dev);
3378 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
3379 }
3380
3381 static void nv_msi_workaround(struct fe_priv *np)
3382 {
3383
3384 /* Need to toggle the msi irq mask within the ethernet device,
3385 * otherwise, future interrupts will not be detected.
3386 */
3387 if (np->msi_flags & NV_MSI_ENABLED) {
3388 u8 __iomem *base = np->base;
3389
3390 writel(0, base + NvRegMSIIrqMask);
3391 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3392 }
3393 }
3394
3395 static irqreturn_t nv_nic_irq(int foo, void *data)
3396 {
3397 struct net_device *dev = (struct net_device *) data;
3398 struct fe_priv *np = netdev_priv(dev);
3399 u8 __iomem *base = get_hwbase(dev);
3400 u32 events;
3401 int i;
3402
3403 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
3404
3405 for (i=0; ; i++) {
3406 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3407 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3408 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3409 } else {
3410 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3411 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3412 }
3413 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3414 if (!(events & np->irqmask))
3415 break;
3416
3417 nv_msi_workaround(np);
3418
3419 spin_lock(&np->lock);
3420 nv_tx_done(dev);
3421 spin_unlock(&np->lock);
3422
3423 #ifdef CONFIG_FORCEDETH_NAPI
3424 if (events & NVREG_IRQ_RX_ALL) {
3425 spin_lock(&np->lock);
3426 napi_schedule(&np->napi);
3427
3428 /* Disable furthur receive irq's */
3429 np->irqmask &= ~NVREG_IRQ_RX_ALL;
3430
3431 if (np->msi_flags & NV_MSI_X_ENABLED)
3432 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3433 else
3434 writel(np->irqmask, base + NvRegIrqMask);
3435 spin_unlock(&np->lock);
3436 }
3437 #else
3438 if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
3439 if (unlikely(nv_alloc_rx(dev))) {
3440 spin_lock(&np->lock);
3441 if (!np->in_shutdown)
3442 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3443 spin_unlock(&np->lock);
3444 }
3445 }
3446 #endif
3447 if (unlikely(events & NVREG_IRQ_LINK)) {
3448 spin_lock(&np->lock);
3449 nv_link_irq(dev);
3450 spin_unlock(&np->lock);
3451 }
3452 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3453 spin_lock(&np->lock);
3454 nv_linkchange(dev);
3455 spin_unlock(&np->lock);
3456 np->link_timeout = jiffies + LINK_TIMEOUT;
3457 }
3458 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3459 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3460 dev->name, events);
3461 }
3462 if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
3463 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3464 dev->name, events);
3465 }
3466 if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
3467 spin_lock(&np->lock);
3468 /* disable interrupts on the nic */
3469 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3470 writel(0, base + NvRegIrqMask);
3471 else
3472 writel(np->irqmask, base + NvRegIrqMask);
3473 pci_push(base);
3474
3475 if (!np->in_shutdown) {
3476 np->nic_poll_irq = np->irqmask;
3477 np->recover_error = 1;
3478 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3479 }
3480 spin_unlock(&np->lock);
3481 break;
3482 }
3483 if (unlikely(i > max_interrupt_work)) {
3484 spin_lock(&np->lock);
3485 /* disable interrupts on the nic */
3486 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3487 writel(0, base + NvRegIrqMask);
3488 else
3489 writel(np->irqmask, base + NvRegIrqMask);
3490 pci_push(base);
3491
3492 if (!np->in_shutdown) {
3493 np->nic_poll_irq = np->irqmask;
3494 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3495 }
3496 spin_unlock(&np->lock);
3497 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
3498 break;
3499 }
3500
3501 }
3502 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
3503
3504 return IRQ_RETVAL(i);
3505 }
3506
3507 /**
3508 * All _optimized functions are used to help increase performance
3509 * (reduce CPU and increase throughput). They use descripter version 3,
3510 * compiler directives, and reduce memory accesses.
3511 */
3512 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
3513 {
3514 struct net_device *dev = (struct net_device *) data;
3515 struct fe_priv *np = netdev_priv(dev);
3516 u8 __iomem *base = get_hwbase(dev);
3517 u32 events;
3518 int i;
3519
3520 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
3521
3522 for (i=0; ; i++) {
3523 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3524 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3525 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3526 } else {
3527 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3528 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3529 }
3530 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3531 if (!(events & np->irqmask))
3532 break;
3533
3534 nv_msi_workaround(np);
3535
3536 spin_lock(&np->lock);
3537 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3538 spin_unlock(&np->lock);
3539
3540 #ifdef CONFIG_FORCEDETH_NAPI
3541 if (events & NVREG_IRQ_RX_ALL) {
3542 spin_lock(&np->lock);
3543 napi_schedule(&np->napi);
3544
3545 /* Disable furthur receive irq's */
3546 np->irqmask &= ~NVREG_IRQ_RX_ALL;
3547
3548 if (np->msi_flags & NV_MSI_X_ENABLED)
3549 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3550 else
3551 writel(np->irqmask, base + NvRegIrqMask);
3552 spin_unlock(&np->lock);
3553 }
3554 #else
3555 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3556 if (unlikely(nv_alloc_rx_optimized(dev))) {
3557 spin_lock(&np->lock);
3558 if (!np->in_shutdown)
3559 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3560 spin_unlock(&np->lock);
3561 }
3562 }
3563 #endif
3564 if (unlikely(events & NVREG_IRQ_LINK)) {
3565 spin_lock(&np->lock);
3566 nv_link_irq(dev);
3567 spin_unlock(&np->lock);
3568 }
3569 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3570 spin_lock(&np->lock);
3571 nv_linkchange(dev);
3572 spin_unlock(&np->lock);
3573 np->link_timeout = jiffies + LINK_TIMEOUT;
3574 }
3575 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3576 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3577 dev->name, events);
3578 }
3579 if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
3580 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3581 dev->name, events);
3582 }
3583 if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
3584 spin_lock(&np->lock);
3585 /* disable interrupts on the nic */
3586 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3587 writel(0, base + NvRegIrqMask);
3588 else
3589 writel(np->irqmask, base + NvRegIrqMask);
3590 pci_push(base);
3591
3592 if (!np->in_shutdown) {
3593 np->nic_poll_irq = np->irqmask;
3594 np->recover_error = 1;
3595 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3596 }
3597 spin_unlock(&np->lock);
3598 break;
3599 }
3600
3601 if (unlikely(i > max_interrupt_work)) {
3602 spin_lock(&np->lock);
3603 /* disable interrupts on the nic */
3604 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3605 writel(0, base + NvRegIrqMask);
3606 else
3607 writel(np->irqmask, base + NvRegIrqMask);
3608 pci_push(base);
3609
3610 if (!np->in_shutdown) {
3611 np->nic_poll_irq = np->irqmask;
3612 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3613 }
3614 spin_unlock(&np->lock);
3615 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
3616 break;
3617 }
3618
3619 }
3620 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
3621
3622 return IRQ_RETVAL(i);
3623 }
3624
3625 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3626 {
3627 struct net_device *dev = (struct net_device *) data;
3628 struct fe_priv *np = netdev_priv(dev);
3629 u8 __iomem *base = get_hwbase(dev);
3630 u32 events;
3631 int i;
3632 unsigned long flags;
3633
3634 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
3635
3636 for (i=0; ; i++) {
3637 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3638 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
3639 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
3640 if (!(events & np->irqmask))
3641 break;
3642
3643 spin_lock_irqsave(&np->lock, flags);
3644 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3645 spin_unlock_irqrestore(&np->lock, flags);
3646
3647 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3648 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3649 dev->name, events);
3650 }
3651 if (unlikely(i > max_interrupt_work)) {
3652 spin_lock_irqsave(&np->lock, flags);
3653 /* disable interrupts on the nic */
3654 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3655 pci_push(base);
3656
3657 if (!np->in_shutdown) {
3658 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3659 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3660 }
3661 spin_unlock_irqrestore(&np->lock, flags);
3662 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
3663 break;
3664 }
3665
3666 }
3667 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
3668
3669 return IRQ_RETVAL(i);
3670 }
3671
3672 #ifdef CONFIG_FORCEDETH_NAPI
3673 static int nv_napi_poll(struct napi_struct *napi, int budget)
3674 {
3675 struct fe_priv *np = container_of(napi, struct fe_priv, napi);
3676 struct net_device *dev = np->dev;
3677 u8 __iomem *base = get_hwbase(dev);
3678 unsigned long flags;
3679 int pkts, retcode;
3680
3681 if (!nv_optimized(np)) {
3682 pkts = nv_rx_process(dev, budget);
3683 retcode = nv_alloc_rx(dev);
3684 } else {
3685 pkts = nv_rx_process_optimized(dev, budget);
3686 retcode = nv_alloc_rx_optimized(dev);
3687 }
3688
3689 if (retcode) {
3690 spin_lock_irqsave(&np->lock, flags);
3691 if (!np->in_shutdown)
3692 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3693 spin_unlock_irqrestore(&np->lock, flags);
3694 }
3695
3696 if (pkts < budget) {
3697 /* re-enable receive interrupts */
3698 spin_lock_irqsave(&np->lock, flags);
3699
3700 __napi_complete(napi);
3701
3702 np->irqmask |= NVREG_IRQ_RX_ALL;
3703 if (np->msi_flags & NV_MSI_X_ENABLED)
3704 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3705 else
3706 writel(np->irqmask, base + NvRegIrqMask);
3707
3708 spin_unlock_irqrestore(&np->lock, flags);
3709 }
3710 return pkts;
3711 }
3712 #endif
3713
3714 #ifdef CONFIG_FORCEDETH_NAPI
3715 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3716 {
3717 struct net_device *dev = (struct net_device *) data;
3718 struct fe_priv *np = netdev_priv(dev);
3719 u8 __iomem *base = get_hwbase(dev);
3720 u32 events;
3721
3722 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3723
3724 if (events) {
3725 /* disable receive interrupts on the nic */
3726 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3727 pci_push(base);
3728 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3729 napi_schedule(&np->napi);
3730 }
3731 return IRQ_HANDLED;
3732 }
3733 #else
3734 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3735 {
3736 struct net_device *dev = (struct net_device *) data;
3737 struct fe_priv *np = netdev_priv(dev);
3738 u8 __iomem *base = get_hwbase(dev);
3739 u32 events;
3740 int i;
3741 unsigned long flags;
3742
3743 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
3744
3745 for (i=0; ; i++) {
3746 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3747 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3748 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
3749 if (!(events & np->irqmask))
3750 break;
3751
3752 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3753 if (unlikely(nv_alloc_rx_optimized(dev))) {
3754 spin_lock_irqsave(&np->lock, flags);
3755 if (!np->in_shutdown)
3756 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3757 spin_unlock_irqrestore(&np->lock, flags);
3758 }
3759 }
3760
3761 if (unlikely(i > max_interrupt_work)) {
3762 spin_lock_irqsave(&np->lock, flags);
3763 /* disable interrupts on the nic */
3764 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3765 pci_push(base);
3766
3767 if (!np->in_shutdown) {
3768 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3769 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3770 }
3771 spin_unlock_irqrestore(&np->lock, flags);
3772 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
3773 break;
3774 }
3775 }
3776 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
3777
3778 return IRQ_RETVAL(i);
3779 }
3780 #endif
3781
3782 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3783 {
3784 struct net_device *dev = (struct net_device *) data;
3785 struct fe_priv *np = netdev_priv(dev);
3786 u8 __iomem *base = get_hwbase(dev);
3787 u32 events;
3788 int i;
3789 unsigned long flags;
3790
3791 dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
3792
3793 for (i=0; ; i++) {
3794 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3795 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
3796 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3797 if (!(events & np->irqmask))
3798 break;
3799
3800 /* check tx in case we reached max loop limit in tx isr */
3801 spin_lock_irqsave(&np->lock, flags);
3802 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3803 spin_unlock_irqrestore(&np->lock, flags);
3804
3805 if (events & NVREG_IRQ_LINK) {
3806 spin_lock_irqsave(&np->lock, flags);
3807 nv_link_irq(dev);
3808 spin_unlock_irqrestore(&np->lock, flags);
3809 }
3810 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3811 spin_lock_irqsave(&np->lock, flags);
3812 nv_linkchange(dev);
3813 spin_unlock_irqrestore(&np->lock, flags);
3814 np->link_timeout = jiffies + LINK_TIMEOUT;
3815 }
3816 if (events & NVREG_IRQ_RECOVER_ERROR) {
3817 spin_lock_irq(&np->lock);
3818 /* disable interrupts on the nic */
3819 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3820 pci_push(base);
3821
3822 if (!np->in_shutdown) {
3823 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3824 np->recover_error = 1;
3825 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3826 }
3827 spin_unlock_irq(&np->lock);
3828 break;
3829 }
3830 if (events & (NVREG_IRQ_UNKNOWN)) {
3831 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3832 dev->name, events);
3833 }
3834 if (unlikely(i > max_interrupt_work)) {
3835 spin_lock_irqsave(&np->lock, flags);
3836 /* disable interrupts on the nic */
3837 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3838 pci_push(base);
3839
3840 if (!np->in_shutdown) {
3841 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3842 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3843 }
3844 spin_unlock_irqrestore(&np->lock, flags);
3845 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
3846 break;
3847 }
3848
3849 }
3850 dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
3851
3852 return IRQ_RETVAL(i);
3853 }
3854
3855 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3856 {
3857 struct net_device *dev = (struct net_device *) data;
3858 struct fe_priv *np = netdev_priv(dev);
3859 u8 __iomem *base = get_hwbase(dev);
3860 u32 events;
3861
3862 dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
3863
3864 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3865 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3866 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3867 } else {
3868 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3869 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3870 }
3871 pci_push(base);
3872 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3873 if (!(events & NVREG_IRQ_TIMER))
3874 return IRQ_RETVAL(0);
3875
3876 nv_msi_workaround(np);
3877
3878 spin_lock(&np->lock);
3879 np->intr_test = 1;
3880 spin_unlock(&np->lock);
3881
3882 dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
3883
3884 return IRQ_RETVAL(1);
3885 }
3886
3887 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3888 {
3889 u8 __iomem *base = get_hwbase(dev);
3890 int i;
3891 u32 msixmap = 0;
3892
3893 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3894 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3895 * the remaining 8 interrupts.
3896 */
3897 for (i = 0; i < 8; i++) {
3898 if ((irqmask >> i) & 0x1) {
3899 msixmap |= vector << (i << 2);
3900 }
3901 }
3902 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3903
3904 msixmap = 0;
3905 for (i = 0; i < 8; i++) {
3906 if ((irqmask >> (i + 8)) & 0x1) {
3907 msixmap |= vector << (i << 2);
3908 }
3909 }
3910 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3911 }
3912
3913 static int nv_request_irq(struct net_device *dev, int intr_test)
3914 {
3915 struct fe_priv *np = get_nvpriv(dev);
3916 u8 __iomem *base = get_hwbase(dev);
3917 int ret = 1;
3918 int i;
3919 irqreturn_t (*handler)(int foo, void *data);
3920
3921 if (intr_test) {
3922 handler = nv_nic_irq_test;
3923 } else {
3924 if (nv_optimized(np))
3925 handler = nv_nic_irq_optimized;
3926 else
3927 handler = nv_nic_irq;
3928 }
3929
3930 if (np->msi_flags & NV_MSI_X_CAPABLE) {
3931 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3932 np->msi_x_entry[i].entry = i;
3933 }
3934 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
3935 np->msi_flags |= NV_MSI_X_ENABLED;
3936 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
3937 /* Request irq for rx handling */
3938 sprintf(np->name_rx, "%s-rx", dev->name);
3939 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
3940 &nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
3941 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
3942 pci_disable_msix(np->pci_dev);
3943 np->msi_flags &= ~NV_MSI_X_ENABLED;
3944 goto out_err;
3945 }
3946 /* Request irq for tx handling */
3947 sprintf(np->name_tx, "%s-tx", dev->name);
3948 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
3949 &nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
3950 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
3951 pci_disable_msix(np->pci_dev);
3952 np->msi_flags &= ~NV_MSI_X_ENABLED;
3953 goto out_free_rx;
3954 }
3955 /* Request irq for link and timer handling */
3956 sprintf(np->name_other, "%s-other", dev->name);
3957 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
3958 &nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
3959 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
3960 pci_disable_msix(np->pci_dev);
3961 np->msi_flags &= ~NV_MSI_X_ENABLED;
3962 goto out_free_tx;
3963 }
3964 /* map interrupts to their respective vector */
3965 writel(0, base + NvRegMSIXMap0);
3966 writel(0, base + NvRegMSIXMap1);
3967 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
3968 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
3969 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
3970 } else {
3971 /* Request irq for all interrupts */
3972 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
3973 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3974 pci_disable_msix(np->pci_dev);
3975 np->msi_flags &= ~NV_MSI_X_ENABLED;
3976 goto out_err;
3977 }
3978
3979 /* map interrupts to vector 0 */
3980 writel(0, base + NvRegMSIXMap0);
3981 writel(0, base + NvRegMSIXMap1);
3982 }
3983 }
3984 }
3985 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
3986 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
3987 np->msi_flags |= NV_MSI_ENABLED;
3988 dev->irq = np->pci_dev->irq;
3989 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
3990 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3991 pci_disable_msi(np->pci_dev);
3992 np->msi_flags &= ~NV_MSI_ENABLED;
3993 dev->irq = np->pci_dev->irq;
3994 goto out_err;
3995 }
3996
3997 /* map interrupts to vector 0 */
3998 writel(0, base + NvRegMSIMap0);
3999 writel(0, base + NvRegMSIMap1);
4000 /* enable msi vector 0 */
4001 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
4002 }
4003 }
4004 if (ret != 0) {
4005 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
4006 goto out_err;
4007
4008 }
4009
4010 return 0;
4011 out_free_tx:
4012 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
4013 out_free_rx:
4014 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
4015 out_err:
4016 return 1;
4017 }
4018
4019 static void nv_free_irq(struct net_device *dev)
4020 {
4021 struct fe_priv *np = get_nvpriv(dev);
4022 int i;
4023
4024 if (np->msi_flags & NV_MSI_X_ENABLED) {
4025 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
4026 free_irq(np->msi_x_entry[i].vector, dev);
4027 }
4028 pci_disable_msix(np->pci_dev);
4029 np->msi_flags &= ~NV_MSI_X_ENABLED;
4030 } else {
4031 free_irq(np->pci_dev->irq, dev);
4032 if (np->msi_flags & NV_MSI_ENABLED) {
4033 pci_disable_msi(np->pci_dev);
4034 np->msi_flags &= ~NV_MSI_ENABLED;
4035 }
4036 }
4037 }
4038
4039 static void nv_do_nic_poll(unsigned long data)
4040 {
4041 struct net_device *dev = (struct net_device *) data;
4042 struct fe_priv *np = netdev_priv(dev);
4043 u8 __iomem *base = get_hwbase(dev);
4044 u32 mask = 0;
4045
4046 /*
4047 * First disable irq(s) and then
4048 * reenable interrupts on the nic, we have to do this before calling
4049 * nv_nic_irq because that may decide to do otherwise
4050 */
4051
4052 if (!using_multi_irqs(dev)) {
4053 if (np->msi_flags & NV_MSI_X_ENABLED)
4054 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
4055 else
4056 disable_irq_lockdep(np->pci_dev->irq);
4057 mask = np->irqmask;
4058 } else {
4059 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4060 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
4061 mask |= NVREG_IRQ_RX_ALL;
4062 }
4063 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4064 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
4065 mask |= NVREG_IRQ_TX_ALL;
4066 }
4067 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4068 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
4069 mask |= NVREG_IRQ_OTHER;
4070 }
4071 }
4072 /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
4073
4074 if (np->recover_error) {
4075 np->recover_error = 0;
4076 printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
4077 if (netif_running(dev)) {
4078 netif_tx_lock_bh(dev);
4079 netif_addr_lock(dev);
4080 spin_lock(&np->lock);
4081 /* stop engines */
4082 nv_stop_rxtx(dev);
4083 if (np->driver_data & DEV_HAS_POWER_CNTRL)
4084 nv_mac_reset(dev);
4085 nv_txrx_reset(dev);
4086 /* drain rx queue */
4087 nv_drain_rxtx(dev);
4088 /* reinit driver view of the rx queue */
4089 set_bufsize(dev);
4090 if (nv_init_ring(dev)) {
4091 if (!np->in_shutdown)
4092 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4093 }
4094 /* reinit nic view of the rx queue */
4095 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4096 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4097 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4098 base + NvRegRingSizes);
4099 pci_push(base);
4100 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4101 pci_push(base);
4102 /* clear interrupts */
4103 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4104 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4105 else
4106 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4107
4108 /* restart rx engine */
4109 nv_start_rxtx(dev);
4110 spin_unlock(&np->lock);
4111 netif_addr_unlock(dev);
4112 netif_tx_unlock_bh(dev);
4113 }
4114 }
4115
4116 writel(mask, base + NvRegIrqMask);
4117 pci_push(base);
4118
4119 if (!using_multi_irqs(dev)) {
4120 np->nic_poll_irq = 0;
4121 if (nv_optimized(np))
4122 nv_nic_irq_optimized(0, dev);
4123 else
4124 nv_nic_irq(0, dev);
4125 if (np->msi_flags & NV_MSI_X_ENABLED)
4126 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
4127 else
4128 enable_irq_lockdep(np->pci_dev->irq);
4129 } else {
4130 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4131 np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
4132 nv_nic_irq_rx(0, dev);
4133 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
4134 }
4135 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4136 np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
4137 nv_nic_irq_tx(0, dev);
4138 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
4139 }
4140 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4141 np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
4142 nv_nic_irq_other(0, dev);
4143 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
4144 }
4145 }
4146
4147 }
4148
4149 #ifdef CONFIG_NET_POLL_CONTROLLER
4150 static void nv_poll_controller(struct net_device *dev)
4151 {
4152 nv_do_nic_poll((unsigned long) dev);
4153 }
4154 #endif
4155
4156 static void nv_do_stats_poll(unsigned long data)
4157 {
4158 struct net_device *dev = (struct net_device *) data;
4159 struct fe_priv *np = netdev_priv(dev);
4160
4161 nv_get_hw_stats(dev);
4162
4163 if (!np->in_shutdown)
4164 mod_timer(&np->stats_poll,
4165 round_jiffies(jiffies + STATS_INTERVAL));
4166 }
4167
4168 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4169 {
4170 struct fe_priv *np = netdev_priv(dev);
4171 strcpy(info->driver, DRV_NAME);
4172 strcpy(info->version, FORCEDETH_VERSION);
4173 strcpy(info->bus_info, pci_name(np->pci_dev));
4174 }
4175
4176 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4177 {
4178 struct fe_priv *np = netdev_priv(dev);
4179 wolinfo->supported = WAKE_MAGIC;
4180
4181 spin_lock_irq(&np->lock);
4182 if (np->wolenabled)
4183 wolinfo->wolopts = WAKE_MAGIC;
4184 spin_unlock_irq(&np->lock);
4185 }
4186
4187 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4188 {
4189 struct fe_priv *np = netdev_priv(dev);
4190 u8 __iomem *base = get_hwbase(dev);
4191 u32 flags = 0;
4192
4193 if (wolinfo->wolopts == 0) {
4194 np->wolenabled = 0;
4195 } else if (wolinfo->wolopts & WAKE_MAGIC) {
4196 np->wolenabled = 1;
4197 flags = NVREG_WAKEUPFLAGS_ENABLE;
4198 }
4199 if (netif_running(dev)) {
4200 spin_lock_irq(&np->lock);
4201 writel(flags, base + NvRegWakeUpFlags);
4202 spin_unlock_irq(&np->lock);
4203 }
4204 return 0;
4205 }
4206
4207 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4208 {
4209 struct fe_priv *np = netdev_priv(dev);
4210 int adv;
4211
4212 spin_lock_irq(&np->lock);
4213 ecmd->port = PORT_MII;
4214 if (!netif_running(dev)) {
4215 /* We do not track link speed / duplex setting if the
4216 * interface is disabled. Force a link check */
4217 if (nv_update_linkspeed(dev)) {
4218 if (!netif_carrier_ok(dev))
4219 netif_carrier_on(dev);
4220 } else {
4221 if (netif_carrier_ok(dev))
4222 netif_carrier_off(dev);
4223 }
4224 }
4225
4226 if (netif_carrier_ok(dev)) {
4227 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
4228 case NVREG_LINKSPEED_10:
4229 ecmd->speed = SPEED_10;
4230 break;
4231 case NVREG_LINKSPEED_100:
4232 ecmd->speed = SPEED_100;
4233 break;
4234 case NVREG_LINKSPEED_1000:
4235 ecmd->speed = SPEED_1000;
4236 break;
4237 }
4238 ecmd->duplex = DUPLEX_HALF;
4239 if (np->duplex)
4240 ecmd->duplex = DUPLEX_FULL;
4241 } else {
4242 ecmd->speed = -1;
4243 ecmd->duplex = -1;
4244 }
4245
4246 ecmd->autoneg = np->autoneg;
4247
4248 ecmd->advertising = ADVERTISED_MII;
4249 if (np->autoneg) {
4250 ecmd->advertising |= ADVERTISED_Autoneg;
4251 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4252 if (adv & ADVERTISE_10HALF)
4253 ecmd->advertising |= ADVERTISED_10baseT_Half;
4254 if (adv & ADVERTISE_10FULL)
4255 ecmd->advertising |= ADVERTISED_10baseT_Full;
4256 if (adv & ADVERTISE_100HALF)
4257 ecmd->advertising |= ADVERTISED_100baseT_Half;
4258 if (adv & ADVERTISE_100FULL)
4259 ecmd->advertising |= ADVERTISED_100baseT_Full;
4260 if (np->gigabit == PHY_GIGABIT) {
4261 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4262 if (adv & ADVERTISE_1000FULL)
4263 ecmd->advertising |= ADVERTISED_1000baseT_Full;
4264 }
4265 }
4266 ecmd->supported = (SUPPORTED_Autoneg |
4267 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
4268 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
4269 SUPPORTED_MII);
4270 if (np->gigabit == PHY_GIGABIT)
4271 ecmd->supported |= SUPPORTED_1000baseT_Full;
4272
4273 ecmd->phy_address = np->phyaddr;
4274 ecmd->transceiver = XCVR_EXTERNAL;
4275
4276 /* ignore maxtxpkt, maxrxpkt for now */
4277 spin_unlock_irq(&np->lock);
4278 return 0;
4279 }
4280
4281 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4282 {
4283 struct fe_priv *np = netdev_priv(dev);
4284
4285 if (ecmd->port != PORT_MII)
4286 return -EINVAL;
4287 if (ecmd->transceiver != XCVR_EXTERNAL)
4288 return -EINVAL;
4289 if (ecmd->phy_address != np->phyaddr) {
4290 /* TODO: support switching between multiple phys. Should be
4291 * trivial, but not enabled due to lack of test hardware. */
4292 return -EINVAL;
4293 }
4294 if (ecmd->autoneg == AUTONEG_ENABLE) {
4295 u32 mask;
4296
4297 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
4298 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
4299 if (np->gigabit == PHY_GIGABIT)
4300 mask |= ADVERTISED_1000baseT_Full;
4301
4302 if ((ecmd->advertising & mask) == 0)
4303 return -EINVAL;
4304
4305 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
4306 /* Note: autonegotiation disable, speed 1000 intentionally
4307 * forbidden - noone should need that. */
4308
4309 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
4310 return -EINVAL;
4311 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
4312 return -EINVAL;
4313 } else {
4314 return -EINVAL;
4315 }
4316
4317 netif_carrier_off(dev);
4318 if (netif_running(dev)) {
4319 unsigned long flags;
4320
4321 nv_disable_irq(dev);
4322 netif_tx_lock_bh(dev);
4323 netif_addr_lock(dev);
4324 /* with plain spinlock lockdep complains */
4325 spin_lock_irqsave(&np->lock, flags);
4326 /* stop engines */
4327 /* FIXME:
4328 * this can take some time, and interrupts are disabled
4329 * due to spin_lock_irqsave, but let's hope no daemon
4330 * is going to change the settings very often...
4331 * Worst case:
4332 * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
4333 * + some minor delays, which is up to a second approximately
4334 */
4335 nv_stop_rxtx(dev);
4336 spin_unlock_irqrestore(&np->lock, flags);
4337 netif_addr_unlock(dev);
4338 netif_tx_unlock_bh(dev);
4339 }
4340
4341 if (ecmd->autoneg == AUTONEG_ENABLE) {
4342 int adv, bmcr;
4343
4344 np->autoneg = 1;
4345
4346 /* advertise only what has been requested */
4347 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4348 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4349 if (ecmd->advertising & ADVERTISED_10baseT_Half)
4350 adv |= ADVERTISE_10HALF;
4351 if (ecmd->advertising & ADVERTISED_10baseT_Full)
4352 adv |= ADVERTISE_10FULL;
4353 if (ecmd->advertising & ADVERTISED_100baseT_Half)
4354 adv |= ADVERTISE_100HALF;
4355 if (ecmd->advertising & ADVERTISED_100baseT_Full)
4356 adv |= ADVERTISE_100FULL;
4357 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4358 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4359 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4360 adv |= ADVERTISE_PAUSE_ASYM;
4361 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4362
4363 if (np->gigabit == PHY_GIGABIT) {
4364 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4365 adv &= ~ADVERTISE_1000FULL;
4366 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
4367 adv |= ADVERTISE_1000FULL;
4368 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4369 }
4370
4371 if (netif_running(dev))
4372 printk(KERN_INFO "%s: link down.\n", dev->name);
4373 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4374 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4375 bmcr |= BMCR_ANENABLE;
4376 /* reset the phy in order for settings to stick,
4377 * and cause autoneg to start */
4378 if (phy_reset(dev, bmcr)) {
4379 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4380 return -EINVAL;
4381 }
4382 } else {
4383 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4384 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4385 }
4386 } else {
4387 int adv, bmcr;
4388
4389 np->autoneg = 0;
4390
4391 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4392 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4393 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
4394 adv |= ADVERTISE_10HALF;
4395 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
4396 adv |= ADVERTISE_10FULL;
4397 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
4398 adv |= ADVERTISE_100HALF;
4399 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
4400 adv |= ADVERTISE_100FULL;
4401 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4402 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
4403 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4404 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4405 }
4406 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
4407 adv |= ADVERTISE_PAUSE_ASYM;
4408 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4409 }
4410 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4411 np->fixed_mode = adv;
4412
4413 if (np->gigabit == PHY_GIGABIT) {
4414 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4415 adv &= ~ADVERTISE_1000FULL;
4416 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4417 }
4418
4419 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4420 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
4421 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
4422 bmcr |= BMCR_FULLDPLX;
4423 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
4424 bmcr |= BMCR_SPEED100;
4425 if (np->phy_oui == PHY_OUI_MARVELL) {
4426 /* reset the phy in order for forced mode settings to stick */
4427 if (phy_reset(dev, bmcr)) {
4428 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4429 return -EINVAL;
4430 }
4431 } else {
4432 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4433 if (netif_running(dev)) {
4434 /* Wait a bit and then reconfigure the nic. */
4435 udelay(10);
4436 nv_linkchange(dev);
4437 }
4438 }
4439 }
4440
4441 if (netif_running(dev)) {
4442 nv_start_rxtx(dev);
4443 nv_enable_irq(dev);
4444 }
4445
4446 return 0;
4447 }
4448
4449 #define FORCEDETH_REGS_VER 1
4450
4451 static int nv_get_regs_len(struct net_device *dev)
4452 {
4453 struct fe_priv *np = netdev_priv(dev);
4454 return np->register_size;
4455 }
4456
4457 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
4458 {
4459 struct fe_priv *np = netdev_priv(dev);
4460 u8 __iomem *base = get_hwbase(dev);
4461 u32 *rbuf = buf;
4462 int i;
4463
4464 regs->version = FORCEDETH_REGS_VER;
4465 spin_lock_irq(&np->lock);
4466 for (i = 0;i <= np->register_size/sizeof(u32); i++)
4467 rbuf[i] = readl(base + i*sizeof(u32));
4468 spin_unlock_irq(&np->lock);
4469 }
4470
4471 static int nv_nway_reset(struct net_device *dev)
4472 {
4473 struct fe_priv *np = netdev_priv(dev);
4474 int ret;
4475
4476 if (np->autoneg) {
4477 int bmcr;
4478
4479 netif_carrier_off(dev);
4480 if (netif_running(dev)) {
4481 nv_disable_irq(dev);
4482 netif_tx_lock_bh(dev);
4483 netif_addr_lock(dev);
4484 spin_lock(&np->lock);
4485 /* stop engines */
4486 nv_stop_rxtx(dev);
4487 spin_unlock(&np->lock);
4488 netif_addr_unlock(dev);
4489 netif_tx_unlock_bh(dev);
4490 printk(KERN_INFO "%s: link down.\n", dev->name);
4491 }
4492
4493 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4494 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4495 bmcr |= BMCR_ANENABLE;
4496 /* reset the phy in order for settings to stick*/
4497 if (phy_reset(dev, bmcr)) {
4498 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4499 return -EINVAL;
4500 }
4501 } else {
4502 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4503 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4504 }
4505
4506 if (netif_running(dev)) {
4507 nv_start_rxtx(dev);
4508 nv_enable_irq(dev);
4509 }
4510 ret = 0;
4511 } else {
4512 ret = -EINVAL;
4513 }
4514
4515 return ret;
4516 }
4517
4518 static int nv_set_tso(struct net_device *dev, u32 value)
4519 {
4520 struct fe_priv *np = netdev_priv(dev);
4521
4522 if ((np->driver_data & DEV_HAS_CHECKSUM))
4523 return ethtool_op_set_tso(dev, value);
4524 else
4525 return -EOPNOTSUPP;
4526 }
4527
4528 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4529 {
4530 struct fe_priv *np = netdev_priv(dev);
4531
4532 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4533 ring->rx_mini_max_pending = 0;
4534 ring->rx_jumbo_max_pending = 0;
4535 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4536
4537 ring->rx_pending = np->rx_ring_size;
4538 ring->rx_mini_pending = 0;
4539 ring->rx_jumbo_pending = 0;
4540 ring->tx_pending = np->tx_ring_size;
4541 }
4542
4543 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4544 {
4545 struct fe_priv *np = netdev_priv(dev);
4546 u8 __iomem *base = get_hwbase(dev);
4547 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
4548 dma_addr_t ring_addr;
4549
4550 if (ring->rx_pending < RX_RING_MIN ||
4551 ring->tx_pending < TX_RING_MIN ||
4552 ring->rx_mini_pending != 0 ||
4553 ring->rx_jumbo_pending != 0 ||
4554 (np->desc_ver == DESC_VER_1 &&
4555 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
4556 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
4557 (np->desc_ver != DESC_VER_1 &&
4558 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
4559 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
4560 return -EINVAL;
4561 }
4562
4563 /* allocate new rings */
4564 if (!nv_optimized(np)) {
4565 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4566 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4567 &ring_addr);
4568 } else {
4569 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4570 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4571 &ring_addr);
4572 }
4573 rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
4574 tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
4575 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
4576 /* fall back to old rings */
4577 if (!nv_optimized(np)) {
4578 if (rxtx_ring)
4579 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4580 rxtx_ring, ring_addr);
4581 } else {
4582 if (rxtx_ring)
4583 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4584 rxtx_ring, ring_addr);
4585 }
4586 if (rx_skbuff)
4587 kfree(rx_skbuff);
4588 if (tx_skbuff)
4589 kfree(tx_skbuff);
4590 goto exit;
4591 }
4592
4593 if (netif_running(dev)) {
4594 nv_disable_irq(dev);
4595 netif_tx_lock_bh(dev);
4596 netif_addr_lock(dev);
4597 spin_lock(&np->lock);
4598 /* stop engines */
4599 nv_stop_rxtx(dev);
4600 nv_txrx_reset(dev);
4601 /* drain queues */
4602 nv_drain_rxtx(dev);
4603 /* delete queues */
4604 free_rings(dev);
4605 }
4606
4607 /* set new values */
4608 np->rx_ring_size = ring->rx_pending;
4609 np->tx_ring_size = ring->tx_pending;
4610
4611 if (!nv_optimized(np)) {
4612 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
4613 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4614 } else {
4615 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
4616 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4617 }
4618 np->rx_skb = (struct nv_skb_map*)rx_skbuff;
4619 np->tx_skb = (struct nv_skb_map*)tx_skbuff;
4620 np->ring_addr = ring_addr;
4621
4622 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4623 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4624
4625 if (netif_running(dev)) {
4626 /* reinit driver view of the queues */
4627 set_bufsize(dev);
4628 if (nv_init_ring(dev)) {
4629 if (!np->in_shutdown)
4630 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4631 }
4632
4633 /* reinit nic view of the queues */
4634 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4635 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4636 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4637 base + NvRegRingSizes);
4638 pci_push(base);
4639 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4640 pci_push(base);
4641
4642 /* restart engines */
4643 nv_start_rxtx(dev);
4644 spin_unlock(&np->lock);
4645 netif_addr_unlock(dev);
4646 netif_tx_unlock_bh(dev);
4647 nv_enable_irq(dev);
4648 }
4649 return 0;
4650 exit:
4651 return -ENOMEM;
4652 }
4653
4654 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4655 {
4656 struct fe_priv *np = netdev_priv(dev);
4657
4658 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4659 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4660 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4661 }
4662
4663 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4664 {
4665 struct fe_priv *np = netdev_priv(dev);
4666 int adv, bmcr;
4667
4668 if ((!np->autoneg && np->duplex == 0) ||
4669 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4670 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
4671 dev->name);
4672 return -EINVAL;
4673 }
4674 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4675 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
4676 return -EINVAL;
4677 }
4678
4679 netif_carrier_off(dev);
4680 if (netif_running(dev)) {
4681 nv_disable_irq(dev);
4682 netif_tx_lock_bh(dev);
4683 netif_addr_lock(dev);
4684 spin_lock(&np->lock);
4685 /* stop engines */
4686 nv_stop_rxtx(dev);
4687 spin_unlock(&np->lock);
4688 netif_addr_unlock(dev);
4689 netif_tx_unlock_bh(dev);
4690 }
4691
4692 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4693 if (pause->rx_pause)
4694 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4695 if (pause->tx_pause)
4696 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4697
4698 if (np->autoneg && pause->autoneg) {
4699 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4700
4701 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4702 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4703 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4704 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4705 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4706 adv |= ADVERTISE_PAUSE_ASYM;
4707 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4708
4709 if (netif_running(dev))
4710 printk(KERN_INFO "%s: link down.\n", dev->name);
4711 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4712 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4713 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4714 } else {
4715 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4716 if (pause->rx_pause)
4717 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4718 if (pause->tx_pause)
4719 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4720
4721 if (!netif_running(dev))
4722 nv_update_linkspeed(dev);
4723 else
4724 nv_update_pause(dev, np->pause_flags);
4725 }
4726
4727 if (netif_running(dev)) {
4728 nv_start_rxtx(dev);
4729 nv_enable_irq(dev);
4730 }
4731 return 0;
4732 }
4733
4734 static u32 nv_get_rx_csum(struct net_device *dev)
4735 {
4736 struct fe_priv *np = netdev_priv(dev);
4737 return (np->rx_csum) != 0;
4738 }
4739
4740 static int nv_set_rx_csum(struct net_device *dev, u32 data)
4741 {
4742 struct fe_priv *np = netdev_priv(dev);
4743 u8 __iomem *base = get_hwbase(dev);
4744 int retcode = 0;
4745
4746 if (np->driver_data & DEV_HAS_CHECKSUM) {
4747 if (data) {
4748 np->rx_csum = 1;
4749 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4750 } else {
4751 np->rx_csum = 0;
4752 /* vlan is dependent on rx checksum offload */
4753 if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
4754 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4755 }
4756 if (netif_running(dev)) {
4757 spin_lock_irq(&np->lock);
4758 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4759 spin_unlock_irq(&np->lock);
4760 }
4761 } else {
4762 return -EINVAL;
4763 }
4764
4765 return retcode;
4766 }
4767
4768 static int nv_set_tx_csum(struct net_device *dev, u32 data)
4769 {
4770 struct fe_priv *np = netdev_priv(dev);
4771
4772 if (np->driver_data & DEV_HAS_CHECKSUM)
4773 return ethtool_op_set_tx_csum(dev, data);
4774 else
4775 return -EOPNOTSUPP;
4776 }
4777
4778 static int nv_set_sg(struct net_device *dev, u32 data)
4779 {
4780 struct fe_priv *np = netdev_priv(dev);
4781
4782 if (np->driver_data & DEV_HAS_CHECKSUM)
4783 return ethtool_op_set_sg(dev, data);
4784 else
4785 return -EOPNOTSUPP;
4786 }
4787
4788 static int nv_get_sset_count(struct net_device *dev, int sset)
4789 {
4790 struct fe_priv *np = netdev_priv(dev);
4791
4792 switch (sset) {
4793 case ETH_SS_TEST:
4794 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4795 return NV_TEST_COUNT_EXTENDED;
4796 else
4797 return NV_TEST_COUNT_BASE;
4798 case ETH_SS_STATS:
4799 if (np->driver_data & DEV_HAS_STATISTICS_V1)
4800 return NV_DEV_STATISTICS_V1_COUNT;
4801 else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4802 return NV_DEV_STATISTICS_V2_COUNT;
4803 else if (np->driver_data & DEV_HAS_STATISTICS_V3)
4804 return NV_DEV_STATISTICS_V3_COUNT;
4805 else
4806 return 0;
4807 default:
4808 return -EOPNOTSUPP;
4809 }
4810 }
4811
4812 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
4813 {
4814 struct fe_priv *np = netdev_priv(dev);
4815
4816 /* update stats */
4817 nv_do_stats_poll((unsigned long)dev);
4818
4819 memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
4820 }
4821
4822 static int nv_link_test(struct net_device *dev)
4823 {
4824 struct fe_priv *np = netdev_priv(dev);
4825 int mii_status;
4826
4827 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4828 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4829
4830 /* check phy link status */
4831 if (!(mii_status & BMSR_LSTATUS))
4832 return 0;
4833 else
4834 return 1;
4835 }
4836
4837 static int nv_register_test(struct net_device *dev)
4838 {
4839 u8 __iomem *base = get_hwbase(dev);
4840 int i = 0;
4841 u32 orig_read, new_read;
4842
4843 do {
4844 orig_read = readl(base + nv_registers_test[i].reg);
4845
4846 /* xor with mask to toggle bits */
4847 orig_read ^= nv_registers_test[i].mask;
4848
4849 writel(orig_read, base + nv_registers_test[i].reg);
4850
4851 new_read = readl(base + nv_registers_test[i].reg);
4852
4853 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
4854 return 0;
4855
4856 /* restore original value */
4857 orig_read ^= nv_registers_test[i].mask;
4858 writel(orig_read, base + nv_registers_test[i].reg);
4859
4860 } while (nv_registers_test[++i].reg != 0);
4861
4862 return 1;
4863 }
4864
4865 static int nv_interrupt_test(struct net_device *dev)
4866 {
4867 struct fe_priv *np = netdev_priv(dev);
4868 u8 __iomem *base = get_hwbase(dev);
4869 int ret = 1;
4870 int testcnt;
4871 u32 save_msi_flags, save_poll_interval = 0;
4872
4873 if (netif_running(dev)) {
4874 /* free current irq */
4875 nv_free_irq(dev);
4876 save_poll_interval = readl(base+NvRegPollingInterval);
4877 }
4878
4879 /* flag to test interrupt handler */
4880 np->intr_test = 0;
4881
4882 /* setup test irq */
4883 save_msi_flags = np->msi_flags;
4884 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
4885 np->msi_flags |= 0x001; /* setup 1 vector */
4886 if (nv_request_irq(dev, 1))
4887 return 0;
4888
4889 /* setup timer interrupt */
4890 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4891 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4892
4893 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4894
4895 /* wait for at least one interrupt */
4896 msleep(100);
4897
4898 spin_lock_irq(&np->lock);
4899
4900 /* flag should be set within ISR */
4901 testcnt = np->intr_test;
4902 if (!testcnt)
4903 ret = 2;
4904
4905 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4906 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4907 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4908 else
4909 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4910
4911 spin_unlock_irq(&np->lock);
4912
4913 nv_free_irq(dev);
4914
4915 np->msi_flags = save_msi_flags;
4916
4917 if (netif_running(dev)) {
4918 writel(save_poll_interval, base + NvRegPollingInterval);
4919 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4920 /* restore original irq */
4921 if (nv_request_irq(dev, 0))
4922 return 0;
4923 }
4924
4925 return ret;
4926 }
4927
4928 static int nv_loopback_test(struct net_device *dev)
4929 {
4930 struct fe_priv *np = netdev_priv(dev);
4931 u8 __iomem *base = get_hwbase(dev);
4932 struct sk_buff *tx_skb, *rx_skb;
4933 dma_addr_t test_dma_addr;
4934 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
4935 u32 flags;
4936 int len, i, pkt_len;
4937 u8 *pkt_data;
4938 u32 filter_flags = 0;
4939 u32 misc1_flags = 0;
4940 int ret = 1;
4941
4942 if (netif_running(dev)) {
4943 nv_disable_irq(dev);
4944 filter_flags = readl(base + NvRegPacketFilterFlags);
4945 misc1_flags = readl(base + NvRegMisc1);
4946 } else {
4947 nv_txrx_reset(dev);
4948 }
4949
4950 /* reinit driver view of the rx queue */
4951 set_bufsize(dev);
4952 nv_init_ring(dev);
4953
4954 /* setup hardware for loopback */
4955 writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
4956 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
4957
4958 /* reinit nic view of the rx queue */
4959 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4960 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4961 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4962 base + NvRegRingSizes);
4963 pci_push(base);
4964
4965 /* restart rx engine */
4966 nv_start_rxtx(dev);
4967
4968 /* setup packet for tx */
4969 pkt_len = ETH_DATA_LEN;
4970 tx_skb = dev_alloc_skb(pkt_len);
4971 if (!tx_skb) {
4972 printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
4973 " of %s\n", dev->name);
4974 ret = 0;
4975 goto out;
4976 }
4977 test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
4978 skb_tailroom(tx_skb),
4979 PCI_DMA_FROMDEVICE);
4980 pkt_data = skb_put(tx_skb, pkt_len);
4981 for (i = 0; i < pkt_len; i++)
4982 pkt_data[i] = (u8)(i & 0xff);
4983
4984 if (!nv_optimized(np)) {
4985 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
4986 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4987 } else {
4988 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
4989 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
4990 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4991 }
4992 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4993 pci_push(get_hwbase(dev));
4994
4995 msleep(500);
4996
4997 /* check for rx of the packet */
4998 if (!nv_optimized(np)) {
4999 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
5000 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
5001
5002 } else {
5003 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
5004 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
5005 }
5006
5007 if (flags & NV_RX_AVAIL) {
5008 ret = 0;
5009 } else if (np->desc_ver == DESC_VER_1) {
5010 if (flags & NV_RX_ERROR)
5011 ret = 0;
5012 } else {
5013 if (flags & NV_RX2_ERROR) {
5014 ret = 0;
5015 }
5016 }
5017
5018 if (ret) {
5019 if (len != pkt_len) {
5020 ret = 0;
5021 dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
5022 dev->name, len, pkt_len);
5023 } else {
5024 rx_skb = np->rx_skb[0].skb;
5025 for (i = 0; i < pkt_len; i++) {
5026 if (rx_skb->data[i] != (u8)(i & 0xff)) {
5027 ret = 0;
5028 dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
5029 dev->name, i);
5030 break;
5031 }
5032 }
5033 }
5034 } else {
5035 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
5036 }
5037
5038 pci_unmap_page(np->pci_dev, test_dma_addr,
5039 (skb_end_pointer(tx_skb) - tx_skb->data),
5040 PCI_DMA_TODEVICE);
5041 dev_kfree_skb_any(tx_skb);
5042 out:
5043 /* stop engines */
5044 nv_stop_rxtx(dev);
5045 nv_txrx_reset(dev);
5046 /* drain rx queue */
5047 nv_drain_rxtx(dev);
5048
5049 if (netif_running(dev)) {
5050 writel(misc1_flags, base + NvRegMisc1);
5051 writel(filter_flags, base + NvRegPacketFilterFlags);
5052 nv_enable_irq(dev);
5053 }
5054
5055 return ret;
5056 }
5057
5058 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
5059 {
5060 struct fe_priv *np = netdev_priv(dev);
5061 u8 __iomem *base = get_hwbase(dev);
5062 int result;
5063 memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
5064
5065 if (!nv_link_test(dev)) {
5066 test->flags |= ETH_TEST_FL_FAILED;
5067 buffer[0] = 1;
5068 }
5069
5070 if (test->flags & ETH_TEST_FL_OFFLINE) {
5071 if (netif_running(dev)) {
5072 netif_stop_queue(dev);
5073 #ifdef CONFIG_FORCEDETH_NAPI
5074 napi_disable(&np->napi);
5075 #endif
5076 netif_tx_lock_bh(dev);
5077 netif_addr_lock(dev);
5078 spin_lock_irq(&np->lock);
5079 nv_disable_hw_interrupts(dev, np->irqmask);
5080 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
5081 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5082 } else {
5083 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
5084 }
5085 /* stop engines */
5086 nv_stop_rxtx(dev);
5087 nv_txrx_reset(dev);
5088 /* drain rx queue */
5089 nv_drain_rxtx(dev);
5090 spin_unlock_irq(&np->lock);
5091 netif_addr_unlock(dev);
5092 netif_tx_unlock_bh(dev);
5093 }
5094
5095 if (!nv_register_test(dev)) {
5096 test->flags |= ETH_TEST_FL_FAILED;
5097 buffer[1] = 1;
5098 }
5099
5100 result = nv_interrupt_test(dev);
5101 if (result != 1) {
5102 test->flags |= ETH_TEST_FL_FAILED;
5103 buffer[2] = 1;
5104 }
5105 if (result == 0) {
5106 /* bail out */
5107 return;
5108 }
5109
5110 if (!nv_loopback_test(dev)) {
5111 test->flags |= ETH_TEST_FL_FAILED;
5112 buffer[3] = 1;
5113 }
5114
5115 if (netif_running(dev)) {
5116 /* reinit driver view of the rx queue */
5117 set_bufsize(dev);
5118 if (nv_init_ring(dev)) {
5119 if (!np->in_shutdown)
5120 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5121 }
5122 /* reinit nic view of the rx queue */
5123 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5124 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5125 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5126 base + NvRegRingSizes);
5127 pci_push(base);
5128 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5129 pci_push(base);
5130 /* restart rx engine */
5131 nv_start_rxtx(dev);
5132 netif_start_queue(dev);
5133 #ifdef CONFIG_FORCEDETH_NAPI
5134 napi_enable(&np->napi);
5135 #endif
5136 nv_enable_hw_interrupts(dev, np->irqmask);
5137 }
5138 }
5139 }
5140
5141 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
5142 {
5143 switch (stringset) {
5144 case ETH_SS_STATS:
5145 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
5146 break;
5147 case ETH_SS_TEST:
5148 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
5149 break;
5150 }
5151 }
5152
5153 static const struct ethtool_ops ops = {
5154 .get_drvinfo = nv_get_drvinfo,
5155 .get_link = ethtool_op_get_link,
5156 .get_wol = nv_get_wol,
5157 .set_wol = nv_set_wol,
5158 .get_settings = nv_get_settings,
5159 .set_settings = nv_set_settings,
5160 .get_regs_len = nv_get_regs_len,
5161 .get_regs = nv_get_regs,
5162 .nway_reset = nv_nway_reset,
5163 .set_tso = nv_set_tso,
5164 .get_ringparam = nv_get_ringparam,
5165 .set_ringparam = nv_set_ringparam,
5166 .get_pauseparam = nv_get_pauseparam,
5167 .set_pauseparam = nv_set_pauseparam,
5168 .get_rx_csum = nv_get_rx_csum,
5169 .set_rx_csum = nv_set_rx_csum,
5170 .set_tx_csum = nv_set_tx_csum,
5171 .set_sg = nv_set_sg,
5172 .get_strings = nv_get_strings,
5173 .get_ethtool_stats = nv_get_ethtool_stats,
5174 .get_sset_count = nv_get_sset_count,
5175 .self_test = nv_self_test,
5176 };
5177
5178 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
5179 {
5180 struct fe_priv *np = get_nvpriv(dev);
5181
5182 spin_lock_irq(&np->lock);
5183
5184 /* save vlan group */
5185 np->vlangrp = grp;
5186
5187 if (grp) {
5188 /* enable vlan on MAC */
5189 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
5190 } else {
5191 /* disable vlan on MAC */
5192 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
5193 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
5194 }
5195
5196 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5197
5198 spin_unlock_irq(&np->lock);
5199 }
5200
5201 /* The mgmt unit and driver use a semaphore to access the phy during init */
5202 static int nv_mgmt_acquire_sema(struct net_device *dev)
5203 {
5204 struct fe_priv *np = netdev_priv(dev);
5205 u8 __iomem *base = get_hwbase(dev);
5206 int i;
5207 u32 tx_ctrl, mgmt_sema;
5208
5209 for (i = 0; i < 10; i++) {
5210 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
5211 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
5212 break;
5213 msleep(500);
5214 }
5215
5216 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
5217 return 0;
5218
5219 for (i = 0; i < 2; i++) {
5220 tx_ctrl = readl(base + NvRegTransmitterControl);
5221 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
5222 writel(tx_ctrl, base + NvRegTransmitterControl);
5223
5224 /* verify that semaphore was acquired */
5225 tx_ctrl = readl(base + NvRegTransmitterControl);
5226 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
5227 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
5228 np->mgmt_sema = 1;
5229 return 1;
5230 }
5231 else
5232 udelay(50);
5233 }
5234
5235 return 0;
5236 }
5237
5238 static void nv_mgmt_release_sema(struct net_device *dev)
5239 {
5240 struct fe_priv *np = netdev_priv(dev);
5241 u8 __iomem *base = get_hwbase(dev);
5242 u32 tx_ctrl;
5243
5244 if (np->driver_data & DEV_HAS_MGMT_UNIT) {
5245 if (np->mgmt_sema) {
5246 tx_ctrl = readl(base + NvRegTransmitterControl);
5247 tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
5248 writel(tx_ctrl, base + NvRegTransmitterControl);
5249 }
5250 }
5251 }
5252
5253
5254 static int nv_mgmt_get_version(struct net_device *dev)
5255 {
5256 struct fe_priv *np = netdev_priv(dev);
5257 u8 __iomem *base = get_hwbase(dev);
5258 u32 data_ready = readl(base + NvRegTransmitterControl);
5259 u32 data_ready2 = 0;
5260 unsigned long start;
5261 int ready = 0;
5262
5263 writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
5264 writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
5265 start = jiffies;
5266 while (time_before(jiffies, start + 5*HZ)) {
5267 data_ready2 = readl(base + NvRegTransmitterControl);
5268 if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
5269 ready = 1;
5270 break;
5271 }
5272 schedule_timeout_uninterruptible(1);
5273 }
5274
5275 if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
5276 return 0;
5277
5278 np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
5279
5280 return 1;
5281 }
5282
5283 static int nv_open(struct net_device *dev)
5284 {
5285 struct fe_priv *np = netdev_priv(dev);
5286 u8 __iomem *base = get_hwbase(dev);
5287 int ret = 1;
5288 int oom, i;
5289 u32 low;
5290
5291 dprintk(KERN_DEBUG "nv_open: begin\n");
5292
5293 /* power up phy */
5294 mii_rw(dev, np->phyaddr, MII_BMCR,
5295 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
5296
5297 /* erase previous misconfiguration */
5298 if (np->driver_data & DEV_HAS_POWER_CNTRL)
5299 nv_mac_reset(dev);
5300 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5301 writel(0, base + NvRegMulticastAddrB);
5302 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5303 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5304 writel(0, base + NvRegPacketFilterFlags);
5305
5306 writel(0, base + NvRegTransmitterControl);
5307 writel(0, base + NvRegReceiverControl);
5308
5309 writel(0, base + NvRegAdapterControl);
5310
5311 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
5312 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
5313
5314 /* initialize descriptor rings */
5315 set_bufsize(dev);
5316 oom = nv_init_ring(dev);
5317
5318 writel(0, base + NvRegLinkSpeed);
5319 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5320 nv_txrx_reset(dev);
5321 writel(0, base + NvRegUnknownSetupReg6);
5322
5323 np->in_shutdown = 0;
5324
5325 /* give hw rings */
5326 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5327 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5328 base + NvRegRingSizes);
5329
5330 writel(np->linkspeed, base + NvRegLinkSpeed);
5331 if (np->desc_ver == DESC_VER_1)
5332 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
5333 else
5334 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
5335 writel(np->txrxctl_bits, base + NvRegTxRxControl);
5336 writel(np->vlanctl_bits, base + NvRegVlanControl);
5337 pci_push(base);
5338 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
5339 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
5340 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
5341 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
5342
5343 writel(0, base + NvRegMIIMask);
5344 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5345 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5346
5347 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
5348 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
5349 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
5350 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5351
5352 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
5353
5354 get_random_bytes(&low, sizeof(low));
5355 low &= NVREG_SLOTTIME_MASK;
5356 if (np->desc_ver == DESC_VER_1) {
5357 writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
5358 } else {
5359 if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
5360 /* setup legacy backoff */
5361 writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
5362 } else {
5363 writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
5364 nv_gear_backoff_reseed(dev);
5365 }
5366 }
5367 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
5368 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
5369 if (poll_interval == -1) {
5370 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
5371 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
5372 else
5373 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
5374 }
5375 else
5376 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
5377 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5378 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
5379 base + NvRegAdapterControl);
5380 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
5381 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
5382 if (np->wolenabled)
5383 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
5384
5385 i = readl(base + NvRegPowerState);
5386 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
5387 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
5388
5389 pci_push(base);
5390 udelay(10);
5391 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
5392
5393 nv_disable_hw_interrupts(dev, np->irqmask);
5394 pci_push(base);
5395 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5396 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5397 pci_push(base);
5398
5399 if (nv_request_irq(dev, 0)) {
5400 goto out_drain;
5401 }
5402
5403 /* ask for interrupts */
5404 nv_enable_hw_interrupts(dev, np->irqmask);
5405
5406 spin_lock_irq(&np->lock);
5407 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5408 writel(0, base + NvRegMulticastAddrB);
5409 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5410 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5411 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5412 /* One manual link speed update: Interrupts are enabled, future link
5413 * speed changes cause interrupts and are handled by nv_link_irq().
5414 */
5415 {
5416 u32 miistat;
5417 miistat = readl(base + NvRegMIIStatus);
5418 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5419 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
5420 }
5421 /* set linkspeed to invalid value, thus force nv_update_linkspeed
5422 * to init hw */
5423 np->linkspeed = 0;
5424 ret = nv_update_linkspeed(dev);
5425 nv_start_rxtx(dev);
5426 netif_start_queue(dev);
5427 #ifdef CONFIG_FORCEDETH_NAPI
5428 napi_enable(&np->napi);
5429 #endif
5430
5431 if (ret) {
5432 netif_carrier_on(dev);
5433 } else {
5434 printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
5435 netif_carrier_off(dev);
5436 }
5437 if (oom)
5438 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5439
5440 /* start statistics timer */
5441 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5442 mod_timer(&np->stats_poll,
5443 round_jiffies(jiffies + STATS_INTERVAL));
5444
5445 spin_unlock_irq(&np->lock);
5446
5447 return 0;
5448 out_drain:
5449 nv_drain_rxtx(dev);
5450 return ret;
5451 }
5452
5453 static int nv_close(struct net_device *dev)
5454 {
5455 struct fe_priv *np = netdev_priv(dev);
5456 u8 __iomem *base;
5457
5458 spin_lock_irq(&np->lock);
5459 np->in_shutdown = 1;
5460 spin_unlock_irq(&np->lock);
5461 #ifdef CONFIG_FORCEDETH_NAPI
5462 napi_disable(&np->napi);
5463 #endif
5464 synchronize_irq(np->pci_dev->irq);
5465
5466 del_timer_sync(&np->oom_kick);
5467 del_timer_sync(&np->nic_poll);
5468 del_timer_sync(&np->stats_poll);
5469
5470 netif_stop_queue(dev);
5471 spin_lock_irq(&np->lock);
5472 nv_stop_rxtx(dev);
5473 nv_txrx_reset(dev);
5474
5475 /* disable interrupts on the nic or we will lock up */
5476 base = get_hwbase(dev);
5477 nv_disable_hw_interrupts(dev, np->irqmask);
5478 pci_push(base);
5479 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
5480
5481 spin_unlock_irq(&np->lock);
5482
5483 nv_free_irq(dev);
5484
5485 nv_drain_rxtx(dev);
5486
5487 if (np->wolenabled) {
5488 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5489 nv_start_rx(dev);
5490 } else {
5491 /* power down phy */
5492 mii_rw(dev, np->phyaddr, MII_BMCR,
5493 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
5494 }
5495
5496 /* FIXME: power down nic */
5497
5498 return 0;
5499 }
5500
5501 static const struct net_device_ops nv_netdev_ops = {
5502 .ndo_open = nv_open,
5503 .ndo_stop = nv_close,
5504 .ndo_get_stats = nv_get_stats,
5505 .ndo_start_xmit = nv_start_xmit,
5506 .ndo_tx_timeout = nv_tx_timeout,
5507 .ndo_change_mtu = nv_change_mtu,
5508 .ndo_validate_addr = eth_validate_addr,
5509 .ndo_set_mac_address = nv_set_mac_address,
5510 .ndo_set_multicast_list = nv_set_multicast,
5511 .ndo_vlan_rx_register = nv_vlan_rx_register,
5512 #ifdef CONFIG_NET_POLL_CONTROLLER
5513 .ndo_poll_controller = nv_poll_controller,
5514 #endif
5515 };
5516
5517 static const struct net_device_ops nv_netdev_ops_optimized = {
5518 .ndo_open = nv_open,
5519 .ndo_stop = nv_close,
5520 .ndo_get_stats = nv_get_stats,
5521 .ndo_start_xmit = nv_start_xmit_optimized,
5522 .ndo_tx_timeout = nv_tx_timeout,
5523 .ndo_change_mtu = nv_change_mtu,
5524 .ndo_validate_addr = eth_validate_addr,
5525 .ndo_set_mac_address = nv_set_mac_address,
5526 .ndo_set_multicast_list = nv_set_multicast,
5527 .ndo_vlan_rx_register = nv_vlan_rx_register,
5528 #ifdef CONFIG_NET_POLL_CONTROLLER
5529 .ndo_poll_controller = nv_poll_controller,
5530 #endif
5531 };
5532
5533 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
5534 {
5535 struct net_device *dev;
5536 struct fe_priv *np;
5537 unsigned long addr;
5538 u8 __iomem *base;
5539 int err, i;
5540 u32 powerstate, txreg;
5541 u32 phystate_orig = 0, phystate;
5542 int phyinitialized = 0;
5543 static int printed_version;
5544
5545 if (!printed_version++)
5546 printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
5547 " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
5548
5549 dev = alloc_etherdev(sizeof(struct fe_priv));
5550 err = -ENOMEM;
5551 if (!dev)
5552 goto out;
5553
5554 np = netdev_priv(dev);
5555 np->dev = dev;
5556 np->pci_dev = pci_dev;
5557 spin_lock_init(&np->lock);
5558 SET_NETDEV_DEV(dev, &pci_dev->dev);
5559
5560 init_timer(&np->oom_kick);
5561 np->oom_kick.data = (unsigned long) dev;
5562 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
5563 init_timer(&np->nic_poll);
5564 np->nic_poll.data = (unsigned long) dev;
5565 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
5566 init_timer(&np->stats_poll);
5567 np->stats_poll.data = (unsigned long) dev;
5568 np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
5569
5570 err = pci_enable_device(pci_dev);
5571 if (err)
5572 goto out_free;
5573
5574 pci_set_master(pci_dev);
5575
5576 err = pci_request_regions(pci_dev, DRV_NAME);
5577 if (err < 0)
5578 goto out_disable;
5579
5580 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5581 np->register_size = NV_PCI_REGSZ_VER3;
5582 else if (id->driver_data & DEV_HAS_STATISTICS_V1)
5583 np->register_size = NV_PCI_REGSZ_VER2;
5584 else
5585 np->register_size = NV_PCI_REGSZ_VER1;
5586
5587 err = -EINVAL;
5588 addr = 0;
5589 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5590 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
5591 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
5592 pci_resource_len(pci_dev, i),
5593 pci_resource_flags(pci_dev, i));
5594 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
5595 pci_resource_len(pci_dev, i) >= np->register_size) {
5596 addr = pci_resource_start(pci_dev, i);
5597 break;
5598 }
5599 }
5600 if (i == DEVICE_COUNT_RESOURCE) {
5601 dev_printk(KERN_INFO, &pci_dev->dev,
5602 "Couldn't find register window\n");
5603 goto out_relreg;
5604 }
5605
5606 /* copy of driver data */
5607 np->driver_data = id->driver_data;
5608 /* copy of device id */
5609 np->device_id = id->device;
5610
5611 /* handle different descriptor versions */
5612 if (id->driver_data & DEV_HAS_HIGH_DMA) {
5613 /* packet format 3: supports 40-bit addressing */
5614 np->desc_ver = DESC_VER_3;
5615 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
5616 if (dma_64bit) {
5617 if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
5618 dev_printk(KERN_INFO, &pci_dev->dev,
5619 "64-bit DMA failed, using 32-bit addressing\n");
5620 else
5621 dev->features |= NETIF_F_HIGHDMA;
5622 if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
5623 dev_printk(KERN_INFO, &pci_dev->dev,
5624 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
5625 }
5626 }
5627 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
5628 /* packet format 2: supports jumbo frames */
5629 np->desc_ver = DESC_VER_2;
5630 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
5631 } else {
5632 /* original packet format */
5633 np->desc_ver = DESC_VER_1;
5634 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
5635 }
5636
5637 np->pkt_limit = NV_PKTLIMIT_1;
5638 if (id->driver_data & DEV_HAS_LARGEDESC)
5639 np->pkt_limit = NV_PKTLIMIT_2;
5640
5641 if (id->driver_data & DEV_HAS_CHECKSUM) {
5642 np->rx_csum = 1;
5643 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
5644 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
5645 dev->features |= NETIF_F_TSO;
5646 }
5647
5648 np->vlanctl_bits = 0;
5649 if (id->driver_data & DEV_HAS_VLAN) {
5650 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
5651 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
5652 }
5653
5654 np->msi_flags = 0;
5655 if ((id->driver_data & DEV_HAS_MSI) && msi) {
5656 np->msi_flags |= NV_MSI_CAPABLE;
5657 }
5658 if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
5659 np->msi_flags |= NV_MSI_X_CAPABLE;
5660 }
5661
5662 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
5663 if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
5664 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
5665 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
5666 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
5667 }
5668
5669
5670 err = -ENOMEM;
5671 np->base = ioremap(addr, np->register_size);
5672 if (!np->base)
5673 goto out_relreg;
5674 dev->base_addr = (unsigned long)np->base;
5675
5676 dev->irq = pci_dev->irq;
5677
5678 np->rx_ring_size = RX_RING_DEFAULT;
5679 np->tx_ring_size = TX_RING_DEFAULT;
5680
5681 if (!nv_optimized(np)) {
5682 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
5683 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
5684 &np->ring_addr);
5685 if (!np->rx_ring.orig)
5686 goto out_unmap;
5687 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
5688 } else {
5689 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
5690 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
5691 &np->ring_addr);
5692 if (!np->rx_ring.ex)
5693 goto out_unmap;
5694 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
5695 }
5696 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5697 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5698 if (!np->rx_skb || !np->tx_skb)
5699 goto out_freering;
5700
5701 if (!nv_optimized(np))
5702 dev->netdev_ops = &nv_netdev_ops;
5703 else
5704 dev->netdev_ops = &nv_netdev_ops_optimized;
5705
5706 #ifdef CONFIG_FORCEDETH_NAPI
5707 netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
5708 #endif
5709 SET_ETHTOOL_OPS(dev, &ops);
5710 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
5711
5712 pci_set_drvdata(pci_dev, dev);
5713
5714 /* read the mac address */
5715 base = get_hwbase(dev);
5716 np->orig_mac[0] = readl(base + NvRegMacAddrA);
5717 np->orig_mac[1] = readl(base + NvRegMacAddrB);
5718
5719 /* check the workaround bit for correct mac address order */
5720 txreg = readl(base + NvRegTransmitPoll);
5721 if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
5722 /* mac address is already in correct order */
5723 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5724 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5725 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5726 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5727 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5728 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5729 } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
5730 /* mac address is already in correct order */
5731 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5732 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5733 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5734 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5735 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5736 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5737 /*
5738 * Set orig mac address back to the reversed version.
5739 * This flag will be cleared during low power transition.
5740 * Therefore, we should always put back the reversed address.
5741 */
5742 np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
5743 (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
5744 np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
5745 } else {
5746 /* need to reverse mac address to correct order */
5747 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
5748 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
5749 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
5750 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
5751 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
5752 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
5753 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5754 printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
5755 }
5756 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5757
5758 if (!is_valid_ether_addr(dev->perm_addr)) {
5759 /*
5760 * Bad mac address. At least one bios sets the mac address
5761 * to 01:23:45:67:89:ab
5762 */
5763 dev_printk(KERN_ERR, &pci_dev->dev,
5764 "Invalid Mac address detected: %pM\n",
5765 dev->dev_addr);
5766 dev_printk(KERN_ERR, &pci_dev->dev,
5767 "Please complain to your hardware vendor. Switching to a random MAC.\n");
5768 dev->dev_addr[0] = 0x00;
5769 dev->dev_addr[1] = 0x00;
5770 dev->dev_addr[2] = 0x6c;
5771 get_random_bytes(&dev->dev_addr[3], 3);
5772 }
5773
5774 dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
5775 pci_name(pci_dev), dev->dev_addr);
5776
5777 /* set mac address */
5778 nv_copy_mac_to_hw(dev);
5779
5780 /* Workaround current PCI init glitch: wakeup bits aren't
5781 * being set from PCI PM capability.
5782 */
5783 device_init_wakeup(&pci_dev->dev, 1);
5784
5785 /* disable WOL */
5786 writel(0, base + NvRegWakeUpFlags);
5787 np->wolenabled = 0;
5788
5789 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5790
5791 /* take phy and nic out of low power mode */
5792 powerstate = readl(base + NvRegPowerState2);
5793 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5794 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
5795 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
5796 pci_dev->revision >= 0xA3)
5797 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5798 writel(powerstate, base + NvRegPowerState2);
5799 }
5800
5801 if (np->desc_ver == DESC_VER_1) {
5802 np->tx_flags = NV_TX_VALID;
5803 } else {
5804 np->tx_flags = NV_TX2_VALID;
5805 }
5806 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
5807 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5808 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5809 np->msi_flags |= 0x0003;
5810 } else {
5811 np->irqmask = NVREG_IRQMASK_CPU;
5812 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5813 np->msi_flags |= 0x0001;
5814 }
5815
5816 if (id->driver_data & DEV_NEED_TIMERIRQ)
5817 np->irqmask |= NVREG_IRQ_TIMER;
5818 if (id->driver_data & DEV_NEED_LINKTIMER) {
5819 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
5820 np->need_linktimer = 1;
5821 np->link_timeout = jiffies + LINK_TIMEOUT;
5822 } else {
5823 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
5824 np->need_linktimer = 0;
5825 }
5826
5827 /* Limit the number of tx's outstanding for hw bug */
5828 if (id->driver_data & DEV_NEED_TX_LIMIT) {
5829 np->tx_limit = 1;
5830 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
5831 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
5832 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
5833 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
5834 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
5835 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
5836 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
5837 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
5838 pci_dev->revision >= 0xA2)
5839 np->tx_limit = 0;
5840 }
5841
5842 /* clear phy state and temporarily halt phy interrupts */
5843 writel(0, base + NvRegMIIMask);
5844 phystate = readl(base + NvRegAdapterControl);
5845 if (phystate & NVREG_ADAPTCTL_RUNNING) {
5846 phystate_orig = 1;
5847 phystate &= ~NVREG_ADAPTCTL_RUNNING;
5848 writel(phystate, base + NvRegAdapterControl);
5849 }
5850 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5851
5852 if (id->driver_data & DEV_HAS_MGMT_UNIT) {
5853 /* management unit running on the mac? */
5854 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
5855 (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
5856 nv_mgmt_acquire_sema(dev) &&
5857 nv_mgmt_get_version(dev)) {
5858 np->mac_in_use = 1;
5859 if (np->mgmt_version > 0) {
5860 np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
5861 }
5862 dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n",
5863 pci_name(pci_dev), np->mac_in_use);
5864 /* management unit setup the phy already? */
5865 if (np->mac_in_use &&
5866 ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
5867 NVREG_XMITCTL_SYNC_PHY_INIT)) {
5868 /* phy is inited by mgmt unit */
5869 phyinitialized = 1;
5870 dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n",
5871 pci_name(pci_dev));
5872 } else {
5873 /* we need to init the phy */
5874 }
5875 }
5876 }
5877
5878 /* find a suitable phy */
5879 for (i = 1; i <= 32; i++) {
5880 int id1, id2;
5881 int phyaddr = i & 0x1F;
5882
5883 spin_lock_irq(&np->lock);
5884 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
5885 spin_unlock_irq(&np->lock);
5886 if (id1 < 0 || id1 == 0xffff)
5887 continue;
5888 spin_lock_irq(&np->lock);
5889 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
5890 spin_unlock_irq(&np->lock);
5891 if (id2 < 0 || id2 == 0xffff)
5892 continue;
5893
5894 np->phy_model = id2 & PHYID2_MODEL_MASK;
5895 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
5896 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
5897 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
5898 pci_name(pci_dev), id1, id2, phyaddr);
5899 np->phyaddr = phyaddr;
5900 np->phy_oui = id1 | id2;
5901
5902 /* Realtek hardcoded phy id1 to all zero's on certain phys */
5903 if (np->phy_oui == PHY_OUI_REALTEK2)
5904 np->phy_oui = PHY_OUI_REALTEK;
5905 /* Setup phy revision for Realtek */
5906 if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
5907 np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
5908
5909 break;
5910 }
5911 if (i == 33) {
5912 dev_printk(KERN_INFO, &pci_dev->dev,
5913 "open: Could not find a valid PHY.\n");
5914 goto out_error;
5915 }
5916
5917 if (!phyinitialized) {
5918 /* reset it */
5919 phy_init(dev);
5920 } else {
5921 /* see if it is a gigabit phy */
5922 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
5923 if (mii_status & PHY_GIGABIT) {
5924 np->gigabit = PHY_GIGABIT;
5925 }
5926 }
5927
5928 /* set default link speed settings */
5929 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
5930 np->duplex = 0;
5931 np->autoneg = 1;
5932
5933 err = register_netdev(dev);
5934 if (err) {
5935 dev_printk(KERN_INFO, &pci_dev->dev,
5936 "unable to register netdev: %d\n", err);
5937 goto out_error;
5938 }
5939
5940 dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
5941 "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
5942 dev->name,
5943 np->phy_oui,
5944 np->phyaddr,
5945 dev->dev_addr[0],
5946 dev->dev_addr[1],
5947 dev->dev_addr[2],
5948 dev->dev_addr[3],
5949 dev->dev_addr[4],
5950 dev->dev_addr[5]);
5951
5952 dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
5953 dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
5954 dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
5955 "csum " : "",
5956 dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
5957 "vlan " : "",
5958 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
5959 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
5960 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
5961 np->gigabit == PHY_GIGABIT ? "gbit " : "",
5962 np->need_linktimer ? "lnktim " : "",
5963 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
5964 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
5965 np->desc_ver);
5966
5967 return 0;
5968
5969 out_error:
5970 if (phystate_orig)
5971 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
5972 pci_set_drvdata(pci_dev, NULL);
5973 out_freering:
5974 free_rings(dev);
5975 out_unmap:
5976 iounmap(get_hwbase(dev));
5977 out_relreg:
5978 pci_release_regions(pci_dev);
5979 out_disable:
5980 pci_disable_device(pci_dev);
5981 out_free:
5982 free_netdev(dev);
5983 out:
5984 return err;
5985 }
5986
5987 static void nv_restore_phy(struct net_device *dev)
5988 {
5989 struct fe_priv *np = netdev_priv(dev);
5990 u16 phy_reserved, mii_control;
5991
5992 if (np->phy_oui == PHY_OUI_REALTEK &&
5993 np->phy_model == PHY_MODEL_REALTEK_8201 &&
5994 phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
5995 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
5996 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
5997 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
5998 phy_reserved |= PHY_REALTEK_INIT8;
5999 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
6000 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
6001
6002 /* restart auto negotiation */
6003 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
6004 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
6005 mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
6006 }
6007 }
6008
6009 static void nv_restore_mac_addr(struct pci_dev *pci_dev)
6010 {
6011 struct net_device *dev = pci_get_drvdata(pci_dev);
6012 struct fe_priv *np = netdev_priv(dev);
6013 u8 __iomem *base = get_hwbase(dev);
6014
6015 /* special op: write back the misordered MAC address - otherwise
6016 * the next nv_probe would see a wrong address.
6017 */
6018 writel(np->orig_mac[0], base + NvRegMacAddrA);
6019 writel(np->orig_mac[1], base + NvRegMacAddrB);
6020 writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
6021 base + NvRegTransmitPoll);
6022 }
6023
6024 static void __devexit nv_remove(struct pci_dev *pci_dev)
6025 {
6026 struct net_device *dev = pci_get_drvdata(pci_dev);
6027
6028 unregister_netdev(dev);
6029
6030 nv_restore_mac_addr(pci_dev);
6031
6032 /* restore any phy related changes */
6033 nv_restore_phy(dev);
6034
6035 nv_mgmt_release_sema(dev);
6036
6037 /* free all structures */
6038 free_rings(dev);
6039 iounmap(get_hwbase(dev));
6040 pci_release_regions(pci_dev);
6041 pci_disable_device(pci_dev);
6042 free_netdev(dev);
6043 pci_set_drvdata(pci_dev, NULL);
6044 }
6045
6046 #ifdef CONFIG_PM
6047 static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
6048 {
6049 struct net_device *dev = pci_get_drvdata(pdev);
6050 struct fe_priv *np = netdev_priv(dev);
6051 u8 __iomem *base = get_hwbase(dev);
6052 int i;
6053
6054 if (netif_running(dev)) {
6055 // Gross.
6056 nv_close(dev);
6057 }
6058 netif_device_detach(dev);
6059
6060 /* save non-pci configuration space */
6061 for (i = 0;i <= np->register_size/sizeof(u32); i++)
6062 np->saved_config_space[i] = readl(base + i*sizeof(u32));
6063
6064 pci_save_state(pdev);
6065 pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
6066 pci_disable_device(pdev);
6067 pci_set_power_state(pdev, pci_choose_state(pdev, state));
6068 return 0;
6069 }
6070
6071 static int nv_resume(struct pci_dev *pdev)
6072 {
6073 struct net_device *dev = pci_get_drvdata(pdev);
6074 struct fe_priv *np = netdev_priv(dev);
6075 u8 __iomem *base = get_hwbase(dev);
6076 int i, rc = 0;
6077
6078 pci_set_power_state(pdev, PCI_D0);
6079 pci_restore_state(pdev);
6080 /* ack any pending wake events, disable PME */
6081 pci_enable_wake(pdev, PCI_D0, 0);
6082
6083 /* restore non-pci configuration space */
6084 for (i = 0;i <= np->register_size/sizeof(u32); i++)
6085 writel(np->saved_config_space[i], base+i*sizeof(u32));
6086
6087 pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
6088
6089 netif_device_attach(dev);
6090 if (netif_running(dev)) {
6091 rc = nv_open(dev);
6092 nv_set_multicast(dev);
6093 }
6094 return rc;
6095 }
6096
6097 static void nv_shutdown(struct pci_dev *pdev)
6098 {
6099 struct net_device *dev = pci_get_drvdata(pdev);
6100 struct fe_priv *np = netdev_priv(dev);
6101
6102 if (netif_running(dev))
6103 nv_close(dev);
6104
6105 nv_restore_mac_addr(pdev);
6106
6107 pci_disable_device(pdev);
6108 if (system_state == SYSTEM_POWER_OFF) {
6109 if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
6110 pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
6111 pci_set_power_state(pdev, PCI_D3hot);
6112 }
6113 }
6114 #else
6115 #define nv_suspend NULL
6116 #define nv_shutdown NULL
6117 #define nv_resume NULL
6118 #endif /* CONFIG_PM */
6119
6120 static struct pci_device_id pci_tbl[] = {
6121 { /* nForce Ethernet Controller */
6122 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
6123 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6124 },
6125 { /* nForce2 Ethernet Controller */
6126 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
6127 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6128 },
6129 { /* nForce3 Ethernet Controller */
6130 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
6131 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6132 },
6133 { /* nForce3 Ethernet Controller */
6134 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
6135 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6136 },
6137 { /* nForce3 Ethernet Controller */
6138 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
6139 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6140 },
6141 { /* nForce3 Ethernet Controller */
6142 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
6143 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6144 },
6145 { /* nForce3 Ethernet Controller */
6146 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
6147 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6148 },
6149 { /* CK804 Ethernet Controller */
6150 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
6151 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6152 },
6153 { /* CK804 Ethernet Controller */
6154 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
6155 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6156 },
6157 { /* MCP04 Ethernet Controller */
6158 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
6159 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6160 },
6161 { /* MCP04 Ethernet Controller */
6162 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
6163 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6164 },
6165 { /* MCP51 Ethernet Controller */
6166 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
6167 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
6168 },
6169 { /* MCP51 Ethernet Controller */
6170 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
6171 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
6172 },
6173 { /* MCP55 Ethernet Controller */
6174 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
6175 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
6176 },
6177 { /* MCP55 Ethernet Controller */
6178 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
6179 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
6180 },
6181 { /* MCP61 Ethernet Controller */
6182 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
6183 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
6184 },
6185 { /* MCP61 Ethernet Controller */
6186 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
6187 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
6188 },
6189 { /* MCP61 Ethernet Controller */
6190 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
6191 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
6192 },
6193 { /* MCP61 Ethernet Controller */
6194 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
6195 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
6196 },
6197 { /* MCP65 Ethernet Controller */
6198 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
6199 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6200 },
6201 { /* MCP65 Ethernet Controller */
6202 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
6203 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6204 },
6205 { /* MCP65 Ethernet Controller */
6206 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
6207 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6208 },
6209 { /* MCP65 Ethernet Controller */
6210 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
6211 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6212 },
6213 { /* MCP67 Ethernet Controller */
6214 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
6215 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
6216 },
6217 { /* MCP67 Ethernet Controller */
6218 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
6219 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
6220 },
6221 { /* MCP67 Ethernet Controller */
6222 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
6223 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
6224 },
6225 { /* MCP67 Ethernet Controller */
6226 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
6227 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
6228 },
6229 { /* MCP73 Ethernet Controller */
6230 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
6231 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
6232 },
6233 { /* MCP73 Ethernet Controller */
6234 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
6235 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
6236 },
6237 { /* MCP73 Ethernet Controller */
6238 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
6239 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
6240 },
6241 { /* MCP73 Ethernet Controller */
6242 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
6243 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
6244 },
6245 { /* MCP77 Ethernet Controller */
6246 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
6247 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6248 },
6249 { /* MCP77 Ethernet Controller */
6250 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
6251 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6252 },
6253 { /* MCP77 Ethernet Controller */
6254 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
6255 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6256 },
6257 { /* MCP77 Ethernet Controller */
6258 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
6259 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6260 },
6261 { /* MCP79 Ethernet Controller */
6262 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
6263 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6264 },
6265 { /* MCP79 Ethernet Controller */
6266 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
6267 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6268 },
6269 { /* MCP79 Ethernet Controller */
6270 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
6271 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6272 },
6273 { /* MCP79 Ethernet Controller */
6274 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
6275 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
6276 },
6277 {0,},
6278 };
6279
6280 static struct pci_driver driver = {
6281 .name = DRV_NAME,
6282 .id_table = pci_tbl,
6283 .probe = nv_probe,
6284 .remove = __devexit_p(nv_remove),
6285 .suspend = nv_suspend,
6286 .resume = nv_resume,
6287 .shutdown = nv_shutdown,
6288 };
6289
6290 static int __init init_nic(void)
6291 {
6292 return pci_register_driver(&driver);
6293 }
6294
6295 static void __exit exit_nic(void)
6296 {
6297 pci_unregister_driver(&driver);
6298 }
6299
6300 module_param(max_interrupt_work, int, 0);
6301 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
6302 module_param(optimization_mode, int, 0);
6303 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
6304 module_param(poll_interval, int, 0);
6305 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
6306 module_param(msi, int, 0);
6307 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
6308 module_param(msix, int, 0);
6309 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
6310 module_param(dma_64bit, int, 0);
6311 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
6312 module_param(phy_cross, int, 0);
6313 MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
6314
6315 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
6316 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
6317 MODULE_LICENSE("GPL");
6318
6319 MODULE_DEVICE_TABLE(pci, pci_tbl);
6320
6321 module_init(init_nic);
6322 module_exit(exit_nic);
This page took 0.269148 seconds and 5 git commands to generate.