Merge branch 'master' into upstream
[deliverable/linux.git] / drivers / net / forcedeth.c
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey. It's neither supported nor endorsed
7 * by NVIDIA Corp. Use at your own risk.
8 *
9 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10 * trademarks of NVIDIA Corporation in the United States and other
11 * countries.
12 *
13 * Copyright (C) 2003,4,5 Manfred Spraul
14 * Copyright (C) 2004 Andrew de Quincey (wol support)
15 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16 * IRQ rate fixes, bigendian fixes, cleanups, verification)
17 * Copyright (c) 2004 NVIDIA Corporation
18 *
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 2 of the License, or
22 * (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 *
33 * Changelog:
34 * 0.01: 05 Oct 2003: First release that compiles without warnings.
35 * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36 * Check all PCI BARs for the register window.
37 * udelay added to mii_rw.
38 * 0.03: 06 Oct 2003: Initialize dev->irq.
39 * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40 * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41 * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42 * irq mask updated
43 * 0.07: 14 Oct 2003: Further irq mask updates.
44 * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45 * added into irq handler, NULL check for drain_ring.
46 * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47 * requested interrupt sources.
48 * 0.10: 20 Oct 2003: First cleanup for release.
49 * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50 * MAC Address init fix, set_multicast cleanup.
51 * 0.12: 23 Oct 2003: Cleanups for release.
52 * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53 * Set link speed correctly. start rx before starting
54 * tx (nv_start_rx sets the link speed).
55 * 0.14: 25 Oct 2003: Nic dependant irq mask.
56 * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57 * open.
58 * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59 * increased to 1628 bytes.
60 * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61 * the tx length.
62 * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63 * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64 * addresses, really stop rx if already running
65 * in nv_start_rx, clean up a bit.
66 * 0.20: 07 Dec 2003: alloc fixes
67 * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68 * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69 * on close.
70 * 0.23: 26 Jan 2004: various small cleanups
71 * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72 * 0.25: 09 Mar 2004: wol support
73 * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74 * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75 * added CK804/MCP04 device IDs, code fixes
76 * for registers, link status and other minor fixes.
77 * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78 * 0.29: 31 Aug 2004: Add backup timer for link change notification.
79 * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80 * into nv_close, otherwise reenabling for wol can
81 * cause DMA to kfree'd memory.
82 * 0.31: 14 Nov 2004: ethtool support for getting/setting link
83 * capabilities.
84 * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
85 * 0.33: 16 May 2005: Support for MCP51 added.
86 * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87 * 0.35: 26 Jun 2005: Support for MCP55 added.
88 * 0.36: 28 Jun 2005: Add jumbo frame support.
89 * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90 * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91 * per-packet flags.
92 * 0.39: 18 Jul 2005: Add 64bit descriptor support.
93 * 0.40: 19 Jul 2005: Add support for mac address change.
94 * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95 * of nv_remove
96 * 0.42: 06 Aug 2005: Fix lack of link speed initialization
97 * in the second (and later) nv_open call
98 * 0.43: 10 Aug 2005: Add support for tx checksum.
99 * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100 * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101 * 0.46: 20 Oct 2005: Add irq optimization modes.
102 * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
103 * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
104 * 0.49: 10 Dec 2005: Fix tso for large buffers.
105 * 0.50: 20 Jan 2006: Add 8021pq tagging support.
106 * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
107 * 0.52: 20 Jan 2006: Add MSI/MSIX support.
108 * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
109 * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
110 * 0.55: 22 Mar 2006: Add flow control (pause frame).
111 * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
112 * 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
113 *
114 * Known bugs:
115 * We suspect that on some hardware no TX done interrupts are generated.
116 * This means recovery from netif_stop_queue only happens if the hw timer
117 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
118 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
119 * If your hardware reliably generates tx done interrupts, then you can remove
120 * DEV_NEED_TIMERIRQ from the driver_data flags.
121 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
122 * superfluous timer interrupts from the nic.
123 */
124 #ifdef CONFIG_FORCEDETH_NAPI
125 #define DRIVERNAPI "-NAPI"
126 #else
127 #define DRIVERNAPI
128 #endif
129 #define FORCEDETH_VERSION "0.57"
130 #define DRV_NAME "forcedeth"
131
132 #include <linux/module.h>
133 #include <linux/types.h>
134 #include <linux/pci.h>
135 #include <linux/interrupt.h>
136 #include <linux/netdevice.h>
137 #include <linux/etherdevice.h>
138 #include <linux/delay.h>
139 #include <linux/spinlock.h>
140 #include <linux/ethtool.h>
141 #include <linux/timer.h>
142 #include <linux/skbuff.h>
143 #include <linux/mii.h>
144 #include <linux/random.h>
145 #include <linux/init.h>
146 #include <linux/if_vlan.h>
147 #include <linux/dma-mapping.h>
148
149 #include <asm/irq.h>
150 #include <asm/io.h>
151 #include <asm/uaccess.h>
152 #include <asm/system.h>
153
154 #if 0
155 #define dprintk printk
156 #else
157 #define dprintk(x...) do { } while (0)
158 #endif
159
160
161 /*
162 * Hardware access:
163 */
164
165 #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
166 #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
167 #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
168 #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
169 #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
170 #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
171 #define DEV_HAS_MSI 0x0040 /* device supports MSI */
172 #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
173 #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
174 #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
175 #define DEV_HAS_STATISTICS 0x0400 /* device supports hw statistics */
176 #define DEV_HAS_TEST_EXTENDED 0x0800 /* device supports extended diagnostic test */
177
178 enum {
179 NvRegIrqStatus = 0x000,
180 #define NVREG_IRQSTAT_MIIEVENT 0x040
181 #define NVREG_IRQSTAT_MASK 0x1ff
182 NvRegIrqMask = 0x004,
183 #define NVREG_IRQ_RX_ERROR 0x0001
184 #define NVREG_IRQ_RX 0x0002
185 #define NVREG_IRQ_RX_NOBUF 0x0004
186 #define NVREG_IRQ_TX_ERR 0x0008
187 #define NVREG_IRQ_TX_OK 0x0010
188 #define NVREG_IRQ_TIMER 0x0020
189 #define NVREG_IRQ_LINK 0x0040
190 #define NVREG_IRQ_RX_FORCED 0x0080
191 #define NVREG_IRQ_TX_FORCED 0x0100
192 #define NVREG_IRQMASK_THROUGHPUT 0x00df
193 #define NVREG_IRQMASK_CPU 0x0040
194 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
195 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
196 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
197
198 #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
199 NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
200 NVREG_IRQ_TX_FORCED))
201
202 NvRegUnknownSetupReg6 = 0x008,
203 #define NVREG_UNKSETUP6_VAL 3
204
205 /*
206 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
207 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
208 */
209 NvRegPollingInterval = 0x00c,
210 #define NVREG_POLL_DEFAULT_THROUGHPUT 970
211 #define NVREG_POLL_DEFAULT_CPU 13
212 NvRegMSIMap0 = 0x020,
213 NvRegMSIMap1 = 0x024,
214 NvRegMSIIrqMask = 0x030,
215 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
216 NvRegMisc1 = 0x080,
217 #define NVREG_MISC1_PAUSE_TX 0x01
218 #define NVREG_MISC1_HD 0x02
219 #define NVREG_MISC1_FORCE 0x3b0f3c
220
221 NvRegMacReset = 0x3c,
222 #define NVREG_MAC_RESET_ASSERT 0x0F3
223 NvRegTransmitterControl = 0x084,
224 #define NVREG_XMITCTL_START 0x01
225 NvRegTransmitterStatus = 0x088,
226 #define NVREG_XMITSTAT_BUSY 0x01
227
228 NvRegPacketFilterFlags = 0x8c,
229 #define NVREG_PFF_PAUSE_RX 0x08
230 #define NVREG_PFF_ALWAYS 0x7F0000
231 #define NVREG_PFF_PROMISC 0x80
232 #define NVREG_PFF_MYADDR 0x20
233 #define NVREG_PFF_LOOPBACK 0x10
234
235 NvRegOffloadConfig = 0x90,
236 #define NVREG_OFFLOAD_HOMEPHY 0x601
237 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
238 NvRegReceiverControl = 0x094,
239 #define NVREG_RCVCTL_START 0x01
240 NvRegReceiverStatus = 0x98,
241 #define NVREG_RCVSTAT_BUSY 0x01
242
243 NvRegRandomSeed = 0x9c,
244 #define NVREG_RNDSEED_MASK 0x00ff
245 #define NVREG_RNDSEED_FORCE 0x7f00
246 #define NVREG_RNDSEED_FORCE2 0x2d00
247 #define NVREG_RNDSEED_FORCE3 0x7400
248
249 NvRegTxDeferral = 0xA0,
250 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
251 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
252 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
253 NvRegRxDeferral = 0xA4,
254 #define NVREG_RX_DEFERRAL_DEFAULT 0x16
255 NvRegMacAddrA = 0xA8,
256 NvRegMacAddrB = 0xAC,
257 NvRegMulticastAddrA = 0xB0,
258 #define NVREG_MCASTADDRA_FORCE 0x01
259 NvRegMulticastAddrB = 0xB4,
260 NvRegMulticastMaskA = 0xB8,
261 NvRegMulticastMaskB = 0xBC,
262
263 NvRegPhyInterface = 0xC0,
264 #define PHY_RGMII 0x10000000
265
266 NvRegTxRingPhysAddr = 0x100,
267 NvRegRxRingPhysAddr = 0x104,
268 NvRegRingSizes = 0x108,
269 #define NVREG_RINGSZ_TXSHIFT 0
270 #define NVREG_RINGSZ_RXSHIFT 16
271 NvRegTransmitPoll = 0x10c,
272 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
273 NvRegLinkSpeed = 0x110,
274 #define NVREG_LINKSPEED_FORCE 0x10000
275 #define NVREG_LINKSPEED_10 1000
276 #define NVREG_LINKSPEED_100 100
277 #define NVREG_LINKSPEED_1000 50
278 #define NVREG_LINKSPEED_MASK (0xFFF)
279 NvRegUnknownSetupReg5 = 0x130,
280 #define NVREG_UNKSETUP5_BIT31 (1<<31)
281 NvRegTxWatermark = 0x13c,
282 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
283 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
284 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
285 NvRegTxRxControl = 0x144,
286 #define NVREG_TXRXCTL_KICK 0x0001
287 #define NVREG_TXRXCTL_BIT1 0x0002
288 #define NVREG_TXRXCTL_BIT2 0x0004
289 #define NVREG_TXRXCTL_IDLE 0x0008
290 #define NVREG_TXRXCTL_RESET 0x0010
291 #define NVREG_TXRXCTL_RXCHECK 0x0400
292 #define NVREG_TXRXCTL_DESC_1 0
293 #define NVREG_TXRXCTL_DESC_2 0x02100
294 #define NVREG_TXRXCTL_DESC_3 0x02200
295 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
296 #define NVREG_TXRXCTL_VLANINS 0x00080
297 NvRegTxRingPhysAddrHigh = 0x148,
298 NvRegRxRingPhysAddrHigh = 0x14C,
299 NvRegTxPauseFrame = 0x170,
300 #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
301 #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
302 NvRegMIIStatus = 0x180,
303 #define NVREG_MIISTAT_ERROR 0x0001
304 #define NVREG_MIISTAT_LINKCHANGE 0x0008
305 #define NVREG_MIISTAT_MASK 0x000f
306 #define NVREG_MIISTAT_MASK2 0x000f
307 NvRegUnknownSetupReg4 = 0x184,
308 #define NVREG_UNKSETUP4_VAL 8
309
310 NvRegAdapterControl = 0x188,
311 #define NVREG_ADAPTCTL_START 0x02
312 #define NVREG_ADAPTCTL_LINKUP 0x04
313 #define NVREG_ADAPTCTL_PHYVALID 0x40000
314 #define NVREG_ADAPTCTL_RUNNING 0x100000
315 #define NVREG_ADAPTCTL_PHYSHIFT 24
316 NvRegMIISpeed = 0x18c,
317 #define NVREG_MIISPEED_BIT8 (1<<8)
318 #define NVREG_MIIDELAY 5
319 NvRegMIIControl = 0x190,
320 #define NVREG_MIICTL_INUSE 0x08000
321 #define NVREG_MIICTL_WRITE 0x00400
322 #define NVREG_MIICTL_ADDRSHIFT 5
323 NvRegMIIData = 0x194,
324 NvRegWakeUpFlags = 0x200,
325 #define NVREG_WAKEUPFLAGS_VAL 0x7770
326 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
327 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
328 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
329 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
330 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
331 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
332 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
333 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
334 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
335 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
336
337 NvRegPatternCRC = 0x204,
338 NvRegPatternMask = 0x208,
339 NvRegPowerCap = 0x268,
340 #define NVREG_POWERCAP_D3SUPP (1<<30)
341 #define NVREG_POWERCAP_D2SUPP (1<<26)
342 #define NVREG_POWERCAP_D1SUPP (1<<25)
343 NvRegPowerState = 0x26c,
344 #define NVREG_POWERSTATE_POWEREDUP 0x8000
345 #define NVREG_POWERSTATE_VALID 0x0100
346 #define NVREG_POWERSTATE_MASK 0x0003
347 #define NVREG_POWERSTATE_D0 0x0000
348 #define NVREG_POWERSTATE_D1 0x0001
349 #define NVREG_POWERSTATE_D2 0x0002
350 #define NVREG_POWERSTATE_D3 0x0003
351 NvRegTxCnt = 0x280,
352 NvRegTxZeroReXmt = 0x284,
353 NvRegTxOneReXmt = 0x288,
354 NvRegTxManyReXmt = 0x28c,
355 NvRegTxLateCol = 0x290,
356 NvRegTxUnderflow = 0x294,
357 NvRegTxLossCarrier = 0x298,
358 NvRegTxExcessDef = 0x29c,
359 NvRegTxRetryErr = 0x2a0,
360 NvRegRxFrameErr = 0x2a4,
361 NvRegRxExtraByte = 0x2a8,
362 NvRegRxLateCol = 0x2ac,
363 NvRegRxRunt = 0x2b0,
364 NvRegRxFrameTooLong = 0x2b4,
365 NvRegRxOverflow = 0x2b8,
366 NvRegRxFCSErr = 0x2bc,
367 NvRegRxFrameAlignErr = 0x2c0,
368 NvRegRxLenErr = 0x2c4,
369 NvRegRxUnicast = 0x2c8,
370 NvRegRxMulticast = 0x2cc,
371 NvRegRxBroadcast = 0x2d0,
372 NvRegTxDef = 0x2d4,
373 NvRegTxFrame = 0x2d8,
374 NvRegRxCnt = 0x2dc,
375 NvRegTxPause = 0x2e0,
376 NvRegRxPause = 0x2e4,
377 NvRegRxDropFrame = 0x2e8,
378 NvRegVlanControl = 0x300,
379 #define NVREG_VLANCONTROL_ENABLE 0x2000
380 NvRegMSIXMap0 = 0x3e0,
381 NvRegMSIXMap1 = 0x3e4,
382 NvRegMSIXIrqStatus = 0x3f0,
383
384 NvRegPowerState2 = 0x600,
385 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
386 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
387 };
388
389 /* Big endian: should work, but is untested */
390 struct ring_desc {
391 __le32 buf;
392 __le32 flaglen;
393 };
394
395 struct ring_desc_ex {
396 __le32 bufhigh;
397 __le32 buflow;
398 __le32 txvlan;
399 __le32 flaglen;
400 };
401
402 union ring_type {
403 struct ring_desc* orig;
404 struct ring_desc_ex* ex;
405 };
406
407 #define FLAG_MASK_V1 0xffff0000
408 #define FLAG_MASK_V2 0xffffc000
409 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
410 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
411
412 #define NV_TX_LASTPACKET (1<<16)
413 #define NV_TX_RETRYERROR (1<<19)
414 #define NV_TX_FORCED_INTERRUPT (1<<24)
415 #define NV_TX_DEFERRED (1<<26)
416 #define NV_TX_CARRIERLOST (1<<27)
417 #define NV_TX_LATECOLLISION (1<<28)
418 #define NV_TX_UNDERFLOW (1<<29)
419 #define NV_TX_ERROR (1<<30)
420 #define NV_TX_VALID (1<<31)
421
422 #define NV_TX2_LASTPACKET (1<<29)
423 #define NV_TX2_RETRYERROR (1<<18)
424 #define NV_TX2_FORCED_INTERRUPT (1<<30)
425 #define NV_TX2_DEFERRED (1<<25)
426 #define NV_TX2_CARRIERLOST (1<<26)
427 #define NV_TX2_LATECOLLISION (1<<27)
428 #define NV_TX2_UNDERFLOW (1<<28)
429 /* error and valid are the same for both */
430 #define NV_TX2_ERROR (1<<30)
431 #define NV_TX2_VALID (1<<31)
432 #define NV_TX2_TSO (1<<28)
433 #define NV_TX2_TSO_SHIFT 14
434 #define NV_TX2_TSO_MAX_SHIFT 14
435 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
436 #define NV_TX2_CHECKSUM_L3 (1<<27)
437 #define NV_TX2_CHECKSUM_L4 (1<<26)
438
439 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
440
441 #define NV_RX_DESCRIPTORVALID (1<<16)
442 #define NV_RX_MISSEDFRAME (1<<17)
443 #define NV_RX_SUBSTRACT1 (1<<18)
444 #define NV_RX_ERROR1 (1<<23)
445 #define NV_RX_ERROR2 (1<<24)
446 #define NV_RX_ERROR3 (1<<25)
447 #define NV_RX_ERROR4 (1<<26)
448 #define NV_RX_CRCERR (1<<27)
449 #define NV_RX_OVERFLOW (1<<28)
450 #define NV_RX_FRAMINGERR (1<<29)
451 #define NV_RX_ERROR (1<<30)
452 #define NV_RX_AVAIL (1<<31)
453
454 #define NV_RX2_CHECKSUMMASK (0x1C000000)
455 #define NV_RX2_CHECKSUMOK1 (0x10000000)
456 #define NV_RX2_CHECKSUMOK2 (0x14000000)
457 #define NV_RX2_CHECKSUMOK3 (0x18000000)
458 #define NV_RX2_DESCRIPTORVALID (1<<29)
459 #define NV_RX2_SUBSTRACT1 (1<<25)
460 #define NV_RX2_ERROR1 (1<<18)
461 #define NV_RX2_ERROR2 (1<<19)
462 #define NV_RX2_ERROR3 (1<<20)
463 #define NV_RX2_ERROR4 (1<<21)
464 #define NV_RX2_CRCERR (1<<22)
465 #define NV_RX2_OVERFLOW (1<<23)
466 #define NV_RX2_FRAMINGERR (1<<24)
467 /* error and avail are the same for both */
468 #define NV_RX2_ERROR (1<<30)
469 #define NV_RX2_AVAIL (1<<31)
470
471 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
472 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
473
474 /* Miscelaneous hardware related defines: */
475 #define NV_PCI_REGSZ_VER1 0x270
476 #define NV_PCI_REGSZ_VER2 0x604
477
478 /* various timeout delays: all in usec */
479 #define NV_TXRX_RESET_DELAY 4
480 #define NV_TXSTOP_DELAY1 10
481 #define NV_TXSTOP_DELAY1MAX 500000
482 #define NV_TXSTOP_DELAY2 100
483 #define NV_RXSTOP_DELAY1 10
484 #define NV_RXSTOP_DELAY1MAX 500000
485 #define NV_RXSTOP_DELAY2 100
486 #define NV_SETUP5_DELAY 5
487 #define NV_SETUP5_DELAYMAX 50000
488 #define NV_POWERUP_DELAY 5
489 #define NV_POWERUP_DELAYMAX 5000
490 #define NV_MIIBUSY_DELAY 50
491 #define NV_MIIPHY_DELAY 10
492 #define NV_MIIPHY_DELAYMAX 10000
493 #define NV_MAC_RESET_DELAY 64
494
495 #define NV_WAKEUPPATTERNS 5
496 #define NV_WAKEUPMASKENTRIES 4
497
498 /* General driver defaults */
499 #define NV_WATCHDOG_TIMEO (5*HZ)
500
501 #define RX_RING_DEFAULT 128
502 #define TX_RING_DEFAULT 256
503 #define RX_RING_MIN 128
504 #define TX_RING_MIN 64
505 #define RING_MAX_DESC_VER_1 1024
506 #define RING_MAX_DESC_VER_2_3 16384
507 /*
508 * Difference between the get and put pointers for the tx ring.
509 * This is used to throttle the amount of data outstanding in the
510 * tx ring.
511 */
512 #define TX_LIMIT_DIFFERENCE 1
513
514 /* rx/tx mac addr + type + vlan + align + slack*/
515 #define NV_RX_HEADERS (64)
516 /* even more slack. */
517 #define NV_RX_ALLOC_PAD (64)
518
519 /* maximum mtu size */
520 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
521 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
522
523 #define OOM_REFILL (1+HZ/20)
524 #define POLL_WAIT (1+HZ/100)
525 #define LINK_TIMEOUT (3*HZ)
526 #define STATS_INTERVAL (10*HZ)
527
528 /*
529 * desc_ver values:
530 * The nic supports three different descriptor types:
531 * - DESC_VER_1: Original
532 * - DESC_VER_2: support for jumbo frames.
533 * - DESC_VER_3: 64-bit format.
534 */
535 #define DESC_VER_1 1
536 #define DESC_VER_2 2
537 #define DESC_VER_3 3
538
539 /* PHY defines */
540 #define PHY_OUI_MARVELL 0x5043
541 #define PHY_OUI_CICADA 0x03f1
542 #define PHYID1_OUI_MASK 0x03ff
543 #define PHYID1_OUI_SHFT 6
544 #define PHYID2_OUI_MASK 0xfc00
545 #define PHYID2_OUI_SHFT 10
546 #define PHYID2_MODEL_MASK 0x03f0
547 #define PHY_MODEL_MARVELL_E3016 0x220
548 #define PHY_MARVELL_E3016_INITMASK 0x0300
549 #define PHY_INIT1 0x0f000
550 #define PHY_INIT2 0x0e00
551 #define PHY_INIT3 0x01000
552 #define PHY_INIT4 0x0200
553 #define PHY_INIT5 0x0004
554 #define PHY_INIT6 0x02000
555 #define PHY_GIGABIT 0x0100
556
557 #define PHY_TIMEOUT 0x1
558 #define PHY_ERROR 0x2
559
560 #define PHY_100 0x1
561 #define PHY_1000 0x2
562 #define PHY_HALF 0x100
563
564 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
565 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
566 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
567 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
568 #define NV_PAUSEFRAME_RX_REQ 0x0010
569 #define NV_PAUSEFRAME_TX_REQ 0x0020
570 #define NV_PAUSEFRAME_AUTONEG 0x0040
571
572 /* MSI/MSI-X defines */
573 #define NV_MSI_X_MAX_VECTORS 8
574 #define NV_MSI_X_VECTORS_MASK 0x000f
575 #define NV_MSI_CAPABLE 0x0010
576 #define NV_MSI_X_CAPABLE 0x0020
577 #define NV_MSI_ENABLED 0x0040
578 #define NV_MSI_X_ENABLED 0x0080
579
580 #define NV_MSI_X_VECTOR_ALL 0x0
581 #define NV_MSI_X_VECTOR_RX 0x0
582 #define NV_MSI_X_VECTOR_TX 0x1
583 #define NV_MSI_X_VECTOR_OTHER 0x2
584
585 /* statistics */
586 struct nv_ethtool_str {
587 char name[ETH_GSTRING_LEN];
588 };
589
590 static const struct nv_ethtool_str nv_estats_str[] = {
591 { "tx_bytes" },
592 { "tx_zero_rexmt" },
593 { "tx_one_rexmt" },
594 { "tx_many_rexmt" },
595 { "tx_late_collision" },
596 { "tx_fifo_errors" },
597 { "tx_carrier_errors" },
598 { "tx_excess_deferral" },
599 { "tx_retry_error" },
600 { "tx_deferral" },
601 { "tx_packets" },
602 { "tx_pause" },
603 { "rx_frame_error" },
604 { "rx_extra_byte" },
605 { "rx_late_collision" },
606 { "rx_runt" },
607 { "rx_frame_too_long" },
608 { "rx_over_errors" },
609 { "rx_crc_errors" },
610 { "rx_frame_align_error" },
611 { "rx_length_error" },
612 { "rx_unicast" },
613 { "rx_multicast" },
614 { "rx_broadcast" },
615 { "rx_bytes" },
616 { "rx_pause" },
617 { "rx_drop_frame" },
618 { "rx_packets" },
619 { "rx_errors_total" }
620 };
621
622 struct nv_ethtool_stats {
623 u64 tx_bytes;
624 u64 tx_zero_rexmt;
625 u64 tx_one_rexmt;
626 u64 tx_many_rexmt;
627 u64 tx_late_collision;
628 u64 tx_fifo_errors;
629 u64 tx_carrier_errors;
630 u64 tx_excess_deferral;
631 u64 tx_retry_error;
632 u64 tx_deferral;
633 u64 tx_packets;
634 u64 tx_pause;
635 u64 rx_frame_error;
636 u64 rx_extra_byte;
637 u64 rx_late_collision;
638 u64 rx_runt;
639 u64 rx_frame_too_long;
640 u64 rx_over_errors;
641 u64 rx_crc_errors;
642 u64 rx_frame_align_error;
643 u64 rx_length_error;
644 u64 rx_unicast;
645 u64 rx_multicast;
646 u64 rx_broadcast;
647 u64 rx_bytes;
648 u64 rx_pause;
649 u64 rx_drop_frame;
650 u64 rx_packets;
651 u64 rx_errors_total;
652 };
653
654 /* diagnostics */
655 #define NV_TEST_COUNT_BASE 3
656 #define NV_TEST_COUNT_EXTENDED 4
657
658 static const struct nv_ethtool_str nv_etests_str[] = {
659 { "link (online/offline)" },
660 { "register (offline) " },
661 { "interrupt (offline) " },
662 { "loopback (offline) " }
663 };
664
665 struct register_test {
666 __le32 reg;
667 __le32 mask;
668 };
669
670 static const struct register_test nv_registers_test[] = {
671 { NvRegUnknownSetupReg6, 0x01 },
672 { NvRegMisc1, 0x03c },
673 { NvRegOffloadConfig, 0x03ff },
674 { NvRegMulticastAddrA, 0xffffffff },
675 { NvRegTxWatermark, 0x0ff },
676 { NvRegWakeUpFlags, 0x07777 },
677 { 0,0 }
678 };
679
680 /*
681 * SMP locking:
682 * All hardware access under dev->priv->lock, except the performance
683 * critical parts:
684 * - rx is (pseudo-) lockless: it relies on the single-threading provided
685 * by the arch code for interrupts.
686 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
687 * needs dev->priv->lock :-(
688 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
689 */
690
691 /* in dev: base, irq */
692 struct fe_priv {
693 spinlock_t lock;
694
695 /* General data:
696 * Locking: spin_lock(&np->lock); */
697 struct net_device_stats stats;
698 struct nv_ethtool_stats estats;
699 int in_shutdown;
700 u32 linkspeed;
701 int duplex;
702 int autoneg;
703 int fixed_mode;
704 int phyaddr;
705 int wolenabled;
706 unsigned int phy_oui;
707 unsigned int phy_model;
708 u16 gigabit;
709 int intr_test;
710
711 /* General data: RO fields */
712 dma_addr_t ring_addr;
713 struct pci_dev *pci_dev;
714 u32 orig_mac[2];
715 u32 irqmask;
716 u32 desc_ver;
717 u32 txrxctl_bits;
718 u32 vlanctl_bits;
719 u32 driver_data;
720 u32 register_size;
721 int rx_csum;
722
723 void __iomem *base;
724
725 /* rx specific fields.
726 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
727 */
728 union ring_type rx_ring;
729 unsigned int cur_rx, refill_rx;
730 struct sk_buff **rx_skbuff;
731 dma_addr_t *rx_dma;
732 unsigned int rx_buf_sz;
733 unsigned int pkt_limit;
734 struct timer_list oom_kick;
735 struct timer_list nic_poll;
736 struct timer_list stats_poll;
737 u32 nic_poll_irq;
738 int rx_ring_size;
739
740 /* media detection workaround.
741 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
742 */
743 int need_linktimer;
744 unsigned long link_timeout;
745 /*
746 * tx specific fields.
747 */
748 union ring_type tx_ring;
749 unsigned int next_tx, nic_tx;
750 struct sk_buff **tx_skbuff;
751 dma_addr_t *tx_dma;
752 unsigned int *tx_dma_len;
753 u32 tx_flags;
754 int tx_ring_size;
755 int tx_limit_start;
756 int tx_limit_stop;
757
758 /* vlan fields */
759 struct vlan_group *vlangrp;
760
761 /* msi/msi-x fields */
762 u32 msi_flags;
763 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
764
765 /* flow control */
766 u32 pause_flags;
767 };
768
769 /*
770 * Maximum number of loops until we assume that a bit in the irq mask
771 * is stuck. Overridable with module param.
772 */
773 static int max_interrupt_work = 5;
774
775 /*
776 * Optimization can be either throuput mode or cpu mode
777 *
778 * Throughput Mode: Every tx and rx packet will generate an interrupt.
779 * CPU Mode: Interrupts are controlled by a timer.
780 */
781 enum {
782 NV_OPTIMIZATION_MODE_THROUGHPUT,
783 NV_OPTIMIZATION_MODE_CPU
784 };
785 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
786
787 /*
788 * Poll interval for timer irq
789 *
790 * This interval determines how frequent an interrupt is generated.
791 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
792 * Min = 0, and Max = 65535
793 */
794 static int poll_interval = -1;
795
796 /*
797 * MSI interrupts
798 */
799 enum {
800 NV_MSI_INT_DISABLED,
801 NV_MSI_INT_ENABLED
802 };
803 static int msi = NV_MSI_INT_ENABLED;
804
805 /*
806 * MSIX interrupts
807 */
808 enum {
809 NV_MSIX_INT_DISABLED,
810 NV_MSIX_INT_ENABLED
811 };
812 static int msix = NV_MSIX_INT_ENABLED;
813
814 /*
815 * DMA 64bit
816 */
817 enum {
818 NV_DMA_64BIT_DISABLED,
819 NV_DMA_64BIT_ENABLED
820 };
821 static int dma_64bit = NV_DMA_64BIT_ENABLED;
822
823 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
824 {
825 return netdev_priv(dev);
826 }
827
828 static inline u8 __iomem *get_hwbase(struct net_device *dev)
829 {
830 return ((struct fe_priv *)netdev_priv(dev))->base;
831 }
832
833 static inline void pci_push(u8 __iomem *base)
834 {
835 /* force out pending posted writes */
836 readl(base);
837 }
838
839 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
840 {
841 return le32_to_cpu(prd->flaglen)
842 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
843 }
844
845 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
846 {
847 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
848 }
849
850 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
851 int delay, int delaymax, const char *msg)
852 {
853 u8 __iomem *base = get_hwbase(dev);
854
855 pci_push(base);
856 do {
857 udelay(delay);
858 delaymax -= delay;
859 if (delaymax < 0) {
860 if (msg)
861 printk(msg);
862 return 1;
863 }
864 } while ((readl(base + offset) & mask) != target);
865 return 0;
866 }
867
868 #define NV_SETUP_RX_RING 0x01
869 #define NV_SETUP_TX_RING 0x02
870
871 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
872 {
873 struct fe_priv *np = get_nvpriv(dev);
874 u8 __iomem *base = get_hwbase(dev);
875
876 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
877 if (rxtx_flags & NV_SETUP_RX_RING) {
878 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
879 }
880 if (rxtx_flags & NV_SETUP_TX_RING) {
881 writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
882 }
883 } else {
884 if (rxtx_flags & NV_SETUP_RX_RING) {
885 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
886 writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
887 }
888 if (rxtx_flags & NV_SETUP_TX_RING) {
889 writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
890 writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
891 }
892 }
893 }
894
895 static void free_rings(struct net_device *dev)
896 {
897 struct fe_priv *np = get_nvpriv(dev);
898
899 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
900 if (np->rx_ring.orig)
901 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
902 np->rx_ring.orig, np->ring_addr);
903 } else {
904 if (np->rx_ring.ex)
905 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
906 np->rx_ring.ex, np->ring_addr);
907 }
908 if (np->rx_skbuff)
909 kfree(np->rx_skbuff);
910 if (np->rx_dma)
911 kfree(np->rx_dma);
912 if (np->tx_skbuff)
913 kfree(np->tx_skbuff);
914 if (np->tx_dma)
915 kfree(np->tx_dma);
916 if (np->tx_dma_len)
917 kfree(np->tx_dma_len);
918 }
919
920 static int using_multi_irqs(struct net_device *dev)
921 {
922 struct fe_priv *np = get_nvpriv(dev);
923
924 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
925 ((np->msi_flags & NV_MSI_X_ENABLED) &&
926 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
927 return 0;
928 else
929 return 1;
930 }
931
932 static void nv_enable_irq(struct net_device *dev)
933 {
934 struct fe_priv *np = get_nvpriv(dev);
935
936 if (!using_multi_irqs(dev)) {
937 if (np->msi_flags & NV_MSI_X_ENABLED)
938 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
939 else
940 enable_irq(dev->irq);
941 } else {
942 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
943 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
944 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
945 }
946 }
947
948 static void nv_disable_irq(struct net_device *dev)
949 {
950 struct fe_priv *np = get_nvpriv(dev);
951
952 if (!using_multi_irqs(dev)) {
953 if (np->msi_flags & NV_MSI_X_ENABLED)
954 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
955 else
956 disable_irq(dev->irq);
957 } else {
958 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
959 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
960 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
961 }
962 }
963
964 /* In MSIX mode, a write to irqmask behaves as XOR */
965 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
966 {
967 u8 __iomem *base = get_hwbase(dev);
968
969 writel(mask, base + NvRegIrqMask);
970 }
971
972 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
973 {
974 struct fe_priv *np = get_nvpriv(dev);
975 u8 __iomem *base = get_hwbase(dev);
976
977 if (np->msi_flags & NV_MSI_X_ENABLED) {
978 writel(mask, base + NvRegIrqMask);
979 } else {
980 if (np->msi_flags & NV_MSI_ENABLED)
981 writel(0, base + NvRegMSIIrqMask);
982 writel(0, base + NvRegIrqMask);
983 }
984 }
985
986 #define MII_READ (-1)
987 /* mii_rw: read/write a register on the PHY.
988 *
989 * Caller must guarantee serialization
990 */
991 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
992 {
993 u8 __iomem *base = get_hwbase(dev);
994 u32 reg;
995 int retval;
996
997 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
998
999 reg = readl(base + NvRegMIIControl);
1000 if (reg & NVREG_MIICTL_INUSE) {
1001 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1002 udelay(NV_MIIBUSY_DELAY);
1003 }
1004
1005 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1006 if (value != MII_READ) {
1007 writel(value, base + NvRegMIIData);
1008 reg |= NVREG_MIICTL_WRITE;
1009 }
1010 writel(reg, base + NvRegMIIControl);
1011
1012 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1013 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1014 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1015 dev->name, miireg, addr);
1016 retval = -1;
1017 } else if (value != MII_READ) {
1018 /* it was a write operation - fewer failures are detectable */
1019 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1020 dev->name, value, miireg, addr);
1021 retval = 0;
1022 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1023 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1024 dev->name, miireg, addr);
1025 retval = -1;
1026 } else {
1027 retval = readl(base + NvRegMIIData);
1028 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1029 dev->name, miireg, addr, retval);
1030 }
1031
1032 return retval;
1033 }
1034
1035 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1036 {
1037 struct fe_priv *np = netdev_priv(dev);
1038 u32 miicontrol;
1039 unsigned int tries = 0;
1040
1041 miicontrol = BMCR_RESET | bmcr_setup;
1042 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1043 return -1;
1044 }
1045
1046 /* wait for 500ms */
1047 msleep(500);
1048
1049 /* must wait till reset is deasserted */
1050 while (miicontrol & BMCR_RESET) {
1051 msleep(10);
1052 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1053 /* FIXME: 100 tries seem excessive */
1054 if (tries++ > 100)
1055 return -1;
1056 }
1057 return 0;
1058 }
1059
1060 static int phy_init(struct net_device *dev)
1061 {
1062 struct fe_priv *np = get_nvpriv(dev);
1063 u8 __iomem *base = get_hwbase(dev);
1064 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1065
1066 /* phy errata for E3016 phy */
1067 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1068 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1069 reg &= ~PHY_MARVELL_E3016_INITMASK;
1070 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1071 printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1072 return PHY_ERROR;
1073 }
1074 }
1075
1076 /* set advertise register */
1077 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1078 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1079 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1080 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1081 return PHY_ERROR;
1082 }
1083
1084 /* get phy interface type */
1085 phyinterface = readl(base + NvRegPhyInterface);
1086
1087 /* see if gigabit phy */
1088 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1089 if (mii_status & PHY_GIGABIT) {
1090 np->gigabit = PHY_GIGABIT;
1091 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1092 mii_control_1000 &= ~ADVERTISE_1000HALF;
1093 if (phyinterface & PHY_RGMII)
1094 mii_control_1000 |= ADVERTISE_1000FULL;
1095 else
1096 mii_control_1000 &= ~ADVERTISE_1000FULL;
1097
1098 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1099 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1100 return PHY_ERROR;
1101 }
1102 }
1103 else
1104 np->gigabit = 0;
1105
1106 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1107 mii_control |= BMCR_ANENABLE;
1108
1109 /* reset the phy
1110 * (certain phys need bmcr to be setup with reset)
1111 */
1112 if (phy_reset(dev, mii_control)) {
1113 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1114 return PHY_ERROR;
1115 }
1116
1117 /* phy vendor specific configuration */
1118 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1119 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1120 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
1121 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
1122 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1123 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1124 return PHY_ERROR;
1125 }
1126 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1127 phy_reserved |= PHY_INIT5;
1128 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1129 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1130 return PHY_ERROR;
1131 }
1132 }
1133 if (np->phy_oui == PHY_OUI_CICADA) {
1134 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1135 phy_reserved |= PHY_INIT6;
1136 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1137 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1138 return PHY_ERROR;
1139 }
1140 }
1141 /* some phys clear out pause advertisment on reset, set it back */
1142 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1143
1144 /* restart auto negotiation */
1145 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1146 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1147 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1148 return PHY_ERROR;
1149 }
1150
1151 return 0;
1152 }
1153
1154 static void nv_start_rx(struct net_device *dev)
1155 {
1156 struct fe_priv *np = netdev_priv(dev);
1157 u8 __iomem *base = get_hwbase(dev);
1158
1159 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1160 /* Already running? Stop it. */
1161 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
1162 writel(0, base + NvRegReceiverControl);
1163 pci_push(base);
1164 }
1165 writel(np->linkspeed, base + NvRegLinkSpeed);
1166 pci_push(base);
1167 writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
1168 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1169 dev->name, np->duplex, np->linkspeed);
1170 pci_push(base);
1171 }
1172
1173 static void nv_stop_rx(struct net_device *dev)
1174 {
1175 u8 __iomem *base = get_hwbase(dev);
1176
1177 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1178 writel(0, base + NvRegReceiverControl);
1179 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1180 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1181 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1182
1183 udelay(NV_RXSTOP_DELAY2);
1184 writel(0, base + NvRegLinkSpeed);
1185 }
1186
1187 static void nv_start_tx(struct net_device *dev)
1188 {
1189 u8 __iomem *base = get_hwbase(dev);
1190
1191 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1192 writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
1193 pci_push(base);
1194 }
1195
1196 static void nv_stop_tx(struct net_device *dev)
1197 {
1198 u8 __iomem *base = get_hwbase(dev);
1199
1200 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1201 writel(0, base + NvRegTransmitterControl);
1202 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1203 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1204 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1205
1206 udelay(NV_TXSTOP_DELAY2);
1207 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
1208 }
1209
1210 static void nv_txrx_reset(struct net_device *dev)
1211 {
1212 struct fe_priv *np = netdev_priv(dev);
1213 u8 __iomem *base = get_hwbase(dev);
1214
1215 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1216 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1217 pci_push(base);
1218 udelay(NV_TXRX_RESET_DELAY);
1219 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1220 pci_push(base);
1221 }
1222
1223 static void nv_mac_reset(struct net_device *dev)
1224 {
1225 struct fe_priv *np = netdev_priv(dev);
1226 u8 __iomem *base = get_hwbase(dev);
1227
1228 dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1229 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1230 pci_push(base);
1231 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1232 pci_push(base);
1233 udelay(NV_MAC_RESET_DELAY);
1234 writel(0, base + NvRegMacReset);
1235 pci_push(base);
1236 udelay(NV_MAC_RESET_DELAY);
1237 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1238 pci_push(base);
1239 }
1240
1241 /*
1242 * nv_get_stats: dev->get_stats function
1243 * Get latest stats value from the nic.
1244 * Called with read_lock(&dev_base_lock) held for read -
1245 * only synchronized against unregister_netdevice.
1246 */
1247 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1248 {
1249 struct fe_priv *np = netdev_priv(dev);
1250
1251 /* It seems that the nic always generates interrupts and doesn't
1252 * accumulate errors internally. Thus the current values in np->stats
1253 * are already up to date.
1254 */
1255 return &np->stats;
1256 }
1257
1258 /*
1259 * nv_alloc_rx: fill rx ring entries.
1260 * Return 1 if the allocations for the skbs failed and the
1261 * rx engine is without Available descriptors
1262 */
1263 static int nv_alloc_rx(struct net_device *dev)
1264 {
1265 struct fe_priv *np = netdev_priv(dev);
1266 unsigned int refill_rx = np->refill_rx;
1267 int nr;
1268
1269 while (np->cur_rx != refill_rx) {
1270 struct sk_buff *skb;
1271
1272 nr = refill_rx % np->rx_ring_size;
1273 if (np->rx_skbuff[nr] == NULL) {
1274
1275 skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1276 if (!skb)
1277 break;
1278
1279 skb->dev = dev;
1280 np->rx_skbuff[nr] = skb;
1281 } else {
1282 skb = np->rx_skbuff[nr];
1283 }
1284 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
1285 skb->end-skb->data, PCI_DMA_FROMDEVICE);
1286 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1287 np->rx_ring.orig[nr].buf = cpu_to_le32(np->rx_dma[nr]);
1288 wmb();
1289 np->rx_ring.orig[nr].flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1290 } else {
1291 np->rx_ring.ex[nr].bufhigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
1292 np->rx_ring.ex[nr].buflow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
1293 wmb();
1294 np->rx_ring.ex[nr].flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1295 }
1296 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
1297 dev->name, refill_rx);
1298 refill_rx++;
1299 }
1300 np->refill_rx = refill_rx;
1301 if (np->cur_rx - refill_rx == np->rx_ring_size)
1302 return 1;
1303 return 0;
1304 }
1305
1306 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1307 #ifdef CONFIG_FORCEDETH_NAPI
1308 static void nv_do_rx_refill(unsigned long data)
1309 {
1310 struct net_device *dev = (struct net_device *) data;
1311
1312 /* Just reschedule NAPI rx processing */
1313 netif_rx_schedule(dev);
1314 }
1315 #else
1316 static void nv_do_rx_refill(unsigned long data)
1317 {
1318 struct net_device *dev = (struct net_device *) data;
1319 struct fe_priv *np = netdev_priv(dev);
1320
1321 if (!using_multi_irqs(dev)) {
1322 if (np->msi_flags & NV_MSI_X_ENABLED)
1323 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1324 else
1325 disable_irq(dev->irq);
1326 } else {
1327 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1328 }
1329 if (nv_alloc_rx(dev)) {
1330 spin_lock_irq(&np->lock);
1331 if (!np->in_shutdown)
1332 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1333 spin_unlock_irq(&np->lock);
1334 }
1335 if (!using_multi_irqs(dev)) {
1336 if (np->msi_flags & NV_MSI_X_ENABLED)
1337 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1338 else
1339 enable_irq(dev->irq);
1340 } else {
1341 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1342 }
1343 }
1344 #endif
1345
1346 static void nv_init_rx(struct net_device *dev)
1347 {
1348 struct fe_priv *np = netdev_priv(dev);
1349 int i;
1350
1351 np->cur_rx = np->rx_ring_size;
1352 np->refill_rx = 0;
1353 for (i = 0; i < np->rx_ring_size; i++)
1354 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1355 np->rx_ring.orig[i].flaglen = 0;
1356 else
1357 np->rx_ring.ex[i].flaglen = 0;
1358 }
1359
1360 static void nv_init_tx(struct net_device *dev)
1361 {
1362 struct fe_priv *np = netdev_priv(dev);
1363 int i;
1364
1365 np->next_tx = np->nic_tx = 0;
1366 for (i = 0; i < np->tx_ring_size; i++) {
1367 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1368 np->tx_ring.orig[i].flaglen = 0;
1369 else
1370 np->tx_ring.ex[i].flaglen = 0;
1371 np->tx_skbuff[i] = NULL;
1372 np->tx_dma[i] = 0;
1373 }
1374 }
1375
1376 static int nv_init_ring(struct net_device *dev)
1377 {
1378 nv_init_tx(dev);
1379 nv_init_rx(dev);
1380 return nv_alloc_rx(dev);
1381 }
1382
1383 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
1384 {
1385 struct fe_priv *np = netdev_priv(dev);
1386
1387 dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
1388 dev->name, skbnr);
1389
1390 if (np->tx_dma[skbnr]) {
1391 pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
1392 np->tx_dma_len[skbnr],
1393 PCI_DMA_TODEVICE);
1394 np->tx_dma[skbnr] = 0;
1395 }
1396
1397 if (np->tx_skbuff[skbnr]) {
1398 dev_kfree_skb_any(np->tx_skbuff[skbnr]);
1399 np->tx_skbuff[skbnr] = NULL;
1400 return 1;
1401 } else {
1402 return 0;
1403 }
1404 }
1405
1406 static void nv_drain_tx(struct net_device *dev)
1407 {
1408 struct fe_priv *np = netdev_priv(dev);
1409 unsigned int i;
1410
1411 for (i = 0; i < np->tx_ring_size; i++) {
1412 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1413 np->tx_ring.orig[i].flaglen = 0;
1414 else
1415 np->tx_ring.ex[i].flaglen = 0;
1416 if (nv_release_txskb(dev, i))
1417 np->stats.tx_dropped++;
1418 }
1419 }
1420
1421 static void nv_drain_rx(struct net_device *dev)
1422 {
1423 struct fe_priv *np = netdev_priv(dev);
1424 int i;
1425 for (i = 0; i < np->rx_ring_size; i++) {
1426 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1427 np->rx_ring.orig[i].flaglen = 0;
1428 else
1429 np->rx_ring.ex[i].flaglen = 0;
1430 wmb();
1431 if (np->rx_skbuff[i]) {
1432 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1433 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1434 PCI_DMA_FROMDEVICE);
1435 dev_kfree_skb(np->rx_skbuff[i]);
1436 np->rx_skbuff[i] = NULL;
1437 }
1438 }
1439 }
1440
1441 static void drain_ring(struct net_device *dev)
1442 {
1443 nv_drain_tx(dev);
1444 nv_drain_rx(dev);
1445 }
1446
1447 /*
1448 * nv_start_xmit: dev->hard_start_xmit function
1449 * Called with netif_tx_lock held.
1450 */
1451 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1452 {
1453 struct fe_priv *np = netdev_priv(dev);
1454 u32 tx_flags = 0;
1455 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1456 unsigned int fragments = skb_shinfo(skb)->nr_frags;
1457 unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
1458 unsigned int start_nr = np->next_tx % np->tx_ring_size;
1459 unsigned int i;
1460 u32 offset = 0;
1461 u32 bcnt;
1462 u32 size = skb->len-skb->data_len;
1463 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1464 u32 tx_flags_vlan = 0;
1465
1466 /* add fragments to entries count */
1467 for (i = 0; i < fragments; i++) {
1468 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1469 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1470 }
1471
1472 spin_lock_irq(&np->lock);
1473
1474 if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
1475 spin_unlock_irq(&np->lock);
1476 netif_stop_queue(dev);
1477 return NETDEV_TX_BUSY;
1478 }
1479
1480 /* setup the header buffer */
1481 do {
1482 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1483 nr = (nr + 1) % np->tx_ring_size;
1484
1485 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1486 PCI_DMA_TODEVICE);
1487 np->tx_dma_len[nr] = bcnt;
1488
1489 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1490 np->tx_ring.orig[nr].buf = cpu_to_le32(np->tx_dma[nr]);
1491 np->tx_ring.orig[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1492 } else {
1493 np->tx_ring.ex[nr].bufhigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1494 np->tx_ring.ex[nr].buflow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1495 np->tx_ring.ex[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1496 }
1497 tx_flags = np->tx_flags;
1498 offset += bcnt;
1499 size -= bcnt;
1500 } while (size);
1501
1502 /* setup the fragments */
1503 for (i = 0; i < fragments; i++) {
1504 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1505 u32 size = frag->size;
1506 offset = 0;
1507
1508 do {
1509 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1510 nr = (nr + 1) % np->tx_ring_size;
1511
1512 np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1513 PCI_DMA_TODEVICE);
1514 np->tx_dma_len[nr] = bcnt;
1515
1516 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1517 np->tx_ring.orig[nr].buf = cpu_to_le32(np->tx_dma[nr]);
1518 np->tx_ring.orig[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1519 } else {
1520 np->tx_ring.ex[nr].bufhigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1521 np->tx_ring.ex[nr].buflow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1522 np->tx_ring.ex[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1523 }
1524 offset += bcnt;
1525 size -= bcnt;
1526 } while (size);
1527 }
1528
1529 /* set last fragment flag */
1530 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1531 np->tx_ring.orig[nr].flaglen |= cpu_to_le32(tx_flags_extra);
1532 } else {
1533 np->tx_ring.ex[nr].flaglen |= cpu_to_le32(tx_flags_extra);
1534 }
1535
1536 np->tx_skbuff[nr] = skb;
1537
1538 #ifdef NETIF_F_TSO
1539 if (skb_is_gso(skb))
1540 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1541 else
1542 #endif
1543 tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
1544
1545 /* vlan tag */
1546 if (np->vlangrp && vlan_tx_tag_present(skb)) {
1547 tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
1548 }
1549
1550 /* set tx flags */
1551 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1552 np->tx_ring.orig[start_nr].flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1553 } else {
1554 np->tx_ring.ex[start_nr].txvlan = cpu_to_le32(tx_flags_vlan);
1555 np->tx_ring.ex[start_nr].flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1556 }
1557
1558 dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1559 dev->name, np->next_tx, entries, tx_flags_extra);
1560 {
1561 int j;
1562 for (j=0; j<64; j++) {
1563 if ((j%16) == 0)
1564 dprintk("\n%03x:", j);
1565 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1566 }
1567 dprintk("\n");
1568 }
1569
1570 np->next_tx += entries;
1571
1572 dev->trans_start = jiffies;
1573 spin_unlock_irq(&np->lock);
1574 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1575 pci_push(get_hwbase(dev));
1576 return NETDEV_TX_OK;
1577 }
1578
1579 /*
1580 * nv_tx_done: check for completed packets, release the skbs.
1581 *
1582 * Caller must own np->lock.
1583 */
1584 static void nv_tx_done(struct net_device *dev)
1585 {
1586 struct fe_priv *np = netdev_priv(dev);
1587 u32 flags;
1588 unsigned int i;
1589 struct sk_buff *skb;
1590
1591 while (np->nic_tx != np->next_tx) {
1592 i = np->nic_tx % np->tx_ring_size;
1593
1594 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1595 flags = le32_to_cpu(np->tx_ring.orig[i].flaglen);
1596 else
1597 flags = le32_to_cpu(np->tx_ring.ex[i].flaglen);
1598
1599 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, flags 0x%x.\n",
1600 dev->name, np->nic_tx, flags);
1601 if (flags & NV_TX_VALID)
1602 break;
1603 if (np->desc_ver == DESC_VER_1) {
1604 if (flags & NV_TX_LASTPACKET) {
1605 skb = np->tx_skbuff[i];
1606 if (flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1607 NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1608 if (flags & NV_TX_UNDERFLOW)
1609 np->stats.tx_fifo_errors++;
1610 if (flags & NV_TX_CARRIERLOST)
1611 np->stats.tx_carrier_errors++;
1612 np->stats.tx_errors++;
1613 } else {
1614 np->stats.tx_packets++;
1615 np->stats.tx_bytes += skb->len;
1616 }
1617 }
1618 } else {
1619 if (flags & NV_TX2_LASTPACKET) {
1620 skb = np->tx_skbuff[i];
1621 if (flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1622 NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1623 if (flags & NV_TX2_UNDERFLOW)
1624 np->stats.tx_fifo_errors++;
1625 if (flags & NV_TX2_CARRIERLOST)
1626 np->stats.tx_carrier_errors++;
1627 np->stats.tx_errors++;
1628 } else {
1629 np->stats.tx_packets++;
1630 np->stats.tx_bytes += skb->len;
1631 }
1632 }
1633 }
1634 nv_release_txskb(dev, i);
1635 np->nic_tx++;
1636 }
1637 if (np->next_tx - np->nic_tx < np->tx_limit_start)
1638 netif_wake_queue(dev);
1639 }
1640
1641 /*
1642 * nv_tx_timeout: dev->tx_timeout function
1643 * Called with netif_tx_lock held.
1644 */
1645 static void nv_tx_timeout(struct net_device *dev)
1646 {
1647 struct fe_priv *np = netdev_priv(dev);
1648 u8 __iomem *base = get_hwbase(dev);
1649 u32 status;
1650
1651 if (np->msi_flags & NV_MSI_X_ENABLED)
1652 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1653 else
1654 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1655
1656 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1657
1658 {
1659 int i;
1660
1661 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1662 dev->name, (unsigned long)np->ring_addr,
1663 np->next_tx, np->nic_tx);
1664 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1665 for (i=0;i<=np->register_size;i+= 32) {
1666 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1667 i,
1668 readl(base + i + 0), readl(base + i + 4),
1669 readl(base + i + 8), readl(base + i + 12),
1670 readl(base + i + 16), readl(base + i + 20),
1671 readl(base + i + 24), readl(base + i + 28));
1672 }
1673 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1674 for (i=0;i<np->tx_ring_size;i+= 4) {
1675 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1676 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1677 i,
1678 le32_to_cpu(np->tx_ring.orig[i].buf),
1679 le32_to_cpu(np->tx_ring.orig[i].flaglen),
1680 le32_to_cpu(np->tx_ring.orig[i+1].buf),
1681 le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
1682 le32_to_cpu(np->tx_ring.orig[i+2].buf),
1683 le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
1684 le32_to_cpu(np->tx_ring.orig[i+3].buf),
1685 le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
1686 } else {
1687 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1688 i,
1689 le32_to_cpu(np->tx_ring.ex[i].bufhigh),
1690 le32_to_cpu(np->tx_ring.ex[i].buflow),
1691 le32_to_cpu(np->tx_ring.ex[i].flaglen),
1692 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
1693 le32_to_cpu(np->tx_ring.ex[i+1].buflow),
1694 le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
1695 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
1696 le32_to_cpu(np->tx_ring.ex[i+2].buflow),
1697 le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
1698 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
1699 le32_to_cpu(np->tx_ring.ex[i+3].buflow),
1700 le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
1701 }
1702 }
1703 }
1704
1705 spin_lock_irq(&np->lock);
1706
1707 /* 1) stop tx engine */
1708 nv_stop_tx(dev);
1709
1710 /* 2) check that the packets were not sent already: */
1711 nv_tx_done(dev);
1712
1713 /* 3) if there are dead entries: clear everything */
1714 if (np->next_tx != np->nic_tx) {
1715 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1716 nv_drain_tx(dev);
1717 np->next_tx = np->nic_tx = 0;
1718 setup_hw_rings(dev, NV_SETUP_TX_RING);
1719 netif_wake_queue(dev);
1720 }
1721
1722 /* 4) restart tx engine */
1723 nv_start_tx(dev);
1724 spin_unlock_irq(&np->lock);
1725 }
1726
1727 /*
1728 * Called when the nic notices a mismatch between the actual data len on the
1729 * wire and the len indicated in the 802 header
1730 */
1731 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1732 {
1733 int hdrlen; /* length of the 802 header */
1734 int protolen; /* length as stored in the proto field */
1735
1736 /* 1) calculate len according to header */
1737 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
1738 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1739 hdrlen = VLAN_HLEN;
1740 } else {
1741 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1742 hdrlen = ETH_HLEN;
1743 }
1744 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1745 dev->name, datalen, protolen, hdrlen);
1746 if (protolen > ETH_DATA_LEN)
1747 return datalen; /* Value in proto field not a len, no checks possible */
1748
1749 protolen += hdrlen;
1750 /* consistency checks: */
1751 if (datalen > ETH_ZLEN) {
1752 if (datalen >= protolen) {
1753 /* more data on wire than in 802 header, trim of
1754 * additional data.
1755 */
1756 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1757 dev->name, protolen);
1758 return protolen;
1759 } else {
1760 /* less data on wire than mentioned in header.
1761 * Discard the packet.
1762 */
1763 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1764 dev->name);
1765 return -1;
1766 }
1767 } else {
1768 /* short packet. Accept only if 802 values are also short */
1769 if (protolen > ETH_ZLEN) {
1770 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1771 dev->name);
1772 return -1;
1773 }
1774 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1775 dev->name, datalen);
1776 return datalen;
1777 }
1778 }
1779
1780 static int nv_rx_process(struct net_device *dev, int limit)
1781 {
1782 struct fe_priv *np = netdev_priv(dev);
1783 u32 flags;
1784 u32 vlanflags = 0;
1785 int count;
1786
1787 for (count = 0; count < limit; ++count) {
1788 struct sk_buff *skb;
1789 int len;
1790 int i;
1791 if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
1792 break; /* we scanned the whole ring - do not continue */
1793
1794 i = np->cur_rx % np->rx_ring_size;
1795 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1796 flags = le32_to_cpu(np->rx_ring.orig[i].flaglen);
1797 len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1798 } else {
1799 flags = le32_to_cpu(np->rx_ring.ex[i].flaglen);
1800 len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1801 vlanflags = le32_to_cpu(np->rx_ring.ex[i].buflow);
1802 }
1803
1804 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, flags 0x%x.\n",
1805 dev->name, np->cur_rx, flags);
1806
1807 if (flags & NV_RX_AVAIL)
1808 break; /* still owned by hardware, */
1809
1810 /*
1811 * the packet is for us - immediately tear down the pci mapping.
1812 * TODO: check if a prefetch of the first cacheline improves
1813 * the performance.
1814 */
1815 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1816 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1817 PCI_DMA_FROMDEVICE);
1818
1819 {
1820 int j;
1821 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
1822 for (j=0; j<64; j++) {
1823 if ((j%16) == 0)
1824 dprintk("\n%03x:", j);
1825 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1826 }
1827 dprintk("\n");
1828 }
1829 /* look at what we actually got: */
1830 if (np->desc_ver == DESC_VER_1) {
1831 if (!(flags & NV_RX_DESCRIPTORVALID))
1832 goto next_pkt;
1833
1834 if (flags & NV_RX_ERROR) {
1835 if (flags & NV_RX_MISSEDFRAME) {
1836 np->stats.rx_missed_errors++;
1837 np->stats.rx_errors++;
1838 goto next_pkt;
1839 }
1840 if (flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1841 np->stats.rx_errors++;
1842 goto next_pkt;
1843 }
1844 if (flags & NV_RX_CRCERR) {
1845 np->stats.rx_crc_errors++;
1846 np->stats.rx_errors++;
1847 goto next_pkt;
1848 }
1849 if (flags & NV_RX_OVERFLOW) {
1850 np->stats.rx_over_errors++;
1851 np->stats.rx_errors++;
1852 goto next_pkt;
1853 }
1854 if (flags & NV_RX_ERROR4) {
1855 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1856 if (len < 0) {
1857 np->stats.rx_errors++;
1858 goto next_pkt;
1859 }
1860 }
1861 /* framing errors are soft errors. */
1862 if (flags & NV_RX_FRAMINGERR) {
1863 if (flags & NV_RX_SUBSTRACT1) {
1864 len--;
1865 }
1866 }
1867 }
1868 } else {
1869 if (!(flags & NV_RX2_DESCRIPTORVALID))
1870 goto next_pkt;
1871
1872 if (flags & NV_RX2_ERROR) {
1873 if (flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1874 np->stats.rx_errors++;
1875 goto next_pkt;
1876 }
1877 if (flags & NV_RX2_CRCERR) {
1878 np->stats.rx_crc_errors++;
1879 np->stats.rx_errors++;
1880 goto next_pkt;
1881 }
1882 if (flags & NV_RX2_OVERFLOW) {
1883 np->stats.rx_over_errors++;
1884 np->stats.rx_errors++;
1885 goto next_pkt;
1886 }
1887 if (flags & NV_RX2_ERROR4) {
1888 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1889 if (len < 0) {
1890 np->stats.rx_errors++;
1891 goto next_pkt;
1892 }
1893 }
1894 /* framing errors are soft errors */
1895 if (flags & NV_RX2_FRAMINGERR) {
1896 if (flags & NV_RX2_SUBSTRACT1) {
1897 len--;
1898 }
1899 }
1900 }
1901 if (np->rx_csum) {
1902 flags &= NV_RX2_CHECKSUMMASK;
1903 if (flags == NV_RX2_CHECKSUMOK1 ||
1904 flags == NV_RX2_CHECKSUMOK2 ||
1905 flags == NV_RX2_CHECKSUMOK3) {
1906 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1907 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1908 } else {
1909 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1910 }
1911 }
1912 }
1913 /* got a valid packet - forward it to the network core */
1914 skb = np->rx_skbuff[i];
1915 np->rx_skbuff[i] = NULL;
1916
1917 skb_put(skb, len);
1918 skb->protocol = eth_type_trans(skb, dev);
1919 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1920 dev->name, np->cur_rx, len, skb->protocol);
1921 #ifdef CONFIG_FORCEDETH_NAPI
1922 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT))
1923 vlan_hwaccel_receive_skb(skb, np->vlangrp,
1924 vlanflags & NV_RX3_VLAN_TAG_MASK);
1925 else
1926 netif_receive_skb(skb);
1927 #else
1928 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT))
1929 vlan_hwaccel_rx(skb, np->vlangrp,
1930 vlanflags & NV_RX3_VLAN_TAG_MASK);
1931 else
1932 netif_rx(skb);
1933 #endif
1934 dev->last_rx = jiffies;
1935 np->stats.rx_packets++;
1936 np->stats.rx_bytes += len;
1937 next_pkt:
1938 np->cur_rx++;
1939 }
1940
1941 return count;
1942 }
1943
1944 static void set_bufsize(struct net_device *dev)
1945 {
1946 struct fe_priv *np = netdev_priv(dev);
1947
1948 if (dev->mtu <= ETH_DATA_LEN)
1949 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1950 else
1951 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1952 }
1953
1954 /*
1955 * nv_change_mtu: dev->change_mtu function
1956 * Called with dev_base_lock held for read.
1957 */
1958 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1959 {
1960 struct fe_priv *np = netdev_priv(dev);
1961 int old_mtu;
1962
1963 if (new_mtu < 64 || new_mtu > np->pkt_limit)
1964 return -EINVAL;
1965
1966 old_mtu = dev->mtu;
1967 dev->mtu = new_mtu;
1968
1969 /* return early if the buffer sizes will not change */
1970 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1971 return 0;
1972 if (old_mtu == new_mtu)
1973 return 0;
1974
1975 /* synchronized against open : rtnl_lock() held by caller */
1976 if (netif_running(dev)) {
1977 u8 __iomem *base = get_hwbase(dev);
1978 /*
1979 * It seems that the nic preloads valid ring entries into an
1980 * internal buffer. The procedure for flushing everything is
1981 * guessed, there is probably a simpler approach.
1982 * Changing the MTU is a rare event, it shouldn't matter.
1983 */
1984 nv_disable_irq(dev);
1985 netif_tx_lock_bh(dev);
1986 spin_lock(&np->lock);
1987 /* stop engines */
1988 nv_stop_rx(dev);
1989 nv_stop_tx(dev);
1990 nv_txrx_reset(dev);
1991 /* drain rx queue */
1992 nv_drain_rx(dev);
1993 nv_drain_tx(dev);
1994 /* reinit driver view of the rx queue */
1995 set_bufsize(dev);
1996 if (nv_init_ring(dev)) {
1997 if (!np->in_shutdown)
1998 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1999 }
2000 /* reinit nic view of the rx queue */
2001 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2002 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2003 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
2004 base + NvRegRingSizes);
2005 pci_push(base);
2006 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2007 pci_push(base);
2008
2009 /* restart rx engine */
2010 nv_start_rx(dev);
2011 nv_start_tx(dev);
2012 spin_unlock(&np->lock);
2013 netif_tx_unlock_bh(dev);
2014 nv_enable_irq(dev);
2015 }
2016 return 0;
2017 }
2018
2019 static void nv_copy_mac_to_hw(struct net_device *dev)
2020 {
2021 u8 __iomem *base = get_hwbase(dev);
2022 u32 mac[2];
2023
2024 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
2025 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
2026 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
2027
2028 writel(mac[0], base + NvRegMacAddrA);
2029 writel(mac[1], base + NvRegMacAddrB);
2030 }
2031
2032 /*
2033 * nv_set_mac_address: dev->set_mac_address function
2034 * Called with rtnl_lock() held.
2035 */
2036 static int nv_set_mac_address(struct net_device *dev, void *addr)
2037 {
2038 struct fe_priv *np = netdev_priv(dev);
2039 struct sockaddr *macaddr = (struct sockaddr*)addr;
2040
2041 if (!is_valid_ether_addr(macaddr->sa_data))
2042 return -EADDRNOTAVAIL;
2043
2044 /* synchronized against open : rtnl_lock() held by caller */
2045 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
2046
2047 if (netif_running(dev)) {
2048 netif_tx_lock_bh(dev);
2049 spin_lock_irq(&np->lock);
2050
2051 /* stop rx engine */
2052 nv_stop_rx(dev);
2053
2054 /* set mac address */
2055 nv_copy_mac_to_hw(dev);
2056
2057 /* restart rx engine */
2058 nv_start_rx(dev);
2059 spin_unlock_irq(&np->lock);
2060 netif_tx_unlock_bh(dev);
2061 } else {
2062 nv_copy_mac_to_hw(dev);
2063 }
2064 return 0;
2065 }
2066
2067 /*
2068 * nv_set_multicast: dev->set_multicast function
2069 * Called with netif_tx_lock held.
2070 */
2071 static void nv_set_multicast(struct net_device *dev)
2072 {
2073 struct fe_priv *np = netdev_priv(dev);
2074 u8 __iomem *base = get_hwbase(dev);
2075 u32 addr[2];
2076 u32 mask[2];
2077 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
2078
2079 memset(addr, 0, sizeof(addr));
2080 memset(mask, 0, sizeof(mask));
2081
2082 if (dev->flags & IFF_PROMISC) {
2083 pff |= NVREG_PFF_PROMISC;
2084 } else {
2085 pff |= NVREG_PFF_MYADDR;
2086
2087 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
2088 u32 alwaysOff[2];
2089 u32 alwaysOn[2];
2090
2091 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
2092 if (dev->flags & IFF_ALLMULTI) {
2093 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
2094 } else {
2095 struct dev_mc_list *walk;
2096
2097 walk = dev->mc_list;
2098 while (walk != NULL) {
2099 u32 a, b;
2100 a = le32_to_cpu(*(u32 *) walk->dmi_addr);
2101 b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
2102 alwaysOn[0] &= a;
2103 alwaysOff[0] &= ~a;
2104 alwaysOn[1] &= b;
2105 alwaysOff[1] &= ~b;
2106 walk = walk->next;
2107 }
2108 }
2109 addr[0] = alwaysOn[0];
2110 addr[1] = alwaysOn[1];
2111 mask[0] = alwaysOn[0] | alwaysOff[0];
2112 mask[1] = alwaysOn[1] | alwaysOff[1];
2113 }
2114 }
2115 addr[0] |= NVREG_MCASTADDRA_FORCE;
2116 pff |= NVREG_PFF_ALWAYS;
2117 spin_lock_irq(&np->lock);
2118 nv_stop_rx(dev);
2119 writel(addr[0], base + NvRegMulticastAddrA);
2120 writel(addr[1], base + NvRegMulticastAddrB);
2121 writel(mask[0], base + NvRegMulticastMaskA);
2122 writel(mask[1], base + NvRegMulticastMaskB);
2123 writel(pff, base + NvRegPacketFilterFlags);
2124 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2125 dev->name);
2126 nv_start_rx(dev);
2127 spin_unlock_irq(&np->lock);
2128 }
2129
2130 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
2131 {
2132 struct fe_priv *np = netdev_priv(dev);
2133 u8 __iomem *base = get_hwbase(dev);
2134
2135 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2136
2137 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2138 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2139 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2140 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2141 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2142 } else {
2143 writel(pff, base + NvRegPacketFilterFlags);
2144 }
2145 }
2146 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2147 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2148 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2149 writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
2150 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2151 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2152 } else {
2153 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
2154 writel(regmisc, base + NvRegMisc1);
2155 }
2156 }
2157 }
2158
2159 /**
2160 * nv_update_linkspeed: Setup the MAC according to the link partner
2161 * @dev: Network device to be configured
2162 *
2163 * The function queries the PHY and checks if there is a link partner.
2164 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2165 * set to 10 MBit HD.
2166 *
2167 * The function returns 0 if there is no link partner and 1 if there is
2168 * a good link partner.
2169 */
2170 static int nv_update_linkspeed(struct net_device *dev)
2171 {
2172 struct fe_priv *np = netdev_priv(dev);
2173 u8 __iomem *base = get_hwbase(dev);
2174 int adv = 0;
2175 int lpa = 0;
2176 int adv_lpa, adv_pause, lpa_pause;
2177 int newls = np->linkspeed;
2178 int newdup = np->duplex;
2179 int mii_status;
2180 int retval = 0;
2181 u32 control_1000, status_1000, phyreg, pause_flags, txreg;
2182
2183 /* BMSR_LSTATUS is latched, read it twice:
2184 * we want the current value.
2185 */
2186 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2187 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2188
2189 if (!(mii_status & BMSR_LSTATUS)) {
2190 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2191 dev->name);
2192 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2193 newdup = 0;
2194 retval = 0;
2195 goto set_speed;
2196 }
2197
2198 if (np->autoneg == 0) {
2199 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2200 dev->name, np->fixed_mode);
2201 if (np->fixed_mode & LPA_100FULL) {
2202 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2203 newdup = 1;
2204 } else if (np->fixed_mode & LPA_100HALF) {
2205 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2206 newdup = 0;
2207 } else if (np->fixed_mode & LPA_10FULL) {
2208 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2209 newdup = 1;
2210 } else {
2211 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2212 newdup = 0;
2213 }
2214 retval = 1;
2215 goto set_speed;
2216 }
2217 /* check auto negotiation is complete */
2218 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2219 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2220 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2221 newdup = 0;
2222 retval = 0;
2223 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2224 goto set_speed;
2225 }
2226
2227 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2228 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2229 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2230 dev->name, adv, lpa);
2231
2232 retval = 1;
2233 if (np->gigabit == PHY_GIGABIT) {
2234 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2235 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2236
2237 if ((control_1000 & ADVERTISE_1000FULL) &&
2238 (status_1000 & LPA_1000FULL)) {
2239 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2240 dev->name);
2241 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2242 newdup = 1;
2243 goto set_speed;
2244 }
2245 }
2246
2247 /* FIXME: handle parallel detection properly */
2248 adv_lpa = lpa & adv;
2249 if (adv_lpa & LPA_100FULL) {
2250 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2251 newdup = 1;
2252 } else if (adv_lpa & LPA_100HALF) {
2253 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2254 newdup = 0;
2255 } else if (adv_lpa & LPA_10FULL) {
2256 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2257 newdup = 1;
2258 } else if (adv_lpa & LPA_10HALF) {
2259 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2260 newdup = 0;
2261 } else {
2262 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2263 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2264 newdup = 0;
2265 }
2266
2267 set_speed:
2268 if (np->duplex == newdup && np->linkspeed == newls)
2269 return retval;
2270
2271 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2272 dev->name, np->linkspeed, np->duplex, newls, newdup);
2273
2274 np->duplex = newdup;
2275 np->linkspeed = newls;
2276
2277 if (np->gigabit == PHY_GIGABIT) {
2278 phyreg = readl(base + NvRegRandomSeed);
2279 phyreg &= ~(0x3FF00);
2280 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2281 phyreg |= NVREG_RNDSEED_FORCE3;
2282 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2283 phyreg |= NVREG_RNDSEED_FORCE2;
2284 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2285 phyreg |= NVREG_RNDSEED_FORCE;
2286 writel(phyreg, base + NvRegRandomSeed);
2287 }
2288
2289 phyreg = readl(base + NvRegPhyInterface);
2290 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2291 if (np->duplex == 0)
2292 phyreg |= PHY_HALF;
2293 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2294 phyreg |= PHY_100;
2295 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2296 phyreg |= PHY_1000;
2297 writel(phyreg, base + NvRegPhyInterface);
2298
2299 if (phyreg & PHY_RGMII) {
2300 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2301 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
2302 else
2303 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
2304 } else {
2305 txreg = NVREG_TX_DEFERRAL_DEFAULT;
2306 }
2307 writel(txreg, base + NvRegTxDeferral);
2308
2309 if (np->desc_ver == DESC_VER_1) {
2310 txreg = NVREG_TX_WM_DESC1_DEFAULT;
2311 } else {
2312 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2313 txreg = NVREG_TX_WM_DESC2_3_1000;
2314 else
2315 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
2316 }
2317 writel(txreg, base + NvRegTxWatermark);
2318
2319 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2320 base + NvRegMisc1);
2321 pci_push(base);
2322 writel(np->linkspeed, base + NvRegLinkSpeed);
2323 pci_push(base);
2324
2325 pause_flags = 0;
2326 /* setup pause frame */
2327 if (np->duplex != 0) {
2328 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
2329 adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2330 lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2331
2332 switch (adv_pause) {
2333 case ADVERTISE_PAUSE_CAP:
2334 if (lpa_pause & LPA_PAUSE_CAP) {
2335 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2336 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2337 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2338 }
2339 break;
2340 case ADVERTISE_PAUSE_ASYM:
2341 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2342 {
2343 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2344 }
2345 break;
2346 case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
2347 if (lpa_pause & LPA_PAUSE_CAP)
2348 {
2349 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2350 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2351 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2352 }
2353 if (lpa_pause == LPA_PAUSE_ASYM)
2354 {
2355 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2356 }
2357 break;
2358 }
2359 } else {
2360 pause_flags = np->pause_flags;
2361 }
2362 }
2363 nv_update_pause(dev, pause_flags);
2364
2365 return retval;
2366 }
2367
2368 static void nv_linkchange(struct net_device *dev)
2369 {
2370 if (nv_update_linkspeed(dev)) {
2371 if (!netif_carrier_ok(dev)) {
2372 netif_carrier_on(dev);
2373 printk(KERN_INFO "%s: link up.\n", dev->name);
2374 nv_start_rx(dev);
2375 }
2376 } else {
2377 if (netif_carrier_ok(dev)) {
2378 netif_carrier_off(dev);
2379 printk(KERN_INFO "%s: link down.\n", dev->name);
2380 nv_stop_rx(dev);
2381 }
2382 }
2383 }
2384
2385 static void nv_link_irq(struct net_device *dev)
2386 {
2387 u8 __iomem *base = get_hwbase(dev);
2388 u32 miistat;
2389
2390 miistat = readl(base + NvRegMIIStatus);
2391 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2392 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2393
2394 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2395 nv_linkchange(dev);
2396 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2397 }
2398
2399 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
2400 {
2401 struct net_device *dev = (struct net_device *) data;
2402 struct fe_priv *np = netdev_priv(dev);
2403 u8 __iomem *base = get_hwbase(dev);
2404 u32 events;
2405 int i;
2406
2407 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2408
2409 for (i=0; ; i++) {
2410 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2411 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2412 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2413 } else {
2414 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2415 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2416 }
2417 pci_push(base);
2418 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2419 if (!(events & np->irqmask))
2420 break;
2421
2422 spin_lock(&np->lock);
2423 nv_tx_done(dev);
2424 spin_unlock(&np->lock);
2425
2426 if (events & NVREG_IRQ_LINK) {
2427 spin_lock(&np->lock);
2428 nv_link_irq(dev);
2429 spin_unlock(&np->lock);
2430 }
2431 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2432 spin_lock(&np->lock);
2433 nv_linkchange(dev);
2434 spin_unlock(&np->lock);
2435 np->link_timeout = jiffies + LINK_TIMEOUT;
2436 }
2437 if (events & (NVREG_IRQ_TX_ERR)) {
2438 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2439 dev->name, events);
2440 }
2441 if (events & (NVREG_IRQ_UNKNOWN)) {
2442 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2443 dev->name, events);
2444 }
2445 #ifdef CONFIG_FORCEDETH_NAPI
2446 if (events & NVREG_IRQ_RX_ALL) {
2447 netif_rx_schedule(dev);
2448
2449 /* Disable furthur receive irq's */
2450 spin_lock(&np->lock);
2451 np->irqmask &= ~NVREG_IRQ_RX_ALL;
2452
2453 if (np->msi_flags & NV_MSI_X_ENABLED)
2454 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2455 else
2456 writel(np->irqmask, base + NvRegIrqMask);
2457 spin_unlock(&np->lock);
2458 }
2459 #else
2460 nv_rx_process(dev, dev->weight);
2461 if (nv_alloc_rx(dev)) {
2462 spin_lock(&np->lock);
2463 if (!np->in_shutdown)
2464 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2465 spin_unlock(&np->lock);
2466 }
2467 #endif
2468 if (i > max_interrupt_work) {
2469 spin_lock(&np->lock);
2470 /* disable interrupts on the nic */
2471 if (!(np->msi_flags & NV_MSI_X_ENABLED))
2472 writel(0, base + NvRegIrqMask);
2473 else
2474 writel(np->irqmask, base + NvRegIrqMask);
2475 pci_push(base);
2476
2477 if (!np->in_shutdown) {
2478 np->nic_poll_irq = np->irqmask;
2479 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2480 }
2481 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2482 spin_unlock(&np->lock);
2483 break;
2484 }
2485
2486 }
2487 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2488
2489 return IRQ_RETVAL(i);
2490 }
2491
2492 static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
2493 {
2494 struct net_device *dev = (struct net_device *) data;
2495 struct fe_priv *np = netdev_priv(dev);
2496 u8 __iomem *base = get_hwbase(dev);
2497 u32 events;
2498 int i;
2499
2500 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
2501
2502 for (i=0; ; i++) {
2503 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
2504 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
2505 pci_push(base);
2506 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
2507 if (!(events & np->irqmask))
2508 break;
2509
2510 spin_lock_irq(&np->lock);
2511 nv_tx_done(dev);
2512 spin_unlock_irq(&np->lock);
2513
2514 if (events & (NVREG_IRQ_TX_ERR)) {
2515 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2516 dev->name, events);
2517 }
2518 if (i > max_interrupt_work) {
2519 spin_lock_irq(&np->lock);
2520 /* disable interrupts on the nic */
2521 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
2522 pci_push(base);
2523
2524 if (!np->in_shutdown) {
2525 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
2526 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2527 }
2528 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
2529 spin_unlock_irq(&np->lock);
2530 break;
2531 }
2532
2533 }
2534 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
2535
2536 return IRQ_RETVAL(i);
2537 }
2538
2539 #ifdef CONFIG_FORCEDETH_NAPI
2540 static int nv_napi_poll(struct net_device *dev, int *budget)
2541 {
2542 int pkts, limit = min(*budget, dev->quota);
2543 struct fe_priv *np = netdev_priv(dev);
2544 u8 __iomem *base = get_hwbase(dev);
2545
2546 pkts = nv_rx_process(dev, limit);
2547
2548 if (nv_alloc_rx(dev)) {
2549 spin_lock_irq(&np->lock);
2550 if (!np->in_shutdown)
2551 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2552 spin_unlock_irq(&np->lock);
2553 }
2554
2555 if (pkts < limit) {
2556 /* all done, no more packets present */
2557 netif_rx_complete(dev);
2558
2559 /* re-enable receive interrupts */
2560 spin_lock_irq(&np->lock);
2561 np->irqmask |= NVREG_IRQ_RX_ALL;
2562 if (np->msi_flags & NV_MSI_X_ENABLED)
2563 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2564 else
2565 writel(np->irqmask, base + NvRegIrqMask);
2566 spin_unlock_irq(&np->lock);
2567 return 0;
2568 } else {
2569 /* used up our quantum, so reschedule */
2570 dev->quota -= pkts;
2571 *budget -= pkts;
2572 return 1;
2573 }
2574 }
2575 #endif
2576
2577 #ifdef CONFIG_FORCEDETH_NAPI
2578 static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2579 {
2580 struct net_device *dev = (struct net_device *) data;
2581 u8 __iomem *base = get_hwbase(dev);
2582 u32 events;
2583
2584 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2585 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2586
2587 if (events) {
2588 netif_rx_schedule(dev);
2589 /* disable receive interrupts on the nic */
2590 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2591 pci_push(base);
2592 }
2593 return IRQ_HANDLED;
2594 }
2595 #else
2596 static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2597 {
2598 struct net_device *dev = (struct net_device *) data;
2599 struct fe_priv *np = netdev_priv(dev);
2600 u8 __iomem *base = get_hwbase(dev);
2601 u32 events;
2602 int i;
2603
2604 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
2605
2606 for (i=0; ; i++) {
2607 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2608 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2609 pci_push(base);
2610 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
2611 if (!(events & np->irqmask))
2612 break;
2613
2614 nv_rx_process(dev, dev->weight);
2615 if (nv_alloc_rx(dev)) {
2616 spin_lock_irq(&np->lock);
2617 if (!np->in_shutdown)
2618 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2619 spin_unlock_irq(&np->lock);
2620 }
2621
2622 if (i > max_interrupt_work) {
2623 spin_lock_irq(&np->lock);
2624 /* disable interrupts on the nic */
2625 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2626 pci_push(base);
2627
2628 if (!np->in_shutdown) {
2629 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
2630 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2631 }
2632 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
2633 spin_unlock_irq(&np->lock);
2634 break;
2635 }
2636 }
2637 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
2638
2639 return IRQ_RETVAL(i);
2640 }
2641 #endif
2642
2643 static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
2644 {
2645 struct net_device *dev = (struct net_device *) data;
2646 struct fe_priv *np = netdev_priv(dev);
2647 u8 __iomem *base = get_hwbase(dev);
2648 u32 events;
2649 int i;
2650
2651 dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
2652
2653 for (i=0; ; i++) {
2654 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
2655 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
2656 pci_push(base);
2657 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2658 if (!(events & np->irqmask))
2659 break;
2660
2661 if (events & NVREG_IRQ_LINK) {
2662 spin_lock_irq(&np->lock);
2663 nv_link_irq(dev);
2664 spin_unlock_irq(&np->lock);
2665 }
2666 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2667 spin_lock_irq(&np->lock);
2668 nv_linkchange(dev);
2669 spin_unlock_irq(&np->lock);
2670 np->link_timeout = jiffies + LINK_TIMEOUT;
2671 }
2672 if (events & (NVREG_IRQ_UNKNOWN)) {
2673 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2674 dev->name, events);
2675 }
2676 if (i > max_interrupt_work) {
2677 spin_lock_irq(&np->lock);
2678 /* disable interrupts on the nic */
2679 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
2680 pci_push(base);
2681
2682 if (!np->in_shutdown) {
2683 np->nic_poll_irq |= NVREG_IRQ_OTHER;
2684 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2685 }
2686 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
2687 spin_unlock_irq(&np->lock);
2688 break;
2689 }
2690
2691 }
2692 dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
2693
2694 return IRQ_RETVAL(i);
2695 }
2696
2697 static irqreturn_t nv_nic_irq_test(int foo, void *data, struct pt_regs *regs)
2698 {
2699 struct net_device *dev = (struct net_device *) data;
2700 struct fe_priv *np = netdev_priv(dev);
2701 u8 __iomem *base = get_hwbase(dev);
2702 u32 events;
2703
2704 dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
2705
2706 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2707 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2708 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
2709 } else {
2710 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2711 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
2712 }
2713 pci_push(base);
2714 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2715 if (!(events & NVREG_IRQ_TIMER))
2716 return IRQ_RETVAL(0);
2717
2718 spin_lock(&np->lock);
2719 np->intr_test = 1;
2720 spin_unlock(&np->lock);
2721
2722 dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
2723
2724 return IRQ_RETVAL(1);
2725 }
2726
2727 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
2728 {
2729 u8 __iomem *base = get_hwbase(dev);
2730 int i;
2731 u32 msixmap = 0;
2732
2733 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
2734 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
2735 * the remaining 8 interrupts.
2736 */
2737 for (i = 0; i < 8; i++) {
2738 if ((irqmask >> i) & 0x1) {
2739 msixmap |= vector << (i << 2);
2740 }
2741 }
2742 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
2743
2744 msixmap = 0;
2745 for (i = 0; i < 8; i++) {
2746 if ((irqmask >> (i + 8)) & 0x1) {
2747 msixmap |= vector << (i << 2);
2748 }
2749 }
2750 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
2751 }
2752
2753 static int nv_request_irq(struct net_device *dev, int intr_test)
2754 {
2755 struct fe_priv *np = get_nvpriv(dev);
2756 u8 __iomem *base = get_hwbase(dev);
2757 int ret = 1;
2758 int i;
2759
2760 if (np->msi_flags & NV_MSI_X_CAPABLE) {
2761 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2762 np->msi_x_entry[i].entry = i;
2763 }
2764 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
2765 np->msi_flags |= NV_MSI_X_ENABLED;
2766 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
2767 /* Request irq for rx handling */
2768 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
2769 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
2770 pci_disable_msix(np->pci_dev);
2771 np->msi_flags &= ~NV_MSI_X_ENABLED;
2772 goto out_err;
2773 }
2774 /* Request irq for tx handling */
2775 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
2776 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
2777 pci_disable_msix(np->pci_dev);
2778 np->msi_flags &= ~NV_MSI_X_ENABLED;
2779 goto out_free_rx;
2780 }
2781 /* Request irq for link and timer handling */
2782 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
2783 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
2784 pci_disable_msix(np->pci_dev);
2785 np->msi_flags &= ~NV_MSI_X_ENABLED;
2786 goto out_free_tx;
2787 }
2788 /* map interrupts to their respective vector */
2789 writel(0, base + NvRegMSIXMap0);
2790 writel(0, base + NvRegMSIXMap1);
2791 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
2792 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
2793 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
2794 } else {
2795 /* Request irq for all interrupts */
2796 if ((!intr_test &&
2797 request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2798 (intr_test &&
2799 request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
2800 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2801 pci_disable_msix(np->pci_dev);
2802 np->msi_flags &= ~NV_MSI_X_ENABLED;
2803 goto out_err;
2804 }
2805
2806 /* map interrupts to vector 0 */
2807 writel(0, base + NvRegMSIXMap0);
2808 writel(0, base + NvRegMSIXMap1);
2809 }
2810 }
2811 }
2812 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
2813 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
2814 np->msi_flags |= NV_MSI_ENABLED;
2815 if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2816 (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
2817 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2818 pci_disable_msi(np->pci_dev);
2819 np->msi_flags &= ~NV_MSI_ENABLED;
2820 goto out_err;
2821 }
2822
2823 /* map interrupts to vector 0 */
2824 writel(0, base + NvRegMSIMap0);
2825 writel(0, base + NvRegMSIMap1);
2826 /* enable msi vector 0 */
2827 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
2828 }
2829 }
2830 if (ret != 0) {
2831 if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2832 (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0))
2833 goto out_err;
2834
2835 }
2836
2837 return 0;
2838 out_free_tx:
2839 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
2840 out_free_rx:
2841 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
2842 out_err:
2843 return 1;
2844 }
2845
2846 static void nv_free_irq(struct net_device *dev)
2847 {
2848 struct fe_priv *np = get_nvpriv(dev);
2849 int i;
2850
2851 if (np->msi_flags & NV_MSI_X_ENABLED) {
2852 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2853 free_irq(np->msi_x_entry[i].vector, dev);
2854 }
2855 pci_disable_msix(np->pci_dev);
2856 np->msi_flags &= ~NV_MSI_X_ENABLED;
2857 } else {
2858 free_irq(np->pci_dev->irq, dev);
2859 if (np->msi_flags & NV_MSI_ENABLED) {
2860 pci_disable_msi(np->pci_dev);
2861 np->msi_flags &= ~NV_MSI_ENABLED;
2862 }
2863 }
2864 }
2865
2866 static void nv_do_nic_poll(unsigned long data)
2867 {
2868 struct net_device *dev = (struct net_device *) data;
2869 struct fe_priv *np = netdev_priv(dev);
2870 u8 __iomem *base = get_hwbase(dev);
2871 u32 mask = 0;
2872
2873 /*
2874 * First disable irq(s) and then
2875 * reenable interrupts on the nic, we have to do this before calling
2876 * nv_nic_irq because that may decide to do otherwise
2877 */
2878
2879 if (!using_multi_irqs(dev)) {
2880 if (np->msi_flags & NV_MSI_X_ENABLED)
2881 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2882 else
2883 disable_irq_lockdep(dev->irq);
2884 mask = np->irqmask;
2885 } else {
2886 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2887 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2888 mask |= NVREG_IRQ_RX_ALL;
2889 }
2890 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2891 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2892 mask |= NVREG_IRQ_TX_ALL;
2893 }
2894 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2895 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2896 mask |= NVREG_IRQ_OTHER;
2897 }
2898 }
2899 np->nic_poll_irq = 0;
2900
2901 /* FIXME: Do we need synchronize_irq(dev->irq) here? */
2902
2903 writel(mask, base + NvRegIrqMask);
2904 pci_push(base);
2905
2906 if (!using_multi_irqs(dev)) {
2907 nv_nic_irq(0, dev, NULL);
2908 if (np->msi_flags & NV_MSI_X_ENABLED)
2909 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2910 else
2911 enable_irq_lockdep(dev->irq);
2912 } else {
2913 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2914 nv_nic_irq_rx(0, dev, NULL);
2915 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2916 }
2917 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2918 nv_nic_irq_tx(0, dev, NULL);
2919 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2920 }
2921 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2922 nv_nic_irq_other(0, dev, NULL);
2923 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2924 }
2925 }
2926 }
2927
2928 #ifdef CONFIG_NET_POLL_CONTROLLER
2929 static void nv_poll_controller(struct net_device *dev)
2930 {
2931 nv_do_nic_poll((unsigned long) dev);
2932 }
2933 #endif
2934
2935 static void nv_do_stats_poll(unsigned long data)
2936 {
2937 struct net_device *dev = (struct net_device *) data;
2938 struct fe_priv *np = netdev_priv(dev);
2939 u8 __iomem *base = get_hwbase(dev);
2940
2941 np->estats.tx_bytes += readl(base + NvRegTxCnt);
2942 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
2943 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
2944 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
2945 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
2946 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
2947 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
2948 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
2949 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
2950 np->estats.tx_deferral += readl(base + NvRegTxDef);
2951 np->estats.tx_packets += readl(base + NvRegTxFrame);
2952 np->estats.tx_pause += readl(base + NvRegTxPause);
2953 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
2954 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
2955 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
2956 np->estats.rx_runt += readl(base + NvRegRxRunt);
2957 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
2958 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
2959 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
2960 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
2961 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
2962 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
2963 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
2964 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
2965 np->estats.rx_bytes += readl(base + NvRegRxCnt);
2966 np->estats.rx_pause += readl(base + NvRegRxPause);
2967 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
2968 np->estats.rx_packets =
2969 np->estats.rx_unicast +
2970 np->estats.rx_multicast +
2971 np->estats.rx_broadcast;
2972 np->estats.rx_errors_total =
2973 np->estats.rx_crc_errors +
2974 np->estats.rx_over_errors +
2975 np->estats.rx_frame_error +
2976 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
2977 np->estats.rx_late_collision +
2978 np->estats.rx_runt +
2979 np->estats.rx_frame_too_long;
2980
2981 if (!np->in_shutdown)
2982 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
2983 }
2984
2985 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2986 {
2987 struct fe_priv *np = netdev_priv(dev);
2988 strcpy(info->driver, "forcedeth");
2989 strcpy(info->version, FORCEDETH_VERSION);
2990 strcpy(info->bus_info, pci_name(np->pci_dev));
2991 }
2992
2993 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2994 {
2995 struct fe_priv *np = netdev_priv(dev);
2996 wolinfo->supported = WAKE_MAGIC;
2997
2998 spin_lock_irq(&np->lock);
2999 if (np->wolenabled)
3000 wolinfo->wolopts = WAKE_MAGIC;
3001 spin_unlock_irq(&np->lock);
3002 }
3003
3004 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3005 {
3006 struct fe_priv *np = netdev_priv(dev);
3007 u8 __iomem *base = get_hwbase(dev);
3008 u32 flags = 0;
3009
3010 if (wolinfo->wolopts == 0) {
3011 np->wolenabled = 0;
3012 } else if (wolinfo->wolopts & WAKE_MAGIC) {
3013 np->wolenabled = 1;
3014 flags = NVREG_WAKEUPFLAGS_ENABLE;
3015 }
3016 if (netif_running(dev)) {
3017 spin_lock_irq(&np->lock);
3018 writel(flags, base + NvRegWakeUpFlags);
3019 spin_unlock_irq(&np->lock);
3020 }
3021 return 0;
3022 }
3023
3024 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3025 {
3026 struct fe_priv *np = netdev_priv(dev);
3027 int adv;
3028
3029 spin_lock_irq(&np->lock);
3030 ecmd->port = PORT_MII;
3031 if (!netif_running(dev)) {
3032 /* We do not track link speed / duplex setting if the
3033 * interface is disabled. Force a link check */
3034 if (nv_update_linkspeed(dev)) {
3035 if (!netif_carrier_ok(dev))
3036 netif_carrier_on(dev);
3037 } else {
3038 if (netif_carrier_ok(dev))
3039 netif_carrier_off(dev);
3040 }
3041 }
3042
3043 if (netif_carrier_ok(dev)) {
3044 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
3045 case NVREG_LINKSPEED_10:
3046 ecmd->speed = SPEED_10;
3047 break;
3048 case NVREG_LINKSPEED_100:
3049 ecmd->speed = SPEED_100;
3050 break;
3051 case NVREG_LINKSPEED_1000:
3052 ecmd->speed = SPEED_1000;
3053 break;
3054 }
3055 ecmd->duplex = DUPLEX_HALF;
3056 if (np->duplex)
3057 ecmd->duplex = DUPLEX_FULL;
3058 } else {
3059 ecmd->speed = -1;
3060 ecmd->duplex = -1;
3061 }
3062
3063 ecmd->autoneg = np->autoneg;
3064
3065 ecmd->advertising = ADVERTISED_MII;
3066 if (np->autoneg) {
3067 ecmd->advertising |= ADVERTISED_Autoneg;
3068 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3069 if (adv & ADVERTISE_10HALF)
3070 ecmd->advertising |= ADVERTISED_10baseT_Half;
3071 if (adv & ADVERTISE_10FULL)
3072 ecmd->advertising |= ADVERTISED_10baseT_Full;
3073 if (adv & ADVERTISE_100HALF)
3074 ecmd->advertising |= ADVERTISED_100baseT_Half;
3075 if (adv & ADVERTISE_100FULL)
3076 ecmd->advertising |= ADVERTISED_100baseT_Full;
3077 if (np->gigabit == PHY_GIGABIT) {
3078 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3079 if (adv & ADVERTISE_1000FULL)
3080 ecmd->advertising |= ADVERTISED_1000baseT_Full;
3081 }
3082 }
3083 ecmd->supported = (SUPPORTED_Autoneg |
3084 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
3085 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
3086 SUPPORTED_MII);
3087 if (np->gigabit == PHY_GIGABIT)
3088 ecmd->supported |= SUPPORTED_1000baseT_Full;
3089
3090 ecmd->phy_address = np->phyaddr;
3091 ecmd->transceiver = XCVR_EXTERNAL;
3092
3093 /* ignore maxtxpkt, maxrxpkt for now */
3094 spin_unlock_irq(&np->lock);
3095 return 0;
3096 }
3097
3098 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3099 {
3100 struct fe_priv *np = netdev_priv(dev);
3101
3102 if (ecmd->port != PORT_MII)
3103 return -EINVAL;
3104 if (ecmd->transceiver != XCVR_EXTERNAL)
3105 return -EINVAL;
3106 if (ecmd->phy_address != np->phyaddr) {
3107 /* TODO: support switching between multiple phys. Should be
3108 * trivial, but not enabled due to lack of test hardware. */
3109 return -EINVAL;
3110 }
3111 if (ecmd->autoneg == AUTONEG_ENABLE) {
3112 u32 mask;
3113
3114 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
3115 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
3116 if (np->gigabit == PHY_GIGABIT)
3117 mask |= ADVERTISED_1000baseT_Full;
3118
3119 if ((ecmd->advertising & mask) == 0)
3120 return -EINVAL;
3121
3122 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
3123 /* Note: autonegotiation disable, speed 1000 intentionally
3124 * forbidden - noone should need that. */
3125
3126 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
3127 return -EINVAL;
3128 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
3129 return -EINVAL;
3130 } else {
3131 return -EINVAL;
3132 }
3133
3134 netif_carrier_off(dev);
3135 if (netif_running(dev)) {
3136 nv_disable_irq(dev);
3137 netif_tx_lock_bh(dev);
3138 spin_lock(&np->lock);
3139 /* stop engines */
3140 nv_stop_rx(dev);
3141 nv_stop_tx(dev);
3142 spin_unlock(&np->lock);
3143 netif_tx_unlock_bh(dev);
3144 }
3145
3146 if (ecmd->autoneg == AUTONEG_ENABLE) {
3147 int adv, bmcr;
3148
3149 np->autoneg = 1;
3150
3151 /* advertise only what has been requested */
3152 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3153 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3154 if (ecmd->advertising & ADVERTISED_10baseT_Half)
3155 adv |= ADVERTISE_10HALF;
3156 if (ecmd->advertising & ADVERTISED_10baseT_Full)
3157 adv |= ADVERTISE_10FULL;
3158 if (ecmd->advertising & ADVERTISED_100baseT_Half)
3159 adv |= ADVERTISE_100HALF;
3160 if (ecmd->advertising & ADVERTISED_100baseT_Full)
3161 adv |= ADVERTISE_100FULL;
3162 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
3163 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3164 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3165 adv |= ADVERTISE_PAUSE_ASYM;
3166 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3167
3168 if (np->gigabit == PHY_GIGABIT) {
3169 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3170 adv &= ~ADVERTISE_1000FULL;
3171 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
3172 adv |= ADVERTISE_1000FULL;
3173 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3174 }
3175
3176 if (netif_running(dev))
3177 printk(KERN_INFO "%s: link down.\n", dev->name);
3178 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3179 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
3180 bmcr |= BMCR_ANENABLE;
3181 /* reset the phy in order for settings to stick,
3182 * and cause autoneg to start */
3183 if (phy_reset(dev, bmcr)) {
3184 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3185 return -EINVAL;
3186 }
3187 } else {
3188 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3189 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3190 }
3191 } else {
3192 int adv, bmcr;
3193
3194 np->autoneg = 0;
3195
3196 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3197 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3198 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
3199 adv |= ADVERTISE_10HALF;
3200 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
3201 adv |= ADVERTISE_10FULL;
3202 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
3203 adv |= ADVERTISE_100HALF;
3204 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
3205 adv |= ADVERTISE_100FULL;
3206 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3207 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
3208 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3209 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3210 }
3211 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
3212 adv |= ADVERTISE_PAUSE_ASYM;
3213 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3214 }
3215 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3216 np->fixed_mode = adv;
3217
3218 if (np->gigabit == PHY_GIGABIT) {
3219 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3220 adv &= ~ADVERTISE_1000FULL;
3221 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3222 }
3223
3224 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3225 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
3226 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
3227 bmcr |= BMCR_FULLDPLX;
3228 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
3229 bmcr |= BMCR_SPEED100;
3230 if (np->phy_oui == PHY_OUI_MARVELL) {
3231 /* reset the phy in order for forced mode settings to stick */
3232 if (phy_reset(dev, bmcr)) {
3233 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3234 return -EINVAL;
3235 }
3236 } else {
3237 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3238 if (netif_running(dev)) {
3239 /* Wait a bit and then reconfigure the nic. */
3240 udelay(10);
3241 nv_linkchange(dev);
3242 }
3243 }
3244 }
3245
3246 if (netif_running(dev)) {
3247 nv_start_rx(dev);
3248 nv_start_tx(dev);
3249 nv_enable_irq(dev);
3250 }
3251
3252 return 0;
3253 }
3254
3255 #define FORCEDETH_REGS_VER 1
3256
3257 static int nv_get_regs_len(struct net_device *dev)
3258 {
3259 struct fe_priv *np = netdev_priv(dev);
3260 return np->register_size;
3261 }
3262
3263 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
3264 {
3265 struct fe_priv *np = netdev_priv(dev);
3266 u8 __iomem *base = get_hwbase(dev);
3267 u32 *rbuf = buf;
3268 int i;
3269
3270 regs->version = FORCEDETH_REGS_VER;
3271 spin_lock_irq(&np->lock);
3272 for (i = 0;i <= np->register_size/sizeof(u32); i++)
3273 rbuf[i] = readl(base + i*sizeof(u32));
3274 spin_unlock_irq(&np->lock);
3275 }
3276
3277 static int nv_nway_reset(struct net_device *dev)
3278 {
3279 struct fe_priv *np = netdev_priv(dev);
3280 int ret;
3281
3282 if (np->autoneg) {
3283 int bmcr;
3284
3285 netif_carrier_off(dev);
3286 if (netif_running(dev)) {
3287 nv_disable_irq(dev);
3288 netif_tx_lock_bh(dev);
3289 spin_lock(&np->lock);
3290 /* stop engines */
3291 nv_stop_rx(dev);
3292 nv_stop_tx(dev);
3293 spin_unlock(&np->lock);
3294 netif_tx_unlock_bh(dev);
3295 printk(KERN_INFO "%s: link down.\n", dev->name);
3296 }
3297
3298 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3299 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
3300 bmcr |= BMCR_ANENABLE;
3301 /* reset the phy in order for settings to stick*/
3302 if (phy_reset(dev, bmcr)) {
3303 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3304 return -EINVAL;
3305 }
3306 } else {
3307 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3308 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3309 }
3310
3311 if (netif_running(dev)) {
3312 nv_start_rx(dev);
3313 nv_start_tx(dev);
3314 nv_enable_irq(dev);
3315 }
3316 ret = 0;
3317 } else {
3318 ret = -EINVAL;
3319 }
3320
3321 return ret;
3322 }
3323
3324 static int nv_set_tso(struct net_device *dev, u32 value)
3325 {
3326 struct fe_priv *np = netdev_priv(dev);
3327
3328 if ((np->driver_data & DEV_HAS_CHECKSUM))
3329 return ethtool_op_set_tso(dev, value);
3330 else
3331 return -EOPNOTSUPP;
3332 }
3333
3334 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3335 {
3336 struct fe_priv *np = netdev_priv(dev);
3337
3338 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3339 ring->rx_mini_max_pending = 0;
3340 ring->rx_jumbo_max_pending = 0;
3341 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3342
3343 ring->rx_pending = np->rx_ring_size;
3344 ring->rx_mini_pending = 0;
3345 ring->rx_jumbo_pending = 0;
3346 ring->tx_pending = np->tx_ring_size;
3347 }
3348
3349 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3350 {
3351 struct fe_priv *np = netdev_priv(dev);
3352 u8 __iomem *base = get_hwbase(dev);
3353 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff, *rx_dma, *tx_dma, *tx_dma_len;
3354 dma_addr_t ring_addr;
3355
3356 if (ring->rx_pending < RX_RING_MIN ||
3357 ring->tx_pending < TX_RING_MIN ||
3358 ring->rx_mini_pending != 0 ||
3359 ring->rx_jumbo_pending != 0 ||
3360 (np->desc_ver == DESC_VER_1 &&
3361 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
3362 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
3363 (np->desc_ver != DESC_VER_1 &&
3364 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
3365 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
3366 return -EINVAL;
3367 }
3368
3369 /* allocate new rings */
3370 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3371 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3372 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3373 &ring_addr);
3374 } else {
3375 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3376 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3377 &ring_addr);
3378 }
3379 rx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->rx_pending, GFP_KERNEL);
3380 rx_dma = kmalloc(sizeof(dma_addr_t) * ring->rx_pending, GFP_KERNEL);
3381 tx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->tx_pending, GFP_KERNEL);
3382 tx_dma = kmalloc(sizeof(dma_addr_t) * ring->tx_pending, GFP_KERNEL);
3383 tx_dma_len = kmalloc(sizeof(unsigned int) * ring->tx_pending, GFP_KERNEL);
3384 if (!rxtx_ring || !rx_skbuff || !rx_dma || !tx_skbuff || !tx_dma || !tx_dma_len) {
3385 /* fall back to old rings */
3386 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3387 if (rxtx_ring)
3388 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3389 rxtx_ring, ring_addr);
3390 } else {
3391 if (rxtx_ring)
3392 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3393 rxtx_ring, ring_addr);
3394 }
3395 if (rx_skbuff)
3396 kfree(rx_skbuff);
3397 if (rx_dma)
3398 kfree(rx_dma);
3399 if (tx_skbuff)
3400 kfree(tx_skbuff);
3401 if (tx_dma)
3402 kfree(tx_dma);
3403 if (tx_dma_len)
3404 kfree(tx_dma_len);
3405 goto exit;
3406 }
3407
3408 if (netif_running(dev)) {
3409 nv_disable_irq(dev);
3410 netif_tx_lock_bh(dev);
3411 spin_lock(&np->lock);
3412 /* stop engines */
3413 nv_stop_rx(dev);
3414 nv_stop_tx(dev);
3415 nv_txrx_reset(dev);
3416 /* drain queues */
3417 nv_drain_rx(dev);
3418 nv_drain_tx(dev);
3419 /* delete queues */
3420 free_rings(dev);
3421 }
3422
3423 /* set new values */
3424 np->rx_ring_size = ring->rx_pending;
3425 np->tx_ring_size = ring->tx_pending;
3426 np->tx_limit_stop = ring->tx_pending - TX_LIMIT_DIFFERENCE;
3427 np->tx_limit_start = ring->tx_pending - TX_LIMIT_DIFFERENCE - 1;
3428 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3429 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
3430 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
3431 } else {
3432 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
3433 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
3434 }
3435 np->rx_skbuff = (struct sk_buff**)rx_skbuff;
3436 np->rx_dma = (dma_addr_t*)rx_dma;
3437 np->tx_skbuff = (struct sk_buff**)tx_skbuff;
3438 np->tx_dma = (dma_addr_t*)tx_dma;
3439 np->tx_dma_len = (unsigned int*)tx_dma_len;
3440 np->ring_addr = ring_addr;
3441
3442 memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
3443 memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
3444 memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
3445 memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
3446 memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
3447
3448 if (netif_running(dev)) {
3449 /* reinit driver view of the queues */
3450 set_bufsize(dev);
3451 if (nv_init_ring(dev)) {
3452 if (!np->in_shutdown)
3453 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3454 }
3455
3456 /* reinit nic view of the queues */
3457 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3458 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3459 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3460 base + NvRegRingSizes);
3461 pci_push(base);
3462 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3463 pci_push(base);
3464
3465 /* restart engines */
3466 nv_start_rx(dev);
3467 nv_start_tx(dev);
3468 spin_unlock(&np->lock);
3469 netif_tx_unlock_bh(dev);
3470 nv_enable_irq(dev);
3471 }
3472 return 0;
3473 exit:
3474 return -ENOMEM;
3475 }
3476
3477 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3478 {
3479 struct fe_priv *np = netdev_priv(dev);
3480
3481 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
3482 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
3483 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
3484 }
3485
3486 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3487 {
3488 struct fe_priv *np = netdev_priv(dev);
3489 int adv, bmcr;
3490
3491 if ((!np->autoneg && np->duplex == 0) ||
3492 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
3493 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
3494 dev->name);
3495 return -EINVAL;
3496 }
3497 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
3498 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
3499 return -EINVAL;
3500 }
3501
3502 netif_carrier_off(dev);
3503 if (netif_running(dev)) {
3504 nv_disable_irq(dev);
3505 netif_tx_lock_bh(dev);
3506 spin_lock(&np->lock);
3507 /* stop engines */
3508 nv_stop_rx(dev);
3509 nv_stop_tx(dev);
3510 spin_unlock(&np->lock);
3511 netif_tx_unlock_bh(dev);
3512 }
3513
3514 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
3515 if (pause->rx_pause)
3516 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
3517 if (pause->tx_pause)
3518 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
3519
3520 if (np->autoneg && pause->autoneg) {
3521 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
3522
3523 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3524 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3525 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
3526 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3527 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3528 adv |= ADVERTISE_PAUSE_ASYM;
3529 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3530
3531 if (netif_running(dev))
3532 printk(KERN_INFO "%s: link down.\n", dev->name);
3533 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3534 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3535 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3536 } else {
3537 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3538 if (pause->rx_pause)
3539 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3540 if (pause->tx_pause)
3541 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3542
3543 if (!netif_running(dev))
3544 nv_update_linkspeed(dev);
3545 else
3546 nv_update_pause(dev, np->pause_flags);
3547 }
3548
3549 if (netif_running(dev)) {
3550 nv_start_rx(dev);
3551 nv_start_tx(dev);
3552 nv_enable_irq(dev);
3553 }
3554 return 0;
3555 }
3556
3557 static u32 nv_get_rx_csum(struct net_device *dev)
3558 {
3559 struct fe_priv *np = netdev_priv(dev);
3560 return (np->rx_csum) != 0;
3561 }
3562
3563 static int nv_set_rx_csum(struct net_device *dev, u32 data)
3564 {
3565 struct fe_priv *np = netdev_priv(dev);
3566 u8 __iomem *base = get_hwbase(dev);
3567 int retcode = 0;
3568
3569 if (np->driver_data & DEV_HAS_CHECKSUM) {
3570 if (data) {
3571 np->rx_csum = 1;
3572 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
3573 } else {
3574 np->rx_csum = 0;
3575 /* vlan is dependent on rx checksum offload */
3576 if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
3577 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
3578 }
3579 if (netif_running(dev)) {
3580 spin_lock_irq(&np->lock);
3581 writel(np->txrxctl_bits, base + NvRegTxRxControl);
3582 spin_unlock_irq(&np->lock);
3583 }
3584 } else {
3585 return -EINVAL;
3586 }
3587
3588 return retcode;
3589 }
3590
3591 static int nv_set_tx_csum(struct net_device *dev, u32 data)
3592 {
3593 struct fe_priv *np = netdev_priv(dev);
3594
3595 if (np->driver_data & DEV_HAS_CHECKSUM)
3596 return ethtool_op_set_tx_hw_csum(dev, data);
3597 else
3598 return -EOPNOTSUPP;
3599 }
3600
3601 static int nv_set_sg(struct net_device *dev, u32 data)
3602 {
3603 struct fe_priv *np = netdev_priv(dev);
3604
3605 if (np->driver_data & DEV_HAS_CHECKSUM)
3606 return ethtool_op_set_sg(dev, data);
3607 else
3608 return -EOPNOTSUPP;
3609 }
3610
3611 static int nv_get_stats_count(struct net_device *dev)
3612 {
3613 struct fe_priv *np = netdev_priv(dev);
3614
3615 if (np->driver_data & DEV_HAS_STATISTICS)
3616 return sizeof(struct nv_ethtool_stats)/sizeof(u64);
3617 else
3618 return 0;
3619 }
3620
3621 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
3622 {
3623 struct fe_priv *np = netdev_priv(dev);
3624
3625 /* update stats */
3626 nv_do_stats_poll((unsigned long)dev);
3627
3628 memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
3629 }
3630
3631 static int nv_self_test_count(struct net_device *dev)
3632 {
3633 struct fe_priv *np = netdev_priv(dev);
3634
3635 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
3636 return NV_TEST_COUNT_EXTENDED;
3637 else
3638 return NV_TEST_COUNT_BASE;
3639 }
3640
3641 static int nv_link_test(struct net_device *dev)
3642 {
3643 struct fe_priv *np = netdev_priv(dev);
3644 int mii_status;
3645
3646 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3647 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3648
3649 /* check phy link status */
3650 if (!(mii_status & BMSR_LSTATUS))
3651 return 0;
3652 else
3653 return 1;
3654 }
3655
3656 static int nv_register_test(struct net_device *dev)
3657 {
3658 u8 __iomem *base = get_hwbase(dev);
3659 int i = 0;
3660 u32 orig_read, new_read;
3661
3662 do {
3663 orig_read = readl(base + nv_registers_test[i].reg);
3664
3665 /* xor with mask to toggle bits */
3666 orig_read ^= nv_registers_test[i].mask;
3667
3668 writel(orig_read, base + nv_registers_test[i].reg);
3669
3670 new_read = readl(base + nv_registers_test[i].reg);
3671
3672 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
3673 return 0;
3674
3675 /* restore original value */
3676 orig_read ^= nv_registers_test[i].mask;
3677 writel(orig_read, base + nv_registers_test[i].reg);
3678
3679 } while (nv_registers_test[++i].reg != 0);
3680
3681 return 1;
3682 }
3683
3684 static int nv_interrupt_test(struct net_device *dev)
3685 {
3686 struct fe_priv *np = netdev_priv(dev);
3687 u8 __iomem *base = get_hwbase(dev);
3688 int ret = 1;
3689 int testcnt;
3690 u32 save_msi_flags, save_poll_interval = 0;
3691
3692 if (netif_running(dev)) {
3693 /* free current irq */
3694 nv_free_irq(dev);
3695 save_poll_interval = readl(base+NvRegPollingInterval);
3696 }
3697
3698 /* flag to test interrupt handler */
3699 np->intr_test = 0;
3700
3701 /* setup test irq */
3702 save_msi_flags = np->msi_flags;
3703 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
3704 np->msi_flags |= 0x001; /* setup 1 vector */
3705 if (nv_request_irq(dev, 1))
3706 return 0;
3707
3708 /* setup timer interrupt */
3709 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
3710 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3711
3712 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
3713
3714 /* wait for at least one interrupt */
3715 msleep(100);
3716
3717 spin_lock_irq(&np->lock);
3718
3719 /* flag should be set within ISR */
3720 testcnt = np->intr_test;
3721 if (!testcnt)
3722 ret = 2;
3723
3724 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
3725 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3726 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3727 else
3728 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3729
3730 spin_unlock_irq(&np->lock);
3731
3732 nv_free_irq(dev);
3733
3734 np->msi_flags = save_msi_flags;
3735
3736 if (netif_running(dev)) {
3737 writel(save_poll_interval, base + NvRegPollingInterval);
3738 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3739 /* restore original irq */
3740 if (nv_request_irq(dev, 0))
3741 return 0;
3742 }
3743
3744 return ret;
3745 }
3746
3747 static int nv_loopback_test(struct net_device *dev)
3748 {
3749 struct fe_priv *np = netdev_priv(dev);
3750 u8 __iomem *base = get_hwbase(dev);
3751 struct sk_buff *tx_skb, *rx_skb;
3752 dma_addr_t test_dma_addr;
3753 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
3754 u32 flags;
3755 int len, i, pkt_len;
3756 u8 *pkt_data;
3757 u32 filter_flags = 0;
3758 u32 misc1_flags = 0;
3759 int ret = 1;
3760
3761 if (netif_running(dev)) {
3762 nv_disable_irq(dev);
3763 filter_flags = readl(base + NvRegPacketFilterFlags);
3764 misc1_flags = readl(base + NvRegMisc1);
3765 } else {
3766 nv_txrx_reset(dev);
3767 }
3768
3769 /* reinit driver view of the rx queue */
3770 set_bufsize(dev);
3771 nv_init_ring(dev);
3772
3773 /* setup hardware for loopback */
3774 writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
3775 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
3776
3777 /* reinit nic view of the rx queue */
3778 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3779 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3780 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3781 base + NvRegRingSizes);
3782 pci_push(base);
3783
3784 /* restart rx engine */
3785 nv_start_rx(dev);
3786 nv_start_tx(dev);
3787
3788 /* setup packet for tx */
3789 pkt_len = ETH_DATA_LEN;
3790 tx_skb = dev_alloc_skb(pkt_len);
3791 pkt_data = skb_put(tx_skb, pkt_len);
3792 for (i = 0; i < pkt_len; i++)
3793 pkt_data[i] = (u8)(i & 0xff);
3794 test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
3795 tx_skb->end-tx_skb->data, PCI_DMA_FROMDEVICE);
3796
3797 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3798 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
3799 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
3800 } else {
3801 np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32;
3802 np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
3803 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
3804 }
3805 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3806 pci_push(get_hwbase(dev));
3807
3808 msleep(500);
3809
3810 /* check for rx of the packet */
3811 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3812 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
3813 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
3814
3815 } else {
3816 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
3817 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
3818 }
3819
3820 if (flags & NV_RX_AVAIL) {
3821 ret = 0;
3822 } else if (np->desc_ver == DESC_VER_1) {
3823 if (flags & NV_RX_ERROR)
3824 ret = 0;
3825 } else {
3826 if (flags & NV_RX2_ERROR) {
3827 ret = 0;
3828 }
3829 }
3830
3831 if (ret) {
3832 if (len != pkt_len) {
3833 ret = 0;
3834 dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
3835 dev->name, len, pkt_len);
3836 } else {
3837 rx_skb = np->rx_skbuff[0];
3838 for (i = 0; i < pkt_len; i++) {
3839 if (rx_skb->data[i] != (u8)(i & 0xff)) {
3840 ret = 0;
3841 dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
3842 dev->name, i);
3843 break;
3844 }
3845 }
3846 }
3847 } else {
3848 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
3849 }
3850
3851 pci_unmap_page(np->pci_dev, test_dma_addr,
3852 tx_skb->end-tx_skb->data,
3853 PCI_DMA_TODEVICE);
3854 dev_kfree_skb_any(tx_skb);
3855
3856 /* stop engines */
3857 nv_stop_rx(dev);
3858 nv_stop_tx(dev);
3859 nv_txrx_reset(dev);
3860 /* drain rx queue */
3861 nv_drain_rx(dev);
3862 nv_drain_tx(dev);
3863
3864 if (netif_running(dev)) {
3865 writel(misc1_flags, base + NvRegMisc1);
3866 writel(filter_flags, base + NvRegPacketFilterFlags);
3867 nv_enable_irq(dev);
3868 }
3869
3870 return ret;
3871 }
3872
3873 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
3874 {
3875 struct fe_priv *np = netdev_priv(dev);
3876 u8 __iomem *base = get_hwbase(dev);
3877 int result;
3878 memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
3879
3880 if (!nv_link_test(dev)) {
3881 test->flags |= ETH_TEST_FL_FAILED;
3882 buffer[0] = 1;
3883 }
3884
3885 if (test->flags & ETH_TEST_FL_OFFLINE) {
3886 if (netif_running(dev)) {
3887 netif_stop_queue(dev);
3888 netif_poll_disable(dev);
3889 netif_tx_lock_bh(dev);
3890 spin_lock_irq(&np->lock);
3891 nv_disable_hw_interrupts(dev, np->irqmask);
3892 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3893 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3894 } else {
3895 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3896 }
3897 /* stop engines */
3898 nv_stop_rx(dev);
3899 nv_stop_tx(dev);
3900 nv_txrx_reset(dev);
3901 /* drain rx queue */
3902 nv_drain_rx(dev);
3903 nv_drain_tx(dev);
3904 spin_unlock_irq(&np->lock);
3905 netif_tx_unlock_bh(dev);
3906 }
3907
3908 if (!nv_register_test(dev)) {
3909 test->flags |= ETH_TEST_FL_FAILED;
3910 buffer[1] = 1;
3911 }
3912
3913 result = nv_interrupt_test(dev);
3914 if (result != 1) {
3915 test->flags |= ETH_TEST_FL_FAILED;
3916 buffer[2] = 1;
3917 }
3918 if (result == 0) {
3919 /* bail out */
3920 return;
3921 }
3922
3923 if (!nv_loopback_test(dev)) {
3924 test->flags |= ETH_TEST_FL_FAILED;
3925 buffer[3] = 1;
3926 }
3927
3928 if (netif_running(dev)) {
3929 /* reinit driver view of the rx queue */
3930 set_bufsize(dev);
3931 if (nv_init_ring(dev)) {
3932 if (!np->in_shutdown)
3933 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3934 }
3935 /* reinit nic view of the rx queue */
3936 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3937 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3938 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3939 base + NvRegRingSizes);
3940 pci_push(base);
3941 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3942 pci_push(base);
3943 /* restart rx engine */
3944 nv_start_rx(dev);
3945 nv_start_tx(dev);
3946 netif_start_queue(dev);
3947 netif_poll_enable(dev);
3948 nv_enable_hw_interrupts(dev, np->irqmask);
3949 }
3950 }
3951 }
3952
3953 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
3954 {
3955 switch (stringset) {
3956 case ETH_SS_STATS:
3957 memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
3958 break;
3959 case ETH_SS_TEST:
3960 memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
3961 break;
3962 }
3963 }
3964
3965 static const struct ethtool_ops ops = {
3966 .get_drvinfo = nv_get_drvinfo,
3967 .get_link = ethtool_op_get_link,
3968 .get_wol = nv_get_wol,
3969 .set_wol = nv_set_wol,
3970 .get_settings = nv_get_settings,
3971 .set_settings = nv_set_settings,
3972 .get_regs_len = nv_get_regs_len,
3973 .get_regs = nv_get_regs,
3974 .nway_reset = nv_nway_reset,
3975 .get_perm_addr = ethtool_op_get_perm_addr,
3976 .get_tso = ethtool_op_get_tso,
3977 .set_tso = nv_set_tso,
3978 .get_ringparam = nv_get_ringparam,
3979 .set_ringparam = nv_set_ringparam,
3980 .get_pauseparam = nv_get_pauseparam,
3981 .set_pauseparam = nv_set_pauseparam,
3982 .get_rx_csum = nv_get_rx_csum,
3983 .set_rx_csum = nv_set_rx_csum,
3984 .get_tx_csum = ethtool_op_get_tx_csum,
3985 .set_tx_csum = nv_set_tx_csum,
3986 .get_sg = ethtool_op_get_sg,
3987 .set_sg = nv_set_sg,
3988 .get_strings = nv_get_strings,
3989 .get_stats_count = nv_get_stats_count,
3990 .get_ethtool_stats = nv_get_ethtool_stats,
3991 .self_test_count = nv_self_test_count,
3992 .self_test = nv_self_test,
3993 };
3994
3995 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
3996 {
3997 struct fe_priv *np = get_nvpriv(dev);
3998
3999 spin_lock_irq(&np->lock);
4000
4001 /* save vlan group */
4002 np->vlangrp = grp;
4003
4004 if (grp) {
4005 /* enable vlan on MAC */
4006 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
4007 } else {
4008 /* disable vlan on MAC */
4009 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
4010 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
4011 }
4012
4013 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4014
4015 spin_unlock_irq(&np->lock);
4016 };
4017
4018 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
4019 {
4020 /* nothing to do */
4021 };
4022
4023 static int nv_open(struct net_device *dev)
4024 {
4025 struct fe_priv *np = netdev_priv(dev);
4026 u8 __iomem *base = get_hwbase(dev);
4027 int ret = 1;
4028 int oom, i;
4029
4030 dprintk(KERN_DEBUG "nv_open: begin\n");
4031
4032 /* erase previous misconfiguration */
4033 if (np->driver_data & DEV_HAS_POWER_CNTRL)
4034 nv_mac_reset(dev);
4035 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4036 writel(0, base + NvRegMulticastAddrB);
4037 writel(0, base + NvRegMulticastMaskA);
4038 writel(0, base + NvRegMulticastMaskB);
4039 writel(0, base + NvRegPacketFilterFlags);
4040
4041 writel(0, base + NvRegTransmitterControl);
4042 writel(0, base + NvRegReceiverControl);
4043
4044 writel(0, base + NvRegAdapterControl);
4045
4046 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
4047 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
4048
4049 /* initialize descriptor rings */
4050 set_bufsize(dev);
4051 oom = nv_init_ring(dev);
4052
4053 writel(0, base + NvRegLinkSpeed);
4054 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
4055 nv_txrx_reset(dev);
4056 writel(0, base + NvRegUnknownSetupReg6);
4057
4058 np->in_shutdown = 0;
4059
4060 /* give hw rings */
4061 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4062 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4063 base + NvRegRingSizes);
4064
4065 writel(np->linkspeed, base + NvRegLinkSpeed);
4066 if (np->desc_ver == DESC_VER_1)
4067 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
4068 else
4069 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
4070 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4071 writel(np->vlanctl_bits, base + NvRegVlanControl);
4072 pci_push(base);
4073 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
4074 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
4075 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
4076 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
4077
4078 writel(0, base + NvRegUnknownSetupReg4);
4079 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4080 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
4081
4082 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
4083 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
4084 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
4085 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4086
4087 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
4088 get_random_bytes(&i, sizeof(i));
4089 writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
4090 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
4091 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
4092 if (poll_interval == -1) {
4093 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
4094 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
4095 else
4096 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4097 }
4098 else
4099 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
4100 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4101 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
4102 base + NvRegAdapterControl);
4103 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
4104 writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
4105 if (np->wolenabled)
4106 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
4107
4108 i = readl(base + NvRegPowerState);
4109 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
4110 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
4111
4112 pci_push(base);
4113 udelay(10);
4114 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
4115
4116 nv_disable_hw_interrupts(dev, np->irqmask);
4117 pci_push(base);
4118 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
4119 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4120 pci_push(base);
4121
4122 if (nv_request_irq(dev, 0)) {
4123 goto out_drain;
4124 }
4125
4126 /* ask for interrupts */
4127 nv_enable_hw_interrupts(dev, np->irqmask);
4128
4129 spin_lock_irq(&np->lock);
4130 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4131 writel(0, base + NvRegMulticastAddrB);
4132 writel(0, base + NvRegMulticastMaskA);
4133 writel(0, base + NvRegMulticastMaskB);
4134 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
4135 /* One manual link speed update: Interrupts are enabled, future link
4136 * speed changes cause interrupts and are handled by nv_link_irq().
4137 */
4138 {
4139 u32 miistat;
4140 miistat = readl(base + NvRegMIIStatus);
4141 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
4142 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
4143 }
4144 /* set linkspeed to invalid value, thus force nv_update_linkspeed
4145 * to init hw */
4146 np->linkspeed = 0;
4147 ret = nv_update_linkspeed(dev);
4148 nv_start_rx(dev);
4149 nv_start_tx(dev);
4150 netif_start_queue(dev);
4151 netif_poll_enable(dev);
4152
4153 if (ret) {
4154 netif_carrier_on(dev);
4155 } else {
4156 printk("%s: no link during initialization.\n", dev->name);
4157 netif_carrier_off(dev);
4158 }
4159 if (oom)
4160 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4161
4162 /* start statistics timer */
4163 if (np->driver_data & DEV_HAS_STATISTICS)
4164 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
4165
4166 spin_unlock_irq(&np->lock);
4167
4168 return 0;
4169 out_drain:
4170 drain_ring(dev);
4171 return ret;
4172 }
4173
4174 static int nv_close(struct net_device *dev)
4175 {
4176 struct fe_priv *np = netdev_priv(dev);
4177 u8 __iomem *base;
4178
4179 spin_lock_irq(&np->lock);
4180 np->in_shutdown = 1;
4181 spin_unlock_irq(&np->lock);
4182 netif_poll_disable(dev);
4183 synchronize_irq(dev->irq);
4184
4185 del_timer_sync(&np->oom_kick);
4186 del_timer_sync(&np->nic_poll);
4187 del_timer_sync(&np->stats_poll);
4188
4189 netif_stop_queue(dev);
4190 spin_lock_irq(&np->lock);
4191 nv_stop_tx(dev);
4192 nv_stop_rx(dev);
4193 nv_txrx_reset(dev);
4194
4195 /* disable interrupts on the nic or we will lock up */
4196 base = get_hwbase(dev);
4197 nv_disable_hw_interrupts(dev, np->irqmask);
4198 pci_push(base);
4199 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
4200
4201 spin_unlock_irq(&np->lock);
4202
4203 nv_free_irq(dev);
4204
4205 drain_ring(dev);
4206
4207 if (np->wolenabled)
4208 nv_start_rx(dev);
4209
4210 /* FIXME: power down nic */
4211
4212 return 0;
4213 }
4214
4215 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
4216 {
4217 struct net_device *dev;
4218 struct fe_priv *np;
4219 unsigned long addr;
4220 u8 __iomem *base;
4221 int err, i;
4222 u32 powerstate, txreg;
4223
4224 dev = alloc_etherdev(sizeof(struct fe_priv));
4225 err = -ENOMEM;
4226 if (!dev)
4227 goto out;
4228
4229 np = netdev_priv(dev);
4230 np->pci_dev = pci_dev;
4231 spin_lock_init(&np->lock);
4232 SET_MODULE_OWNER(dev);
4233 SET_NETDEV_DEV(dev, &pci_dev->dev);
4234
4235 init_timer(&np->oom_kick);
4236 np->oom_kick.data = (unsigned long) dev;
4237 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
4238 init_timer(&np->nic_poll);
4239 np->nic_poll.data = (unsigned long) dev;
4240 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
4241 init_timer(&np->stats_poll);
4242 np->stats_poll.data = (unsigned long) dev;
4243 np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
4244
4245 err = pci_enable_device(pci_dev);
4246 if (err) {
4247 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
4248 err, pci_name(pci_dev));
4249 goto out_free;
4250 }
4251
4252 pci_set_master(pci_dev);
4253
4254 err = pci_request_regions(pci_dev, DRV_NAME);
4255 if (err < 0)
4256 goto out_disable;
4257
4258 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS))
4259 np->register_size = NV_PCI_REGSZ_VER2;
4260 else
4261 np->register_size = NV_PCI_REGSZ_VER1;
4262
4263 err = -EINVAL;
4264 addr = 0;
4265 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4266 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
4267 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
4268 pci_resource_len(pci_dev, i),
4269 pci_resource_flags(pci_dev, i));
4270 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
4271 pci_resource_len(pci_dev, i) >= np->register_size) {
4272 addr = pci_resource_start(pci_dev, i);
4273 break;
4274 }
4275 }
4276 if (i == DEVICE_COUNT_RESOURCE) {
4277 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
4278 pci_name(pci_dev));
4279 goto out_relreg;
4280 }
4281
4282 /* copy of driver data */
4283 np->driver_data = id->driver_data;
4284
4285 /* handle different descriptor versions */
4286 if (id->driver_data & DEV_HAS_HIGH_DMA) {
4287 /* packet format 3: supports 40-bit addressing */
4288 np->desc_ver = DESC_VER_3;
4289 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
4290 if (dma_64bit) {
4291 if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4292 printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
4293 pci_name(pci_dev));
4294 } else {
4295 dev->features |= NETIF_F_HIGHDMA;
4296 printk(KERN_INFO "forcedeth: using HIGHDMA\n");
4297 }
4298 if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4299 printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
4300 pci_name(pci_dev));
4301 }
4302 }
4303 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
4304 /* packet format 2: supports jumbo frames */
4305 np->desc_ver = DESC_VER_2;
4306 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
4307 } else {
4308 /* original packet format */
4309 np->desc_ver = DESC_VER_1;
4310 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
4311 }
4312
4313 np->pkt_limit = NV_PKTLIMIT_1;
4314 if (id->driver_data & DEV_HAS_LARGEDESC)
4315 np->pkt_limit = NV_PKTLIMIT_2;
4316
4317 if (id->driver_data & DEV_HAS_CHECKSUM) {
4318 np->rx_csum = 1;
4319 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4320 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
4321 #ifdef NETIF_F_TSO
4322 dev->features |= NETIF_F_TSO;
4323 #endif
4324 }
4325
4326 np->vlanctl_bits = 0;
4327 if (id->driver_data & DEV_HAS_VLAN) {
4328 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
4329 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
4330 dev->vlan_rx_register = nv_vlan_rx_register;
4331 dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
4332 }
4333
4334 np->msi_flags = 0;
4335 if ((id->driver_data & DEV_HAS_MSI) && msi) {
4336 np->msi_flags |= NV_MSI_CAPABLE;
4337 }
4338 if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
4339 np->msi_flags |= NV_MSI_X_CAPABLE;
4340 }
4341
4342 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
4343 if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
4344 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
4345 }
4346
4347
4348 err = -ENOMEM;
4349 np->base = ioremap(addr, np->register_size);
4350 if (!np->base)
4351 goto out_relreg;
4352 dev->base_addr = (unsigned long)np->base;
4353
4354 dev->irq = pci_dev->irq;
4355
4356 np->rx_ring_size = RX_RING_DEFAULT;
4357 np->tx_ring_size = TX_RING_DEFAULT;
4358 np->tx_limit_stop = np->tx_ring_size - TX_LIMIT_DIFFERENCE;
4359 np->tx_limit_start = np->tx_ring_size - TX_LIMIT_DIFFERENCE - 1;
4360
4361 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4362 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
4363 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
4364 &np->ring_addr);
4365 if (!np->rx_ring.orig)
4366 goto out_unmap;
4367 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4368 } else {
4369 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
4370 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
4371 &np->ring_addr);
4372 if (!np->rx_ring.ex)
4373 goto out_unmap;
4374 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4375 }
4376 np->rx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->rx_ring_size, GFP_KERNEL);
4377 np->rx_dma = kmalloc(sizeof(dma_addr_t) * np->rx_ring_size, GFP_KERNEL);
4378 np->tx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->tx_ring_size, GFP_KERNEL);
4379 np->tx_dma = kmalloc(sizeof(dma_addr_t) * np->tx_ring_size, GFP_KERNEL);
4380 np->tx_dma_len = kmalloc(sizeof(unsigned int) * np->tx_ring_size, GFP_KERNEL);
4381 if (!np->rx_skbuff || !np->rx_dma || !np->tx_skbuff || !np->tx_dma || !np->tx_dma_len)
4382 goto out_freering;
4383 memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
4384 memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
4385 memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
4386 memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
4387 memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
4388
4389 dev->open = nv_open;
4390 dev->stop = nv_close;
4391 dev->hard_start_xmit = nv_start_xmit;
4392 dev->get_stats = nv_get_stats;
4393 dev->change_mtu = nv_change_mtu;
4394 dev->set_mac_address = nv_set_mac_address;
4395 dev->set_multicast_list = nv_set_multicast;
4396 #ifdef CONFIG_NET_POLL_CONTROLLER
4397 dev->poll_controller = nv_poll_controller;
4398 #endif
4399 dev->weight = 64;
4400 #ifdef CONFIG_FORCEDETH_NAPI
4401 dev->poll = nv_napi_poll;
4402 #endif
4403 SET_ETHTOOL_OPS(dev, &ops);
4404 dev->tx_timeout = nv_tx_timeout;
4405 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
4406
4407 pci_set_drvdata(pci_dev, dev);
4408
4409 /* read the mac address */
4410 base = get_hwbase(dev);
4411 np->orig_mac[0] = readl(base + NvRegMacAddrA);
4412 np->orig_mac[1] = readl(base + NvRegMacAddrB);
4413
4414 /* check the workaround bit for correct mac address order */
4415 txreg = readl(base + NvRegTransmitPoll);
4416 if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
4417 /* mac address is already in correct order */
4418 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
4419 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
4420 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
4421 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
4422 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
4423 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
4424 } else {
4425 /* need to reverse mac address to correct order */
4426 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
4427 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
4428 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
4429 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
4430 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
4431 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
4432 /* set permanent address to be correct aswell */
4433 np->orig_mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
4434 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
4435 np->orig_mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
4436 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
4437 }
4438 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
4439
4440 if (!is_valid_ether_addr(dev->perm_addr)) {
4441 /*
4442 * Bad mac address. At least one bios sets the mac address
4443 * to 01:23:45:67:89:ab
4444 */
4445 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
4446 pci_name(pci_dev),
4447 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
4448 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
4449 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
4450 dev->dev_addr[0] = 0x00;
4451 dev->dev_addr[1] = 0x00;
4452 dev->dev_addr[2] = 0x6c;
4453 get_random_bytes(&dev->dev_addr[3], 3);
4454 }
4455
4456 dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
4457 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
4458 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
4459
4460 /* set mac address */
4461 nv_copy_mac_to_hw(dev);
4462
4463 /* disable WOL */
4464 writel(0, base + NvRegWakeUpFlags);
4465 np->wolenabled = 0;
4466
4467 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
4468 u8 revision_id;
4469 pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
4470
4471 /* take phy and nic out of low power mode */
4472 powerstate = readl(base + NvRegPowerState2);
4473 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
4474 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
4475 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
4476 revision_id >= 0xA3)
4477 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
4478 writel(powerstate, base + NvRegPowerState2);
4479 }
4480
4481 if (np->desc_ver == DESC_VER_1) {
4482 np->tx_flags = NV_TX_VALID;
4483 } else {
4484 np->tx_flags = NV_TX2_VALID;
4485 }
4486 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
4487 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
4488 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
4489 np->msi_flags |= 0x0003;
4490 } else {
4491 np->irqmask = NVREG_IRQMASK_CPU;
4492 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
4493 np->msi_flags |= 0x0001;
4494 }
4495
4496 if (id->driver_data & DEV_NEED_TIMERIRQ)
4497 np->irqmask |= NVREG_IRQ_TIMER;
4498 if (id->driver_data & DEV_NEED_LINKTIMER) {
4499 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
4500 np->need_linktimer = 1;
4501 np->link_timeout = jiffies + LINK_TIMEOUT;
4502 } else {
4503 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
4504 np->need_linktimer = 0;
4505 }
4506
4507 /* find a suitable phy */
4508 for (i = 1; i <= 32; i++) {
4509 int id1, id2;
4510 int phyaddr = i & 0x1F;
4511
4512 spin_lock_irq(&np->lock);
4513 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
4514 spin_unlock_irq(&np->lock);
4515 if (id1 < 0 || id1 == 0xffff)
4516 continue;
4517 spin_lock_irq(&np->lock);
4518 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
4519 spin_unlock_irq(&np->lock);
4520 if (id2 < 0 || id2 == 0xffff)
4521 continue;
4522
4523 np->phy_model = id2 & PHYID2_MODEL_MASK;
4524 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
4525 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
4526 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
4527 pci_name(pci_dev), id1, id2, phyaddr);
4528 np->phyaddr = phyaddr;
4529 np->phy_oui = id1 | id2;
4530 break;
4531 }
4532 if (i == 33) {
4533 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
4534 pci_name(pci_dev));
4535 goto out_error;
4536 }
4537
4538 /* reset it */
4539 phy_init(dev);
4540
4541 /* set default link speed settings */
4542 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
4543 np->duplex = 0;
4544 np->autoneg = 1;
4545
4546 err = register_netdev(dev);
4547 if (err) {
4548 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
4549 goto out_error;
4550 }
4551 printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
4552 dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
4553 pci_name(pci_dev));
4554
4555 return 0;
4556
4557 out_error:
4558 pci_set_drvdata(pci_dev, NULL);
4559 out_freering:
4560 free_rings(dev);
4561 out_unmap:
4562 iounmap(get_hwbase(dev));
4563 out_relreg:
4564 pci_release_regions(pci_dev);
4565 out_disable:
4566 pci_disable_device(pci_dev);
4567 out_free:
4568 free_netdev(dev);
4569 out:
4570 return err;
4571 }
4572
4573 static void __devexit nv_remove(struct pci_dev *pci_dev)
4574 {
4575 struct net_device *dev = pci_get_drvdata(pci_dev);
4576 struct fe_priv *np = netdev_priv(dev);
4577 u8 __iomem *base = get_hwbase(dev);
4578
4579 unregister_netdev(dev);
4580
4581 /* special op: write back the misordered MAC address - otherwise
4582 * the next nv_probe would see a wrong address.
4583 */
4584 writel(np->orig_mac[0], base + NvRegMacAddrA);
4585 writel(np->orig_mac[1], base + NvRegMacAddrB);
4586
4587 /* free all structures */
4588 free_rings(dev);
4589 iounmap(get_hwbase(dev));
4590 pci_release_regions(pci_dev);
4591 pci_disable_device(pci_dev);
4592 free_netdev(dev);
4593 pci_set_drvdata(pci_dev, NULL);
4594 }
4595
4596 static struct pci_device_id pci_tbl[] = {
4597 { /* nForce Ethernet Controller */
4598 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
4599 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4600 },
4601 { /* nForce2 Ethernet Controller */
4602 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
4603 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4604 },
4605 { /* nForce3 Ethernet Controller */
4606 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
4607 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4608 },
4609 { /* nForce3 Ethernet Controller */
4610 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
4611 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4612 },
4613 { /* nForce3 Ethernet Controller */
4614 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
4615 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4616 },
4617 { /* nForce3 Ethernet Controller */
4618 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
4619 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4620 },
4621 { /* nForce3 Ethernet Controller */
4622 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
4623 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4624 },
4625 { /* CK804 Ethernet Controller */
4626 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
4627 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4628 },
4629 { /* CK804 Ethernet Controller */
4630 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
4631 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4632 },
4633 { /* MCP04 Ethernet Controller */
4634 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
4635 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4636 },
4637 { /* MCP04 Ethernet Controller */
4638 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
4639 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4640 },
4641 { /* MCP51 Ethernet Controller */
4642 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
4643 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4644 },
4645 { /* MCP51 Ethernet Controller */
4646 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
4647 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4648 },
4649 { /* MCP55 Ethernet Controller */
4650 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
4651 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4652 },
4653 { /* MCP55 Ethernet Controller */
4654 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
4655 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4656 },
4657 { /* MCP61 Ethernet Controller */
4658 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
4659 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4660 },
4661 { /* MCP61 Ethernet Controller */
4662 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
4663 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4664 },
4665 { /* MCP61 Ethernet Controller */
4666 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
4667 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4668 },
4669 { /* MCP61 Ethernet Controller */
4670 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
4671 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4672 },
4673 { /* MCP65 Ethernet Controller */
4674 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
4675 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4676 },
4677 { /* MCP65 Ethernet Controller */
4678 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
4679 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4680 },
4681 { /* MCP65 Ethernet Controller */
4682 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
4683 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4684 },
4685 { /* MCP65 Ethernet Controller */
4686 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
4687 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4688 },
4689 {0,},
4690 };
4691
4692 static struct pci_driver driver = {
4693 .name = "forcedeth",
4694 .id_table = pci_tbl,
4695 .probe = nv_probe,
4696 .remove = __devexit_p(nv_remove),
4697 };
4698
4699
4700 static int __init init_nic(void)
4701 {
4702 printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
4703 return pci_register_driver(&driver);
4704 }
4705
4706 static void __exit exit_nic(void)
4707 {
4708 pci_unregister_driver(&driver);
4709 }
4710
4711 module_param(max_interrupt_work, int, 0);
4712 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
4713 module_param(optimization_mode, int, 0);
4714 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
4715 module_param(poll_interval, int, 0);
4716 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
4717 module_param(msi, int, 0);
4718 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
4719 module_param(msix, int, 0);
4720 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
4721 module_param(dma_64bit, int, 0);
4722 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
4723
4724 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
4725 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
4726 MODULE_LICENSE("GPL");
4727
4728 MODULE_DEVICE_TABLE(pci, pci_tbl);
4729
4730 module_init(init_nic);
4731 module_exit(exit_nic);
This page took 0.25547 seconds and 6 git commands to generate.