Merge branch 'upstream' of master.kernel.org:/pub/scm/linux/kernel/git/shemminger...
[deliverable/linux.git] / drivers / net / forcedeth.c
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey. It's neither supported nor endorsed
7 * by NVIDIA Corp. Use at your own risk.
8 *
9 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10 * trademarks of NVIDIA Corporation in the United States and other
11 * countries.
12 *
13 * Copyright (C) 2003,4,5 Manfred Spraul
14 * Copyright (C) 2004 Andrew de Quincey (wol support)
15 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16 * IRQ rate fixes, bigendian fixes, cleanups, verification)
17 * Copyright (c) 2004 NVIDIA Corporation
18 *
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 2 of the License, or
22 * (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 *
33 * Changelog:
34 * 0.01: 05 Oct 2003: First release that compiles without warnings.
35 * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36 * Check all PCI BARs for the register window.
37 * udelay added to mii_rw.
38 * 0.03: 06 Oct 2003: Initialize dev->irq.
39 * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40 * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41 * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42 * irq mask updated
43 * 0.07: 14 Oct 2003: Further irq mask updates.
44 * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45 * added into irq handler, NULL check for drain_ring.
46 * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47 * requested interrupt sources.
48 * 0.10: 20 Oct 2003: First cleanup for release.
49 * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50 * MAC Address init fix, set_multicast cleanup.
51 * 0.12: 23 Oct 2003: Cleanups for release.
52 * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53 * Set link speed correctly. start rx before starting
54 * tx (nv_start_rx sets the link speed).
55 * 0.14: 25 Oct 2003: Nic dependant irq mask.
56 * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57 * open.
58 * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59 * increased to 1628 bytes.
60 * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61 * the tx length.
62 * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63 * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64 * addresses, really stop rx if already running
65 * in nv_start_rx, clean up a bit.
66 * 0.20: 07 Dec 2003: alloc fixes
67 * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68 * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69 * on close.
70 * 0.23: 26 Jan 2004: various small cleanups
71 * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72 * 0.25: 09 Mar 2004: wol support
73 * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74 * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75 * added CK804/MCP04 device IDs, code fixes
76 * for registers, link status and other minor fixes.
77 * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78 * 0.29: 31 Aug 2004: Add backup timer for link change notification.
79 * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80 * into nv_close, otherwise reenabling for wol can
81 * cause DMA to kfree'd memory.
82 * 0.31: 14 Nov 2004: ethtool support for getting/setting link
83 * capabilities.
84 * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
85 * 0.33: 16 May 2005: Support for MCP51 added.
86 * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87 * 0.35: 26 Jun 2005: Support for MCP55 added.
88 * 0.36: 28 Jun 2005: Add jumbo frame support.
89 * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90 * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91 * per-packet flags.
92 * 0.39: 18 Jul 2005: Add 64bit descriptor support.
93 * 0.40: 19 Jul 2005: Add support for mac address change.
94 * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95 * of nv_remove
96 * 0.42: 06 Aug 2005: Fix lack of link speed initialization
97 * in the second (and later) nv_open call
98 * 0.43: 10 Aug 2005: Add support for tx checksum.
99 * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100 * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101 * 0.46: 20 Oct 2005: Add irq optimization modes.
102 * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
103 * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
104 * 0.49: 10 Dec 2005: Fix tso for large buffers.
105 * 0.50: 20 Jan 2006: Add 8021pq tagging support.
106 * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
107 * 0.52: 20 Jan 2006: Add MSI/MSIX support.
108 * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
109 * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
110 *
111 * Known bugs:
112 * We suspect that on some hardware no TX done interrupts are generated.
113 * This means recovery from netif_stop_queue only happens if the hw timer
114 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
115 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
116 * If your hardware reliably generates tx done interrupts, then you can remove
117 * DEV_NEED_TIMERIRQ from the driver_data flags.
118 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
119 * superfluous timer interrupts from the nic.
120 */
121 #define FORCEDETH_VERSION "0.54"
122 #define DRV_NAME "forcedeth"
123
124 #include <linux/module.h>
125 #include <linux/types.h>
126 #include <linux/pci.h>
127 #include <linux/interrupt.h>
128 #include <linux/netdevice.h>
129 #include <linux/etherdevice.h>
130 #include <linux/delay.h>
131 #include <linux/spinlock.h>
132 #include <linux/ethtool.h>
133 #include <linux/timer.h>
134 #include <linux/skbuff.h>
135 #include <linux/mii.h>
136 #include <linux/random.h>
137 #include <linux/init.h>
138 #include <linux/if_vlan.h>
139 #include <linux/dma-mapping.h>
140
141 #include <asm/irq.h>
142 #include <asm/io.h>
143 #include <asm/uaccess.h>
144 #include <asm/system.h>
145
146 #if 0
147 #define dprintk printk
148 #else
149 #define dprintk(x...) do { } while (0)
150 #endif
151
152
153 /*
154 * Hardware access:
155 */
156
157 #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
158 #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
159 #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
160 #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
161 #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
162 #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
163 #define DEV_HAS_MSI 0x0040 /* device supports MSI */
164 #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
165 #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
166
167 enum {
168 NvRegIrqStatus = 0x000,
169 #define NVREG_IRQSTAT_MIIEVENT 0x040
170 #define NVREG_IRQSTAT_MASK 0x1ff
171 NvRegIrqMask = 0x004,
172 #define NVREG_IRQ_RX_ERROR 0x0001
173 #define NVREG_IRQ_RX 0x0002
174 #define NVREG_IRQ_RX_NOBUF 0x0004
175 #define NVREG_IRQ_TX_ERR 0x0008
176 #define NVREG_IRQ_TX_OK 0x0010
177 #define NVREG_IRQ_TIMER 0x0020
178 #define NVREG_IRQ_LINK 0x0040
179 #define NVREG_IRQ_RX_FORCED 0x0080
180 #define NVREG_IRQ_TX_FORCED 0x0100
181 #define NVREG_IRQMASK_THROUGHPUT 0x00df
182 #define NVREG_IRQMASK_CPU 0x0040
183 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
184 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
185 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
186
187 #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
188 NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
189 NVREG_IRQ_TX_FORCED))
190
191 NvRegUnknownSetupReg6 = 0x008,
192 #define NVREG_UNKSETUP6_VAL 3
193
194 /*
195 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
196 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
197 */
198 NvRegPollingInterval = 0x00c,
199 #define NVREG_POLL_DEFAULT_THROUGHPUT 970
200 #define NVREG_POLL_DEFAULT_CPU 13
201 NvRegMSIMap0 = 0x020,
202 NvRegMSIMap1 = 0x024,
203 NvRegMSIIrqMask = 0x030,
204 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
205 NvRegMisc1 = 0x080,
206 #define NVREG_MISC1_HD 0x02
207 #define NVREG_MISC1_FORCE 0x3b0f3c
208
209 NvRegMacReset = 0x3c,
210 #define NVREG_MAC_RESET_ASSERT 0x0F3
211 NvRegTransmitterControl = 0x084,
212 #define NVREG_XMITCTL_START 0x01
213 NvRegTransmitterStatus = 0x088,
214 #define NVREG_XMITSTAT_BUSY 0x01
215
216 NvRegPacketFilterFlags = 0x8c,
217 #define NVREG_PFF_ALWAYS 0x7F0008
218 #define NVREG_PFF_PROMISC 0x80
219 #define NVREG_PFF_MYADDR 0x20
220
221 NvRegOffloadConfig = 0x90,
222 #define NVREG_OFFLOAD_HOMEPHY 0x601
223 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
224 NvRegReceiverControl = 0x094,
225 #define NVREG_RCVCTL_START 0x01
226 NvRegReceiverStatus = 0x98,
227 #define NVREG_RCVSTAT_BUSY 0x01
228
229 NvRegRandomSeed = 0x9c,
230 #define NVREG_RNDSEED_MASK 0x00ff
231 #define NVREG_RNDSEED_FORCE 0x7f00
232 #define NVREG_RNDSEED_FORCE2 0x2d00
233 #define NVREG_RNDSEED_FORCE3 0x7400
234
235 NvRegUnknownSetupReg1 = 0xA0,
236 #define NVREG_UNKSETUP1_VAL 0x16070f
237 NvRegUnknownSetupReg2 = 0xA4,
238 #define NVREG_UNKSETUP2_VAL 0x16
239 NvRegMacAddrA = 0xA8,
240 NvRegMacAddrB = 0xAC,
241 NvRegMulticastAddrA = 0xB0,
242 #define NVREG_MCASTADDRA_FORCE 0x01
243 NvRegMulticastAddrB = 0xB4,
244 NvRegMulticastMaskA = 0xB8,
245 NvRegMulticastMaskB = 0xBC,
246
247 NvRegPhyInterface = 0xC0,
248 #define PHY_RGMII 0x10000000
249
250 NvRegTxRingPhysAddr = 0x100,
251 NvRegRxRingPhysAddr = 0x104,
252 NvRegRingSizes = 0x108,
253 #define NVREG_RINGSZ_TXSHIFT 0
254 #define NVREG_RINGSZ_RXSHIFT 16
255 NvRegUnknownTransmitterReg = 0x10c,
256 NvRegLinkSpeed = 0x110,
257 #define NVREG_LINKSPEED_FORCE 0x10000
258 #define NVREG_LINKSPEED_10 1000
259 #define NVREG_LINKSPEED_100 100
260 #define NVREG_LINKSPEED_1000 50
261 #define NVREG_LINKSPEED_MASK (0xFFF)
262 NvRegUnknownSetupReg5 = 0x130,
263 #define NVREG_UNKSETUP5_BIT31 (1<<31)
264 NvRegUnknownSetupReg3 = 0x13c,
265 #define NVREG_UNKSETUP3_VAL1 0x200010
266 NvRegTxRxControl = 0x144,
267 #define NVREG_TXRXCTL_KICK 0x0001
268 #define NVREG_TXRXCTL_BIT1 0x0002
269 #define NVREG_TXRXCTL_BIT2 0x0004
270 #define NVREG_TXRXCTL_IDLE 0x0008
271 #define NVREG_TXRXCTL_RESET 0x0010
272 #define NVREG_TXRXCTL_RXCHECK 0x0400
273 #define NVREG_TXRXCTL_DESC_1 0
274 #define NVREG_TXRXCTL_DESC_2 0x02100
275 #define NVREG_TXRXCTL_DESC_3 0x02200
276 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
277 #define NVREG_TXRXCTL_VLANINS 0x00080
278 NvRegTxRingPhysAddrHigh = 0x148,
279 NvRegRxRingPhysAddrHigh = 0x14C,
280 NvRegMIIStatus = 0x180,
281 #define NVREG_MIISTAT_ERROR 0x0001
282 #define NVREG_MIISTAT_LINKCHANGE 0x0008
283 #define NVREG_MIISTAT_MASK 0x000f
284 #define NVREG_MIISTAT_MASK2 0x000f
285 NvRegUnknownSetupReg4 = 0x184,
286 #define NVREG_UNKSETUP4_VAL 8
287
288 NvRegAdapterControl = 0x188,
289 #define NVREG_ADAPTCTL_START 0x02
290 #define NVREG_ADAPTCTL_LINKUP 0x04
291 #define NVREG_ADAPTCTL_PHYVALID 0x40000
292 #define NVREG_ADAPTCTL_RUNNING 0x100000
293 #define NVREG_ADAPTCTL_PHYSHIFT 24
294 NvRegMIISpeed = 0x18c,
295 #define NVREG_MIISPEED_BIT8 (1<<8)
296 #define NVREG_MIIDELAY 5
297 NvRegMIIControl = 0x190,
298 #define NVREG_MIICTL_INUSE 0x08000
299 #define NVREG_MIICTL_WRITE 0x00400
300 #define NVREG_MIICTL_ADDRSHIFT 5
301 NvRegMIIData = 0x194,
302 NvRegWakeUpFlags = 0x200,
303 #define NVREG_WAKEUPFLAGS_VAL 0x7770
304 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
305 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
306 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
307 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
308 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
309 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
310 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
311 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
312 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
313 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
314
315 NvRegPatternCRC = 0x204,
316 NvRegPatternMask = 0x208,
317 NvRegPowerCap = 0x268,
318 #define NVREG_POWERCAP_D3SUPP (1<<30)
319 #define NVREG_POWERCAP_D2SUPP (1<<26)
320 #define NVREG_POWERCAP_D1SUPP (1<<25)
321 NvRegPowerState = 0x26c,
322 #define NVREG_POWERSTATE_POWEREDUP 0x8000
323 #define NVREG_POWERSTATE_VALID 0x0100
324 #define NVREG_POWERSTATE_MASK 0x0003
325 #define NVREG_POWERSTATE_D0 0x0000
326 #define NVREG_POWERSTATE_D1 0x0001
327 #define NVREG_POWERSTATE_D2 0x0002
328 #define NVREG_POWERSTATE_D3 0x0003
329 NvRegVlanControl = 0x300,
330 #define NVREG_VLANCONTROL_ENABLE 0x2000
331 NvRegMSIXMap0 = 0x3e0,
332 NvRegMSIXMap1 = 0x3e4,
333 NvRegMSIXIrqStatus = 0x3f0,
334
335 NvRegPowerState2 = 0x600,
336 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
337 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
338 };
339
340 /* Big endian: should work, but is untested */
341 struct ring_desc {
342 u32 PacketBuffer;
343 u32 FlagLen;
344 };
345
346 struct ring_desc_ex {
347 u32 PacketBufferHigh;
348 u32 PacketBufferLow;
349 u32 TxVlan;
350 u32 FlagLen;
351 };
352
353 typedef union _ring_type {
354 struct ring_desc* orig;
355 struct ring_desc_ex* ex;
356 } ring_type;
357
358 #define FLAG_MASK_V1 0xffff0000
359 #define FLAG_MASK_V2 0xffffc000
360 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
361 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
362
363 #define NV_TX_LASTPACKET (1<<16)
364 #define NV_TX_RETRYERROR (1<<19)
365 #define NV_TX_FORCED_INTERRUPT (1<<24)
366 #define NV_TX_DEFERRED (1<<26)
367 #define NV_TX_CARRIERLOST (1<<27)
368 #define NV_TX_LATECOLLISION (1<<28)
369 #define NV_TX_UNDERFLOW (1<<29)
370 #define NV_TX_ERROR (1<<30)
371 #define NV_TX_VALID (1<<31)
372
373 #define NV_TX2_LASTPACKET (1<<29)
374 #define NV_TX2_RETRYERROR (1<<18)
375 #define NV_TX2_FORCED_INTERRUPT (1<<30)
376 #define NV_TX2_DEFERRED (1<<25)
377 #define NV_TX2_CARRIERLOST (1<<26)
378 #define NV_TX2_LATECOLLISION (1<<27)
379 #define NV_TX2_UNDERFLOW (1<<28)
380 /* error and valid are the same for both */
381 #define NV_TX2_ERROR (1<<30)
382 #define NV_TX2_VALID (1<<31)
383 #define NV_TX2_TSO (1<<28)
384 #define NV_TX2_TSO_SHIFT 14
385 #define NV_TX2_TSO_MAX_SHIFT 14
386 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
387 #define NV_TX2_CHECKSUM_L3 (1<<27)
388 #define NV_TX2_CHECKSUM_L4 (1<<26)
389
390 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
391
392 #define NV_RX_DESCRIPTORVALID (1<<16)
393 #define NV_RX_MISSEDFRAME (1<<17)
394 #define NV_RX_SUBSTRACT1 (1<<18)
395 #define NV_RX_ERROR1 (1<<23)
396 #define NV_RX_ERROR2 (1<<24)
397 #define NV_RX_ERROR3 (1<<25)
398 #define NV_RX_ERROR4 (1<<26)
399 #define NV_RX_CRCERR (1<<27)
400 #define NV_RX_OVERFLOW (1<<28)
401 #define NV_RX_FRAMINGERR (1<<29)
402 #define NV_RX_ERROR (1<<30)
403 #define NV_RX_AVAIL (1<<31)
404
405 #define NV_RX2_CHECKSUMMASK (0x1C000000)
406 #define NV_RX2_CHECKSUMOK1 (0x10000000)
407 #define NV_RX2_CHECKSUMOK2 (0x14000000)
408 #define NV_RX2_CHECKSUMOK3 (0x18000000)
409 #define NV_RX2_DESCRIPTORVALID (1<<29)
410 #define NV_RX2_SUBSTRACT1 (1<<25)
411 #define NV_RX2_ERROR1 (1<<18)
412 #define NV_RX2_ERROR2 (1<<19)
413 #define NV_RX2_ERROR3 (1<<20)
414 #define NV_RX2_ERROR4 (1<<21)
415 #define NV_RX2_CRCERR (1<<22)
416 #define NV_RX2_OVERFLOW (1<<23)
417 #define NV_RX2_FRAMINGERR (1<<24)
418 /* error and avail are the same for both */
419 #define NV_RX2_ERROR (1<<30)
420 #define NV_RX2_AVAIL (1<<31)
421
422 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
423 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
424
425 /* Miscelaneous hardware related defines: */
426 #define NV_PCI_REGSZ_VER1 0x270
427 #define NV_PCI_REGSZ_VER2 0x604
428
429 /* various timeout delays: all in usec */
430 #define NV_TXRX_RESET_DELAY 4
431 #define NV_TXSTOP_DELAY1 10
432 #define NV_TXSTOP_DELAY1MAX 500000
433 #define NV_TXSTOP_DELAY2 100
434 #define NV_RXSTOP_DELAY1 10
435 #define NV_RXSTOP_DELAY1MAX 500000
436 #define NV_RXSTOP_DELAY2 100
437 #define NV_SETUP5_DELAY 5
438 #define NV_SETUP5_DELAYMAX 50000
439 #define NV_POWERUP_DELAY 5
440 #define NV_POWERUP_DELAYMAX 5000
441 #define NV_MIIBUSY_DELAY 50
442 #define NV_MIIPHY_DELAY 10
443 #define NV_MIIPHY_DELAYMAX 10000
444 #define NV_MAC_RESET_DELAY 64
445
446 #define NV_WAKEUPPATTERNS 5
447 #define NV_WAKEUPMASKENTRIES 4
448
449 /* General driver defaults */
450 #define NV_WATCHDOG_TIMEO (5*HZ)
451
452 #define RX_RING 128
453 #define TX_RING 256
454 /*
455 * If your nic mysteriously hangs then try to reduce the limits
456 * to 1/0: It might be required to set NV_TX_LASTPACKET in the
457 * last valid ring entry. But this would be impossible to
458 * implement - probably a disassembly error.
459 */
460 #define TX_LIMIT_STOP 255
461 #define TX_LIMIT_START 254
462
463 /* rx/tx mac addr + type + vlan + align + slack*/
464 #define NV_RX_HEADERS (64)
465 /* even more slack. */
466 #define NV_RX_ALLOC_PAD (64)
467
468 /* maximum mtu size */
469 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
470 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
471
472 #define OOM_REFILL (1+HZ/20)
473 #define POLL_WAIT (1+HZ/100)
474 #define LINK_TIMEOUT (3*HZ)
475
476 /*
477 * desc_ver values:
478 * The nic supports three different descriptor types:
479 * - DESC_VER_1: Original
480 * - DESC_VER_2: support for jumbo frames.
481 * - DESC_VER_3: 64-bit format.
482 */
483 #define DESC_VER_1 1
484 #define DESC_VER_2 2
485 #define DESC_VER_3 3
486
487 /* PHY defines */
488 #define PHY_OUI_MARVELL 0x5043
489 #define PHY_OUI_CICADA 0x03f1
490 #define PHYID1_OUI_MASK 0x03ff
491 #define PHYID1_OUI_SHFT 6
492 #define PHYID2_OUI_MASK 0xfc00
493 #define PHYID2_OUI_SHFT 10
494 #define PHY_INIT1 0x0f000
495 #define PHY_INIT2 0x0e00
496 #define PHY_INIT3 0x01000
497 #define PHY_INIT4 0x0200
498 #define PHY_INIT5 0x0004
499 #define PHY_INIT6 0x02000
500 #define PHY_GIGABIT 0x0100
501
502 #define PHY_TIMEOUT 0x1
503 #define PHY_ERROR 0x2
504
505 #define PHY_100 0x1
506 #define PHY_1000 0x2
507 #define PHY_HALF 0x100
508
509 /* FIXME: MII defines that should be added to <linux/mii.h> */
510 #define MII_1000BT_CR 0x09
511 #define MII_1000BT_SR 0x0a
512 #define ADVERTISE_1000FULL 0x0200
513 #define ADVERTISE_1000HALF 0x0100
514 #define LPA_1000FULL 0x0800
515 #define LPA_1000HALF 0x0400
516
517 /* MSI/MSI-X defines */
518 #define NV_MSI_X_MAX_VECTORS 8
519 #define NV_MSI_X_VECTORS_MASK 0x000f
520 #define NV_MSI_CAPABLE 0x0010
521 #define NV_MSI_X_CAPABLE 0x0020
522 #define NV_MSI_ENABLED 0x0040
523 #define NV_MSI_X_ENABLED 0x0080
524
525 #define NV_MSI_X_VECTOR_ALL 0x0
526 #define NV_MSI_X_VECTOR_RX 0x0
527 #define NV_MSI_X_VECTOR_TX 0x1
528 #define NV_MSI_X_VECTOR_OTHER 0x2
529
530 /*
531 * SMP locking:
532 * All hardware access under dev->priv->lock, except the performance
533 * critical parts:
534 * - rx is (pseudo-) lockless: it relies on the single-threading provided
535 * by the arch code for interrupts.
536 * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
537 * needs dev->priv->lock :-(
538 * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
539 */
540
541 /* in dev: base, irq */
542 struct fe_priv {
543 spinlock_t lock;
544
545 /* General data:
546 * Locking: spin_lock(&np->lock); */
547 struct net_device_stats stats;
548 int in_shutdown;
549 u32 linkspeed;
550 int duplex;
551 int autoneg;
552 int fixed_mode;
553 int phyaddr;
554 int wolenabled;
555 unsigned int phy_oui;
556 u16 gigabit;
557
558 /* General data: RO fields */
559 dma_addr_t ring_addr;
560 struct pci_dev *pci_dev;
561 u32 orig_mac[2];
562 u32 irqmask;
563 u32 desc_ver;
564 u32 txrxctl_bits;
565 u32 vlanctl_bits;
566 u32 driver_data;
567 u32 register_size;
568
569 void __iomem *base;
570
571 /* rx specific fields.
572 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
573 */
574 ring_type rx_ring;
575 unsigned int cur_rx, refill_rx;
576 struct sk_buff *rx_skbuff[RX_RING];
577 dma_addr_t rx_dma[RX_RING];
578 unsigned int rx_buf_sz;
579 unsigned int pkt_limit;
580 struct timer_list oom_kick;
581 struct timer_list nic_poll;
582 u32 nic_poll_irq;
583
584 /* media detection workaround.
585 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
586 */
587 int need_linktimer;
588 unsigned long link_timeout;
589 /*
590 * tx specific fields.
591 */
592 ring_type tx_ring;
593 unsigned int next_tx, nic_tx;
594 struct sk_buff *tx_skbuff[TX_RING];
595 dma_addr_t tx_dma[TX_RING];
596 unsigned int tx_dma_len[TX_RING];
597 u32 tx_flags;
598
599 /* vlan fields */
600 struct vlan_group *vlangrp;
601
602 /* msi/msi-x fields */
603 u32 msi_flags;
604 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
605 };
606
607 /*
608 * Maximum number of loops until we assume that a bit in the irq mask
609 * is stuck. Overridable with module param.
610 */
611 static int max_interrupt_work = 5;
612
613 /*
614 * Optimization can be either throuput mode or cpu mode
615 *
616 * Throughput Mode: Every tx and rx packet will generate an interrupt.
617 * CPU Mode: Interrupts are controlled by a timer.
618 */
619 #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
620 #define NV_OPTIMIZATION_MODE_CPU 1
621 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
622
623 /*
624 * Poll interval for timer irq
625 *
626 * This interval determines how frequent an interrupt is generated.
627 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
628 * Min = 0, and Max = 65535
629 */
630 static int poll_interval = -1;
631
632 /*
633 * Disable MSI interrupts
634 */
635 static int disable_msi = 0;
636
637 /*
638 * Disable MSIX interrupts
639 */
640 static int disable_msix = 0;
641
642 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
643 {
644 return netdev_priv(dev);
645 }
646
647 static inline u8 __iomem *get_hwbase(struct net_device *dev)
648 {
649 return ((struct fe_priv *)netdev_priv(dev))->base;
650 }
651
652 static inline void pci_push(u8 __iomem *base)
653 {
654 /* force out pending posted writes */
655 readl(base);
656 }
657
658 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
659 {
660 return le32_to_cpu(prd->FlagLen)
661 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
662 }
663
664 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
665 {
666 return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
667 }
668
669 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
670 int delay, int delaymax, const char *msg)
671 {
672 u8 __iomem *base = get_hwbase(dev);
673
674 pci_push(base);
675 do {
676 udelay(delay);
677 delaymax -= delay;
678 if (delaymax < 0) {
679 if (msg)
680 printk(msg);
681 return 1;
682 }
683 } while ((readl(base + offset) & mask) != target);
684 return 0;
685 }
686
687 #define NV_SETUP_RX_RING 0x01
688 #define NV_SETUP_TX_RING 0x02
689
690 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
691 {
692 struct fe_priv *np = get_nvpriv(dev);
693 u8 __iomem *base = get_hwbase(dev);
694
695 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
696 if (rxtx_flags & NV_SETUP_RX_RING) {
697 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
698 }
699 if (rxtx_flags & NV_SETUP_TX_RING) {
700 writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
701 }
702 } else {
703 if (rxtx_flags & NV_SETUP_RX_RING) {
704 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
705 writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
706 }
707 if (rxtx_flags & NV_SETUP_TX_RING) {
708 writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
709 writel((u32) (cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
710 }
711 }
712 }
713
714 static int using_multi_irqs(struct net_device *dev)
715 {
716 struct fe_priv *np = get_nvpriv(dev);
717
718 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
719 ((np->msi_flags & NV_MSI_X_ENABLED) &&
720 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
721 return 0;
722 else
723 return 1;
724 }
725
726 static void nv_enable_irq(struct net_device *dev)
727 {
728 struct fe_priv *np = get_nvpriv(dev);
729
730 if (!using_multi_irqs(dev)) {
731 if (np->msi_flags & NV_MSI_X_ENABLED)
732 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
733 else
734 enable_irq(dev->irq);
735 } else {
736 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
737 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
738 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
739 }
740 }
741
742 static void nv_disable_irq(struct net_device *dev)
743 {
744 struct fe_priv *np = get_nvpriv(dev);
745
746 if (!using_multi_irqs(dev)) {
747 if (np->msi_flags & NV_MSI_X_ENABLED)
748 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
749 else
750 disable_irq(dev->irq);
751 } else {
752 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
753 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
754 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
755 }
756 }
757
758 /* In MSIX mode, a write to irqmask behaves as XOR */
759 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
760 {
761 u8 __iomem *base = get_hwbase(dev);
762
763 writel(mask, base + NvRegIrqMask);
764 }
765
766 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
767 {
768 struct fe_priv *np = get_nvpriv(dev);
769 u8 __iomem *base = get_hwbase(dev);
770
771 if (np->msi_flags & NV_MSI_X_ENABLED) {
772 writel(mask, base + NvRegIrqMask);
773 } else {
774 if (np->msi_flags & NV_MSI_ENABLED)
775 writel(0, base + NvRegMSIIrqMask);
776 writel(0, base + NvRegIrqMask);
777 }
778 }
779
780 #define MII_READ (-1)
781 /* mii_rw: read/write a register on the PHY.
782 *
783 * Caller must guarantee serialization
784 */
785 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
786 {
787 u8 __iomem *base = get_hwbase(dev);
788 u32 reg;
789 int retval;
790
791 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
792
793 reg = readl(base + NvRegMIIControl);
794 if (reg & NVREG_MIICTL_INUSE) {
795 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
796 udelay(NV_MIIBUSY_DELAY);
797 }
798
799 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
800 if (value != MII_READ) {
801 writel(value, base + NvRegMIIData);
802 reg |= NVREG_MIICTL_WRITE;
803 }
804 writel(reg, base + NvRegMIIControl);
805
806 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
807 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
808 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
809 dev->name, miireg, addr);
810 retval = -1;
811 } else if (value != MII_READ) {
812 /* it was a write operation - fewer failures are detectable */
813 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
814 dev->name, value, miireg, addr);
815 retval = 0;
816 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
817 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
818 dev->name, miireg, addr);
819 retval = -1;
820 } else {
821 retval = readl(base + NvRegMIIData);
822 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
823 dev->name, miireg, addr, retval);
824 }
825
826 return retval;
827 }
828
829 static int phy_reset(struct net_device *dev)
830 {
831 struct fe_priv *np = netdev_priv(dev);
832 u32 miicontrol;
833 unsigned int tries = 0;
834
835 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
836 miicontrol |= BMCR_RESET;
837 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
838 return -1;
839 }
840
841 /* wait for 500ms */
842 msleep(500);
843
844 /* must wait till reset is deasserted */
845 while (miicontrol & BMCR_RESET) {
846 msleep(10);
847 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
848 /* FIXME: 100 tries seem excessive */
849 if (tries++ > 100)
850 return -1;
851 }
852 return 0;
853 }
854
855 static int phy_init(struct net_device *dev)
856 {
857 struct fe_priv *np = get_nvpriv(dev);
858 u8 __iomem *base = get_hwbase(dev);
859 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
860
861 /* set advertise register */
862 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
863 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
864 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
865 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
866 return PHY_ERROR;
867 }
868
869 /* get phy interface type */
870 phyinterface = readl(base + NvRegPhyInterface);
871
872 /* see if gigabit phy */
873 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
874 if (mii_status & PHY_GIGABIT) {
875 np->gigabit = PHY_GIGABIT;
876 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
877 mii_control_1000 &= ~ADVERTISE_1000HALF;
878 if (phyinterface & PHY_RGMII)
879 mii_control_1000 |= ADVERTISE_1000FULL;
880 else
881 mii_control_1000 &= ~ADVERTISE_1000FULL;
882
883 if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
884 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
885 return PHY_ERROR;
886 }
887 }
888 else
889 np->gigabit = 0;
890
891 /* reset the phy */
892 if (phy_reset(dev)) {
893 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
894 return PHY_ERROR;
895 }
896
897 /* phy vendor specific configuration */
898 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
899 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
900 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
901 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
902 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
903 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
904 return PHY_ERROR;
905 }
906 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
907 phy_reserved |= PHY_INIT5;
908 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
909 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
910 return PHY_ERROR;
911 }
912 }
913 if (np->phy_oui == PHY_OUI_CICADA) {
914 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
915 phy_reserved |= PHY_INIT6;
916 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
917 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
918 return PHY_ERROR;
919 }
920 }
921
922 /* restart auto negotiation */
923 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
924 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
925 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
926 return PHY_ERROR;
927 }
928
929 return 0;
930 }
931
932 static void nv_start_rx(struct net_device *dev)
933 {
934 struct fe_priv *np = netdev_priv(dev);
935 u8 __iomem *base = get_hwbase(dev);
936
937 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
938 /* Already running? Stop it. */
939 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
940 writel(0, base + NvRegReceiverControl);
941 pci_push(base);
942 }
943 writel(np->linkspeed, base + NvRegLinkSpeed);
944 pci_push(base);
945 writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
946 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
947 dev->name, np->duplex, np->linkspeed);
948 pci_push(base);
949 }
950
951 static void nv_stop_rx(struct net_device *dev)
952 {
953 u8 __iomem *base = get_hwbase(dev);
954
955 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
956 writel(0, base + NvRegReceiverControl);
957 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
958 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
959 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
960
961 udelay(NV_RXSTOP_DELAY2);
962 writel(0, base + NvRegLinkSpeed);
963 }
964
965 static void nv_start_tx(struct net_device *dev)
966 {
967 u8 __iomem *base = get_hwbase(dev);
968
969 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
970 writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
971 pci_push(base);
972 }
973
974 static void nv_stop_tx(struct net_device *dev)
975 {
976 u8 __iomem *base = get_hwbase(dev);
977
978 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
979 writel(0, base + NvRegTransmitterControl);
980 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
981 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
982 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
983
984 udelay(NV_TXSTOP_DELAY2);
985 writel(0, base + NvRegUnknownTransmitterReg);
986 }
987
988 static void nv_txrx_reset(struct net_device *dev)
989 {
990 struct fe_priv *np = netdev_priv(dev);
991 u8 __iomem *base = get_hwbase(dev);
992
993 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
994 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
995 pci_push(base);
996 udelay(NV_TXRX_RESET_DELAY);
997 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
998 pci_push(base);
999 }
1000
1001 static void nv_mac_reset(struct net_device *dev)
1002 {
1003 struct fe_priv *np = netdev_priv(dev);
1004 u8 __iomem *base = get_hwbase(dev);
1005
1006 dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1007 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1008 pci_push(base);
1009 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1010 pci_push(base);
1011 udelay(NV_MAC_RESET_DELAY);
1012 writel(0, base + NvRegMacReset);
1013 pci_push(base);
1014 udelay(NV_MAC_RESET_DELAY);
1015 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1016 pci_push(base);
1017 }
1018
1019 /*
1020 * nv_get_stats: dev->get_stats function
1021 * Get latest stats value from the nic.
1022 * Called with read_lock(&dev_base_lock) held for read -
1023 * only synchronized against unregister_netdevice.
1024 */
1025 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1026 {
1027 struct fe_priv *np = netdev_priv(dev);
1028
1029 /* It seems that the nic always generates interrupts and doesn't
1030 * accumulate errors internally. Thus the current values in np->stats
1031 * are already up to date.
1032 */
1033 return &np->stats;
1034 }
1035
1036 /*
1037 * nv_alloc_rx: fill rx ring entries.
1038 * Return 1 if the allocations for the skbs failed and the
1039 * rx engine is without Available descriptors
1040 */
1041 static int nv_alloc_rx(struct net_device *dev)
1042 {
1043 struct fe_priv *np = netdev_priv(dev);
1044 unsigned int refill_rx = np->refill_rx;
1045 int nr;
1046
1047 while (np->cur_rx != refill_rx) {
1048 struct sk_buff *skb;
1049
1050 nr = refill_rx % RX_RING;
1051 if (np->rx_skbuff[nr] == NULL) {
1052
1053 skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1054 if (!skb)
1055 break;
1056
1057 skb->dev = dev;
1058 np->rx_skbuff[nr] = skb;
1059 } else {
1060 skb = np->rx_skbuff[nr];
1061 }
1062 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
1063 skb->end-skb->data, PCI_DMA_FROMDEVICE);
1064 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1065 np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
1066 wmb();
1067 np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1068 } else {
1069 np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
1070 np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
1071 wmb();
1072 np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1073 }
1074 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
1075 dev->name, refill_rx);
1076 refill_rx++;
1077 }
1078 np->refill_rx = refill_rx;
1079 if (np->cur_rx - refill_rx == RX_RING)
1080 return 1;
1081 return 0;
1082 }
1083
1084 static void nv_do_rx_refill(unsigned long data)
1085 {
1086 struct net_device *dev = (struct net_device *) data;
1087 struct fe_priv *np = netdev_priv(dev);
1088
1089 if (!using_multi_irqs(dev)) {
1090 if (np->msi_flags & NV_MSI_X_ENABLED)
1091 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1092 else
1093 disable_irq(dev->irq);
1094 } else {
1095 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1096 }
1097 if (nv_alloc_rx(dev)) {
1098 spin_lock_irq(&np->lock);
1099 if (!np->in_shutdown)
1100 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1101 spin_unlock_irq(&np->lock);
1102 }
1103 if (!using_multi_irqs(dev)) {
1104 if (np->msi_flags & NV_MSI_X_ENABLED)
1105 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1106 else
1107 enable_irq(dev->irq);
1108 } else {
1109 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1110 }
1111 }
1112
1113 static void nv_init_rx(struct net_device *dev)
1114 {
1115 struct fe_priv *np = netdev_priv(dev);
1116 int i;
1117
1118 np->cur_rx = RX_RING;
1119 np->refill_rx = 0;
1120 for (i = 0; i < RX_RING; i++)
1121 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1122 np->rx_ring.orig[i].FlagLen = 0;
1123 else
1124 np->rx_ring.ex[i].FlagLen = 0;
1125 }
1126
1127 static void nv_init_tx(struct net_device *dev)
1128 {
1129 struct fe_priv *np = netdev_priv(dev);
1130 int i;
1131
1132 np->next_tx = np->nic_tx = 0;
1133 for (i = 0; i < TX_RING; i++) {
1134 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1135 np->tx_ring.orig[i].FlagLen = 0;
1136 else
1137 np->tx_ring.ex[i].FlagLen = 0;
1138 np->tx_skbuff[i] = NULL;
1139 np->tx_dma[i] = 0;
1140 }
1141 }
1142
1143 static int nv_init_ring(struct net_device *dev)
1144 {
1145 nv_init_tx(dev);
1146 nv_init_rx(dev);
1147 return nv_alloc_rx(dev);
1148 }
1149
1150 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
1151 {
1152 struct fe_priv *np = netdev_priv(dev);
1153
1154 dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
1155 dev->name, skbnr);
1156
1157 if (np->tx_dma[skbnr]) {
1158 pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
1159 np->tx_dma_len[skbnr],
1160 PCI_DMA_TODEVICE);
1161 np->tx_dma[skbnr] = 0;
1162 }
1163
1164 if (np->tx_skbuff[skbnr]) {
1165 dev_kfree_skb_any(np->tx_skbuff[skbnr]);
1166 np->tx_skbuff[skbnr] = NULL;
1167 return 1;
1168 } else {
1169 return 0;
1170 }
1171 }
1172
1173 static void nv_drain_tx(struct net_device *dev)
1174 {
1175 struct fe_priv *np = netdev_priv(dev);
1176 unsigned int i;
1177
1178 for (i = 0; i < TX_RING; i++) {
1179 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1180 np->tx_ring.orig[i].FlagLen = 0;
1181 else
1182 np->tx_ring.ex[i].FlagLen = 0;
1183 if (nv_release_txskb(dev, i))
1184 np->stats.tx_dropped++;
1185 }
1186 }
1187
1188 static void nv_drain_rx(struct net_device *dev)
1189 {
1190 struct fe_priv *np = netdev_priv(dev);
1191 int i;
1192 for (i = 0; i < RX_RING; i++) {
1193 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1194 np->rx_ring.orig[i].FlagLen = 0;
1195 else
1196 np->rx_ring.ex[i].FlagLen = 0;
1197 wmb();
1198 if (np->rx_skbuff[i]) {
1199 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1200 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1201 PCI_DMA_FROMDEVICE);
1202 dev_kfree_skb(np->rx_skbuff[i]);
1203 np->rx_skbuff[i] = NULL;
1204 }
1205 }
1206 }
1207
1208 static void drain_ring(struct net_device *dev)
1209 {
1210 nv_drain_tx(dev);
1211 nv_drain_rx(dev);
1212 }
1213
1214 /*
1215 * nv_start_xmit: dev->hard_start_xmit function
1216 * Called with dev->xmit_lock held.
1217 */
1218 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1219 {
1220 struct fe_priv *np = netdev_priv(dev);
1221 u32 tx_flags = 0;
1222 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1223 unsigned int fragments = skb_shinfo(skb)->nr_frags;
1224 unsigned int nr = (np->next_tx - 1) % TX_RING;
1225 unsigned int start_nr = np->next_tx % TX_RING;
1226 unsigned int i;
1227 u32 offset = 0;
1228 u32 bcnt;
1229 u32 size = skb->len-skb->data_len;
1230 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1231 u32 tx_flags_vlan = 0;
1232
1233 /* add fragments to entries count */
1234 for (i = 0; i < fragments; i++) {
1235 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1236 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1237 }
1238
1239 spin_lock_irq(&np->lock);
1240
1241 if ((np->next_tx - np->nic_tx + entries - 1) > TX_LIMIT_STOP) {
1242 spin_unlock_irq(&np->lock);
1243 netif_stop_queue(dev);
1244 return NETDEV_TX_BUSY;
1245 }
1246
1247 /* setup the header buffer */
1248 do {
1249 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1250 nr = (nr + 1) % TX_RING;
1251
1252 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1253 PCI_DMA_TODEVICE);
1254 np->tx_dma_len[nr] = bcnt;
1255
1256 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1257 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1258 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1259 } else {
1260 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1261 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1262 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1263 }
1264 tx_flags = np->tx_flags;
1265 offset += bcnt;
1266 size -= bcnt;
1267 } while(size);
1268
1269 /* setup the fragments */
1270 for (i = 0; i < fragments; i++) {
1271 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1272 u32 size = frag->size;
1273 offset = 0;
1274
1275 do {
1276 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1277 nr = (nr + 1) % TX_RING;
1278
1279 np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1280 PCI_DMA_TODEVICE);
1281 np->tx_dma_len[nr] = bcnt;
1282
1283 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1284 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1285 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1286 } else {
1287 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1288 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1289 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1290 }
1291 offset += bcnt;
1292 size -= bcnt;
1293 } while (size);
1294 }
1295
1296 /* set last fragment flag */
1297 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1298 np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1299 } else {
1300 np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1301 }
1302
1303 np->tx_skbuff[nr] = skb;
1304
1305 #ifdef NETIF_F_TSO
1306 if (skb_shinfo(skb)->tso_size)
1307 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
1308 else
1309 #endif
1310 tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
1311
1312 /* vlan tag */
1313 if (np->vlangrp && vlan_tx_tag_present(skb)) {
1314 tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
1315 }
1316
1317 /* set tx flags */
1318 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1319 np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1320 } else {
1321 np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
1322 np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1323 }
1324
1325 dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1326 dev->name, np->next_tx, entries, tx_flags_extra);
1327 {
1328 int j;
1329 for (j=0; j<64; j++) {
1330 if ((j%16) == 0)
1331 dprintk("\n%03x:", j);
1332 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1333 }
1334 dprintk("\n");
1335 }
1336
1337 np->next_tx += entries;
1338
1339 dev->trans_start = jiffies;
1340 spin_unlock_irq(&np->lock);
1341 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1342 pci_push(get_hwbase(dev));
1343 return NETDEV_TX_OK;
1344 }
1345
1346 /*
1347 * nv_tx_done: check for completed packets, release the skbs.
1348 *
1349 * Caller must own np->lock.
1350 */
1351 static void nv_tx_done(struct net_device *dev)
1352 {
1353 struct fe_priv *np = netdev_priv(dev);
1354 u32 Flags;
1355 unsigned int i;
1356 struct sk_buff *skb;
1357
1358 while (np->nic_tx != np->next_tx) {
1359 i = np->nic_tx % TX_RING;
1360
1361 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1362 Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1363 else
1364 Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1365
1366 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1367 dev->name, np->nic_tx, Flags);
1368 if (Flags & NV_TX_VALID)
1369 break;
1370 if (np->desc_ver == DESC_VER_1) {
1371 if (Flags & NV_TX_LASTPACKET) {
1372 skb = np->tx_skbuff[i];
1373 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1374 NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1375 if (Flags & NV_TX_UNDERFLOW)
1376 np->stats.tx_fifo_errors++;
1377 if (Flags & NV_TX_CARRIERLOST)
1378 np->stats.tx_carrier_errors++;
1379 np->stats.tx_errors++;
1380 } else {
1381 np->stats.tx_packets++;
1382 np->stats.tx_bytes += skb->len;
1383 }
1384 }
1385 } else {
1386 if (Flags & NV_TX2_LASTPACKET) {
1387 skb = np->tx_skbuff[i];
1388 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1389 NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1390 if (Flags & NV_TX2_UNDERFLOW)
1391 np->stats.tx_fifo_errors++;
1392 if (Flags & NV_TX2_CARRIERLOST)
1393 np->stats.tx_carrier_errors++;
1394 np->stats.tx_errors++;
1395 } else {
1396 np->stats.tx_packets++;
1397 np->stats.tx_bytes += skb->len;
1398 }
1399 }
1400 }
1401 nv_release_txskb(dev, i);
1402 np->nic_tx++;
1403 }
1404 if (np->next_tx - np->nic_tx < TX_LIMIT_START)
1405 netif_wake_queue(dev);
1406 }
1407
1408 /*
1409 * nv_tx_timeout: dev->tx_timeout function
1410 * Called with dev->xmit_lock held.
1411 */
1412 static void nv_tx_timeout(struct net_device *dev)
1413 {
1414 struct fe_priv *np = netdev_priv(dev);
1415 u8 __iomem *base = get_hwbase(dev);
1416 u32 status;
1417
1418 if (np->msi_flags & NV_MSI_X_ENABLED)
1419 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1420 else
1421 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1422
1423 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1424
1425 {
1426 int i;
1427
1428 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1429 dev->name, (unsigned long)np->ring_addr,
1430 np->next_tx, np->nic_tx);
1431 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1432 for (i=0;i<=np->register_size;i+= 32) {
1433 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1434 i,
1435 readl(base + i + 0), readl(base + i + 4),
1436 readl(base + i + 8), readl(base + i + 12),
1437 readl(base + i + 16), readl(base + i + 20),
1438 readl(base + i + 24), readl(base + i + 28));
1439 }
1440 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1441 for (i=0;i<TX_RING;i+= 4) {
1442 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1443 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1444 i,
1445 le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1446 le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1447 le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1448 le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1449 le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1450 le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1451 le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1452 le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1453 } else {
1454 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1455 i,
1456 le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1457 le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1458 le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1459 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1460 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1461 le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1462 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1463 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1464 le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1465 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1466 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1467 le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1468 }
1469 }
1470 }
1471
1472 spin_lock_irq(&np->lock);
1473
1474 /* 1) stop tx engine */
1475 nv_stop_tx(dev);
1476
1477 /* 2) check that the packets were not sent already: */
1478 nv_tx_done(dev);
1479
1480 /* 3) if there are dead entries: clear everything */
1481 if (np->next_tx != np->nic_tx) {
1482 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1483 nv_drain_tx(dev);
1484 np->next_tx = np->nic_tx = 0;
1485 setup_hw_rings(dev, NV_SETUP_TX_RING);
1486 netif_wake_queue(dev);
1487 }
1488
1489 /* 4) restart tx engine */
1490 nv_start_tx(dev);
1491 spin_unlock_irq(&np->lock);
1492 }
1493
1494 /*
1495 * Called when the nic notices a mismatch between the actual data len on the
1496 * wire and the len indicated in the 802 header
1497 */
1498 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1499 {
1500 int hdrlen; /* length of the 802 header */
1501 int protolen; /* length as stored in the proto field */
1502
1503 /* 1) calculate len according to header */
1504 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1505 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1506 hdrlen = VLAN_HLEN;
1507 } else {
1508 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1509 hdrlen = ETH_HLEN;
1510 }
1511 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1512 dev->name, datalen, protolen, hdrlen);
1513 if (protolen > ETH_DATA_LEN)
1514 return datalen; /* Value in proto field not a len, no checks possible */
1515
1516 protolen += hdrlen;
1517 /* consistency checks: */
1518 if (datalen > ETH_ZLEN) {
1519 if (datalen >= protolen) {
1520 /* more data on wire than in 802 header, trim of
1521 * additional data.
1522 */
1523 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1524 dev->name, protolen);
1525 return protolen;
1526 } else {
1527 /* less data on wire than mentioned in header.
1528 * Discard the packet.
1529 */
1530 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1531 dev->name);
1532 return -1;
1533 }
1534 } else {
1535 /* short packet. Accept only if 802 values are also short */
1536 if (protolen > ETH_ZLEN) {
1537 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1538 dev->name);
1539 return -1;
1540 }
1541 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1542 dev->name, datalen);
1543 return datalen;
1544 }
1545 }
1546
1547 static void nv_rx_process(struct net_device *dev)
1548 {
1549 struct fe_priv *np = netdev_priv(dev);
1550 u32 Flags;
1551 u32 vlanflags = 0;
1552
1553
1554 for (;;) {
1555 struct sk_buff *skb;
1556 int len;
1557 int i;
1558 if (np->cur_rx - np->refill_rx >= RX_RING)
1559 break; /* we scanned the whole ring - do not continue */
1560
1561 i = np->cur_rx % RX_RING;
1562 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1563 Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1564 len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1565 } else {
1566 Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1567 len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1568 vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
1569 }
1570
1571 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1572 dev->name, np->cur_rx, Flags);
1573
1574 if (Flags & NV_RX_AVAIL)
1575 break; /* still owned by hardware, */
1576
1577 /*
1578 * the packet is for us - immediately tear down the pci mapping.
1579 * TODO: check if a prefetch of the first cacheline improves
1580 * the performance.
1581 */
1582 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1583 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1584 PCI_DMA_FROMDEVICE);
1585
1586 {
1587 int j;
1588 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1589 for (j=0; j<64; j++) {
1590 if ((j%16) == 0)
1591 dprintk("\n%03x:", j);
1592 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1593 }
1594 dprintk("\n");
1595 }
1596 /* look at what we actually got: */
1597 if (np->desc_ver == DESC_VER_1) {
1598 if (!(Flags & NV_RX_DESCRIPTORVALID))
1599 goto next_pkt;
1600
1601 if (Flags & NV_RX_ERROR) {
1602 if (Flags & NV_RX_MISSEDFRAME) {
1603 np->stats.rx_missed_errors++;
1604 np->stats.rx_errors++;
1605 goto next_pkt;
1606 }
1607 if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1608 np->stats.rx_errors++;
1609 goto next_pkt;
1610 }
1611 if (Flags & NV_RX_CRCERR) {
1612 np->stats.rx_crc_errors++;
1613 np->stats.rx_errors++;
1614 goto next_pkt;
1615 }
1616 if (Flags & NV_RX_OVERFLOW) {
1617 np->stats.rx_over_errors++;
1618 np->stats.rx_errors++;
1619 goto next_pkt;
1620 }
1621 if (Flags & NV_RX_ERROR4) {
1622 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1623 if (len < 0) {
1624 np->stats.rx_errors++;
1625 goto next_pkt;
1626 }
1627 }
1628 /* framing errors are soft errors. */
1629 if (Flags & NV_RX_FRAMINGERR) {
1630 if (Flags & NV_RX_SUBSTRACT1) {
1631 len--;
1632 }
1633 }
1634 }
1635 } else {
1636 if (!(Flags & NV_RX2_DESCRIPTORVALID))
1637 goto next_pkt;
1638
1639 if (Flags & NV_RX2_ERROR) {
1640 if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1641 np->stats.rx_errors++;
1642 goto next_pkt;
1643 }
1644 if (Flags & NV_RX2_CRCERR) {
1645 np->stats.rx_crc_errors++;
1646 np->stats.rx_errors++;
1647 goto next_pkt;
1648 }
1649 if (Flags & NV_RX2_OVERFLOW) {
1650 np->stats.rx_over_errors++;
1651 np->stats.rx_errors++;
1652 goto next_pkt;
1653 }
1654 if (Flags & NV_RX2_ERROR4) {
1655 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1656 if (len < 0) {
1657 np->stats.rx_errors++;
1658 goto next_pkt;
1659 }
1660 }
1661 /* framing errors are soft errors */
1662 if (Flags & NV_RX2_FRAMINGERR) {
1663 if (Flags & NV_RX2_SUBSTRACT1) {
1664 len--;
1665 }
1666 }
1667 }
1668 Flags &= NV_RX2_CHECKSUMMASK;
1669 if (Flags == NV_RX2_CHECKSUMOK1 ||
1670 Flags == NV_RX2_CHECKSUMOK2 ||
1671 Flags == NV_RX2_CHECKSUMOK3) {
1672 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1673 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1674 } else {
1675 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1676 }
1677 }
1678 /* got a valid packet - forward it to the network core */
1679 skb = np->rx_skbuff[i];
1680 np->rx_skbuff[i] = NULL;
1681
1682 skb_put(skb, len);
1683 skb->protocol = eth_type_trans(skb, dev);
1684 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1685 dev->name, np->cur_rx, len, skb->protocol);
1686 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
1687 vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
1688 } else {
1689 netif_rx(skb);
1690 }
1691 dev->last_rx = jiffies;
1692 np->stats.rx_packets++;
1693 np->stats.rx_bytes += len;
1694 next_pkt:
1695 np->cur_rx++;
1696 }
1697 }
1698
1699 static void set_bufsize(struct net_device *dev)
1700 {
1701 struct fe_priv *np = netdev_priv(dev);
1702
1703 if (dev->mtu <= ETH_DATA_LEN)
1704 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1705 else
1706 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1707 }
1708
1709 /*
1710 * nv_change_mtu: dev->change_mtu function
1711 * Called with dev_base_lock held for read.
1712 */
1713 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1714 {
1715 struct fe_priv *np = netdev_priv(dev);
1716 int old_mtu;
1717
1718 if (new_mtu < 64 || new_mtu > np->pkt_limit)
1719 return -EINVAL;
1720
1721 old_mtu = dev->mtu;
1722 dev->mtu = new_mtu;
1723
1724 /* return early if the buffer sizes will not change */
1725 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1726 return 0;
1727 if (old_mtu == new_mtu)
1728 return 0;
1729
1730 /* synchronized against open : rtnl_lock() held by caller */
1731 if (netif_running(dev)) {
1732 u8 __iomem *base = get_hwbase(dev);
1733 /*
1734 * It seems that the nic preloads valid ring entries into an
1735 * internal buffer. The procedure for flushing everything is
1736 * guessed, there is probably a simpler approach.
1737 * Changing the MTU is a rare event, it shouldn't matter.
1738 */
1739 nv_disable_irq(dev);
1740 spin_lock_bh(&dev->xmit_lock);
1741 spin_lock(&np->lock);
1742 /* stop engines */
1743 nv_stop_rx(dev);
1744 nv_stop_tx(dev);
1745 nv_txrx_reset(dev);
1746 /* drain rx queue */
1747 nv_drain_rx(dev);
1748 nv_drain_tx(dev);
1749 /* reinit driver view of the rx queue */
1750 nv_init_rx(dev);
1751 nv_init_tx(dev);
1752 /* alloc new rx buffers */
1753 set_bufsize(dev);
1754 if (nv_alloc_rx(dev)) {
1755 if (!np->in_shutdown)
1756 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1757 }
1758 /* reinit nic view of the rx queue */
1759 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1760 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
1761 writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
1762 base + NvRegRingSizes);
1763 pci_push(base);
1764 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1765 pci_push(base);
1766
1767 /* restart rx engine */
1768 nv_start_rx(dev);
1769 nv_start_tx(dev);
1770 spin_unlock(&np->lock);
1771 spin_unlock_bh(&dev->xmit_lock);
1772 nv_enable_irq(dev);
1773 }
1774 return 0;
1775 }
1776
1777 static void nv_copy_mac_to_hw(struct net_device *dev)
1778 {
1779 u8 __iomem *base = get_hwbase(dev);
1780 u32 mac[2];
1781
1782 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1783 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1784 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1785
1786 writel(mac[0], base + NvRegMacAddrA);
1787 writel(mac[1], base + NvRegMacAddrB);
1788 }
1789
1790 /*
1791 * nv_set_mac_address: dev->set_mac_address function
1792 * Called with rtnl_lock() held.
1793 */
1794 static int nv_set_mac_address(struct net_device *dev, void *addr)
1795 {
1796 struct fe_priv *np = netdev_priv(dev);
1797 struct sockaddr *macaddr = (struct sockaddr*)addr;
1798
1799 if(!is_valid_ether_addr(macaddr->sa_data))
1800 return -EADDRNOTAVAIL;
1801
1802 /* synchronized against open : rtnl_lock() held by caller */
1803 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1804
1805 if (netif_running(dev)) {
1806 spin_lock_bh(&dev->xmit_lock);
1807 spin_lock_irq(&np->lock);
1808
1809 /* stop rx engine */
1810 nv_stop_rx(dev);
1811
1812 /* set mac address */
1813 nv_copy_mac_to_hw(dev);
1814
1815 /* restart rx engine */
1816 nv_start_rx(dev);
1817 spin_unlock_irq(&np->lock);
1818 spin_unlock_bh(&dev->xmit_lock);
1819 } else {
1820 nv_copy_mac_to_hw(dev);
1821 }
1822 return 0;
1823 }
1824
1825 /*
1826 * nv_set_multicast: dev->set_multicast function
1827 * Called with dev->xmit_lock held.
1828 */
1829 static void nv_set_multicast(struct net_device *dev)
1830 {
1831 struct fe_priv *np = netdev_priv(dev);
1832 u8 __iomem *base = get_hwbase(dev);
1833 u32 addr[2];
1834 u32 mask[2];
1835 u32 pff;
1836
1837 memset(addr, 0, sizeof(addr));
1838 memset(mask, 0, sizeof(mask));
1839
1840 if (dev->flags & IFF_PROMISC) {
1841 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
1842 pff = NVREG_PFF_PROMISC;
1843 } else {
1844 pff = NVREG_PFF_MYADDR;
1845
1846 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
1847 u32 alwaysOff[2];
1848 u32 alwaysOn[2];
1849
1850 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
1851 if (dev->flags & IFF_ALLMULTI) {
1852 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
1853 } else {
1854 struct dev_mc_list *walk;
1855
1856 walk = dev->mc_list;
1857 while (walk != NULL) {
1858 u32 a, b;
1859 a = le32_to_cpu(*(u32 *) walk->dmi_addr);
1860 b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
1861 alwaysOn[0] &= a;
1862 alwaysOff[0] &= ~a;
1863 alwaysOn[1] &= b;
1864 alwaysOff[1] &= ~b;
1865 walk = walk->next;
1866 }
1867 }
1868 addr[0] = alwaysOn[0];
1869 addr[1] = alwaysOn[1];
1870 mask[0] = alwaysOn[0] | alwaysOff[0];
1871 mask[1] = alwaysOn[1] | alwaysOff[1];
1872 }
1873 }
1874 addr[0] |= NVREG_MCASTADDRA_FORCE;
1875 pff |= NVREG_PFF_ALWAYS;
1876 spin_lock_irq(&np->lock);
1877 nv_stop_rx(dev);
1878 writel(addr[0], base + NvRegMulticastAddrA);
1879 writel(addr[1], base + NvRegMulticastAddrB);
1880 writel(mask[0], base + NvRegMulticastMaskA);
1881 writel(mask[1], base + NvRegMulticastMaskB);
1882 writel(pff, base + NvRegPacketFilterFlags);
1883 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
1884 dev->name);
1885 nv_start_rx(dev);
1886 spin_unlock_irq(&np->lock);
1887 }
1888
1889 /**
1890 * nv_update_linkspeed: Setup the MAC according to the link partner
1891 * @dev: Network device to be configured
1892 *
1893 * The function queries the PHY and checks if there is a link partner.
1894 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
1895 * set to 10 MBit HD.
1896 *
1897 * The function returns 0 if there is no link partner and 1 if there is
1898 * a good link partner.
1899 */
1900 static int nv_update_linkspeed(struct net_device *dev)
1901 {
1902 struct fe_priv *np = netdev_priv(dev);
1903 u8 __iomem *base = get_hwbase(dev);
1904 int adv, lpa;
1905 int newls = np->linkspeed;
1906 int newdup = np->duplex;
1907 int mii_status;
1908 int retval = 0;
1909 u32 control_1000, status_1000, phyreg;
1910
1911 /* BMSR_LSTATUS is latched, read it twice:
1912 * we want the current value.
1913 */
1914 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1915 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1916
1917 if (!(mii_status & BMSR_LSTATUS)) {
1918 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
1919 dev->name);
1920 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1921 newdup = 0;
1922 retval = 0;
1923 goto set_speed;
1924 }
1925
1926 if (np->autoneg == 0) {
1927 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
1928 dev->name, np->fixed_mode);
1929 if (np->fixed_mode & LPA_100FULL) {
1930 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1931 newdup = 1;
1932 } else if (np->fixed_mode & LPA_100HALF) {
1933 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1934 newdup = 0;
1935 } else if (np->fixed_mode & LPA_10FULL) {
1936 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1937 newdup = 1;
1938 } else {
1939 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1940 newdup = 0;
1941 }
1942 retval = 1;
1943 goto set_speed;
1944 }
1945 /* check auto negotiation is complete */
1946 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
1947 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
1948 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1949 newdup = 0;
1950 retval = 0;
1951 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
1952 goto set_speed;
1953 }
1954
1955 retval = 1;
1956 if (np->gigabit == PHY_GIGABIT) {
1957 control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1958 status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
1959
1960 if ((control_1000 & ADVERTISE_1000FULL) &&
1961 (status_1000 & LPA_1000FULL)) {
1962 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
1963 dev->name);
1964 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
1965 newdup = 1;
1966 goto set_speed;
1967 }
1968 }
1969
1970 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1971 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
1972 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
1973 dev->name, adv, lpa);
1974
1975 /* FIXME: handle parallel detection properly */
1976 lpa = lpa & adv;
1977 if (lpa & LPA_100FULL) {
1978 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1979 newdup = 1;
1980 } else if (lpa & LPA_100HALF) {
1981 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1982 newdup = 0;
1983 } else if (lpa & LPA_10FULL) {
1984 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1985 newdup = 1;
1986 } else if (lpa & LPA_10HALF) {
1987 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1988 newdup = 0;
1989 } else {
1990 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
1991 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1992 newdup = 0;
1993 }
1994
1995 set_speed:
1996 if (np->duplex == newdup && np->linkspeed == newls)
1997 return retval;
1998
1999 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2000 dev->name, np->linkspeed, np->duplex, newls, newdup);
2001
2002 np->duplex = newdup;
2003 np->linkspeed = newls;
2004
2005 if (np->gigabit == PHY_GIGABIT) {
2006 phyreg = readl(base + NvRegRandomSeed);
2007 phyreg &= ~(0x3FF00);
2008 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2009 phyreg |= NVREG_RNDSEED_FORCE3;
2010 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2011 phyreg |= NVREG_RNDSEED_FORCE2;
2012 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2013 phyreg |= NVREG_RNDSEED_FORCE;
2014 writel(phyreg, base + NvRegRandomSeed);
2015 }
2016
2017 phyreg = readl(base + NvRegPhyInterface);
2018 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2019 if (np->duplex == 0)
2020 phyreg |= PHY_HALF;
2021 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2022 phyreg |= PHY_100;
2023 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2024 phyreg |= PHY_1000;
2025 writel(phyreg, base + NvRegPhyInterface);
2026
2027 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2028 base + NvRegMisc1);
2029 pci_push(base);
2030 writel(np->linkspeed, base + NvRegLinkSpeed);
2031 pci_push(base);
2032
2033 return retval;
2034 }
2035
2036 static void nv_linkchange(struct net_device *dev)
2037 {
2038 if (nv_update_linkspeed(dev)) {
2039 if (!netif_carrier_ok(dev)) {
2040 netif_carrier_on(dev);
2041 printk(KERN_INFO "%s: link up.\n", dev->name);
2042 nv_start_rx(dev);
2043 }
2044 } else {
2045 if (netif_carrier_ok(dev)) {
2046 netif_carrier_off(dev);
2047 printk(KERN_INFO "%s: link down.\n", dev->name);
2048 nv_stop_rx(dev);
2049 }
2050 }
2051 }
2052
2053 static void nv_link_irq(struct net_device *dev)
2054 {
2055 u8 __iomem *base = get_hwbase(dev);
2056 u32 miistat;
2057
2058 miistat = readl(base + NvRegMIIStatus);
2059 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2060 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2061
2062 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2063 nv_linkchange(dev);
2064 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2065 }
2066
2067 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
2068 {
2069 struct net_device *dev = (struct net_device *) data;
2070 struct fe_priv *np = netdev_priv(dev);
2071 u8 __iomem *base = get_hwbase(dev);
2072 u32 events;
2073 int i;
2074
2075 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2076
2077 for (i=0; ; i++) {
2078 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2079 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2080 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2081 } else {
2082 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2083 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2084 }
2085 pci_push(base);
2086 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2087 if (!(events & np->irqmask))
2088 break;
2089
2090 spin_lock(&np->lock);
2091 nv_tx_done(dev);
2092 spin_unlock(&np->lock);
2093
2094 nv_rx_process(dev);
2095 if (nv_alloc_rx(dev)) {
2096 spin_lock(&np->lock);
2097 if (!np->in_shutdown)
2098 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2099 spin_unlock(&np->lock);
2100 }
2101
2102 if (events & NVREG_IRQ_LINK) {
2103 spin_lock(&np->lock);
2104 nv_link_irq(dev);
2105 spin_unlock(&np->lock);
2106 }
2107 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2108 spin_lock(&np->lock);
2109 nv_linkchange(dev);
2110 spin_unlock(&np->lock);
2111 np->link_timeout = jiffies + LINK_TIMEOUT;
2112 }
2113 if (events & (NVREG_IRQ_TX_ERR)) {
2114 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2115 dev->name, events);
2116 }
2117 if (events & (NVREG_IRQ_UNKNOWN)) {
2118 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2119 dev->name, events);
2120 }
2121 if (i > max_interrupt_work) {
2122 spin_lock(&np->lock);
2123 /* disable interrupts on the nic */
2124 if (!(np->msi_flags & NV_MSI_X_ENABLED))
2125 writel(0, base + NvRegIrqMask);
2126 else
2127 writel(np->irqmask, base + NvRegIrqMask);
2128 pci_push(base);
2129
2130 if (!np->in_shutdown) {
2131 np->nic_poll_irq = np->irqmask;
2132 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2133 }
2134 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2135 spin_unlock(&np->lock);
2136 break;
2137 }
2138
2139 }
2140 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2141
2142 return IRQ_RETVAL(i);
2143 }
2144
2145 static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
2146 {
2147 struct net_device *dev = (struct net_device *) data;
2148 struct fe_priv *np = netdev_priv(dev);
2149 u8 __iomem *base = get_hwbase(dev);
2150 u32 events;
2151 int i;
2152
2153 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
2154
2155 for (i=0; ; i++) {
2156 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
2157 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
2158 pci_push(base);
2159 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
2160 if (!(events & np->irqmask))
2161 break;
2162
2163 spin_lock_irq(&np->lock);
2164 nv_tx_done(dev);
2165 spin_unlock_irq(&np->lock);
2166
2167 if (events & (NVREG_IRQ_TX_ERR)) {
2168 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2169 dev->name, events);
2170 }
2171 if (i > max_interrupt_work) {
2172 spin_lock_irq(&np->lock);
2173 /* disable interrupts on the nic */
2174 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
2175 pci_push(base);
2176
2177 if (!np->in_shutdown) {
2178 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
2179 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2180 }
2181 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
2182 spin_unlock_irq(&np->lock);
2183 break;
2184 }
2185
2186 }
2187 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
2188
2189 return IRQ_RETVAL(i);
2190 }
2191
2192 static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2193 {
2194 struct net_device *dev = (struct net_device *) data;
2195 struct fe_priv *np = netdev_priv(dev);
2196 u8 __iomem *base = get_hwbase(dev);
2197 u32 events;
2198 int i;
2199
2200 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
2201
2202 for (i=0; ; i++) {
2203 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2204 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2205 pci_push(base);
2206 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
2207 if (!(events & np->irqmask))
2208 break;
2209
2210 nv_rx_process(dev);
2211 if (nv_alloc_rx(dev)) {
2212 spin_lock_irq(&np->lock);
2213 if (!np->in_shutdown)
2214 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2215 spin_unlock_irq(&np->lock);
2216 }
2217
2218 if (i > max_interrupt_work) {
2219 spin_lock_irq(&np->lock);
2220 /* disable interrupts on the nic */
2221 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2222 pci_push(base);
2223
2224 if (!np->in_shutdown) {
2225 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
2226 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2227 }
2228 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
2229 spin_unlock_irq(&np->lock);
2230 break;
2231 }
2232
2233 }
2234 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
2235
2236 return IRQ_RETVAL(i);
2237 }
2238
2239 static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
2240 {
2241 struct net_device *dev = (struct net_device *) data;
2242 struct fe_priv *np = netdev_priv(dev);
2243 u8 __iomem *base = get_hwbase(dev);
2244 u32 events;
2245 int i;
2246
2247 dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
2248
2249 for (i=0; ; i++) {
2250 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
2251 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
2252 pci_push(base);
2253 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2254 if (!(events & np->irqmask))
2255 break;
2256
2257 if (events & NVREG_IRQ_LINK) {
2258 spin_lock_irq(&np->lock);
2259 nv_link_irq(dev);
2260 spin_unlock_irq(&np->lock);
2261 }
2262 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2263 spin_lock_irq(&np->lock);
2264 nv_linkchange(dev);
2265 spin_unlock_irq(&np->lock);
2266 np->link_timeout = jiffies + LINK_TIMEOUT;
2267 }
2268 if (events & (NVREG_IRQ_UNKNOWN)) {
2269 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2270 dev->name, events);
2271 }
2272 if (i > max_interrupt_work) {
2273 spin_lock_irq(&np->lock);
2274 /* disable interrupts on the nic */
2275 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
2276 pci_push(base);
2277
2278 if (!np->in_shutdown) {
2279 np->nic_poll_irq |= NVREG_IRQ_OTHER;
2280 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2281 }
2282 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
2283 spin_unlock_irq(&np->lock);
2284 break;
2285 }
2286
2287 }
2288 dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
2289
2290 return IRQ_RETVAL(i);
2291 }
2292
2293 static void nv_do_nic_poll(unsigned long data)
2294 {
2295 struct net_device *dev = (struct net_device *) data;
2296 struct fe_priv *np = netdev_priv(dev);
2297 u8 __iomem *base = get_hwbase(dev);
2298 u32 mask = 0;
2299
2300 /*
2301 * First disable irq(s) and then
2302 * reenable interrupts on the nic, we have to do this before calling
2303 * nv_nic_irq because that may decide to do otherwise
2304 */
2305
2306 if (!using_multi_irqs(dev)) {
2307 if (np->msi_flags & NV_MSI_X_ENABLED)
2308 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2309 else
2310 disable_irq(dev->irq);
2311 mask = np->irqmask;
2312 } else {
2313 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2314 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2315 mask |= NVREG_IRQ_RX_ALL;
2316 }
2317 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2318 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2319 mask |= NVREG_IRQ_TX_ALL;
2320 }
2321 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2322 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2323 mask |= NVREG_IRQ_OTHER;
2324 }
2325 }
2326 np->nic_poll_irq = 0;
2327
2328 /* FIXME: Do we need synchronize_irq(dev->irq) here? */
2329
2330 writel(mask, base + NvRegIrqMask);
2331 pci_push(base);
2332
2333 if (!using_multi_irqs(dev)) {
2334 nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
2335 if (np->msi_flags & NV_MSI_X_ENABLED)
2336 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2337 else
2338 enable_irq(dev->irq);
2339 } else {
2340 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2341 nv_nic_irq_rx((int) 0, (void *) data, (struct pt_regs *) NULL);
2342 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2343 }
2344 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2345 nv_nic_irq_tx((int) 0, (void *) data, (struct pt_regs *) NULL);
2346 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2347 }
2348 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2349 nv_nic_irq_other((int) 0, (void *) data, (struct pt_regs *) NULL);
2350 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2351 }
2352 }
2353 }
2354
2355 #ifdef CONFIG_NET_POLL_CONTROLLER
2356 static void nv_poll_controller(struct net_device *dev)
2357 {
2358 nv_do_nic_poll((unsigned long) dev);
2359 }
2360 #endif
2361
2362 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2363 {
2364 struct fe_priv *np = netdev_priv(dev);
2365 strcpy(info->driver, "forcedeth");
2366 strcpy(info->version, FORCEDETH_VERSION);
2367 strcpy(info->bus_info, pci_name(np->pci_dev));
2368 }
2369
2370 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2371 {
2372 struct fe_priv *np = netdev_priv(dev);
2373 wolinfo->supported = WAKE_MAGIC;
2374
2375 spin_lock_irq(&np->lock);
2376 if (np->wolenabled)
2377 wolinfo->wolopts = WAKE_MAGIC;
2378 spin_unlock_irq(&np->lock);
2379 }
2380
2381 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2382 {
2383 struct fe_priv *np = netdev_priv(dev);
2384 u8 __iomem *base = get_hwbase(dev);
2385
2386 spin_lock_irq(&np->lock);
2387 if (wolinfo->wolopts == 0) {
2388 writel(0, base + NvRegWakeUpFlags);
2389 np->wolenabled = 0;
2390 }
2391 if (wolinfo->wolopts & WAKE_MAGIC) {
2392 writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
2393 np->wolenabled = 1;
2394 }
2395 spin_unlock_irq(&np->lock);
2396 return 0;
2397 }
2398
2399 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2400 {
2401 struct fe_priv *np = netdev_priv(dev);
2402 int adv;
2403
2404 spin_lock_irq(&np->lock);
2405 ecmd->port = PORT_MII;
2406 if (!netif_running(dev)) {
2407 /* We do not track link speed / duplex setting if the
2408 * interface is disabled. Force a link check */
2409 nv_update_linkspeed(dev);
2410 }
2411 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
2412 case NVREG_LINKSPEED_10:
2413 ecmd->speed = SPEED_10;
2414 break;
2415 case NVREG_LINKSPEED_100:
2416 ecmd->speed = SPEED_100;
2417 break;
2418 case NVREG_LINKSPEED_1000:
2419 ecmd->speed = SPEED_1000;
2420 break;
2421 }
2422 ecmd->duplex = DUPLEX_HALF;
2423 if (np->duplex)
2424 ecmd->duplex = DUPLEX_FULL;
2425
2426 ecmd->autoneg = np->autoneg;
2427
2428 ecmd->advertising = ADVERTISED_MII;
2429 if (np->autoneg) {
2430 ecmd->advertising |= ADVERTISED_Autoneg;
2431 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2432 } else {
2433 adv = np->fixed_mode;
2434 }
2435 if (adv & ADVERTISE_10HALF)
2436 ecmd->advertising |= ADVERTISED_10baseT_Half;
2437 if (adv & ADVERTISE_10FULL)
2438 ecmd->advertising |= ADVERTISED_10baseT_Full;
2439 if (adv & ADVERTISE_100HALF)
2440 ecmd->advertising |= ADVERTISED_100baseT_Half;
2441 if (adv & ADVERTISE_100FULL)
2442 ecmd->advertising |= ADVERTISED_100baseT_Full;
2443 if (np->autoneg && np->gigabit == PHY_GIGABIT) {
2444 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2445 if (adv & ADVERTISE_1000FULL)
2446 ecmd->advertising |= ADVERTISED_1000baseT_Full;
2447 }
2448
2449 ecmd->supported = (SUPPORTED_Autoneg |
2450 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2451 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2452 SUPPORTED_MII);
2453 if (np->gigabit == PHY_GIGABIT)
2454 ecmd->supported |= SUPPORTED_1000baseT_Full;
2455
2456 ecmd->phy_address = np->phyaddr;
2457 ecmd->transceiver = XCVR_EXTERNAL;
2458
2459 /* ignore maxtxpkt, maxrxpkt for now */
2460 spin_unlock_irq(&np->lock);
2461 return 0;
2462 }
2463
2464 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2465 {
2466 struct fe_priv *np = netdev_priv(dev);
2467
2468 if (ecmd->port != PORT_MII)
2469 return -EINVAL;
2470 if (ecmd->transceiver != XCVR_EXTERNAL)
2471 return -EINVAL;
2472 if (ecmd->phy_address != np->phyaddr) {
2473 /* TODO: support switching between multiple phys. Should be
2474 * trivial, but not enabled due to lack of test hardware. */
2475 return -EINVAL;
2476 }
2477 if (ecmd->autoneg == AUTONEG_ENABLE) {
2478 u32 mask;
2479
2480 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
2481 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
2482 if (np->gigabit == PHY_GIGABIT)
2483 mask |= ADVERTISED_1000baseT_Full;
2484
2485 if ((ecmd->advertising & mask) == 0)
2486 return -EINVAL;
2487
2488 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2489 /* Note: autonegotiation disable, speed 1000 intentionally
2490 * forbidden - noone should need that. */
2491
2492 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2493 return -EINVAL;
2494 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2495 return -EINVAL;
2496 } else {
2497 return -EINVAL;
2498 }
2499
2500 spin_lock_irq(&np->lock);
2501 if (ecmd->autoneg == AUTONEG_ENABLE) {
2502 int adv, bmcr;
2503
2504 np->autoneg = 1;
2505
2506 /* advertise only what has been requested */
2507 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2508 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2509 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2510 adv |= ADVERTISE_10HALF;
2511 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2512 adv |= ADVERTISE_10FULL;
2513 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2514 adv |= ADVERTISE_100HALF;
2515 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2516 adv |= ADVERTISE_100FULL;
2517 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2518
2519 if (np->gigabit == PHY_GIGABIT) {
2520 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2521 adv &= ~ADVERTISE_1000FULL;
2522 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
2523 adv |= ADVERTISE_1000FULL;
2524 mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
2525 }
2526
2527 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2528 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2529 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2530
2531 } else {
2532 int adv, bmcr;
2533
2534 np->autoneg = 0;
2535
2536 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2537 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2538 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
2539 adv |= ADVERTISE_10HALF;
2540 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
2541 adv |= ADVERTISE_10FULL;
2542 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
2543 adv |= ADVERTISE_100HALF;
2544 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
2545 adv |= ADVERTISE_100FULL;
2546 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2547 np->fixed_mode = adv;
2548
2549 if (np->gigabit == PHY_GIGABIT) {
2550 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2551 adv &= ~ADVERTISE_1000FULL;
2552 mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
2553 }
2554
2555 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2556 bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
2557 if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
2558 bmcr |= BMCR_FULLDPLX;
2559 if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
2560 bmcr |= BMCR_SPEED100;
2561 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2562
2563 if (netif_running(dev)) {
2564 /* Wait a bit and then reconfigure the nic. */
2565 udelay(10);
2566 nv_linkchange(dev);
2567 }
2568 }
2569 spin_unlock_irq(&np->lock);
2570
2571 return 0;
2572 }
2573
2574 #define FORCEDETH_REGS_VER 1
2575
2576 static int nv_get_regs_len(struct net_device *dev)
2577 {
2578 struct fe_priv *np = netdev_priv(dev);
2579 return np->register_size;
2580 }
2581
2582 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2583 {
2584 struct fe_priv *np = netdev_priv(dev);
2585 u8 __iomem *base = get_hwbase(dev);
2586 u32 *rbuf = buf;
2587 int i;
2588
2589 regs->version = FORCEDETH_REGS_VER;
2590 spin_lock_irq(&np->lock);
2591 for (i = 0;i <= np->register_size/sizeof(u32); i++)
2592 rbuf[i] = readl(base + i*sizeof(u32));
2593 spin_unlock_irq(&np->lock);
2594 }
2595
2596 static int nv_nway_reset(struct net_device *dev)
2597 {
2598 struct fe_priv *np = netdev_priv(dev);
2599 int ret;
2600
2601 spin_lock_irq(&np->lock);
2602 if (np->autoneg) {
2603 int bmcr;
2604
2605 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2606 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2607 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2608
2609 ret = 0;
2610 } else {
2611 ret = -EINVAL;
2612 }
2613 spin_unlock_irq(&np->lock);
2614
2615 return ret;
2616 }
2617
2618 static struct ethtool_ops ops = {
2619 .get_drvinfo = nv_get_drvinfo,
2620 .get_link = ethtool_op_get_link,
2621 .get_wol = nv_get_wol,
2622 .set_wol = nv_set_wol,
2623 .get_settings = nv_get_settings,
2624 .set_settings = nv_set_settings,
2625 .get_regs_len = nv_get_regs_len,
2626 .get_regs = nv_get_regs,
2627 .nway_reset = nv_nway_reset,
2628 .get_perm_addr = ethtool_op_get_perm_addr,
2629 };
2630
2631 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2632 {
2633 struct fe_priv *np = get_nvpriv(dev);
2634
2635 spin_lock_irq(&np->lock);
2636
2637 /* save vlan group */
2638 np->vlangrp = grp;
2639
2640 if (grp) {
2641 /* enable vlan on MAC */
2642 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
2643 } else {
2644 /* disable vlan on MAC */
2645 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
2646 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
2647 }
2648
2649 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2650
2651 spin_unlock_irq(&np->lock);
2652 };
2653
2654 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
2655 {
2656 /* nothing to do */
2657 };
2658
2659 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
2660 {
2661 u8 __iomem *base = get_hwbase(dev);
2662 int i;
2663 u32 msixmap = 0;
2664
2665 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
2666 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
2667 * the remaining 8 interrupts.
2668 */
2669 for (i = 0; i < 8; i++) {
2670 if ((irqmask >> i) & 0x1) {
2671 msixmap |= vector << (i << 2);
2672 }
2673 }
2674 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
2675
2676 msixmap = 0;
2677 for (i = 0; i < 8; i++) {
2678 if ((irqmask >> (i + 8)) & 0x1) {
2679 msixmap |= vector << (i << 2);
2680 }
2681 }
2682 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
2683 }
2684
2685 static int nv_request_irq(struct net_device *dev)
2686 {
2687 struct fe_priv *np = get_nvpriv(dev);
2688 u8 __iomem *base = get_hwbase(dev);
2689 int ret = 1;
2690 int i;
2691
2692 if (np->msi_flags & NV_MSI_X_CAPABLE) {
2693 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2694 np->msi_x_entry[i].entry = i;
2695 }
2696 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
2697 np->msi_flags |= NV_MSI_X_ENABLED;
2698 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
2699 /* Request irq for rx handling */
2700 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, SA_SHIRQ, dev->name, dev) != 0) {
2701 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
2702 pci_disable_msix(np->pci_dev);
2703 np->msi_flags &= ~NV_MSI_X_ENABLED;
2704 goto out_err;
2705 }
2706 /* Request irq for tx handling */
2707 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, SA_SHIRQ, dev->name, dev) != 0) {
2708 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
2709 pci_disable_msix(np->pci_dev);
2710 np->msi_flags &= ~NV_MSI_X_ENABLED;
2711 goto out_free_rx;
2712 }
2713 /* Request irq for link and timer handling */
2714 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, SA_SHIRQ, dev->name, dev) != 0) {
2715 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
2716 pci_disable_msix(np->pci_dev);
2717 np->msi_flags &= ~NV_MSI_X_ENABLED;
2718 goto out_free_tx;
2719 }
2720 /* map interrupts to their respective vector */
2721 writel(0, base + NvRegMSIXMap0);
2722 writel(0, base + NvRegMSIXMap1);
2723 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
2724 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
2725 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
2726 } else {
2727 /* Request irq for all interrupts */
2728 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
2729 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2730 pci_disable_msix(np->pci_dev);
2731 np->msi_flags &= ~NV_MSI_X_ENABLED;
2732 goto out_err;
2733 }
2734
2735 /* map interrupts to vector 0 */
2736 writel(0, base + NvRegMSIXMap0);
2737 writel(0, base + NvRegMSIXMap1);
2738 }
2739 }
2740 }
2741 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
2742 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
2743 np->msi_flags |= NV_MSI_ENABLED;
2744 if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
2745 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2746 pci_disable_msi(np->pci_dev);
2747 np->msi_flags &= ~NV_MSI_ENABLED;
2748 goto out_err;
2749 }
2750
2751 /* map interrupts to vector 0 */
2752 writel(0, base + NvRegMSIMap0);
2753 writel(0, base + NvRegMSIMap1);
2754 /* enable msi vector 0 */
2755 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
2756 }
2757 }
2758 if (ret != 0) {
2759 if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0)
2760 goto out_err;
2761 }
2762
2763 return 0;
2764 out_free_tx:
2765 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
2766 out_free_rx:
2767 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
2768 out_err:
2769 return 1;
2770 }
2771
2772 static void nv_free_irq(struct net_device *dev)
2773 {
2774 struct fe_priv *np = get_nvpriv(dev);
2775 int i;
2776
2777 if (np->msi_flags & NV_MSI_X_ENABLED) {
2778 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2779 free_irq(np->msi_x_entry[i].vector, dev);
2780 }
2781 pci_disable_msix(np->pci_dev);
2782 np->msi_flags &= ~NV_MSI_X_ENABLED;
2783 } else {
2784 free_irq(np->pci_dev->irq, dev);
2785 if (np->msi_flags & NV_MSI_ENABLED) {
2786 pci_disable_msi(np->pci_dev);
2787 np->msi_flags &= ~NV_MSI_ENABLED;
2788 }
2789 }
2790 }
2791
2792 static int nv_open(struct net_device *dev)
2793 {
2794 struct fe_priv *np = netdev_priv(dev);
2795 u8 __iomem *base = get_hwbase(dev);
2796 int ret = 1;
2797 int oom, i;
2798
2799 dprintk(KERN_DEBUG "nv_open: begin\n");
2800
2801 /* 1) erase previous misconfiguration */
2802 if (np->driver_data & DEV_HAS_POWER_CNTRL)
2803 nv_mac_reset(dev);
2804 /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
2805 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2806 writel(0, base + NvRegMulticastAddrB);
2807 writel(0, base + NvRegMulticastMaskA);
2808 writel(0, base + NvRegMulticastMaskB);
2809 writel(0, base + NvRegPacketFilterFlags);
2810
2811 writel(0, base + NvRegTransmitterControl);
2812 writel(0, base + NvRegReceiverControl);
2813
2814 writel(0, base + NvRegAdapterControl);
2815
2816 /* 2) initialize descriptor rings */
2817 set_bufsize(dev);
2818 oom = nv_init_ring(dev);
2819
2820 writel(0, base + NvRegLinkSpeed);
2821 writel(0, base + NvRegUnknownTransmitterReg);
2822 nv_txrx_reset(dev);
2823 writel(0, base + NvRegUnknownSetupReg6);
2824
2825 np->in_shutdown = 0;
2826
2827 /* 3) set mac address */
2828 nv_copy_mac_to_hw(dev);
2829
2830 /* 4) give hw rings */
2831 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2832 writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
2833 base + NvRegRingSizes);
2834
2835 /* 5) continue setup */
2836 writel(np->linkspeed, base + NvRegLinkSpeed);
2837 writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
2838 writel(np->txrxctl_bits, base + NvRegTxRxControl);
2839 writel(np->vlanctl_bits, base + NvRegVlanControl);
2840 pci_push(base);
2841 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
2842 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
2843 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
2844 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
2845
2846 writel(0, base + NvRegUnknownSetupReg4);
2847 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2848 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2849
2850 /* 6) continue setup */
2851 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
2852 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
2853 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
2854 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2855
2856 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
2857 get_random_bytes(&i, sizeof(i));
2858 writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
2859 writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
2860 writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
2861 if (poll_interval == -1) {
2862 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
2863 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
2864 else
2865 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
2866 }
2867 else
2868 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
2869 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
2870 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
2871 base + NvRegAdapterControl);
2872 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
2873 writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
2874 writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
2875
2876 i = readl(base + NvRegPowerState);
2877 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
2878 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
2879
2880 pci_push(base);
2881 udelay(10);
2882 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
2883
2884 nv_disable_hw_interrupts(dev, np->irqmask);
2885 pci_push(base);
2886 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2887 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2888 pci_push(base);
2889
2890 if (nv_request_irq(dev)) {
2891 goto out_drain;
2892 }
2893
2894 if (np->msi_flags & NV_MSI_X_CAPABLE) {
2895 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2896 np->msi_x_entry[i].entry = i;
2897 }
2898 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
2899 np->msi_flags |= NV_MSI_X_ENABLED;
2900 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
2901 /* Request irq for rx handling */
2902 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, SA_SHIRQ, dev->name, dev) != 0) {
2903 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
2904 pci_disable_msix(np->pci_dev);
2905 np->msi_flags &= ~NV_MSI_X_ENABLED;
2906 goto out_drain;
2907 }
2908 /* Request irq for tx handling */
2909 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, SA_SHIRQ, dev->name, dev) != 0) {
2910 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
2911 pci_disable_msix(np->pci_dev);
2912 np->msi_flags &= ~NV_MSI_X_ENABLED;
2913 goto out_drain;
2914 }
2915 /* Request irq for link and timer handling */
2916 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, SA_SHIRQ, dev->name, dev) != 0) {
2917 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
2918 pci_disable_msix(np->pci_dev);
2919 np->msi_flags &= ~NV_MSI_X_ENABLED;
2920 goto out_drain;
2921 }
2922
2923 /* map interrupts to their respective vector */
2924 writel(0, base + NvRegMSIXMap0);
2925 writel(0, base + NvRegMSIXMap1);
2926 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
2927 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
2928 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
2929 } else {
2930 /* Request irq for all interrupts */
2931 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
2932 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2933 pci_disable_msix(np->pci_dev);
2934 np->msi_flags &= ~NV_MSI_X_ENABLED;
2935 goto out_drain;
2936 }
2937
2938 /* map interrupts to vector 0 */
2939 writel(0, base + NvRegMSIXMap0);
2940 writel(0, base + NvRegMSIXMap1);
2941 }
2942 }
2943 }
2944 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
2945 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
2946 np->msi_flags |= NV_MSI_ENABLED;
2947 if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
2948 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2949 pci_disable_msi(np->pci_dev);
2950 np->msi_flags &= ~NV_MSI_ENABLED;
2951 goto out_drain;
2952 }
2953
2954 /* map interrupts to vector 0 */
2955 writel(0, base + NvRegMSIMap0);
2956 writel(0, base + NvRegMSIMap1);
2957 /* enable msi vector 0 */
2958 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
2959 }
2960 }
2961 if (ret != 0) {
2962 if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0)
2963 goto out_drain;
2964 }
2965
2966 /* ask for interrupts */
2967 nv_enable_hw_interrupts(dev, np->irqmask);
2968
2969 spin_lock_irq(&np->lock);
2970 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2971 writel(0, base + NvRegMulticastAddrB);
2972 writel(0, base + NvRegMulticastMaskA);
2973 writel(0, base + NvRegMulticastMaskB);
2974 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
2975 /* One manual link speed update: Interrupts are enabled, future link
2976 * speed changes cause interrupts and are handled by nv_link_irq().
2977 */
2978 {
2979 u32 miistat;
2980 miistat = readl(base + NvRegMIIStatus);
2981 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2982 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
2983 }
2984 /* set linkspeed to invalid value, thus force nv_update_linkspeed
2985 * to init hw */
2986 np->linkspeed = 0;
2987 ret = nv_update_linkspeed(dev);
2988 nv_start_rx(dev);
2989 nv_start_tx(dev);
2990 netif_start_queue(dev);
2991 if (ret) {
2992 netif_carrier_on(dev);
2993 } else {
2994 printk("%s: no link during initialization.\n", dev->name);
2995 netif_carrier_off(dev);
2996 }
2997 if (oom)
2998 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2999 spin_unlock_irq(&np->lock);
3000
3001 return 0;
3002 out_drain:
3003 drain_ring(dev);
3004 return ret;
3005 }
3006
3007 static int nv_close(struct net_device *dev)
3008 {
3009 struct fe_priv *np = netdev_priv(dev);
3010 u8 __iomem *base;
3011
3012 spin_lock_irq(&np->lock);
3013 np->in_shutdown = 1;
3014 spin_unlock_irq(&np->lock);
3015 synchronize_irq(dev->irq);
3016
3017 del_timer_sync(&np->oom_kick);
3018 del_timer_sync(&np->nic_poll);
3019
3020 netif_stop_queue(dev);
3021 spin_lock_irq(&np->lock);
3022 nv_stop_tx(dev);
3023 nv_stop_rx(dev);
3024 nv_txrx_reset(dev);
3025
3026 /* disable interrupts on the nic or we will lock up */
3027 base = get_hwbase(dev);
3028 nv_disable_hw_interrupts(dev, np->irqmask);
3029 pci_push(base);
3030 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
3031
3032 spin_unlock_irq(&np->lock);
3033
3034 nv_free_irq(dev);
3035
3036 drain_ring(dev);
3037
3038 if (np->wolenabled)
3039 nv_start_rx(dev);
3040
3041 /* special op: write back the misordered MAC address - otherwise
3042 * the next nv_probe would see a wrong address.
3043 */
3044 writel(np->orig_mac[0], base + NvRegMacAddrA);
3045 writel(np->orig_mac[1], base + NvRegMacAddrB);
3046
3047 /* FIXME: power down nic */
3048
3049 return 0;
3050 }
3051
3052 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
3053 {
3054 struct net_device *dev;
3055 struct fe_priv *np;
3056 unsigned long addr;
3057 u8 __iomem *base;
3058 int err, i;
3059 u32 powerstate;
3060
3061 dev = alloc_etherdev(sizeof(struct fe_priv));
3062 err = -ENOMEM;
3063 if (!dev)
3064 goto out;
3065
3066 np = netdev_priv(dev);
3067 np->pci_dev = pci_dev;
3068 spin_lock_init(&np->lock);
3069 SET_MODULE_OWNER(dev);
3070 SET_NETDEV_DEV(dev, &pci_dev->dev);
3071
3072 init_timer(&np->oom_kick);
3073 np->oom_kick.data = (unsigned long) dev;
3074 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
3075 init_timer(&np->nic_poll);
3076 np->nic_poll.data = (unsigned long) dev;
3077 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
3078
3079 err = pci_enable_device(pci_dev);
3080 if (err) {
3081 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
3082 err, pci_name(pci_dev));
3083 goto out_free;
3084 }
3085
3086 pci_set_master(pci_dev);
3087
3088 err = pci_request_regions(pci_dev, DRV_NAME);
3089 if (err < 0)
3090 goto out_disable;
3091
3092 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL))
3093 np->register_size = NV_PCI_REGSZ_VER2;
3094 else
3095 np->register_size = NV_PCI_REGSZ_VER1;
3096
3097 err = -EINVAL;
3098 addr = 0;
3099 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3100 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
3101 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
3102 pci_resource_len(pci_dev, i),
3103 pci_resource_flags(pci_dev, i));
3104 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
3105 pci_resource_len(pci_dev, i) >= np->register_size) {
3106 addr = pci_resource_start(pci_dev, i);
3107 break;
3108 }
3109 }
3110 if (i == DEVICE_COUNT_RESOURCE) {
3111 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
3112 pci_name(pci_dev));
3113 goto out_relreg;
3114 }
3115
3116 /* copy of driver data */
3117 np->driver_data = id->driver_data;
3118
3119 /* handle different descriptor versions */
3120 if (id->driver_data & DEV_HAS_HIGH_DMA) {
3121 /* packet format 3: supports 40-bit addressing */
3122 np->desc_ver = DESC_VER_3;
3123 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
3124 if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
3125 printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
3126 pci_name(pci_dev));
3127 } else {
3128 dev->features |= NETIF_F_HIGHDMA;
3129 printk(KERN_INFO "forcedeth: using HIGHDMA\n");
3130 }
3131 if (pci_set_consistent_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
3132 printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed for device %s.\n",
3133 pci_name(pci_dev));
3134 }
3135 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
3136 /* packet format 2: supports jumbo frames */
3137 np->desc_ver = DESC_VER_2;
3138 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
3139 } else {
3140 /* original packet format */
3141 np->desc_ver = DESC_VER_1;
3142 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
3143 }
3144
3145 np->pkt_limit = NV_PKTLIMIT_1;
3146 if (id->driver_data & DEV_HAS_LARGEDESC)
3147 np->pkt_limit = NV_PKTLIMIT_2;
3148
3149 if (id->driver_data & DEV_HAS_CHECKSUM) {
3150 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
3151 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
3152 #ifdef NETIF_F_TSO
3153 dev->features |= NETIF_F_TSO;
3154 #endif
3155 }
3156
3157 np->vlanctl_bits = 0;
3158 if (id->driver_data & DEV_HAS_VLAN) {
3159 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
3160 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
3161 dev->vlan_rx_register = nv_vlan_rx_register;
3162 dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
3163 }
3164
3165 np->msi_flags = 0;
3166 if ((id->driver_data & DEV_HAS_MSI) && !disable_msi) {
3167 np->msi_flags |= NV_MSI_CAPABLE;
3168 }
3169 if ((id->driver_data & DEV_HAS_MSI_X) && !disable_msix) {
3170 np->msi_flags |= NV_MSI_X_CAPABLE;
3171 }
3172
3173 err = -ENOMEM;
3174 np->base = ioremap(addr, np->register_size);
3175 if (!np->base)
3176 goto out_relreg;
3177 dev->base_addr = (unsigned long)np->base;
3178
3179 dev->irq = pci_dev->irq;
3180
3181 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3182 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
3183 sizeof(struct ring_desc) * (RX_RING + TX_RING),
3184 &np->ring_addr);
3185 if (!np->rx_ring.orig)
3186 goto out_unmap;
3187 np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
3188 } else {
3189 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
3190 sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
3191 &np->ring_addr);
3192 if (!np->rx_ring.ex)
3193 goto out_unmap;
3194 np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
3195 }
3196
3197 dev->open = nv_open;
3198 dev->stop = nv_close;
3199 dev->hard_start_xmit = nv_start_xmit;
3200 dev->get_stats = nv_get_stats;
3201 dev->change_mtu = nv_change_mtu;
3202 dev->set_mac_address = nv_set_mac_address;
3203 dev->set_multicast_list = nv_set_multicast;
3204 #ifdef CONFIG_NET_POLL_CONTROLLER
3205 dev->poll_controller = nv_poll_controller;
3206 #endif
3207 SET_ETHTOOL_OPS(dev, &ops);
3208 dev->tx_timeout = nv_tx_timeout;
3209 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
3210
3211 pci_set_drvdata(pci_dev, dev);
3212
3213 /* read the mac address */
3214 base = get_hwbase(dev);
3215 np->orig_mac[0] = readl(base + NvRegMacAddrA);
3216 np->orig_mac[1] = readl(base + NvRegMacAddrB);
3217
3218 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
3219 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
3220 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
3221 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
3222 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
3223 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
3224 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3225
3226 if (!is_valid_ether_addr(dev->perm_addr)) {
3227 /*
3228 * Bad mac address. At least one bios sets the mac address
3229 * to 01:23:45:67:89:ab
3230 */
3231 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
3232 pci_name(pci_dev),
3233 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3234 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3235 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
3236 dev->dev_addr[0] = 0x00;
3237 dev->dev_addr[1] = 0x00;
3238 dev->dev_addr[2] = 0x6c;
3239 get_random_bytes(&dev->dev_addr[3], 3);
3240 }
3241
3242 dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
3243 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3244 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3245
3246 /* disable WOL */
3247 writel(0, base + NvRegWakeUpFlags);
3248 np->wolenabled = 0;
3249
3250 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
3251 u8 revision_id;
3252 pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
3253
3254 /* take phy and nic out of low power mode */
3255 powerstate = readl(base + NvRegPowerState2);
3256 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
3257 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
3258 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
3259 revision_id >= 0xA3)
3260 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
3261 writel(powerstate, base + NvRegPowerState2);
3262 }
3263
3264 if (np->desc_ver == DESC_VER_1) {
3265 np->tx_flags = NV_TX_VALID;
3266 } else {
3267 np->tx_flags = NV_TX2_VALID;
3268 }
3269 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
3270 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
3271 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
3272 np->msi_flags |= 0x0003;
3273 } else {
3274 np->irqmask = NVREG_IRQMASK_CPU;
3275 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
3276 np->msi_flags |= 0x0001;
3277 }
3278
3279 if (id->driver_data & DEV_NEED_TIMERIRQ)
3280 np->irqmask |= NVREG_IRQ_TIMER;
3281 if (id->driver_data & DEV_NEED_LINKTIMER) {
3282 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
3283 np->need_linktimer = 1;
3284 np->link_timeout = jiffies + LINK_TIMEOUT;
3285 } else {
3286 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
3287 np->need_linktimer = 0;
3288 }
3289
3290 /* find a suitable phy */
3291 for (i = 1; i <= 32; i++) {
3292 int id1, id2;
3293 int phyaddr = i & 0x1F;
3294
3295 spin_lock_irq(&np->lock);
3296 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
3297 spin_unlock_irq(&np->lock);
3298 if (id1 < 0 || id1 == 0xffff)
3299 continue;
3300 spin_lock_irq(&np->lock);
3301 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
3302 spin_unlock_irq(&np->lock);
3303 if (id2 < 0 || id2 == 0xffff)
3304 continue;
3305
3306 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
3307 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
3308 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
3309 pci_name(pci_dev), id1, id2, phyaddr);
3310 np->phyaddr = phyaddr;
3311 np->phy_oui = id1 | id2;
3312 break;
3313 }
3314 if (i == 33) {
3315 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
3316 pci_name(pci_dev));
3317 goto out_freering;
3318 }
3319
3320 /* reset it */
3321 phy_init(dev);
3322
3323 /* set default link speed settings */
3324 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
3325 np->duplex = 0;
3326 np->autoneg = 1;
3327
3328 err = register_netdev(dev);
3329 if (err) {
3330 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
3331 goto out_freering;
3332 }
3333 printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
3334 dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
3335 pci_name(pci_dev));
3336
3337 return 0;
3338
3339 out_freering:
3340 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
3341 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
3342 np->rx_ring.orig, np->ring_addr);
3343 else
3344 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
3345 np->rx_ring.ex, np->ring_addr);
3346 pci_set_drvdata(pci_dev, NULL);
3347 out_unmap:
3348 iounmap(get_hwbase(dev));
3349 out_relreg:
3350 pci_release_regions(pci_dev);
3351 out_disable:
3352 pci_disable_device(pci_dev);
3353 out_free:
3354 free_netdev(dev);
3355 out:
3356 return err;
3357 }
3358
3359 static void __devexit nv_remove(struct pci_dev *pci_dev)
3360 {
3361 struct net_device *dev = pci_get_drvdata(pci_dev);
3362 struct fe_priv *np = netdev_priv(dev);
3363
3364 unregister_netdev(dev);
3365
3366 /* free all structures */
3367 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
3368 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
3369 else
3370 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
3371 iounmap(get_hwbase(dev));
3372 pci_release_regions(pci_dev);
3373 pci_disable_device(pci_dev);
3374 free_netdev(dev);
3375 pci_set_drvdata(pci_dev, NULL);
3376 }
3377
3378 static struct pci_device_id pci_tbl[] = {
3379 { /* nForce Ethernet Controller */
3380 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
3381 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
3382 },
3383 { /* nForce2 Ethernet Controller */
3384 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
3385 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
3386 },
3387 { /* nForce3 Ethernet Controller */
3388 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
3389 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
3390 },
3391 { /* nForce3 Ethernet Controller */
3392 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
3393 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3394 },
3395 { /* nForce3 Ethernet Controller */
3396 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
3397 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3398 },
3399 { /* nForce3 Ethernet Controller */
3400 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
3401 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3402 },
3403 { /* nForce3 Ethernet Controller */
3404 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
3405 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
3406 },
3407 { /* CK804 Ethernet Controller */
3408 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
3409 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3410 },
3411 { /* CK804 Ethernet Controller */
3412 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
3413 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3414 },
3415 { /* MCP04 Ethernet Controller */
3416 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
3417 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3418 },
3419 { /* MCP04 Ethernet Controller */
3420 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
3421 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
3422 },
3423 { /* MCP51 Ethernet Controller */
3424 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
3425 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
3426 },
3427 { /* MCP51 Ethernet Controller */
3428 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
3429 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
3430 },
3431 { /* MCP55 Ethernet Controller */
3432 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
3433 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL,
3434 },
3435 { /* MCP55 Ethernet Controller */
3436 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
3437 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL,
3438 },
3439 {0,},
3440 };
3441
3442 static struct pci_driver driver = {
3443 .name = "forcedeth",
3444 .id_table = pci_tbl,
3445 .probe = nv_probe,
3446 .remove = __devexit_p(nv_remove),
3447 };
3448
3449
3450 static int __init init_nic(void)
3451 {
3452 printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
3453 return pci_module_init(&driver);
3454 }
3455
3456 static void __exit exit_nic(void)
3457 {
3458 pci_unregister_driver(&driver);
3459 }
3460
3461 module_param(max_interrupt_work, int, 0);
3462 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
3463 module_param(optimization_mode, int, 0);
3464 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
3465 module_param(poll_interval, int, 0);
3466 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
3467 module_param(disable_msi, int, 0);
3468 MODULE_PARM_DESC(disable_msi, "Disable MSI interrupts by setting to 1.");
3469 module_param(disable_msix, int, 0);
3470 MODULE_PARM_DESC(disable_msix, "Disable MSIX interrupts by setting to 1.");
3471
3472 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
3473 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
3474 MODULE_LICENSE("GPL");
3475
3476 MODULE_DEVICE_TABLE(pci, pci_tbl);
3477
3478 module_init(init_nic);
3479 module_exit(exit_nic);
This page took 0.102719 seconds and 5 git commands to generate.