Merge branch 'omap-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind...
[deliverable/linux.git] / drivers / net / forcedeth.c
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey.
7 *
8 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9 * trademarks of NVIDIA Corporation in the United States and other
10 * countries.
11 *
12 * Copyright (C) 2003,4,5 Manfred Spraul
13 * Copyright (C) 2004 Andrew de Quincey (wol support)
14 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15 * IRQ rate fixes, bigendian fixes, cleanups, verification)
16 * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * (at your option) any later version.
22 *
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
27 *
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, write to the Free Software
30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 *
32 * Known bugs:
33 * We suspect that on some hardware no TX done interrupts are generated.
34 * This means recovery from netif_stop_queue only happens if the hw timer
35 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
36 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
37 * If your hardware reliably generates tx done interrupts, then you can remove
38 * DEV_NEED_TIMERIRQ from the driver_data flags.
39 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
40 * superfluous timer interrupts from the nic.
41 */
42 #define FORCEDETH_VERSION "0.64"
43 #define DRV_NAME "forcedeth"
44
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/pci.h>
48 #include <linux/interrupt.h>
49 #include <linux/netdevice.h>
50 #include <linux/etherdevice.h>
51 #include <linux/delay.h>
52 #include <linux/sched.h>
53 #include <linux/spinlock.h>
54 #include <linux/ethtool.h>
55 #include <linux/timer.h>
56 #include <linux/skbuff.h>
57 #include <linux/mii.h>
58 #include <linux/random.h>
59 #include <linux/init.h>
60 #include <linux/if_vlan.h>
61 #include <linux/dma-mapping.h>
62
63 #include <asm/irq.h>
64 #include <asm/io.h>
65 #include <asm/uaccess.h>
66 #include <asm/system.h>
67
68 #if 0
69 #define dprintk printk
70 #else
71 #define dprintk(x...) do { } while (0)
72 #endif
73
74 #define TX_WORK_PER_LOOP 64
75 #define RX_WORK_PER_LOOP 64
76
77 /*
78 * Hardware access:
79 */
80
81 #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */
82 #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */
83 #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */
84 #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */
85 #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */
86 #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */
87 #define DEV_HAS_MSI 0x0000040 /* device supports MSI */
88 #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */
89 #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */
90 #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */
91 #define DEV_HAS_STATISTICS_V2 0x0000600 /* device supports hw statistics version 2 */
92 #define DEV_HAS_STATISTICS_V3 0x0000e00 /* device supports hw statistics version 3 */
93 #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */
94 #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */
95 #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */
96 #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */
97 #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */
98 #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */
99 #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */
100 #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */
101 #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */
102 #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */
103 #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */
104 #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */
105 #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */
106
107 enum {
108 NvRegIrqStatus = 0x000,
109 #define NVREG_IRQSTAT_MIIEVENT 0x040
110 #define NVREG_IRQSTAT_MASK 0x83ff
111 NvRegIrqMask = 0x004,
112 #define NVREG_IRQ_RX_ERROR 0x0001
113 #define NVREG_IRQ_RX 0x0002
114 #define NVREG_IRQ_RX_NOBUF 0x0004
115 #define NVREG_IRQ_TX_ERR 0x0008
116 #define NVREG_IRQ_TX_OK 0x0010
117 #define NVREG_IRQ_TIMER 0x0020
118 #define NVREG_IRQ_LINK 0x0040
119 #define NVREG_IRQ_RX_FORCED 0x0080
120 #define NVREG_IRQ_TX_FORCED 0x0100
121 #define NVREG_IRQ_RECOVER_ERROR 0x8200
122 #define NVREG_IRQMASK_THROUGHPUT 0x00df
123 #define NVREG_IRQMASK_CPU 0x0060
124 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
125 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
126 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
127
128 NvRegUnknownSetupReg6 = 0x008,
129 #define NVREG_UNKSETUP6_VAL 3
130
131 /*
132 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
133 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
134 */
135 NvRegPollingInterval = 0x00c,
136 #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
137 #define NVREG_POLL_DEFAULT_CPU 13
138 NvRegMSIMap0 = 0x020,
139 NvRegMSIMap1 = 0x024,
140 NvRegMSIIrqMask = 0x030,
141 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
142 NvRegMisc1 = 0x080,
143 #define NVREG_MISC1_PAUSE_TX 0x01
144 #define NVREG_MISC1_HD 0x02
145 #define NVREG_MISC1_FORCE 0x3b0f3c
146
147 NvRegMacReset = 0x34,
148 #define NVREG_MAC_RESET_ASSERT 0x0F3
149 NvRegTransmitterControl = 0x084,
150 #define NVREG_XMITCTL_START 0x01
151 #define NVREG_XMITCTL_MGMT_ST 0x40000000
152 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
153 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
154 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
155 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
156 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
157 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
158 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
159 #define NVREG_XMITCTL_HOST_LOADED 0x00004000
160 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
161 #define NVREG_XMITCTL_DATA_START 0x00100000
162 #define NVREG_XMITCTL_DATA_READY 0x00010000
163 #define NVREG_XMITCTL_DATA_ERROR 0x00020000
164 NvRegTransmitterStatus = 0x088,
165 #define NVREG_XMITSTAT_BUSY 0x01
166
167 NvRegPacketFilterFlags = 0x8c,
168 #define NVREG_PFF_PAUSE_RX 0x08
169 #define NVREG_PFF_ALWAYS 0x7F0000
170 #define NVREG_PFF_PROMISC 0x80
171 #define NVREG_PFF_MYADDR 0x20
172 #define NVREG_PFF_LOOPBACK 0x10
173
174 NvRegOffloadConfig = 0x90,
175 #define NVREG_OFFLOAD_HOMEPHY 0x601
176 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
177 NvRegReceiverControl = 0x094,
178 #define NVREG_RCVCTL_START 0x01
179 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
180 NvRegReceiverStatus = 0x98,
181 #define NVREG_RCVSTAT_BUSY 0x01
182
183 NvRegSlotTime = 0x9c,
184 #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
185 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
186 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
187 #define NVREG_SLOTTIME_HALF 0x0000ff00
188 #define NVREG_SLOTTIME_DEFAULT 0x00007f00
189 #define NVREG_SLOTTIME_MASK 0x000000ff
190
191 NvRegTxDeferral = 0xA0,
192 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
193 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
194 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
195 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
196 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
197 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
198 NvRegRxDeferral = 0xA4,
199 #define NVREG_RX_DEFERRAL_DEFAULT 0x16
200 NvRegMacAddrA = 0xA8,
201 NvRegMacAddrB = 0xAC,
202 NvRegMulticastAddrA = 0xB0,
203 #define NVREG_MCASTADDRA_FORCE 0x01
204 NvRegMulticastAddrB = 0xB4,
205 NvRegMulticastMaskA = 0xB8,
206 #define NVREG_MCASTMASKA_NONE 0xffffffff
207 NvRegMulticastMaskB = 0xBC,
208 #define NVREG_MCASTMASKB_NONE 0xffff
209
210 NvRegPhyInterface = 0xC0,
211 #define PHY_RGMII 0x10000000
212 NvRegBackOffControl = 0xC4,
213 #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
214 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
215 #define NVREG_BKOFFCTRL_SELECT 24
216 #define NVREG_BKOFFCTRL_GEAR 12
217
218 NvRegTxRingPhysAddr = 0x100,
219 NvRegRxRingPhysAddr = 0x104,
220 NvRegRingSizes = 0x108,
221 #define NVREG_RINGSZ_TXSHIFT 0
222 #define NVREG_RINGSZ_RXSHIFT 16
223 NvRegTransmitPoll = 0x10c,
224 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
225 NvRegLinkSpeed = 0x110,
226 #define NVREG_LINKSPEED_FORCE 0x10000
227 #define NVREG_LINKSPEED_10 1000
228 #define NVREG_LINKSPEED_100 100
229 #define NVREG_LINKSPEED_1000 50
230 #define NVREG_LINKSPEED_MASK (0xFFF)
231 NvRegUnknownSetupReg5 = 0x130,
232 #define NVREG_UNKSETUP5_BIT31 (1<<31)
233 NvRegTxWatermark = 0x13c,
234 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
235 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
236 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
237 NvRegTxRxControl = 0x144,
238 #define NVREG_TXRXCTL_KICK 0x0001
239 #define NVREG_TXRXCTL_BIT1 0x0002
240 #define NVREG_TXRXCTL_BIT2 0x0004
241 #define NVREG_TXRXCTL_IDLE 0x0008
242 #define NVREG_TXRXCTL_RESET 0x0010
243 #define NVREG_TXRXCTL_RXCHECK 0x0400
244 #define NVREG_TXRXCTL_DESC_1 0
245 #define NVREG_TXRXCTL_DESC_2 0x002100
246 #define NVREG_TXRXCTL_DESC_3 0xc02200
247 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
248 #define NVREG_TXRXCTL_VLANINS 0x00080
249 NvRegTxRingPhysAddrHigh = 0x148,
250 NvRegRxRingPhysAddrHigh = 0x14C,
251 NvRegTxPauseFrame = 0x170,
252 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
253 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
254 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
255 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
256 NvRegTxPauseFrameLimit = 0x174,
257 #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
258 NvRegMIIStatus = 0x180,
259 #define NVREG_MIISTAT_ERROR 0x0001
260 #define NVREG_MIISTAT_LINKCHANGE 0x0008
261 #define NVREG_MIISTAT_MASK_RW 0x0007
262 #define NVREG_MIISTAT_MASK_ALL 0x000f
263 NvRegMIIMask = 0x184,
264 #define NVREG_MII_LINKCHANGE 0x0008
265
266 NvRegAdapterControl = 0x188,
267 #define NVREG_ADAPTCTL_START 0x02
268 #define NVREG_ADAPTCTL_LINKUP 0x04
269 #define NVREG_ADAPTCTL_PHYVALID 0x40000
270 #define NVREG_ADAPTCTL_RUNNING 0x100000
271 #define NVREG_ADAPTCTL_PHYSHIFT 24
272 NvRegMIISpeed = 0x18c,
273 #define NVREG_MIISPEED_BIT8 (1<<8)
274 #define NVREG_MIIDELAY 5
275 NvRegMIIControl = 0x190,
276 #define NVREG_MIICTL_INUSE 0x08000
277 #define NVREG_MIICTL_WRITE 0x00400
278 #define NVREG_MIICTL_ADDRSHIFT 5
279 NvRegMIIData = 0x194,
280 NvRegTxUnicast = 0x1a0,
281 NvRegTxMulticast = 0x1a4,
282 NvRegTxBroadcast = 0x1a8,
283 NvRegWakeUpFlags = 0x200,
284 #define NVREG_WAKEUPFLAGS_VAL 0x7770
285 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
286 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
287 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
288 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
289 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
290 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
291 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
292 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
293 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
294 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
295
296 NvRegMgmtUnitGetVersion = 0x204,
297 #define NVREG_MGMTUNITGETVERSION 0x01
298 NvRegMgmtUnitVersion = 0x208,
299 #define NVREG_MGMTUNITVERSION 0x08
300 NvRegPowerCap = 0x268,
301 #define NVREG_POWERCAP_D3SUPP (1<<30)
302 #define NVREG_POWERCAP_D2SUPP (1<<26)
303 #define NVREG_POWERCAP_D1SUPP (1<<25)
304 NvRegPowerState = 0x26c,
305 #define NVREG_POWERSTATE_POWEREDUP 0x8000
306 #define NVREG_POWERSTATE_VALID 0x0100
307 #define NVREG_POWERSTATE_MASK 0x0003
308 #define NVREG_POWERSTATE_D0 0x0000
309 #define NVREG_POWERSTATE_D1 0x0001
310 #define NVREG_POWERSTATE_D2 0x0002
311 #define NVREG_POWERSTATE_D3 0x0003
312 NvRegMgmtUnitControl = 0x278,
313 #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
314 NvRegTxCnt = 0x280,
315 NvRegTxZeroReXmt = 0x284,
316 NvRegTxOneReXmt = 0x288,
317 NvRegTxManyReXmt = 0x28c,
318 NvRegTxLateCol = 0x290,
319 NvRegTxUnderflow = 0x294,
320 NvRegTxLossCarrier = 0x298,
321 NvRegTxExcessDef = 0x29c,
322 NvRegTxRetryErr = 0x2a0,
323 NvRegRxFrameErr = 0x2a4,
324 NvRegRxExtraByte = 0x2a8,
325 NvRegRxLateCol = 0x2ac,
326 NvRegRxRunt = 0x2b0,
327 NvRegRxFrameTooLong = 0x2b4,
328 NvRegRxOverflow = 0x2b8,
329 NvRegRxFCSErr = 0x2bc,
330 NvRegRxFrameAlignErr = 0x2c0,
331 NvRegRxLenErr = 0x2c4,
332 NvRegRxUnicast = 0x2c8,
333 NvRegRxMulticast = 0x2cc,
334 NvRegRxBroadcast = 0x2d0,
335 NvRegTxDef = 0x2d4,
336 NvRegTxFrame = 0x2d8,
337 NvRegRxCnt = 0x2dc,
338 NvRegTxPause = 0x2e0,
339 NvRegRxPause = 0x2e4,
340 NvRegRxDropFrame = 0x2e8,
341 NvRegVlanControl = 0x300,
342 #define NVREG_VLANCONTROL_ENABLE 0x2000
343 NvRegMSIXMap0 = 0x3e0,
344 NvRegMSIXMap1 = 0x3e4,
345 NvRegMSIXIrqStatus = 0x3f0,
346
347 NvRegPowerState2 = 0x600,
348 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
349 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
350 #define NVREG_POWERSTATE2_PHY_RESET 0x0004
351 #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
352 };
353
354 /* Big endian: should work, but is untested */
355 struct ring_desc {
356 __le32 buf;
357 __le32 flaglen;
358 };
359
360 struct ring_desc_ex {
361 __le32 bufhigh;
362 __le32 buflow;
363 __le32 txvlan;
364 __le32 flaglen;
365 };
366
367 union ring_type {
368 struct ring_desc* orig;
369 struct ring_desc_ex* ex;
370 };
371
372 #define FLAG_MASK_V1 0xffff0000
373 #define FLAG_MASK_V2 0xffffc000
374 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
375 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
376
377 #define NV_TX_LASTPACKET (1<<16)
378 #define NV_TX_RETRYERROR (1<<19)
379 #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
380 #define NV_TX_FORCED_INTERRUPT (1<<24)
381 #define NV_TX_DEFERRED (1<<26)
382 #define NV_TX_CARRIERLOST (1<<27)
383 #define NV_TX_LATECOLLISION (1<<28)
384 #define NV_TX_UNDERFLOW (1<<29)
385 #define NV_TX_ERROR (1<<30)
386 #define NV_TX_VALID (1<<31)
387
388 #define NV_TX2_LASTPACKET (1<<29)
389 #define NV_TX2_RETRYERROR (1<<18)
390 #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
391 #define NV_TX2_FORCED_INTERRUPT (1<<30)
392 #define NV_TX2_DEFERRED (1<<25)
393 #define NV_TX2_CARRIERLOST (1<<26)
394 #define NV_TX2_LATECOLLISION (1<<27)
395 #define NV_TX2_UNDERFLOW (1<<28)
396 /* error and valid are the same for both */
397 #define NV_TX2_ERROR (1<<30)
398 #define NV_TX2_VALID (1<<31)
399 #define NV_TX2_TSO (1<<28)
400 #define NV_TX2_TSO_SHIFT 14
401 #define NV_TX2_TSO_MAX_SHIFT 14
402 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
403 #define NV_TX2_CHECKSUM_L3 (1<<27)
404 #define NV_TX2_CHECKSUM_L4 (1<<26)
405
406 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
407
408 #define NV_RX_DESCRIPTORVALID (1<<16)
409 #define NV_RX_MISSEDFRAME (1<<17)
410 #define NV_RX_SUBSTRACT1 (1<<18)
411 #define NV_RX_ERROR1 (1<<23)
412 #define NV_RX_ERROR2 (1<<24)
413 #define NV_RX_ERROR3 (1<<25)
414 #define NV_RX_ERROR4 (1<<26)
415 #define NV_RX_CRCERR (1<<27)
416 #define NV_RX_OVERFLOW (1<<28)
417 #define NV_RX_FRAMINGERR (1<<29)
418 #define NV_RX_ERROR (1<<30)
419 #define NV_RX_AVAIL (1<<31)
420 #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
421
422 #define NV_RX2_CHECKSUMMASK (0x1C000000)
423 #define NV_RX2_CHECKSUM_IP (0x10000000)
424 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
425 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
426 #define NV_RX2_DESCRIPTORVALID (1<<29)
427 #define NV_RX2_SUBSTRACT1 (1<<25)
428 #define NV_RX2_ERROR1 (1<<18)
429 #define NV_RX2_ERROR2 (1<<19)
430 #define NV_RX2_ERROR3 (1<<20)
431 #define NV_RX2_ERROR4 (1<<21)
432 #define NV_RX2_CRCERR (1<<22)
433 #define NV_RX2_OVERFLOW (1<<23)
434 #define NV_RX2_FRAMINGERR (1<<24)
435 /* error and avail are the same for both */
436 #define NV_RX2_ERROR (1<<30)
437 #define NV_RX2_AVAIL (1<<31)
438 #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
439
440 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
441 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
442
443 /* Miscelaneous hardware related defines: */
444 #define NV_PCI_REGSZ_VER1 0x270
445 #define NV_PCI_REGSZ_VER2 0x2d4
446 #define NV_PCI_REGSZ_VER3 0x604
447 #define NV_PCI_REGSZ_MAX 0x604
448
449 /* various timeout delays: all in usec */
450 #define NV_TXRX_RESET_DELAY 4
451 #define NV_TXSTOP_DELAY1 10
452 #define NV_TXSTOP_DELAY1MAX 500000
453 #define NV_TXSTOP_DELAY2 100
454 #define NV_RXSTOP_DELAY1 10
455 #define NV_RXSTOP_DELAY1MAX 500000
456 #define NV_RXSTOP_DELAY2 100
457 #define NV_SETUP5_DELAY 5
458 #define NV_SETUP5_DELAYMAX 50000
459 #define NV_POWERUP_DELAY 5
460 #define NV_POWERUP_DELAYMAX 5000
461 #define NV_MIIBUSY_DELAY 50
462 #define NV_MIIPHY_DELAY 10
463 #define NV_MIIPHY_DELAYMAX 10000
464 #define NV_MAC_RESET_DELAY 64
465
466 #define NV_WAKEUPPATTERNS 5
467 #define NV_WAKEUPMASKENTRIES 4
468
469 /* General driver defaults */
470 #define NV_WATCHDOG_TIMEO (5*HZ)
471
472 #define RX_RING_DEFAULT 512
473 #define TX_RING_DEFAULT 256
474 #define RX_RING_MIN 128
475 #define TX_RING_MIN 64
476 #define RING_MAX_DESC_VER_1 1024
477 #define RING_MAX_DESC_VER_2_3 16384
478
479 /* rx/tx mac addr + type + vlan + align + slack*/
480 #define NV_RX_HEADERS (64)
481 /* even more slack. */
482 #define NV_RX_ALLOC_PAD (64)
483
484 /* maximum mtu size */
485 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
486 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
487
488 #define OOM_REFILL (1+HZ/20)
489 #define POLL_WAIT (1+HZ/100)
490 #define LINK_TIMEOUT (3*HZ)
491 #define STATS_INTERVAL (10*HZ)
492
493 /*
494 * desc_ver values:
495 * The nic supports three different descriptor types:
496 * - DESC_VER_1: Original
497 * - DESC_VER_2: support for jumbo frames.
498 * - DESC_VER_3: 64-bit format.
499 */
500 #define DESC_VER_1 1
501 #define DESC_VER_2 2
502 #define DESC_VER_3 3
503
504 /* PHY defines */
505 #define PHY_OUI_MARVELL 0x5043
506 #define PHY_OUI_CICADA 0x03f1
507 #define PHY_OUI_VITESSE 0x01c1
508 #define PHY_OUI_REALTEK 0x0732
509 #define PHY_OUI_REALTEK2 0x0020
510 #define PHYID1_OUI_MASK 0x03ff
511 #define PHYID1_OUI_SHFT 6
512 #define PHYID2_OUI_MASK 0xfc00
513 #define PHYID2_OUI_SHFT 10
514 #define PHYID2_MODEL_MASK 0x03f0
515 #define PHY_MODEL_REALTEK_8211 0x0110
516 #define PHY_REV_MASK 0x0001
517 #define PHY_REV_REALTEK_8211B 0x0000
518 #define PHY_REV_REALTEK_8211C 0x0001
519 #define PHY_MODEL_REALTEK_8201 0x0200
520 #define PHY_MODEL_MARVELL_E3016 0x0220
521 #define PHY_MARVELL_E3016_INITMASK 0x0300
522 #define PHY_CICADA_INIT1 0x0f000
523 #define PHY_CICADA_INIT2 0x0e00
524 #define PHY_CICADA_INIT3 0x01000
525 #define PHY_CICADA_INIT4 0x0200
526 #define PHY_CICADA_INIT5 0x0004
527 #define PHY_CICADA_INIT6 0x02000
528 #define PHY_VITESSE_INIT_REG1 0x1f
529 #define PHY_VITESSE_INIT_REG2 0x10
530 #define PHY_VITESSE_INIT_REG3 0x11
531 #define PHY_VITESSE_INIT_REG4 0x12
532 #define PHY_VITESSE_INIT_MSK1 0xc
533 #define PHY_VITESSE_INIT_MSK2 0x0180
534 #define PHY_VITESSE_INIT1 0x52b5
535 #define PHY_VITESSE_INIT2 0xaf8a
536 #define PHY_VITESSE_INIT3 0x8
537 #define PHY_VITESSE_INIT4 0x8f8a
538 #define PHY_VITESSE_INIT5 0xaf86
539 #define PHY_VITESSE_INIT6 0x8f86
540 #define PHY_VITESSE_INIT7 0xaf82
541 #define PHY_VITESSE_INIT8 0x0100
542 #define PHY_VITESSE_INIT9 0x8f82
543 #define PHY_VITESSE_INIT10 0x0
544 #define PHY_REALTEK_INIT_REG1 0x1f
545 #define PHY_REALTEK_INIT_REG2 0x19
546 #define PHY_REALTEK_INIT_REG3 0x13
547 #define PHY_REALTEK_INIT_REG4 0x14
548 #define PHY_REALTEK_INIT_REG5 0x18
549 #define PHY_REALTEK_INIT_REG6 0x11
550 #define PHY_REALTEK_INIT_REG7 0x01
551 #define PHY_REALTEK_INIT1 0x0000
552 #define PHY_REALTEK_INIT2 0x8e00
553 #define PHY_REALTEK_INIT3 0x0001
554 #define PHY_REALTEK_INIT4 0xad17
555 #define PHY_REALTEK_INIT5 0xfb54
556 #define PHY_REALTEK_INIT6 0xf5c7
557 #define PHY_REALTEK_INIT7 0x1000
558 #define PHY_REALTEK_INIT8 0x0003
559 #define PHY_REALTEK_INIT9 0x0008
560 #define PHY_REALTEK_INIT10 0x0005
561 #define PHY_REALTEK_INIT11 0x0200
562 #define PHY_REALTEK_INIT_MSK1 0x0003
563
564 #define PHY_GIGABIT 0x0100
565
566 #define PHY_TIMEOUT 0x1
567 #define PHY_ERROR 0x2
568
569 #define PHY_100 0x1
570 #define PHY_1000 0x2
571 #define PHY_HALF 0x100
572
573 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
574 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
575 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
576 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
577 #define NV_PAUSEFRAME_RX_REQ 0x0010
578 #define NV_PAUSEFRAME_TX_REQ 0x0020
579 #define NV_PAUSEFRAME_AUTONEG 0x0040
580
581 /* MSI/MSI-X defines */
582 #define NV_MSI_X_MAX_VECTORS 8
583 #define NV_MSI_X_VECTORS_MASK 0x000f
584 #define NV_MSI_CAPABLE 0x0010
585 #define NV_MSI_X_CAPABLE 0x0020
586 #define NV_MSI_ENABLED 0x0040
587 #define NV_MSI_X_ENABLED 0x0080
588
589 #define NV_MSI_X_VECTOR_ALL 0x0
590 #define NV_MSI_X_VECTOR_RX 0x0
591 #define NV_MSI_X_VECTOR_TX 0x1
592 #define NV_MSI_X_VECTOR_OTHER 0x2
593
594 #define NV_MSI_PRIV_OFFSET 0x68
595 #define NV_MSI_PRIV_VALUE 0xffffffff
596
597 #define NV_RESTART_TX 0x1
598 #define NV_RESTART_RX 0x2
599
600 #define NV_TX_LIMIT_COUNT 16
601
602 #define NV_DYNAMIC_THRESHOLD 4
603 #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
604
605 /* statistics */
606 struct nv_ethtool_str {
607 char name[ETH_GSTRING_LEN];
608 };
609
610 static const struct nv_ethtool_str nv_estats_str[] = {
611 { "tx_bytes" },
612 { "tx_zero_rexmt" },
613 { "tx_one_rexmt" },
614 { "tx_many_rexmt" },
615 { "tx_late_collision" },
616 { "tx_fifo_errors" },
617 { "tx_carrier_errors" },
618 { "tx_excess_deferral" },
619 { "tx_retry_error" },
620 { "rx_frame_error" },
621 { "rx_extra_byte" },
622 { "rx_late_collision" },
623 { "rx_runt" },
624 { "rx_frame_too_long" },
625 { "rx_over_errors" },
626 { "rx_crc_errors" },
627 { "rx_frame_align_error" },
628 { "rx_length_error" },
629 { "rx_unicast" },
630 { "rx_multicast" },
631 { "rx_broadcast" },
632 { "rx_packets" },
633 { "rx_errors_total" },
634 { "tx_errors_total" },
635
636 /* version 2 stats */
637 { "tx_deferral" },
638 { "tx_packets" },
639 { "rx_bytes" },
640 { "tx_pause" },
641 { "rx_pause" },
642 { "rx_drop_frame" },
643
644 /* version 3 stats */
645 { "tx_unicast" },
646 { "tx_multicast" },
647 { "tx_broadcast" }
648 };
649
650 struct nv_ethtool_stats {
651 u64 tx_bytes;
652 u64 tx_zero_rexmt;
653 u64 tx_one_rexmt;
654 u64 tx_many_rexmt;
655 u64 tx_late_collision;
656 u64 tx_fifo_errors;
657 u64 tx_carrier_errors;
658 u64 tx_excess_deferral;
659 u64 tx_retry_error;
660 u64 rx_frame_error;
661 u64 rx_extra_byte;
662 u64 rx_late_collision;
663 u64 rx_runt;
664 u64 rx_frame_too_long;
665 u64 rx_over_errors;
666 u64 rx_crc_errors;
667 u64 rx_frame_align_error;
668 u64 rx_length_error;
669 u64 rx_unicast;
670 u64 rx_multicast;
671 u64 rx_broadcast;
672 u64 rx_packets;
673 u64 rx_errors_total;
674 u64 tx_errors_total;
675
676 /* version 2 stats */
677 u64 tx_deferral;
678 u64 tx_packets;
679 u64 rx_bytes;
680 u64 tx_pause;
681 u64 rx_pause;
682 u64 rx_drop_frame;
683
684 /* version 3 stats */
685 u64 tx_unicast;
686 u64 tx_multicast;
687 u64 tx_broadcast;
688 };
689
690 #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
691 #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
692 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
693
694 /* diagnostics */
695 #define NV_TEST_COUNT_BASE 3
696 #define NV_TEST_COUNT_EXTENDED 4
697
698 static const struct nv_ethtool_str nv_etests_str[] = {
699 { "link (online/offline)" },
700 { "register (offline) " },
701 { "interrupt (offline) " },
702 { "loopback (offline) " }
703 };
704
705 struct register_test {
706 __u32 reg;
707 __u32 mask;
708 };
709
710 static const struct register_test nv_registers_test[] = {
711 { NvRegUnknownSetupReg6, 0x01 },
712 { NvRegMisc1, 0x03c },
713 { NvRegOffloadConfig, 0x03ff },
714 { NvRegMulticastAddrA, 0xffffffff },
715 { NvRegTxWatermark, 0x0ff },
716 { NvRegWakeUpFlags, 0x07777 },
717 { 0,0 }
718 };
719
720 struct nv_skb_map {
721 struct sk_buff *skb;
722 dma_addr_t dma;
723 unsigned int dma_len:31;
724 unsigned int dma_single:1;
725 struct ring_desc_ex *first_tx_desc;
726 struct nv_skb_map *next_tx_ctx;
727 };
728
729 /*
730 * SMP locking:
731 * All hardware access under netdev_priv(dev)->lock, except the performance
732 * critical parts:
733 * - rx is (pseudo-) lockless: it relies on the single-threading provided
734 * by the arch code for interrupts.
735 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
736 * needs netdev_priv(dev)->lock :-(
737 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
738 */
739
740 /* in dev: base, irq */
741 struct fe_priv {
742 spinlock_t lock;
743
744 struct net_device *dev;
745 struct napi_struct napi;
746
747 /* General data:
748 * Locking: spin_lock(&np->lock); */
749 struct nv_ethtool_stats estats;
750 int in_shutdown;
751 u32 linkspeed;
752 int duplex;
753 int autoneg;
754 int fixed_mode;
755 int phyaddr;
756 int wolenabled;
757 unsigned int phy_oui;
758 unsigned int phy_model;
759 unsigned int phy_rev;
760 u16 gigabit;
761 int intr_test;
762 int recover_error;
763 int quiet_count;
764
765 /* General data: RO fields */
766 dma_addr_t ring_addr;
767 struct pci_dev *pci_dev;
768 u32 orig_mac[2];
769 u32 events;
770 u32 irqmask;
771 u32 desc_ver;
772 u32 txrxctl_bits;
773 u32 vlanctl_bits;
774 u32 driver_data;
775 u32 device_id;
776 u32 register_size;
777 int rx_csum;
778 u32 mac_in_use;
779 int mgmt_version;
780 int mgmt_sema;
781
782 void __iomem *base;
783
784 /* rx specific fields.
785 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
786 */
787 union ring_type get_rx, put_rx, first_rx, last_rx;
788 struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
789 struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
790 struct nv_skb_map *rx_skb;
791
792 union ring_type rx_ring;
793 unsigned int rx_buf_sz;
794 unsigned int pkt_limit;
795 struct timer_list oom_kick;
796 struct timer_list nic_poll;
797 struct timer_list stats_poll;
798 u32 nic_poll_irq;
799 int rx_ring_size;
800
801 /* media detection workaround.
802 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
803 */
804 int need_linktimer;
805 unsigned long link_timeout;
806 /*
807 * tx specific fields.
808 */
809 union ring_type get_tx, put_tx, first_tx, last_tx;
810 struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
811 struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
812 struct nv_skb_map *tx_skb;
813
814 union ring_type tx_ring;
815 u32 tx_flags;
816 int tx_ring_size;
817 int tx_limit;
818 u32 tx_pkts_in_progress;
819 struct nv_skb_map *tx_change_owner;
820 struct nv_skb_map *tx_end_flip;
821 int tx_stop;
822
823 /* vlan fields */
824 struct vlan_group *vlangrp;
825
826 /* msi/msi-x fields */
827 u32 msi_flags;
828 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
829
830 /* flow control */
831 u32 pause_flags;
832
833 /* power saved state */
834 u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
835
836 /* for different msi-x irq type */
837 char name_rx[IFNAMSIZ + 3]; /* -rx */
838 char name_tx[IFNAMSIZ + 3]; /* -tx */
839 char name_other[IFNAMSIZ + 6]; /* -other */
840 };
841
842 /*
843 * Maximum number of loops until we assume that a bit in the irq mask
844 * is stuck. Overridable with module param.
845 */
846 static int max_interrupt_work = 4;
847
848 /*
849 * Optimization can be either throuput mode or cpu mode
850 *
851 * Throughput Mode: Every tx and rx packet will generate an interrupt.
852 * CPU Mode: Interrupts are controlled by a timer.
853 */
854 enum {
855 NV_OPTIMIZATION_MODE_THROUGHPUT,
856 NV_OPTIMIZATION_MODE_CPU,
857 NV_OPTIMIZATION_MODE_DYNAMIC
858 };
859 static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
860
861 /*
862 * Poll interval for timer irq
863 *
864 * This interval determines how frequent an interrupt is generated.
865 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
866 * Min = 0, and Max = 65535
867 */
868 static int poll_interval = -1;
869
870 /*
871 * MSI interrupts
872 */
873 enum {
874 NV_MSI_INT_DISABLED,
875 NV_MSI_INT_ENABLED
876 };
877 static int msi = NV_MSI_INT_ENABLED;
878
879 /*
880 * MSIX interrupts
881 */
882 enum {
883 NV_MSIX_INT_DISABLED,
884 NV_MSIX_INT_ENABLED
885 };
886 static int msix = NV_MSIX_INT_ENABLED;
887
888 /*
889 * DMA 64bit
890 */
891 enum {
892 NV_DMA_64BIT_DISABLED,
893 NV_DMA_64BIT_ENABLED
894 };
895 static int dma_64bit = NV_DMA_64BIT_ENABLED;
896
897 /*
898 * Crossover Detection
899 * Realtek 8201 phy + some OEM boards do not work properly.
900 */
901 enum {
902 NV_CROSSOVER_DETECTION_DISABLED,
903 NV_CROSSOVER_DETECTION_ENABLED
904 };
905 static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
906
907 /*
908 * Power down phy when interface is down (persists through reboot;
909 * older Linux and other OSes may not power it up again)
910 */
911 static int phy_power_down = 0;
912
913 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
914 {
915 return netdev_priv(dev);
916 }
917
918 static inline u8 __iomem *get_hwbase(struct net_device *dev)
919 {
920 return ((struct fe_priv *)netdev_priv(dev))->base;
921 }
922
923 static inline void pci_push(u8 __iomem *base)
924 {
925 /* force out pending posted writes */
926 readl(base);
927 }
928
929 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
930 {
931 return le32_to_cpu(prd->flaglen)
932 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
933 }
934
935 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
936 {
937 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
938 }
939
940 static bool nv_optimized(struct fe_priv *np)
941 {
942 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
943 return false;
944 return true;
945 }
946
947 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
948 int delay, int delaymax, const char *msg)
949 {
950 u8 __iomem *base = get_hwbase(dev);
951
952 pci_push(base);
953 do {
954 udelay(delay);
955 delaymax -= delay;
956 if (delaymax < 0) {
957 if (msg)
958 printk("%s", msg);
959 return 1;
960 }
961 } while ((readl(base + offset) & mask) != target);
962 return 0;
963 }
964
965 #define NV_SETUP_RX_RING 0x01
966 #define NV_SETUP_TX_RING 0x02
967
968 static inline u32 dma_low(dma_addr_t addr)
969 {
970 return addr;
971 }
972
973 static inline u32 dma_high(dma_addr_t addr)
974 {
975 return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
976 }
977
978 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
979 {
980 struct fe_priv *np = get_nvpriv(dev);
981 u8 __iomem *base = get_hwbase(dev);
982
983 if (!nv_optimized(np)) {
984 if (rxtx_flags & NV_SETUP_RX_RING) {
985 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
986 }
987 if (rxtx_flags & NV_SETUP_TX_RING) {
988 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
989 }
990 } else {
991 if (rxtx_flags & NV_SETUP_RX_RING) {
992 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
993 writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
994 }
995 if (rxtx_flags & NV_SETUP_TX_RING) {
996 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
997 writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
998 }
999 }
1000 }
1001
1002 static void free_rings(struct net_device *dev)
1003 {
1004 struct fe_priv *np = get_nvpriv(dev);
1005
1006 if (!nv_optimized(np)) {
1007 if (np->rx_ring.orig)
1008 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
1009 np->rx_ring.orig, np->ring_addr);
1010 } else {
1011 if (np->rx_ring.ex)
1012 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
1013 np->rx_ring.ex, np->ring_addr);
1014 }
1015 if (np->rx_skb)
1016 kfree(np->rx_skb);
1017 if (np->tx_skb)
1018 kfree(np->tx_skb);
1019 }
1020
1021 static int using_multi_irqs(struct net_device *dev)
1022 {
1023 struct fe_priv *np = get_nvpriv(dev);
1024
1025 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1026 ((np->msi_flags & NV_MSI_X_ENABLED) &&
1027 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
1028 return 0;
1029 else
1030 return 1;
1031 }
1032
1033 static void nv_txrx_gate(struct net_device *dev, bool gate)
1034 {
1035 struct fe_priv *np = get_nvpriv(dev);
1036 u8 __iomem *base = get_hwbase(dev);
1037 u32 powerstate;
1038
1039 if (!np->mac_in_use &&
1040 (np->driver_data & DEV_HAS_POWER_CNTRL)) {
1041 powerstate = readl(base + NvRegPowerState2);
1042 if (gate)
1043 powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
1044 else
1045 powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
1046 writel(powerstate, base + NvRegPowerState2);
1047 }
1048 }
1049
1050 static void nv_enable_irq(struct net_device *dev)
1051 {
1052 struct fe_priv *np = get_nvpriv(dev);
1053
1054 if (!using_multi_irqs(dev)) {
1055 if (np->msi_flags & NV_MSI_X_ENABLED)
1056 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1057 else
1058 enable_irq(np->pci_dev->irq);
1059 } else {
1060 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1061 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1062 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1063 }
1064 }
1065
1066 static void nv_disable_irq(struct net_device *dev)
1067 {
1068 struct fe_priv *np = get_nvpriv(dev);
1069
1070 if (!using_multi_irqs(dev)) {
1071 if (np->msi_flags & NV_MSI_X_ENABLED)
1072 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1073 else
1074 disable_irq(np->pci_dev->irq);
1075 } else {
1076 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1077 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1078 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1079 }
1080 }
1081
1082 /* In MSIX mode, a write to irqmask behaves as XOR */
1083 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
1084 {
1085 u8 __iomem *base = get_hwbase(dev);
1086
1087 writel(mask, base + NvRegIrqMask);
1088 }
1089
1090 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
1091 {
1092 struct fe_priv *np = get_nvpriv(dev);
1093 u8 __iomem *base = get_hwbase(dev);
1094
1095 if (np->msi_flags & NV_MSI_X_ENABLED) {
1096 writel(mask, base + NvRegIrqMask);
1097 } else {
1098 if (np->msi_flags & NV_MSI_ENABLED)
1099 writel(0, base + NvRegMSIIrqMask);
1100 writel(0, base + NvRegIrqMask);
1101 }
1102 }
1103
1104 static void nv_napi_enable(struct net_device *dev)
1105 {
1106 #ifdef CONFIG_FORCEDETH_NAPI
1107 struct fe_priv *np = get_nvpriv(dev);
1108
1109 napi_enable(&np->napi);
1110 #endif
1111 }
1112
1113 static void nv_napi_disable(struct net_device *dev)
1114 {
1115 #ifdef CONFIG_FORCEDETH_NAPI
1116 struct fe_priv *np = get_nvpriv(dev);
1117
1118 napi_disable(&np->napi);
1119 #endif
1120 }
1121
1122 #define MII_READ (-1)
1123 /* mii_rw: read/write a register on the PHY.
1124 *
1125 * Caller must guarantee serialization
1126 */
1127 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1128 {
1129 u8 __iomem *base = get_hwbase(dev);
1130 u32 reg;
1131 int retval;
1132
1133 writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
1134
1135 reg = readl(base + NvRegMIIControl);
1136 if (reg & NVREG_MIICTL_INUSE) {
1137 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1138 udelay(NV_MIIBUSY_DELAY);
1139 }
1140
1141 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1142 if (value != MII_READ) {
1143 writel(value, base + NvRegMIIData);
1144 reg |= NVREG_MIICTL_WRITE;
1145 }
1146 writel(reg, base + NvRegMIIControl);
1147
1148 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1149 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1150 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1151 dev->name, miireg, addr);
1152 retval = -1;
1153 } else if (value != MII_READ) {
1154 /* it was a write operation - fewer failures are detectable */
1155 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1156 dev->name, value, miireg, addr);
1157 retval = 0;
1158 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1159 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1160 dev->name, miireg, addr);
1161 retval = -1;
1162 } else {
1163 retval = readl(base + NvRegMIIData);
1164 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1165 dev->name, miireg, addr, retval);
1166 }
1167
1168 return retval;
1169 }
1170
1171 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1172 {
1173 struct fe_priv *np = netdev_priv(dev);
1174 u32 miicontrol;
1175 unsigned int tries = 0;
1176
1177 miicontrol = BMCR_RESET | bmcr_setup;
1178 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1179 return -1;
1180 }
1181
1182 /* wait for 500ms */
1183 msleep(500);
1184
1185 /* must wait till reset is deasserted */
1186 while (miicontrol & BMCR_RESET) {
1187 msleep(10);
1188 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1189 /* FIXME: 100 tries seem excessive */
1190 if (tries++ > 100)
1191 return -1;
1192 }
1193 return 0;
1194 }
1195
1196 static int phy_init(struct net_device *dev)
1197 {
1198 struct fe_priv *np = get_nvpriv(dev);
1199 u8 __iomem *base = get_hwbase(dev);
1200 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1201
1202 /* phy errata for E3016 phy */
1203 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1204 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1205 reg &= ~PHY_MARVELL_E3016_INITMASK;
1206 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1207 printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1208 return PHY_ERROR;
1209 }
1210 }
1211 if (np->phy_oui == PHY_OUI_REALTEK) {
1212 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1213 np->phy_rev == PHY_REV_REALTEK_8211B) {
1214 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1215 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1216 return PHY_ERROR;
1217 }
1218 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1219 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1220 return PHY_ERROR;
1221 }
1222 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1223 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1224 return PHY_ERROR;
1225 }
1226 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1227 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1228 return PHY_ERROR;
1229 }
1230 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
1231 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1232 return PHY_ERROR;
1233 }
1234 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
1235 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1236 return PHY_ERROR;
1237 }
1238 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1239 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1240 return PHY_ERROR;
1241 }
1242 }
1243 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1244 np->phy_rev == PHY_REV_REALTEK_8211C) {
1245 u32 powerstate = readl(base + NvRegPowerState2);
1246
1247 /* need to perform hw phy reset */
1248 powerstate |= NVREG_POWERSTATE2_PHY_RESET;
1249 writel(powerstate, base + NvRegPowerState2);
1250 msleep(25);
1251
1252 powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
1253 writel(powerstate, base + NvRegPowerState2);
1254 msleep(25);
1255
1256 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1257 reg |= PHY_REALTEK_INIT9;
1258 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
1259 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1260 return PHY_ERROR;
1261 }
1262 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
1263 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1264 return PHY_ERROR;
1265 }
1266 reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
1267 if (!(reg & PHY_REALTEK_INIT11)) {
1268 reg |= PHY_REALTEK_INIT11;
1269 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
1270 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1271 return PHY_ERROR;
1272 }
1273 }
1274 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1275 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1276 return PHY_ERROR;
1277 }
1278 }
1279 if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1280 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
1281 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1282 phy_reserved |= PHY_REALTEK_INIT7;
1283 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
1284 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1285 return PHY_ERROR;
1286 }
1287 }
1288 }
1289 }
1290
1291 /* set advertise register */
1292 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1293 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1294 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1295 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1296 return PHY_ERROR;
1297 }
1298
1299 /* get phy interface type */
1300 phyinterface = readl(base + NvRegPhyInterface);
1301
1302 /* see if gigabit phy */
1303 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1304 if (mii_status & PHY_GIGABIT) {
1305 np->gigabit = PHY_GIGABIT;
1306 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1307 mii_control_1000 &= ~ADVERTISE_1000HALF;
1308 if (phyinterface & PHY_RGMII)
1309 mii_control_1000 |= ADVERTISE_1000FULL;
1310 else
1311 mii_control_1000 &= ~ADVERTISE_1000FULL;
1312
1313 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1314 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1315 return PHY_ERROR;
1316 }
1317 }
1318 else
1319 np->gigabit = 0;
1320
1321 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1322 mii_control |= BMCR_ANENABLE;
1323
1324 if (np->phy_oui == PHY_OUI_REALTEK &&
1325 np->phy_model == PHY_MODEL_REALTEK_8211 &&
1326 np->phy_rev == PHY_REV_REALTEK_8211C) {
1327 /* start autoneg since we already performed hw reset above */
1328 mii_control |= BMCR_ANRESTART;
1329 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1330 printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
1331 return PHY_ERROR;
1332 }
1333 } else {
1334 /* reset the phy
1335 * (certain phys need bmcr to be setup with reset)
1336 */
1337 if (phy_reset(dev, mii_control)) {
1338 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1339 return PHY_ERROR;
1340 }
1341 }
1342
1343 /* phy vendor specific configuration */
1344 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1345 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1346 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
1347 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
1348 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1349 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1350 return PHY_ERROR;
1351 }
1352 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1353 phy_reserved |= PHY_CICADA_INIT5;
1354 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1355 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1356 return PHY_ERROR;
1357 }
1358 }
1359 if (np->phy_oui == PHY_OUI_CICADA) {
1360 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1361 phy_reserved |= PHY_CICADA_INIT6;
1362 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1363 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1364 return PHY_ERROR;
1365 }
1366 }
1367 if (np->phy_oui == PHY_OUI_VITESSE) {
1368 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
1369 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1370 return PHY_ERROR;
1371 }
1372 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
1373 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1374 return PHY_ERROR;
1375 }
1376 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1377 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1378 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1379 return PHY_ERROR;
1380 }
1381 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1382 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1383 phy_reserved |= PHY_VITESSE_INIT3;
1384 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1385 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1386 return PHY_ERROR;
1387 }
1388 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
1389 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1390 return PHY_ERROR;
1391 }
1392 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
1393 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1394 return PHY_ERROR;
1395 }
1396 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1397 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1398 phy_reserved |= PHY_VITESSE_INIT3;
1399 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1400 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1401 return PHY_ERROR;
1402 }
1403 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1404 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1405 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1406 return PHY_ERROR;
1407 }
1408 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
1409 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1410 return PHY_ERROR;
1411 }
1412 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
1413 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1414 return PHY_ERROR;
1415 }
1416 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1417 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1418 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1419 return PHY_ERROR;
1420 }
1421 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1422 phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
1423 phy_reserved |= PHY_VITESSE_INIT8;
1424 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1425 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1426 return PHY_ERROR;
1427 }
1428 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
1429 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1430 return PHY_ERROR;
1431 }
1432 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
1433 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1434 return PHY_ERROR;
1435 }
1436 }
1437 if (np->phy_oui == PHY_OUI_REALTEK) {
1438 if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
1439 np->phy_rev == PHY_REV_REALTEK_8211B) {
1440 /* reset could have cleared these out, set them back */
1441 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1442 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1443 return PHY_ERROR;
1444 }
1445 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1446 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1447 return PHY_ERROR;
1448 }
1449 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1450 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1451 return PHY_ERROR;
1452 }
1453 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1454 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1455 return PHY_ERROR;
1456 }
1457 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
1458 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1459 return PHY_ERROR;
1460 }
1461 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
1462 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1463 return PHY_ERROR;
1464 }
1465 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1466 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1467 return PHY_ERROR;
1468 }
1469 }
1470 if (np->phy_model == PHY_MODEL_REALTEK_8201) {
1471 if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
1472 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
1473 phy_reserved |= PHY_REALTEK_INIT7;
1474 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
1475 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1476 return PHY_ERROR;
1477 }
1478 }
1479 if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
1480 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1481 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1482 return PHY_ERROR;
1483 }
1484 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
1485 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
1486 phy_reserved |= PHY_REALTEK_INIT3;
1487 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
1488 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1489 return PHY_ERROR;
1490 }
1491 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1492 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1493 return PHY_ERROR;
1494 }
1495 }
1496 }
1497 }
1498
1499 /* some phys clear out pause advertisment on reset, set it back */
1500 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1501
1502 /* restart auto negotiation, power down phy */
1503 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1504 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1505 if (phy_power_down) {
1506 mii_control |= BMCR_PDOWN;
1507 }
1508 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1509 return PHY_ERROR;
1510 }
1511
1512 return 0;
1513 }
1514
1515 static void nv_start_rx(struct net_device *dev)
1516 {
1517 struct fe_priv *np = netdev_priv(dev);
1518 u8 __iomem *base = get_hwbase(dev);
1519 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1520
1521 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1522 /* Already running? Stop it. */
1523 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1524 rx_ctrl &= ~NVREG_RCVCTL_START;
1525 writel(rx_ctrl, base + NvRegReceiverControl);
1526 pci_push(base);
1527 }
1528 writel(np->linkspeed, base + NvRegLinkSpeed);
1529 pci_push(base);
1530 rx_ctrl |= NVREG_RCVCTL_START;
1531 if (np->mac_in_use)
1532 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1533 writel(rx_ctrl, base + NvRegReceiverControl);
1534 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1535 dev->name, np->duplex, np->linkspeed);
1536 pci_push(base);
1537 }
1538
1539 static void nv_stop_rx(struct net_device *dev)
1540 {
1541 struct fe_priv *np = netdev_priv(dev);
1542 u8 __iomem *base = get_hwbase(dev);
1543 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1544
1545 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1546 if (!np->mac_in_use)
1547 rx_ctrl &= ~NVREG_RCVCTL_START;
1548 else
1549 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1550 writel(rx_ctrl, base + NvRegReceiverControl);
1551 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1552 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1553 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1554
1555 udelay(NV_RXSTOP_DELAY2);
1556 if (!np->mac_in_use)
1557 writel(0, base + NvRegLinkSpeed);
1558 }
1559
1560 static void nv_start_tx(struct net_device *dev)
1561 {
1562 struct fe_priv *np = netdev_priv(dev);
1563 u8 __iomem *base = get_hwbase(dev);
1564 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1565
1566 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1567 tx_ctrl |= NVREG_XMITCTL_START;
1568 if (np->mac_in_use)
1569 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1570 writel(tx_ctrl, base + NvRegTransmitterControl);
1571 pci_push(base);
1572 }
1573
1574 static void nv_stop_tx(struct net_device *dev)
1575 {
1576 struct fe_priv *np = netdev_priv(dev);
1577 u8 __iomem *base = get_hwbase(dev);
1578 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1579
1580 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1581 if (!np->mac_in_use)
1582 tx_ctrl &= ~NVREG_XMITCTL_START;
1583 else
1584 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1585 writel(tx_ctrl, base + NvRegTransmitterControl);
1586 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1587 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1588 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1589
1590 udelay(NV_TXSTOP_DELAY2);
1591 if (!np->mac_in_use)
1592 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1593 base + NvRegTransmitPoll);
1594 }
1595
1596 static void nv_start_rxtx(struct net_device *dev)
1597 {
1598 nv_start_rx(dev);
1599 nv_start_tx(dev);
1600 }
1601
1602 static void nv_stop_rxtx(struct net_device *dev)
1603 {
1604 nv_stop_rx(dev);
1605 nv_stop_tx(dev);
1606 }
1607
1608 static void nv_txrx_reset(struct net_device *dev)
1609 {
1610 struct fe_priv *np = netdev_priv(dev);
1611 u8 __iomem *base = get_hwbase(dev);
1612
1613 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1614 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1615 pci_push(base);
1616 udelay(NV_TXRX_RESET_DELAY);
1617 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1618 pci_push(base);
1619 }
1620
1621 static void nv_mac_reset(struct net_device *dev)
1622 {
1623 struct fe_priv *np = netdev_priv(dev);
1624 u8 __iomem *base = get_hwbase(dev);
1625 u32 temp1, temp2, temp3;
1626
1627 dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1628
1629 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1630 pci_push(base);
1631
1632 /* save registers since they will be cleared on reset */
1633 temp1 = readl(base + NvRegMacAddrA);
1634 temp2 = readl(base + NvRegMacAddrB);
1635 temp3 = readl(base + NvRegTransmitPoll);
1636
1637 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1638 pci_push(base);
1639 udelay(NV_MAC_RESET_DELAY);
1640 writel(0, base + NvRegMacReset);
1641 pci_push(base);
1642 udelay(NV_MAC_RESET_DELAY);
1643
1644 /* restore saved registers */
1645 writel(temp1, base + NvRegMacAddrA);
1646 writel(temp2, base + NvRegMacAddrB);
1647 writel(temp3, base + NvRegTransmitPoll);
1648
1649 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1650 pci_push(base);
1651 }
1652
1653 static void nv_get_hw_stats(struct net_device *dev)
1654 {
1655 struct fe_priv *np = netdev_priv(dev);
1656 u8 __iomem *base = get_hwbase(dev);
1657
1658 np->estats.tx_bytes += readl(base + NvRegTxCnt);
1659 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1660 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1661 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1662 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1663 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1664 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1665 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1666 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1667 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1668 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1669 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1670 np->estats.rx_runt += readl(base + NvRegRxRunt);
1671 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1672 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1673 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1674 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1675 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1676 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1677 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1678 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1679 np->estats.rx_packets =
1680 np->estats.rx_unicast +
1681 np->estats.rx_multicast +
1682 np->estats.rx_broadcast;
1683 np->estats.rx_errors_total =
1684 np->estats.rx_crc_errors +
1685 np->estats.rx_over_errors +
1686 np->estats.rx_frame_error +
1687 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1688 np->estats.rx_late_collision +
1689 np->estats.rx_runt +
1690 np->estats.rx_frame_too_long;
1691 np->estats.tx_errors_total =
1692 np->estats.tx_late_collision +
1693 np->estats.tx_fifo_errors +
1694 np->estats.tx_carrier_errors +
1695 np->estats.tx_excess_deferral +
1696 np->estats.tx_retry_error;
1697
1698 if (np->driver_data & DEV_HAS_STATISTICS_V2) {
1699 np->estats.tx_deferral += readl(base + NvRegTxDef);
1700 np->estats.tx_packets += readl(base + NvRegTxFrame);
1701 np->estats.rx_bytes += readl(base + NvRegRxCnt);
1702 np->estats.tx_pause += readl(base + NvRegTxPause);
1703 np->estats.rx_pause += readl(base + NvRegRxPause);
1704 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1705 }
1706
1707 if (np->driver_data & DEV_HAS_STATISTICS_V3) {
1708 np->estats.tx_unicast += readl(base + NvRegTxUnicast);
1709 np->estats.tx_multicast += readl(base + NvRegTxMulticast);
1710 np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
1711 }
1712 }
1713
1714 /*
1715 * nv_get_stats: dev->get_stats function
1716 * Get latest stats value from the nic.
1717 * Called with read_lock(&dev_base_lock) held for read -
1718 * only synchronized against unregister_netdevice.
1719 */
1720 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1721 {
1722 struct fe_priv *np = netdev_priv(dev);
1723
1724 /* If the nic supports hw counters then retrieve latest values */
1725 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
1726 nv_get_hw_stats(dev);
1727
1728 /* copy to net_device stats */
1729 dev->stats.tx_bytes = np->estats.tx_bytes;
1730 dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
1731 dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
1732 dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
1733 dev->stats.rx_over_errors = np->estats.rx_over_errors;
1734 dev->stats.rx_errors = np->estats.rx_errors_total;
1735 dev->stats.tx_errors = np->estats.tx_errors_total;
1736 }
1737
1738 return &dev->stats;
1739 }
1740
1741 /*
1742 * nv_alloc_rx: fill rx ring entries.
1743 * Return 1 if the allocations for the skbs failed and the
1744 * rx engine is without Available descriptors
1745 */
1746 static int nv_alloc_rx(struct net_device *dev)
1747 {
1748 struct fe_priv *np = netdev_priv(dev);
1749 struct ring_desc* less_rx;
1750
1751 less_rx = np->get_rx.orig;
1752 if (less_rx-- == np->first_rx.orig)
1753 less_rx = np->last_rx.orig;
1754
1755 while (np->put_rx.orig != less_rx) {
1756 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1757 if (skb) {
1758 np->put_rx_ctx->skb = skb;
1759 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1760 skb->data,
1761 skb_tailroom(skb),
1762 PCI_DMA_FROMDEVICE);
1763 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1764 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1765 wmb();
1766 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1767 if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1768 np->put_rx.orig = np->first_rx.orig;
1769 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1770 np->put_rx_ctx = np->first_rx_ctx;
1771 } else {
1772 return 1;
1773 }
1774 }
1775 return 0;
1776 }
1777
1778 static int nv_alloc_rx_optimized(struct net_device *dev)
1779 {
1780 struct fe_priv *np = netdev_priv(dev);
1781 struct ring_desc_ex* less_rx;
1782
1783 less_rx = np->get_rx.ex;
1784 if (less_rx-- == np->first_rx.ex)
1785 less_rx = np->last_rx.ex;
1786
1787 while (np->put_rx.ex != less_rx) {
1788 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1789 if (skb) {
1790 np->put_rx_ctx->skb = skb;
1791 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1792 skb->data,
1793 skb_tailroom(skb),
1794 PCI_DMA_FROMDEVICE);
1795 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1796 np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
1797 np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
1798 wmb();
1799 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1800 if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1801 np->put_rx.ex = np->first_rx.ex;
1802 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1803 np->put_rx_ctx = np->first_rx_ctx;
1804 } else {
1805 return 1;
1806 }
1807 }
1808 return 0;
1809 }
1810
1811 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1812 #ifdef CONFIG_FORCEDETH_NAPI
1813 static void nv_do_rx_refill(unsigned long data)
1814 {
1815 struct net_device *dev = (struct net_device *) data;
1816 struct fe_priv *np = netdev_priv(dev);
1817
1818 /* Just reschedule NAPI rx processing */
1819 napi_schedule(&np->napi);
1820 }
1821 #else
1822 static void nv_do_rx_refill(unsigned long data)
1823 {
1824 struct net_device *dev = (struct net_device *) data;
1825 struct fe_priv *np = netdev_priv(dev);
1826 int retcode;
1827
1828 if (!using_multi_irqs(dev)) {
1829 if (np->msi_flags & NV_MSI_X_ENABLED)
1830 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1831 else
1832 disable_irq(np->pci_dev->irq);
1833 } else {
1834 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1835 }
1836 if (!nv_optimized(np))
1837 retcode = nv_alloc_rx(dev);
1838 else
1839 retcode = nv_alloc_rx_optimized(dev);
1840 if (retcode) {
1841 spin_lock_irq(&np->lock);
1842 if (!np->in_shutdown)
1843 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1844 spin_unlock_irq(&np->lock);
1845 }
1846 if (!using_multi_irqs(dev)) {
1847 if (np->msi_flags & NV_MSI_X_ENABLED)
1848 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1849 else
1850 enable_irq(np->pci_dev->irq);
1851 } else {
1852 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1853 }
1854 }
1855 #endif
1856
1857 static void nv_init_rx(struct net_device *dev)
1858 {
1859 struct fe_priv *np = netdev_priv(dev);
1860 int i;
1861
1862 np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
1863
1864 if (!nv_optimized(np))
1865 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1866 else
1867 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1868 np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
1869 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1870
1871 for (i = 0; i < np->rx_ring_size; i++) {
1872 if (!nv_optimized(np)) {
1873 np->rx_ring.orig[i].flaglen = 0;
1874 np->rx_ring.orig[i].buf = 0;
1875 } else {
1876 np->rx_ring.ex[i].flaglen = 0;
1877 np->rx_ring.ex[i].txvlan = 0;
1878 np->rx_ring.ex[i].bufhigh = 0;
1879 np->rx_ring.ex[i].buflow = 0;
1880 }
1881 np->rx_skb[i].skb = NULL;
1882 np->rx_skb[i].dma = 0;
1883 }
1884 }
1885
1886 static void nv_init_tx(struct net_device *dev)
1887 {
1888 struct fe_priv *np = netdev_priv(dev);
1889 int i;
1890
1891 np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
1892
1893 if (!nv_optimized(np))
1894 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1895 else
1896 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1897 np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
1898 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1899 np->tx_pkts_in_progress = 0;
1900 np->tx_change_owner = NULL;
1901 np->tx_end_flip = NULL;
1902 np->tx_stop = 0;
1903
1904 for (i = 0; i < np->tx_ring_size; i++) {
1905 if (!nv_optimized(np)) {
1906 np->tx_ring.orig[i].flaglen = 0;
1907 np->tx_ring.orig[i].buf = 0;
1908 } else {
1909 np->tx_ring.ex[i].flaglen = 0;
1910 np->tx_ring.ex[i].txvlan = 0;
1911 np->tx_ring.ex[i].bufhigh = 0;
1912 np->tx_ring.ex[i].buflow = 0;
1913 }
1914 np->tx_skb[i].skb = NULL;
1915 np->tx_skb[i].dma = 0;
1916 np->tx_skb[i].dma_len = 0;
1917 np->tx_skb[i].dma_single = 0;
1918 np->tx_skb[i].first_tx_desc = NULL;
1919 np->tx_skb[i].next_tx_ctx = NULL;
1920 }
1921 }
1922
1923 static int nv_init_ring(struct net_device *dev)
1924 {
1925 struct fe_priv *np = netdev_priv(dev);
1926
1927 nv_init_tx(dev);
1928 nv_init_rx(dev);
1929
1930 if (!nv_optimized(np))
1931 return nv_alloc_rx(dev);
1932 else
1933 return nv_alloc_rx_optimized(dev);
1934 }
1935
1936 static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
1937 {
1938 if (tx_skb->dma) {
1939 if (tx_skb->dma_single)
1940 pci_unmap_single(np->pci_dev, tx_skb->dma,
1941 tx_skb->dma_len,
1942 PCI_DMA_TODEVICE);
1943 else
1944 pci_unmap_page(np->pci_dev, tx_skb->dma,
1945 tx_skb->dma_len,
1946 PCI_DMA_TODEVICE);
1947 tx_skb->dma = 0;
1948 }
1949 }
1950
1951 static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
1952 {
1953 nv_unmap_txskb(np, tx_skb);
1954 if (tx_skb->skb) {
1955 dev_kfree_skb_any(tx_skb->skb);
1956 tx_skb->skb = NULL;
1957 return 1;
1958 }
1959 return 0;
1960 }
1961
1962 static void nv_drain_tx(struct net_device *dev)
1963 {
1964 struct fe_priv *np = netdev_priv(dev);
1965 unsigned int i;
1966
1967 for (i = 0; i < np->tx_ring_size; i++) {
1968 if (!nv_optimized(np)) {
1969 np->tx_ring.orig[i].flaglen = 0;
1970 np->tx_ring.orig[i].buf = 0;
1971 } else {
1972 np->tx_ring.ex[i].flaglen = 0;
1973 np->tx_ring.ex[i].txvlan = 0;
1974 np->tx_ring.ex[i].bufhigh = 0;
1975 np->tx_ring.ex[i].buflow = 0;
1976 }
1977 if (nv_release_txskb(np, &np->tx_skb[i]))
1978 dev->stats.tx_dropped++;
1979 np->tx_skb[i].dma = 0;
1980 np->tx_skb[i].dma_len = 0;
1981 np->tx_skb[i].dma_single = 0;
1982 np->tx_skb[i].first_tx_desc = NULL;
1983 np->tx_skb[i].next_tx_ctx = NULL;
1984 }
1985 np->tx_pkts_in_progress = 0;
1986 np->tx_change_owner = NULL;
1987 np->tx_end_flip = NULL;
1988 }
1989
1990 static void nv_drain_rx(struct net_device *dev)
1991 {
1992 struct fe_priv *np = netdev_priv(dev);
1993 int i;
1994
1995 for (i = 0; i < np->rx_ring_size; i++) {
1996 if (!nv_optimized(np)) {
1997 np->rx_ring.orig[i].flaglen = 0;
1998 np->rx_ring.orig[i].buf = 0;
1999 } else {
2000 np->rx_ring.ex[i].flaglen = 0;
2001 np->rx_ring.ex[i].txvlan = 0;
2002 np->rx_ring.ex[i].bufhigh = 0;
2003 np->rx_ring.ex[i].buflow = 0;
2004 }
2005 wmb();
2006 if (np->rx_skb[i].skb) {
2007 pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
2008 (skb_end_pointer(np->rx_skb[i].skb) -
2009 np->rx_skb[i].skb->data),
2010 PCI_DMA_FROMDEVICE);
2011 dev_kfree_skb(np->rx_skb[i].skb);
2012 np->rx_skb[i].skb = NULL;
2013 }
2014 }
2015 }
2016
2017 static void nv_drain_rxtx(struct net_device *dev)
2018 {
2019 nv_drain_tx(dev);
2020 nv_drain_rx(dev);
2021 }
2022
2023 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
2024 {
2025 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
2026 }
2027
2028 static void nv_legacybackoff_reseed(struct net_device *dev)
2029 {
2030 u8 __iomem *base = get_hwbase(dev);
2031 u32 reg;
2032 u32 low;
2033 int tx_status = 0;
2034
2035 reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
2036 get_random_bytes(&low, sizeof(low));
2037 reg |= low & NVREG_SLOTTIME_MASK;
2038
2039 /* Need to stop tx before change takes effect.
2040 * Caller has already gained np->lock.
2041 */
2042 tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
2043 if (tx_status)
2044 nv_stop_tx(dev);
2045 nv_stop_rx(dev);
2046 writel(reg, base + NvRegSlotTime);
2047 if (tx_status)
2048 nv_start_tx(dev);
2049 nv_start_rx(dev);
2050 }
2051
2052 /* Gear Backoff Seeds */
2053 #define BACKOFF_SEEDSET_ROWS 8
2054 #define BACKOFF_SEEDSET_LFSRS 15
2055
2056 /* Known Good seed sets */
2057 static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2058 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2059 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
2060 {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
2061 {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
2062 {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
2063 {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
2064 {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
2065 {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
2066
2067 static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
2068 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2069 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2070 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
2071 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2072 {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
2073 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2074 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
2075 {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
2076
2077 static void nv_gear_backoff_reseed(struct net_device *dev)
2078 {
2079 u8 __iomem *base = get_hwbase(dev);
2080 u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
2081 u32 temp, seedset, combinedSeed;
2082 int i;
2083
2084 /* Setup seed for free running LFSR */
2085 /* We are going to read the time stamp counter 3 times
2086 and swizzle bits around to increase randomness */
2087 get_random_bytes(&miniseed1, sizeof(miniseed1));
2088 miniseed1 &= 0x0fff;
2089 if (miniseed1 == 0)
2090 miniseed1 = 0xabc;
2091
2092 get_random_bytes(&miniseed2, sizeof(miniseed2));
2093 miniseed2 &= 0x0fff;
2094 if (miniseed2 == 0)
2095 miniseed2 = 0xabc;
2096 miniseed2_reversed =
2097 ((miniseed2 & 0xF00) >> 8) |
2098 (miniseed2 & 0x0F0) |
2099 ((miniseed2 & 0x00F) << 8);
2100
2101 get_random_bytes(&miniseed3, sizeof(miniseed3));
2102 miniseed3 &= 0x0fff;
2103 if (miniseed3 == 0)
2104 miniseed3 = 0xabc;
2105 miniseed3_reversed =
2106 ((miniseed3 & 0xF00) >> 8) |
2107 (miniseed3 & 0x0F0) |
2108 ((miniseed3 & 0x00F) << 8);
2109
2110 combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
2111 (miniseed2 ^ miniseed3_reversed);
2112
2113 /* Seeds can not be zero */
2114 if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
2115 combinedSeed |= 0x08;
2116 if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
2117 combinedSeed |= 0x8000;
2118
2119 /* No need to disable tx here */
2120 temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
2121 temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
2122 temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
2123 writel(temp,base + NvRegBackOffControl);
2124
2125 /* Setup seeds for all gear LFSRs. */
2126 get_random_bytes(&seedset, sizeof(seedset));
2127 seedset = seedset % BACKOFF_SEEDSET_ROWS;
2128 for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
2129 {
2130 temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
2131 temp |= main_seedset[seedset][i-1] & 0x3ff;
2132 temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
2133 writel(temp, base + NvRegBackOffControl);
2134 }
2135 }
2136
2137 /*
2138 * nv_start_xmit: dev->hard_start_xmit function
2139 * Called with netif_tx_lock held.
2140 */
2141 static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
2142 {
2143 struct fe_priv *np = netdev_priv(dev);
2144 u32 tx_flags = 0;
2145 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
2146 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2147 unsigned int i;
2148 u32 offset = 0;
2149 u32 bcnt;
2150 u32 size = skb->len-skb->data_len;
2151 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2152 u32 empty_slots;
2153 struct ring_desc* put_tx;
2154 struct ring_desc* start_tx;
2155 struct ring_desc* prev_tx;
2156 struct nv_skb_map* prev_tx_ctx;
2157 unsigned long flags;
2158
2159 /* add fragments to entries count */
2160 for (i = 0; i < fragments; i++) {
2161 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
2162 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2163 }
2164
2165 spin_lock_irqsave(&np->lock, flags);
2166 empty_slots = nv_get_empty_tx_slots(np);
2167 if (unlikely(empty_slots <= entries)) {
2168 netif_stop_queue(dev);
2169 np->tx_stop = 1;
2170 spin_unlock_irqrestore(&np->lock, flags);
2171 return NETDEV_TX_BUSY;
2172 }
2173 spin_unlock_irqrestore(&np->lock, flags);
2174
2175 start_tx = put_tx = np->put_tx.orig;
2176
2177 /* setup the header buffer */
2178 do {
2179 prev_tx = put_tx;
2180 prev_tx_ctx = np->put_tx_ctx;
2181 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2182 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2183 PCI_DMA_TODEVICE);
2184 np->put_tx_ctx->dma_len = bcnt;
2185 np->put_tx_ctx->dma_single = 1;
2186 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2187 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2188
2189 tx_flags = np->tx_flags;
2190 offset += bcnt;
2191 size -= bcnt;
2192 if (unlikely(put_tx++ == np->last_tx.orig))
2193 put_tx = np->first_tx.orig;
2194 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2195 np->put_tx_ctx = np->first_tx_ctx;
2196 } while (size);
2197
2198 /* setup the fragments */
2199 for (i = 0; i < fragments; i++) {
2200 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2201 u32 size = frag->size;
2202 offset = 0;
2203
2204 do {
2205 prev_tx = put_tx;
2206 prev_tx_ctx = np->put_tx_ctx;
2207 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2208 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
2209 PCI_DMA_TODEVICE);
2210 np->put_tx_ctx->dma_len = bcnt;
2211 np->put_tx_ctx->dma_single = 0;
2212 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
2213 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2214
2215 offset += bcnt;
2216 size -= bcnt;
2217 if (unlikely(put_tx++ == np->last_tx.orig))
2218 put_tx = np->first_tx.orig;
2219 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2220 np->put_tx_ctx = np->first_tx_ctx;
2221 } while (size);
2222 }
2223
2224 /* set last fragment flag */
2225 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
2226
2227 /* save skb in this slot's context area */
2228 prev_tx_ctx->skb = skb;
2229
2230 if (skb_is_gso(skb))
2231 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2232 else
2233 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2234 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2235
2236 spin_lock_irqsave(&np->lock, flags);
2237
2238 /* set tx flags */
2239 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2240 np->put_tx.orig = put_tx;
2241
2242 spin_unlock_irqrestore(&np->lock, flags);
2243
2244 dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
2245 dev->name, entries, tx_flags_extra);
2246 {
2247 int j;
2248 for (j=0; j<64; j++) {
2249 if ((j%16) == 0)
2250 dprintk("\n%03x:", j);
2251 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2252 }
2253 dprintk("\n");
2254 }
2255
2256 dev->trans_start = jiffies;
2257 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2258 return NETDEV_TX_OK;
2259 }
2260
2261 static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb,
2262 struct net_device *dev)
2263 {
2264 struct fe_priv *np = netdev_priv(dev);
2265 u32 tx_flags = 0;
2266 u32 tx_flags_extra;
2267 unsigned int fragments = skb_shinfo(skb)->nr_frags;
2268 unsigned int i;
2269 u32 offset = 0;
2270 u32 bcnt;
2271 u32 size = skb->len-skb->data_len;
2272 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2273 u32 empty_slots;
2274 struct ring_desc_ex* put_tx;
2275 struct ring_desc_ex* start_tx;
2276 struct ring_desc_ex* prev_tx;
2277 struct nv_skb_map* prev_tx_ctx;
2278 struct nv_skb_map* start_tx_ctx;
2279 unsigned long flags;
2280
2281 /* add fragments to entries count */
2282 for (i = 0; i < fragments; i++) {
2283 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
2284 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
2285 }
2286
2287 spin_lock_irqsave(&np->lock, flags);
2288 empty_slots = nv_get_empty_tx_slots(np);
2289 if (unlikely(empty_slots <= entries)) {
2290 netif_stop_queue(dev);
2291 np->tx_stop = 1;
2292 spin_unlock_irqrestore(&np->lock, flags);
2293 return NETDEV_TX_BUSY;
2294 }
2295 spin_unlock_irqrestore(&np->lock, flags);
2296
2297 start_tx = put_tx = np->put_tx.ex;
2298 start_tx_ctx = np->put_tx_ctx;
2299
2300 /* setup the header buffer */
2301 do {
2302 prev_tx = put_tx;
2303 prev_tx_ctx = np->put_tx_ctx;
2304 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2305 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
2306 PCI_DMA_TODEVICE);
2307 np->put_tx_ctx->dma_len = bcnt;
2308 np->put_tx_ctx->dma_single = 1;
2309 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2310 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2311 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2312
2313 tx_flags = NV_TX2_VALID;
2314 offset += bcnt;
2315 size -= bcnt;
2316 if (unlikely(put_tx++ == np->last_tx.ex))
2317 put_tx = np->first_tx.ex;
2318 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2319 np->put_tx_ctx = np->first_tx_ctx;
2320 } while (size);
2321
2322 /* setup the fragments */
2323 for (i = 0; i < fragments; i++) {
2324 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2325 u32 size = frag->size;
2326 offset = 0;
2327
2328 do {
2329 prev_tx = put_tx;
2330 prev_tx_ctx = np->put_tx_ctx;
2331 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2332 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
2333 PCI_DMA_TODEVICE);
2334 np->put_tx_ctx->dma_len = bcnt;
2335 np->put_tx_ctx->dma_single = 0;
2336 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2337 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2338 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2339
2340 offset += bcnt;
2341 size -= bcnt;
2342 if (unlikely(put_tx++ == np->last_tx.ex))
2343 put_tx = np->first_tx.ex;
2344 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2345 np->put_tx_ctx = np->first_tx_ctx;
2346 } while (size);
2347 }
2348
2349 /* set last fragment flag */
2350 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
2351
2352 /* save skb in this slot's context area */
2353 prev_tx_ctx->skb = skb;
2354
2355 if (skb_is_gso(skb))
2356 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2357 else
2358 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2359 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2360
2361 /* vlan tag */
2362 if (likely(!np->vlangrp)) {
2363 start_tx->txvlan = 0;
2364 } else {
2365 if (vlan_tx_tag_present(skb))
2366 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
2367 else
2368 start_tx->txvlan = 0;
2369 }
2370
2371 spin_lock_irqsave(&np->lock, flags);
2372
2373 if (np->tx_limit) {
2374 /* Limit the number of outstanding tx. Setup all fragments, but
2375 * do not set the VALID bit on the first descriptor. Save a pointer
2376 * to that descriptor and also for next skb_map element.
2377 */
2378
2379 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
2380 if (!np->tx_change_owner)
2381 np->tx_change_owner = start_tx_ctx;
2382
2383 /* remove VALID bit */
2384 tx_flags &= ~NV_TX2_VALID;
2385 start_tx_ctx->first_tx_desc = start_tx;
2386 start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
2387 np->tx_end_flip = np->put_tx_ctx;
2388 } else {
2389 np->tx_pkts_in_progress++;
2390 }
2391 }
2392
2393 /* set tx flags */
2394 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2395 np->put_tx.ex = put_tx;
2396
2397 spin_unlock_irqrestore(&np->lock, flags);
2398
2399 dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
2400 dev->name, entries, tx_flags_extra);
2401 {
2402 int j;
2403 for (j=0; j<64; j++) {
2404 if ((j%16) == 0)
2405 dprintk("\n%03x:", j);
2406 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2407 }
2408 dprintk("\n");
2409 }
2410
2411 dev->trans_start = jiffies;
2412 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2413 return NETDEV_TX_OK;
2414 }
2415
2416 static inline void nv_tx_flip_ownership(struct net_device *dev)
2417 {
2418 struct fe_priv *np = netdev_priv(dev);
2419
2420 np->tx_pkts_in_progress--;
2421 if (np->tx_change_owner) {
2422 np->tx_change_owner->first_tx_desc->flaglen |=
2423 cpu_to_le32(NV_TX2_VALID);
2424 np->tx_pkts_in_progress++;
2425
2426 np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
2427 if (np->tx_change_owner == np->tx_end_flip)
2428 np->tx_change_owner = NULL;
2429
2430 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2431 }
2432 }
2433
2434 /*
2435 * nv_tx_done: check for completed packets, release the skbs.
2436 *
2437 * Caller must own np->lock.
2438 */
2439 static int nv_tx_done(struct net_device *dev, int limit)
2440 {
2441 struct fe_priv *np = netdev_priv(dev);
2442 u32 flags;
2443 int tx_work = 0;
2444 struct ring_desc* orig_get_tx = np->get_tx.orig;
2445
2446 while ((np->get_tx.orig != np->put_tx.orig) &&
2447 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
2448 (tx_work < limit)) {
2449
2450 dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
2451 dev->name, flags);
2452
2453 nv_unmap_txskb(np, np->get_tx_ctx);
2454
2455 if (np->desc_ver == DESC_VER_1) {
2456 if (flags & NV_TX_LASTPACKET) {
2457 if (flags & NV_TX_ERROR) {
2458 if (flags & NV_TX_UNDERFLOW)
2459 dev->stats.tx_fifo_errors++;
2460 if (flags & NV_TX_CARRIERLOST)
2461 dev->stats.tx_carrier_errors++;
2462 if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
2463 nv_legacybackoff_reseed(dev);
2464 dev->stats.tx_errors++;
2465 } else {
2466 dev->stats.tx_packets++;
2467 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2468 }
2469 dev_kfree_skb_any(np->get_tx_ctx->skb);
2470 np->get_tx_ctx->skb = NULL;
2471 tx_work++;
2472 }
2473 } else {
2474 if (flags & NV_TX2_LASTPACKET) {
2475 if (flags & NV_TX2_ERROR) {
2476 if (flags & NV_TX2_UNDERFLOW)
2477 dev->stats.tx_fifo_errors++;
2478 if (flags & NV_TX2_CARRIERLOST)
2479 dev->stats.tx_carrier_errors++;
2480 if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
2481 nv_legacybackoff_reseed(dev);
2482 dev->stats.tx_errors++;
2483 } else {
2484 dev->stats.tx_packets++;
2485 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2486 }
2487 dev_kfree_skb_any(np->get_tx_ctx->skb);
2488 np->get_tx_ctx->skb = NULL;
2489 tx_work++;
2490 }
2491 }
2492 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
2493 np->get_tx.orig = np->first_tx.orig;
2494 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2495 np->get_tx_ctx = np->first_tx_ctx;
2496 }
2497 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
2498 np->tx_stop = 0;
2499 netif_wake_queue(dev);
2500 }
2501 return tx_work;
2502 }
2503
2504 static int nv_tx_done_optimized(struct net_device *dev, int limit)
2505 {
2506 struct fe_priv *np = netdev_priv(dev);
2507 u32 flags;
2508 int tx_work = 0;
2509 struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
2510
2511 while ((np->get_tx.ex != np->put_tx.ex) &&
2512 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
2513 (tx_work < limit)) {
2514
2515 dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
2516 dev->name, flags);
2517
2518 nv_unmap_txskb(np, np->get_tx_ctx);
2519
2520 if (flags & NV_TX2_LASTPACKET) {
2521 if (!(flags & NV_TX2_ERROR))
2522 dev->stats.tx_packets++;
2523 else {
2524 if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
2525 if (np->driver_data & DEV_HAS_GEAR_MODE)
2526 nv_gear_backoff_reseed(dev);
2527 else
2528 nv_legacybackoff_reseed(dev);
2529 }
2530 }
2531
2532 dev_kfree_skb_any(np->get_tx_ctx->skb);
2533 np->get_tx_ctx->skb = NULL;
2534 tx_work++;
2535
2536 if (np->tx_limit) {
2537 nv_tx_flip_ownership(dev);
2538 }
2539 }
2540 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
2541 np->get_tx.ex = np->first_tx.ex;
2542 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2543 np->get_tx_ctx = np->first_tx_ctx;
2544 }
2545 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
2546 np->tx_stop = 0;
2547 netif_wake_queue(dev);
2548 }
2549 return tx_work;
2550 }
2551
2552 /*
2553 * nv_tx_timeout: dev->tx_timeout function
2554 * Called with netif_tx_lock held.
2555 */
2556 static void nv_tx_timeout(struct net_device *dev)
2557 {
2558 struct fe_priv *np = netdev_priv(dev);
2559 u8 __iomem *base = get_hwbase(dev);
2560 u32 status;
2561 union ring_type put_tx;
2562 int saved_tx_limit;
2563
2564 if (np->msi_flags & NV_MSI_X_ENABLED)
2565 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2566 else
2567 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2568
2569 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
2570
2571 {
2572 int i;
2573
2574 printk(KERN_INFO "%s: Ring at %lx\n",
2575 dev->name, (unsigned long)np->ring_addr);
2576 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
2577 for (i=0;i<=np->register_size;i+= 32) {
2578 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
2579 i,
2580 readl(base + i + 0), readl(base + i + 4),
2581 readl(base + i + 8), readl(base + i + 12),
2582 readl(base + i + 16), readl(base + i + 20),
2583 readl(base + i + 24), readl(base + i + 28));
2584 }
2585 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
2586 for (i=0;i<np->tx_ring_size;i+= 4) {
2587 if (!nv_optimized(np)) {
2588 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
2589 i,
2590 le32_to_cpu(np->tx_ring.orig[i].buf),
2591 le32_to_cpu(np->tx_ring.orig[i].flaglen),
2592 le32_to_cpu(np->tx_ring.orig[i+1].buf),
2593 le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2594 le32_to_cpu(np->tx_ring.orig[i+2].buf),
2595 le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2596 le32_to_cpu(np->tx_ring.orig[i+3].buf),
2597 le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2598 } else {
2599 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
2600 i,
2601 le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2602 le32_to_cpu(np->tx_ring.ex[i].buflow),
2603 le32_to_cpu(np->tx_ring.ex[i].flaglen),
2604 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2605 le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2606 le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2607 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2608 le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2609 le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2610 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2611 le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2612 le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2613 }
2614 }
2615 }
2616
2617 spin_lock_irq(&np->lock);
2618
2619 /* 1) stop tx engine */
2620 nv_stop_tx(dev);
2621
2622 /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
2623 saved_tx_limit = np->tx_limit;
2624 np->tx_limit = 0; /* prevent giving HW any limited pkts */
2625 np->tx_stop = 0; /* prevent waking tx queue */
2626 if (!nv_optimized(np))
2627 nv_tx_done(dev, np->tx_ring_size);
2628 else
2629 nv_tx_done_optimized(dev, np->tx_ring_size);
2630
2631 /* save current HW postion */
2632 if (np->tx_change_owner)
2633 put_tx.ex = np->tx_change_owner->first_tx_desc;
2634 else
2635 put_tx = np->put_tx;
2636
2637 /* 3) clear all tx state */
2638 nv_drain_tx(dev);
2639 nv_init_tx(dev);
2640
2641 /* 4) restore state to current HW position */
2642 np->get_tx = np->put_tx = put_tx;
2643 np->tx_limit = saved_tx_limit;
2644
2645 /* 5) restart tx engine */
2646 nv_start_tx(dev);
2647 netif_wake_queue(dev);
2648 spin_unlock_irq(&np->lock);
2649 }
2650
2651 /*
2652 * Called when the nic notices a mismatch between the actual data len on the
2653 * wire and the len indicated in the 802 header
2654 */
2655 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2656 {
2657 int hdrlen; /* length of the 802 header */
2658 int protolen; /* length as stored in the proto field */
2659
2660 /* 1) calculate len according to header */
2661 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2662 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
2663 hdrlen = VLAN_HLEN;
2664 } else {
2665 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
2666 hdrlen = ETH_HLEN;
2667 }
2668 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
2669 dev->name, datalen, protolen, hdrlen);
2670 if (protolen > ETH_DATA_LEN)
2671 return datalen; /* Value in proto field not a len, no checks possible */
2672
2673 protolen += hdrlen;
2674 /* consistency checks: */
2675 if (datalen > ETH_ZLEN) {
2676 if (datalen >= protolen) {
2677 /* more data on wire than in 802 header, trim of
2678 * additional data.
2679 */
2680 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2681 dev->name, protolen);
2682 return protolen;
2683 } else {
2684 /* less data on wire than mentioned in header.
2685 * Discard the packet.
2686 */
2687 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
2688 dev->name);
2689 return -1;
2690 }
2691 } else {
2692 /* short packet. Accept only if 802 values are also short */
2693 if (protolen > ETH_ZLEN) {
2694 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
2695 dev->name);
2696 return -1;
2697 }
2698 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2699 dev->name, datalen);
2700 return datalen;
2701 }
2702 }
2703
2704 static int nv_rx_process(struct net_device *dev, int limit)
2705 {
2706 struct fe_priv *np = netdev_priv(dev);
2707 u32 flags;
2708 int rx_work = 0;
2709 struct sk_buff *skb;
2710 int len;
2711
2712 while((np->get_rx.orig != np->put_rx.orig) &&
2713 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2714 (rx_work < limit)) {
2715
2716 dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
2717 dev->name, flags);
2718
2719 /*
2720 * the packet is for us - immediately tear down the pci mapping.
2721 * TODO: check if a prefetch of the first cacheline improves
2722 * the performance.
2723 */
2724 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2725 np->get_rx_ctx->dma_len,
2726 PCI_DMA_FROMDEVICE);
2727 skb = np->get_rx_ctx->skb;
2728 np->get_rx_ctx->skb = NULL;
2729
2730 {
2731 int j;
2732 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2733 for (j=0; j<64; j++) {
2734 if ((j%16) == 0)
2735 dprintk("\n%03x:", j);
2736 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2737 }
2738 dprintk("\n");
2739 }
2740 /* look at what we actually got: */
2741 if (np->desc_ver == DESC_VER_1) {
2742 if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2743 len = flags & LEN_MASK_V1;
2744 if (unlikely(flags & NV_RX_ERROR)) {
2745 if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
2746 len = nv_getlen(dev, skb->data, len);
2747 if (len < 0) {
2748 dev->stats.rx_errors++;
2749 dev_kfree_skb(skb);
2750 goto next_pkt;
2751 }
2752 }
2753 /* framing errors are soft errors */
2754 else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
2755 if (flags & NV_RX_SUBSTRACT1) {
2756 len--;
2757 }
2758 }
2759 /* the rest are hard errors */
2760 else {
2761 if (flags & NV_RX_MISSEDFRAME)
2762 dev->stats.rx_missed_errors++;
2763 if (flags & NV_RX_CRCERR)
2764 dev->stats.rx_crc_errors++;
2765 if (flags & NV_RX_OVERFLOW)
2766 dev->stats.rx_over_errors++;
2767 dev->stats.rx_errors++;
2768 dev_kfree_skb(skb);
2769 goto next_pkt;
2770 }
2771 }
2772 } else {
2773 dev_kfree_skb(skb);
2774 goto next_pkt;
2775 }
2776 } else {
2777 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2778 len = flags & LEN_MASK_V2;
2779 if (unlikely(flags & NV_RX2_ERROR)) {
2780 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2781 len = nv_getlen(dev, skb->data, len);
2782 if (len < 0) {
2783 dev->stats.rx_errors++;
2784 dev_kfree_skb(skb);
2785 goto next_pkt;
2786 }
2787 }
2788 /* framing errors are soft errors */
2789 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2790 if (flags & NV_RX2_SUBSTRACT1) {
2791 len--;
2792 }
2793 }
2794 /* the rest are hard errors */
2795 else {
2796 if (flags & NV_RX2_CRCERR)
2797 dev->stats.rx_crc_errors++;
2798 if (flags & NV_RX2_OVERFLOW)
2799 dev->stats.rx_over_errors++;
2800 dev->stats.rx_errors++;
2801 dev_kfree_skb(skb);
2802 goto next_pkt;
2803 }
2804 }
2805 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2806 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2807 skb->ip_summed = CHECKSUM_UNNECESSARY;
2808 } else {
2809 dev_kfree_skb(skb);
2810 goto next_pkt;
2811 }
2812 }
2813 /* got a valid packet - forward it to the network core */
2814 skb_put(skb, len);
2815 skb->protocol = eth_type_trans(skb, dev);
2816 dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
2817 dev->name, len, skb->protocol);
2818 #ifdef CONFIG_FORCEDETH_NAPI
2819 netif_receive_skb(skb);
2820 #else
2821 netif_rx(skb);
2822 #endif
2823 dev->stats.rx_packets++;
2824 dev->stats.rx_bytes += len;
2825 next_pkt:
2826 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2827 np->get_rx.orig = np->first_rx.orig;
2828 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2829 np->get_rx_ctx = np->first_rx_ctx;
2830
2831 rx_work++;
2832 }
2833
2834 return rx_work;
2835 }
2836
2837 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2838 {
2839 struct fe_priv *np = netdev_priv(dev);
2840 u32 flags;
2841 u32 vlanflags = 0;
2842 int rx_work = 0;
2843 struct sk_buff *skb;
2844 int len;
2845
2846 while((np->get_rx.ex != np->put_rx.ex) &&
2847 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2848 (rx_work < limit)) {
2849
2850 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
2851 dev->name, flags);
2852
2853 /*
2854 * the packet is for us - immediately tear down the pci mapping.
2855 * TODO: check if a prefetch of the first cacheline improves
2856 * the performance.
2857 */
2858 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2859 np->get_rx_ctx->dma_len,
2860 PCI_DMA_FROMDEVICE);
2861 skb = np->get_rx_ctx->skb;
2862 np->get_rx_ctx->skb = NULL;
2863
2864 {
2865 int j;
2866 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2867 for (j=0; j<64; j++) {
2868 if ((j%16) == 0)
2869 dprintk("\n%03x:", j);
2870 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2871 }
2872 dprintk("\n");
2873 }
2874 /* look at what we actually got: */
2875 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2876 len = flags & LEN_MASK_V2;
2877 if (unlikely(flags & NV_RX2_ERROR)) {
2878 if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
2879 len = nv_getlen(dev, skb->data, len);
2880 if (len < 0) {
2881 dev_kfree_skb(skb);
2882 goto next_pkt;
2883 }
2884 }
2885 /* framing errors are soft errors */
2886 else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
2887 if (flags & NV_RX2_SUBSTRACT1) {
2888 len--;
2889 }
2890 }
2891 /* the rest are hard errors */
2892 else {
2893 dev_kfree_skb(skb);
2894 goto next_pkt;
2895 }
2896 }
2897
2898 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2899 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2900 skb->ip_summed = CHECKSUM_UNNECESSARY;
2901
2902 /* got a valid packet - forward it to the network core */
2903 skb_put(skb, len);
2904 skb->protocol = eth_type_trans(skb, dev);
2905 prefetch(skb->data);
2906
2907 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
2908 dev->name, len, skb->protocol);
2909
2910 if (likely(!np->vlangrp)) {
2911 #ifdef CONFIG_FORCEDETH_NAPI
2912 netif_receive_skb(skb);
2913 #else
2914 netif_rx(skb);
2915 #endif
2916 } else {
2917 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
2918 if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
2919 #ifdef CONFIG_FORCEDETH_NAPI
2920 vlan_hwaccel_receive_skb(skb, np->vlangrp,
2921 vlanflags & NV_RX3_VLAN_TAG_MASK);
2922 #else
2923 vlan_hwaccel_rx(skb, np->vlangrp,
2924 vlanflags & NV_RX3_VLAN_TAG_MASK);
2925 #endif
2926 } else {
2927 #ifdef CONFIG_FORCEDETH_NAPI
2928 netif_receive_skb(skb);
2929 #else
2930 netif_rx(skb);
2931 #endif
2932 }
2933 }
2934
2935 dev->stats.rx_packets++;
2936 dev->stats.rx_bytes += len;
2937 } else {
2938 dev_kfree_skb(skb);
2939 }
2940 next_pkt:
2941 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
2942 np->get_rx.ex = np->first_rx.ex;
2943 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2944 np->get_rx_ctx = np->first_rx_ctx;
2945
2946 rx_work++;
2947 }
2948
2949 return rx_work;
2950 }
2951
2952 static void set_bufsize(struct net_device *dev)
2953 {
2954 struct fe_priv *np = netdev_priv(dev);
2955
2956 if (dev->mtu <= ETH_DATA_LEN)
2957 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
2958 else
2959 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
2960 }
2961
2962 /*
2963 * nv_change_mtu: dev->change_mtu function
2964 * Called with dev_base_lock held for read.
2965 */
2966 static int nv_change_mtu(struct net_device *dev, int new_mtu)
2967 {
2968 struct fe_priv *np = netdev_priv(dev);
2969 int old_mtu;
2970
2971 if (new_mtu < 64 || new_mtu > np->pkt_limit)
2972 return -EINVAL;
2973
2974 old_mtu = dev->mtu;
2975 dev->mtu = new_mtu;
2976
2977 /* return early if the buffer sizes will not change */
2978 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
2979 return 0;
2980 if (old_mtu == new_mtu)
2981 return 0;
2982
2983 /* synchronized against open : rtnl_lock() held by caller */
2984 if (netif_running(dev)) {
2985 u8 __iomem *base = get_hwbase(dev);
2986 /*
2987 * It seems that the nic preloads valid ring entries into an
2988 * internal buffer. The procedure for flushing everything is
2989 * guessed, there is probably a simpler approach.
2990 * Changing the MTU is a rare event, it shouldn't matter.
2991 */
2992 nv_disable_irq(dev);
2993 nv_napi_disable(dev);
2994 netif_tx_lock_bh(dev);
2995 netif_addr_lock(dev);
2996 spin_lock(&np->lock);
2997 /* stop engines */
2998 nv_stop_rxtx(dev);
2999 nv_txrx_reset(dev);
3000 /* drain rx queue */
3001 nv_drain_rxtx(dev);
3002 /* reinit driver view of the rx queue */
3003 set_bufsize(dev);
3004 if (nv_init_ring(dev)) {
3005 if (!np->in_shutdown)
3006 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3007 }
3008 /* reinit nic view of the rx queue */
3009 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3010 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3011 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3012 base + NvRegRingSizes);
3013 pci_push(base);
3014 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3015 pci_push(base);
3016
3017 /* restart rx engine */
3018 nv_start_rxtx(dev);
3019 spin_unlock(&np->lock);
3020 netif_addr_unlock(dev);
3021 netif_tx_unlock_bh(dev);
3022 nv_napi_enable(dev);
3023 nv_enable_irq(dev);
3024 }
3025 return 0;
3026 }
3027
3028 static void nv_copy_mac_to_hw(struct net_device *dev)
3029 {
3030 u8 __iomem *base = get_hwbase(dev);
3031 u32 mac[2];
3032
3033 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
3034 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
3035 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
3036
3037 writel(mac[0], base + NvRegMacAddrA);
3038 writel(mac[1], base + NvRegMacAddrB);
3039 }
3040
3041 /*
3042 * nv_set_mac_address: dev->set_mac_address function
3043 * Called with rtnl_lock() held.
3044 */
3045 static int nv_set_mac_address(struct net_device *dev, void *addr)
3046 {
3047 struct fe_priv *np = netdev_priv(dev);
3048 struct sockaddr *macaddr = (struct sockaddr*)addr;
3049
3050 if (!is_valid_ether_addr(macaddr->sa_data))
3051 return -EADDRNOTAVAIL;
3052
3053 /* synchronized against open : rtnl_lock() held by caller */
3054 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
3055
3056 if (netif_running(dev)) {
3057 netif_tx_lock_bh(dev);
3058 netif_addr_lock(dev);
3059 spin_lock_irq(&np->lock);
3060
3061 /* stop rx engine */
3062 nv_stop_rx(dev);
3063
3064 /* set mac address */
3065 nv_copy_mac_to_hw(dev);
3066
3067 /* restart rx engine */
3068 nv_start_rx(dev);
3069 spin_unlock_irq(&np->lock);
3070 netif_addr_unlock(dev);
3071 netif_tx_unlock_bh(dev);
3072 } else {
3073 nv_copy_mac_to_hw(dev);
3074 }
3075 return 0;
3076 }
3077
3078 /*
3079 * nv_set_multicast: dev->set_multicast function
3080 * Called with netif_tx_lock held.
3081 */
3082 static void nv_set_multicast(struct net_device *dev)
3083 {
3084 struct fe_priv *np = netdev_priv(dev);
3085 u8 __iomem *base = get_hwbase(dev);
3086 u32 addr[2];
3087 u32 mask[2];
3088 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
3089
3090 memset(addr, 0, sizeof(addr));
3091 memset(mask, 0, sizeof(mask));
3092
3093 if (dev->flags & IFF_PROMISC) {
3094 pff |= NVREG_PFF_PROMISC;
3095 } else {
3096 pff |= NVREG_PFF_MYADDR;
3097
3098 if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
3099 u32 alwaysOff[2];
3100 u32 alwaysOn[2];
3101
3102 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
3103 if (dev->flags & IFF_ALLMULTI) {
3104 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
3105 } else {
3106 struct dev_mc_list *walk;
3107
3108 netdev_for_each_mc_addr(walk, dev) {
3109 u32 a, b;
3110 a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
3111 b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
3112 alwaysOn[0] &= a;
3113 alwaysOff[0] &= ~a;
3114 alwaysOn[1] &= b;
3115 alwaysOff[1] &= ~b;
3116 }
3117 }
3118 addr[0] = alwaysOn[0];
3119 addr[1] = alwaysOn[1];
3120 mask[0] = alwaysOn[0] | alwaysOff[0];
3121 mask[1] = alwaysOn[1] | alwaysOff[1];
3122 } else {
3123 mask[0] = NVREG_MCASTMASKA_NONE;
3124 mask[1] = NVREG_MCASTMASKB_NONE;
3125 }
3126 }
3127 addr[0] |= NVREG_MCASTADDRA_FORCE;
3128 pff |= NVREG_PFF_ALWAYS;
3129 spin_lock_irq(&np->lock);
3130 nv_stop_rx(dev);
3131 writel(addr[0], base + NvRegMulticastAddrA);
3132 writel(addr[1], base + NvRegMulticastAddrB);
3133 writel(mask[0], base + NvRegMulticastMaskA);
3134 writel(mask[1], base + NvRegMulticastMaskB);
3135 writel(pff, base + NvRegPacketFilterFlags);
3136 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
3137 dev->name);
3138 nv_start_rx(dev);
3139 spin_unlock_irq(&np->lock);
3140 }
3141
3142 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
3143 {
3144 struct fe_priv *np = netdev_priv(dev);
3145 u8 __iomem *base = get_hwbase(dev);
3146
3147 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
3148
3149 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
3150 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
3151 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
3152 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
3153 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3154 } else {
3155 writel(pff, base + NvRegPacketFilterFlags);
3156 }
3157 }
3158 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
3159 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
3160 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
3161 u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
3162 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
3163 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
3164 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
3165 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
3166 /* limit the number of tx pause frames to a default of 8 */
3167 writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
3168 }
3169 writel(pause_enable, base + NvRegTxPauseFrame);
3170 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
3171 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3172 } else {
3173 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
3174 writel(regmisc, base + NvRegMisc1);
3175 }
3176 }
3177 }
3178
3179 /**
3180 * nv_update_linkspeed: Setup the MAC according to the link partner
3181 * @dev: Network device to be configured
3182 *
3183 * The function queries the PHY and checks if there is a link partner.
3184 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
3185 * set to 10 MBit HD.
3186 *
3187 * The function returns 0 if there is no link partner and 1 if there is
3188 * a good link partner.
3189 */
3190 static int nv_update_linkspeed(struct net_device *dev)
3191 {
3192 struct fe_priv *np = netdev_priv(dev);
3193 u8 __iomem *base = get_hwbase(dev);
3194 int adv = 0;
3195 int lpa = 0;
3196 int adv_lpa, adv_pause, lpa_pause;
3197 int newls = np->linkspeed;
3198 int newdup = np->duplex;
3199 int mii_status;
3200 int retval = 0;
3201 u32 control_1000, status_1000, phyreg, pause_flags, txreg;
3202 u32 txrxFlags = 0;
3203 u32 phy_exp;
3204
3205 /* BMSR_LSTATUS is latched, read it twice:
3206 * we want the current value.
3207 */
3208 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3209 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3210
3211 if (!(mii_status & BMSR_LSTATUS)) {
3212 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
3213 dev->name);
3214 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3215 newdup = 0;
3216 retval = 0;
3217 goto set_speed;
3218 }
3219
3220 if (np->autoneg == 0) {
3221 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
3222 dev->name, np->fixed_mode);
3223 if (np->fixed_mode & LPA_100FULL) {
3224 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3225 newdup = 1;
3226 } else if (np->fixed_mode & LPA_100HALF) {
3227 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3228 newdup = 0;
3229 } else if (np->fixed_mode & LPA_10FULL) {
3230 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3231 newdup = 1;
3232 } else {
3233 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3234 newdup = 0;
3235 }
3236 retval = 1;
3237 goto set_speed;
3238 }
3239 /* check auto negotiation is complete */
3240 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
3241 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
3242 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3243 newdup = 0;
3244 retval = 0;
3245 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
3246 goto set_speed;
3247 }
3248
3249 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3250 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
3251 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
3252 dev->name, adv, lpa);
3253
3254 retval = 1;
3255 if (np->gigabit == PHY_GIGABIT) {
3256 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3257 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
3258
3259 if ((control_1000 & ADVERTISE_1000FULL) &&
3260 (status_1000 & LPA_1000FULL)) {
3261 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
3262 dev->name);
3263 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
3264 newdup = 1;
3265 goto set_speed;
3266 }
3267 }
3268
3269 /* FIXME: handle parallel detection properly */
3270 adv_lpa = lpa & adv;
3271 if (adv_lpa & LPA_100FULL) {
3272 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3273 newdup = 1;
3274 } else if (adv_lpa & LPA_100HALF) {
3275 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
3276 newdup = 0;
3277 } else if (adv_lpa & LPA_10FULL) {
3278 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3279 newdup = 1;
3280 } else if (adv_lpa & LPA_10HALF) {
3281 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3282 newdup = 0;
3283 } else {
3284 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
3285 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3286 newdup = 0;
3287 }
3288
3289 set_speed:
3290 if (np->duplex == newdup && np->linkspeed == newls)
3291 return retval;
3292
3293 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
3294 dev->name, np->linkspeed, np->duplex, newls, newdup);
3295
3296 np->duplex = newdup;
3297 np->linkspeed = newls;
3298
3299 /* The transmitter and receiver must be restarted for safe update */
3300 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
3301 txrxFlags |= NV_RESTART_TX;
3302 nv_stop_tx(dev);
3303 }
3304 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
3305 txrxFlags |= NV_RESTART_RX;
3306 nv_stop_rx(dev);
3307 }
3308
3309 if (np->gigabit == PHY_GIGABIT) {
3310 phyreg = readl(base + NvRegSlotTime);
3311 phyreg &= ~(0x3FF00);
3312 if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
3313 ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
3314 phyreg |= NVREG_SLOTTIME_10_100_FULL;
3315 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
3316 phyreg |= NVREG_SLOTTIME_1000_FULL;
3317 writel(phyreg, base + NvRegSlotTime);
3318 }
3319
3320 phyreg = readl(base + NvRegPhyInterface);
3321 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
3322 if (np->duplex == 0)
3323 phyreg |= PHY_HALF;
3324 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
3325 phyreg |= PHY_100;
3326 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3327 phyreg |= PHY_1000;
3328 writel(phyreg, base + NvRegPhyInterface);
3329
3330 phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
3331 if (phyreg & PHY_RGMII) {
3332 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
3333 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
3334 } else {
3335 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
3336 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
3337 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
3338 else
3339 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
3340 } else {
3341 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
3342 }
3343 }
3344 } else {
3345 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
3346 txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
3347 else
3348 txreg = NVREG_TX_DEFERRAL_DEFAULT;
3349 }
3350 writel(txreg, base + NvRegTxDeferral);
3351
3352 if (np->desc_ver == DESC_VER_1) {
3353 txreg = NVREG_TX_WM_DESC1_DEFAULT;
3354 } else {
3355 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3356 txreg = NVREG_TX_WM_DESC2_3_1000;
3357 else
3358 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
3359 }
3360 writel(txreg, base + NvRegTxWatermark);
3361
3362 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
3363 base + NvRegMisc1);
3364 pci_push(base);
3365 writel(np->linkspeed, base + NvRegLinkSpeed);
3366 pci_push(base);
3367
3368 pause_flags = 0;
3369 /* setup pause frame */
3370 if (np->duplex != 0) {
3371 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
3372 adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
3373 lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
3374
3375 switch (adv_pause) {
3376 case ADVERTISE_PAUSE_CAP:
3377 if (lpa_pause & LPA_PAUSE_CAP) {
3378 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3379 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3380 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3381 }
3382 break;
3383 case ADVERTISE_PAUSE_ASYM:
3384 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
3385 {
3386 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3387 }
3388 break;
3389 case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
3390 if (lpa_pause & LPA_PAUSE_CAP)
3391 {
3392 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3393 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3394 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3395 }
3396 if (lpa_pause == LPA_PAUSE_ASYM)
3397 {
3398 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3399 }
3400 break;
3401 }
3402 } else {
3403 pause_flags = np->pause_flags;
3404 }
3405 }
3406 nv_update_pause(dev, pause_flags);
3407
3408 if (txrxFlags & NV_RESTART_TX)
3409 nv_start_tx(dev);
3410 if (txrxFlags & NV_RESTART_RX)
3411 nv_start_rx(dev);
3412
3413 return retval;
3414 }
3415
3416 static void nv_linkchange(struct net_device *dev)
3417 {
3418 if (nv_update_linkspeed(dev)) {
3419 if (!netif_carrier_ok(dev)) {
3420 netif_carrier_on(dev);
3421 printk(KERN_INFO "%s: link up.\n", dev->name);
3422 nv_txrx_gate(dev, false);
3423 nv_start_rx(dev);
3424 }
3425 } else {
3426 if (netif_carrier_ok(dev)) {
3427 netif_carrier_off(dev);
3428 printk(KERN_INFO "%s: link down.\n", dev->name);
3429 nv_txrx_gate(dev, true);
3430 nv_stop_rx(dev);
3431 }
3432 }
3433 }
3434
3435 static void nv_link_irq(struct net_device *dev)
3436 {
3437 u8 __iomem *base = get_hwbase(dev);
3438 u32 miistat;
3439
3440 miistat = readl(base + NvRegMIIStatus);
3441 writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
3442 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
3443
3444 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
3445 nv_linkchange(dev);
3446 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
3447 }
3448
3449 static void nv_msi_workaround(struct fe_priv *np)
3450 {
3451
3452 /* Need to toggle the msi irq mask within the ethernet device,
3453 * otherwise, future interrupts will not be detected.
3454 */
3455 if (np->msi_flags & NV_MSI_ENABLED) {
3456 u8 __iomem *base = np->base;
3457
3458 writel(0, base + NvRegMSIIrqMask);
3459 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3460 }
3461 }
3462
3463 static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
3464 {
3465 struct fe_priv *np = netdev_priv(dev);
3466
3467 if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
3468 if (total_work > NV_DYNAMIC_THRESHOLD) {
3469 /* transition to poll based interrupts */
3470 np->quiet_count = 0;
3471 if (np->irqmask != NVREG_IRQMASK_CPU) {
3472 np->irqmask = NVREG_IRQMASK_CPU;
3473 return 1;
3474 }
3475 } else {
3476 if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
3477 np->quiet_count++;
3478 } else {
3479 /* reached a period of low activity, switch
3480 to per tx/rx packet interrupts */
3481 if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
3482 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
3483 return 1;
3484 }
3485 }
3486 }
3487 }
3488 return 0;
3489 }
3490
3491 static irqreturn_t nv_nic_irq(int foo, void *data)
3492 {
3493 struct net_device *dev = (struct net_device *) data;
3494 struct fe_priv *np = netdev_priv(dev);
3495 u8 __iomem *base = get_hwbase(dev);
3496 #ifndef CONFIG_FORCEDETH_NAPI
3497 int total_work = 0;
3498 int loop_count = 0;
3499 #endif
3500
3501 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
3502
3503 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3504 np->events = readl(base + NvRegIrqStatus);
3505 writel(np->events, base + NvRegIrqStatus);
3506 } else {
3507 np->events = readl(base + NvRegMSIXIrqStatus);
3508 writel(np->events, base + NvRegMSIXIrqStatus);
3509 }
3510 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
3511 if (!(np->events & np->irqmask))
3512 return IRQ_NONE;
3513
3514 nv_msi_workaround(np);
3515
3516 #ifdef CONFIG_FORCEDETH_NAPI
3517 if (napi_schedule_prep(&np->napi)) {
3518 /*
3519 * Disable further irq's (msix not enabled with napi)
3520 */
3521 writel(0, base + NvRegIrqMask);
3522 __napi_schedule(&np->napi);
3523 }
3524
3525 #else
3526 do
3527 {
3528 int work = 0;
3529 if ((work = nv_rx_process(dev, RX_WORK_PER_LOOP))) {
3530 if (unlikely(nv_alloc_rx(dev))) {
3531 spin_lock(&np->lock);
3532 if (!np->in_shutdown)
3533 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3534 spin_unlock(&np->lock);
3535 }
3536 }
3537
3538 spin_lock(&np->lock);
3539 work += nv_tx_done(dev, TX_WORK_PER_LOOP);
3540 spin_unlock(&np->lock);
3541
3542 if (!work)
3543 break;
3544
3545 total_work += work;
3546
3547 loop_count++;
3548 }
3549 while (loop_count < max_interrupt_work);
3550
3551 if (nv_change_interrupt_mode(dev, total_work)) {
3552 /* setup new irq mask */
3553 writel(np->irqmask, base + NvRegIrqMask);
3554 }
3555
3556 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3557 spin_lock(&np->lock);
3558 nv_link_irq(dev);
3559 spin_unlock(&np->lock);
3560 }
3561 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3562 spin_lock(&np->lock);
3563 nv_linkchange(dev);
3564 spin_unlock(&np->lock);
3565 np->link_timeout = jiffies + LINK_TIMEOUT;
3566 }
3567 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3568 spin_lock(&np->lock);
3569 /* disable interrupts on the nic */
3570 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3571 writel(0, base + NvRegIrqMask);
3572 else
3573 writel(np->irqmask, base + NvRegIrqMask);
3574 pci_push(base);
3575
3576 if (!np->in_shutdown) {
3577 np->nic_poll_irq = np->irqmask;
3578 np->recover_error = 1;
3579 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3580 }
3581 spin_unlock(&np->lock);
3582 }
3583 #endif
3584 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
3585
3586 return IRQ_HANDLED;
3587 }
3588
3589 /**
3590 * All _optimized functions are used to help increase performance
3591 * (reduce CPU and increase throughput). They use descripter version 3,
3592 * compiler directives, and reduce memory accesses.
3593 */
3594 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
3595 {
3596 struct net_device *dev = (struct net_device *) data;
3597 struct fe_priv *np = netdev_priv(dev);
3598 u8 __iomem *base = get_hwbase(dev);
3599 #ifndef CONFIG_FORCEDETH_NAPI
3600 int total_work = 0;
3601 int loop_count = 0;
3602 #endif
3603
3604 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
3605
3606 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3607 np->events = readl(base + NvRegIrqStatus);
3608 writel(np->events, base + NvRegIrqStatus);
3609 } else {
3610 np->events = readl(base + NvRegMSIXIrqStatus);
3611 writel(np->events, base + NvRegMSIXIrqStatus);
3612 }
3613 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
3614 if (!(np->events & np->irqmask))
3615 return IRQ_NONE;
3616
3617 nv_msi_workaround(np);
3618
3619 #ifdef CONFIG_FORCEDETH_NAPI
3620 if (napi_schedule_prep(&np->napi)) {
3621 /*
3622 * Disable further irq's (msix not enabled with napi)
3623 */
3624 writel(0, base + NvRegIrqMask);
3625 __napi_schedule(&np->napi);
3626 }
3627 #else
3628 do
3629 {
3630 int work = 0;
3631 if ((work = nv_rx_process_optimized(dev, RX_WORK_PER_LOOP))) {
3632 if (unlikely(nv_alloc_rx_optimized(dev))) {
3633 spin_lock(&np->lock);
3634 if (!np->in_shutdown)
3635 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3636 spin_unlock(&np->lock);
3637 }
3638 }
3639
3640 spin_lock(&np->lock);
3641 work += nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3642 spin_unlock(&np->lock);
3643
3644 if (!work)
3645 break;
3646
3647 total_work += work;
3648
3649 loop_count++;
3650 }
3651 while (loop_count < max_interrupt_work);
3652
3653 if (nv_change_interrupt_mode(dev, total_work)) {
3654 /* setup new irq mask */
3655 writel(np->irqmask, base + NvRegIrqMask);
3656 }
3657
3658 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3659 spin_lock(&np->lock);
3660 nv_link_irq(dev);
3661 spin_unlock(&np->lock);
3662 }
3663 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3664 spin_lock(&np->lock);
3665 nv_linkchange(dev);
3666 spin_unlock(&np->lock);
3667 np->link_timeout = jiffies + LINK_TIMEOUT;
3668 }
3669 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3670 spin_lock(&np->lock);
3671 /* disable interrupts on the nic */
3672 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3673 writel(0, base + NvRegIrqMask);
3674 else
3675 writel(np->irqmask, base + NvRegIrqMask);
3676 pci_push(base);
3677
3678 if (!np->in_shutdown) {
3679 np->nic_poll_irq = np->irqmask;
3680 np->recover_error = 1;
3681 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3682 }
3683 spin_unlock(&np->lock);
3684 }
3685
3686 #endif
3687 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
3688
3689 return IRQ_HANDLED;
3690 }
3691
3692 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3693 {
3694 struct net_device *dev = (struct net_device *) data;
3695 struct fe_priv *np = netdev_priv(dev);
3696 u8 __iomem *base = get_hwbase(dev);
3697 u32 events;
3698 int i;
3699 unsigned long flags;
3700
3701 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
3702
3703 for (i=0; ; i++) {
3704 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3705 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
3706 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
3707 if (!(events & np->irqmask))
3708 break;
3709
3710 spin_lock_irqsave(&np->lock, flags);
3711 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3712 spin_unlock_irqrestore(&np->lock, flags);
3713
3714 if (unlikely(i > max_interrupt_work)) {
3715 spin_lock_irqsave(&np->lock, flags);
3716 /* disable interrupts on the nic */
3717 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3718 pci_push(base);
3719
3720 if (!np->in_shutdown) {
3721 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3722 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3723 }
3724 spin_unlock_irqrestore(&np->lock, flags);
3725 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
3726 break;
3727 }
3728
3729 }
3730 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
3731
3732 return IRQ_RETVAL(i);
3733 }
3734
3735 #ifdef CONFIG_FORCEDETH_NAPI
3736 static int nv_napi_poll(struct napi_struct *napi, int budget)
3737 {
3738 struct fe_priv *np = container_of(napi, struct fe_priv, napi);
3739 struct net_device *dev = np->dev;
3740 u8 __iomem *base = get_hwbase(dev);
3741 unsigned long flags;
3742 int retcode;
3743 int tx_work, rx_work;
3744
3745 if (!nv_optimized(np)) {
3746 spin_lock_irqsave(&np->lock, flags);
3747 tx_work = nv_tx_done(dev, np->tx_ring_size);
3748 spin_unlock_irqrestore(&np->lock, flags);
3749
3750 rx_work = nv_rx_process(dev, budget);
3751 retcode = nv_alloc_rx(dev);
3752 } else {
3753 spin_lock_irqsave(&np->lock, flags);
3754 tx_work = nv_tx_done_optimized(dev, np->tx_ring_size);
3755 spin_unlock_irqrestore(&np->lock, flags);
3756
3757 rx_work = nv_rx_process_optimized(dev, budget);
3758 retcode = nv_alloc_rx_optimized(dev);
3759 }
3760
3761 if (retcode) {
3762 spin_lock_irqsave(&np->lock, flags);
3763 if (!np->in_shutdown)
3764 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3765 spin_unlock_irqrestore(&np->lock, flags);
3766 }
3767
3768 nv_change_interrupt_mode(dev, tx_work + rx_work);
3769
3770 if (unlikely(np->events & NVREG_IRQ_LINK)) {
3771 spin_lock_irqsave(&np->lock, flags);
3772 nv_link_irq(dev);
3773 spin_unlock_irqrestore(&np->lock, flags);
3774 }
3775 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3776 spin_lock_irqsave(&np->lock, flags);
3777 nv_linkchange(dev);
3778 spin_unlock_irqrestore(&np->lock, flags);
3779 np->link_timeout = jiffies + LINK_TIMEOUT;
3780 }
3781 if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
3782 spin_lock_irqsave(&np->lock, flags);
3783 if (!np->in_shutdown) {
3784 np->nic_poll_irq = np->irqmask;
3785 np->recover_error = 1;
3786 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3787 }
3788 spin_unlock_irqrestore(&np->lock, flags);
3789 napi_complete(napi);
3790 return rx_work;
3791 }
3792
3793 if (rx_work < budget) {
3794 /* re-enable interrupts
3795 (msix not enabled in napi) */
3796 napi_complete(napi);
3797
3798 writel(np->irqmask, base + NvRegIrqMask);
3799 }
3800 return rx_work;
3801 }
3802 #endif
3803
3804 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3805 {
3806 struct net_device *dev = (struct net_device *) data;
3807 struct fe_priv *np = netdev_priv(dev);
3808 u8 __iomem *base = get_hwbase(dev);
3809 u32 events;
3810 int i;
3811 unsigned long flags;
3812
3813 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
3814
3815 for (i=0; ; i++) {
3816 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3817 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3818 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
3819 if (!(events & np->irqmask))
3820 break;
3821
3822 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3823 if (unlikely(nv_alloc_rx_optimized(dev))) {
3824 spin_lock_irqsave(&np->lock, flags);
3825 if (!np->in_shutdown)
3826 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3827 spin_unlock_irqrestore(&np->lock, flags);
3828 }
3829 }
3830
3831 if (unlikely(i > max_interrupt_work)) {
3832 spin_lock_irqsave(&np->lock, flags);
3833 /* disable interrupts on the nic */
3834 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3835 pci_push(base);
3836
3837 if (!np->in_shutdown) {
3838 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3839 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3840 }
3841 spin_unlock_irqrestore(&np->lock, flags);
3842 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
3843 break;
3844 }
3845 }
3846 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
3847
3848 return IRQ_RETVAL(i);
3849 }
3850
3851 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3852 {
3853 struct net_device *dev = (struct net_device *) data;
3854 struct fe_priv *np = netdev_priv(dev);
3855 u8 __iomem *base = get_hwbase(dev);
3856 u32 events;
3857 int i;
3858 unsigned long flags;
3859
3860 dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
3861
3862 for (i=0; ; i++) {
3863 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3864 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
3865 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3866 if (!(events & np->irqmask))
3867 break;
3868
3869 /* check tx in case we reached max loop limit in tx isr */
3870 spin_lock_irqsave(&np->lock, flags);
3871 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3872 spin_unlock_irqrestore(&np->lock, flags);
3873
3874 if (events & NVREG_IRQ_LINK) {
3875 spin_lock_irqsave(&np->lock, flags);
3876 nv_link_irq(dev);
3877 spin_unlock_irqrestore(&np->lock, flags);
3878 }
3879 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3880 spin_lock_irqsave(&np->lock, flags);
3881 nv_linkchange(dev);
3882 spin_unlock_irqrestore(&np->lock, flags);
3883 np->link_timeout = jiffies + LINK_TIMEOUT;
3884 }
3885 if (events & NVREG_IRQ_RECOVER_ERROR) {
3886 spin_lock_irq(&np->lock);
3887 /* disable interrupts on the nic */
3888 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3889 pci_push(base);
3890
3891 if (!np->in_shutdown) {
3892 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3893 np->recover_error = 1;
3894 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3895 }
3896 spin_unlock_irq(&np->lock);
3897 break;
3898 }
3899 if (unlikely(i > max_interrupt_work)) {
3900 spin_lock_irqsave(&np->lock, flags);
3901 /* disable interrupts on the nic */
3902 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3903 pci_push(base);
3904
3905 if (!np->in_shutdown) {
3906 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3907 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3908 }
3909 spin_unlock_irqrestore(&np->lock, flags);
3910 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
3911 break;
3912 }
3913
3914 }
3915 dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
3916
3917 return IRQ_RETVAL(i);
3918 }
3919
3920 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3921 {
3922 struct net_device *dev = (struct net_device *) data;
3923 struct fe_priv *np = netdev_priv(dev);
3924 u8 __iomem *base = get_hwbase(dev);
3925 u32 events;
3926
3927 dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
3928
3929 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3930 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3931 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3932 } else {
3933 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3934 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3935 }
3936 pci_push(base);
3937 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3938 if (!(events & NVREG_IRQ_TIMER))
3939 return IRQ_RETVAL(0);
3940
3941 nv_msi_workaround(np);
3942
3943 spin_lock(&np->lock);
3944 np->intr_test = 1;
3945 spin_unlock(&np->lock);
3946
3947 dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
3948
3949 return IRQ_RETVAL(1);
3950 }
3951
3952 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3953 {
3954 u8 __iomem *base = get_hwbase(dev);
3955 int i;
3956 u32 msixmap = 0;
3957
3958 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3959 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3960 * the remaining 8 interrupts.
3961 */
3962 for (i = 0; i < 8; i++) {
3963 if ((irqmask >> i) & 0x1) {
3964 msixmap |= vector << (i << 2);
3965 }
3966 }
3967 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3968
3969 msixmap = 0;
3970 for (i = 0; i < 8; i++) {
3971 if ((irqmask >> (i + 8)) & 0x1) {
3972 msixmap |= vector << (i << 2);
3973 }
3974 }
3975 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3976 }
3977
3978 static int nv_request_irq(struct net_device *dev, int intr_test)
3979 {
3980 struct fe_priv *np = get_nvpriv(dev);
3981 u8 __iomem *base = get_hwbase(dev);
3982 int ret = 1;
3983 int i;
3984 irqreturn_t (*handler)(int foo, void *data);
3985
3986 if (intr_test) {
3987 handler = nv_nic_irq_test;
3988 } else {
3989 if (nv_optimized(np))
3990 handler = nv_nic_irq_optimized;
3991 else
3992 handler = nv_nic_irq;
3993 }
3994
3995 if (np->msi_flags & NV_MSI_X_CAPABLE) {
3996 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3997 np->msi_x_entry[i].entry = i;
3998 }
3999 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
4000 np->msi_flags |= NV_MSI_X_ENABLED;
4001 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
4002 /* Request irq for rx handling */
4003 sprintf(np->name_rx, "%s-rx", dev->name);
4004 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
4005 nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
4006 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
4007 pci_disable_msix(np->pci_dev);
4008 np->msi_flags &= ~NV_MSI_X_ENABLED;
4009 goto out_err;
4010 }
4011 /* Request irq for tx handling */
4012 sprintf(np->name_tx, "%s-tx", dev->name);
4013 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
4014 nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
4015 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
4016 pci_disable_msix(np->pci_dev);
4017 np->msi_flags &= ~NV_MSI_X_ENABLED;
4018 goto out_free_rx;
4019 }
4020 /* Request irq for link and timer handling */
4021 sprintf(np->name_other, "%s-other", dev->name);
4022 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
4023 nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
4024 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
4025 pci_disable_msix(np->pci_dev);
4026 np->msi_flags &= ~NV_MSI_X_ENABLED;
4027 goto out_free_tx;
4028 }
4029 /* map interrupts to their respective vector */
4030 writel(0, base + NvRegMSIXMap0);
4031 writel(0, base + NvRegMSIXMap1);
4032 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
4033 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
4034 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
4035 } else {
4036 /* Request irq for all interrupts */
4037 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
4038 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
4039 pci_disable_msix(np->pci_dev);
4040 np->msi_flags &= ~NV_MSI_X_ENABLED;
4041 goto out_err;
4042 }
4043
4044 /* map interrupts to vector 0 */
4045 writel(0, base + NvRegMSIXMap0);
4046 writel(0, base + NvRegMSIXMap1);
4047 }
4048 }
4049 }
4050 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
4051 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
4052 np->msi_flags |= NV_MSI_ENABLED;
4053 dev->irq = np->pci_dev->irq;
4054 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
4055 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
4056 pci_disable_msi(np->pci_dev);
4057 np->msi_flags &= ~NV_MSI_ENABLED;
4058 dev->irq = np->pci_dev->irq;
4059 goto out_err;
4060 }
4061
4062 /* map interrupts to vector 0 */
4063 writel(0, base + NvRegMSIMap0);
4064 writel(0, base + NvRegMSIMap1);
4065 /* enable msi vector 0 */
4066 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
4067 }
4068 }
4069 if (ret != 0) {
4070 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
4071 goto out_err;
4072
4073 }
4074
4075 return 0;
4076 out_free_tx:
4077 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
4078 out_free_rx:
4079 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
4080 out_err:
4081 return 1;
4082 }
4083
4084 static void nv_free_irq(struct net_device *dev)
4085 {
4086 struct fe_priv *np = get_nvpriv(dev);
4087 int i;
4088
4089 if (np->msi_flags & NV_MSI_X_ENABLED) {
4090 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
4091 free_irq(np->msi_x_entry[i].vector, dev);
4092 }
4093 pci_disable_msix(np->pci_dev);
4094 np->msi_flags &= ~NV_MSI_X_ENABLED;
4095 } else {
4096 free_irq(np->pci_dev->irq, dev);
4097 if (np->msi_flags & NV_MSI_ENABLED) {
4098 pci_disable_msi(np->pci_dev);
4099 np->msi_flags &= ~NV_MSI_ENABLED;
4100 }
4101 }
4102 }
4103
4104 static void nv_do_nic_poll(unsigned long data)
4105 {
4106 struct net_device *dev = (struct net_device *) data;
4107 struct fe_priv *np = netdev_priv(dev);
4108 u8 __iomem *base = get_hwbase(dev);
4109 u32 mask = 0;
4110
4111 /*
4112 * First disable irq(s) and then
4113 * reenable interrupts on the nic, we have to do this before calling
4114 * nv_nic_irq because that may decide to do otherwise
4115 */
4116
4117 if (!using_multi_irqs(dev)) {
4118 if (np->msi_flags & NV_MSI_X_ENABLED)
4119 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
4120 else
4121 disable_irq_lockdep(np->pci_dev->irq);
4122 mask = np->irqmask;
4123 } else {
4124 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4125 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
4126 mask |= NVREG_IRQ_RX_ALL;
4127 }
4128 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4129 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
4130 mask |= NVREG_IRQ_TX_ALL;
4131 }
4132 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4133 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
4134 mask |= NVREG_IRQ_OTHER;
4135 }
4136 }
4137 /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
4138
4139 if (np->recover_error) {
4140 np->recover_error = 0;
4141 printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
4142 if (netif_running(dev)) {
4143 netif_tx_lock_bh(dev);
4144 netif_addr_lock(dev);
4145 spin_lock(&np->lock);
4146 /* stop engines */
4147 nv_stop_rxtx(dev);
4148 if (np->driver_data & DEV_HAS_POWER_CNTRL)
4149 nv_mac_reset(dev);
4150 nv_txrx_reset(dev);
4151 /* drain rx queue */
4152 nv_drain_rxtx(dev);
4153 /* reinit driver view of the rx queue */
4154 set_bufsize(dev);
4155 if (nv_init_ring(dev)) {
4156 if (!np->in_shutdown)
4157 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4158 }
4159 /* reinit nic view of the rx queue */
4160 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4161 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4162 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4163 base + NvRegRingSizes);
4164 pci_push(base);
4165 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4166 pci_push(base);
4167 /* clear interrupts */
4168 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4169 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4170 else
4171 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4172
4173 /* restart rx engine */
4174 nv_start_rxtx(dev);
4175 spin_unlock(&np->lock);
4176 netif_addr_unlock(dev);
4177 netif_tx_unlock_bh(dev);
4178 }
4179 }
4180
4181 writel(mask, base + NvRegIrqMask);
4182 pci_push(base);
4183
4184 if (!using_multi_irqs(dev)) {
4185 np->nic_poll_irq = 0;
4186 if (nv_optimized(np))
4187 nv_nic_irq_optimized(0, dev);
4188 else
4189 nv_nic_irq(0, dev);
4190 if (np->msi_flags & NV_MSI_X_ENABLED)
4191 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
4192 else
4193 enable_irq_lockdep(np->pci_dev->irq);
4194 } else {
4195 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
4196 np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
4197 nv_nic_irq_rx(0, dev);
4198 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
4199 }
4200 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
4201 np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
4202 nv_nic_irq_tx(0, dev);
4203 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
4204 }
4205 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
4206 np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
4207 nv_nic_irq_other(0, dev);
4208 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
4209 }
4210 }
4211
4212 }
4213
4214 #ifdef CONFIG_NET_POLL_CONTROLLER
4215 static void nv_poll_controller(struct net_device *dev)
4216 {
4217 nv_do_nic_poll((unsigned long) dev);
4218 }
4219 #endif
4220
4221 static void nv_do_stats_poll(unsigned long data)
4222 {
4223 struct net_device *dev = (struct net_device *) data;
4224 struct fe_priv *np = netdev_priv(dev);
4225
4226 nv_get_hw_stats(dev);
4227
4228 if (!np->in_shutdown)
4229 mod_timer(&np->stats_poll,
4230 round_jiffies(jiffies + STATS_INTERVAL));
4231 }
4232
4233 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4234 {
4235 struct fe_priv *np = netdev_priv(dev);
4236 strcpy(info->driver, DRV_NAME);
4237 strcpy(info->version, FORCEDETH_VERSION);
4238 strcpy(info->bus_info, pci_name(np->pci_dev));
4239 }
4240
4241 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4242 {
4243 struct fe_priv *np = netdev_priv(dev);
4244 wolinfo->supported = WAKE_MAGIC;
4245
4246 spin_lock_irq(&np->lock);
4247 if (np->wolenabled)
4248 wolinfo->wolopts = WAKE_MAGIC;
4249 spin_unlock_irq(&np->lock);
4250 }
4251
4252 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
4253 {
4254 struct fe_priv *np = netdev_priv(dev);
4255 u8 __iomem *base = get_hwbase(dev);
4256 u32 flags = 0;
4257
4258 if (wolinfo->wolopts == 0) {
4259 np->wolenabled = 0;
4260 } else if (wolinfo->wolopts & WAKE_MAGIC) {
4261 np->wolenabled = 1;
4262 flags = NVREG_WAKEUPFLAGS_ENABLE;
4263 }
4264 if (netif_running(dev)) {
4265 spin_lock_irq(&np->lock);
4266 writel(flags, base + NvRegWakeUpFlags);
4267 spin_unlock_irq(&np->lock);
4268 }
4269 return 0;
4270 }
4271
4272 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4273 {
4274 struct fe_priv *np = netdev_priv(dev);
4275 int adv;
4276
4277 spin_lock_irq(&np->lock);
4278 ecmd->port = PORT_MII;
4279 if (!netif_running(dev)) {
4280 /* We do not track link speed / duplex setting if the
4281 * interface is disabled. Force a link check */
4282 if (nv_update_linkspeed(dev)) {
4283 if (!netif_carrier_ok(dev))
4284 netif_carrier_on(dev);
4285 } else {
4286 if (netif_carrier_ok(dev))
4287 netif_carrier_off(dev);
4288 }
4289 }
4290
4291 if (netif_carrier_ok(dev)) {
4292 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
4293 case NVREG_LINKSPEED_10:
4294 ecmd->speed = SPEED_10;
4295 break;
4296 case NVREG_LINKSPEED_100:
4297 ecmd->speed = SPEED_100;
4298 break;
4299 case NVREG_LINKSPEED_1000:
4300 ecmd->speed = SPEED_1000;
4301 break;
4302 }
4303 ecmd->duplex = DUPLEX_HALF;
4304 if (np->duplex)
4305 ecmd->duplex = DUPLEX_FULL;
4306 } else {
4307 ecmd->speed = -1;
4308 ecmd->duplex = -1;
4309 }
4310
4311 ecmd->autoneg = np->autoneg;
4312
4313 ecmd->advertising = ADVERTISED_MII;
4314 if (np->autoneg) {
4315 ecmd->advertising |= ADVERTISED_Autoneg;
4316 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4317 if (adv & ADVERTISE_10HALF)
4318 ecmd->advertising |= ADVERTISED_10baseT_Half;
4319 if (adv & ADVERTISE_10FULL)
4320 ecmd->advertising |= ADVERTISED_10baseT_Full;
4321 if (adv & ADVERTISE_100HALF)
4322 ecmd->advertising |= ADVERTISED_100baseT_Half;
4323 if (adv & ADVERTISE_100FULL)
4324 ecmd->advertising |= ADVERTISED_100baseT_Full;
4325 if (np->gigabit == PHY_GIGABIT) {
4326 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4327 if (adv & ADVERTISE_1000FULL)
4328 ecmd->advertising |= ADVERTISED_1000baseT_Full;
4329 }
4330 }
4331 ecmd->supported = (SUPPORTED_Autoneg |
4332 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
4333 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
4334 SUPPORTED_MII);
4335 if (np->gigabit == PHY_GIGABIT)
4336 ecmd->supported |= SUPPORTED_1000baseT_Full;
4337
4338 ecmd->phy_address = np->phyaddr;
4339 ecmd->transceiver = XCVR_EXTERNAL;
4340
4341 /* ignore maxtxpkt, maxrxpkt for now */
4342 spin_unlock_irq(&np->lock);
4343 return 0;
4344 }
4345
4346 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
4347 {
4348 struct fe_priv *np = netdev_priv(dev);
4349
4350 if (ecmd->port != PORT_MII)
4351 return -EINVAL;
4352 if (ecmd->transceiver != XCVR_EXTERNAL)
4353 return -EINVAL;
4354 if (ecmd->phy_address != np->phyaddr) {
4355 /* TODO: support switching between multiple phys. Should be
4356 * trivial, but not enabled due to lack of test hardware. */
4357 return -EINVAL;
4358 }
4359 if (ecmd->autoneg == AUTONEG_ENABLE) {
4360 u32 mask;
4361
4362 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
4363 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
4364 if (np->gigabit == PHY_GIGABIT)
4365 mask |= ADVERTISED_1000baseT_Full;
4366
4367 if ((ecmd->advertising & mask) == 0)
4368 return -EINVAL;
4369
4370 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
4371 /* Note: autonegotiation disable, speed 1000 intentionally
4372 * forbidden - noone should need that. */
4373
4374 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
4375 return -EINVAL;
4376 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
4377 return -EINVAL;
4378 } else {
4379 return -EINVAL;
4380 }
4381
4382 netif_carrier_off(dev);
4383 if (netif_running(dev)) {
4384 unsigned long flags;
4385
4386 nv_disable_irq(dev);
4387 netif_tx_lock_bh(dev);
4388 netif_addr_lock(dev);
4389 /* with plain spinlock lockdep complains */
4390 spin_lock_irqsave(&np->lock, flags);
4391 /* stop engines */
4392 /* FIXME:
4393 * this can take some time, and interrupts are disabled
4394 * due to spin_lock_irqsave, but let's hope no daemon
4395 * is going to change the settings very often...
4396 * Worst case:
4397 * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
4398 * + some minor delays, which is up to a second approximately
4399 */
4400 nv_stop_rxtx(dev);
4401 spin_unlock_irqrestore(&np->lock, flags);
4402 netif_addr_unlock(dev);
4403 netif_tx_unlock_bh(dev);
4404 }
4405
4406 if (ecmd->autoneg == AUTONEG_ENABLE) {
4407 int adv, bmcr;
4408
4409 np->autoneg = 1;
4410
4411 /* advertise only what has been requested */
4412 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4413 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4414 if (ecmd->advertising & ADVERTISED_10baseT_Half)
4415 adv |= ADVERTISE_10HALF;
4416 if (ecmd->advertising & ADVERTISED_10baseT_Full)
4417 adv |= ADVERTISE_10FULL;
4418 if (ecmd->advertising & ADVERTISED_100baseT_Half)
4419 adv |= ADVERTISE_100HALF;
4420 if (ecmd->advertising & ADVERTISED_100baseT_Full)
4421 adv |= ADVERTISE_100FULL;
4422 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4423 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4424 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4425 adv |= ADVERTISE_PAUSE_ASYM;
4426 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4427
4428 if (np->gigabit == PHY_GIGABIT) {
4429 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4430 adv &= ~ADVERTISE_1000FULL;
4431 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
4432 adv |= ADVERTISE_1000FULL;
4433 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4434 }
4435
4436 if (netif_running(dev))
4437 printk(KERN_INFO "%s: link down.\n", dev->name);
4438 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4439 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4440 bmcr |= BMCR_ANENABLE;
4441 /* reset the phy in order for settings to stick,
4442 * and cause autoneg to start */
4443 if (phy_reset(dev, bmcr)) {
4444 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4445 return -EINVAL;
4446 }
4447 } else {
4448 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4449 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4450 }
4451 } else {
4452 int adv, bmcr;
4453
4454 np->autoneg = 0;
4455
4456 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4457 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4458 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
4459 adv |= ADVERTISE_10HALF;
4460 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
4461 adv |= ADVERTISE_10FULL;
4462 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
4463 adv |= ADVERTISE_100HALF;
4464 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
4465 adv |= ADVERTISE_100FULL;
4466 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4467 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
4468 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4469 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4470 }
4471 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
4472 adv |= ADVERTISE_PAUSE_ASYM;
4473 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4474 }
4475 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4476 np->fixed_mode = adv;
4477
4478 if (np->gigabit == PHY_GIGABIT) {
4479 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4480 adv &= ~ADVERTISE_1000FULL;
4481 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4482 }
4483
4484 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4485 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
4486 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
4487 bmcr |= BMCR_FULLDPLX;
4488 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
4489 bmcr |= BMCR_SPEED100;
4490 if (np->phy_oui == PHY_OUI_MARVELL) {
4491 /* reset the phy in order for forced mode settings to stick */
4492 if (phy_reset(dev, bmcr)) {
4493 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4494 return -EINVAL;
4495 }
4496 } else {
4497 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4498 if (netif_running(dev)) {
4499 /* Wait a bit and then reconfigure the nic. */
4500 udelay(10);
4501 nv_linkchange(dev);
4502 }
4503 }
4504 }
4505
4506 if (netif_running(dev)) {
4507 nv_start_rxtx(dev);
4508 nv_enable_irq(dev);
4509 }
4510
4511 return 0;
4512 }
4513
4514 #define FORCEDETH_REGS_VER 1
4515
4516 static int nv_get_regs_len(struct net_device *dev)
4517 {
4518 struct fe_priv *np = netdev_priv(dev);
4519 return np->register_size;
4520 }
4521
4522 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
4523 {
4524 struct fe_priv *np = netdev_priv(dev);
4525 u8 __iomem *base = get_hwbase(dev);
4526 u32 *rbuf = buf;
4527 int i;
4528
4529 regs->version = FORCEDETH_REGS_VER;
4530 spin_lock_irq(&np->lock);
4531 for (i = 0;i <= np->register_size/sizeof(u32); i++)
4532 rbuf[i] = readl(base + i*sizeof(u32));
4533 spin_unlock_irq(&np->lock);
4534 }
4535
4536 static int nv_nway_reset(struct net_device *dev)
4537 {
4538 struct fe_priv *np = netdev_priv(dev);
4539 int ret;
4540
4541 if (np->autoneg) {
4542 int bmcr;
4543
4544 netif_carrier_off(dev);
4545 if (netif_running(dev)) {
4546 nv_disable_irq(dev);
4547 netif_tx_lock_bh(dev);
4548 netif_addr_lock(dev);
4549 spin_lock(&np->lock);
4550 /* stop engines */
4551 nv_stop_rxtx(dev);
4552 spin_unlock(&np->lock);
4553 netif_addr_unlock(dev);
4554 netif_tx_unlock_bh(dev);
4555 printk(KERN_INFO "%s: link down.\n", dev->name);
4556 }
4557
4558 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4559 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4560 bmcr |= BMCR_ANENABLE;
4561 /* reset the phy in order for settings to stick*/
4562 if (phy_reset(dev, bmcr)) {
4563 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4564 return -EINVAL;
4565 }
4566 } else {
4567 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4568 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4569 }
4570
4571 if (netif_running(dev)) {
4572 nv_start_rxtx(dev);
4573 nv_enable_irq(dev);
4574 }
4575 ret = 0;
4576 } else {
4577 ret = -EINVAL;
4578 }
4579
4580 return ret;
4581 }
4582
4583 static int nv_set_tso(struct net_device *dev, u32 value)
4584 {
4585 struct fe_priv *np = netdev_priv(dev);
4586
4587 if ((np->driver_data & DEV_HAS_CHECKSUM))
4588 return ethtool_op_set_tso(dev, value);
4589 else
4590 return -EOPNOTSUPP;
4591 }
4592
4593 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4594 {
4595 struct fe_priv *np = netdev_priv(dev);
4596
4597 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4598 ring->rx_mini_max_pending = 0;
4599 ring->rx_jumbo_max_pending = 0;
4600 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4601
4602 ring->rx_pending = np->rx_ring_size;
4603 ring->rx_mini_pending = 0;
4604 ring->rx_jumbo_pending = 0;
4605 ring->tx_pending = np->tx_ring_size;
4606 }
4607
4608 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4609 {
4610 struct fe_priv *np = netdev_priv(dev);
4611 u8 __iomem *base = get_hwbase(dev);
4612 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
4613 dma_addr_t ring_addr;
4614
4615 if (ring->rx_pending < RX_RING_MIN ||
4616 ring->tx_pending < TX_RING_MIN ||
4617 ring->rx_mini_pending != 0 ||
4618 ring->rx_jumbo_pending != 0 ||
4619 (np->desc_ver == DESC_VER_1 &&
4620 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
4621 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
4622 (np->desc_ver != DESC_VER_1 &&
4623 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
4624 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
4625 return -EINVAL;
4626 }
4627
4628 /* allocate new rings */
4629 if (!nv_optimized(np)) {
4630 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4631 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4632 &ring_addr);
4633 } else {
4634 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4635 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4636 &ring_addr);
4637 }
4638 rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
4639 tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
4640 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
4641 /* fall back to old rings */
4642 if (!nv_optimized(np)) {
4643 if (rxtx_ring)
4644 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4645 rxtx_ring, ring_addr);
4646 } else {
4647 if (rxtx_ring)
4648 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4649 rxtx_ring, ring_addr);
4650 }
4651 if (rx_skbuff)
4652 kfree(rx_skbuff);
4653 if (tx_skbuff)
4654 kfree(tx_skbuff);
4655 goto exit;
4656 }
4657
4658 if (netif_running(dev)) {
4659 nv_disable_irq(dev);
4660 nv_napi_disable(dev);
4661 netif_tx_lock_bh(dev);
4662 netif_addr_lock(dev);
4663 spin_lock(&np->lock);
4664 /* stop engines */
4665 nv_stop_rxtx(dev);
4666 nv_txrx_reset(dev);
4667 /* drain queues */
4668 nv_drain_rxtx(dev);
4669 /* delete queues */
4670 free_rings(dev);
4671 }
4672
4673 /* set new values */
4674 np->rx_ring_size = ring->rx_pending;
4675 np->tx_ring_size = ring->tx_pending;
4676
4677 if (!nv_optimized(np)) {
4678 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
4679 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4680 } else {
4681 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
4682 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4683 }
4684 np->rx_skb = (struct nv_skb_map*)rx_skbuff;
4685 np->tx_skb = (struct nv_skb_map*)tx_skbuff;
4686 np->ring_addr = ring_addr;
4687
4688 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4689 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4690
4691 if (netif_running(dev)) {
4692 /* reinit driver view of the queues */
4693 set_bufsize(dev);
4694 if (nv_init_ring(dev)) {
4695 if (!np->in_shutdown)
4696 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4697 }
4698
4699 /* reinit nic view of the queues */
4700 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4701 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4702 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4703 base + NvRegRingSizes);
4704 pci_push(base);
4705 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4706 pci_push(base);
4707
4708 /* restart engines */
4709 nv_start_rxtx(dev);
4710 spin_unlock(&np->lock);
4711 netif_addr_unlock(dev);
4712 netif_tx_unlock_bh(dev);
4713 nv_napi_enable(dev);
4714 nv_enable_irq(dev);
4715 }
4716 return 0;
4717 exit:
4718 return -ENOMEM;
4719 }
4720
4721 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4722 {
4723 struct fe_priv *np = netdev_priv(dev);
4724
4725 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4726 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4727 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4728 }
4729
4730 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4731 {
4732 struct fe_priv *np = netdev_priv(dev);
4733 int adv, bmcr;
4734
4735 if ((!np->autoneg && np->duplex == 0) ||
4736 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4737 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
4738 dev->name);
4739 return -EINVAL;
4740 }
4741 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4742 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
4743 return -EINVAL;
4744 }
4745
4746 netif_carrier_off(dev);
4747 if (netif_running(dev)) {
4748 nv_disable_irq(dev);
4749 netif_tx_lock_bh(dev);
4750 netif_addr_lock(dev);
4751 spin_lock(&np->lock);
4752 /* stop engines */
4753 nv_stop_rxtx(dev);
4754 spin_unlock(&np->lock);
4755 netif_addr_unlock(dev);
4756 netif_tx_unlock_bh(dev);
4757 }
4758
4759 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4760 if (pause->rx_pause)
4761 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4762 if (pause->tx_pause)
4763 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4764
4765 if (np->autoneg && pause->autoneg) {
4766 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4767
4768 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4769 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4770 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4771 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4772 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4773 adv |= ADVERTISE_PAUSE_ASYM;
4774 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4775
4776 if (netif_running(dev))
4777 printk(KERN_INFO "%s: link down.\n", dev->name);
4778 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4779 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4780 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4781 } else {
4782 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4783 if (pause->rx_pause)
4784 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4785 if (pause->tx_pause)
4786 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4787
4788 if (!netif_running(dev))
4789 nv_update_linkspeed(dev);
4790 else
4791 nv_update_pause(dev, np->pause_flags);
4792 }
4793
4794 if (netif_running(dev)) {
4795 nv_start_rxtx(dev);
4796 nv_enable_irq(dev);
4797 }
4798 return 0;
4799 }
4800
4801 static u32 nv_get_rx_csum(struct net_device *dev)
4802 {
4803 struct fe_priv *np = netdev_priv(dev);
4804 return (np->rx_csum) != 0;
4805 }
4806
4807 static int nv_set_rx_csum(struct net_device *dev, u32 data)
4808 {
4809 struct fe_priv *np = netdev_priv(dev);
4810 u8 __iomem *base = get_hwbase(dev);
4811 int retcode = 0;
4812
4813 if (np->driver_data & DEV_HAS_CHECKSUM) {
4814 if (data) {
4815 np->rx_csum = 1;
4816 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4817 } else {
4818 np->rx_csum = 0;
4819 /* vlan is dependent on rx checksum offload */
4820 if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
4821 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4822 }
4823 if (netif_running(dev)) {
4824 spin_lock_irq(&np->lock);
4825 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4826 spin_unlock_irq(&np->lock);
4827 }
4828 } else {
4829 return -EINVAL;
4830 }
4831
4832 return retcode;
4833 }
4834
4835 static int nv_set_tx_csum(struct net_device *dev, u32 data)
4836 {
4837 struct fe_priv *np = netdev_priv(dev);
4838
4839 if (np->driver_data & DEV_HAS_CHECKSUM)
4840 return ethtool_op_set_tx_csum(dev, data);
4841 else
4842 return -EOPNOTSUPP;
4843 }
4844
4845 static int nv_set_sg(struct net_device *dev, u32 data)
4846 {
4847 struct fe_priv *np = netdev_priv(dev);
4848
4849 if (np->driver_data & DEV_HAS_CHECKSUM)
4850 return ethtool_op_set_sg(dev, data);
4851 else
4852 return -EOPNOTSUPP;
4853 }
4854
4855 static int nv_get_sset_count(struct net_device *dev, int sset)
4856 {
4857 struct fe_priv *np = netdev_priv(dev);
4858
4859 switch (sset) {
4860 case ETH_SS_TEST:
4861 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4862 return NV_TEST_COUNT_EXTENDED;
4863 else
4864 return NV_TEST_COUNT_BASE;
4865 case ETH_SS_STATS:
4866 if (np->driver_data & DEV_HAS_STATISTICS_V3)
4867 return NV_DEV_STATISTICS_V3_COUNT;
4868 else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4869 return NV_DEV_STATISTICS_V2_COUNT;
4870 else if (np->driver_data & DEV_HAS_STATISTICS_V1)
4871 return NV_DEV_STATISTICS_V1_COUNT;
4872 else
4873 return 0;
4874 default:
4875 return -EOPNOTSUPP;
4876 }
4877 }
4878
4879 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
4880 {
4881 struct fe_priv *np = netdev_priv(dev);
4882
4883 /* update stats */
4884 nv_do_stats_poll((unsigned long)dev);
4885
4886 memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
4887 }
4888
4889 static int nv_link_test(struct net_device *dev)
4890 {
4891 struct fe_priv *np = netdev_priv(dev);
4892 int mii_status;
4893
4894 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4895 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4896
4897 /* check phy link status */
4898 if (!(mii_status & BMSR_LSTATUS))
4899 return 0;
4900 else
4901 return 1;
4902 }
4903
4904 static int nv_register_test(struct net_device *dev)
4905 {
4906 u8 __iomem *base = get_hwbase(dev);
4907 int i = 0;
4908 u32 orig_read, new_read;
4909
4910 do {
4911 orig_read = readl(base + nv_registers_test[i].reg);
4912
4913 /* xor with mask to toggle bits */
4914 orig_read ^= nv_registers_test[i].mask;
4915
4916 writel(orig_read, base + nv_registers_test[i].reg);
4917
4918 new_read = readl(base + nv_registers_test[i].reg);
4919
4920 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
4921 return 0;
4922
4923 /* restore original value */
4924 orig_read ^= nv_registers_test[i].mask;
4925 writel(orig_read, base + nv_registers_test[i].reg);
4926
4927 } while (nv_registers_test[++i].reg != 0);
4928
4929 return 1;
4930 }
4931
4932 static int nv_interrupt_test(struct net_device *dev)
4933 {
4934 struct fe_priv *np = netdev_priv(dev);
4935 u8 __iomem *base = get_hwbase(dev);
4936 int ret = 1;
4937 int testcnt;
4938 u32 save_msi_flags, save_poll_interval = 0;
4939
4940 if (netif_running(dev)) {
4941 /* free current irq */
4942 nv_free_irq(dev);
4943 save_poll_interval = readl(base+NvRegPollingInterval);
4944 }
4945
4946 /* flag to test interrupt handler */
4947 np->intr_test = 0;
4948
4949 /* setup test irq */
4950 save_msi_flags = np->msi_flags;
4951 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
4952 np->msi_flags |= 0x001; /* setup 1 vector */
4953 if (nv_request_irq(dev, 1))
4954 return 0;
4955
4956 /* setup timer interrupt */
4957 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4958 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4959
4960 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4961
4962 /* wait for at least one interrupt */
4963 msleep(100);
4964
4965 spin_lock_irq(&np->lock);
4966
4967 /* flag should be set within ISR */
4968 testcnt = np->intr_test;
4969 if (!testcnt)
4970 ret = 2;
4971
4972 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4973 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4974 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4975 else
4976 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4977
4978 spin_unlock_irq(&np->lock);
4979
4980 nv_free_irq(dev);
4981
4982 np->msi_flags = save_msi_flags;
4983
4984 if (netif_running(dev)) {
4985 writel(save_poll_interval, base + NvRegPollingInterval);
4986 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4987 /* restore original irq */
4988 if (nv_request_irq(dev, 0))
4989 return 0;
4990 }
4991
4992 return ret;
4993 }
4994
4995 static int nv_loopback_test(struct net_device *dev)
4996 {
4997 struct fe_priv *np = netdev_priv(dev);
4998 u8 __iomem *base = get_hwbase(dev);
4999 struct sk_buff *tx_skb, *rx_skb;
5000 dma_addr_t test_dma_addr;
5001 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
5002 u32 flags;
5003 int len, i, pkt_len;
5004 u8 *pkt_data;
5005 u32 filter_flags = 0;
5006 u32 misc1_flags = 0;
5007 int ret = 1;
5008
5009 if (netif_running(dev)) {
5010 nv_disable_irq(dev);
5011 filter_flags = readl(base + NvRegPacketFilterFlags);
5012 misc1_flags = readl(base + NvRegMisc1);
5013 } else {
5014 nv_txrx_reset(dev);
5015 }
5016
5017 /* reinit driver view of the rx queue */
5018 set_bufsize(dev);
5019 nv_init_ring(dev);
5020
5021 /* setup hardware for loopback */
5022 writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
5023 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
5024
5025 /* reinit nic view of the rx queue */
5026 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5027 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5028 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5029 base + NvRegRingSizes);
5030 pci_push(base);
5031
5032 /* restart rx engine */
5033 nv_start_rxtx(dev);
5034
5035 /* setup packet for tx */
5036 pkt_len = ETH_DATA_LEN;
5037 tx_skb = dev_alloc_skb(pkt_len);
5038 if (!tx_skb) {
5039 printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
5040 " of %s\n", dev->name);
5041 ret = 0;
5042 goto out;
5043 }
5044 test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
5045 skb_tailroom(tx_skb),
5046 PCI_DMA_FROMDEVICE);
5047 pkt_data = skb_put(tx_skb, pkt_len);
5048 for (i = 0; i < pkt_len; i++)
5049 pkt_data[i] = (u8)(i & 0xff);
5050
5051 if (!nv_optimized(np)) {
5052 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
5053 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5054 } else {
5055 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
5056 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
5057 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
5058 }
5059 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5060 pci_push(get_hwbase(dev));
5061
5062 msleep(500);
5063
5064 /* check for rx of the packet */
5065 if (!nv_optimized(np)) {
5066 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
5067 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
5068
5069 } else {
5070 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
5071 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
5072 }
5073
5074 if (flags & NV_RX_AVAIL) {
5075 ret = 0;
5076 } else if (np->desc_ver == DESC_VER_1) {
5077 if (flags & NV_RX_ERROR)
5078 ret = 0;
5079 } else {
5080 if (flags & NV_RX2_ERROR) {
5081 ret = 0;
5082 }
5083 }
5084
5085 if (ret) {
5086 if (len != pkt_len) {
5087 ret = 0;
5088 dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
5089 dev->name, len, pkt_len);
5090 } else {
5091 rx_skb = np->rx_skb[0].skb;
5092 for (i = 0; i < pkt_len; i++) {
5093 if (rx_skb->data[i] != (u8)(i & 0xff)) {
5094 ret = 0;
5095 dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
5096 dev->name, i);
5097 break;
5098 }
5099 }
5100 }
5101 } else {
5102 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
5103 }
5104
5105 pci_unmap_single(np->pci_dev, test_dma_addr,
5106 (skb_end_pointer(tx_skb) - tx_skb->data),
5107 PCI_DMA_TODEVICE);
5108 dev_kfree_skb_any(tx_skb);
5109 out:
5110 /* stop engines */
5111 nv_stop_rxtx(dev);
5112 nv_txrx_reset(dev);
5113 /* drain rx queue */
5114 nv_drain_rxtx(dev);
5115
5116 if (netif_running(dev)) {
5117 writel(misc1_flags, base + NvRegMisc1);
5118 writel(filter_flags, base + NvRegPacketFilterFlags);
5119 nv_enable_irq(dev);
5120 }
5121
5122 return ret;
5123 }
5124
5125 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
5126 {
5127 struct fe_priv *np = netdev_priv(dev);
5128 u8 __iomem *base = get_hwbase(dev);
5129 int result;
5130 memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
5131
5132 if (!nv_link_test(dev)) {
5133 test->flags |= ETH_TEST_FL_FAILED;
5134 buffer[0] = 1;
5135 }
5136
5137 if (test->flags & ETH_TEST_FL_OFFLINE) {
5138 if (netif_running(dev)) {
5139 netif_stop_queue(dev);
5140 nv_napi_disable(dev);
5141 netif_tx_lock_bh(dev);
5142 netif_addr_lock(dev);
5143 spin_lock_irq(&np->lock);
5144 nv_disable_hw_interrupts(dev, np->irqmask);
5145 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
5146 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5147 } else {
5148 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
5149 }
5150 /* stop engines */
5151 nv_stop_rxtx(dev);
5152 nv_txrx_reset(dev);
5153 /* drain rx queue */
5154 nv_drain_rxtx(dev);
5155 spin_unlock_irq(&np->lock);
5156 netif_addr_unlock(dev);
5157 netif_tx_unlock_bh(dev);
5158 }
5159
5160 if (!nv_register_test(dev)) {
5161 test->flags |= ETH_TEST_FL_FAILED;
5162 buffer[1] = 1;
5163 }
5164
5165 result = nv_interrupt_test(dev);
5166 if (result != 1) {
5167 test->flags |= ETH_TEST_FL_FAILED;
5168 buffer[2] = 1;
5169 }
5170 if (result == 0) {
5171 /* bail out */
5172 return;
5173 }
5174
5175 if (!nv_loopback_test(dev)) {
5176 test->flags |= ETH_TEST_FL_FAILED;
5177 buffer[3] = 1;
5178 }
5179
5180 if (netif_running(dev)) {
5181 /* reinit driver view of the rx queue */
5182 set_bufsize(dev);
5183 if (nv_init_ring(dev)) {
5184 if (!np->in_shutdown)
5185 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5186 }
5187 /* reinit nic view of the rx queue */
5188 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5189 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5190 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5191 base + NvRegRingSizes);
5192 pci_push(base);
5193 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5194 pci_push(base);
5195 /* restart rx engine */
5196 nv_start_rxtx(dev);
5197 netif_start_queue(dev);
5198 nv_napi_enable(dev);
5199 nv_enable_hw_interrupts(dev, np->irqmask);
5200 }
5201 }
5202 }
5203
5204 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
5205 {
5206 switch (stringset) {
5207 case ETH_SS_STATS:
5208 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
5209 break;
5210 case ETH_SS_TEST:
5211 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
5212 break;
5213 }
5214 }
5215
5216 static const struct ethtool_ops ops = {
5217 .get_drvinfo = nv_get_drvinfo,
5218 .get_link = ethtool_op_get_link,
5219 .get_wol = nv_get_wol,
5220 .set_wol = nv_set_wol,
5221 .get_settings = nv_get_settings,
5222 .set_settings = nv_set_settings,
5223 .get_regs_len = nv_get_regs_len,
5224 .get_regs = nv_get_regs,
5225 .nway_reset = nv_nway_reset,
5226 .set_tso = nv_set_tso,
5227 .get_ringparam = nv_get_ringparam,
5228 .set_ringparam = nv_set_ringparam,
5229 .get_pauseparam = nv_get_pauseparam,
5230 .set_pauseparam = nv_set_pauseparam,
5231 .get_rx_csum = nv_get_rx_csum,
5232 .set_rx_csum = nv_set_rx_csum,
5233 .set_tx_csum = nv_set_tx_csum,
5234 .set_sg = nv_set_sg,
5235 .get_strings = nv_get_strings,
5236 .get_ethtool_stats = nv_get_ethtool_stats,
5237 .get_sset_count = nv_get_sset_count,
5238 .self_test = nv_self_test,
5239 };
5240
5241 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
5242 {
5243 struct fe_priv *np = get_nvpriv(dev);
5244
5245 spin_lock_irq(&np->lock);
5246
5247 /* save vlan group */
5248 np->vlangrp = grp;
5249
5250 if (grp) {
5251 /* enable vlan on MAC */
5252 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
5253 } else {
5254 /* disable vlan on MAC */
5255 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
5256 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
5257 }
5258
5259 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
5260
5261 spin_unlock_irq(&np->lock);
5262 }
5263
5264 /* The mgmt unit and driver use a semaphore to access the phy during init */
5265 static int nv_mgmt_acquire_sema(struct net_device *dev)
5266 {
5267 struct fe_priv *np = netdev_priv(dev);
5268 u8 __iomem *base = get_hwbase(dev);
5269 int i;
5270 u32 tx_ctrl, mgmt_sema;
5271
5272 for (i = 0; i < 10; i++) {
5273 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
5274 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
5275 break;
5276 msleep(500);
5277 }
5278
5279 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
5280 return 0;
5281
5282 for (i = 0; i < 2; i++) {
5283 tx_ctrl = readl(base + NvRegTransmitterControl);
5284 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
5285 writel(tx_ctrl, base + NvRegTransmitterControl);
5286
5287 /* verify that semaphore was acquired */
5288 tx_ctrl = readl(base + NvRegTransmitterControl);
5289 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
5290 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
5291 np->mgmt_sema = 1;
5292 return 1;
5293 }
5294 else
5295 udelay(50);
5296 }
5297
5298 return 0;
5299 }
5300
5301 static void nv_mgmt_release_sema(struct net_device *dev)
5302 {
5303 struct fe_priv *np = netdev_priv(dev);
5304 u8 __iomem *base = get_hwbase(dev);
5305 u32 tx_ctrl;
5306
5307 if (np->driver_data & DEV_HAS_MGMT_UNIT) {
5308 if (np->mgmt_sema) {
5309 tx_ctrl = readl(base + NvRegTransmitterControl);
5310 tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
5311 writel(tx_ctrl, base + NvRegTransmitterControl);
5312 }
5313 }
5314 }
5315
5316
5317 static int nv_mgmt_get_version(struct net_device *dev)
5318 {
5319 struct fe_priv *np = netdev_priv(dev);
5320 u8 __iomem *base = get_hwbase(dev);
5321 u32 data_ready = readl(base + NvRegTransmitterControl);
5322 u32 data_ready2 = 0;
5323 unsigned long start;
5324 int ready = 0;
5325
5326 writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
5327 writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
5328 start = jiffies;
5329 while (time_before(jiffies, start + 5*HZ)) {
5330 data_ready2 = readl(base + NvRegTransmitterControl);
5331 if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
5332 ready = 1;
5333 break;
5334 }
5335 schedule_timeout_uninterruptible(1);
5336 }
5337
5338 if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
5339 return 0;
5340
5341 np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
5342
5343 return 1;
5344 }
5345
5346 static int nv_open(struct net_device *dev)
5347 {
5348 struct fe_priv *np = netdev_priv(dev);
5349 u8 __iomem *base = get_hwbase(dev);
5350 int ret = 1;
5351 int oom, i;
5352 u32 low;
5353
5354 dprintk(KERN_DEBUG "nv_open: begin\n");
5355
5356 /* power up phy */
5357 mii_rw(dev, np->phyaddr, MII_BMCR,
5358 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
5359
5360 nv_txrx_gate(dev, false);
5361 /* erase previous misconfiguration */
5362 if (np->driver_data & DEV_HAS_POWER_CNTRL)
5363 nv_mac_reset(dev);
5364 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5365 writel(0, base + NvRegMulticastAddrB);
5366 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5367 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5368 writel(0, base + NvRegPacketFilterFlags);
5369
5370 writel(0, base + NvRegTransmitterControl);
5371 writel(0, base + NvRegReceiverControl);
5372
5373 writel(0, base + NvRegAdapterControl);
5374
5375 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
5376 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
5377
5378 /* initialize descriptor rings */
5379 set_bufsize(dev);
5380 oom = nv_init_ring(dev);
5381
5382 writel(0, base + NvRegLinkSpeed);
5383 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5384 nv_txrx_reset(dev);
5385 writel(0, base + NvRegUnknownSetupReg6);
5386
5387 np->in_shutdown = 0;
5388
5389 /* give hw rings */
5390 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
5391 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
5392 base + NvRegRingSizes);
5393
5394 writel(np->linkspeed, base + NvRegLinkSpeed);
5395 if (np->desc_ver == DESC_VER_1)
5396 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
5397 else
5398 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
5399 writel(np->txrxctl_bits, base + NvRegTxRxControl);
5400 writel(np->vlanctl_bits, base + NvRegVlanControl);
5401 pci_push(base);
5402 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
5403 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
5404 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
5405 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
5406
5407 writel(0, base + NvRegMIIMask);
5408 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5409 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5410
5411 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
5412 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
5413 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
5414 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
5415
5416 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
5417
5418 get_random_bytes(&low, sizeof(low));
5419 low &= NVREG_SLOTTIME_MASK;
5420 if (np->desc_ver == DESC_VER_1) {
5421 writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
5422 } else {
5423 if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
5424 /* setup legacy backoff */
5425 writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
5426 } else {
5427 writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
5428 nv_gear_backoff_reseed(dev);
5429 }
5430 }
5431 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
5432 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
5433 if (poll_interval == -1) {
5434 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
5435 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
5436 else
5437 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
5438 }
5439 else
5440 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
5441 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5442 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
5443 base + NvRegAdapterControl);
5444 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
5445 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
5446 if (np->wolenabled)
5447 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
5448
5449 i = readl(base + NvRegPowerState);
5450 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
5451 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
5452
5453 pci_push(base);
5454 udelay(10);
5455 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
5456
5457 nv_disable_hw_interrupts(dev, np->irqmask);
5458 pci_push(base);
5459 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5460 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5461 pci_push(base);
5462
5463 if (nv_request_irq(dev, 0)) {
5464 goto out_drain;
5465 }
5466
5467 /* ask for interrupts */
5468 nv_enable_hw_interrupts(dev, np->irqmask);
5469
5470 spin_lock_irq(&np->lock);
5471 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5472 writel(0, base + NvRegMulticastAddrB);
5473 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5474 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5475 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5476 /* One manual link speed update: Interrupts are enabled, future link
5477 * speed changes cause interrupts and are handled by nv_link_irq().
5478 */
5479 {
5480 u32 miistat;
5481 miistat = readl(base + NvRegMIIStatus);
5482 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5483 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
5484 }
5485 /* set linkspeed to invalid value, thus force nv_update_linkspeed
5486 * to init hw */
5487 np->linkspeed = 0;
5488 ret = nv_update_linkspeed(dev);
5489 nv_start_rxtx(dev);
5490 netif_start_queue(dev);
5491 nv_napi_enable(dev);
5492
5493 if (ret) {
5494 netif_carrier_on(dev);
5495 } else {
5496 printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
5497 netif_carrier_off(dev);
5498 }
5499 if (oom)
5500 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5501
5502 /* start statistics timer */
5503 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5504 mod_timer(&np->stats_poll,
5505 round_jiffies(jiffies + STATS_INTERVAL));
5506
5507 spin_unlock_irq(&np->lock);
5508
5509 return 0;
5510 out_drain:
5511 nv_drain_rxtx(dev);
5512 return ret;
5513 }
5514
5515 static int nv_close(struct net_device *dev)
5516 {
5517 struct fe_priv *np = netdev_priv(dev);
5518 u8 __iomem *base;
5519
5520 spin_lock_irq(&np->lock);
5521 np->in_shutdown = 1;
5522 spin_unlock_irq(&np->lock);
5523 nv_napi_disable(dev);
5524 synchronize_irq(np->pci_dev->irq);
5525
5526 del_timer_sync(&np->oom_kick);
5527 del_timer_sync(&np->nic_poll);
5528 del_timer_sync(&np->stats_poll);
5529
5530 netif_stop_queue(dev);
5531 spin_lock_irq(&np->lock);
5532 nv_stop_rxtx(dev);
5533 nv_txrx_reset(dev);
5534
5535 /* disable interrupts on the nic or we will lock up */
5536 base = get_hwbase(dev);
5537 nv_disable_hw_interrupts(dev, np->irqmask);
5538 pci_push(base);
5539 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
5540
5541 spin_unlock_irq(&np->lock);
5542
5543 nv_free_irq(dev);
5544
5545 nv_drain_rxtx(dev);
5546
5547 if (np->wolenabled || !phy_power_down) {
5548 nv_txrx_gate(dev, false);
5549 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5550 nv_start_rx(dev);
5551 } else {
5552 /* power down phy */
5553 mii_rw(dev, np->phyaddr, MII_BMCR,
5554 mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
5555 nv_txrx_gate(dev, true);
5556 }
5557
5558 /* FIXME: power down nic */
5559
5560 return 0;
5561 }
5562
5563 static const struct net_device_ops nv_netdev_ops = {
5564 .ndo_open = nv_open,
5565 .ndo_stop = nv_close,
5566 .ndo_get_stats = nv_get_stats,
5567 .ndo_start_xmit = nv_start_xmit,
5568 .ndo_tx_timeout = nv_tx_timeout,
5569 .ndo_change_mtu = nv_change_mtu,
5570 .ndo_validate_addr = eth_validate_addr,
5571 .ndo_set_mac_address = nv_set_mac_address,
5572 .ndo_set_multicast_list = nv_set_multicast,
5573 .ndo_vlan_rx_register = nv_vlan_rx_register,
5574 #ifdef CONFIG_NET_POLL_CONTROLLER
5575 .ndo_poll_controller = nv_poll_controller,
5576 #endif
5577 };
5578
5579 static const struct net_device_ops nv_netdev_ops_optimized = {
5580 .ndo_open = nv_open,
5581 .ndo_stop = nv_close,
5582 .ndo_get_stats = nv_get_stats,
5583 .ndo_start_xmit = nv_start_xmit_optimized,
5584 .ndo_tx_timeout = nv_tx_timeout,
5585 .ndo_change_mtu = nv_change_mtu,
5586 .ndo_validate_addr = eth_validate_addr,
5587 .ndo_set_mac_address = nv_set_mac_address,
5588 .ndo_set_multicast_list = nv_set_multicast,
5589 .ndo_vlan_rx_register = nv_vlan_rx_register,
5590 #ifdef CONFIG_NET_POLL_CONTROLLER
5591 .ndo_poll_controller = nv_poll_controller,
5592 #endif
5593 };
5594
5595 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
5596 {
5597 struct net_device *dev;
5598 struct fe_priv *np;
5599 unsigned long addr;
5600 u8 __iomem *base;
5601 int err, i;
5602 u32 powerstate, txreg;
5603 u32 phystate_orig = 0, phystate;
5604 int phyinitialized = 0;
5605 static int printed_version;
5606
5607 if (!printed_version++)
5608 printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
5609 " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
5610
5611 dev = alloc_etherdev(sizeof(struct fe_priv));
5612 err = -ENOMEM;
5613 if (!dev)
5614 goto out;
5615
5616 np = netdev_priv(dev);
5617 np->dev = dev;
5618 np->pci_dev = pci_dev;
5619 spin_lock_init(&np->lock);
5620 SET_NETDEV_DEV(dev, &pci_dev->dev);
5621
5622 init_timer(&np->oom_kick);
5623 np->oom_kick.data = (unsigned long) dev;
5624 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
5625 init_timer(&np->nic_poll);
5626 np->nic_poll.data = (unsigned long) dev;
5627 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
5628 init_timer(&np->stats_poll);
5629 np->stats_poll.data = (unsigned long) dev;
5630 np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
5631
5632 err = pci_enable_device(pci_dev);
5633 if (err)
5634 goto out_free;
5635
5636 pci_set_master(pci_dev);
5637
5638 err = pci_request_regions(pci_dev, DRV_NAME);
5639 if (err < 0)
5640 goto out_disable;
5641
5642 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
5643 np->register_size = NV_PCI_REGSZ_VER3;
5644 else if (id->driver_data & DEV_HAS_STATISTICS_V1)
5645 np->register_size = NV_PCI_REGSZ_VER2;
5646 else
5647 np->register_size = NV_PCI_REGSZ_VER1;
5648
5649 err = -EINVAL;
5650 addr = 0;
5651 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5652 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
5653 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
5654 pci_resource_len(pci_dev, i),
5655 pci_resource_flags(pci_dev, i));
5656 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
5657 pci_resource_len(pci_dev, i) >= np->register_size) {
5658 addr = pci_resource_start(pci_dev, i);
5659 break;
5660 }
5661 }
5662 if (i == DEVICE_COUNT_RESOURCE) {
5663 dev_printk(KERN_INFO, &pci_dev->dev,
5664 "Couldn't find register window\n");
5665 goto out_relreg;
5666 }
5667
5668 /* copy of driver data */
5669 np->driver_data = id->driver_data;
5670 /* copy of device id */
5671 np->device_id = id->device;
5672
5673 /* handle different descriptor versions */
5674 if (id->driver_data & DEV_HAS_HIGH_DMA) {
5675 /* packet format 3: supports 40-bit addressing */
5676 np->desc_ver = DESC_VER_3;
5677 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
5678 if (dma_64bit) {
5679 if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
5680 dev_printk(KERN_INFO, &pci_dev->dev,
5681 "64-bit DMA failed, using 32-bit addressing\n");
5682 else
5683 dev->features |= NETIF_F_HIGHDMA;
5684 if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
5685 dev_printk(KERN_INFO, &pci_dev->dev,
5686 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
5687 }
5688 }
5689 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
5690 /* packet format 2: supports jumbo frames */
5691 np->desc_ver = DESC_VER_2;
5692 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
5693 } else {
5694 /* original packet format */
5695 np->desc_ver = DESC_VER_1;
5696 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
5697 }
5698
5699 np->pkt_limit = NV_PKTLIMIT_1;
5700 if (id->driver_data & DEV_HAS_LARGEDESC)
5701 np->pkt_limit = NV_PKTLIMIT_2;
5702
5703 if (id->driver_data & DEV_HAS_CHECKSUM) {
5704 np->rx_csum = 1;
5705 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
5706 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
5707 dev->features |= NETIF_F_TSO;
5708 }
5709
5710 np->vlanctl_bits = 0;
5711 if (id->driver_data & DEV_HAS_VLAN) {
5712 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
5713 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
5714 }
5715
5716 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
5717 if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
5718 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
5719 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
5720 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
5721 }
5722
5723
5724 err = -ENOMEM;
5725 np->base = ioremap(addr, np->register_size);
5726 if (!np->base)
5727 goto out_relreg;
5728 dev->base_addr = (unsigned long)np->base;
5729
5730 dev->irq = pci_dev->irq;
5731
5732 np->rx_ring_size = RX_RING_DEFAULT;
5733 np->tx_ring_size = TX_RING_DEFAULT;
5734
5735 if (!nv_optimized(np)) {
5736 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
5737 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
5738 &np->ring_addr);
5739 if (!np->rx_ring.orig)
5740 goto out_unmap;
5741 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
5742 } else {
5743 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
5744 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
5745 &np->ring_addr);
5746 if (!np->rx_ring.ex)
5747 goto out_unmap;
5748 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
5749 }
5750 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5751 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5752 if (!np->rx_skb || !np->tx_skb)
5753 goto out_freering;
5754
5755 if (!nv_optimized(np))
5756 dev->netdev_ops = &nv_netdev_ops;
5757 else
5758 dev->netdev_ops = &nv_netdev_ops_optimized;
5759
5760 #ifdef CONFIG_FORCEDETH_NAPI
5761 netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
5762 #endif
5763 SET_ETHTOOL_OPS(dev, &ops);
5764 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
5765
5766 pci_set_drvdata(pci_dev, dev);
5767
5768 /* read the mac address */
5769 base = get_hwbase(dev);
5770 np->orig_mac[0] = readl(base + NvRegMacAddrA);
5771 np->orig_mac[1] = readl(base + NvRegMacAddrB);
5772
5773 /* check the workaround bit for correct mac address order */
5774 txreg = readl(base + NvRegTransmitPoll);
5775 if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
5776 /* mac address is already in correct order */
5777 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5778 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5779 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5780 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5781 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5782 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5783 } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
5784 /* mac address is already in correct order */
5785 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5786 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5787 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5788 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5789 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5790 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5791 /*
5792 * Set orig mac address back to the reversed version.
5793 * This flag will be cleared during low power transition.
5794 * Therefore, we should always put back the reversed address.
5795 */
5796 np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
5797 (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
5798 np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
5799 } else {
5800 /* need to reverse mac address to correct order */
5801 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
5802 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
5803 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
5804 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
5805 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
5806 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
5807 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5808 printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
5809 }
5810 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5811
5812 if (!is_valid_ether_addr(dev->perm_addr)) {
5813 /*
5814 * Bad mac address. At least one bios sets the mac address
5815 * to 01:23:45:67:89:ab
5816 */
5817 dev_printk(KERN_ERR, &pci_dev->dev,
5818 "Invalid Mac address detected: %pM\n",
5819 dev->dev_addr);
5820 dev_printk(KERN_ERR, &pci_dev->dev,
5821 "Please complain to your hardware vendor. Switching to a random MAC.\n");
5822 random_ether_addr(dev->dev_addr);
5823 }
5824
5825 dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
5826 pci_name(pci_dev), dev->dev_addr);
5827
5828 /* set mac address */
5829 nv_copy_mac_to_hw(dev);
5830
5831 /* Workaround current PCI init glitch: wakeup bits aren't
5832 * being set from PCI PM capability.
5833 */
5834 device_init_wakeup(&pci_dev->dev, 1);
5835
5836 /* disable WOL */
5837 writel(0, base + NvRegWakeUpFlags);
5838 np->wolenabled = 0;
5839
5840 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5841
5842 /* take phy and nic out of low power mode */
5843 powerstate = readl(base + NvRegPowerState2);
5844 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5845 if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
5846 pci_dev->revision >= 0xA3)
5847 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5848 writel(powerstate, base + NvRegPowerState2);
5849 }
5850
5851 if (np->desc_ver == DESC_VER_1) {
5852 np->tx_flags = NV_TX_VALID;
5853 } else {
5854 np->tx_flags = NV_TX2_VALID;
5855 }
5856
5857 np->msi_flags = 0;
5858 if ((id->driver_data & DEV_HAS_MSI) && msi) {
5859 np->msi_flags |= NV_MSI_CAPABLE;
5860 }
5861 if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
5862 /* msix has had reported issues when modifying irqmask
5863 as in the case of napi, therefore, disable for now
5864 */
5865 #ifndef CONFIG_FORCEDETH_NAPI
5866 np->msi_flags |= NV_MSI_X_CAPABLE;
5867 #endif
5868 }
5869
5870 if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
5871 np->irqmask = NVREG_IRQMASK_CPU;
5872 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5873 np->msi_flags |= 0x0001;
5874 } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
5875 !(id->driver_data & DEV_NEED_TIMERIRQ)) {
5876 /* start off in throughput mode */
5877 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5878 /* remove support for msix mode */
5879 np->msi_flags &= ~NV_MSI_X_CAPABLE;
5880 } else {
5881 optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
5882 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5883 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5884 np->msi_flags |= 0x0003;
5885 }
5886
5887 if (id->driver_data & DEV_NEED_TIMERIRQ)
5888 np->irqmask |= NVREG_IRQ_TIMER;
5889 if (id->driver_data & DEV_NEED_LINKTIMER) {
5890 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
5891 np->need_linktimer = 1;
5892 np->link_timeout = jiffies + LINK_TIMEOUT;
5893 } else {
5894 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
5895 np->need_linktimer = 0;
5896 }
5897
5898 /* Limit the number of tx's outstanding for hw bug */
5899 if (id->driver_data & DEV_NEED_TX_LIMIT) {
5900 np->tx_limit = 1;
5901 if ((id->driver_data & DEV_NEED_TX_LIMIT2) &&
5902 pci_dev->revision >= 0xA2)
5903 np->tx_limit = 0;
5904 }
5905
5906 /* clear phy state and temporarily halt phy interrupts */
5907 writel(0, base + NvRegMIIMask);
5908 phystate = readl(base + NvRegAdapterControl);
5909 if (phystate & NVREG_ADAPTCTL_RUNNING) {
5910 phystate_orig = 1;
5911 phystate &= ~NVREG_ADAPTCTL_RUNNING;
5912 writel(phystate, base + NvRegAdapterControl);
5913 }
5914 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5915
5916 if (id->driver_data & DEV_HAS_MGMT_UNIT) {
5917 /* management unit running on the mac? */
5918 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
5919 (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
5920 nv_mgmt_acquire_sema(dev) &&
5921 nv_mgmt_get_version(dev)) {
5922 np->mac_in_use = 1;
5923 if (np->mgmt_version > 0) {
5924 np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
5925 }
5926 dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n",
5927 pci_name(pci_dev), np->mac_in_use);
5928 /* management unit setup the phy already? */
5929 if (np->mac_in_use &&
5930 ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
5931 NVREG_XMITCTL_SYNC_PHY_INIT)) {
5932 /* phy is inited by mgmt unit */
5933 phyinitialized = 1;
5934 dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n",
5935 pci_name(pci_dev));
5936 } else {
5937 /* we need to init the phy */
5938 }
5939 }
5940 }
5941
5942 /* find a suitable phy */
5943 for (i = 1; i <= 32; i++) {
5944 int id1, id2;
5945 int phyaddr = i & 0x1F;
5946
5947 spin_lock_irq(&np->lock);
5948 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
5949 spin_unlock_irq(&np->lock);
5950 if (id1 < 0 || id1 == 0xffff)
5951 continue;
5952 spin_lock_irq(&np->lock);
5953 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
5954 spin_unlock_irq(&np->lock);
5955 if (id2 < 0 || id2 == 0xffff)
5956 continue;
5957
5958 np->phy_model = id2 & PHYID2_MODEL_MASK;
5959 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
5960 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
5961 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
5962 pci_name(pci_dev), id1, id2, phyaddr);
5963 np->phyaddr = phyaddr;
5964 np->phy_oui = id1 | id2;
5965
5966 /* Realtek hardcoded phy id1 to all zero's on certain phys */
5967 if (np->phy_oui == PHY_OUI_REALTEK2)
5968 np->phy_oui = PHY_OUI_REALTEK;
5969 /* Setup phy revision for Realtek */
5970 if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
5971 np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
5972
5973 break;
5974 }
5975 if (i == 33) {
5976 dev_printk(KERN_INFO, &pci_dev->dev,
5977 "open: Could not find a valid PHY.\n");
5978 goto out_error;
5979 }
5980
5981 if (!phyinitialized) {
5982 /* reset it */
5983 phy_init(dev);
5984 } else {
5985 /* see if it is a gigabit phy */
5986 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
5987 if (mii_status & PHY_GIGABIT) {
5988 np->gigabit = PHY_GIGABIT;
5989 }
5990 }
5991
5992 /* set default link speed settings */
5993 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
5994 np->duplex = 0;
5995 np->autoneg = 1;
5996
5997 err = register_netdev(dev);
5998 if (err) {
5999 dev_printk(KERN_INFO, &pci_dev->dev,
6000 "unable to register netdev: %d\n", err);
6001 goto out_error;
6002 }
6003
6004 dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
6005 "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
6006 dev->name,
6007 np->phy_oui,
6008 np->phyaddr,
6009 dev->dev_addr[0],
6010 dev->dev_addr[1],
6011 dev->dev_addr[2],
6012 dev->dev_addr[3],
6013 dev->dev_addr[4],
6014 dev->dev_addr[5]);
6015
6016 dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
6017 dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
6018 dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
6019 "csum " : "",
6020 dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
6021 "vlan " : "",
6022 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
6023 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
6024 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
6025 np->gigabit == PHY_GIGABIT ? "gbit " : "",
6026 np->need_linktimer ? "lnktim " : "",
6027 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
6028 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
6029 np->desc_ver);
6030
6031 return 0;
6032
6033 out_error:
6034 if (phystate_orig)
6035 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
6036 pci_set_drvdata(pci_dev, NULL);
6037 out_freering:
6038 free_rings(dev);
6039 out_unmap:
6040 iounmap(get_hwbase(dev));
6041 out_relreg:
6042 pci_release_regions(pci_dev);
6043 out_disable:
6044 pci_disable_device(pci_dev);
6045 out_free:
6046 free_netdev(dev);
6047 out:
6048 return err;
6049 }
6050
6051 static void nv_restore_phy(struct net_device *dev)
6052 {
6053 struct fe_priv *np = netdev_priv(dev);
6054 u16 phy_reserved, mii_control;
6055
6056 if (np->phy_oui == PHY_OUI_REALTEK &&
6057 np->phy_model == PHY_MODEL_REALTEK_8201 &&
6058 phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
6059 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
6060 phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
6061 phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
6062 phy_reserved |= PHY_REALTEK_INIT8;
6063 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
6064 mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
6065
6066 /* restart auto negotiation */
6067 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
6068 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
6069 mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
6070 }
6071 }
6072
6073 static void nv_restore_mac_addr(struct pci_dev *pci_dev)
6074 {
6075 struct net_device *dev = pci_get_drvdata(pci_dev);
6076 struct fe_priv *np = netdev_priv(dev);
6077 u8 __iomem *base = get_hwbase(dev);
6078
6079 /* special op: write back the misordered MAC address - otherwise
6080 * the next nv_probe would see a wrong address.
6081 */
6082 writel(np->orig_mac[0], base + NvRegMacAddrA);
6083 writel(np->orig_mac[1], base + NvRegMacAddrB);
6084 writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
6085 base + NvRegTransmitPoll);
6086 }
6087
6088 static void __devexit nv_remove(struct pci_dev *pci_dev)
6089 {
6090 struct net_device *dev = pci_get_drvdata(pci_dev);
6091
6092 unregister_netdev(dev);
6093
6094 nv_restore_mac_addr(pci_dev);
6095
6096 /* restore any phy related changes */
6097 nv_restore_phy(dev);
6098
6099 nv_mgmt_release_sema(dev);
6100
6101 /* free all structures */
6102 free_rings(dev);
6103 iounmap(get_hwbase(dev));
6104 pci_release_regions(pci_dev);
6105 pci_disable_device(pci_dev);
6106 free_netdev(dev);
6107 pci_set_drvdata(pci_dev, NULL);
6108 }
6109
6110 #ifdef CONFIG_PM
6111 static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
6112 {
6113 struct net_device *dev = pci_get_drvdata(pdev);
6114 struct fe_priv *np = netdev_priv(dev);
6115 u8 __iomem *base = get_hwbase(dev);
6116 int i;
6117
6118 if (netif_running(dev)) {
6119 // Gross.
6120 nv_close(dev);
6121 }
6122 netif_device_detach(dev);
6123
6124 /* save non-pci configuration space */
6125 for (i = 0;i <= np->register_size/sizeof(u32); i++)
6126 np->saved_config_space[i] = readl(base + i*sizeof(u32));
6127
6128 pci_save_state(pdev);
6129 pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
6130 pci_disable_device(pdev);
6131 pci_set_power_state(pdev, pci_choose_state(pdev, state));
6132 return 0;
6133 }
6134
6135 static int nv_resume(struct pci_dev *pdev)
6136 {
6137 struct net_device *dev = pci_get_drvdata(pdev);
6138 struct fe_priv *np = netdev_priv(dev);
6139 u8 __iomem *base = get_hwbase(dev);
6140 int i, rc = 0;
6141
6142 pci_set_power_state(pdev, PCI_D0);
6143 pci_restore_state(pdev);
6144 /* ack any pending wake events, disable PME */
6145 pci_enable_wake(pdev, PCI_D0, 0);
6146
6147 /* restore non-pci configuration space */
6148 for (i = 0;i <= np->register_size/sizeof(u32); i++)
6149 writel(np->saved_config_space[i], base+i*sizeof(u32));
6150
6151 if (np->driver_data & DEV_NEED_MSI_FIX)
6152 pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
6153
6154 /* restore phy state, including autoneg */
6155 phy_init(dev);
6156
6157 netif_device_attach(dev);
6158 if (netif_running(dev)) {
6159 rc = nv_open(dev);
6160 nv_set_multicast(dev);
6161 }
6162 return rc;
6163 }
6164
6165 static void nv_shutdown(struct pci_dev *pdev)
6166 {
6167 struct net_device *dev = pci_get_drvdata(pdev);
6168 struct fe_priv *np = netdev_priv(dev);
6169
6170 if (netif_running(dev))
6171 nv_close(dev);
6172
6173 /*
6174 * Restore the MAC so a kernel started by kexec won't get confused.
6175 * If we really go for poweroff, we must not restore the MAC,
6176 * otherwise the MAC for WOL will be reversed at least on some boards.
6177 */
6178 if (system_state != SYSTEM_POWER_OFF) {
6179 nv_restore_mac_addr(pdev);
6180 }
6181
6182 pci_disable_device(pdev);
6183 /*
6184 * Apparently it is not possible to reinitialise from D3 hot,
6185 * only put the device into D3 if we really go for poweroff.
6186 */
6187 if (system_state == SYSTEM_POWER_OFF) {
6188 if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
6189 pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
6190 pci_set_power_state(pdev, PCI_D3hot);
6191 }
6192 }
6193 #else
6194 #define nv_suspend NULL
6195 #define nv_shutdown NULL
6196 #define nv_resume NULL
6197 #endif /* CONFIG_PM */
6198
6199 static DEFINE_PCI_DEVICE_TABLE(pci_tbl) = {
6200 { /* nForce Ethernet Controller */
6201 PCI_DEVICE(0x10DE, 0x01C3),
6202 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6203 },
6204 { /* nForce2 Ethernet Controller */
6205 PCI_DEVICE(0x10DE, 0x0066),
6206 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6207 },
6208 { /* nForce3 Ethernet Controller */
6209 PCI_DEVICE(0x10DE, 0x00D6),
6210 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
6211 },
6212 { /* nForce3 Ethernet Controller */
6213 PCI_DEVICE(0x10DE, 0x0086),
6214 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6215 },
6216 { /* nForce3 Ethernet Controller */
6217 PCI_DEVICE(0x10DE, 0x008C),
6218 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6219 },
6220 { /* nForce3 Ethernet Controller */
6221 PCI_DEVICE(0x10DE, 0x00E6),
6222 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6223 },
6224 { /* nForce3 Ethernet Controller */
6225 PCI_DEVICE(0x10DE, 0x00DF),
6226 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
6227 },
6228 { /* CK804 Ethernet Controller */
6229 PCI_DEVICE(0x10DE, 0x0056),
6230 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6231 },
6232 { /* CK804 Ethernet Controller */
6233 PCI_DEVICE(0x10DE, 0x0057),
6234 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6235 },
6236 { /* MCP04 Ethernet Controller */
6237 PCI_DEVICE(0x10DE, 0x0037),
6238 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6239 },
6240 { /* MCP04 Ethernet Controller */
6241 PCI_DEVICE(0x10DE, 0x0038),
6242 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
6243 },
6244 { /* MCP51 Ethernet Controller */
6245 PCI_DEVICE(0x10DE, 0x0268),
6246 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
6247 },
6248 { /* MCP51 Ethernet Controller */
6249 PCI_DEVICE(0x10DE, 0x0269),
6250 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
6251 },
6252 { /* MCP55 Ethernet Controller */
6253 PCI_DEVICE(0x10DE, 0x0372),
6254 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
6255 },
6256 { /* MCP55 Ethernet Controller */
6257 PCI_DEVICE(0x10DE, 0x0373),
6258 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
6259 },
6260 { /* MCP61 Ethernet Controller */
6261 PCI_DEVICE(0x10DE, 0x03E5),
6262 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6263 },
6264 { /* MCP61 Ethernet Controller */
6265 PCI_DEVICE(0x10DE, 0x03E6),
6266 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6267 },
6268 { /* MCP61 Ethernet Controller */
6269 PCI_DEVICE(0x10DE, 0x03EE),
6270 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6271 },
6272 { /* MCP61 Ethernet Controller */
6273 PCI_DEVICE(0x10DE, 0x03EF),
6274 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
6275 },
6276 { /* MCP65 Ethernet Controller */
6277 PCI_DEVICE(0x10DE, 0x0450),
6278 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6279 },
6280 { /* MCP65 Ethernet Controller */
6281 PCI_DEVICE(0x10DE, 0x0451),
6282 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6283 },
6284 { /* MCP65 Ethernet Controller */
6285 PCI_DEVICE(0x10DE, 0x0452),
6286 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6287 },
6288 { /* MCP65 Ethernet Controller */
6289 PCI_DEVICE(0x10DE, 0x0453),
6290 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6291 },
6292 { /* MCP67 Ethernet Controller */
6293 PCI_DEVICE(0x10DE, 0x054C),
6294 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6295 },
6296 { /* MCP67 Ethernet Controller */
6297 PCI_DEVICE(0x10DE, 0x054D),
6298 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6299 },
6300 { /* MCP67 Ethernet Controller */
6301 PCI_DEVICE(0x10DE, 0x054E),
6302 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6303 },
6304 { /* MCP67 Ethernet Controller */
6305 PCI_DEVICE(0x10DE, 0x054F),
6306 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6307 },
6308 { /* MCP73 Ethernet Controller */
6309 PCI_DEVICE(0x10DE, 0x07DC),
6310 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6311 },
6312 { /* MCP73 Ethernet Controller */
6313 PCI_DEVICE(0x10DE, 0x07DD),
6314 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6315 },
6316 { /* MCP73 Ethernet Controller */
6317 PCI_DEVICE(0x10DE, 0x07DE),
6318 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6319 },
6320 { /* MCP73 Ethernet Controller */
6321 PCI_DEVICE(0x10DE, 0x07DF),
6322 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
6323 },
6324 { /* MCP77 Ethernet Controller */
6325 PCI_DEVICE(0x10DE, 0x0760),
6326 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6327 },
6328 { /* MCP77 Ethernet Controller */
6329 PCI_DEVICE(0x10DE, 0x0761),
6330 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6331 },
6332 { /* MCP77 Ethernet Controller */
6333 PCI_DEVICE(0x10DE, 0x0762),
6334 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6335 },
6336 { /* MCP77 Ethernet Controller */
6337 PCI_DEVICE(0x10DE, 0x0763),
6338 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6339 },
6340 { /* MCP79 Ethernet Controller */
6341 PCI_DEVICE(0x10DE, 0x0AB0),
6342 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6343 },
6344 { /* MCP79 Ethernet Controller */
6345 PCI_DEVICE(0x10DE, 0x0AB1),
6346 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6347 },
6348 { /* MCP79 Ethernet Controller */
6349 PCI_DEVICE(0x10DE, 0x0AB2),
6350 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6351 },
6352 { /* MCP79 Ethernet Controller */
6353 PCI_DEVICE(0x10DE, 0x0AB3),
6354 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
6355 },
6356 { /* MCP89 Ethernet Controller */
6357 PCI_DEVICE(0x10DE, 0x0D7D),
6358 .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX,
6359 },
6360 {0,},
6361 };
6362
6363 static struct pci_driver driver = {
6364 .name = DRV_NAME,
6365 .id_table = pci_tbl,
6366 .probe = nv_probe,
6367 .remove = __devexit_p(nv_remove),
6368 .suspend = nv_suspend,
6369 .resume = nv_resume,
6370 .shutdown = nv_shutdown,
6371 };
6372
6373 static int __init init_nic(void)
6374 {
6375 return pci_register_driver(&driver);
6376 }
6377
6378 static void __exit exit_nic(void)
6379 {
6380 pci_unregister_driver(&driver);
6381 }
6382
6383 module_param(max_interrupt_work, int, 0);
6384 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
6385 module_param(optimization_mode, int, 0);
6386 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
6387 module_param(poll_interval, int, 0);
6388 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
6389 module_param(msi, int, 0);
6390 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
6391 module_param(msix, int, 0);
6392 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
6393 module_param(dma_64bit, int, 0);
6394 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
6395 module_param(phy_cross, int, 0);
6396 MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
6397 module_param(phy_power_down, int, 0);
6398 MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
6399
6400 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
6401 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
6402 MODULE_LICENSE("GPL");
6403
6404 MODULE_DEVICE_TABLE(pci, pci_tbl);
6405
6406 module_init(init_nic);
6407 module_exit(exit_nic);
This page took 0.223861 seconds and 5 git commands to generate.