igb: add support for SGMII-based MDIO PHYs
[deliverable/linux.git] / drivers / net / forcedeth.c
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey.
7 *
8 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9 * trademarks of NVIDIA Corporation in the United States and other
10 * countries.
11 *
12 * Copyright (C) 2003,4,5 Manfred Spraul
13 * Copyright (C) 2004 Andrew de Quincey (wol support)
14 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15 * IRQ rate fixes, bigendian fixes, cleanups, verification)
16 * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * (at your option) any later version.
22 *
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
27 *
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, write to the Free Software
30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 *
32 * Known bugs:
33 * We suspect that on some hardware no TX done interrupts are generated.
34 * This means recovery from netif_stop_queue only happens if the hw timer
35 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
36 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
37 * If your hardware reliably generates tx done interrupts, then you can remove
38 * DEV_NEED_TIMERIRQ from the driver_data flags.
39 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
40 * superfluous timer interrupts from the nic.
41 */
42 #define FORCEDETH_VERSION "0.64"
43 #define DRV_NAME "forcedeth"
44
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/pci.h>
48 #include <linux/interrupt.h>
49 #include <linux/netdevice.h>
50 #include <linux/etherdevice.h>
51 #include <linux/delay.h>
52 #include <linux/sched.h>
53 #include <linux/spinlock.h>
54 #include <linux/ethtool.h>
55 #include <linux/timer.h>
56 #include <linux/skbuff.h>
57 #include <linux/mii.h>
58 #include <linux/random.h>
59 #include <linux/init.h>
60 #include <linux/if_vlan.h>
61 #include <linux/dma-mapping.h>
62 #include <linux/slab.h>
63
64 #include <asm/irq.h>
65 #include <asm/io.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68
69 #if 0
70 #define dprintk printk
71 #else
72 #define dprintk(x...) do { } while (0)
73 #endif
74
75 #define TX_WORK_PER_LOOP 64
76 #define RX_WORK_PER_LOOP 64
77
78 /*
79 * Hardware access:
80 */
81
82 #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */
83 #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */
84 #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */
85 #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */
86 #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */
87 #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */
88 #define DEV_HAS_MSI 0x0000040 /* device supports MSI */
89 #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */
90 #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */
91 #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */
92 #define DEV_HAS_STATISTICS_V2 0x0000400 /* device supports hw statistics version 2 */
93 #define DEV_HAS_STATISTICS_V3 0x0000800 /* device supports hw statistics version 3 */
94 #define DEV_HAS_STATISTICS_V12 0x0000600 /* device supports hw statistics version 1 and 2 */
95 #define DEV_HAS_STATISTICS_V123 0x0000e00 /* device supports hw statistics version 1, 2, and 3 */
96 #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */
97 #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */
98 #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */
99 #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */
100 #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */
101 #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */
102 #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */
103 #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */
104 #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */
105 #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */
106 #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */
107 #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */
108 #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */
109
110 enum {
111 NvRegIrqStatus = 0x000,
112 #define NVREG_IRQSTAT_MIIEVENT 0x040
113 #define NVREG_IRQSTAT_MASK 0x83ff
114 NvRegIrqMask = 0x004,
115 #define NVREG_IRQ_RX_ERROR 0x0001
116 #define NVREG_IRQ_RX 0x0002
117 #define NVREG_IRQ_RX_NOBUF 0x0004
118 #define NVREG_IRQ_TX_ERR 0x0008
119 #define NVREG_IRQ_TX_OK 0x0010
120 #define NVREG_IRQ_TIMER 0x0020
121 #define NVREG_IRQ_LINK 0x0040
122 #define NVREG_IRQ_RX_FORCED 0x0080
123 #define NVREG_IRQ_TX_FORCED 0x0100
124 #define NVREG_IRQ_RECOVER_ERROR 0x8200
125 #define NVREG_IRQMASK_THROUGHPUT 0x00df
126 #define NVREG_IRQMASK_CPU 0x0060
127 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
128 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
129 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
130
131 NvRegUnknownSetupReg6 = 0x008,
132 #define NVREG_UNKSETUP6_VAL 3
133
134 /*
135 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
136 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
137 */
138 NvRegPollingInterval = 0x00c,
139 #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
140 #define NVREG_POLL_DEFAULT_CPU 13
141 NvRegMSIMap0 = 0x020,
142 NvRegMSIMap1 = 0x024,
143 NvRegMSIIrqMask = 0x030,
144 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
145 NvRegMisc1 = 0x080,
146 #define NVREG_MISC1_PAUSE_TX 0x01
147 #define NVREG_MISC1_HD 0x02
148 #define NVREG_MISC1_FORCE 0x3b0f3c
149
150 NvRegMacReset = 0x34,
151 #define NVREG_MAC_RESET_ASSERT 0x0F3
152 NvRegTransmitterControl = 0x084,
153 #define NVREG_XMITCTL_START 0x01
154 #define NVREG_XMITCTL_MGMT_ST 0x40000000
155 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
156 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
157 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
158 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
159 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
160 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
161 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
162 #define NVREG_XMITCTL_HOST_LOADED 0x00004000
163 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
164 #define NVREG_XMITCTL_DATA_START 0x00100000
165 #define NVREG_XMITCTL_DATA_READY 0x00010000
166 #define NVREG_XMITCTL_DATA_ERROR 0x00020000
167 NvRegTransmitterStatus = 0x088,
168 #define NVREG_XMITSTAT_BUSY 0x01
169
170 NvRegPacketFilterFlags = 0x8c,
171 #define NVREG_PFF_PAUSE_RX 0x08
172 #define NVREG_PFF_ALWAYS 0x7F0000
173 #define NVREG_PFF_PROMISC 0x80
174 #define NVREG_PFF_MYADDR 0x20
175 #define NVREG_PFF_LOOPBACK 0x10
176
177 NvRegOffloadConfig = 0x90,
178 #define NVREG_OFFLOAD_HOMEPHY 0x601
179 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
180 NvRegReceiverControl = 0x094,
181 #define NVREG_RCVCTL_START 0x01
182 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
183 NvRegReceiverStatus = 0x98,
184 #define NVREG_RCVSTAT_BUSY 0x01
185
186 NvRegSlotTime = 0x9c,
187 #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
188 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
189 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
190 #define NVREG_SLOTTIME_HALF 0x0000ff00
191 #define NVREG_SLOTTIME_DEFAULT 0x00007f00
192 #define NVREG_SLOTTIME_MASK 0x000000ff
193
194 NvRegTxDeferral = 0xA0,
195 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
196 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
197 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
198 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
199 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
200 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
201 NvRegRxDeferral = 0xA4,
202 #define NVREG_RX_DEFERRAL_DEFAULT 0x16
203 NvRegMacAddrA = 0xA8,
204 NvRegMacAddrB = 0xAC,
205 NvRegMulticastAddrA = 0xB0,
206 #define NVREG_MCASTADDRA_FORCE 0x01
207 NvRegMulticastAddrB = 0xB4,
208 NvRegMulticastMaskA = 0xB8,
209 #define NVREG_MCASTMASKA_NONE 0xffffffff
210 NvRegMulticastMaskB = 0xBC,
211 #define NVREG_MCASTMASKB_NONE 0xffff
212
213 NvRegPhyInterface = 0xC0,
214 #define PHY_RGMII 0x10000000
215 NvRegBackOffControl = 0xC4,
216 #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
217 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
218 #define NVREG_BKOFFCTRL_SELECT 24
219 #define NVREG_BKOFFCTRL_GEAR 12
220
221 NvRegTxRingPhysAddr = 0x100,
222 NvRegRxRingPhysAddr = 0x104,
223 NvRegRingSizes = 0x108,
224 #define NVREG_RINGSZ_TXSHIFT 0
225 #define NVREG_RINGSZ_RXSHIFT 16
226 NvRegTransmitPoll = 0x10c,
227 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
228 NvRegLinkSpeed = 0x110,
229 #define NVREG_LINKSPEED_FORCE 0x10000
230 #define NVREG_LINKSPEED_10 1000
231 #define NVREG_LINKSPEED_100 100
232 #define NVREG_LINKSPEED_1000 50
233 #define NVREG_LINKSPEED_MASK (0xFFF)
234 NvRegUnknownSetupReg5 = 0x130,
235 #define NVREG_UNKSETUP5_BIT31 (1<<31)
236 NvRegTxWatermark = 0x13c,
237 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
238 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
239 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
240 NvRegTxRxControl = 0x144,
241 #define NVREG_TXRXCTL_KICK 0x0001
242 #define NVREG_TXRXCTL_BIT1 0x0002
243 #define NVREG_TXRXCTL_BIT2 0x0004
244 #define NVREG_TXRXCTL_IDLE 0x0008
245 #define NVREG_TXRXCTL_RESET 0x0010
246 #define NVREG_TXRXCTL_RXCHECK 0x0400
247 #define NVREG_TXRXCTL_DESC_1 0
248 #define NVREG_TXRXCTL_DESC_2 0x002100
249 #define NVREG_TXRXCTL_DESC_3 0xc02200
250 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
251 #define NVREG_TXRXCTL_VLANINS 0x00080
252 NvRegTxRingPhysAddrHigh = 0x148,
253 NvRegRxRingPhysAddrHigh = 0x14C,
254 NvRegTxPauseFrame = 0x170,
255 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
256 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
257 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
258 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
259 NvRegTxPauseFrameLimit = 0x174,
260 #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
261 NvRegMIIStatus = 0x180,
262 #define NVREG_MIISTAT_ERROR 0x0001
263 #define NVREG_MIISTAT_LINKCHANGE 0x0008
264 #define NVREG_MIISTAT_MASK_RW 0x0007
265 #define NVREG_MIISTAT_MASK_ALL 0x000f
266 NvRegMIIMask = 0x184,
267 #define NVREG_MII_LINKCHANGE 0x0008
268
269 NvRegAdapterControl = 0x188,
270 #define NVREG_ADAPTCTL_START 0x02
271 #define NVREG_ADAPTCTL_LINKUP 0x04
272 #define NVREG_ADAPTCTL_PHYVALID 0x40000
273 #define NVREG_ADAPTCTL_RUNNING 0x100000
274 #define NVREG_ADAPTCTL_PHYSHIFT 24
275 NvRegMIISpeed = 0x18c,
276 #define NVREG_MIISPEED_BIT8 (1<<8)
277 #define NVREG_MIIDELAY 5
278 NvRegMIIControl = 0x190,
279 #define NVREG_MIICTL_INUSE 0x08000
280 #define NVREG_MIICTL_WRITE 0x00400
281 #define NVREG_MIICTL_ADDRSHIFT 5
282 NvRegMIIData = 0x194,
283 NvRegTxUnicast = 0x1a0,
284 NvRegTxMulticast = 0x1a4,
285 NvRegTxBroadcast = 0x1a8,
286 NvRegWakeUpFlags = 0x200,
287 #define NVREG_WAKEUPFLAGS_VAL 0x7770
288 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
289 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
290 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
291 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
292 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
293 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
294 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
295 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
296 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
297 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
298
299 NvRegMgmtUnitGetVersion = 0x204,
300 #define NVREG_MGMTUNITGETVERSION 0x01
301 NvRegMgmtUnitVersion = 0x208,
302 #define NVREG_MGMTUNITVERSION 0x08
303 NvRegPowerCap = 0x268,
304 #define NVREG_POWERCAP_D3SUPP (1<<30)
305 #define NVREG_POWERCAP_D2SUPP (1<<26)
306 #define NVREG_POWERCAP_D1SUPP (1<<25)
307 NvRegPowerState = 0x26c,
308 #define NVREG_POWERSTATE_POWEREDUP 0x8000
309 #define NVREG_POWERSTATE_VALID 0x0100
310 #define NVREG_POWERSTATE_MASK 0x0003
311 #define NVREG_POWERSTATE_D0 0x0000
312 #define NVREG_POWERSTATE_D1 0x0001
313 #define NVREG_POWERSTATE_D2 0x0002
314 #define NVREG_POWERSTATE_D3 0x0003
315 NvRegMgmtUnitControl = 0x278,
316 #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
317 NvRegTxCnt = 0x280,
318 NvRegTxZeroReXmt = 0x284,
319 NvRegTxOneReXmt = 0x288,
320 NvRegTxManyReXmt = 0x28c,
321 NvRegTxLateCol = 0x290,
322 NvRegTxUnderflow = 0x294,
323 NvRegTxLossCarrier = 0x298,
324 NvRegTxExcessDef = 0x29c,
325 NvRegTxRetryErr = 0x2a0,
326 NvRegRxFrameErr = 0x2a4,
327 NvRegRxExtraByte = 0x2a8,
328 NvRegRxLateCol = 0x2ac,
329 NvRegRxRunt = 0x2b0,
330 NvRegRxFrameTooLong = 0x2b4,
331 NvRegRxOverflow = 0x2b8,
332 NvRegRxFCSErr = 0x2bc,
333 NvRegRxFrameAlignErr = 0x2c0,
334 NvRegRxLenErr = 0x2c4,
335 NvRegRxUnicast = 0x2c8,
336 NvRegRxMulticast = 0x2cc,
337 NvRegRxBroadcast = 0x2d0,
338 NvRegTxDef = 0x2d4,
339 NvRegTxFrame = 0x2d8,
340 NvRegRxCnt = 0x2dc,
341 NvRegTxPause = 0x2e0,
342 NvRegRxPause = 0x2e4,
343 NvRegRxDropFrame = 0x2e8,
344 NvRegVlanControl = 0x300,
345 #define NVREG_VLANCONTROL_ENABLE 0x2000
346 NvRegMSIXMap0 = 0x3e0,
347 NvRegMSIXMap1 = 0x3e4,
348 NvRegMSIXIrqStatus = 0x3f0,
349
350 NvRegPowerState2 = 0x600,
351 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
352 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
353 #define NVREG_POWERSTATE2_PHY_RESET 0x0004
354 #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
355 };
356
357 /* Big endian: should work, but is untested */
358 struct ring_desc {
359 __le32 buf;
360 __le32 flaglen;
361 };
362
363 struct ring_desc_ex {
364 __le32 bufhigh;
365 __le32 buflow;
366 __le32 txvlan;
367 __le32 flaglen;
368 };
369
370 union ring_type {
371 struct ring_desc* orig;
372 struct ring_desc_ex* ex;
373 };
374
375 #define FLAG_MASK_V1 0xffff0000
376 #define FLAG_MASK_V2 0xffffc000
377 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
378 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
379
380 #define NV_TX_LASTPACKET (1<<16)
381 #define NV_TX_RETRYERROR (1<<19)
382 #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
383 #define NV_TX_FORCED_INTERRUPT (1<<24)
384 #define NV_TX_DEFERRED (1<<26)
385 #define NV_TX_CARRIERLOST (1<<27)
386 #define NV_TX_LATECOLLISION (1<<28)
387 #define NV_TX_UNDERFLOW (1<<29)
388 #define NV_TX_ERROR (1<<30)
389 #define NV_TX_VALID (1<<31)
390
391 #define NV_TX2_LASTPACKET (1<<29)
392 #define NV_TX2_RETRYERROR (1<<18)
393 #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
394 #define NV_TX2_FORCED_INTERRUPT (1<<30)
395 #define NV_TX2_DEFERRED (1<<25)
396 #define NV_TX2_CARRIERLOST (1<<26)
397 #define NV_TX2_LATECOLLISION (1<<27)
398 #define NV_TX2_UNDERFLOW (1<<28)
399 /* error and valid are the same for both */
400 #define NV_TX2_ERROR (1<<30)
401 #define NV_TX2_VALID (1<<31)
402 #define NV_TX2_TSO (1<<28)
403 #define NV_TX2_TSO_SHIFT 14
404 #define NV_TX2_TSO_MAX_SHIFT 14
405 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
406 #define NV_TX2_CHECKSUM_L3 (1<<27)
407 #define NV_TX2_CHECKSUM_L4 (1<<26)
408
409 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
410
411 #define NV_RX_DESCRIPTORVALID (1<<16)
412 #define NV_RX_MISSEDFRAME (1<<17)
413 #define NV_RX_SUBSTRACT1 (1<<18)
414 #define NV_RX_ERROR1 (1<<23)
415 #define NV_RX_ERROR2 (1<<24)
416 #define NV_RX_ERROR3 (1<<25)
417 #define NV_RX_ERROR4 (1<<26)
418 #define NV_RX_CRCERR (1<<27)
419 #define NV_RX_OVERFLOW (1<<28)
420 #define NV_RX_FRAMINGERR (1<<29)
421 #define NV_RX_ERROR (1<<30)
422 #define NV_RX_AVAIL (1<<31)
423 #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
424
425 #define NV_RX2_CHECKSUMMASK (0x1C000000)
426 #define NV_RX2_CHECKSUM_IP (0x10000000)
427 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
428 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
429 #define NV_RX2_DESCRIPTORVALID (1<<29)
430 #define NV_RX2_SUBSTRACT1 (1<<25)
431 #define NV_RX2_ERROR1 (1<<18)
432 #define NV_RX2_ERROR2 (1<<19)
433 #define NV_RX2_ERROR3 (1<<20)
434 #define NV_RX2_ERROR4 (1<<21)
435 #define NV_RX2_CRCERR (1<<22)
436 #define NV_RX2_OVERFLOW (1<<23)
437 #define NV_RX2_FRAMINGERR (1<<24)
438 /* error and avail are the same for both */
439 #define NV_RX2_ERROR (1<<30)
440 #define NV_RX2_AVAIL (1<<31)
441 #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
442
443 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
444 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
445
446 /* Miscelaneous hardware related defines: */
447 #define NV_PCI_REGSZ_VER1 0x270
448 #define NV_PCI_REGSZ_VER2 0x2d4
449 #define NV_PCI_REGSZ_VER3 0x604
450 #define NV_PCI_REGSZ_MAX 0x604
451
452 /* various timeout delays: all in usec */
453 #define NV_TXRX_RESET_DELAY 4
454 #define NV_TXSTOP_DELAY1 10
455 #define NV_TXSTOP_DELAY1MAX 500000
456 #define NV_TXSTOP_DELAY2 100
457 #define NV_RXSTOP_DELAY1 10
458 #define NV_RXSTOP_DELAY1MAX 500000
459 #define NV_RXSTOP_DELAY2 100
460 #define NV_SETUP5_DELAY 5
461 #define NV_SETUP5_DELAYMAX 50000
462 #define NV_POWERUP_DELAY 5
463 #define NV_POWERUP_DELAYMAX 5000
464 #define NV_MIIBUSY_DELAY 50
465 #define NV_MIIPHY_DELAY 10
466 #define NV_MIIPHY_DELAYMAX 10000
467 #define NV_MAC_RESET_DELAY 64
468
469 #define NV_WAKEUPPATTERNS 5
470 #define NV_WAKEUPMASKENTRIES 4
471
472 /* General driver defaults */
473 #define NV_WATCHDOG_TIMEO (5*HZ)
474
475 #define RX_RING_DEFAULT 512
476 #define TX_RING_DEFAULT 256
477 #define RX_RING_MIN 128
478 #define TX_RING_MIN 64
479 #define RING_MAX_DESC_VER_1 1024
480 #define RING_MAX_DESC_VER_2_3 16384
481
482 /* rx/tx mac addr + type + vlan + align + slack*/
483 #define NV_RX_HEADERS (64)
484 /* even more slack. */
485 #define NV_RX_ALLOC_PAD (64)
486
487 /* maximum mtu size */
488 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
489 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
490
491 #define OOM_REFILL (1+HZ/20)
492 #define POLL_WAIT (1+HZ/100)
493 #define LINK_TIMEOUT (3*HZ)
494 #define STATS_INTERVAL (10*HZ)
495
496 /*
497 * desc_ver values:
498 * The nic supports three different descriptor types:
499 * - DESC_VER_1: Original
500 * - DESC_VER_2: support for jumbo frames.
501 * - DESC_VER_3: 64-bit format.
502 */
503 #define DESC_VER_1 1
504 #define DESC_VER_2 2
505 #define DESC_VER_3 3
506
507 /* PHY defines */
508 #define PHY_OUI_MARVELL 0x5043
509 #define PHY_OUI_CICADA 0x03f1
510 #define PHY_OUI_VITESSE 0x01c1
511 #define PHY_OUI_REALTEK 0x0732
512 #define PHY_OUI_REALTEK2 0x0020
513 #define PHYID1_OUI_MASK 0x03ff
514 #define PHYID1_OUI_SHFT 6
515 #define PHYID2_OUI_MASK 0xfc00
516 #define PHYID2_OUI_SHFT 10
517 #define PHYID2_MODEL_MASK 0x03f0
518 #define PHY_MODEL_REALTEK_8211 0x0110
519 #define PHY_REV_MASK 0x0001
520 #define PHY_REV_REALTEK_8211B 0x0000
521 #define PHY_REV_REALTEK_8211C 0x0001
522 #define PHY_MODEL_REALTEK_8201 0x0200
523 #define PHY_MODEL_MARVELL_E3016 0x0220
524 #define PHY_MARVELL_E3016_INITMASK 0x0300
525 #define PHY_CICADA_INIT1 0x0f000
526 #define PHY_CICADA_INIT2 0x0e00
527 #define PHY_CICADA_INIT3 0x01000
528 #define PHY_CICADA_INIT4 0x0200
529 #define PHY_CICADA_INIT5 0x0004
530 #define PHY_CICADA_INIT6 0x02000
531 #define PHY_VITESSE_INIT_REG1 0x1f
532 #define PHY_VITESSE_INIT_REG2 0x10
533 #define PHY_VITESSE_INIT_REG3 0x11
534 #define PHY_VITESSE_INIT_REG4 0x12
535 #define PHY_VITESSE_INIT_MSK1 0xc
536 #define PHY_VITESSE_INIT_MSK2 0x0180
537 #define PHY_VITESSE_INIT1 0x52b5
538 #define PHY_VITESSE_INIT2 0xaf8a
539 #define PHY_VITESSE_INIT3 0x8
540 #define PHY_VITESSE_INIT4 0x8f8a
541 #define PHY_VITESSE_INIT5 0xaf86
542 #define PHY_VITESSE_INIT6 0x8f86
543 #define PHY_VITESSE_INIT7 0xaf82
544 #define PHY_VITESSE_INIT8 0x0100
545 #define PHY_VITESSE_INIT9 0x8f82
546 #define PHY_VITESSE_INIT10 0x0
547 #define PHY_REALTEK_INIT_REG1 0x1f
548 #define PHY_REALTEK_INIT_REG2 0x19
549 #define PHY_REALTEK_INIT_REG3 0x13
550 #define PHY_REALTEK_INIT_REG4 0x14
551 #define PHY_REALTEK_INIT_REG5 0x18
552 #define PHY_REALTEK_INIT_REG6 0x11
553 #define PHY_REALTEK_INIT_REG7 0x01
554 #define PHY_REALTEK_INIT1 0x0000
555 #define PHY_REALTEK_INIT2 0x8e00
556 #define PHY_REALTEK_INIT3 0x0001
557 #define PHY_REALTEK_INIT4 0xad17
558 #define PHY_REALTEK_INIT5 0xfb54
559 #define PHY_REALTEK_INIT6 0xf5c7
560 #define PHY_REALTEK_INIT7 0x1000
561 #define PHY_REALTEK_INIT8 0x0003
562 #define PHY_REALTEK_INIT9 0x0008
563 #define PHY_REALTEK_INIT10 0x0005
564 #define PHY_REALTEK_INIT11 0x0200
565 #define PHY_REALTEK_INIT_MSK1 0x0003
566
567 #define PHY_GIGABIT 0x0100
568
569 #define PHY_TIMEOUT 0x1
570 #define PHY_ERROR 0x2
571
572 #define PHY_100 0x1
573 #define PHY_1000 0x2
574 #define PHY_HALF 0x100
575
576 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
577 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
578 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
579 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
580 #define NV_PAUSEFRAME_RX_REQ 0x0010
581 #define NV_PAUSEFRAME_TX_REQ 0x0020
582 #define NV_PAUSEFRAME_AUTONEG 0x0040
583
584 /* MSI/MSI-X defines */
585 #define NV_MSI_X_MAX_VECTORS 8
586 #define NV_MSI_X_VECTORS_MASK 0x000f
587 #define NV_MSI_CAPABLE 0x0010
588 #define NV_MSI_X_CAPABLE 0x0020
589 #define NV_MSI_ENABLED 0x0040
590 #define NV_MSI_X_ENABLED 0x0080
591
592 #define NV_MSI_X_VECTOR_ALL 0x0
593 #define NV_MSI_X_VECTOR_RX 0x0
594 #define NV_MSI_X_VECTOR_TX 0x1
595 #define NV_MSI_X_VECTOR_OTHER 0x2
596
597 #define NV_MSI_PRIV_OFFSET 0x68
598 #define NV_MSI_PRIV_VALUE 0xffffffff
599
600 #define NV_RESTART_TX 0x1
601 #define NV_RESTART_RX 0x2
602
603 #define NV_TX_LIMIT_COUNT 16
604
605 #define NV_DYNAMIC_THRESHOLD 4
606 #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
607
608 /* statistics */
609 struct nv_ethtool_str {
610 char name[ETH_GSTRING_LEN];
611 };
612
613 static const struct nv_ethtool_str nv_estats_str[] = {
614 { "tx_bytes" },
615 { "tx_zero_rexmt" },
616 { "tx_one_rexmt" },
617 { "tx_many_rexmt" },
618 { "tx_late_collision" },
619 { "tx_fifo_errors" },
620 { "tx_carrier_errors" },
621 { "tx_excess_deferral" },
622 { "tx_retry_error" },
623 { "rx_frame_error" },
624 { "rx_extra_byte" },
625 { "rx_late_collision" },
626 { "rx_runt" },
627 { "rx_frame_too_long" },
628 { "rx_over_errors" },
629 { "rx_crc_errors" },
630 { "rx_frame_align_error" },
631 { "rx_length_error" },
632 { "rx_unicast" },
633 { "rx_multicast" },
634 { "rx_broadcast" },
635 { "rx_packets" },
636 { "rx_errors_total" },
637 { "tx_errors_total" },
638
639 /* version 2 stats */
640 { "tx_deferral" },
641 { "tx_packets" },
642 { "rx_bytes" },
643 { "tx_pause" },
644 { "rx_pause" },
645 { "rx_drop_frame" },
646
647 /* version 3 stats */
648 { "tx_unicast" },
649 { "tx_multicast" },
650 { "tx_broadcast" }
651 };
652
653 struct nv_ethtool_stats {
654 u64 tx_bytes;
655 u64 tx_zero_rexmt;
656 u64 tx_one_rexmt;
657 u64 tx_many_rexmt;
658 u64 tx_late_collision;
659 u64 tx_fifo_errors;
660 u64 tx_carrier_errors;
661 u64 tx_excess_deferral;
662 u64 tx_retry_error;
663 u64 rx_frame_error;
664 u64 rx_extra_byte;
665 u64 rx_late_collision;
666 u64 rx_runt;
667 u64 rx_frame_too_long;
668 u64 rx_over_errors;
669 u64 rx_crc_errors;
670 u64 rx_frame_align_error;
671 u64 rx_length_error;
672 u64 rx_unicast;
673 u64 rx_multicast;
674 u64 rx_broadcast;
675 u64 rx_packets;
676 u64 rx_errors_total;
677 u64 tx_errors_total;
678
679 /* version 2 stats */
680 u64 tx_deferral;
681 u64 tx_packets;
682 u64 rx_bytes;
683 u64 tx_pause;
684 u64 rx_pause;
685 u64 rx_drop_frame;
686
687 /* version 3 stats */
688 u64 tx_unicast;
689 u64 tx_multicast;
690 u64 tx_broadcast;
691 };
692
693 #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
694 #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
695 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
696
697 /* diagnostics */
698 #define NV_TEST_COUNT_BASE 3
699 #define NV_TEST_COUNT_EXTENDED 4
700
701 static const struct nv_ethtool_str nv_etests_str[] = {
702 { "link (online/offline)" },
703 { "register (offline) " },
704 { "interrupt (offline) " },
705 { "loopback (offline) " }
706 };
707
708 struct register_test {
709 __u32 reg;
710 __u32 mask;
711 };
712
713 static const struct register_test nv_registers_test[] = {
714 { NvRegUnknownSetupReg6, 0x01 },
715 { NvRegMisc1, 0x03c },
716 { NvRegOffloadConfig, 0x03ff },
717 { NvRegMulticastAddrA, 0xffffffff },
718 { NvRegTxWatermark, 0x0ff },
719 { NvRegWakeUpFlags, 0x07777 },
720 { 0,0 }
721 };
722
723 struct nv_skb_map {
724 struct sk_buff *skb;
725 dma_addr_t dma;
726 unsigned int dma_len:31;
727 unsigned int dma_single:1;
728 struct ring_desc_ex *first_tx_desc;
729 struct nv_skb_map *next_tx_ctx;
730 };
731
732 /*
733 * SMP locking:
734 * All hardware access under netdev_priv(dev)->lock, except the performance
735 * critical parts:
736 * - rx is (pseudo-) lockless: it relies on the single-threading provided
737 * by the arch code for interrupts.
738 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
739 * needs netdev_priv(dev)->lock :-(
740 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
741 */
742
743 /* in dev: base, irq */
744 struct fe_priv {
745 spinlock_t lock;
746
747 struct net_device *dev;
748 struct napi_struct napi;
749
750 /* General data:
751 * Locking: spin_lock(&np->lock); */
752 struct nv_ethtool_stats estats;
753 int in_shutdown;
754 u32 linkspeed;
755 int duplex;
756 int autoneg;
757 int fixed_mode;
758 int phyaddr;
759 int wolenabled;
760 unsigned int phy_oui;
761 unsigned int phy_model;
762 unsigned int phy_rev;
763 u16 gigabit;
764 int intr_test;
765 int recover_error;
766 int quiet_count;
767
768 /* General data: RO fields */
769 dma_addr_t ring_addr;
770 struct pci_dev *pci_dev;
771 u32 orig_mac[2];
772 u32 events;
773 u32 irqmask;
774 u32 desc_ver;
775 u32 txrxctl_bits;
776 u32 vlanctl_bits;
777 u32 driver_data;
778 u32 device_id;
779 u32 register_size;
780 int rx_csum;
781 u32 mac_in_use;
782 int mgmt_version;
783 int mgmt_sema;
784
785 void __iomem *base;
786
787 /* rx specific fields.
788 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
789 */
790 union ring_type get_rx, put_rx, first_rx, last_rx;
791 struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
792 struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
793 struct nv_skb_map *rx_skb;
794
795 union ring_type rx_ring;
796 unsigned int rx_buf_sz;
797 unsigned int pkt_limit;
798 struct timer_list oom_kick;
799 struct timer_list nic_poll;
800 struct timer_list stats_poll;
801 u32 nic_poll_irq;
802 int rx_ring_size;
803
804 /* media detection workaround.
805 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
806 */
807 int need_linktimer;
808 unsigned long link_timeout;
809 /*
810 * tx specific fields.
811 */
812 union ring_type get_tx, put_tx, first_tx, last_tx;
813 struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
814 struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
815 struct nv_skb_map *tx_skb;
816
817 union ring_type tx_ring;
818 u32 tx_flags;
819 int tx_ring_size;
820 int tx_limit;
821 u32 tx_pkts_in_progress;
822 struct nv_skb_map *tx_change_owner;
823 struct nv_skb_map *tx_end_flip;
824 int tx_stop;
825
826 /* vlan fields */
827 struct vlan_group *vlangrp;
828
829 /* msi/msi-x fields */
830 u32 msi_flags;
831 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
832
833 /* flow control */
834 u32 pause_flags;
835
836 /* power saved state */
837 u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
838
839 /* for different msi-x irq type */
840 char name_rx[IFNAMSIZ + 3]; /* -rx */
841 char name_tx[IFNAMSIZ + 3]; /* -tx */
842 char name_other[IFNAMSIZ + 6]; /* -other */
843 };
844
845 /*
846 * Maximum number of loops until we assume that a bit in the irq mask
847 * is stuck. Overridable with module param.
848 */
849 static int max_interrupt_work = 4;
850
851 /*
852 * Optimization can be either throuput mode or cpu mode
853 *
854 * Throughput Mode: Every tx and rx packet will generate an interrupt.
855 * CPU Mode: Interrupts are controlled by a timer.
856 */
857 enum {
858 NV_OPTIMIZATION_MODE_THROUGHPUT,
859 NV_OPTIMIZATION_MODE_CPU,
860 NV_OPTIMIZATION_MODE_DYNAMIC
861 };
862 static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
863
864 /*
865 * Poll interval for timer irq
866 *
867 * This interval determines how frequent an interrupt is generated.
868 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
869 * Min = 0, and Max = 65535
870 */
871 static int poll_interval = -1;
872
873 /*
874 * MSI interrupts
875 */
876 enum {
877 NV_MSI_INT_DISABLED,
878 NV_MSI_INT_ENABLED
879 };
880 static int msi = NV_MSI_INT_ENABLED;
881
882 /*
883 * MSIX interrupts
884 */
885 enum {
886 NV_MSIX_INT_DISABLED,
887 NV_MSIX_INT_ENABLED
888 };
889 static int msix = NV_MSIX_INT_ENABLED;
890
891 /*
892 * DMA 64bit
893 */
894 enum {
895 NV_DMA_64BIT_DISABLED,
896 NV_DMA_64BIT_ENABLED
897 };
898 static int dma_64bit = NV_DMA_64BIT_ENABLED;
899
900 /*
901 * Crossover Detection
902 * Realtek 8201 phy + some OEM boards do not work properly.
903 */
904 enum {
905 NV_CROSSOVER_DETECTION_DISABLED,
906 NV_CROSSOVER_DETECTION_ENABLED
907 };
908 static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
909
910 /*
911 * Power down phy when interface is down (persists through reboot;
912 * older Linux and other OSes may not power it up again)
913 */
914 static int phy_power_down = 0;
915
916 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
917 {
918 return netdev_priv(dev);
919 }
920
921 static inline u8 __iomem *get_hwbase(struct net_device *dev)
922 {
923 return ((struct fe_priv *)netdev_priv(dev))->base;
924 }
925
926 static inline void pci_push(u8 __iomem *base)
927 {
928 /* force out pending posted writes */
929 readl(base);
930 }
931
932 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
933 {
934 return le32_to_cpu(prd->flaglen)
935 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
936 }
937
938 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
939 {
940 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
941 }
942
943 static bool nv_optimized(struct fe_priv *np)
944 {
945 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
946 return false;
947 return true;
948 }
949
950 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
951 int delay, int delaymax, const char *msg)
952 {
953 u8 __iomem *base = get_hwbase(dev);
954
955 pci_push(base);
956 do {
957 udelay(delay);
958 delaymax -= delay;
959 if (delaymax < 0) {
960 if (msg)
961 printk("%s", msg);
962 return 1;
963 }
964 } while ((readl(base + offset) & mask) != target);
965 return 0;
966 }
967
968 #define NV_SETUP_RX_RING 0x01
969 #define NV_SETUP_TX_RING 0x02
970
971 static inline u32 dma_low(dma_addr_t addr)
972 {
973 return addr;
974 }
975
976 static inline u32 dma_high(dma_addr_t addr)
977 {
978 return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
979 }
980
981 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
982 {
983 struct fe_priv *np = get_nvpriv(dev);
984 u8 __iomem *base = get_hwbase(dev);
985
986 if (!nv_optimized(np)) {
987 if (rxtx_flags & NV_SETUP_RX_RING) {
988 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
989 }
990 if (rxtx_flags & NV_SETUP_TX_RING) {
991 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
992 }
993 } else {
994 if (rxtx_flags & NV_SETUP_RX_RING) {
995 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
996 writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
997 }
998 if (rxtx_flags & NV_SETUP_TX_RING) {
999 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
1000 writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
1001 }
1002 }
1003 }
1004
1005 static void free_rings(struct net_device *dev)
1006 {
1007 struct fe_priv *np = get_nvpriv(dev);
1008
1009 if (!nv_optimized(np)) {
1010 if (np->rx_ring.orig)
1011 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
1012 np->rx_ring.orig, np->ring_addr);
1013 } else {
1014 if (np->rx_ring.ex)
1015 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
1016 np->rx_ring.ex, np->ring_addr);
1017 }
1018 if (np->rx_skb)
1019 kfree(np->rx_skb);
1020 if (np->tx_skb)
1021 kfree(np->tx_skb);
1022 }
1023
1024 static int using_multi_irqs(struct net_device *dev)
1025 {
1026 struct fe_priv *np = get_nvpriv(dev);
1027
1028 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1029 ((np->msi_flags & NV_MSI_X_ENABLED) &&
1030 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
1031 return 0;
1032 else
1033 return 1;
1034 }
1035
1036 static void nv_txrx_gate(struct net_device *dev, bool gate)
1037 {
1038 struct fe_priv *np = get_nvpriv(dev);
1039 u8 __iomem *base = get_hwbase(dev);
1040 u32 powerstate;
1041
1042 if (!np->mac_in_use &&
1043 (np->driver_data & DEV_HAS_POWER_CNTRL)) {
1044 powerstate = readl(base + NvRegPowerState2);
1045 if (gate)
1046 powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
1047 else
1048 powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
1049 writel(powerstate, base + NvRegPowerState2);
1050 }
1051 }
1052
1053 static void nv_enable_irq(struct net_device *dev)
1054 {
1055 struct fe_priv *np = get_nvpriv(dev);
1056
1057 if (!using_multi_irqs(dev)) {
1058 if (np->msi_flags & NV_MSI_X_ENABLED)
1059 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1060 else
1061 enable_irq(np->pci_dev->irq);
1062 } else {
1063 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1064 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1065 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1066 }
1067 }
1068
1069 static void nv_disable_irq(struct net_device *dev)
1070 {
1071 struct fe_priv *np = get_nvpriv(dev);
1072
1073 if (!using_multi_irqs(dev)) {
1074 if (np->msi_flags & NV_MSI_X_ENABLED)
1075 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1076 else
1077 disable_irq(np->pci_dev->irq);
1078 } else {
1079 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1080 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1081 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1082 }
1083 }
1084
1085 /* In MSIX mode, a write to irqmask behaves as XOR */
1086 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
1087 {
1088 u8 __iomem *base = get_hwbase(dev);
1089
1090 writel(mask, base + NvRegIrqMask);
1091 }
1092
1093 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
1094 {
1095 struct fe_priv *np = get_nvpriv(dev);
1096 u8 __iomem *base = get_hwbase(dev);
1097
1098 if (np->msi_flags & NV_MSI_X_ENABLED) {
1099 writel(mask, base + NvRegIrqMask);
1100 } else {
1101 if (np->msi_flags & NV_MSI_ENABLED)
1102 writel(0, base + NvRegMSIIrqMask);
1103 writel(0, base + NvRegIrqMask);
1104 }
1105 }
1106
1107 static void nv_napi_enable(struct net_device *dev)
1108 {
1109 struct fe_priv *np = get_nvpriv(dev);
1110
1111 napi_enable(&np->napi);
1112 }
1113
1114 static void nv_napi_disable(struct net_device *dev)
1115 {
1116 struct fe_priv *np = get_nvpriv(dev);
1117
1118 napi_disable(&np->napi);
1119 }
1120
1121 #define MII_READ (-1)
1122 /* mii_rw: read/write a register on the PHY.
1123 *
1124 * Caller must guarantee serialization
1125 */
1126 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1127 {
1128 u8 __iomem *base = get_hwbase(dev);
1129 u32 reg;
1130 int retval;
1131
1132 writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
1133
1134 reg = readl(base + NvRegMIIControl);
1135 if (reg & NVREG_MIICTL_INUSE) {
1136 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1137 udelay(NV_MIIBUSY_DELAY);
1138 }
1139
1140 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1141 if (value != MII_READ) {
1142 writel(value, base + NvRegMIIData);
1143 reg |= NVREG_MIICTL_WRITE;
1144 }
1145 writel(reg, base + NvRegMIIControl);
1146
1147 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1148 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1149 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1150 dev->name, miireg, addr);
1151 retval = -1;
1152 } else if (value != MII_READ) {
1153 /* it was a write operation - fewer failures are detectable */
1154 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1155 dev->name, value, miireg, addr);
1156 retval = 0;
1157 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1158 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1159 dev->name, miireg, addr);
1160 retval = -1;
1161 } else {
1162 retval = readl(base + NvRegMIIData);
1163 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1164 dev->name, miireg, addr, retval);
1165 }
1166
1167 return retval;
1168 }
1169
1170 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1171 {
1172 struct fe_priv *np = netdev_priv(dev);
1173 u32 miicontrol;
1174 unsigned int tries = 0;
1175
1176 miicontrol = BMCR_RESET | bmcr_setup;
1177 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1178 return -1;
1179 }
1180
1181 /* wait for 500ms */
1182 msleep(500);
1183
1184 /* must wait till reset is deasserted */
1185 while (miicontrol & BMCR_RESET) {
1186 msleep(10);
1187 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1188 /* FIXME: 100 tries seem excessive */
1189 if (tries++ > 100)
1190 return -1;
1191 }
1192 return 0;
1193 }
1194
1195 static int phy_init(struct net_device *dev)
1196 {
1197 struct fe_priv *np = get_nvpriv(dev);
1198 u8 __iomem *base = get_hwbase(dev);
1199 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1200
1201 /* phy errata for E3016 phy */
1202 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1203 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1204 reg &= ~PHY_MARVELL_E3016_INITMASK;
1205 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1206 printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1207 return PHY_ERROR;
1208 }
1209 }
1210 if (np->phy_oui == PHY_OUI_REALTEK) {
1211 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1212 np->phy_rev == PHY_REV_REALTEK_8211B) {
1213 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1214 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1215 return PHY_ERROR;
1216 }
1217 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1218 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1219 return PHY_ERROR;
1220 }
1221 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1222 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1223 return PHY_ERROR;
1224 }
1225 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1226 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1227 return PHY_ERROR;
1228 }
1229 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
1230 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1231 return PHY_ERROR;
1232 }
1233 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
1234 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1235 return PHY_ERROR;
1236 }
1237 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1238 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1239 return PHY_ERROR;
1240 }
1241 }
1242 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1243 np->phy_rev == PHY_REV_REALTEK_8211C) {
1244 u32 powerstate = readl(base + NvRegPowerState2);
1245
1246 /* need to perform hw phy reset */
1247 powerstate |= NVREG_POWERSTATE2_PHY_RESET;
1248 writel(powerstate, base + NvRegPowerState2);
1249 msleep(25);
1250
1251 powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
1252 writel(powerstate, base + NvRegPowerState2);
1253 msleep(25);
1254
1255 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1256 reg |= PHY_REALTEK_INIT9;
1257 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
1258 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1259 return PHY_ERROR;
1260 }
1261 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
1262 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1263 return PHY_ERROR;
1264 }
1265 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
1266 if (!(reg & PHY_REALTEK_INIT11)) {
1267 reg |= PHY_REALTEK_INIT11;
1268 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
1269 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1270 return PHY_ERROR;
1271 }
1272 }
1273 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1274 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1275 return PHY_ERROR;
1276 }
1277 }
1278 if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1279 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
1280 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1281 phy_reserved |= PHY_REALTEK_INIT7;
1282 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
1283 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1284 return PHY_ERROR;
1285 }
1286 }
1287 }
1288 }
1289
1290 /* set advertise register */
1291 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1292 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1293 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1294 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1295 return PHY_ERROR;
1296 }
1297
1298 /* get phy interface type */
1299 phyinterface = readl(base + NvRegPhyInterface);
1300
1301 /* see if gigabit phy */
1302 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1303 if (mii_status & PHY_GIGABIT) {
1304 np->gigabit = PHY_GIGABIT;
1305 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1306 mii_control_1000 &= ~ADVERTISE_1000HALF;
1307 if (phyinterface & PHY_RGMII)
1308 mii_control_1000 |= ADVERTISE_1000FULL;
1309 else
1310 mii_control_1000 &= ~ADVERTISE_1000FULL;
1311
1312 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1313 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1314 return PHY_ERROR;
1315 }
1316 }
1317 else
1318 np->gigabit = 0;
1319
1320 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1321 mii_control |= BMCR_ANENABLE;
1322
1323 if (np->phy_oui == PHY_OUI_REALTEK &&
1324 np->phy_model == PHY_MODEL_REALTEK_8211 &&
1325 np->phy_rev == PHY_REV_REALTEK_8211C) {
1326 /* start autoneg since we already performed hw reset above */
1327 mii_control |= BMCR_ANRESTART;
1328 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1329 printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
1330 return PHY_ERROR;
1331 }
1332 } else {
1333 /* reset the phy
1334 * (certain phys need bmcr to be setup with reset)
1335 */
1336 if (phy_reset(dev, mii_control)) {
1337 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1338 return PHY_ERROR;
1339 }
1340 }
1341
1342 /* phy vendor specific configuration */
1343 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1344 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1345 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
1346 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
1347 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1348 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1349 return PHY_ERROR;
1350 }
1351 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1352 phy_reserved |= PHY_CICADA_INIT5;
1353 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1354 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1355 return PHY_ERROR;
1356 }
1357 }
1358 if (np->phy_oui == PHY_OUI_CICADA) {
1359 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1360 phy_reserved |= PHY_CICADA_INIT6;
1361 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1362 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1363 return PHY_ERROR;
1364 }
1365 }
1366 if (np->phy_oui == PHY_OUI_VITESSE) {
1367 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
1368 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1369 return PHY_ERROR;
1370 }
1371 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
1372 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1373 return PHY_ERROR;
1374 }
1375 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1376 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1377 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1378 return PHY_ERROR;
1379 }
1380 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1381 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1382 phy_reserved |= PHY_VITESSE_INIT3;
1383 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1384 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1385 return PHY_ERROR;
1386 }
1387 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
1388 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1389 return PHY_ERROR;
1390 }
1391 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
1392 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1393 return PHY_ERROR;
1394 }
1395 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1396 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1397 phy_reserved |= PHY_VITESSE_INIT3;
1398 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1399 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1400 return PHY_ERROR;
1401 }
1402 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1403 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1404 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1405 return PHY_ERROR;
1406 }
1407 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
1408 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1409 return PHY_ERROR;
1410 }
1411 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
1412 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1413 return PHY_ERROR;
1414 }
1415 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1416 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1417 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1418 return PHY_ERROR;
1419 }
1420 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1421 phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
1422 phy_reserved |= PHY_VITESSE_INIT8;
1423 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1424 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1425 return PHY_ERROR;
1426 }
1427 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
1428 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1429 return PHY_ERROR;
1430 }
1431 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
1432 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1433 return PHY_ERROR;
1434 }
1435 }
1436 if (np->phy_oui == PHY_OUI_REALTEK) {
1437 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1438 np->phy_rev == PHY_REV_REALTEK_8211B) {
1439 /* reset could have cleared these out, set them back */
1440 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1441 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1442 return PHY_ERROR;
1443 }
1444 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1445 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1446 return PHY_ERROR;
1447 }
1448 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1449 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1450 return PHY_ERROR;
1451 }
1452 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1453 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1454 return PHY_ERROR;
1455 }
1456 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
1457 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1458 return PHY_ERROR;
1459 }
1460 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
1461 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1462 return PHY_ERROR;
1463 }
1464 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1465 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1466 return PHY_ERROR;
1467 }
1468 }
1469 if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1470 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
1471 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1472 phy_reserved |= PHY_REALTEK_INIT7;
1473 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
1474 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1475 return PHY_ERROR;
1476 }
1477 }
1478 if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
1479 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1480 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1481 return PHY_ERROR;
1482 }
1483 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
1484 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
1485 phy_reserved |= PHY_REALTEK_INIT3;
1486 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
1487 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1488 return PHY_ERROR;
1489 }
1490 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1491 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1492 return PHY_ERROR;
1493 }
1494 }
1495 }
1496 }
1497
1498 /* some phys clear out pause advertisment on reset, set it back */
1499 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1500
1501 /* restart auto negotiation, power down phy */
1502 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1503 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1504 if (phy_power_down) {
1505 mii_control |= BMCR_PDOWN;
1506 }
1507 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1508 return PHY_ERROR;
1509 }
1510
1511 return 0;
1512 }
1513
1514 static void nv_start_rx(struct net_device *dev)
1515 {
1516 struct fe_priv *np = netdev_priv(dev);
1517 u8 __iomem *base = get_hwbase(dev);
1518 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1519
1520 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1521 /* Already running? Stop it. */
1522 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1523 rx_ctrl &= ~NVREG_RCVCTL_START;
1524 writel(rx_ctrl, base + NvRegReceiverControl);
1525 pci_push(base);
1526 }
1527 writel(np->linkspeed, base + NvRegLinkSpeed);
1528 pci_push(base);
1529 rx_ctrl |= NVREG_RCVCTL_START;
1530 if (np->mac_in_use)
1531 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1532 writel(rx_ctrl, base + NvRegReceiverControl);
1533 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1534 dev->name, np->duplex, np->linkspeed);
1535 pci_push(base);
1536 }
1537
1538 static void nv_stop_rx(struct net_device *dev)
1539 {
1540 struct fe_priv *np = netdev_priv(dev);
1541 u8 __iomem *base = get_hwbase(dev);
1542 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1543
1544 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1545 if (!np->mac_in_use)
1546 rx_ctrl &= ~NVREG_RCVCTL_START;
1547 else
1548 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1549 writel(rx_ctrl, base + NvRegReceiverControl);
1550 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1551 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1552 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1553
1554 udelay(NV_RXSTOP_DELAY2);
1555 if (!np->mac_in_use)
1556 writel(0, base + NvRegLinkSpeed);
1557 }
1558
1559 static void nv_start_tx(struct net_device *dev)
1560 {
1561 struct fe_priv *np = netdev_priv(dev);
1562 u8 __iomem *base = get_hwbase(dev);
1563 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1564
1565 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1566 tx_ctrl |= NVREG_XMITCTL_START;
1567 if (np->mac_in_use)
1568 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1569 writel(tx_ctrl, base + NvRegTransmitterControl);
1570 pci_push(base);
1571 }
1572
1573 static void nv_stop_tx(struct net_device *dev)
1574 {
1575 struct fe_priv *np = netdev_priv(dev);
1576 u8 __iomem *base = get_hwbase(dev);
1577 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1578
1579 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1580 if (!np->mac_in_use)
1581 tx_ctrl &= ~NVREG_XMITCTL_START;
1582 else
1583 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1584 writel(tx_ctrl, base + NvRegTransmitterControl);
1585 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1586 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1587 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1588
1589 udelay(NV_TXSTOP_DELAY2);
1590 if (!np->mac_in_use)
1591 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1592 base + NvRegTransmitPoll);
1593 }
1594
1595 static void nv_start_rxtx(struct net_device *dev)
1596 {
1597 nv_start_rx(dev);
1598 nv_start_tx(dev);
1599 }
1600
1601 static void nv_stop_rxtx(struct net_device *dev)
1602 {
1603 nv_stop_rx(dev);
1604 nv_stop_tx(dev);
1605 }
1606
1607 static void nv_txrx_reset(struct net_device *dev)
1608 {
1609 struct fe_priv *np = netdev_priv(dev);
1610 u8 __iomem *base = get_hwbase(dev);
1611
1612 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1613 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1614 pci_push(base);
1615 udelay(NV_TXRX_RESET_DELAY);
1616 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1617 pci_push(base);
1618 }
1619
1620 static void nv_mac_reset(struct net_device *dev)
1621 {
1622 struct fe_priv *np = netdev_priv(dev);
1623 u8 __iomem *base = get_hwbase(dev);
1624 u32 temp1, temp2, temp3;
1625
1626 dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1627
1628 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1629 pci_push(base);
1630
1631 /* save registers since they will be cleared on reset */
1632 temp1 = readl(base + NvRegMacAddrA);
1633 temp2 = readl(base + NvRegMacAddrB);
1634 temp3 = readl(base + NvRegTransmitPoll);
1635
1636 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1637 pci_push(base);
1638 udelay(NV_MAC_RESET_DELAY);
1639 writel(0, base + NvRegMacReset);
1640 pci_push(base);
1641 udelay(NV_MAC_RESET_DELAY);
1642
1643 /* restore saved registers */
1644 writel(temp1, base + NvRegMacAddrA);
1645 writel(temp2, base + NvRegMacAddrB);
1646 writel(temp3, base + NvRegTransmitPoll);
1647
1648 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1649 pci_push(base);
1650 }
1651
1652 static void nv_get_hw_stats(struct net_device *dev)
1653 {
1654 struct fe_priv *np = netdev_priv(dev);
1655 u8 __iomem *base = get_hwbase(dev);
1656
1657 np->estats.tx_bytes += readl(base + NvRegTxCnt);
1658 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1659 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1660 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1661 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1662 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1663 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1664 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1665 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1666 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1667 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1668 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1669 np->estats.rx_runt += readl(base + NvRegRxRunt);
1670 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1671 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1672 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1673 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1674 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1675 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1676 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1677 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1678 np->estats.rx_packets =
1679 np->estats.rx_unicast +
1680 np->estats.rx_multicast +
1681 np->estats.rx_broadcast;
1682 np->estats.rx_errors_total =
1683 np->estats.rx_crc_errors +
1684 np->estats.rx_over_errors +
1685 np->estats.rx_frame_error +
1686 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1687 np->estats.rx_late_collision +
1688 np->estats.rx_runt +
1689 np->estats.rx_frame_too_long;
1690 np->estats.tx_errors_total =
1691 np->estats.tx_late_collision +
1692 np->estats.tx_fifo_errors +
1693 np->estats.tx_carrier_errors +
1694 np->estats.tx_excess_deferral +
1695 np->estats.tx_retry_error;
1696
1697 if (np->driver_data & DEV_HAS_STATISTICS_V2) {
1698 np->estats.tx_deferral += readl(base + NvRegTxDef);
1699 np->estats.tx_packets += readl(base + NvRegTxFrame);
1700 np->estats.rx_bytes += readl(base + NvRegRxCnt);
1701 np->estats.tx_pause += readl(base + NvRegTxPause);
1702 np->estats.rx_pause += readl(base + NvRegRxPause);
1703 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1704 }
1705
1706 if (np->driver_data & DEV_HAS_STATISTICS_V3) {
1707 np->estats.tx_unicast += readl(base + NvRegTxUnicast);
1708 np->estats.tx_multicast += readl(base + NvRegTxMulticast);
1709 np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
1710 }
1711 }
1712
1713 /*
1714 * nv_get_stats: dev->get_stats function
1715 * Get latest stats value from the nic.
1716 * Called with read_lock(&dev_base_lock) held for read -
1717 * only synchronized against unregister_netdevice.
1718 */
1719 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1720 {
1721 struct fe_priv *np = netdev_priv(dev);
1722
1723 /* If the nic supports hw counters then retrieve latest values */
1724 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
1725 nv_get_hw_stats(dev);
1726
1727 /* copy to net_device stats */
1728 dev->stats.tx_bytes = np->estats.tx_bytes;
1729 dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
1730 dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
1731 dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
1732 dev->stats.rx_over_errors = np->estats.rx_over_errors;
1733 dev->stats.rx_errors = np->estats.rx_errors_total;
1734 dev->stats.tx_errors = np->estats.tx_errors_total;
1735 }
1736
1737 return &dev->stats;
1738 }
1739
1740 /*
1741 * nv_alloc_rx: fill rx ring entries.
1742 * Return 1 if the allocations for the skbs failed and the
1743 * rx engine is without Available descriptors
1744 */
1745 static int nv_alloc_rx(struct net_device *dev)
1746 {
1747 struct fe_priv *np = netdev_priv(dev);
1748 struct ring_desc* less_rx;
1749
1750 less_rx = np->get_rx.orig;
1751 if (less_rx-- == np->first_rx.orig)
1752 less_rx = np->last_rx.orig;
1753
1754 while (np->put_rx.orig != less_rx) {
1755 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1756 if (skb) {
1757 np->put_rx_ctx->skb = skb;
1758 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1759 skb->data,
1760 skb_tailroom(skb),
1761 PCI_DMA_FROMDEVICE);
1762 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1763 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1764 wmb();
1765 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1766 if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1767 np->put_rx.orig = np->first_rx.orig;
1768 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1769 np->put_rx_ctx = np->first_rx_ctx;
1770 } else {
1771 return 1;
1772 }
1773 }
1774 return 0;
1775 }
1776
1777 static int nv_alloc_rx_optimized(struct net_device *dev)
1778 {
1779 struct fe_priv *np = netdev_priv(dev);
1780 struct ring_desc_ex* less_rx;
1781
1782 less_rx = np->get_rx.ex;
1783 if (less_rx-- == np->first_rx.ex)
1784 less_rx = np->last_rx.ex;
1785
1786 while (np->put_rx.ex != less_rx) {
1787 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1788 if (skb) {
1789 np->put_rx_ctx->skb = skb;
1790 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1791 skb->data,
1792 skb_tailroom(skb),
1793 PCI_DMA_FROMDEVICE);
1794 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1795 np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
1796 np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
1797 wmb();
1798 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1799 if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1800 np->put_rx.ex = np->first_rx.ex;
1801 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1802 np->put_rx_ctx = np->first_rx_ctx;
1803 } else {
1804 return 1;
1805 }
1806 }
1807 return 0;
1808 }
1809
1810 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1811 static void nv_do_rx_refill(unsigned long data)
1812 {
1813 struct net_device *dev = (struct net_device *) data;
1814 struct fe_priv *np = netdev_priv(dev);
1815
1816 /* Just reschedule NAPI rx processing */
1817 napi_schedule(&np->napi);
1818 }
1819
1820 static void nv_init_rx(struct net_device *dev)
1821 {
1822 struct fe_priv *np = netdev_priv(dev);
1823 int i;
1824
1825 np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
1826
1827 if (!nv_optimized(np))
1828 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1829 else
1830 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1831 np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
1832 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1833
1834 for (i = 0; i < np->rx_ring_size; i++) {
1835 if (!nv_optimized(np)) {
1836 np->rx_ring.orig[i].flaglen = 0;
1837 np->rx_ring.orig[i].buf = 0;
1838 } else {
1839 np->rx_ring.ex[i].flaglen = 0;
1840 np->rx_ring.ex[i].txvlan = 0;
1841 np->rx_ring.ex[i].bufhigh = 0;
1842 np->rx_ring.ex[i].buflow = 0;
1843 }
1844 np->rx_skb[i].skb = NULL;
1845 np->rx_skb[i].dma = 0;
1846 }
1847 }
1848
1849 static void nv_init_tx(struct net_device *dev)
1850 {
1851 struct fe_priv *np = netdev_priv(dev);
1852 int i;
1853
1854 np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
1855
1856 if (!nv_optimized(np))
1857 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1858 else
1859 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1860 np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
1861 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1862 np->tx_pkts_in_progress = 0;
1863 np->tx_change_owner = NULL;
1864 np->tx_end_flip = NULL;
1865 np->tx_stop = 0;
1866
1867 for (i = 0; i < np->tx_ring_size; i++) {
1868 if (!nv_optimized(np)) {
1869 np->tx_ring.orig[i].flaglen = 0;
1870 np->tx_ring.orig[i].buf = 0;
1871 } else {
1872 np->tx_ring.ex[i].flaglen = 0;
1873 np->tx_ring.ex[i].txvlan = 0;
1874 np->tx_ring.ex[i].bufhigh = 0;
1875 np->tx_ring.ex[i].buflow = 0;
1876 }
1877 np->tx_skb[i].skb = NULL;
1878 np->tx_skb[i].dma = 0;
1879 np->tx_skb[i].dma_len = 0;
1880 np->tx_skb[i].dma_single = 0;
1881 np->tx_skb[i].first_tx_desc = NULL;
1882 np->tx_skb[i].next_tx_ctx = NULL;
1883 }
1884 }
1885
1886 static int nv_init_ring(struct net_device *dev)
1887 {
1888 struct fe_priv *np = netdev_priv(dev);
1889
1890 nv_init_tx(dev);
1891 nv_init_rx(dev);
1892
1893 if (!nv_optimized(np))
1894 return nv_alloc_rx(dev);
1895 else
1896 return nv_alloc_rx_optimized(dev);
1897 }
1898
1899 static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
1900 {
1901 if (tx_skb->dma) {
1902 if (tx_skb->dma_single)
1903 pci_unmap_single(np->pci_dev, tx_skb->dma,
1904 tx_skb->dma_len,
1905 PCI_DMA_TODEVICE);
1906 else
1907 pci_unmap_page(np->pci_dev, tx_skb->dma,
1908 tx_skb->dma_len,
1909 PCI_DMA_TODEVICE);
1910 tx_skb->dma = 0;
1911 }
1912 }
1913
1914 static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
1915 {
1916 nv_unmap_txskb(np, tx_skb);
1917 if (tx_skb->skb) {
1918 dev_kfree_skb_any(tx_skb->skb);
1919 tx_skb->skb = NULL;
1920 return 1;
1921 }
1922 return 0;
1923 }
1924
1925 static void nv_drain_tx(struct net_device *dev)
1926 {
1927 struct fe_priv *np = netdev_priv(dev);
1928 unsigned int i;
1929
1930 for (i = 0; i < np->tx_ring_size; i++) {
1931 if (!nv_optimized(np)) {
1932 np->tx_ring.orig[i].flaglen = 0;
1933 np->tx_ring.orig[i].buf = 0;
1934 } else {
1935 np->tx_ring.ex[i].flaglen = 0;
1936 np->tx_ring.ex[i].txvlan = 0;
1937 np->tx_ring.ex[i].bufhigh = 0;
1938 np->tx_ring.ex[i].buflow = 0;
1939 }
1940 if (nv_release_txskb(np, &np->tx_skb[i]))
1941 dev->stats.tx_dropped++;
1942 np->tx_skb[i].dma = 0;
1943 np->tx_skb[i].dma_len = 0;
1944 np->tx_skb[i].dma_single = 0;
1945 np->tx_skb[i].first_tx_desc = NULL;
1946 np->tx_skb[i].next_tx_ctx = NULL;
1947 }
1948 np->tx_pkts_in_progress = 0;
1949 np->tx_change_owner = NULL;
1950 np->tx_end_flip = NULL;
1951 }
1952
1953 static void nv_drain_rx(struct net_device *dev)
1954 {
1955 struct fe_priv *np = netdev_priv(dev);
1956 int i;
1957
1958 for (i = 0; i < np->rx_ring_size; i++) {
1959 if (!nv_optimized(np)) {
1960 np->rx_ring.orig[i].flaglen = 0;
1961 np->rx_ring.orig[i].buf = 0;
1962 } else {
1963 np->rx_ring.ex[i].flaglen = 0;
1964 np->rx_ring.ex[i].txvlan = 0;
1965 np->rx_ring.ex[i].bufhigh = 0;
1966 np->rx_ring.ex[i].buflow = 0;
1967 }
1968 wmb();
1969 if (np->rx_skb[i].skb) {
1970 pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
1971 (skb_end_pointer(np->rx_skb[i].skb) -
1972 np->rx_skb[i].skb->data),
1973 PCI_DMA_FROMDEVICE);
1974 dev_kfree_skb(np->rx_skb[i].skb);
1975 np->rx_skb[i].skb = NULL;
1976 }
1977 }
1978 }
1979
1980 static void nv_drain_rxtx(struct net_device *dev)
1981 {
1982 nv_drain_tx(dev);
1983 nv_drain_rx(dev);
1984 }
1985
1986 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
1987 {
1988 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
1989 }
1990
1991 static void nv_legacybackoff_reseed(struct net_device *dev)
1992 {
1993 u8 __iomem *base = get_hwbase(dev);
1994 u32 reg;
1995 u32 low;
1996 int tx_status = 0;
1997
1998 reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
1999 get_random_bytes(&low, sizeof(low));
2000 reg |= low & NVREG_SLOTTIME_MASK;
2001
2002 /* Need to stop tx before change takes effect.
2003 * Caller has already gained np->lock.
2004 */
2005 tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
2006 if (tx_status)
2007 nv_stop_tx(dev);
2008 nv_stop_rx(dev);
2009 writel(reg, base + NvRegSlotTime);
2010 if (tx_status)
2011 nv_start_tx(dev);
2012 nv_start_rx(dev);
2013 }
2014
2015 /* Gear Backoff Seeds */
2016 #define BACKOFF_SEEDSET_ROWS 8
2017 #define BACKOFF_SEEDSET_LFSRS 15
2018
2019 /* Known Good seed sets */
2020 static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2021 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2022 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
2023 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2024 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
2025 {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
2026 {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
2027 {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
2028 {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
2029
2030 static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2031 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2032 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2033 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
2034 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2035 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2036 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2037 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2038 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
2039
2040 static void nv_gear_backoff_reseed(struct net_device *dev)
2041 {
2042 u8 __iomem *base = get_hwbase(dev);
2043 u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
2044 u32 temp, seedset, combinedSeed;
2045 int i;
2046
2047 /* Setup seed for free running LFSR */
2048 /* We are going to read the time stamp counter 3 times
2049 and swizzle bits around to increase randomness */
2050 get_random_bytes(&miniseed1, sizeof(miniseed1));
2051 miniseed1 &= 0x0fff;
2052 if (miniseed1 == 0)
2053 miniseed1 = 0xabc;
2054
2055 get_random_bytes(&miniseed2, sizeof(miniseed2));
2056 miniseed2 &= 0x0fff;
2057 if (miniseed2 == 0)
2058 miniseed2 = 0xabc;
2059 miniseed2_reversed =
2060 ((miniseed2 & 0xF00) >> 8) |
2061 (miniseed2 & 0x0F0) |
2062 ((miniseed2 & 0x00F) << 8);
2063
2064 get_random_bytes(&miniseed3, sizeof(miniseed3));
2065 miniseed3 &= 0x0fff;
2066 if (miniseed3 == 0)
2067 miniseed3 = 0xabc;
2068 miniseed3_reversed =
2069 ((miniseed3 & 0xF00) >> 8) |
2070 (miniseed3 & 0x0F0) |
2071 ((miniseed3 & 0x00F) << 8);
2072
2073 combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
2074 (miniseed2 ^ miniseed3_reversed);
2075
2076 /* Seeds can not be zero */
2077 if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
2078 combinedSeed |= 0x08;
2079 if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
2080 combinedSeed |= 0x8000;
2081
2082 /* No need to disable tx here */
2083 temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
2084 temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
2085 temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
2086 writel(temp,base + NvRegBackOffControl);
2087
2088 /* Setup seeds for all gear LFSRs. */
2089 get_random_bytes(&seedset, sizeof(seedset));
2090 seedset = seedset % BACKOFF_SEEDSET_ROWS;
2091 for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
2092 {
2093 temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
2094 temp |= main_seedset[seedset][i-1] & 0x3ff;
2095 temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
2096 writel(temp, base + NvRegBackOffControl);
2097 }
2098 }
2099
2100 /*
2101 * nv_start_xmit: dev->hard_start_xmit function
2102 * Called with netif_tx_lock held.
2103 */
2104 static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
2105 {
2106 struct fe_priv *np = netdev_priv(dev);
2107 u32 tx_flags = 0;
2108 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
2109 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2110 unsigned int i;
2111 u32 offset = 0;
2112 u32 bcnt;
2113 u32 size = skb_headlen(skb);
2114 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2115 u32 empty_slots;
2116 struct ring_desc* put_tx;
2117 struct ring_desc* start_tx;
2118 struct ring_desc* prev_tx;
2119 struct nv_skb_map* prev_tx_ctx;
2120 unsigned long flags;
2121
2122 /* add fragments to entries count */
2123 for (i = 0; i < fragments; i++) {
2124 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
2125 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2126 }
2127
2128 spin_lock_irqsave(&np->lock, flags);
2129 empty_slots = nv_get_empty_tx_slots(np);
2130 if (unlikely(empty_slots <= entries)) {
2131 netif_stop_queue(dev);
2132 np->tx_stop = 1;
2133 spin_unlock_irqrestore(&np->lock, flags);
2134 return NETDEV_TX_BUSY;
2135 }
2136 spin_unlock_irqrestore(&np->lock, flags);
2137
2138 start_tx = put_tx = np->put_tx.orig;
2139
2140 /* setup the header buffer */
2141 do {
2142 prev_tx = put_tx;
2143 prev_tx_ctx = np->put_tx_ctx;
2144 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2145 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2146 PCI_DMA_TODEVICE);
2147 np->put_tx_ctx->dma_len = bcnt;
2148 np->put_tx_ctx->dma_single = 1;
2149 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2150 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2151
2152 tx_flags = np->tx_flags;
2153 offset += bcnt;
2154 size -= bcnt;
2155 if (unlikely(put_tx++ == np->last_tx.orig))
2156 put_tx = np->first_tx.orig;
2157 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2158 np->put_tx_ctx = np->first_tx_ctx;
2159 } while (size);
2160
2161 /* setup the fragments */
2162 for (i = 0; i < fragments; i++) {
2163 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2164 u32 size = frag->size;
2165 offset = 0;
2166
2167 do {
2168 prev_tx = put_tx;
2169 prev_tx_ctx = np->put_tx_ctx;
2170 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2171 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
2172 PCI_DMA_TODEVICE);
2173 np->put_tx_ctx->dma_len = bcnt;
2174 np->put_tx_ctx->dma_single = 0;
2175 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2176 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2177
2178 offset += bcnt;
2179 size -= bcnt;
2180 if (unlikely(put_tx++ == np->last_tx.orig))
2181 put_tx = np->first_tx.orig;
2182 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2183 np->put_tx_ctx = np->first_tx_ctx;
2184 } while (size);
2185 }
2186
2187 /* set last fragment flag */
2188 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
2189
2190 /* save skb in this slot's context area */
2191 prev_tx_ctx->skb = skb;
2192
2193 if (skb_is_gso(skb))
2194 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2195 else
2196 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2197 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2198
2199 spin_lock_irqsave(&np->lock, flags);
2200
2201 /* set tx flags */
2202 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2203 np->put_tx.orig = put_tx;
2204
2205 spin_unlock_irqrestore(&np->lock, flags);
2206
2207 dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
2208 dev->name, entries, tx_flags_extra);
2209 {
2210 int j;
2211 for (j=0; j<64; j++) {
2212 if ((j%16) == 0)
2213 dprintk("\n%03x:", j);
2214 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2215 }
2216 dprintk("\n");
2217 }
2218
2219 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2220 return NETDEV_TX_OK;
2221 }
2222
2223 static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb,
2224 struct net_device *dev)
2225 {
2226 struct fe_priv *np = netdev_priv(dev);
2227 u32 tx_flags = 0;
2228 u32 tx_flags_extra;
2229 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2230 unsigned int i;
2231 u32 offset = 0;
2232 u32 bcnt;
2233 u32 size = skb_headlen(skb);
2234 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2235 u32 empty_slots;
2236 struct ring_desc_ex* put_tx;
2237 struct ring_desc_ex* start_tx;
2238 struct ring_desc_ex* prev_tx;
2239 struct nv_skb_map* prev_tx_ctx;
2240 struct nv_skb_map* start_tx_ctx;
2241 unsigned long flags;
2242
2243 /* add fragments to entries count */
2244 for (i = 0; i < fragments; i++) {
2245 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
2246 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2247 }
2248
2249 spin_lock_irqsave(&np->lock, flags);
2250 empty_slots = nv_get_empty_tx_slots(np);
2251 if (unlikely(empty_slots <= entries)) {
2252 netif_stop_queue(dev);
2253 np->tx_stop = 1;
2254 spin_unlock_irqrestore(&np->lock, flags);
2255 return NETDEV_TX_BUSY;
2256 }
2257 spin_unlock_irqrestore(&np->lock, flags);
2258
2259 start_tx = put_tx = np->put_tx.ex;
2260 start_tx_ctx = np->put_tx_ctx;
2261
2262 /* setup the header buffer */
2263 do {
2264 prev_tx = put_tx;
2265 prev_tx_ctx = np->put_tx_ctx;
2266 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2267 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2268 PCI_DMA_TODEVICE);
2269 np->put_tx_ctx->dma_len = bcnt;
2270 np->put_tx_ctx->dma_single = 1;
2271 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2272 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2273 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2274
2275 tx_flags = NV_TX2_VALID;
2276 offset += bcnt;
2277 size -= bcnt;
2278 if (unlikely(put_tx++ == np->last_tx.ex))
2279 put_tx = np->first_tx.ex;
2280 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2281 np->put_tx_ctx = np->first_tx_ctx;
2282 } while (size);
2283
2284 /* setup the fragments */
2285 for (i = 0; i < fragments; i++) {
2286 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2287 u32 size = frag->size;
2288 offset = 0;
2289
2290 do {
2291 prev_tx = put_tx;
2292 prev_tx_ctx = np->put_tx_ctx;
2293 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2294 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
2295 PCI_DMA_TODEVICE);
2296 np->put_tx_ctx->dma_len = bcnt;
2297 np->put_tx_ctx->dma_single = 0;
2298 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2299 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2300 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2301
2302 offset += bcnt;
2303 size -= bcnt;
2304 if (unlikely(put_tx++ == np->last_tx.ex))
2305 put_tx = np->first_tx.ex;
2306 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2307 np->put_tx_ctx = np->first_tx_ctx;
2308 } while (size);
2309 }
2310
2311 /* set last fragment flag */
2312 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
2313
2314 /* save skb in this slot's context area */
2315 prev_tx_ctx->skb = skb;
2316
2317 if (skb_is_gso(skb))
2318 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2319 else
2320 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2321 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2322
2323 /* vlan tag */
2324 if (likely(!np->vlangrp)) {
2325 start_tx->txvlan = 0;
2326 } else {
2327 if (vlan_tx_tag_present(skb))
2328 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
2329 else
2330 start_tx->txvlan = 0;
2331 }
2332
2333 spin_lock_irqsave(&np->lock, flags);
2334
2335 if (np->tx_limit) {
2336 /* Limit the number of outstanding tx. Setup all fragments, but
2337 * do not set the VALID bit on the first descriptor. Save a pointer
2338 * to that descriptor and also for next skb_map element.
2339 */
2340
2341 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
2342 if (!np->tx_change_owner)
2343 np->tx_change_owner = start_tx_ctx;
2344
2345 /* remove VALID bit */
2346 tx_flags &= ~NV_TX2_VALID;
2347 start_tx_ctx->first_tx_desc = start_tx;
2348 start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
2349 np->tx_end_flip = np->put_tx_ctx;
2350 } else {
2351 np->tx_pkts_in_progress++;
2352 }
2353 }
2354
2355 /* set tx flags */
2356 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2357 np->put_tx.ex = put_tx;
2358
2359 spin_unlock_irqrestore(&np->lock, flags);
2360
2361 dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
2362 dev->name, entries, tx_flags_extra);
2363 {
2364 int j;
2365 for (j=0; j<64; j++) {
2366 if ((j%16) == 0)
2367 dprintk("\n%03x:", j);
2368 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2369 }
2370 dprintk("\n");
2371 }
2372
2373 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2374 return NETDEV_TX_OK;
2375 }
2376
2377 static inline void nv_tx_flip_ownership(struct net_device *dev)
2378 {
2379 struct fe_priv *np = netdev_priv(dev);
2380
2381 np->tx_pkts_in_progress--;
2382 if (np->tx_change_owner) {
2383 np->tx_change_owner->first_tx_desc->flaglen |=
2384 cpu_to_le32(NV_TX2_VALID);
2385 np->tx_pkts_in_progress++;
2386
2387 np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
2388 if (np->tx_change_owner == np->tx_end_flip)
2389 np->tx_change_owner = NULL;
2390
2391 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2392 }
2393 }
2394
2395 /*
2396 * nv_tx_done: check for completed packets, release the skbs.
2397 *
2398 * Caller must own np->lock.
2399 */
2400 static int nv_tx_done(struct net_device *dev, int limit)
2401 {
2402 struct fe_priv *np = netdev_priv(dev);
2403 u32 flags;
2404 int tx_work = 0;
2405 struct ring_desc* orig_get_tx = np->get_tx.orig;
2406
2407 while ((np->get_tx.orig != np->put_tx.orig) &&
2408 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
2409 (tx_work < limit)) {
2410
2411 dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
2412 dev->name, flags);
2413
2414 nv_unmap_txskb(np, np->get_tx_ctx);
2415
2416 if (np->desc_ver == DESC_VER_1) {
2417 if (flags & NV_TX_LASTPACKET) {
2418 if (flags & NV_TX_ERROR) {
2419 if (flags & NV_TX_UNDERFLOW)
2420 dev->stats.tx_fifo_errors++;
2421 if (flags & NV_TX_CARRIERLOST)
2422 dev->stats.tx_carrier_errors++;
2423 if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
2424 nv_legacybackoff_reseed(dev);
2425 dev->stats.tx_errors++;
2426 } else {
2427 dev->stats.tx_packets++;
2428 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2429 }
2430 dev_kfree_skb_any(np->get_tx_ctx->skb);
2431 np->get_tx_ctx->skb = NULL;
2432 tx_work++;
2433 }
2434 } else {
2435 if (flags & NV_TX2_LASTPACKET) {
2436 if (flags & NV_TX2_ERROR) {
2437 if (flags & NV_TX2_UNDERFLOW)
2438 dev->stats.tx_fifo_errors++;
2439 if (flags & NV_TX2_CARRIERLOST)
2440 dev->stats.tx_carrier_errors++;
2441 if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
2442 nv_legacybackoff_reseed(dev);
2443 dev->stats.tx_errors++;
2444 } else {
2445 dev->stats.tx_packets++;
2446 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2447 }
2448 dev_kfree_skb_any(np->get_tx_ctx->skb);
2449 np->get_tx_ctx->skb = NULL;
2450 tx_work++;
2451 }
2452 }
2453 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
2454 np->get_tx.orig = np->first_tx.orig;
2455 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2456 np->get_tx_ctx = np->first_tx_ctx;
2457 }
2458 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
2459 np->tx_stop = 0;
2460 netif_wake_queue(dev);
2461 }
2462 return tx_work;
2463 }
2464
2465 static int nv_tx_done_optimized(struct net_device *dev, int limit)
2466 {
2467 struct fe_priv *np = netdev_priv(dev);
2468 u32 flags;
2469 int tx_work = 0;
2470 struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
2471
2472 while ((np->get_tx.ex != np->put_tx.ex) &&
2473 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) &&
2474 (tx_work < limit)) {
2475
2476 dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
2477 dev->name, flags);
2478
2479 nv_unmap_txskb(np, np->get_tx_ctx);
2480
2481 if (flags & NV_TX2_LASTPACKET) {
2482 if (!(flags & NV_TX2_ERROR))
2483 dev->stats.tx_packets++;
2484 else {
2485 if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
2486 if (np->driver_data & DEV_HAS_GEAR_MODE)
2487 nv_gear_backoff_reseed(dev);
2488 else
2489 nv_legacybackoff_reseed(dev);
2490 }
2491 }
2492
2493 dev_kfree_skb_any(np->get_tx_ctx->skb);
2494 np->get_tx_ctx->skb = NULL;
2495 tx_work++;
2496
2497 if (np->tx_limit) {
2498 nv_tx_flip_ownership(dev);
2499 }
2500 }
2501 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
2502 np->get_tx.ex = np->first_tx.ex;
2503 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2504 np->get_tx_ctx = np->first_tx_ctx;
2505 }
2506 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
2507 np->tx_stop = 0;
2508 netif_wake_queue(dev);
2509 }
2510 return tx_work;
2511 }
2512
2513 /*
2514 * nv_tx_timeout: dev->tx_timeout function
2515 * Called with netif_tx_lock held.
2516 */
2517 static void nv_tx_timeout(struct net_device *dev)
2518 {
2519 struct fe_priv *np = netdev_priv(dev);
2520 u8 __iomem *base = get_hwbase(dev);
2521 u32 status;
2522 union ring_type put_tx;
2523 int saved_tx_limit;
2524
2525 if (np->msi_flags & NV_MSI_X_ENABLED)
2526 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2527 else
2528 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2529
2530 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
2531
2532 {
2533 int i;
2534
2535 printk(KERN_INFO "%s: Ring at %lx\n",
2536 dev->name, (unsigned long)np->ring_addr);
2537 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
2538 for (i=0;i<=np->register_size;i+= 32) {
2539 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
2540 i,
2541 readl(base + i + 0), readl(base + i + 4),
2542 readl(base + i + 8), readl(base + i + 12),
2543 readl(base + i + 16), readl(base + i + 20),
2544 readl(base + i + 24), readl(base + i + 28));
2545 }
2546 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
2547 for (i=0;i<np->tx_ring_size;i+= 4) {
2548 if (!nv_optimized(np)) {
2549 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
2550 i,
2551 le32_to_cpu(np->tx_ring.orig[i].buf),
2552 le32_to_cpu(np->tx_ring.orig[i].flaglen),
2553 le32_to_cpu(np->tx_ring.orig[i+1].buf),
2554 le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2555 le32_to_cpu(np->tx_ring.orig[i+2].buf),
2556 le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2557 le32_to_cpu(np->tx_ring.orig[i+3].buf),
2558 le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2559 } else {
2560 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
2561 i,
2562 le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2563 le32_to_cpu(np->tx_ring.ex[i].buflow),
2564 le32_to_cpu(np->tx_ring.ex[i].flaglen),
2565 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2566 le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2567 le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2568 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2569 le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2570 le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2571 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2572 le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2573 le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2574 }
2575 }
2576 }
2577
2578 spin_lock_irq(&np->lock);
2579
2580 /* 1) stop tx engine */
2581 nv_stop_tx(dev);
2582
2583 /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
2584 saved_tx_limit = np->tx_limit;
2585 np->tx_limit = 0; /* prevent giving HW any limited pkts */
2586 np->tx_stop = 0; /* prevent waking tx queue */
2587 if (!nv_optimized(np))
2588 nv_tx_done(dev, np->tx_ring_size);
2589 else
2590 nv_tx_done_optimized(dev, np->tx_ring_size);
2591
2592 /* save current HW postion */
2593 if (np->tx_change_owner)
2594 put_tx.ex = np->tx_change_owner->first_tx_desc;
2595 else
2596 put_tx = np->put_tx;
2597
2598 /* 3) clear all tx state */
2599 nv_drain_tx(dev);
2600 nv_init_tx(dev);
2601
2602 /* 4) restore state to current HW position */
2603 np->get_tx = np->put_tx = put_tx;
2604 np->tx_limit = saved_tx_limit;
2605
2606 /* 5) restart tx engine */
2607 nv_start_tx(dev);
2608 netif_wake_queue(dev);
2609 spin_unlock_irq(&np->lock);
2610 }
2611
2612 /*
2613 * Called when the nic notices a mismatch between the actual data len on the
2614 * wire and the len indicated in the 802 header
2615 */
2616 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2617 {
2618 int hdrlen; /* length of the 802 header */
2619 int protolen; /* length as stored in the proto field */
2620
2621 /* 1) calculate len according to header */
2622 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2623 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
2624 hdrlen = VLAN_HLEN;
2625 } else {
2626 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
2627 hdrlen = ETH_HLEN;
2628 }
2629 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
2630 dev->name, datalen, protolen, hdrlen);
2631 if (protolen > ETH_DATA_LEN)
2632 return datalen; /* Value in proto field not a len, no checks possible */
2633
2634 protolen += hdrlen;
2635 /* consistency checks: */
2636 if (datalen > ETH_ZLEN) {
2637 if (datalen >= protolen) {
2638 /* more data on wire than in 802 header, trim of
2639 * additional data.
2640 */
2641 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2642 dev->name, protolen);
2643 return protolen;
2644 } else {
2645 /* less data on wire than mentioned in header.
2646 * Discard the packet.
2647 */
2648 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
2649 dev->name);
2650 return -1;
2651 }
2652 } else {
2653 /* short packet. Accept only if 802 values are also short */
2654 if (protolen > ETH_ZLEN) {
2655 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
2656 dev->name);
2657 return -1;
2658 }
2659 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2660 dev->name, datalen);
2661 return datalen;
2662 }
2663 }
2664
2665 static int nv_rx_process(struct net_device *dev, int limit)
2666 {
2667 struct fe_priv *np = netdev_priv(dev);
2668 u32 flags;
2669 int rx_work = 0;
2670 struct sk_buff *skb;
2671 int len;
2672
2673 while((np->get_rx.orig != np->put_rx.orig) &&
2674 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2675 (rx_work < limit)) {
2676
2677 dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
2678 dev->name, flags);
2679
2680 /*
2681 * the packet is for us - immediately tear down the pci mapping.
2682 * TODO: check if a prefetch of the first cacheline improves
2683 * the performance.
2684 */
2685 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2686 np->get_rx_ctx->dma_len,
2687 PCI_DMA_FROMDEVICE);
2688 skb = np->get_rx_ctx->skb;
2689 np->get_rx_ctx->skb = NULL;
2690
2691 {
2692 int j;
2693 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2694 for (j=0; j<64; j++) {
2695 if ((j%16) == 0)
2696 dprintk("\n%03x:", j);
2697 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2698 }
2699 dprintk("\n");
2700 }
2701 /* look at what we actually got: */
2702 if (np->desc_ver == DESC_VER_1) {
2703 if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2704 len = flags & LEN_MASK_V1;
2705 if (unlikely(flags & NV_RX_ERROR)) {
2706 if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
2707 len = nv_getlen(dev, skb->data, len);
2708 if (len < 0) {
2709 dev->stats.rx_errors++;
2710 dev_kfree_skb(skb);
2711 goto next_pkt;
2712 }
2713 }
2714 /* framing errors are soft errors */
2715 else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
2716 if (flags & NV_RX_SUBSTRACT1) {
2717 len--;
2718 }
2719 }
2720 /* the rest are hard errors */
2721 else {
2722 if (flags & NV_RX_MISSEDFRAME)
2723 dev->stats.rx_missed_errors++;
2724 if (flags & NV_RX_CRCERR)
2725 dev->stats.rx_crc_errors++;
2726 if (flags & NV_RX_OVERFLOW)
2727 dev->stats.rx_over_errors++;
2728 dev->stats.rx_errors++;
2729 dev_kfree_skb(skb);
2730 goto next_pkt;
2731 }
2732 }
2733 } else {
2734 dev_kfree_skb(skb);
2735 goto next_pkt;
2736 }
2737 } else {
2738 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2739 len = flags & LEN_MASK_V2;
2740 if (unlikely(flags & NV_RX2_ERROR)) {
2741 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2742 len = nv_getlen(dev, skb->data, len);
2743 if (len < 0) {
2744 dev->stats.rx_errors++;
2745 dev_kfree_skb(skb);
2746 goto next_pkt;
2747 }
2748 }
2749 /* framing errors are soft errors */
2750 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2751 if (flags & NV_RX2_SUBSTRACT1) {
2752 len--;
2753 }
2754 }
2755 /* the rest are hard errors */
2756 else {
2757 if (flags & NV_RX2_CRCERR)
2758 dev->stats.rx_crc_errors++;
2759 if (flags & NV_RX2_OVERFLOW)
2760 dev->stats.rx_over_errors++;
2761 dev->stats.rx_errors++;
2762 dev_kfree_skb(skb);
2763 goto next_pkt;
2764 }
2765 }
2766 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2767 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2768 skb->ip_summed = CHECKSUM_UNNECESSARY;
2769 } else {
2770 dev_kfree_skb(skb);
2771 goto next_pkt;
2772 }
2773 }
2774 /* got a valid packet - forward it to the network core */
2775 skb_put(skb, len);
2776 skb->protocol = eth_type_trans(skb, dev);
2777 dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
2778 dev->name, len, skb->protocol);
2779 napi_gro_receive(&np->napi, skb);
2780 dev->stats.rx_packets++;
2781 dev->stats.rx_bytes += len;
2782 next_pkt:
2783 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2784 np->get_rx.orig = np->first_rx.orig;
2785 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2786 np->get_rx_ctx = np->first_rx_ctx;
2787
2788 rx_work++;
2789 }
2790
2791 return rx_work;
2792 }
2793
2794 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2795 {
2796 struct fe_priv *np = netdev_priv(dev);
2797 u32 flags;
2798 u32 vlanflags = 0;
2799 int rx_work = 0;
2800 struct sk_buff *skb;
2801 int len;
2802
2803 while((np->get_rx.ex != np->put_rx.ex) &&
2804 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2805 (rx_work < limit)) {
2806
2807 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
2808 dev->name, flags);
2809
2810 /*
2811 * the packet is for us - immediately tear down the pci mapping.
2812 * TODO: check if a prefetch of the first cacheline improves
2813 * the performance.
2814 */
2815 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2816 np->get_rx_ctx->dma_len,
2817 PCI_DMA_FROMDEVICE);
2818 skb = np->get_rx_ctx->skb;
2819 np->get_rx_ctx->skb = NULL;
2820
2821 {
2822 int j;
2823 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2824 for (j=0; j<64; j++) {
2825 if ((j%16) == 0)
2826 dprintk("\n%03x:", j);
2827 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2828 }
2829 dprintk("\n");
2830 }
2831 /* look at what we actually got: */
2832 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2833 len = flags & LEN_MASK_V2;
2834 if (unlikely(flags & NV_RX2_ERROR)) {
2835 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2836 len = nv_getlen(dev, skb->data, len);
2837 if (len < 0) {
2838 dev_kfree_skb(skb);
2839 goto next_pkt;
2840 }
2841 }
2842 /* framing errors are soft errors */
2843 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2844 if (flags & NV_RX2_SUBSTRACT1) {
2845 len--;
2846 }
2847 }
2848 /* the rest are hard errors */
2849 else {
2850 dev_kfree_skb(skb);
2851 goto next_pkt;
2852 }
2853 }
2854
2855 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2856 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2857 skb->ip_summed = CHECKSUM_UNNECESSARY;
2858
2859 /* got a valid packet - forward it to the network core */
2860 skb_put(skb, len);
2861 skb->protocol = eth_type_trans(skb, dev);
2862 prefetch(skb->data);
2863
2864 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
2865 dev->name, len, skb->protocol);
2866
2867 if (likely(!np->vlangrp)) {
2868 napi_gro_receive(&np->napi, skb);
2869 } else {
2870 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
2871 if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
2872 vlan_gro_receive(&np->napi, np->vlangrp,
2873 vlanflags & NV_RX3_VLAN_TAG_MASK, skb);
2874 } else {
2875 napi_gro_receive(&np->napi, skb);
2876 }
2877 }
2878
2879 dev->stats.rx_packets++;
2880 dev->stats.rx_bytes += len;
2881 } else {
2882 dev_kfree_skb(skb);
2883 }
2884 next_pkt:
2885 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
2886 np->get_rx.ex = np->first_rx.ex;
2887 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2888 np->get_rx_ctx = np->first_rx_ctx;
2889
2890 rx_work++;
2891 }
2892
2893 return rx_work;
2894 }
2895
2896 static void set_bufsize(struct net_device *dev)
2897 {
2898 struct fe_priv *np = netdev_priv(dev);
2899
2900 if (dev->mtu <= ETH_DATA_LEN)
2901 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
2902 else
2903 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
2904 }
2905
2906 /*
2907 * nv_change_mtu: dev->change_mtu function
2908 * Called with dev_base_lock held for read.
2909 */
2910 static int nv_change_mtu(struct net_device *dev, int new_mtu)
2911 {
2912 struct fe_priv *np = netdev_priv(dev);
2913 int old_mtu;
2914
2915 if (new_mtu < 64 || new_mtu > np->pkt_limit)
2916 return -EINVAL;
2917
2918 old_mtu = dev->mtu;
2919 dev->mtu = new_mtu;
2920
2921 /* return early if the buffer sizes will not change */
2922 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
2923 return 0;
2924 if (old_mtu == new_mtu)
2925 return 0;
2926
2927 /* synchronized against open : rtnl_lock() held by caller */
2928 if (netif_running(dev)) {
2929 u8 __iomem *base = get_hwbase(dev);
2930 /*
2931 * It seems that the nic preloads valid ring entries into an
2932 * internal buffer. The procedure for flushing everything is
2933 * guessed, there is probably a simpler approach.
2934 * Changing the MTU is a rare event, it shouldn't matter.
2935 */
2936 nv_disable_irq(dev);
2937 nv_napi_disable(dev);
2938 netif_tx_lock_bh(dev);
2939 netif_addr_lock(dev);
2940 spin_lock(&np->lock);
2941 /* stop engines */
2942 nv_stop_rxtx(dev);
2943 nv_txrx_reset(dev);
2944 /* drain rx queue */
2945 nv_drain_rxtx(dev);
2946 /* reinit driver view of the rx queue */
2947 set_bufsize(dev);
2948 if (nv_init_ring(dev)) {
2949 if (!np->in_shutdown)
2950 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2951 }
2952 /* reinit nic view of the rx queue */
2953 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2954 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2955 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
2956 base + NvRegRingSizes);
2957 pci_push(base);
2958 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2959 pci_push(base);
2960
2961 /* restart rx engine */
2962 nv_start_rxtx(dev);
2963 spin_unlock(&np->lock);
2964 netif_addr_unlock(dev);
2965 netif_tx_unlock_bh(dev);
2966 nv_napi_enable(dev);
2967 nv_enable_irq(dev);
2968 }
2969 return 0;
2970 }
2971
2972 static void nv_copy_mac_to_hw(struct net_device *dev)
2973 {
2974 u8 __iomem *base = get_hwbase(dev);
2975 u32 mac[2];
2976
2977 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
2978 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
2979 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
2980
2981 writel(mac[0], base + NvRegMacAddrA);
2982 writel(mac[1], base + NvRegMacAddrB);
2983 }
2984
2985 /*
2986 * nv_set_mac_address: dev->set_mac_address function
2987 * Called with rtnl_lock() held.
2988 */
2989 static int nv_set_mac_address(struct net_device *dev, void *addr)
2990 {
2991 struct fe_priv *np = netdev_priv(dev);
2992 struct sockaddr *macaddr = (struct sockaddr*)addr;
2993
2994 if (!is_valid_ether_addr(macaddr->sa_data))
2995 return -EADDRNOTAVAIL;
2996
2997 /* synchronized against open : rtnl_lock() held by caller */
2998 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
2999
3000 if (netif_running(dev)) {
3001 netif_tx_lock_bh(dev);
3002 netif_addr_lock(dev);
3003 spin_lock_irq(&np->lock);
3004
3005 /* stop rx engine */
3006 nv_stop_rx(dev);
3007
3008 /* set mac address */
3009 nv_copy_mac_to_hw(dev);
3010
3011 /* restart rx engine */
3012 nv_start_rx(dev);
3013 spin_unlock_irq(&np->lock);
3014 netif_addr_unlock(dev);
3015 netif_tx_unlock_bh(dev);
3016 } else {
3017 nv_copy_mac_to_hw(dev);
3018 }
3019 return 0;
3020 }
3021
3022 /*
3023 * nv_set_multicast: dev->set_multicast function
3024 * Called with netif_tx_lock held.
3025 */
3026 static void nv_set_multicast(struct net_device *dev)
3027 {
3028 struct fe_priv *np = netdev_priv(dev);
3029 u8 __iomem *base = get_hwbase(dev);
3030 u32 addr[2];
3031 u32 mask[2];
3032 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
3033
3034 memset(addr, 0, sizeof(addr));
3035 memset(mask, 0, sizeof(mask));
3036
3037 if (dev->flags & IFF_PROMISC) {
3038 pff |= NVREG_PFF_PROMISC;
3039 } else {
3040 pff |= NVREG_PFF_MYADDR;
3041
3042 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
3043 u32 alwaysOff[2];
3044 u32 alwaysOn[2];
3045
3046 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
3047 if (dev->flags & IFF_ALLMULTI) {
3048 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
3049 } else {
3050 struct netdev_hw_addr *ha;
3051
3052 netdev_for_each_mc_addr(ha, dev) {
3053 unsigned char *addr = ha->addr;
3054 u32 a, b;
3055
3056 a = le32_to_cpu(*(__le32 *) addr);
3057 b = le16_to_cpu(*(__le16 *) (&addr[4]));
3058 alwaysOn[0] &= a;
3059 alwaysOff[0] &= ~a;
3060 alwaysOn[1] &= b;
3061 alwaysOff[1] &= ~b;
3062 }
3063 }
3064 addr[0] = alwaysOn[0];
3065 addr[1] = alwaysOn[1];
3066 mask[0] = alwaysOn[0] | alwaysOff[0];
3067 mask[1] = alwaysOn[1] | alwaysOff[1];
3068 } else {
3069 mask[0] = NVREG_MCASTMASKA_NONE;
3070 mask[1] = NVREG_MCASTMASKB_NONE;
3071 }
3072 }
3073 addr[0] |= NVREG_MCASTADDRA_FORCE;
3074 pff |= NVREG_PFF_ALWAYS;
3075 spin_lock_irq(&np->lock);
3076 nv_stop_rx(dev);
3077 writel(addr[0], base + NvRegMulticastAddrA);
3078 writel(addr[1], base + NvRegMulticastAddrB);
3079 writel(mask[0], base + NvRegMulticastMaskA);
3080 writel(mask[1], base + NvRegMulticastMaskB);
3081 writel(pff, base + NvRegPacketFilterFlags);
3082 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
3083 dev->name);
3084 nv_start_rx(dev);
3085 spin_unlock_irq(&np->lock);
3086 }
3087
3088 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
3089 {
3090 struct fe_priv *np = netdev_priv(dev);
3091 u8 __iomem *base = get_hwbase(dev);
3092
3093 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
3094
3095 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
3096 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
3097 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
3098 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
3099 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3100 } else {
3101 writel(pff, base + NvRegPacketFilterFlags);
3102 }
3103 }
3104 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
3105 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
3106 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
3107 u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
3108 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
3109 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
3110 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
3111 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
3112 /* limit the number of tx pause frames to a default of 8 */
3113 writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
3114 }
3115 writel(pause_enable, base + NvRegTxPauseFrame);
3116 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
3117 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3118 } else {
3119 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
3120 writel(regmisc, base + NvRegMisc1);
3121 }
3122 }
3123 }
3124
3125 /**
3126 * nv_update_linkspeed: Setup the MAC according to the link partner
3127 * @dev: Network device to be configured
3128 *
3129 * The function queries the PHY and checks if there is a link partner.
3130 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
3131 * set to 10 MBit HD.
3132 *
3133 * The function returns 0 if there is no link partner and 1 if there is
3134 * a good link partner.
3135 */
3136 static int nv_update_linkspeed(struct net_device *dev)
3137 {
3138 struct fe_priv *np = netdev_priv(dev);
3139 u8 __iomem *base = get_hwbase(dev);
3140 int adv = 0;
3141 int lpa = 0;
3142 int adv_lpa, adv_pause, lpa_pause;
3143 int newls = np->linkspeed;
3144 int newdup = np->duplex;
3145 int mii_status;
3146 int retval = 0;
3147 u32 control_1000, status_1000, phyreg, pause_flags, txreg;
3148 u32 txrxFlags = 0;
3149 u32 phy_exp;
3150
3151 /* BMSR_LSTATUS is latched, read it twice:
3152 * we want the current value.
3153 */
3154 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3155 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3156
3157 if (!(mii_status & BMSR_LSTATUS)) {
3158 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
3159 dev->name);
3160 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3161 newdup = 0;
3162 retval = 0;
3163 goto set_speed;
3164 }
3165
3166 if (np->autoneg == 0) {
3167 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
3168 dev->name, np->fixed_mode);
3169 if (np->fixed_mode & LPA_100FULL) {
3170 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3171 newdup = 1;
3172 } else if (np->fixed_mode & LPA_100HALF) {
3173 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3174 newdup = 0;
3175 } else if (np->fixed_mode & LPA_10FULL) {
3176 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3177 newdup = 1;
3178 } else {
3179 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3180 newdup = 0;
3181 }
3182 retval = 1;
3183 goto set_speed;
3184 }
3185 /* check auto negotiation is complete */
3186 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
3187 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
3188 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3189 newdup = 0;
3190 retval = 0;
3191 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
3192 goto set_speed;
3193 }
3194
3195 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3196 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
3197 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
3198 dev->name, adv, lpa);
3199
3200 retval = 1;
3201 if (np->gigabit == PHY_GIGABIT) {
3202 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3203 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
3204
3205 if ((control_1000 & ADVERTISE_1000FULL) &&
3206 (status_1000 & LPA_1000FULL)) {
3207 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
3208 dev->name);
3209 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
3210 newdup = 1;
3211 goto set_speed;
3212 }
3213 }
3214
3215 /* FIXME: handle parallel detection properly */
3216 adv_lpa = lpa & adv;
3217 if (adv_lpa & LPA_100FULL) {
3218 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3219 newdup = 1;
3220 } else if (adv_lpa & LPA_100HALF) {
3221 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3222 newdup = 0;
3223 } else if (adv_lpa & LPA_10FULL) {
3224 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3225 newdup = 1;
3226 } else if (adv_lpa & LPA_10HALF) {
3227 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3228 newdup = 0;
3229 } else {
3230 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
3231 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3232 newdup = 0;
3233 }
3234
3235 set_speed:
3236 if (np->duplex == newdup && np->linkspeed == newls)
3237 return retval;
3238
3239 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
3240 dev->name, np->linkspeed, np->duplex, newls, newdup);
3241
3242 np->duplex = newdup;
3243 np->linkspeed = newls;
3244
3245 /* The transmitter and receiver must be restarted for safe update */
3246 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
3247 txrxFlags |= NV_RESTART_TX;
3248 nv_stop_tx(dev);
3249 }
3250 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
3251 txrxFlags |= NV_RESTART_RX;
3252 nv_stop_rx(dev);
3253 }
3254
3255 if (np->gigabit == PHY_GIGABIT) {
3256 phyreg = readl(base + NvRegSlotTime);
3257 phyreg &= ~(0x3FF00);
3258 if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
3259 ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
3260 phyreg |= NVREG_SLOTTIME_10_100_FULL;
3261 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
3262 phyreg |= NVREG_SLOTTIME_1000_FULL;
3263 writel(phyreg, base + NvRegSlotTime);
3264 }
3265
3266 phyreg = readl(base + NvRegPhyInterface);
3267 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
3268 if (np->duplex == 0)
3269 phyreg |= PHY_HALF;
3270 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
3271 phyreg |= PHY_100;
3272 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3273 phyreg |= PHY_1000;
3274 writel(phyreg, base + NvRegPhyInterface);
3275
3276 phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
3277 if (phyreg & PHY_RGMII) {
3278 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
3279 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
3280 } else {
3281 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
3282 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
3283 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
3284 else
3285 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
3286 } else {
3287 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
3288 }
3289 }
3290 } else {
3291 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
3292 txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
3293 else
3294 txreg = NVREG_TX_DEFERRAL_DEFAULT;
3295 }
3296 writel(txreg, base + NvRegTxDeferral);
3297
3298 if (np->desc_ver == DESC_VER_1) {
3299 txreg = NVREG_TX_WM_DESC1_DEFAULT;
3300 } else {
3301 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3302 txreg = NVREG_TX_WM_DESC2_3_1000;
3303 else
3304 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
3305 }
3306 writel(txreg, base + NvRegTxWatermark);
3307
3308 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
3309 base + NvRegMisc1);
3310 pci_push(base);
3311 writel(np->linkspeed, base + NvRegLinkSpeed);
3312 pci_push(base);
3313
3314 pause_flags = 0;
3315 /* setup pause frame */
3316 if (np->duplex != 0) {
3317 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
3318 adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
3319 lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
3320
3321 switch (adv_pause) {
3322 case ADVERTISE_PAUSE_CAP:
3323 if (lpa_pause & LPA_PAUSE_CAP) {
3324 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3325 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3326 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3327 }
3328 break;
3329 case ADVERTISE_PAUSE_ASYM:
3330 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
3331 {
3332 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3333 }
3334 break;
3335 case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
3336 if (lpa_pause & LPA_PAUSE_CAP)
3337 {
3338 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3339 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3340 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3341 }
3342 if (lpa_pause == LPA_PAUSE_ASYM)
3343 {
3344 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3345 }
3346 break;
3347 }
3348 } else {
3349 pause_flags = np->pause_flags;
3350 }
3351 }
3352 nv_update_pause(dev, pause_flags);
3353
3354 if (txrxFlags & NV_RESTART_TX)
3355 nv_start_tx(dev);
3356 if (txrxFlags & NV_RESTART_RX)
3357 nv_start_rx(dev);
3358
3359 return retval;
3360 }
3361
3362 static void nv_linkchange(struct net_device *dev)
3363 {
3364 if (nv_update_linkspeed(dev)) {
3365 if (!netif_carrier_ok(dev)) {
3366 netif_carrier_on(dev);
3367 printk(KERN_INFO "%s: link up.\n", dev->name);
3368 nv_txrx_gate(dev, false);
3369 nv_start_rx(dev);
3370 }
3371 } else {
3372 if (netif_carrier_ok(dev)) {
3373 netif_carrier_off(dev);
3374 printk(KERN_INFO "%s: link down.\n", dev->name);
3375 nv_txrx_gate(dev, true);
3376 nv_stop_rx(dev);
3377 }
3378 }
3379 }
3380
3381 static void nv_link_irq(struct net_device *dev)
3382 {
3383 u8 __iomem *base = get_hwbase(dev);
3384 u32 miistat;
3385
3386 miistat = readl(base + NvRegMIIStatus);
3387 writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
3388 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
3389
3390 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
3391 nv_linkchange(dev);
3392 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
3393 }
3394
3395 static void nv_msi_workaround(struct fe_priv *np)
3396 {
3397
3398 /* Need to toggle the msi irq mask within the ethernet device,
3399 * otherwise, future interrupts will not be detected.
3400 */
3401 if (np->msi_flags & NV_MSI_ENABLED) {
3402 u8 __iomem *base = np->base;
3403
3404 writel(0, base + NvRegMSIIrqMask);
3405 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3406 }
3407 }
3408
3409 static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
3410 {
3411 struct fe_priv *np = netdev_priv(dev);
3412
3413 if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
3414 if (total_work > NV_DYNAMIC_THRESHOLD) {
3415 /* transition to poll based interrupts */
3416 np->quiet_count = 0;
3417 if (np->irqmask != NVREG_IRQMASK_CPU) {
3418 np->irqmask = NVREG_IRQMASK_CPU;
3419 return 1;
3420 }
3421 } else {
3422 if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
3423 np->quiet_count++;
3424 } else {
3425 /* reached a period of low activity, switch
3426 to per tx/rx packet interrupts */
3427 if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
3428 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
3429 return 1;
3430 }
3431 }
3432 }
3433 }
3434 return 0;
3435 }
3436
3437 static irqreturn_t nv_nic_irq(int foo, void *data)
3438 {
3439 struct net_device *dev = (struct net_device *) data;
3440 struct fe_priv *np = netdev_priv(dev);
3441 u8 __iomem *base = get_hwbase(dev);
3442
3443 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
3444
3445 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3446 np->events = readl(base + NvRegIrqStatus);
3447 writel(np->events, base + NvRegIrqStatus);
3448 } else {
3449 np->events = readl(base + NvRegMSIXIrqStatus);
3450 writel(np->events, base + NvRegMSIXIrqStatus);
3451 }
3452 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
3453 if (!(np->events & np->irqmask))
3454 return IRQ_NONE;
3455
3456 nv_msi_workaround(np);
3457
3458 if (napi_schedule_prep(&np->napi)) {
3459 /*
3460 * Disable further irq's (msix not enabled with napi)
3461 */
3462 writel(0, base + NvRegIrqMask);
3463 __napi_schedule(&np->napi);
3464 }
3465
3466 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
3467
3468 return IRQ_HANDLED;
3469 }
3470
3471 /**
3472 * All _optimized functions are used to help increase performance
3473 * (reduce CPU and increase throughput). They use descripter version 3,
3474 * compiler directives, and reduce memory accesses.
3475 */
3476 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
3477 {
3478 struct net_device *dev = (struct net_device *) data;
3479 struct fe_priv *np = netdev_priv(dev);
3480 u8 __iomem *base = get_hwbase(dev);
3481
3482 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
3483
3484 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3485 np->events = readl(base + NvRegIrqStatus);
3486 writel(np->events, base + NvRegIrqStatus);
3487 } else {
3488 np->events = readl(base + NvRegMSIXIrqStatus);
3489 writel(np->events, base + NvRegMSIXIrqStatus);
3490 }
3491 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
3492 if (!(np->events & np->irqmask))
3493 return IRQ_NONE;
3494
3495 nv_msi_workaround(np);
3496
3497 if (napi_schedule_prep(&np->napi)) {
3498 /*
3499 * Disable further irq's (msix not enabled with napi)
3500 */
3501 writel(0, base + NvRegIrqMask);
3502 __napi_schedule(&np->napi);
3503 }
3504 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
3505
3506 return IRQ_HANDLED;
3507 }
3508
3509 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3510 {
3511 struct net_device *dev = (struct net_device *) data;
3512 struct fe_priv *np = netdev_priv(dev);
3513 u8 __iomem *base = get_hwbase(dev);
3514 u32 events;
3515 int i;
3516 unsigned long flags;
3517
3518 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
3519
3520 for (i=0; ; i++) {
3521 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3522 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
3523 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
3524 if (!(events & np->irqmask))
3525 break;
3526
3527 spin_lock_irqsave(&np->lock, flags);
3528 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3529 spin_unlock_irqrestore(&np->lock, flags);
3530
3531 if (unlikely(i > max_interrupt_work)) {
3532 spin_lock_irqsave(&np->lock, flags);
3533 /* disable interrupts on the nic */
3534 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3535 pci_push(base);
3536
3537 if (!np->in_shutdown) {
3538 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3539 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3540 }
3541 spin_unlock_irqrestore(&np->lock, flags);
3542 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
3543 break;
3544 }
3545
3546 }
3547 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
3548
3549 return IRQ_RETVAL(i);
3550 }
3551
3552 static int nv_napi_poll(struct napi_struct *napi, int budget)
3553 {
3554 struct fe_priv *np = container_of(napi, struct fe_priv, napi);
3555 struct net_device *dev = np->dev;
3556 u8 __iomem *base = get_hwbase(dev);
3557 unsigned long flags;
3558 int retcode;
3559 int rx_count, tx_work=0, rx_work=0;
3560
3561 do {
3562 if (!nv_optimized(np)) {
3563 spin_lock_irqsave(&np->lock, flags);
3564 tx_work += nv_tx_done(dev, np->tx_ring_size);
3565 spin_unlock_irqrestore(&np->lock, flags);
3566
3567 rx_count = nv_rx_process(dev, budget - rx_work);
3568 retcode = nv_alloc_rx(dev);
3569 } else {
3570 spin_lock_irqsave(&np->lock, flags);
3571 tx_work += nv_tx_done_optimized(dev, np->tx_ring_size);
3572 spin_unlock_irqrestore(&np->lock, flags);
3573
3574 rx_count = nv_rx_process_optimized(dev,
3575 budget - rx_work);
3576 retcode = nv_alloc_rx_optimized(dev);
3577 }
3578 } while (retcode == 0 &&
3579 rx_count > 0 && (rx_work += rx_count) < budget);
3580
3581 if (retcode) {
3582 spin_lock_irqsave(&np->lock, flags);
3583 if (!np->in_shutdown)
3584 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3585 spin_unlock_irqrestore(&np->lock, flags);
3586 }
3587
3588 nv_change_interrupt_mode(dev, tx_work + rx_work);
3589
3590 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3591 spin_lock_irqsave(&np->lock, flags);
3592 nv_link_irq(dev);
3593 spin_unlock_irqrestore(&np->lock, flags);
3594 }
3595 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3596 spin_lock_irqsave(&np->lock, flags);
3597 nv_linkchange(dev);
3598 spin_unlock_irqrestore(&np->lock, flags);
3599 np->link_timeout = jiffies + LINK_TIMEOUT;
3600 }
3601 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3602 spin_lock_irqsave(&np->lock, flags);
3603 if (!np->in_shutdown) {
3604 np->nic_poll_irq = np->irqmask;
3605 np->recover_error = 1;
3606 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3607 }
3608 spin_unlock_irqrestore(&np->lock, flags);
3609 napi_complete(napi);
3610 return rx_work;
3611 }
3612
3613 if (rx_work < budget) {
3614 /* re-enable interrupts
3615 (msix not enabled in napi) */
3616 napi_complete(napi);
3617
3618 writel(np->irqmask, base + NvRegIrqMask);
3619 }
3620 return rx_work;
3621 }
3622
3623 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3624 {
3625 struct net_device *dev = (struct net_device *) data;
3626 struct fe_priv *np = netdev_priv(dev);
3627 u8 __iomem *base = get_hwbase(dev);
3628 u32 events;
3629 int i;
3630 unsigned long flags;
3631
3632 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
3633
3634 for (i=0; ; i++) {
3635 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3636 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3637 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
3638 if (!(events & np->irqmask))
3639 break;
3640
3641 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3642 if (unlikely(nv_alloc_rx_optimized(dev))) {
3643 spin_lock_irqsave(&np->lock, flags);
3644 if (!np->in_shutdown)
3645 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3646 spin_unlock_irqrestore(&np->lock, flags);
3647 }
3648 }
3649
3650 if (unlikely(i > max_interrupt_work)) {
3651 spin_lock_irqsave(&np->lock, flags);
3652 /* disable interrupts on the nic */
3653 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3654 pci_push(base);
3655
3656 if (!np->in_shutdown) {
3657 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3658 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3659 }
3660 spin_unlock_irqrestore(&np->lock, flags);
3661 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
3662 break;
3663 }
3664 }
3665 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
3666
3667 return IRQ_RETVAL(i);
3668 }
3669
3670 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3671 {
3672 struct net_device *dev = (struct net_device *) data;
3673 struct fe_priv *np = netdev_priv(dev);
3674 u8 __iomem *base = get_hwbase(dev);
3675 u32 events;
3676 int i;
3677 unsigned long flags;
3678
3679 dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
3680
3681 for (i=0; ; i++) {
3682 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3683 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
3684 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3685 if (!(events & np->irqmask))
3686 break;
3687
3688 /* check tx in case we reached max loop limit in tx isr */
3689 spin_lock_irqsave(&np->lock, flags);
3690 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3691 spin_unlock_irqrestore(&np->lock, flags);
3692
3693 if (events & NVREG_IRQ_LINK) {
3694 spin_lock_irqsave(&np->lock, flags);
3695 nv_link_irq(dev);
3696 spin_unlock_irqrestore(&np->lock, flags);
3697 }
3698 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3699 spin_lock_irqsave(&np->lock, flags);
3700 nv_linkchange(dev);
3701 spin_unlock_irqrestore(&np->lock, flags);
3702 np->link_timeout = jiffies + LINK_TIMEOUT;
3703 }
3704 if (events & NVREG_IRQ_RECOVER_ERROR) {
3705 spin_lock_irq(&np->lock);
3706 /* disable interrupts on the nic */
3707 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3708 pci_push(base);
3709
3710 if (!np->in_shutdown) {
3711 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3712 np->recover_error = 1;
3713 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3714 }
3715 spin_unlock_irq(&np->lock);
3716 break;
3717 }
3718 if (unlikely(i > max_interrupt_work)) {
3719 spin_lock_irqsave(&np->lock, flags);
3720 /* disable interrupts on the nic */
3721 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3722 pci_push(base);
3723
3724 if (!np->in_shutdown) {
3725 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3726 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3727 }
3728 spin_unlock_irqrestore(&np->lock, flags);
3729 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
3730 break;
3731 }
3732
3733 }
3734 dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
3735
3736 return IRQ_RETVAL(i);
3737 }
3738
3739 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3740 {
3741 struct net_device *dev = (struct net_device *) data;
3742 struct fe_priv *np = netdev_priv(dev);
3743 u8 __iomem *base = get_hwbase(dev);
3744 u32 events;
3745
3746 dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
3747
3748 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3749 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3750 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3751 } else {
3752 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3753 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3754 }
3755 pci_push(base);
3756 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3757 if (!(events & NVREG_IRQ_TIMER))
3758 return IRQ_RETVAL(0);
3759
3760 nv_msi_workaround(np);
3761
3762 spin_lock(&np->lock);
3763 np->intr_test = 1;
3764 spin_unlock(&np->lock);
3765
3766 dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
3767
3768 return IRQ_RETVAL(1);
3769 }
3770
3771 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3772 {
3773 u8 __iomem *base = get_hwbase(dev);
3774 int i;
3775 u32 msixmap = 0;
3776
3777 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3778 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3779 * the remaining 8 interrupts.
3780 */
3781 for (i = 0; i < 8; i++) {
3782 if ((irqmask >> i) & 0x1) {
3783 msixmap |= vector << (i << 2);
3784 }
3785 }
3786 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3787
3788 msixmap = 0;
3789 for (i = 0; i < 8; i++) {
3790 if ((irqmask >> (i + 8)) & 0x1) {
3791 msixmap |= vector << (i << 2);
3792 }
3793 }
3794 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3795 }
3796
3797 static int nv_request_irq(struct net_device *dev, int intr_test)
3798 {
3799 struct fe_priv *np = get_nvpriv(dev);
3800 u8 __iomem *base = get_hwbase(dev);
3801 int ret = 1;
3802 int i;
3803 irqreturn_t (*handler)(int foo, void *data);
3804
3805 if (intr_test) {
3806 handler = nv_nic_irq_test;
3807 } else {
3808 if (nv_optimized(np))
3809 handler = nv_nic_irq_optimized;
3810 else
3811 handler = nv_nic_irq;
3812 }
3813
3814 if (np->msi_flags & NV_MSI_X_CAPABLE) {
3815 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3816 np->msi_x_entry[i].entry = i;
3817 }
3818 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
3819 np->msi_flags |= NV_MSI_X_ENABLED;
3820 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
3821 /* Request irq for rx handling */
3822 sprintf(np->name_rx, "%s-rx", dev->name);
3823 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
3824 nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
3825 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
3826 pci_disable_msix(np->pci_dev);
3827 np->msi_flags &= ~NV_MSI_X_ENABLED;
3828 goto out_err;
3829 }
3830 /* Request irq for tx handling */
3831 sprintf(np->name_tx, "%s-tx", dev->name);
3832 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
3833 nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
3834 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
3835 pci_disable_msix(np->pci_dev);
3836 np->msi_flags &= ~NV_MSI_X_ENABLED;
3837 goto out_free_rx;
3838 }
3839 /* Request irq for link and timer handling */
3840 sprintf(np->name_other, "%s-other", dev->name);
3841 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
3842 nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
3843 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
3844 pci_disable_msix(np->pci_dev);
3845 np->msi_flags &= ~NV_MSI_X_ENABLED;
3846 goto out_free_tx;
3847 }
3848 /* map interrupts to their respective vector */
3849 writel(0, base + NvRegMSIXMap0);
3850 writel(0, base + NvRegMSIXMap1);
3851 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
3852 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
3853 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
3854 } else {
3855 /* Request irq for all interrupts */
3856 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
3857 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3858 pci_disable_msix(np->pci_dev);
3859 np->msi_flags &= ~NV_MSI_X_ENABLED;
3860 goto out_err;
3861 }
3862
3863 /* map interrupts to vector 0 */
3864 writel(0, base + NvRegMSIXMap0);
3865 writel(0, base + NvRegMSIXMap1);
3866 }
3867 }
3868 }
3869 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
3870 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
3871 np->msi_flags |= NV_MSI_ENABLED;
3872 dev->irq = np->pci_dev->irq;
3873 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
3874 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3875 pci_disable_msi(np->pci_dev);
3876 np->msi_flags &= ~NV_MSI_ENABLED;
3877 dev->irq = np->pci_dev->irq;
3878 goto out_err;
3879 }
3880
3881 /* map interrupts to vector 0 */
3882 writel(0, base + NvRegMSIMap0);
3883 writel(0, base + NvRegMSIMap1);
3884 /* enable msi vector 0 */
3885 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3886 }
3887 }
3888 if (ret != 0) {
3889 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
3890 goto out_err;
3891
3892 }
3893
3894 return 0;
3895 out_free_tx:
3896 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
3897 out_free_rx:
3898 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
3899 out_err:
3900 return 1;
3901 }
3902
3903 static void nv_free_irq(struct net_device *dev)
3904 {
3905 struct fe_priv *np = get_nvpriv(dev);
3906 int i;
3907
3908 if (np->msi_flags & NV_MSI_X_ENABLED) {
3909 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3910 free_irq(np->msi_x_entry[i].vector, dev);
3911 }
3912 pci_disable_msix(np->pci_dev);
3913 np->msi_flags &= ~NV_MSI_X_ENABLED;
3914 } else {
3915 free_irq(np->pci_dev->irq, dev);
3916 if (np->msi_flags & NV_MSI_ENABLED) {
3917 pci_disable_msi(np->pci_dev);
3918 np->msi_flags &= ~NV_MSI_ENABLED;
3919 }
3920 }
3921 }
3922
3923 static void nv_do_nic_poll(unsigned long data)
3924 {
3925 struct net_device *dev = (struct net_device *) data;
3926 struct fe_priv *np = netdev_priv(dev);
3927 u8 __iomem *base = get_hwbase(dev);
3928 u32 mask = 0;
3929
3930 /*
3931 * First disable irq(s) and then
3932 * reenable interrupts on the nic, we have to do this before calling
3933 * nv_nic_irq because that may decide to do otherwise
3934 */
3935
3936 if (!using_multi_irqs(dev)) {
3937 if (np->msi_flags & NV_MSI_X_ENABLED)
3938 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
3939 else
3940 disable_irq_lockdep(np->pci_dev->irq);
3941 mask = np->irqmask;
3942 } else {
3943 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
3944 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
3945 mask |= NVREG_IRQ_RX_ALL;
3946 }
3947 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
3948 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
3949 mask |= NVREG_IRQ_TX_ALL;
3950 }
3951 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
3952 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
3953 mask |= NVREG_IRQ_OTHER;
3954 }
3955 }
3956 /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
3957
3958 if (np->recover_error) {
3959 np->recover_error = 0;
3960 printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
3961 if (netif_running(dev)) {
3962 netif_tx_lock_bh(dev);
3963 netif_addr_lock(dev);
3964 spin_lock(&np->lock);
3965 /* stop engines */
3966 nv_stop_rxtx(dev);
3967 if (np->driver_data & DEV_HAS_POWER_CNTRL)
3968 nv_mac_reset(dev);
3969 nv_txrx_reset(dev);
3970 /* drain rx queue */
3971 nv_drain_rxtx(dev);
3972 /* reinit driver view of the rx queue */
3973 set_bufsize(dev);
3974 if (nv_init_ring(dev)) {
3975 if (!np->in_shutdown)
3976 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3977 }
3978 /* reinit nic view of the rx queue */
3979 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3980 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3981 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3982 base + NvRegRingSizes);
3983 pci_push(base);
3984 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3985 pci_push(base);
3986 /* clear interrupts */
3987 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3988 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3989 else
3990 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3991
3992 /* restart rx engine */
3993 nv_start_rxtx(dev);
3994 spin_unlock(&np->lock);
3995 netif_addr_unlock(dev);
3996 netif_tx_unlock_bh(dev);
3997 }
3998 }
3999
4000 writel(mask, base + NvRegIrqMask);
4001 pci_push(base);
4002
4003 if (!using_multi_irqs(dev)) {
4004 np->nic_poll_irq = 0;
4005 if (nv_optimized(np))
4006 nv_nic_irq_optimized(0, dev);
4007 else
4008 nv_nic_irq(0, dev);
4009 if (np->msi_flags & NV_MSI_X_ENABLED)
4010 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
4011 else
4012 enable_irq_lockdep(np->pci_dev->irq);
4013 } else {
4014 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4015 np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
4016 nv_nic_irq_rx(0, dev);
4017 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
4018 }
4019 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4020 np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
4021 nv_nic_irq_tx(0, dev);
4022 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
4023 }
4024 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4025 np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
4026 nv_nic_irq_other(0, dev);
4027 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
4028 }
4029 }
4030
4031 }
4032
4033 #ifdef CONFIG_NET_POLL_CONTROLLER
4034 static void nv_poll_controller(struct net_device *dev)
4035 {
4036 nv_do_nic_poll((unsigned long) dev);
4037 }
4038 #endif
4039
4040 static void nv_do_stats_poll(unsigned long data)
4041 {
4042 struct net_device *dev = (struct net_device *) data;
4043 struct fe_priv *np = netdev_priv(dev);
4044
4045 nv_get_hw_stats(dev);
4046
4047 if (!np->in_shutdown)
4048 mod_timer(&np->stats_poll,
4049 round_jiffies(jiffies + STATS_INTERVAL));
4050 }
4051
4052 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4053 {
4054 struct fe_priv *np = netdev_priv(dev);
4055 strcpy(info->driver, DRV_NAME);
4056 strcpy(info->version, FORCEDETH_VERSION);
4057 strcpy(info->bus_info, pci_name(np->pci_dev));
4058 }
4059
4060 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4061 {
4062 struct fe_priv *np = netdev_priv(dev);
4063 wolinfo->supported = WAKE_MAGIC;
4064
4065 spin_lock_irq(&np->lock);
4066 if (np->wolenabled)
4067 wolinfo->wolopts = WAKE_MAGIC;
4068 spin_unlock_irq(&np->lock);
4069 }
4070
4071 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4072 {
4073 struct fe_priv *np = netdev_priv(dev);
4074 u8 __iomem *base = get_hwbase(dev);
4075 u32 flags = 0;
4076
4077 if (wolinfo->wolopts == 0) {
4078 np->wolenabled = 0;
4079 } else if (wolinfo->wolopts & WAKE_MAGIC) {
4080 np->wolenabled = 1;
4081 flags = NVREG_WAKEUPFLAGS_ENABLE;
4082 }
4083 if (netif_running(dev)) {
4084 spin_lock_irq(&np->lock);
4085 writel(flags, base + NvRegWakeUpFlags);
4086 spin_unlock_irq(&np->lock);
4087 }
4088 return 0;
4089 }
4090
4091 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4092 {
4093 struct fe_priv *np = netdev_priv(dev);
4094 int adv;
4095
4096 spin_lock_irq(&np->lock);
4097 ecmd->port = PORT_MII;
4098 if (!netif_running(dev)) {
4099 /* We do not track link speed / duplex setting if the
4100 * interface is disabled. Force a link check */
4101 if (nv_update_linkspeed(dev)) {
4102 if (!netif_carrier_ok(dev))
4103 netif_carrier_on(dev);
4104 } else {
4105 if (netif_carrier_ok(dev))
4106 netif_carrier_off(dev);
4107 }
4108 }
4109
4110 if (netif_carrier_ok(dev)) {
4111 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
4112 case NVREG_LINKSPEED_10:
4113 ecmd->speed = SPEED_10;
4114 break;
4115 case NVREG_LINKSPEED_100:
4116 ecmd->speed = SPEED_100;
4117 break;
4118 case NVREG_LINKSPEED_1000:
4119 ecmd->speed = SPEED_1000;
4120 break;
4121 }
4122 ecmd->duplex = DUPLEX_HALF;
4123 if (np->duplex)
4124 ecmd->duplex = DUPLEX_FULL;
4125 } else {
4126 ecmd->speed = -1;
4127 ecmd->duplex = -1;
4128 }
4129
4130 ecmd->autoneg = np->autoneg;
4131
4132 ecmd->advertising = ADVERTISED_MII;
4133 if (np->autoneg) {
4134 ecmd->advertising |= ADVERTISED_Autoneg;
4135 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4136 if (adv & ADVERTISE_10HALF)
4137 ecmd->advertising |= ADVERTISED_10baseT_Half;
4138 if (adv & ADVERTISE_10FULL)
4139 ecmd->advertising |= ADVERTISED_10baseT_Full;
4140 if (adv & ADVERTISE_100HALF)
4141 ecmd->advertising |= ADVERTISED_100baseT_Half;
4142 if (adv & ADVERTISE_100FULL)
4143 ecmd->advertising |= ADVERTISED_100baseT_Full;
4144 if (np->gigabit == PHY_GIGABIT) {
4145 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4146 if (adv & ADVERTISE_1000FULL)
4147 ecmd->advertising |= ADVERTISED_1000baseT_Full;
4148 }
4149 }
4150 ecmd->supported = (SUPPORTED_Autoneg |
4151 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
4152 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
4153 SUPPORTED_MII);
4154 if (np->gigabit == PHY_GIGABIT)
4155 ecmd->supported |= SUPPORTED_1000baseT_Full;
4156
4157 ecmd->phy_address = np->phyaddr;
4158 ecmd->transceiver = XCVR_EXTERNAL;
4159
4160 /* ignore maxtxpkt, maxrxpkt for now */
4161 spin_unlock_irq(&np->lock);
4162 return 0;
4163 }
4164
4165 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4166 {
4167 struct fe_priv *np = netdev_priv(dev);
4168
4169 if (ecmd->port != PORT_MII)
4170 return -EINVAL;
4171 if (ecmd->transceiver != XCVR_EXTERNAL)
4172 return -EINVAL;
4173 if (ecmd->phy_address != np->phyaddr) {
4174 /* TODO: support switching between multiple phys. Should be
4175 * trivial, but not enabled due to lack of test hardware. */
4176 return -EINVAL;
4177 }
4178 if (ecmd->autoneg == AUTONEG_ENABLE) {
4179 u32 mask;
4180
4181 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
4182 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
4183 if (np->gigabit == PHY_GIGABIT)
4184 mask |= ADVERTISED_1000baseT_Full;
4185
4186 if ((ecmd->advertising & mask) == 0)
4187 return -EINVAL;
4188
4189 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
4190 /* Note: autonegotiation disable, speed 1000 intentionally
4191 * forbidden - noone should need that. */
4192
4193 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
4194 return -EINVAL;
4195 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
4196 return -EINVAL;
4197 } else {
4198 return -EINVAL;
4199 }
4200
4201 netif_carrier_off(dev);
4202 if (netif_running(dev)) {
4203 unsigned long flags;
4204
4205 nv_disable_irq(dev);
4206 netif_tx_lock_bh(dev);
4207 netif_addr_lock(dev);
4208 /* with plain spinlock lockdep complains */
4209 spin_lock_irqsave(&np->lock, flags);
4210 /* stop engines */
4211 /* FIXME:
4212 * this can take some time, and interrupts are disabled
4213 * due to spin_lock_irqsave, but let's hope no daemon
4214 * is going to change the settings very often...
4215 * Worst case:
4216 * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
4217 * + some minor delays, which is up to a second approximately
4218 */
4219 nv_stop_rxtx(dev);
4220 spin_unlock_irqrestore(&np->lock, flags);
4221 netif_addr_unlock(dev);
4222 netif_tx_unlock_bh(dev);
4223 }
4224
4225 if (ecmd->autoneg == AUTONEG_ENABLE) {
4226 int adv, bmcr;
4227
4228 np->autoneg = 1;
4229
4230 /* advertise only what has been requested */
4231 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4232 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4233 if (ecmd->advertising & ADVERTISED_10baseT_Half)
4234 adv |= ADVERTISE_10HALF;
4235 if (ecmd->advertising & ADVERTISED_10baseT_Full)
4236 adv |= ADVERTISE_10FULL;
4237 if (ecmd->advertising & ADVERTISED_100baseT_Half)
4238 adv |= ADVERTISE_100HALF;
4239 if (ecmd->advertising & ADVERTISED_100baseT_Full)
4240 adv |= ADVERTISE_100FULL;
4241 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4242 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4243 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4244 adv |= ADVERTISE_PAUSE_ASYM;
4245 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4246
4247 if (np->gigabit == PHY_GIGABIT) {
4248 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4249 adv &= ~ADVERTISE_1000FULL;
4250 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
4251 adv |= ADVERTISE_1000FULL;
4252 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4253 }
4254
4255 if (netif_running(dev))
4256 printk(KERN_INFO "%s: link down.\n", dev->name);
4257 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4258 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4259 bmcr |= BMCR_ANENABLE;
4260 /* reset the phy in order for settings to stick,
4261 * and cause autoneg to start */
4262 if (phy_reset(dev, bmcr)) {
4263 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4264 return -EINVAL;
4265 }
4266 } else {
4267 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4268 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4269 }
4270 } else {
4271 int adv, bmcr;
4272
4273 np->autoneg = 0;
4274
4275 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4276 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4277 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
4278 adv |= ADVERTISE_10HALF;
4279 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
4280 adv |= ADVERTISE_10FULL;
4281 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
4282 adv |= ADVERTISE_100HALF;
4283 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
4284 adv |= ADVERTISE_100FULL;
4285 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4286 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
4287 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4288 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4289 }
4290 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
4291 adv |= ADVERTISE_PAUSE_ASYM;
4292 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4293 }
4294 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4295 np->fixed_mode = adv;
4296
4297 if (np->gigabit == PHY_GIGABIT) {
4298 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4299 adv &= ~ADVERTISE_1000FULL;
4300 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4301 }
4302
4303 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4304 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
4305 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
4306 bmcr |= BMCR_FULLDPLX;
4307 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
4308 bmcr |= BMCR_SPEED100;
4309 if (np->phy_oui == PHY_OUI_MARVELL) {
4310 /* reset the phy in order for forced mode settings to stick */
4311 if (phy_reset(dev, bmcr)) {
4312 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4313 return -EINVAL;
4314 }
4315 } else {
4316 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4317 if (netif_running(dev)) {
4318 /* Wait a bit and then reconfigure the nic. */
4319 udelay(10);
4320 nv_linkchange(dev);
4321 }
4322 }
4323 }
4324
4325 if (netif_running(dev)) {
4326 nv_start_rxtx(dev);
4327 nv_enable_irq(dev);
4328 }
4329
4330 return 0;
4331 }
4332
4333 #define FORCEDETH_REGS_VER 1
4334
4335 static int nv_get_regs_len(struct net_device *dev)
4336 {
4337 struct fe_priv *np = netdev_priv(dev);
4338 return np->register_size;
4339 }
4340
4341 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
4342 {
4343 struct fe_priv *np = netdev_priv(dev);
4344 u8 __iomem *base = get_hwbase(dev);
4345 u32 *rbuf = buf;
4346 int i;
4347
4348 regs->version = FORCEDETH_REGS_VER;
4349 spin_lock_irq(&np->lock);
4350 for (i = 0;i <= np->register_size/sizeof(u32); i++)
4351 rbuf[i] = readl(base + i*sizeof(u32));
4352 spin_unlock_irq(&np->lock);
4353 }
4354
4355 static int nv_nway_reset(struct net_device *dev)
4356 {
4357 struct fe_priv *np = netdev_priv(dev);
4358 int ret;
4359
4360 if (np->autoneg) {
4361 int bmcr;
4362
4363 netif_carrier_off(dev);
4364 if (netif_running(dev)) {
4365 nv_disable_irq(dev);
4366 netif_tx_lock_bh(dev);
4367 netif_addr_lock(dev);
4368 spin_lock(&np->lock);
4369 /* stop engines */
4370 nv_stop_rxtx(dev);
4371 spin_unlock(&np->lock);
4372 netif_addr_unlock(dev);
4373 netif_tx_unlock_bh(dev);
4374 printk(KERN_INFO "%s: link down.\n", dev->name);
4375 }
4376
4377 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4378 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4379 bmcr |= BMCR_ANENABLE;
4380 /* reset the phy in order for settings to stick*/
4381 if (phy_reset(dev, bmcr)) {
4382 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4383 return -EINVAL;
4384 }
4385 } else {
4386 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4387 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4388 }
4389
4390 if (netif_running(dev)) {
4391 nv_start_rxtx(dev);
4392 nv_enable_irq(dev);
4393 }
4394 ret = 0;
4395 } else {
4396 ret = -EINVAL;
4397 }
4398
4399 return ret;
4400 }
4401
4402 static int nv_set_tso(struct net_device *dev, u32 value)
4403 {
4404 struct fe_priv *np = netdev_priv(dev);
4405
4406 if ((np->driver_data & DEV_HAS_CHECKSUM))
4407 return ethtool_op_set_tso(dev, value);
4408 else
4409 return -EOPNOTSUPP;
4410 }
4411
4412 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4413 {
4414 struct fe_priv *np = netdev_priv(dev);
4415
4416 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4417 ring->rx_mini_max_pending = 0;
4418 ring->rx_jumbo_max_pending = 0;
4419 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4420
4421 ring->rx_pending = np->rx_ring_size;
4422 ring->rx_mini_pending = 0;
4423 ring->rx_jumbo_pending = 0;
4424 ring->tx_pending = np->tx_ring_size;
4425 }
4426
4427 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4428 {
4429 struct fe_priv *np = netdev_priv(dev);
4430 u8 __iomem *base = get_hwbase(dev);
4431 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
4432 dma_addr_t ring_addr;
4433
4434 if (ring->rx_pending < RX_RING_MIN ||
4435 ring->tx_pending < TX_RING_MIN ||
4436 ring->rx_mini_pending != 0 ||
4437 ring->rx_jumbo_pending != 0 ||
4438 (np->desc_ver == DESC_VER_1 &&
4439 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
4440 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
4441 (np->desc_ver != DESC_VER_1 &&
4442 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
4443 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
4444 return -EINVAL;
4445 }
4446
4447 /* allocate new rings */
4448 if (!nv_optimized(np)) {
4449 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4450 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4451 &ring_addr);
4452 } else {
4453 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4454 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4455 &ring_addr);
4456 }
4457 rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
4458 tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
4459 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
4460 /* fall back to old rings */
4461 if (!nv_optimized(np)) {
4462 if (rxtx_ring)
4463 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4464 rxtx_ring, ring_addr);
4465 } else {
4466 if (rxtx_ring)
4467 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4468 rxtx_ring, ring_addr);
4469 }
4470 if (rx_skbuff)
4471 kfree(rx_skbuff);
4472 if (tx_skbuff)
4473 kfree(tx_skbuff);
4474 goto exit;
4475 }
4476
4477 if (netif_running(dev)) {
4478 nv_disable_irq(dev);
4479 nv_napi_disable(dev);
4480 netif_tx_lock_bh(dev);
4481 netif_addr_lock(dev);
4482 spin_lock(&np->lock);
4483 /* stop engines */
4484 nv_stop_rxtx(dev);
4485 nv_txrx_reset(dev);
4486 /* drain queues */
4487 nv_drain_rxtx(dev);
4488 /* delete queues */
4489 free_rings(dev);
4490 }
4491
4492 /* set new values */
4493 np->rx_ring_size = ring->rx_pending;
4494 np->tx_ring_size = ring->tx_pending;
4495
4496 if (!nv_optimized(np)) {
4497 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
4498 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4499 } else {
4500 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
4501 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4502 }
4503 np->rx_skb = (struct nv_skb_map*)rx_skbuff;
4504 np->tx_skb = (struct nv_skb_map*)tx_skbuff;
4505 np->ring_addr = ring_addr;
4506
4507 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4508 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4509
4510 if (netif_running(dev)) {
4511 /* reinit driver view of the queues */
4512 set_bufsize(dev);
4513 if (nv_init_ring(dev)) {
4514 if (!np->in_shutdown)
4515 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4516 }
4517
4518 /* reinit nic view of the queues */
4519 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4520 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4521 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4522 base + NvRegRingSizes);
4523 pci_push(base);
4524 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4525 pci_push(base);
4526
4527 /* restart engines */
4528 nv_start_rxtx(dev);
4529 spin_unlock(&np->lock);
4530 netif_addr_unlock(dev);
4531 netif_tx_unlock_bh(dev);
4532 nv_napi_enable(dev);
4533 nv_enable_irq(dev);
4534 }
4535 return 0;
4536 exit:
4537 return -ENOMEM;
4538 }
4539
4540 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4541 {
4542 struct fe_priv *np = netdev_priv(dev);
4543
4544 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4545 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4546 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4547 }
4548
4549 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4550 {
4551 struct fe_priv *np = netdev_priv(dev);
4552 int adv, bmcr;
4553
4554 if ((!np->autoneg && np->duplex == 0) ||
4555 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4556 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
4557 dev->name);
4558 return -EINVAL;
4559 }
4560 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4561 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
4562 return -EINVAL;
4563 }
4564
4565 netif_carrier_off(dev);
4566 if (netif_running(dev)) {
4567 nv_disable_irq(dev);
4568 netif_tx_lock_bh(dev);
4569 netif_addr_lock(dev);
4570 spin_lock(&np->lock);
4571 /* stop engines */
4572 nv_stop_rxtx(dev);
4573 spin_unlock(&np->lock);
4574 netif_addr_unlock(dev);
4575 netif_tx_unlock_bh(dev);
4576 }
4577
4578 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4579 if (pause->rx_pause)
4580 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4581 if (pause->tx_pause)
4582 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4583
4584 if (np->autoneg && pause->autoneg) {
4585 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4586
4587 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4588 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4589 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4590 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4591 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4592 adv |= ADVERTISE_PAUSE_ASYM;
4593 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4594
4595 if (netif_running(dev))
4596 printk(KERN_INFO "%s: link down.\n", dev->name);
4597 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4598 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4599 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4600 } else {
4601 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4602 if (pause->rx_pause)
4603 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4604 if (pause->tx_pause)
4605 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4606
4607 if (!netif_running(dev))
4608 nv_update_linkspeed(dev);
4609 else
4610 nv_update_pause(dev, np->pause_flags);
4611 }
4612
4613 if (netif_running(dev)) {
4614 nv_start_rxtx(dev);
4615 nv_enable_irq(dev);
4616 }
4617 return 0;
4618 }
4619
4620 static u32 nv_get_rx_csum(struct net_device *dev)
4621 {
4622 struct fe_priv *np = netdev_priv(dev);
4623 return (np->rx_csum) != 0;
4624 }
4625
4626 static int nv_set_rx_csum(struct net_device *dev, u32 data)
4627 {
4628 struct fe_priv *np = netdev_priv(dev);
4629 u8 __iomem *base = get_hwbase(dev);
4630 int retcode = 0;
4631
4632 if (np->driver_data & DEV_HAS_CHECKSUM) {
4633 if (data) {
4634 np->rx_csum = 1;
4635 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4636 } else {
4637 np->rx_csum = 0;
4638 /* vlan is dependent on rx checksum offload */
4639 if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
4640 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4641 }
4642 if (netif_running(dev)) {
4643 spin_lock_irq(&np->lock);
4644 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4645 spin_unlock_irq(&np->lock);
4646 }
4647 } else {
4648 return -EINVAL;
4649 }
4650
4651 return retcode;
4652 }
4653
4654 static int nv_set_tx_csum(struct net_device *dev, u32 data)
4655 {
4656 struct fe_priv *np = netdev_priv(dev);
4657
4658 if (np->driver_data & DEV_HAS_CHECKSUM)
4659 return ethtool_op_set_tx_csum(dev, data);
4660 else
4661 return -EOPNOTSUPP;
4662 }
4663
4664 static int nv_set_sg(struct net_device *dev, u32 data)
4665 {
4666 struct fe_priv *np = netdev_priv(dev);
4667
4668 if (np->driver_data & DEV_HAS_CHECKSUM)
4669 return ethtool_op_set_sg(dev, data);
4670 else
4671 return -EOPNOTSUPP;
4672 }
4673
4674 static int nv_get_sset_count(struct net_device *dev, int sset)
4675 {
4676 struct fe_priv *np = netdev_priv(dev);
4677
4678 switch (sset) {
4679 case ETH_SS_TEST:
4680 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4681 return NV_TEST_COUNT_EXTENDED;
4682 else
4683 return NV_TEST_COUNT_BASE;
4684 case ETH_SS_STATS:
4685 if (np->driver_data & DEV_HAS_STATISTICS_V3)
4686 return NV_DEV_STATISTICS_V3_COUNT;
4687 else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4688 return NV_DEV_STATISTICS_V2_COUNT;
4689 else if (np->driver_data & DEV_HAS_STATISTICS_V1)
4690 return NV_DEV_STATISTICS_V1_COUNT;
4691 else
4692 return 0;
4693 default:
4694 return -EOPNOTSUPP;
4695 }
4696 }
4697
4698 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
4699 {
4700 struct fe_priv *np = netdev_priv(dev);
4701
4702 /* update stats */
4703 nv_do_stats_poll((unsigned long)dev);
4704
4705 memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
4706 }
4707
4708 static int nv_link_test(struct net_device *dev)
4709 {
4710 struct fe_priv *np = netdev_priv(dev);
4711 int mii_status;
4712
4713 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4714 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4715
4716 /* check phy link status */
4717 if (!(mii_status & BMSR_LSTATUS))
4718 return 0;
4719 else
4720 return 1;
4721 }
4722
4723 static int nv_register_test(struct net_device *dev)
4724 {
4725 u8 __iomem *base = get_hwbase(dev);
4726 int i = 0;
4727 u32 orig_read, new_read;
4728
4729 do {
4730 orig_read = readl(base + nv_registers_test[i].reg);
4731
4732 /* xor with mask to toggle bits */
4733 orig_read ^= nv_registers_test[i].mask;
4734
4735 writel(orig_read, base + nv_registers_test[i].reg);
4736
4737 new_read = readl(base + nv_registers_test[i].reg);
4738
4739 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
4740 return 0;
4741
4742 /* restore original value */
4743 orig_read ^= nv_registers_test[i].mask;
4744 writel(orig_read, base + nv_registers_test[i].reg);
4745
4746 } while (nv_registers_test[++i].reg != 0);
4747
4748 return 1;
4749 }
4750
4751 static int nv_interrupt_test(struct net_device *dev)
4752 {
4753 struct fe_priv *np = netdev_priv(dev);
4754 u8 __iomem *base = get_hwbase(dev);
4755 int ret = 1;
4756 int testcnt;
4757 u32 save_msi_flags, save_poll_interval = 0;
4758
4759 if (netif_running(dev)) {
4760 /* free current irq */
4761 nv_free_irq(dev);
4762 save_poll_interval = readl(base+NvRegPollingInterval);
4763 }
4764
4765 /* flag to test interrupt handler */
4766 np->intr_test = 0;
4767
4768 /* setup test irq */
4769 save_msi_flags = np->msi_flags;
4770 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
4771 np->msi_flags |= 0x001; /* setup 1 vector */
4772 if (nv_request_irq(dev, 1))
4773 return 0;
4774
4775 /* setup timer interrupt */
4776 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4777 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4778
4779 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4780
4781 /* wait for at least one interrupt */
4782 msleep(100);
4783
4784 spin_lock_irq(&np->lock);
4785
4786 /* flag should be set within ISR */
4787 testcnt = np->intr_test;
4788 if (!testcnt)
4789 ret = 2;
4790
4791 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4792 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4793 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4794 else
4795 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4796
4797 spin_unlock_irq(&np->lock);
4798
4799 nv_free_irq(dev);
4800
4801 np->msi_flags = save_msi_flags;
4802
4803 if (netif_running(dev)) {
4804 writel(save_poll_interval, base + NvRegPollingInterval);
4805 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4806 /* restore original irq */
4807 if (nv_request_irq(dev, 0))
4808 return 0;
4809 }
4810
4811 return ret;
4812 }
4813
4814 static int nv_loopback_test(struct net_device *dev)
4815 {
4816 struct fe_priv *np = netdev_priv(dev);
4817 u8 __iomem *base = get_hwbase(dev);
4818 struct sk_buff *tx_skb, *rx_skb;
4819 dma_addr_t test_dma_addr;
4820 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
4821 u32 flags;
4822 int len, i, pkt_len;
4823 u8 *pkt_data;
4824 u32 filter_flags = 0;
4825 u32 misc1_flags = 0;
4826 int ret = 1;
4827
4828 if (netif_running(dev)) {
4829 nv_disable_irq(dev);
4830 filter_flags = readl(base + NvRegPacketFilterFlags);
4831 misc1_flags = readl(base + NvRegMisc1);
4832 } else {
4833 nv_txrx_reset(dev);
4834 }
4835
4836 /* reinit driver view of the rx queue */
4837 set_bufsize(dev);
4838 nv_init_ring(dev);
4839
4840 /* setup hardware for loopback */
4841 writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
4842 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
4843
4844 /* reinit nic view of the rx queue */
4845 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4846 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4847 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4848 base + NvRegRingSizes);
4849 pci_push(base);
4850
4851 /* restart rx engine */
4852 nv_start_rxtx(dev);
4853
4854 /* setup packet for tx */
4855 pkt_len = ETH_DATA_LEN;
4856 tx_skb = dev_alloc_skb(pkt_len);
4857 if (!tx_skb) {
4858 printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
4859 " of %s\n", dev->name);
4860 ret = 0;
4861 goto out;
4862 }
4863 test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
4864 skb_tailroom(tx_skb),
4865 PCI_DMA_FROMDEVICE);
4866 pkt_data = skb_put(tx_skb, pkt_len);
4867 for (i = 0; i < pkt_len; i++)
4868 pkt_data[i] = (u8)(i & 0xff);
4869
4870 if (!nv_optimized(np)) {
4871 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
4872 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4873 } else {
4874 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
4875 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
4876 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4877 }
4878 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4879 pci_push(get_hwbase(dev));
4880
4881 msleep(500);
4882
4883 /* check for rx of the packet */
4884 if (!nv_optimized(np)) {
4885 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
4886 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
4887
4888 } else {
4889 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
4890 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
4891 }
4892
4893 if (flags & NV_RX_AVAIL) {
4894 ret = 0;
4895 } else if (np->desc_ver == DESC_VER_1) {
4896 if (flags & NV_RX_ERROR)
4897 ret = 0;
4898 } else {
4899 if (flags & NV_RX2_ERROR) {
4900 ret = 0;
4901 }
4902 }
4903
4904 if (ret) {
4905 if (len != pkt_len) {
4906 ret = 0;
4907 dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
4908 dev->name, len, pkt_len);
4909 } else {
4910 rx_skb = np->rx_skb[0].skb;
4911 for (i = 0; i < pkt_len; i++) {
4912 if (rx_skb->data[i] != (u8)(i & 0xff)) {
4913 ret = 0;
4914 dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
4915 dev->name, i);
4916 break;
4917 }
4918 }
4919 }
4920 } else {
4921 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
4922 }
4923
4924 pci_unmap_single(np->pci_dev, test_dma_addr,
4925 (skb_end_pointer(tx_skb) - tx_skb->data),
4926 PCI_DMA_TODEVICE);
4927 dev_kfree_skb_any(tx_skb);
4928 out:
4929 /* stop engines */
4930 nv_stop_rxtx(dev);
4931 nv_txrx_reset(dev);
4932 /* drain rx queue */
4933 nv_drain_rxtx(dev);
4934
4935 if (netif_running(dev)) {
4936 writel(misc1_flags, base + NvRegMisc1);
4937 writel(filter_flags, base + NvRegPacketFilterFlags);
4938 nv_enable_irq(dev);
4939 }
4940
4941 return ret;
4942 }
4943
4944 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
4945 {
4946 struct fe_priv *np = netdev_priv(dev);
4947 u8 __iomem *base = get_hwbase(dev);
4948 int result;
4949 memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
4950
4951 if (!nv_link_test(dev)) {
4952 test->flags |= ETH_TEST_FL_FAILED;
4953 buffer[0] = 1;
4954 }
4955
4956 if (test->flags & ETH_TEST_FL_OFFLINE) {
4957 if (netif_running(dev)) {
4958 netif_stop_queue(dev);
4959 nv_napi_disable(dev);
4960 netif_tx_lock_bh(dev);
4961 netif_addr_lock(dev);
4962 spin_lock_irq(&np->lock);
4963 nv_disable_hw_interrupts(dev, np->irqmask);
4964 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
4965 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4966 } else {
4967 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4968 }
4969 /* stop engines */
4970 nv_stop_rxtx(dev);
4971 nv_txrx_reset(dev);
4972 /* drain rx queue */
4973 nv_drain_rxtx(dev);
4974 spin_unlock_irq(&np->lock);
4975 netif_addr_unlock(dev);
4976 netif_tx_unlock_bh(dev);
4977 }
4978
4979 if (!nv_register_test(dev)) {
4980 test->flags |= ETH_TEST_FL_FAILED;
4981 buffer[1] = 1;
4982 }
4983
4984 result = nv_interrupt_test(dev);
4985 if (result != 1) {
4986 test->flags |= ETH_TEST_FL_FAILED;
4987 buffer[2] = 1;
4988 }
4989 if (result == 0) {
4990 /* bail out */
4991 return;
4992 }
4993
4994 if (!nv_loopback_test(dev)) {
4995 test->flags |= ETH_TEST_FL_FAILED;
4996 buffer[3] = 1;
4997 }
4998
4999 if (netif_running(dev)) {
5000 /* reinit driver view of the rx queue */
5001 set_bufsize(dev);
5002 if (nv_init_ring(dev)) {
5003 if (!np->in_shutdown)
5004 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5005 }
5006 /* reinit nic view of the rx queue */
5007 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5008 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5009 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5010 base + NvRegRingSizes);
5011 pci_push(base);
5012 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5013 pci_push(base);
5014 /* restart rx engine */
5015 nv_start_rxtx(dev);
5016 netif_start_queue(dev);
5017 nv_napi_enable(dev);
5018 nv_enable_hw_interrupts(dev, np->irqmask);
5019 }
5020 }
5021 }
5022
5023 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
5024 {
5025 switch (stringset) {
5026 case ETH_SS_STATS:
5027 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
5028 break;
5029 case ETH_SS_TEST:
5030 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
5031 break;
5032 }
5033 }
5034
5035 static const struct ethtool_ops ops = {
5036 .get_drvinfo = nv_get_drvinfo,
5037 .get_link = ethtool_op_get_link,
5038 .get_wol = nv_get_wol,
5039 .set_wol = nv_set_wol,
5040 .get_settings = nv_get_settings,
5041 .set_settings = nv_set_settings,
5042 .get_regs_len = nv_get_regs_len,
5043 .get_regs = nv_get_regs,
5044 .nway_reset = nv_nway_reset,
5045 .set_tso = nv_set_tso,
5046 .get_ringparam = nv_get_ringparam,
5047 .set_ringparam = nv_set_ringparam,
5048 .get_pauseparam = nv_get_pauseparam,
5049 .set_pauseparam = nv_set_pauseparam,
5050 .get_rx_csum = nv_get_rx_csum,
5051 .set_rx_csum = nv_set_rx_csum,
5052 .set_tx_csum = nv_set_tx_csum,
5053 .set_sg = nv_set_sg,
5054 .get_strings = nv_get_strings,
5055 .get_ethtool_stats = nv_get_ethtool_stats,
5056 .get_sset_count = nv_get_sset_count,
5057 .self_test = nv_self_test,
5058 };
5059
5060 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
5061 {
5062 struct fe_priv *np = get_nvpriv(dev);
5063
5064 spin_lock_irq(&np->lock);
5065
5066 /* save vlan group */
5067 np->vlangrp = grp;
5068
5069 if (grp) {
5070 /* enable vlan on MAC */
5071 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
5072 } else {
5073 /* disable vlan on MAC */
5074 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
5075 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
5076 }
5077
5078 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5079
5080 spin_unlock_irq(&np->lock);
5081 }
5082
5083 /* The mgmt unit and driver use a semaphore to access the phy during init */
5084 static int nv_mgmt_acquire_sema(struct net_device *dev)
5085 {
5086 struct fe_priv *np = netdev_priv(dev);
5087 u8 __iomem *base = get_hwbase(dev);
5088 int i;
5089 u32 tx_ctrl, mgmt_sema;
5090
5091 for (i = 0; i < 10; i++) {
5092 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
5093 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
5094 break;
5095 msleep(500);
5096 }
5097
5098 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
5099 return 0;
5100
5101 for (i = 0; i < 2; i++) {
5102 tx_ctrl = readl(base + NvRegTransmitterControl);
5103 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
5104 writel(tx_ctrl, base + NvRegTransmitterControl);
5105
5106 /* verify that semaphore was acquired */
5107 tx_ctrl = readl(base + NvRegTransmitterControl);
5108 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
5109 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
5110 np->mgmt_sema = 1;
5111 return 1;
5112 }
5113 else
5114 udelay(50);
5115 }
5116
5117 return 0;
5118 }
5119
5120 static void nv_mgmt_release_sema(struct net_device *dev)
5121 {
5122 struct fe_priv *np = netdev_priv(dev);
5123 u8 __iomem *base = get_hwbase(dev);
5124 u32 tx_ctrl;
5125
5126 if (np->driver_data & DEV_HAS_MGMT_UNIT) {
5127 if (np->mgmt_sema) {
5128 tx_ctrl = readl(base + NvRegTransmitterControl);
5129 tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
5130 writel(tx_ctrl, base + NvRegTransmitterControl);
5131 }
5132 }
5133 }
5134
5135
5136 static int nv_mgmt_get_version(struct net_device *dev)
5137 {
5138 struct fe_priv *np = netdev_priv(dev);
5139 u8 __iomem *base = get_hwbase(dev);
5140 u32 data_ready = readl(base + NvRegTransmitterControl);
5141 u32 data_ready2 = 0;
5142 unsigned long start;
5143 int ready = 0;
5144
5145 writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
5146 writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
5147 start = jiffies;
5148 while (time_before(jiffies, start + 5*HZ)) {
5149 data_ready2 = readl(base + NvRegTransmitterControl);
5150 if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
5151 ready = 1;
5152 break;
5153 }
5154 schedule_timeout_uninterruptible(1);
5155 }
5156
5157 if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
5158 return 0;
5159
5160 np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
5161
5162 return 1;
5163 }
5164
5165 static int nv_open(struct net_device *dev)
5166 {
5167 struct fe_priv *np = netdev_priv(dev);
5168 u8 __iomem *base = get_hwbase(dev);
5169 int ret = 1;
5170 int oom, i;
5171 u32 low;
5172
5173 dprintk(KERN_DEBUG "nv_open: begin\n");
5174
5175 /* power up phy */
5176 mii_rw(dev, np->phyaddr, MII_BMCR,
5177 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
5178
5179 nv_txrx_gate(dev, false);
5180 /* erase previous misconfiguration */
5181 if (np->driver_data & DEV_HAS_POWER_CNTRL)
5182 nv_mac_reset(dev);
5183 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5184 writel(0, base + NvRegMulticastAddrB);
5185 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5186 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5187 writel(0, base + NvRegPacketFilterFlags);
5188
5189 writel(0, base + NvRegTransmitterControl);
5190 writel(0, base + NvRegReceiverControl);
5191
5192 writel(0, base + NvRegAdapterControl);
5193
5194 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
5195 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
5196
5197 /* initialize descriptor rings */
5198 set_bufsize(dev);
5199 oom = nv_init_ring(dev);
5200
5201 writel(0, base + NvRegLinkSpeed);
5202 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5203 nv_txrx_reset(dev);
5204 writel(0, base + NvRegUnknownSetupReg6);
5205
5206 np->in_shutdown = 0;
5207
5208 /* give hw rings */
5209 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5210 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5211 base + NvRegRingSizes);
5212
5213 writel(np->linkspeed, base + NvRegLinkSpeed);
5214 if (np->desc_ver == DESC_VER_1)
5215 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
5216 else
5217 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
5218 writel(np->txrxctl_bits, base + NvRegTxRxControl);
5219 writel(np->vlanctl_bits, base + NvRegVlanControl);
5220 pci_push(base);
5221 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
5222 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
5223 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
5224 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
5225
5226 writel(0, base + NvRegMIIMask);
5227 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5228 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5229
5230 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
5231 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
5232 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
5233 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5234
5235 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
5236
5237 get_random_bytes(&low, sizeof(low));
5238 low &= NVREG_SLOTTIME_MASK;
5239 if (np->desc_ver == DESC_VER_1) {
5240 writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
5241 } else {
5242 if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
5243 /* setup legacy backoff */
5244 writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
5245 } else {
5246 writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
5247 nv_gear_backoff_reseed(dev);
5248 }
5249 }
5250 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
5251 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
5252 if (poll_interval == -1) {
5253 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
5254 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
5255 else
5256 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
5257 }
5258 else
5259 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
5260 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5261 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
5262 base + NvRegAdapterControl);
5263 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
5264 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
5265 if (np->wolenabled)
5266 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
5267
5268 i = readl(base + NvRegPowerState);
5269 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
5270 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
5271
5272 pci_push(base);
5273 udelay(10);
5274 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
5275
5276 nv_disable_hw_interrupts(dev, np->irqmask);
5277 pci_push(base);
5278 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5279 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5280 pci_push(base);
5281
5282 if (nv_request_irq(dev, 0)) {
5283 goto out_drain;
5284 }
5285
5286 /* ask for interrupts */
5287 nv_enable_hw_interrupts(dev, np->irqmask);
5288
5289 spin_lock_irq(&np->lock);
5290 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5291 writel(0, base + NvRegMulticastAddrB);
5292 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5293 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5294 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5295 /* One manual link speed update: Interrupts are enabled, future link
5296 * speed changes cause interrupts and are handled by nv_link_irq().
5297 */
5298 {
5299 u32 miistat;
5300 miistat = readl(base + NvRegMIIStatus);
5301 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5302 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
5303 }
5304 /* set linkspeed to invalid value, thus force nv_update_linkspeed
5305 * to init hw */
5306 np->linkspeed = 0;
5307 ret = nv_update_linkspeed(dev);
5308 nv_start_rxtx(dev);
5309 netif_start_queue(dev);
5310 nv_napi_enable(dev);
5311
5312 if (ret) {
5313 netif_carrier_on(dev);
5314 } else {
5315 printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
5316 netif_carrier_off(dev);
5317 }
5318 if (oom)
5319 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5320
5321 /* start statistics timer */
5322 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5323 mod_timer(&np->stats_poll,
5324 round_jiffies(jiffies + STATS_INTERVAL));
5325
5326 spin_unlock_irq(&np->lock);
5327
5328 return 0;
5329 out_drain:
5330 nv_drain_rxtx(dev);
5331 return ret;
5332 }
5333
5334 static int nv_close(struct net_device *dev)
5335 {
5336 struct fe_priv *np = netdev_priv(dev);
5337 u8 __iomem *base;
5338
5339 spin_lock_irq(&np->lock);
5340 np->in_shutdown = 1;
5341 spin_unlock_irq(&np->lock);
5342 nv_napi_disable(dev);
5343 synchronize_irq(np->pci_dev->irq);
5344
5345 del_timer_sync(&np->oom_kick);
5346 del_timer_sync(&np->nic_poll);
5347 del_timer_sync(&np->stats_poll);
5348
5349 netif_stop_queue(dev);
5350 spin_lock_irq(&np->lock);
5351 nv_stop_rxtx(dev);
5352 nv_txrx_reset(dev);
5353
5354 /* disable interrupts on the nic or we will lock up */
5355 base = get_hwbase(dev);
5356 nv_disable_hw_interrupts(dev, np->irqmask);
5357 pci_push(base);
5358 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
5359
5360 spin_unlock_irq(&np->lock);
5361
5362 nv_free_irq(dev);
5363
5364 nv_drain_rxtx(dev);
5365
5366 if (np->wolenabled || !phy_power_down) {
5367 nv_txrx_gate(dev, false);
5368 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5369 nv_start_rx(dev);
5370 } else {
5371 /* power down phy */
5372 mii_rw(dev, np->phyaddr, MII_BMCR,
5373 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
5374 nv_txrx_gate(dev, true);
5375 }
5376
5377 /* FIXME: power down nic */
5378
5379 return 0;
5380 }
5381
5382 static const struct net_device_ops nv_netdev_ops = {
5383 .ndo_open = nv_open,
5384 .ndo_stop = nv_close,
5385 .ndo_get_stats = nv_get_stats,
5386 .ndo_start_xmit = nv_start_xmit,
5387 .ndo_tx_timeout = nv_tx_timeout,
5388 .ndo_change_mtu = nv_change_mtu,
5389 .ndo_validate_addr = eth_validate_addr,
5390 .ndo_set_mac_address = nv_set_mac_address,
5391 .ndo_set_multicast_list = nv_set_multicast,
5392 .ndo_vlan_rx_register = nv_vlan_rx_register,
5393 #ifdef CONFIG_NET_POLL_CONTROLLER
5394 .ndo_poll_controller = nv_poll_controller,
5395 #endif
5396 };
5397
5398 static const struct net_device_ops nv_netdev_ops_optimized = {
5399 .ndo_open = nv_open,
5400 .ndo_stop = nv_close,
5401 .ndo_get_stats = nv_get_stats,
5402 .ndo_start_xmit = nv_start_xmit_optimized,
5403 .ndo_tx_timeout = nv_tx_timeout,
5404 .ndo_change_mtu = nv_change_mtu,
5405 .ndo_validate_addr = eth_validate_addr,
5406 .ndo_set_mac_address = nv_set_mac_address,
5407 .ndo_set_multicast_list = nv_set_multicast,
5408 .ndo_vlan_rx_register = nv_vlan_rx_register,
5409 #ifdef CONFIG_NET_POLL_CONTROLLER
5410 .ndo_poll_controller = nv_poll_controller,
5411 #endif
5412 };
5413
5414 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
5415 {
5416 struct net_device *dev;
5417 struct fe_priv *np;
5418 unsigned long addr;
5419 u8 __iomem *base;
5420 int err, i;
5421 u32 powerstate, txreg;
5422 u32 phystate_orig = 0, phystate;
5423 int phyinitialized = 0;
5424 static int printed_version;
5425
5426 if (!printed_version++)
5427 printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
5428 " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
5429
5430 dev = alloc_etherdev(sizeof(struct fe_priv));
5431 err = -ENOMEM;
5432 if (!dev)
5433 goto out;
5434
5435 np = netdev_priv(dev);
5436 np->dev = dev;
5437 np->pci_dev = pci_dev;
5438 spin_lock_init(&np->lock);
5439 SET_NETDEV_DEV(dev, &pci_dev->dev);
5440
5441 init_timer(&np->oom_kick);
5442 np->oom_kick.data = (unsigned long) dev;
5443 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
5444 init_timer(&np->nic_poll);
5445 np->nic_poll.data = (unsigned long) dev;
5446 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
5447 init_timer(&np->stats_poll);
5448 np->stats_poll.data = (unsigned long) dev;
5449 np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
5450
5451 err = pci_enable_device(pci_dev);
5452 if (err)
5453 goto out_free;
5454
5455 pci_set_master(pci_dev);
5456
5457 err = pci_request_regions(pci_dev, DRV_NAME);
5458 if (err < 0)
5459 goto out_disable;
5460
5461 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5462 np->register_size = NV_PCI_REGSZ_VER3;
5463 else if (id->driver_data & DEV_HAS_STATISTICS_V1)
5464 np->register_size = NV_PCI_REGSZ_VER2;
5465 else
5466 np->register_size = NV_PCI_REGSZ_VER1;
5467
5468 err = -EINVAL;
5469 addr = 0;
5470 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5471 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
5472 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
5473 pci_resource_len(pci_dev, i),
5474 pci_resource_flags(pci_dev, i));
5475 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
5476 pci_resource_len(pci_dev, i) >= np->register_size) {
5477 addr = pci_resource_start(pci_dev, i);
5478 break;
5479 }
5480 }
5481 if (i == DEVICE_COUNT_RESOURCE) {
5482 dev_printk(KERN_INFO, &pci_dev->dev,
5483 "Couldn't find register window\n");
5484 goto out_relreg;
5485 }
5486
5487 /* copy of driver data */
5488 np->driver_data = id->driver_data;
5489 /* copy of device id */
5490 np->device_id = id->device;
5491
5492 /* handle different descriptor versions */
5493 if (id->driver_data & DEV_HAS_HIGH_DMA) {
5494 /* packet format 3: supports 40-bit addressing */
5495 np->desc_ver = DESC_VER_3;
5496 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
5497 if (dma_64bit) {
5498 if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
5499 dev_printk(KERN_INFO, &pci_dev->dev,
5500 "64-bit DMA failed, using 32-bit addressing\n");
5501 else
5502 dev->features |= NETIF_F_HIGHDMA;
5503 if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
5504 dev_printk(KERN_INFO, &pci_dev->dev,
5505 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
5506 }
5507 }
5508 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
5509 /* packet format 2: supports jumbo frames */
5510 np->desc_ver = DESC_VER_2;
5511 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
5512 } else {
5513 /* original packet format */
5514 np->desc_ver = DESC_VER_1;
5515 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
5516 }
5517
5518 np->pkt_limit = NV_PKTLIMIT_1;
5519 if (id->driver_data & DEV_HAS_LARGEDESC)
5520 np->pkt_limit = NV_PKTLIMIT_2;
5521
5522 if (id->driver_data & DEV_HAS_CHECKSUM) {
5523 np->rx_csum = 1;
5524 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
5525 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
5526 dev->features |= NETIF_F_TSO;
5527 dev->features |= NETIF_F_GRO;
5528 }
5529
5530 np->vlanctl_bits = 0;
5531 if (id->driver_data & DEV_HAS_VLAN) {
5532 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
5533 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
5534 }
5535
5536 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
5537 if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
5538 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
5539 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
5540 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
5541 }
5542
5543
5544 err = -ENOMEM;
5545 np->base = ioremap(addr, np->register_size);
5546 if (!np->base)
5547 goto out_relreg;
5548 dev->base_addr = (unsigned long)np->base;
5549
5550 dev->irq = pci_dev->irq;
5551
5552 np->rx_ring_size = RX_RING_DEFAULT;
5553 np->tx_ring_size = TX_RING_DEFAULT;
5554
5555 if (!nv_optimized(np)) {
5556 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
5557 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
5558 &np->ring_addr);
5559 if (!np->rx_ring.orig)
5560 goto out_unmap;
5561 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
5562 } else {
5563 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
5564 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
5565 &np->ring_addr);
5566 if (!np->rx_ring.ex)
5567 goto out_unmap;
5568 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
5569 }
5570 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5571 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5572 if (!np->rx_skb || !np->tx_skb)
5573 goto out_freering;
5574
5575 if (!nv_optimized(np))
5576 dev->netdev_ops = &nv_netdev_ops;
5577 else
5578 dev->netdev_ops = &nv_netdev_ops_optimized;
5579
5580 netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
5581 SET_ETHTOOL_OPS(dev, &ops);
5582 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
5583
5584 pci_set_drvdata(pci_dev, dev);
5585
5586 /* read the mac address */
5587 base = get_hwbase(dev);
5588 np->orig_mac[0] = readl(base + NvRegMacAddrA);
5589 np->orig_mac[1] = readl(base + NvRegMacAddrB);
5590
5591 /* check the workaround bit for correct mac address order */
5592 txreg = readl(base + NvRegTransmitPoll);
5593 if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
5594 /* mac address is already in correct order */
5595 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5596 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5597 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5598 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5599 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5600 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5601 } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
5602 /* mac address is already in correct order */
5603 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5604 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5605 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5606 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5607 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5608 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5609 /*
5610 * Set orig mac address back to the reversed version.
5611 * This flag will be cleared during low power transition.
5612 * Therefore, we should always put back the reversed address.
5613 */
5614 np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
5615 (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
5616 np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
5617 } else {
5618 /* need to reverse mac address to correct order */
5619 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
5620 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
5621 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
5622 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
5623 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
5624 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
5625 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5626 printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
5627 }
5628 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5629
5630 if (!is_valid_ether_addr(dev->perm_addr)) {
5631 /*
5632 * Bad mac address. At least one bios sets the mac address
5633 * to 01:23:45:67:89:ab
5634 */
5635 dev_printk(KERN_ERR, &pci_dev->dev,
5636 "Invalid Mac address detected: %pM\n",
5637 dev->dev_addr);
5638 dev_printk(KERN_ERR, &pci_dev->dev,
5639 "Please complain to your hardware vendor. Switching to a random MAC.\n");
5640 random_ether_addr(dev->dev_addr);
5641 }
5642
5643 dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
5644 pci_name(pci_dev), dev->dev_addr);
5645
5646 /* set mac address */
5647 nv_copy_mac_to_hw(dev);
5648
5649 /* Workaround current PCI init glitch: wakeup bits aren't
5650 * being set from PCI PM capability.
5651 */
5652 device_init_wakeup(&pci_dev->dev, 1);
5653
5654 /* disable WOL */
5655 writel(0, base + NvRegWakeUpFlags);
5656 np->wolenabled = 0;
5657
5658 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5659
5660 /* take phy and nic out of low power mode */
5661 powerstate = readl(base + NvRegPowerState2);
5662 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5663 if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
5664 pci_dev->revision >= 0xA3)
5665 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5666 writel(powerstate, base + NvRegPowerState2);
5667 }
5668
5669 if (np->desc_ver == DESC_VER_1) {
5670 np->tx_flags = NV_TX_VALID;
5671 } else {
5672 np->tx_flags = NV_TX2_VALID;
5673 }
5674
5675 np->msi_flags = 0;
5676 if ((id->driver_data & DEV_HAS_MSI) && msi) {
5677 np->msi_flags |= NV_MSI_CAPABLE;
5678 }
5679 if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
5680 /* msix has had reported issues when modifying irqmask
5681 as in the case of napi, therefore, disable for now
5682 */
5683 #if 0
5684 np->msi_flags |= NV_MSI_X_CAPABLE;
5685 #endif
5686 }
5687
5688 if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
5689 np->irqmask = NVREG_IRQMASK_CPU;
5690 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5691 np->msi_flags |= 0x0001;
5692 } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
5693 !(id->driver_data & DEV_NEED_TIMERIRQ)) {
5694 /* start off in throughput mode */
5695 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5696 /* remove support for msix mode */
5697 np->msi_flags &= ~NV_MSI_X_CAPABLE;
5698 } else {
5699 optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
5700 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5701 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5702 np->msi_flags |= 0x0003;
5703 }
5704
5705 if (id->driver_data & DEV_NEED_TIMERIRQ)
5706 np->irqmask |= NVREG_IRQ_TIMER;
5707 if (id->driver_data & DEV_NEED_LINKTIMER) {
5708 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
5709 np->need_linktimer = 1;
5710 np->link_timeout = jiffies + LINK_TIMEOUT;
5711 } else {
5712 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
5713 np->need_linktimer = 0;
5714 }
5715
5716 /* Limit the number of tx's outstanding for hw bug */
5717 if (id->driver_data & DEV_NEED_TX_LIMIT) {
5718 np->tx_limit = 1;
5719 if (((id->driver_data & DEV_NEED_TX_LIMIT2) == DEV_NEED_TX_LIMIT2) &&
5720 pci_dev->revision >= 0xA2)
5721 np->tx_limit = 0;
5722 }
5723
5724 /* clear phy state and temporarily halt phy interrupts */
5725 writel(0, base + NvRegMIIMask);
5726 phystate = readl(base + NvRegAdapterControl);
5727 if (phystate & NVREG_ADAPTCTL_RUNNING) {
5728 phystate_orig = 1;
5729 phystate &= ~NVREG_ADAPTCTL_RUNNING;
5730 writel(phystate, base + NvRegAdapterControl);
5731 }
5732 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5733
5734 if (id->driver_data & DEV_HAS_MGMT_UNIT) {
5735 /* management unit running on the mac? */
5736 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
5737 (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
5738 nv_mgmt_acquire_sema(dev) &&
5739 nv_mgmt_get_version(dev)) {
5740 np->mac_in_use = 1;
5741 if (np->mgmt_version > 0) {
5742 np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
5743 }
5744 dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n",
5745 pci_name(pci_dev), np->mac_in_use);
5746 /* management unit setup the phy already? */
5747 if (np->mac_in_use &&
5748 ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
5749 NVREG_XMITCTL_SYNC_PHY_INIT)) {
5750 /* phy is inited by mgmt unit */
5751 phyinitialized = 1;
5752 dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n",
5753 pci_name(pci_dev));
5754 } else {
5755 /* we need to init the phy */
5756 }
5757 }
5758 }
5759
5760 /* find a suitable phy */
5761 for (i = 1; i <= 32; i++) {
5762 int id1, id2;
5763 int phyaddr = i & 0x1F;
5764
5765 spin_lock_irq(&np->lock);
5766 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
5767 spin_unlock_irq(&np->lock);
5768 if (id1 < 0 || id1 == 0xffff)
5769 continue;
5770 spin_lock_irq(&np->lock);
5771 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
5772 spin_unlock_irq(&np->lock);
5773 if (id2 < 0 || id2 == 0xffff)
5774 continue;
5775
5776 np->phy_model = id2 & PHYID2_MODEL_MASK;
5777 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
5778 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
5779 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
5780 pci_name(pci_dev), id1, id2, phyaddr);
5781 np->phyaddr = phyaddr;
5782 np->phy_oui = id1 | id2;
5783
5784 /* Realtek hardcoded phy id1 to all zero's on certain phys */
5785 if (np->phy_oui == PHY_OUI_REALTEK2)
5786 np->phy_oui = PHY_OUI_REALTEK;
5787 /* Setup phy revision for Realtek */
5788 if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
5789 np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
5790
5791 break;
5792 }
5793 if (i == 33) {
5794 dev_printk(KERN_INFO, &pci_dev->dev,
5795 "open: Could not find a valid PHY.\n");
5796 goto out_error;
5797 }
5798
5799 if (!phyinitialized) {
5800 /* reset it */
5801 phy_init(dev);
5802 } else {
5803 /* see if it is a gigabit phy */
5804 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
5805 if (mii_status & PHY_GIGABIT) {
5806 np->gigabit = PHY_GIGABIT;
5807 }
5808 }
5809
5810 /* set default link speed settings */
5811 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
5812 np->duplex = 0;
5813 np->autoneg = 1;
5814
5815 err = register_netdev(dev);
5816 if (err) {
5817 dev_printk(KERN_INFO, &pci_dev->dev,
5818 "unable to register netdev: %d\n", err);
5819 goto out_error;
5820 }
5821
5822 dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
5823 "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
5824 dev->name,
5825 np->phy_oui,
5826 np->phyaddr,
5827 dev->dev_addr[0],
5828 dev->dev_addr[1],
5829 dev->dev_addr[2],
5830 dev->dev_addr[3],
5831 dev->dev_addr[4],
5832 dev->dev_addr[5]);
5833
5834 dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
5835 dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
5836 dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
5837 "csum " : "",
5838 dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
5839 "vlan " : "",
5840 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
5841 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
5842 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
5843 np->gigabit == PHY_GIGABIT ? "gbit " : "",
5844 np->need_linktimer ? "lnktim " : "",
5845 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
5846 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
5847 np->desc_ver);
5848
5849 return 0;
5850
5851 out_error:
5852 if (phystate_orig)
5853 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
5854 pci_set_drvdata(pci_dev, NULL);
5855 out_freering:
5856 free_rings(dev);
5857 out_unmap:
5858 iounmap(get_hwbase(dev));
5859 out_relreg:
5860 pci_release_regions(pci_dev);
5861 out_disable:
5862 pci_disable_device(pci_dev);
5863 out_free:
5864 free_netdev(dev);
5865 out:
5866 return err;
5867 }
5868
5869 static void nv_restore_phy(struct net_device *dev)
5870 {
5871 struct fe_priv *np = netdev_priv(dev);
5872 u16 phy_reserved, mii_control;
5873
5874 if (np->phy_oui == PHY_OUI_REALTEK &&
5875 np->phy_model == PHY_MODEL_REALTEK_8201 &&
5876 phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
5877 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
5878 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
5879 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
5880 phy_reserved |= PHY_REALTEK_INIT8;
5881 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
5882 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
5883
5884 /* restart auto negotiation */
5885 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
5886 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
5887 mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
5888 }
5889 }
5890
5891 static void nv_restore_mac_addr(struct pci_dev *pci_dev)
5892 {
5893 struct net_device *dev = pci_get_drvdata(pci_dev);
5894 struct fe_priv *np = netdev_priv(dev);
5895 u8 __iomem *base = get_hwbase(dev);
5896
5897 /* special op: write back the misordered MAC address - otherwise
5898 * the next nv_probe would see a wrong address.
5899 */
5900 writel(np->orig_mac[0], base + NvRegMacAddrA);
5901 writel(np->orig_mac[1], base + NvRegMacAddrB);
5902 writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
5903 base + NvRegTransmitPoll);
5904 }
5905
5906 static void __devexit nv_remove(struct pci_dev *pci_dev)
5907 {
5908 struct net_device *dev = pci_get_drvdata(pci_dev);
5909
5910 unregister_netdev(dev);
5911
5912 nv_restore_mac_addr(pci_dev);
5913
5914 /* restore any phy related changes */
5915 nv_restore_phy(dev);
5916
5917 nv_mgmt_release_sema(dev);
5918
5919 /* free all structures */
5920 free_rings(dev);
5921 iounmap(get_hwbase(dev));
5922 pci_release_regions(pci_dev);
5923 pci_disable_device(pci_dev);
5924 free_netdev(dev);
5925 pci_set_drvdata(pci_dev, NULL);
5926 }
5927
5928 #ifdef CONFIG_PM
5929 static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
5930 {
5931 struct net_device *dev = pci_get_drvdata(pdev);
5932 struct fe_priv *np = netdev_priv(dev);
5933 u8 __iomem *base = get_hwbase(dev);
5934 int i;
5935
5936 if (netif_running(dev)) {
5937 // Gross.
5938 nv_close(dev);
5939 }
5940 netif_device_detach(dev);
5941
5942 /* save non-pci configuration space */
5943 for (i = 0;i <= np->register_size/sizeof(u32); i++)
5944 np->saved_config_space[i] = readl(base + i*sizeof(u32));
5945
5946 pci_save_state(pdev);
5947 pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
5948 pci_disable_device(pdev);
5949 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5950 return 0;
5951 }
5952
5953 static int nv_resume(struct pci_dev *pdev)
5954 {
5955 struct net_device *dev = pci_get_drvdata(pdev);
5956 struct fe_priv *np = netdev_priv(dev);
5957 u8 __iomem *base = get_hwbase(dev);
5958 int i, rc = 0;
5959
5960 pci_set_power_state(pdev, PCI_D0);
5961 pci_restore_state(pdev);
5962 /* ack any pending wake events, disable PME */
5963 pci_enable_wake(pdev, PCI_D0, 0);
5964
5965 /* restore non-pci configuration space */
5966 for (i = 0;i <= np->register_size/sizeof(u32); i++)
5967 writel(np->saved_config_space[i], base+i*sizeof(u32));
5968
5969 if (np->driver_data & DEV_NEED_MSI_FIX)
5970 pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
5971
5972 /* restore phy state, including autoneg */
5973 phy_init(dev);
5974
5975 netif_device_attach(dev);
5976 if (netif_running(dev)) {
5977 rc = nv_open(dev);
5978 nv_set_multicast(dev);
5979 }
5980 return rc;
5981 }
5982
5983 static void nv_shutdown(struct pci_dev *pdev)
5984 {
5985 struct net_device *dev = pci_get_drvdata(pdev);
5986 struct fe_priv *np = netdev_priv(dev);
5987
5988 if (netif_running(dev))
5989 nv_close(dev);
5990
5991 /*
5992 * Restore the MAC so a kernel started by kexec won't get confused.
5993 * If we really go for poweroff, we must not restore the MAC,
5994 * otherwise the MAC for WOL will be reversed at least on some boards.
5995 */
5996 if (system_state != SYSTEM_POWER_OFF) {
5997 nv_restore_mac_addr(pdev);
5998 }
5999
6000 pci_disable_device(pdev);
6001 /*
6002 * Apparently it is not possible to reinitialise from D3 hot,
6003 * only put the device into D3 if we really go for poweroff.
6004 */
6005 if (system_state == SYSTEM_POWER_OFF) {
6006 if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
6007 pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
6008 pci_set_power_state(pdev, PCI_D3hot);
6009 }
6010 }
6011 #else
6012 #define nv_suspend NULL
6013 #define nv_shutdown NULL
6014 #define nv_resume NULL
6015 #endif /* CONFIG_PM */
6016
6017 static DEFINE_PCI_DEVICE_TABLE(pci_tbl) = {
6018 { /* nForce Ethernet Controller */
6019 PCI_DEVICE(0x10DE, 0x01C3),
6020 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6021 },
6022 { /* nForce2 Ethernet Controller */
6023 PCI_DEVICE(0x10DE, 0x0066),
6024 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6025 },
6026 { /* nForce3 Ethernet Controller */
6027 PCI_DEVICE(0x10DE, 0x00D6),
6028 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6029 },
6030 { /* nForce3 Ethernet Controller */
6031 PCI_DEVICE(0x10DE, 0x0086),
6032 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6033 },
6034 { /* nForce3 Ethernet Controller */
6035 PCI_DEVICE(0x10DE, 0x008C),
6036 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6037 },
6038 { /* nForce3 Ethernet Controller */
6039 PCI_DEVICE(0x10DE, 0x00E6),
6040 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6041 },
6042 { /* nForce3 Ethernet Controller */
6043 PCI_DEVICE(0x10DE, 0x00DF),
6044 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6045 },
6046 { /* CK804 Ethernet Controller */
6047 PCI_DEVICE(0x10DE, 0x0056),
6048 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6049 },
6050 { /* CK804 Ethernet Controller */
6051 PCI_DEVICE(0x10DE, 0x0057),
6052 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6053 },
6054 { /* MCP04 Ethernet Controller */
6055 PCI_DEVICE(0x10DE, 0x0037),
6056 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6057 },
6058 { /* MCP04 Ethernet Controller */
6059 PCI_DEVICE(0x10DE, 0x0038),
6060 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6061 },
6062 { /* MCP51 Ethernet Controller */
6063 PCI_DEVICE(0x10DE, 0x0268),
6064 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
6065 },
6066 { /* MCP51 Ethernet Controller */
6067 PCI_DEVICE(0x10DE, 0x0269),
6068 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
6069 },
6070 { /* MCP55 Ethernet Controller */
6071 PCI_DEVICE(0x10DE, 0x0372),
6072 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
6073 },
6074 { /* MCP55 Ethernet Controller */
6075 PCI_DEVICE(0x10DE, 0x0373),
6076 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
6077 },
6078 { /* MCP61 Ethernet Controller */
6079 PCI_DEVICE(0x10DE, 0x03E5),
6080 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6081 },
6082 { /* MCP61 Ethernet Controller */
6083 PCI_DEVICE(0x10DE, 0x03E6),
6084 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6085 },
6086 { /* MCP61 Ethernet Controller */
6087 PCI_DEVICE(0x10DE, 0x03EE),
6088 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6089 },
6090 { /* MCP61 Ethernet Controller */
6091 PCI_DEVICE(0x10DE, 0x03EF),
6092 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6093 },
6094 { /* MCP65 Ethernet Controller */
6095 PCI_DEVICE(0x10DE, 0x0450),
6096 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6097 },
6098 { /* MCP65 Ethernet Controller */
6099 PCI_DEVICE(0x10DE, 0x0451),
6100 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6101 },
6102 { /* MCP65 Ethernet Controller */
6103 PCI_DEVICE(0x10DE, 0x0452),
6104 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6105 },
6106 { /* MCP65 Ethernet Controller */
6107 PCI_DEVICE(0x10DE, 0x0453),
6108 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6109 },
6110 { /* MCP67 Ethernet Controller */
6111 PCI_DEVICE(0x10DE, 0x054C),
6112 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6113 },
6114 { /* MCP67 Ethernet Controller */
6115 PCI_DEVICE(0x10DE, 0x054D),
6116 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6117 },
6118 { /* MCP67 Ethernet Controller */
6119 PCI_DEVICE(0x10DE, 0x054E),
6120 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6121 },
6122 { /* MCP67 Ethernet Controller */
6123 PCI_DEVICE(0x10DE, 0x054F),
6124 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6125 },
6126 { /* MCP73 Ethernet Controller */
6127 PCI_DEVICE(0x10DE, 0x07DC),
6128 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6129 },
6130 { /* MCP73 Ethernet Controller */
6131 PCI_DEVICE(0x10DE, 0x07DD),
6132 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6133 },
6134 { /* MCP73 Ethernet Controller */
6135 PCI_DEVICE(0x10DE, 0x07DE),
6136 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6137 },
6138 { /* MCP73 Ethernet Controller */
6139 PCI_DEVICE(0x10DE, 0x07DF),
6140 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6141 },
6142 { /* MCP77 Ethernet Controller */
6143 PCI_DEVICE(0x10DE, 0x0760),
6144 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6145 },
6146 { /* MCP77 Ethernet Controller */
6147 PCI_DEVICE(0x10DE, 0x0761),
6148 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6149 },
6150 { /* MCP77 Ethernet Controller */
6151 PCI_DEVICE(0x10DE, 0x0762),
6152 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6153 },
6154 { /* MCP77 Ethernet Controller */
6155 PCI_DEVICE(0x10DE, 0x0763),
6156 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6157 },
6158 { /* MCP79 Ethernet Controller */
6159 PCI_DEVICE(0x10DE, 0x0AB0),
6160 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6161 },
6162 { /* MCP79 Ethernet Controller */
6163 PCI_DEVICE(0x10DE, 0x0AB1),
6164 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6165 },
6166 { /* MCP79 Ethernet Controller */
6167 PCI_DEVICE(0x10DE, 0x0AB2),
6168 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6169 },
6170 { /* MCP79 Ethernet Controller */
6171 PCI_DEVICE(0x10DE, 0x0AB3),
6172 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6173 },
6174 { /* MCP89 Ethernet Controller */
6175 PCI_DEVICE(0x10DE, 0x0D7D),
6176 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX,
6177 },
6178 {0,},
6179 };
6180
6181 static struct pci_driver driver = {
6182 .name = DRV_NAME,
6183 .id_table = pci_tbl,
6184 .probe = nv_probe,
6185 .remove = __devexit_p(nv_remove),
6186 .suspend = nv_suspend,
6187 .resume = nv_resume,
6188 .shutdown = nv_shutdown,
6189 };
6190
6191 static int __init init_nic(void)
6192 {
6193 return pci_register_driver(&driver);
6194 }
6195
6196 static void __exit exit_nic(void)
6197 {
6198 pci_unregister_driver(&driver);
6199 }
6200
6201 module_param(max_interrupt_work, int, 0);
6202 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
6203 module_param(optimization_mode, int, 0);
6204 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
6205 module_param(poll_interval, int, 0);
6206 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
6207 module_param(msi, int, 0);
6208 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
6209 module_param(msix, int, 0);
6210 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
6211 module_param(dma_64bit, int, 0);
6212 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
6213 module_param(phy_cross, int, 0);
6214 MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
6215 module_param(phy_power_down, int, 0);
6216 MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
6217
6218 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
6219 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
6220 MODULE_LICENSE("GPL");
6221
6222 MODULE_DEVICE_TABLE(pci, pci_tbl);
6223
6224 module_init(init_nic);
6225 module_exit(exit_nic);
This page took 0.225152 seconds and 5 git commands to generate.