Merge git://git.linux-nfs.org/pub/linux/nfs-2.6
[deliverable/linux.git] / drivers / net / forcedeth.c
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey. It's neither supported nor endorsed
7 * by NVIDIA Corp. Use at your own risk.
8 *
9 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10 * trademarks of NVIDIA Corporation in the United States and other
11 * countries.
12 *
13 * Copyright (C) 2003,4,5 Manfred Spraul
14 * Copyright (C) 2004 Andrew de Quincey (wol support)
15 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16 * IRQ rate fixes, bigendian fixes, cleanups, verification)
17 * Copyright (c) 2004 NVIDIA Corporation
18 *
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 2 of the License, or
22 * (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 *
33 * Changelog:
34 * 0.01: 05 Oct 2003: First release that compiles without warnings.
35 * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36 * Check all PCI BARs for the register window.
37 * udelay added to mii_rw.
38 * 0.03: 06 Oct 2003: Initialize dev->irq.
39 * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40 * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41 * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42 * irq mask updated
43 * 0.07: 14 Oct 2003: Further irq mask updates.
44 * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45 * added into irq handler, NULL check for drain_ring.
46 * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47 * requested interrupt sources.
48 * 0.10: 20 Oct 2003: First cleanup for release.
49 * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50 * MAC Address init fix, set_multicast cleanup.
51 * 0.12: 23 Oct 2003: Cleanups for release.
52 * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53 * Set link speed correctly. start rx before starting
54 * tx (nv_start_rx sets the link speed).
55 * 0.14: 25 Oct 2003: Nic dependant irq mask.
56 * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57 * open.
58 * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59 * increased to 1628 bytes.
60 * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61 * the tx length.
62 * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63 * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64 * addresses, really stop rx if already running
65 * in nv_start_rx, clean up a bit.
66 * 0.20: 07 Dec 2003: alloc fixes
67 * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68 * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69 * on close.
70 * 0.23: 26 Jan 2004: various small cleanups
71 * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72 * 0.25: 09 Mar 2004: wol support
73 * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74 * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75 * added CK804/MCP04 device IDs, code fixes
76 * for registers, link status and other minor fixes.
77 * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78 * 0.29: 31 Aug 2004: Add backup timer for link change notification.
79 * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80 * into nv_close, otherwise reenabling for wol can
81 * cause DMA to kfree'd memory.
82 * 0.31: 14 Nov 2004: ethtool support for getting/setting link
83 * capabilities.
84 * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
85 * 0.33: 16 May 2005: Support for MCP51 added.
86 * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87 * 0.35: 26 Jun 2005: Support for MCP55 added.
88 * 0.36: 28 Jun 2005: Add jumbo frame support.
89 * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90 * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91 * per-packet flags.
92 * 0.39: 18 Jul 2005: Add 64bit descriptor support.
93 * 0.40: 19 Jul 2005: Add support for mac address change.
94 * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95 * of nv_remove
96 * 0.42: 06 Aug 2005: Fix lack of link speed initialization
97 * in the second (and later) nv_open call
98 * 0.43: 10 Aug 2005: Add support for tx checksum.
99 * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100 * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101 * 0.46: 20 Oct 2005: Add irq optimization modes.
102 * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
103 * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
104 * 0.49: 10 Dec 2005: Fix tso for large buffers.
105 * 0.50: 20 Jan 2006: Add 8021pq tagging support.
106 * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
107 * 0.52: 20 Jan 2006: Add MSI/MSIX support.
108 * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
109 * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
110 * 0.55: 22 Mar 2006: Add flow control (pause frame).
111 * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
112 *
113 * Known bugs:
114 * We suspect that on some hardware no TX done interrupts are generated.
115 * This means recovery from netif_stop_queue only happens if the hw timer
116 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
117 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
118 * If your hardware reliably generates tx done interrupts, then you can remove
119 * DEV_NEED_TIMERIRQ from the driver_data flags.
120 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
121 * superfluous timer interrupts from the nic.
122 */
123 #define FORCEDETH_VERSION "0.56"
124 #define DRV_NAME "forcedeth"
125
126 #include <linux/module.h>
127 #include <linux/types.h>
128 #include <linux/pci.h>
129 #include <linux/interrupt.h>
130 #include <linux/netdevice.h>
131 #include <linux/etherdevice.h>
132 #include <linux/delay.h>
133 #include <linux/spinlock.h>
134 #include <linux/ethtool.h>
135 #include <linux/timer.h>
136 #include <linux/skbuff.h>
137 #include <linux/mii.h>
138 #include <linux/random.h>
139 #include <linux/init.h>
140 #include <linux/if_vlan.h>
141 #include <linux/dma-mapping.h>
142
143 #include <asm/irq.h>
144 #include <asm/io.h>
145 #include <asm/uaccess.h>
146 #include <asm/system.h>
147
148 #if 0
149 #define dprintk printk
150 #else
151 #define dprintk(x...) do { } while (0)
152 #endif
153
154
155 /*
156 * Hardware access:
157 */
158
159 #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
160 #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
161 #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
162 #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
163 #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
164 #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
165 #define DEV_HAS_MSI 0x0040 /* device supports MSI */
166 #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
167 #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
168 #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
169 #define DEV_HAS_STATISTICS 0x0400 /* device supports hw statistics */
170 #define DEV_HAS_TEST_EXTENDED 0x0800 /* device supports extended diagnostic test */
171
172 enum {
173 NvRegIrqStatus = 0x000,
174 #define NVREG_IRQSTAT_MIIEVENT 0x040
175 #define NVREG_IRQSTAT_MASK 0x1ff
176 NvRegIrqMask = 0x004,
177 #define NVREG_IRQ_RX_ERROR 0x0001
178 #define NVREG_IRQ_RX 0x0002
179 #define NVREG_IRQ_RX_NOBUF 0x0004
180 #define NVREG_IRQ_TX_ERR 0x0008
181 #define NVREG_IRQ_TX_OK 0x0010
182 #define NVREG_IRQ_TIMER 0x0020
183 #define NVREG_IRQ_LINK 0x0040
184 #define NVREG_IRQ_RX_FORCED 0x0080
185 #define NVREG_IRQ_TX_FORCED 0x0100
186 #define NVREG_IRQMASK_THROUGHPUT 0x00df
187 #define NVREG_IRQMASK_CPU 0x0040
188 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
189 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
190 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
191
192 #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
193 NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
194 NVREG_IRQ_TX_FORCED))
195
196 NvRegUnknownSetupReg6 = 0x008,
197 #define NVREG_UNKSETUP6_VAL 3
198
199 /*
200 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
201 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
202 */
203 NvRegPollingInterval = 0x00c,
204 #define NVREG_POLL_DEFAULT_THROUGHPUT 970
205 #define NVREG_POLL_DEFAULT_CPU 13
206 NvRegMSIMap0 = 0x020,
207 NvRegMSIMap1 = 0x024,
208 NvRegMSIIrqMask = 0x030,
209 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
210 NvRegMisc1 = 0x080,
211 #define NVREG_MISC1_PAUSE_TX 0x01
212 #define NVREG_MISC1_HD 0x02
213 #define NVREG_MISC1_FORCE 0x3b0f3c
214
215 NvRegMacReset = 0x3c,
216 #define NVREG_MAC_RESET_ASSERT 0x0F3
217 NvRegTransmitterControl = 0x084,
218 #define NVREG_XMITCTL_START 0x01
219 NvRegTransmitterStatus = 0x088,
220 #define NVREG_XMITSTAT_BUSY 0x01
221
222 NvRegPacketFilterFlags = 0x8c,
223 #define NVREG_PFF_PAUSE_RX 0x08
224 #define NVREG_PFF_ALWAYS 0x7F0000
225 #define NVREG_PFF_PROMISC 0x80
226 #define NVREG_PFF_MYADDR 0x20
227 #define NVREG_PFF_LOOPBACK 0x10
228
229 NvRegOffloadConfig = 0x90,
230 #define NVREG_OFFLOAD_HOMEPHY 0x601
231 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
232 NvRegReceiverControl = 0x094,
233 #define NVREG_RCVCTL_START 0x01
234 NvRegReceiverStatus = 0x98,
235 #define NVREG_RCVSTAT_BUSY 0x01
236
237 NvRegRandomSeed = 0x9c,
238 #define NVREG_RNDSEED_MASK 0x00ff
239 #define NVREG_RNDSEED_FORCE 0x7f00
240 #define NVREG_RNDSEED_FORCE2 0x2d00
241 #define NVREG_RNDSEED_FORCE3 0x7400
242
243 NvRegTxDeferral = 0xA0,
244 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
245 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
246 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
247 NvRegRxDeferral = 0xA4,
248 #define NVREG_RX_DEFERRAL_DEFAULT 0x16
249 NvRegMacAddrA = 0xA8,
250 NvRegMacAddrB = 0xAC,
251 NvRegMulticastAddrA = 0xB0,
252 #define NVREG_MCASTADDRA_FORCE 0x01
253 NvRegMulticastAddrB = 0xB4,
254 NvRegMulticastMaskA = 0xB8,
255 NvRegMulticastMaskB = 0xBC,
256
257 NvRegPhyInterface = 0xC0,
258 #define PHY_RGMII 0x10000000
259
260 NvRegTxRingPhysAddr = 0x100,
261 NvRegRxRingPhysAddr = 0x104,
262 NvRegRingSizes = 0x108,
263 #define NVREG_RINGSZ_TXSHIFT 0
264 #define NVREG_RINGSZ_RXSHIFT 16
265 NvRegUnknownTransmitterReg = 0x10c,
266 NvRegLinkSpeed = 0x110,
267 #define NVREG_LINKSPEED_FORCE 0x10000
268 #define NVREG_LINKSPEED_10 1000
269 #define NVREG_LINKSPEED_100 100
270 #define NVREG_LINKSPEED_1000 50
271 #define NVREG_LINKSPEED_MASK (0xFFF)
272 NvRegUnknownSetupReg5 = 0x130,
273 #define NVREG_UNKSETUP5_BIT31 (1<<31)
274 NvRegTxWatermark = 0x13c,
275 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
276 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
277 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
278 NvRegTxRxControl = 0x144,
279 #define NVREG_TXRXCTL_KICK 0x0001
280 #define NVREG_TXRXCTL_BIT1 0x0002
281 #define NVREG_TXRXCTL_BIT2 0x0004
282 #define NVREG_TXRXCTL_IDLE 0x0008
283 #define NVREG_TXRXCTL_RESET 0x0010
284 #define NVREG_TXRXCTL_RXCHECK 0x0400
285 #define NVREG_TXRXCTL_DESC_1 0
286 #define NVREG_TXRXCTL_DESC_2 0x02100
287 #define NVREG_TXRXCTL_DESC_3 0x02200
288 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
289 #define NVREG_TXRXCTL_VLANINS 0x00080
290 NvRegTxRingPhysAddrHigh = 0x148,
291 NvRegRxRingPhysAddrHigh = 0x14C,
292 NvRegTxPauseFrame = 0x170,
293 #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
294 #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
295 NvRegMIIStatus = 0x180,
296 #define NVREG_MIISTAT_ERROR 0x0001
297 #define NVREG_MIISTAT_LINKCHANGE 0x0008
298 #define NVREG_MIISTAT_MASK 0x000f
299 #define NVREG_MIISTAT_MASK2 0x000f
300 NvRegUnknownSetupReg4 = 0x184,
301 #define NVREG_UNKSETUP4_VAL 8
302
303 NvRegAdapterControl = 0x188,
304 #define NVREG_ADAPTCTL_START 0x02
305 #define NVREG_ADAPTCTL_LINKUP 0x04
306 #define NVREG_ADAPTCTL_PHYVALID 0x40000
307 #define NVREG_ADAPTCTL_RUNNING 0x100000
308 #define NVREG_ADAPTCTL_PHYSHIFT 24
309 NvRegMIISpeed = 0x18c,
310 #define NVREG_MIISPEED_BIT8 (1<<8)
311 #define NVREG_MIIDELAY 5
312 NvRegMIIControl = 0x190,
313 #define NVREG_MIICTL_INUSE 0x08000
314 #define NVREG_MIICTL_WRITE 0x00400
315 #define NVREG_MIICTL_ADDRSHIFT 5
316 NvRegMIIData = 0x194,
317 NvRegWakeUpFlags = 0x200,
318 #define NVREG_WAKEUPFLAGS_VAL 0x7770
319 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
320 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
321 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
322 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
323 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
324 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
325 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
326 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
327 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
328 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
329
330 NvRegPatternCRC = 0x204,
331 NvRegPatternMask = 0x208,
332 NvRegPowerCap = 0x268,
333 #define NVREG_POWERCAP_D3SUPP (1<<30)
334 #define NVREG_POWERCAP_D2SUPP (1<<26)
335 #define NVREG_POWERCAP_D1SUPP (1<<25)
336 NvRegPowerState = 0x26c,
337 #define NVREG_POWERSTATE_POWEREDUP 0x8000
338 #define NVREG_POWERSTATE_VALID 0x0100
339 #define NVREG_POWERSTATE_MASK 0x0003
340 #define NVREG_POWERSTATE_D0 0x0000
341 #define NVREG_POWERSTATE_D1 0x0001
342 #define NVREG_POWERSTATE_D2 0x0002
343 #define NVREG_POWERSTATE_D3 0x0003
344 NvRegTxCnt = 0x280,
345 NvRegTxZeroReXmt = 0x284,
346 NvRegTxOneReXmt = 0x288,
347 NvRegTxManyReXmt = 0x28c,
348 NvRegTxLateCol = 0x290,
349 NvRegTxUnderflow = 0x294,
350 NvRegTxLossCarrier = 0x298,
351 NvRegTxExcessDef = 0x29c,
352 NvRegTxRetryErr = 0x2a0,
353 NvRegRxFrameErr = 0x2a4,
354 NvRegRxExtraByte = 0x2a8,
355 NvRegRxLateCol = 0x2ac,
356 NvRegRxRunt = 0x2b0,
357 NvRegRxFrameTooLong = 0x2b4,
358 NvRegRxOverflow = 0x2b8,
359 NvRegRxFCSErr = 0x2bc,
360 NvRegRxFrameAlignErr = 0x2c0,
361 NvRegRxLenErr = 0x2c4,
362 NvRegRxUnicast = 0x2c8,
363 NvRegRxMulticast = 0x2cc,
364 NvRegRxBroadcast = 0x2d0,
365 NvRegTxDef = 0x2d4,
366 NvRegTxFrame = 0x2d8,
367 NvRegRxCnt = 0x2dc,
368 NvRegTxPause = 0x2e0,
369 NvRegRxPause = 0x2e4,
370 NvRegRxDropFrame = 0x2e8,
371 NvRegVlanControl = 0x300,
372 #define NVREG_VLANCONTROL_ENABLE 0x2000
373 NvRegMSIXMap0 = 0x3e0,
374 NvRegMSIXMap1 = 0x3e4,
375 NvRegMSIXIrqStatus = 0x3f0,
376
377 NvRegPowerState2 = 0x600,
378 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
379 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
380 };
381
382 /* Big endian: should work, but is untested */
383 struct ring_desc {
384 u32 PacketBuffer;
385 u32 FlagLen;
386 };
387
388 struct ring_desc_ex {
389 u32 PacketBufferHigh;
390 u32 PacketBufferLow;
391 u32 TxVlan;
392 u32 FlagLen;
393 };
394
395 typedef union _ring_type {
396 struct ring_desc* orig;
397 struct ring_desc_ex* ex;
398 } ring_type;
399
400 #define FLAG_MASK_V1 0xffff0000
401 #define FLAG_MASK_V2 0xffffc000
402 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
403 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
404
405 #define NV_TX_LASTPACKET (1<<16)
406 #define NV_TX_RETRYERROR (1<<19)
407 #define NV_TX_FORCED_INTERRUPT (1<<24)
408 #define NV_TX_DEFERRED (1<<26)
409 #define NV_TX_CARRIERLOST (1<<27)
410 #define NV_TX_LATECOLLISION (1<<28)
411 #define NV_TX_UNDERFLOW (1<<29)
412 #define NV_TX_ERROR (1<<30)
413 #define NV_TX_VALID (1<<31)
414
415 #define NV_TX2_LASTPACKET (1<<29)
416 #define NV_TX2_RETRYERROR (1<<18)
417 #define NV_TX2_FORCED_INTERRUPT (1<<30)
418 #define NV_TX2_DEFERRED (1<<25)
419 #define NV_TX2_CARRIERLOST (1<<26)
420 #define NV_TX2_LATECOLLISION (1<<27)
421 #define NV_TX2_UNDERFLOW (1<<28)
422 /* error and valid are the same for both */
423 #define NV_TX2_ERROR (1<<30)
424 #define NV_TX2_VALID (1<<31)
425 #define NV_TX2_TSO (1<<28)
426 #define NV_TX2_TSO_SHIFT 14
427 #define NV_TX2_TSO_MAX_SHIFT 14
428 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
429 #define NV_TX2_CHECKSUM_L3 (1<<27)
430 #define NV_TX2_CHECKSUM_L4 (1<<26)
431
432 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
433
434 #define NV_RX_DESCRIPTORVALID (1<<16)
435 #define NV_RX_MISSEDFRAME (1<<17)
436 #define NV_RX_SUBSTRACT1 (1<<18)
437 #define NV_RX_ERROR1 (1<<23)
438 #define NV_RX_ERROR2 (1<<24)
439 #define NV_RX_ERROR3 (1<<25)
440 #define NV_RX_ERROR4 (1<<26)
441 #define NV_RX_CRCERR (1<<27)
442 #define NV_RX_OVERFLOW (1<<28)
443 #define NV_RX_FRAMINGERR (1<<29)
444 #define NV_RX_ERROR (1<<30)
445 #define NV_RX_AVAIL (1<<31)
446
447 #define NV_RX2_CHECKSUMMASK (0x1C000000)
448 #define NV_RX2_CHECKSUMOK1 (0x10000000)
449 #define NV_RX2_CHECKSUMOK2 (0x14000000)
450 #define NV_RX2_CHECKSUMOK3 (0x18000000)
451 #define NV_RX2_DESCRIPTORVALID (1<<29)
452 #define NV_RX2_SUBSTRACT1 (1<<25)
453 #define NV_RX2_ERROR1 (1<<18)
454 #define NV_RX2_ERROR2 (1<<19)
455 #define NV_RX2_ERROR3 (1<<20)
456 #define NV_RX2_ERROR4 (1<<21)
457 #define NV_RX2_CRCERR (1<<22)
458 #define NV_RX2_OVERFLOW (1<<23)
459 #define NV_RX2_FRAMINGERR (1<<24)
460 /* error and avail are the same for both */
461 #define NV_RX2_ERROR (1<<30)
462 #define NV_RX2_AVAIL (1<<31)
463
464 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
465 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
466
467 /* Miscelaneous hardware related defines: */
468 #define NV_PCI_REGSZ_VER1 0x270
469 #define NV_PCI_REGSZ_VER2 0x604
470
471 /* various timeout delays: all in usec */
472 #define NV_TXRX_RESET_DELAY 4
473 #define NV_TXSTOP_DELAY1 10
474 #define NV_TXSTOP_DELAY1MAX 500000
475 #define NV_TXSTOP_DELAY2 100
476 #define NV_RXSTOP_DELAY1 10
477 #define NV_RXSTOP_DELAY1MAX 500000
478 #define NV_RXSTOP_DELAY2 100
479 #define NV_SETUP5_DELAY 5
480 #define NV_SETUP5_DELAYMAX 50000
481 #define NV_POWERUP_DELAY 5
482 #define NV_POWERUP_DELAYMAX 5000
483 #define NV_MIIBUSY_DELAY 50
484 #define NV_MIIPHY_DELAY 10
485 #define NV_MIIPHY_DELAYMAX 10000
486 #define NV_MAC_RESET_DELAY 64
487
488 #define NV_WAKEUPPATTERNS 5
489 #define NV_WAKEUPMASKENTRIES 4
490
491 /* General driver defaults */
492 #define NV_WATCHDOG_TIMEO (5*HZ)
493
494 #define RX_RING_DEFAULT 128
495 #define TX_RING_DEFAULT 256
496 #define RX_RING_MIN 128
497 #define TX_RING_MIN 64
498 #define RING_MAX_DESC_VER_1 1024
499 #define RING_MAX_DESC_VER_2_3 16384
500 /*
501 * Difference between the get and put pointers for the tx ring.
502 * This is used to throttle the amount of data outstanding in the
503 * tx ring.
504 */
505 #define TX_LIMIT_DIFFERENCE 1
506
507 /* rx/tx mac addr + type + vlan + align + slack*/
508 #define NV_RX_HEADERS (64)
509 /* even more slack. */
510 #define NV_RX_ALLOC_PAD (64)
511
512 /* maximum mtu size */
513 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
514 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
515
516 #define OOM_REFILL (1+HZ/20)
517 #define POLL_WAIT (1+HZ/100)
518 #define LINK_TIMEOUT (3*HZ)
519 #define STATS_INTERVAL (10*HZ)
520
521 /*
522 * desc_ver values:
523 * The nic supports three different descriptor types:
524 * - DESC_VER_1: Original
525 * - DESC_VER_2: support for jumbo frames.
526 * - DESC_VER_3: 64-bit format.
527 */
528 #define DESC_VER_1 1
529 #define DESC_VER_2 2
530 #define DESC_VER_3 3
531
532 /* PHY defines */
533 #define PHY_OUI_MARVELL 0x5043
534 #define PHY_OUI_CICADA 0x03f1
535 #define PHYID1_OUI_MASK 0x03ff
536 #define PHYID1_OUI_SHFT 6
537 #define PHYID2_OUI_MASK 0xfc00
538 #define PHYID2_OUI_SHFT 10
539 #define PHY_INIT1 0x0f000
540 #define PHY_INIT2 0x0e00
541 #define PHY_INIT3 0x01000
542 #define PHY_INIT4 0x0200
543 #define PHY_INIT5 0x0004
544 #define PHY_INIT6 0x02000
545 #define PHY_GIGABIT 0x0100
546
547 #define PHY_TIMEOUT 0x1
548 #define PHY_ERROR 0x2
549
550 #define PHY_100 0x1
551 #define PHY_1000 0x2
552 #define PHY_HALF 0x100
553
554 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
555 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
556 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
557 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
558 #define NV_PAUSEFRAME_RX_REQ 0x0010
559 #define NV_PAUSEFRAME_TX_REQ 0x0020
560 #define NV_PAUSEFRAME_AUTONEG 0x0040
561
562 /* MSI/MSI-X defines */
563 #define NV_MSI_X_MAX_VECTORS 8
564 #define NV_MSI_X_VECTORS_MASK 0x000f
565 #define NV_MSI_CAPABLE 0x0010
566 #define NV_MSI_X_CAPABLE 0x0020
567 #define NV_MSI_ENABLED 0x0040
568 #define NV_MSI_X_ENABLED 0x0080
569
570 #define NV_MSI_X_VECTOR_ALL 0x0
571 #define NV_MSI_X_VECTOR_RX 0x0
572 #define NV_MSI_X_VECTOR_TX 0x1
573 #define NV_MSI_X_VECTOR_OTHER 0x2
574
575 /* statistics */
576 struct nv_ethtool_str {
577 char name[ETH_GSTRING_LEN];
578 };
579
580 static const struct nv_ethtool_str nv_estats_str[] = {
581 { "tx_bytes" },
582 { "tx_zero_rexmt" },
583 { "tx_one_rexmt" },
584 { "tx_many_rexmt" },
585 { "tx_late_collision" },
586 { "tx_fifo_errors" },
587 { "tx_carrier_errors" },
588 { "tx_excess_deferral" },
589 { "tx_retry_error" },
590 { "tx_deferral" },
591 { "tx_packets" },
592 { "tx_pause" },
593 { "rx_frame_error" },
594 { "rx_extra_byte" },
595 { "rx_late_collision" },
596 { "rx_runt" },
597 { "rx_frame_too_long" },
598 { "rx_over_errors" },
599 { "rx_crc_errors" },
600 { "rx_frame_align_error" },
601 { "rx_length_error" },
602 { "rx_unicast" },
603 { "rx_multicast" },
604 { "rx_broadcast" },
605 { "rx_bytes" },
606 { "rx_pause" },
607 { "rx_drop_frame" },
608 { "rx_packets" },
609 { "rx_errors_total" }
610 };
611
612 struct nv_ethtool_stats {
613 u64 tx_bytes;
614 u64 tx_zero_rexmt;
615 u64 tx_one_rexmt;
616 u64 tx_many_rexmt;
617 u64 tx_late_collision;
618 u64 tx_fifo_errors;
619 u64 tx_carrier_errors;
620 u64 tx_excess_deferral;
621 u64 tx_retry_error;
622 u64 tx_deferral;
623 u64 tx_packets;
624 u64 tx_pause;
625 u64 rx_frame_error;
626 u64 rx_extra_byte;
627 u64 rx_late_collision;
628 u64 rx_runt;
629 u64 rx_frame_too_long;
630 u64 rx_over_errors;
631 u64 rx_crc_errors;
632 u64 rx_frame_align_error;
633 u64 rx_length_error;
634 u64 rx_unicast;
635 u64 rx_multicast;
636 u64 rx_broadcast;
637 u64 rx_bytes;
638 u64 rx_pause;
639 u64 rx_drop_frame;
640 u64 rx_packets;
641 u64 rx_errors_total;
642 };
643
644 /* diagnostics */
645 #define NV_TEST_COUNT_BASE 3
646 #define NV_TEST_COUNT_EXTENDED 4
647
648 static const struct nv_ethtool_str nv_etests_str[] = {
649 { "link (online/offline)" },
650 { "register (offline) " },
651 { "interrupt (offline) " },
652 { "loopback (offline) " }
653 };
654
655 struct register_test {
656 u32 reg;
657 u32 mask;
658 };
659
660 static const struct register_test nv_registers_test[] = {
661 { NvRegUnknownSetupReg6, 0x01 },
662 { NvRegMisc1, 0x03c },
663 { NvRegOffloadConfig, 0x03ff },
664 { NvRegMulticastAddrA, 0xffffffff },
665 { NvRegTxWatermark, 0x0ff },
666 { NvRegWakeUpFlags, 0x07777 },
667 { 0,0 }
668 };
669
670 /*
671 * SMP locking:
672 * All hardware access under dev->priv->lock, except the performance
673 * critical parts:
674 * - rx is (pseudo-) lockless: it relies on the single-threading provided
675 * by the arch code for interrupts.
676 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
677 * needs dev->priv->lock :-(
678 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
679 */
680
681 /* in dev: base, irq */
682 struct fe_priv {
683 spinlock_t lock;
684
685 /* General data:
686 * Locking: spin_lock(&np->lock); */
687 struct net_device_stats stats;
688 struct nv_ethtool_stats estats;
689 int in_shutdown;
690 u32 linkspeed;
691 int duplex;
692 int autoneg;
693 int fixed_mode;
694 int phyaddr;
695 int wolenabled;
696 unsigned int phy_oui;
697 u16 gigabit;
698 int intr_test;
699
700 /* General data: RO fields */
701 dma_addr_t ring_addr;
702 struct pci_dev *pci_dev;
703 u32 orig_mac[2];
704 u32 irqmask;
705 u32 desc_ver;
706 u32 txrxctl_bits;
707 u32 vlanctl_bits;
708 u32 driver_data;
709 u32 register_size;
710
711 void __iomem *base;
712
713 /* rx specific fields.
714 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
715 */
716 ring_type rx_ring;
717 unsigned int cur_rx, refill_rx;
718 struct sk_buff **rx_skbuff;
719 dma_addr_t *rx_dma;
720 unsigned int rx_buf_sz;
721 unsigned int pkt_limit;
722 struct timer_list oom_kick;
723 struct timer_list nic_poll;
724 struct timer_list stats_poll;
725 u32 nic_poll_irq;
726 int rx_ring_size;
727
728 /* media detection workaround.
729 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
730 */
731 int need_linktimer;
732 unsigned long link_timeout;
733 /*
734 * tx specific fields.
735 */
736 ring_type tx_ring;
737 unsigned int next_tx, nic_tx;
738 struct sk_buff **tx_skbuff;
739 dma_addr_t *tx_dma;
740 unsigned int *tx_dma_len;
741 u32 tx_flags;
742 int tx_ring_size;
743 int tx_limit_start;
744 int tx_limit_stop;
745
746 /* vlan fields */
747 struct vlan_group *vlangrp;
748
749 /* msi/msi-x fields */
750 u32 msi_flags;
751 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
752
753 /* flow control */
754 u32 pause_flags;
755 };
756
757 /*
758 * Maximum number of loops until we assume that a bit in the irq mask
759 * is stuck. Overridable with module param.
760 */
761 static int max_interrupt_work = 5;
762
763 /*
764 * Optimization can be either throuput mode or cpu mode
765 *
766 * Throughput Mode: Every tx and rx packet will generate an interrupt.
767 * CPU Mode: Interrupts are controlled by a timer.
768 */
769 enum {
770 NV_OPTIMIZATION_MODE_THROUGHPUT,
771 NV_OPTIMIZATION_MODE_CPU
772 };
773 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
774
775 /*
776 * Poll interval for timer irq
777 *
778 * This interval determines how frequent an interrupt is generated.
779 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
780 * Min = 0, and Max = 65535
781 */
782 static int poll_interval = -1;
783
784 /*
785 * MSI interrupts
786 */
787 enum {
788 NV_MSI_INT_DISABLED,
789 NV_MSI_INT_ENABLED
790 };
791 static int msi = NV_MSI_INT_ENABLED;
792
793 /*
794 * MSIX interrupts
795 */
796 enum {
797 NV_MSIX_INT_DISABLED,
798 NV_MSIX_INT_ENABLED
799 };
800 static int msix = NV_MSIX_INT_ENABLED;
801
802 /*
803 * DMA 64bit
804 */
805 enum {
806 NV_DMA_64BIT_DISABLED,
807 NV_DMA_64BIT_ENABLED
808 };
809 static int dma_64bit = NV_DMA_64BIT_ENABLED;
810
811 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
812 {
813 return netdev_priv(dev);
814 }
815
816 static inline u8 __iomem *get_hwbase(struct net_device *dev)
817 {
818 return ((struct fe_priv *)netdev_priv(dev))->base;
819 }
820
821 static inline void pci_push(u8 __iomem *base)
822 {
823 /* force out pending posted writes */
824 readl(base);
825 }
826
827 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
828 {
829 return le32_to_cpu(prd->FlagLen)
830 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
831 }
832
833 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
834 {
835 return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
836 }
837
838 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
839 int delay, int delaymax, const char *msg)
840 {
841 u8 __iomem *base = get_hwbase(dev);
842
843 pci_push(base);
844 do {
845 udelay(delay);
846 delaymax -= delay;
847 if (delaymax < 0) {
848 if (msg)
849 printk(msg);
850 return 1;
851 }
852 } while ((readl(base + offset) & mask) != target);
853 return 0;
854 }
855
856 #define NV_SETUP_RX_RING 0x01
857 #define NV_SETUP_TX_RING 0x02
858
859 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
860 {
861 struct fe_priv *np = get_nvpriv(dev);
862 u8 __iomem *base = get_hwbase(dev);
863
864 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
865 if (rxtx_flags & NV_SETUP_RX_RING) {
866 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
867 }
868 if (rxtx_flags & NV_SETUP_TX_RING) {
869 writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
870 }
871 } else {
872 if (rxtx_flags & NV_SETUP_RX_RING) {
873 writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
874 writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
875 }
876 if (rxtx_flags & NV_SETUP_TX_RING) {
877 writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
878 writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
879 }
880 }
881 }
882
883 static void free_rings(struct net_device *dev)
884 {
885 struct fe_priv *np = get_nvpriv(dev);
886
887 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
888 if(np->rx_ring.orig)
889 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
890 np->rx_ring.orig, np->ring_addr);
891 } else {
892 if (np->rx_ring.ex)
893 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
894 np->rx_ring.ex, np->ring_addr);
895 }
896 if (np->rx_skbuff)
897 kfree(np->rx_skbuff);
898 if (np->rx_dma)
899 kfree(np->rx_dma);
900 if (np->tx_skbuff)
901 kfree(np->tx_skbuff);
902 if (np->tx_dma)
903 kfree(np->tx_dma);
904 if (np->tx_dma_len)
905 kfree(np->tx_dma_len);
906 }
907
908 static int using_multi_irqs(struct net_device *dev)
909 {
910 struct fe_priv *np = get_nvpriv(dev);
911
912 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
913 ((np->msi_flags & NV_MSI_X_ENABLED) &&
914 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
915 return 0;
916 else
917 return 1;
918 }
919
920 static void nv_enable_irq(struct net_device *dev)
921 {
922 struct fe_priv *np = get_nvpriv(dev);
923
924 if (!using_multi_irqs(dev)) {
925 if (np->msi_flags & NV_MSI_X_ENABLED)
926 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
927 else
928 enable_irq(dev->irq);
929 } else {
930 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
931 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
932 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
933 }
934 }
935
936 static void nv_disable_irq(struct net_device *dev)
937 {
938 struct fe_priv *np = get_nvpriv(dev);
939
940 if (!using_multi_irqs(dev)) {
941 if (np->msi_flags & NV_MSI_X_ENABLED)
942 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
943 else
944 disable_irq(dev->irq);
945 } else {
946 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
947 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
948 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
949 }
950 }
951
952 /* In MSIX mode, a write to irqmask behaves as XOR */
953 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
954 {
955 u8 __iomem *base = get_hwbase(dev);
956
957 writel(mask, base + NvRegIrqMask);
958 }
959
960 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
961 {
962 struct fe_priv *np = get_nvpriv(dev);
963 u8 __iomem *base = get_hwbase(dev);
964
965 if (np->msi_flags & NV_MSI_X_ENABLED) {
966 writel(mask, base + NvRegIrqMask);
967 } else {
968 if (np->msi_flags & NV_MSI_ENABLED)
969 writel(0, base + NvRegMSIIrqMask);
970 writel(0, base + NvRegIrqMask);
971 }
972 }
973
974 #define MII_READ (-1)
975 /* mii_rw: read/write a register on the PHY.
976 *
977 * Caller must guarantee serialization
978 */
979 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
980 {
981 u8 __iomem *base = get_hwbase(dev);
982 u32 reg;
983 int retval;
984
985 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
986
987 reg = readl(base + NvRegMIIControl);
988 if (reg & NVREG_MIICTL_INUSE) {
989 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
990 udelay(NV_MIIBUSY_DELAY);
991 }
992
993 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
994 if (value != MII_READ) {
995 writel(value, base + NvRegMIIData);
996 reg |= NVREG_MIICTL_WRITE;
997 }
998 writel(reg, base + NvRegMIIControl);
999
1000 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1001 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1002 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1003 dev->name, miireg, addr);
1004 retval = -1;
1005 } else if (value != MII_READ) {
1006 /* it was a write operation - fewer failures are detectable */
1007 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1008 dev->name, value, miireg, addr);
1009 retval = 0;
1010 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1011 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1012 dev->name, miireg, addr);
1013 retval = -1;
1014 } else {
1015 retval = readl(base + NvRegMIIData);
1016 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1017 dev->name, miireg, addr, retval);
1018 }
1019
1020 return retval;
1021 }
1022
1023 static int phy_reset(struct net_device *dev)
1024 {
1025 struct fe_priv *np = netdev_priv(dev);
1026 u32 miicontrol;
1027 unsigned int tries = 0;
1028
1029 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1030 miicontrol |= BMCR_RESET;
1031 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1032 return -1;
1033 }
1034
1035 /* wait for 500ms */
1036 msleep(500);
1037
1038 /* must wait till reset is deasserted */
1039 while (miicontrol & BMCR_RESET) {
1040 msleep(10);
1041 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1042 /* FIXME: 100 tries seem excessive */
1043 if (tries++ > 100)
1044 return -1;
1045 }
1046 return 0;
1047 }
1048
1049 static int phy_init(struct net_device *dev)
1050 {
1051 struct fe_priv *np = get_nvpriv(dev);
1052 u8 __iomem *base = get_hwbase(dev);
1053 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1054
1055 /* set advertise register */
1056 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1057 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1058 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1059 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1060 return PHY_ERROR;
1061 }
1062
1063 /* get phy interface type */
1064 phyinterface = readl(base + NvRegPhyInterface);
1065
1066 /* see if gigabit phy */
1067 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1068 if (mii_status & PHY_GIGABIT) {
1069 np->gigabit = PHY_GIGABIT;
1070 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1071 mii_control_1000 &= ~ADVERTISE_1000HALF;
1072 if (phyinterface & PHY_RGMII)
1073 mii_control_1000 |= ADVERTISE_1000FULL;
1074 else
1075 mii_control_1000 &= ~ADVERTISE_1000FULL;
1076
1077 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1078 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1079 return PHY_ERROR;
1080 }
1081 }
1082 else
1083 np->gigabit = 0;
1084
1085 /* reset the phy */
1086 if (phy_reset(dev)) {
1087 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1088 return PHY_ERROR;
1089 }
1090
1091 /* phy vendor specific configuration */
1092 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1093 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1094 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
1095 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
1096 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1097 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1098 return PHY_ERROR;
1099 }
1100 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1101 phy_reserved |= PHY_INIT5;
1102 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1103 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1104 return PHY_ERROR;
1105 }
1106 }
1107 if (np->phy_oui == PHY_OUI_CICADA) {
1108 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1109 phy_reserved |= PHY_INIT6;
1110 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1111 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1112 return PHY_ERROR;
1113 }
1114 }
1115 /* some phys clear out pause advertisment on reset, set it back */
1116 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1117
1118 /* restart auto negotiation */
1119 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1120 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1121 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1122 return PHY_ERROR;
1123 }
1124
1125 return 0;
1126 }
1127
1128 static void nv_start_rx(struct net_device *dev)
1129 {
1130 struct fe_priv *np = netdev_priv(dev);
1131 u8 __iomem *base = get_hwbase(dev);
1132
1133 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1134 /* Already running? Stop it. */
1135 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
1136 writel(0, base + NvRegReceiverControl);
1137 pci_push(base);
1138 }
1139 writel(np->linkspeed, base + NvRegLinkSpeed);
1140 pci_push(base);
1141 writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
1142 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1143 dev->name, np->duplex, np->linkspeed);
1144 pci_push(base);
1145 }
1146
1147 static void nv_stop_rx(struct net_device *dev)
1148 {
1149 u8 __iomem *base = get_hwbase(dev);
1150
1151 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1152 writel(0, base + NvRegReceiverControl);
1153 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1154 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1155 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1156
1157 udelay(NV_RXSTOP_DELAY2);
1158 writel(0, base + NvRegLinkSpeed);
1159 }
1160
1161 static void nv_start_tx(struct net_device *dev)
1162 {
1163 u8 __iomem *base = get_hwbase(dev);
1164
1165 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1166 writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
1167 pci_push(base);
1168 }
1169
1170 static void nv_stop_tx(struct net_device *dev)
1171 {
1172 u8 __iomem *base = get_hwbase(dev);
1173
1174 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1175 writel(0, base + NvRegTransmitterControl);
1176 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1177 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1178 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1179
1180 udelay(NV_TXSTOP_DELAY2);
1181 writel(0, base + NvRegUnknownTransmitterReg);
1182 }
1183
1184 static void nv_txrx_reset(struct net_device *dev)
1185 {
1186 struct fe_priv *np = netdev_priv(dev);
1187 u8 __iomem *base = get_hwbase(dev);
1188
1189 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1190 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1191 pci_push(base);
1192 udelay(NV_TXRX_RESET_DELAY);
1193 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1194 pci_push(base);
1195 }
1196
1197 static void nv_mac_reset(struct net_device *dev)
1198 {
1199 struct fe_priv *np = netdev_priv(dev);
1200 u8 __iomem *base = get_hwbase(dev);
1201
1202 dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1203 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1204 pci_push(base);
1205 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1206 pci_push(base);
1207 udelay(NV_MAC_RESET_DELAY);
1208 writel(0, base + NvRegMacReset);
1209 pci_push(base);
1210 udelay(NV_MAC_RESET_DELAY);
1211 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1212 pci_push(base);
1213 }
1214
1215 /*
1216 * nv_get_stats: dev->get_stats function
1217 * Get latest stats value from the nic.
1218 * Called with read_lock(&dev_base_lock) held for read -
1219 * only synchronized against unregister_netdevice.
1220 */
1221 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1222 {
1223 struct fe_priv *np = netdev_priv(dev);
1224
1225 /* It seems that the nic always generates interrupts and doesn't
1226 * accumulate errors internally. Thus the current values in np->stats
1227 * are already up to date.
1228 */
1229 return &np->stats;
1230 }
1231
1232 /*
1233 * nv_alloc_rx: fill rx ring entries.
1234 * Return 1 if the allocations for the skbs failed and the
1235 * rx engine is without Available descriptors
1236 */
1237 static int nv_alloc_rx(struct net_device *dev)
1238 {
1239 struct fe_priv *np = netdev_priv(dev);
1240 unsigned int refill_rx = np->refill_rx;
1241 int nr;
1242
1243 while (np->cur_rx != refill_rx) {
1244 struct sk_buff *skb;
1245
1246 nr = refill_rx % np->rx_ring_size;
1247 if (np->rx_skbuff[nr] == NULL) {
1248
1249 skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1250 if (!skb)
1251 break;
1252
1253 skb->dev = dev;
1254 np->rx_skbuff[nr] = skb;
1255 } else {
1256 skb = np->rx_skbuff[nr];
1257 }
1258 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
1259 skb->end-skb->data, PCI_DMA_FROMDEVICE);
1260 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1261 np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
1262 wmb();
1263 np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1264 } else {
1265 np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
1266 np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
1267 wmb();
1268 np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1269 }
1270 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
1271 dev->name, refill_rx);
1272 refill_rx++;
1273 }
1274 np->refill_rx = refill_rx;
1275 if (np->cur_rx - refill_rx == np->rx_ring_size)
1276 return 1;
1277 return 0;
1278 }
1279
1280 static void nv_do_rx_refill(unsigned long data)
1281 {
1282 struct net_device *dev = (struct net_device *) data;
1283 struct fe_priv *np = netdev_priv(dev);
1284
1285 if (!using_multi_irqs(dev)) {
1286 if (np->msi_flags & NV_MSI_X_ENABLED)
1287 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1288 else
1289 disable_irq(dev->irq);
1290 } else {
1291 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1292 }
1293 if (nv_alloc_rx(dev)) {
1294 spin_lock_irq(&np->lock);
1295 if (!np->in_shutdown)
1296 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1297 spin_unlock_irq(&np->lock);
1298 }
1299 if (!using_multi_irqs(dev)) {
1300 if (np->msi_flags & NV_MSI_X_ENABLED)
1301 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1302 else
1303 enable_irq(dev->irq);
1304 } else {
1305 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1306 }
1307 }
1308
1309 static void nv_init_rx(struct net_device *dev)
1310 {
1311 struct fe_priv *np = netdev_priv(dev);
1312 int i;
1313
1314 np->cur_rx = np->rx_ring_size;
1315 np->refill_rx = 0;
1316 for (i = 0; i < np->rx_ring_size; i++)
1317 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1318 np->rx_ring.orig[i].FlagLen = 0;
1319 else
1320 np->rx_ring.ex[i].FlagLen = 0;
1321 }
1322
1323 static void nv_init_tx(struct net_device *dev)
1324 {
1325 struct fe_priv *np = netdev_priv(dev);
1326 int i;
1327
1328 np->next_tx = np->nic_tx = 0;
1329 for (i = 0; i < np->tx_ring_size; i++) {
1330 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1331 np->tx_ring.orig[i].FlagLen = 0;
1332 else
1333 np->tx_ring.ex[i].FlagLen = 0;
1334 np->tx_skbuff[i] = NULL;
1335 np->tx_dma[i] = 0;
1336 }
1337 }
1338
1339 static int nv_init_ring(struct net_device *dev)
1340 {
1341 nv_init_tx(dev);
1342 nv_init_rx(dev);
1343 return nv_alloc_rx(dev);
1344 }
1345
1346 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
1347 {
1348 struct fe_priv *np = netdev_priv(dev);
1349
1350 dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
1351 dev->name, skbnr);
1352
1353 if (np->tx_dma[skbnr]) {
1354 pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
1355 np->tx_dma_len[skbnr],
1356 PCI_DMA_TODEVICE);
1357 np->tx_dma[skbnr] = 0;
1358 }
1359
1360 if (np->tx_skbuff[skbnr]) {
1361 dev_kfree_skb_any(np->tx_skbuff[skbnr]);
1362 np->tx_skbuff[skbnr] = NULL;
1363 return 1;
1364 } else {
1365 return 0;
1366 }
1367 }
1368
1369 static void nv_drain_tx(struct net_device *dev)
1370 {
1371 struct fe_priv *np = netdev_priv(dev);
1372 unsigned int i;
1373
1374 for (i = 0; i < np->tx_ring_size; i++) {
1375 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1376 np->tx_ring.orig[i].FlagLen = 0;
1377 else
1378 np->tx_ring.ex[i].FlagLen = 0;
1379 if (nv_release_txskb(dev, i))
1380 np->stats.tx_dropped++;
1381 }
1382 }
1383
1384 static void nv_drain_rx(struct net_device *dev)
1385 {
1386 struct fe_priv *np = netdev_priv(dev);
1387 int i;
1388 for (i = 0; i < np->rx_ring_size; i++) {
1389 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1390 np->rx_ring.orig[i].FlagLen = 0;
1391 else
1392 np->rx_ring.ex[i].FlagLen = 0;
1393 wmb();
1394 if (np->rx_skbuff[i]) {
1395 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1396 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1397 PCI_DMA_FROMDEVICE);
1398 dev_kfree_skb(np->rx_skbuff[i]);
1399 np->rx_skbuff[i] = NULL;
1400 }
1401 }
1402 }
1403
1404 static void drain_ring(struct net_device *dev)
1405 {
1406 nv_drain_tx(dev);
1407 nv_drain_rx(dev);
1408 }
1409
1410 /*
1411 * nv_start_xmit: dev->hard_start_xmit function
1412 * Called with netif_tx_lock held.
1413 */
1414 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1415 {
1416 struct fe_priv *np = netdev_priv(dev);
1417 u32 tx_flags = 0;
1418 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1419 unsigned int fragments = skb_shinfo(skb)->nr_frags;
1420 unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
1421 unsigned int start_nr = np->next_tx % np->tx_ring_size;
1422 unsigned int i;
1423 u32 offset = 0;
1424 u32 bcnt;
1425 u32 size = skb->len-skb->data_len;
1426 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1427 u32 tx_flags_vlan = 0;
1428
1429 /* add fragments to entries count */
1430 for (i = 0; i < fragments; i++) {
1431 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1432 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1433 }
1434
1435 spin_lock_irq(&np->lock);
1436
1437 if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
1438 spin_unlock_irq(&np->lock);
1439 netif_stop_queue(dev);
1440 return NETDEV_TX_BUSY;
1441 }
1442
1443 /* setup the header buffer */
1444 do {
1445 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1446 nr = (nr + 1) % np->tx_ring_size;
1447
1448 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1449 PCI_DMA_TODEVICE);
1450 np->tx_dma_len[nr] = bcnt;
1451
1452 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1453 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1454 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1455 } else {
1456 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1457 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1458 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1459 }
1460 tx_flags = np->tx_flags;
1461 offset += bcnt;
1462 size -= bcnt;
1463 } while(size);
1464
1465 /* setup the fragments */
1466 for (i = 0; i < fragments; i++) {
1467 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1468 u32 size = frag->size;
1469 offset = 0;
1470
1471 do {
1472 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1473 nr = (nr + 1) % np->tx_ring_size;
1474
1475 np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1476 PCI_DMA_TODEVICE);
1477 np->tx_dma_len[nr] = bcnt;
1478
1479 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1480 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1481 np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1482 } else {
1483 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1484 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1485 np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
1486 }
1487 offset += bcnt;
1488 size -= bcnt;
1489 } while (size);
1490 }
1491
1492 /* set last fragment flag */
1493 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1494 np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1495 } else {
1496 np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
1497 }
1498
1499 np->tx_skbuff[nr] = skb;
1500
1501 #ifdef NETIF_F_TSO
1502 if (skb_is_gso(skb))
1503 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1504 else
1505 #endif
1506 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
1507 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
1508
1509 /* vlan tag */
1510 if (np->vlangrp && vlan_tx_tag_present(skb)) {
1511 tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
1512 }
1513
1514 /* set tx flags */
1515 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1516 np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1517 } else {
1518 np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
1519 np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
1520 }
1521
1522 dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1523 dev->name, np->next_tx, entries, tx_flags_extra);
1524 {
1525 int j;
1526 for (j=0; j<64; j++) {
1527 if ((j%16) == 0)
1528 dprintk("\n%03x:", j);
1529 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1530 }
1531 dprintk("\n");
1532 }
1533
1534 np->next_tx += entries;
1535
1536 dev->trans_start = jiffies;
1537 spin_unlock_irq(&np->lock);
1538 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1539 pci_push(get_hwbase(dev));
1540 return NETDEV_TX_OK;
1541 }
1542
1543 /*
1544 * nv_tx_done: check for completed packets, release the skbs.
1545 *
1546 * Caller must own np->lock.
1547 */
1548 static void nv_tx_done(struct net_device *dev)
1549 {
1550 struct fe_priv *np = netdev_priv(dev);
1551 u32 Flags;
1552 unsigned int i;
1553 struct sk_buff *skb;
1554
1555 while (np->nic_tx != np->next_tx) {
1556 i = np->nic_tx % np->tx_ring_size;
1557
1558 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1559 Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1560 else
1561 Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1562
1563 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1564 dev->name, np->nic_tx, Flags);
1565 if (Flags & NV_TX_VALID)
1566 break;
1567 if (np->desc_ver == DESC_VER_1) {
1568 if (Flags & NV_TX_LASTPACKET) {
1569 skb = np->tx_skbuff[i];
1570 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1571 NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1572 if (Flags & NV_TX_UNDERFLOW)
1573 np->stats.tx_fifo_errors++;
1574 if (Flags & NV_TX_CARRIERLOST)
1575 np->stats.tx_carrier_errors++;
1576 np->stats.tx_errors++;
1577 } else {
1578 np->stats.tx_packets++;
1579 np->stats.tx_bytes += skb->len;
1580 }
1581 }
1582 } else {
1583 if (Flags & NV_TX2_LASTPACKET) {
1584 skb = np->tx_skbuff[i];
1585 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1586 NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1587 if (Flags & NV_TX2_UNDERFLOW)
1588 np->stats.tx_fifo_errors++;
1589 if (Flags & NV_TX2_CARRIERLOST)
1590 np->stats.tx_carrier_errors++;
1591 np->stats.tx_errors++;
1592 } else {
1593 np->stats.tx_packets++;
1594 np->stats.tx_bytes += skb->len;
1595 }
1596 }
1597 }
1598 nv_release_txskb(dev, i);
1599 np->nic_tx++;
1600 }
1601 if (np->next_tx - np->nic_tx < np->tx_limit_start)
1602 netif_wake_queue(dev);
1603 }
1604
1605 /*
1606 * nv_tx_timeout: dev->tx_timeout function
1607 * Called with netif_tx_lock held.
1608 */
1609 static void nv_tx_timeout(struct net_device *dev)
1610 {
1611 struct fe_priv *np = netdev_priv(dev);
1612 u8 __iomem *base = get_hwbase(dev);
1613 u32 status;
1614
1615 if (np->msi_flags & NV_MSI_X_ENABLED)
1616 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1617 else
1618 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1619
1620 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1621
1622 {
1623 int i;
1624
1625 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1626 dev->name, (unsigned long)np->ring_addr,
1627 np->next_tx, np->nic_tx);
1628 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1629 for (i=0;i<=np->register_size;i+= 32) {
1630 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1631 i,
1632 readl(base + i + 0), readl(base + i + 4),
1633 readl(base + i + 8), readl(base + i + 12),
1634 readl(base + i + 16), readl(base + i + 20),
1635 readl(base + i + 24), readl(base + i + 28));
1636 }
1637 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1638 for (i=0;i<np->tx_ring_size;i+= 4) {
1639 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1640 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1641 i,
1642 le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1643 le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1644 le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1645 le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1646 le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1647 le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1648 le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1649 le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1650 } else {
1651 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1652 i,
1653 le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1654 le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1655 le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1656 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1657 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1658 le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1659 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1660 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1661 le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1662 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1663 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1664 le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1665 }
1666 }
1667 }
1668
1669 spin_lock_irq(&np->lock);
1670
1671 /* 1) stop tx engine */
1672 nv_stop_tx(dev);
1673
1674 /* 2) check that the packets were not sent already: */
1675 nv_tx_done(dev);
1676
1677 /* 3) if there are dead entries: clear everything */
1678 if (np->next_tx != np->nic_tx) {
1679 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1680 nv_drain_tx(dev);
1681 np->next_tx = np->nic_tx = 0;
1682 setup_hw_rings(dev, NV_SETUP_TX_RING);
1683 netif_wake_queue(dev);
1684 }
1685
1686 /* 4) restart tx engine */
1687 nv_start_tx(dev);
1688 spin_unlock_irq(&np->lock);
1689 }
1690
1691 /*
1692 * Called when the nic notices a mismatch between the actual data len on the
1693 * wire and the len indicated in the 802 header
1694 */
1695 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1696 {
1697 int hdrlen; /* length of the 802 header */
1698 int protolen; /* length as stored in the proto field */
1699
1700 /* 1) calculate len according to header */
1701 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1702 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1703 hdrlen = VLAN_HLEN;
1704 } else {
1705 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1706 hdrlen = ETH_HLEN;
1707 }
1708 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1709 dev->name, datalen, protolen, hdrlen);
1710 if (protolen > ETH_DATA_LEN)
1711 return datalen; /* Value in proto field not a len, no checks possible */
1712
1713 protolen += hdrlen;
1714 /* consistency checks: */
1715 if (datalen > ETH_ZLEN) {
1716 if (datalen >= protolen) {
1717 /* more data on wire than in 802 header, trim of
1718 * additional data.
1719 */
1720 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1721 dev->name, protolen);
1722 return protolen;
1723 } else {
1724 /* less data on wire than mentioned in header.
1725 * Discard the packet.
1726 */
1727 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1728 dev->name);
1729 return -1;
1730 }
1731 } else {
1732 /* short packet. Accept only if 802 values are also short */
1733 if (protolen > ETH_ZLEN) {
1734 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1735 dev->name);
1736 return -1;
1737 }
1738 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1739 dev->name, datalen);
1740 return datalen;
1741 }
1742 }
1743
1744 static void nv_rx_process(struct net_device *dev)
1745 {
1746 struct fe_priv *np = netdev_priv(dev);
1747 u32 Flags;
1748 u32 vlanflags = 0;
1749
1750 for (;;) {
1751 struct sk_buff *skb;
1752 int len;
1753 int i;
1754 if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
1755 break; /* we scanned the whole ring - do not continue */
1756
1757 i = np->cur_rx % np->rx_ring_size;
1758 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1759 Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1760 len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1761 } else {
1762 Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1763 len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1764 vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
1765 }
1766
1767 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1768 dev->name, np->cur_rx, Flags);
1769
1770 if (Flags & NV_RX_AVAIL)
1771 break; /* still owned by hardware, */
1772
1773 /*
1774 * the packet is for us - immediately tear down the pci mapping.
1775 * TODO: check if a prefetch of the first cacheline improves
1776 * the performance.
1777 */
1778 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1779 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1780 PCI_DMA_FROMDEVICE);
1781
1782 {
1783 int j;
1784 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1785 for (j=0; j<64; j++) {
1786 if ((j%16) == 0)
1787 dprintk("\n%03x:", j);
1788 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1789 }
1790 dprintk("\n");
1791 }
1792 /* look at what we actually got: */
1793 if (np->desc_ver == DESC_VER_1) {
1794 if (!(Flags & NV_RX_DESCRIPTORVALID))
1795 goto next_pkt;
1796
1797 if (Flags & NV_RX_ERROR) {
1798 if (Flags & NV_RX_MISSEDFRAME) {
1799 np->stats.rx_missed_errors++;
1800 np->stats.rx_errors++;
1801 goto next_pkt;
1802 }
1803 if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1804 np->stats.rx_errors++;
1805 goto next_pkt;
1806 }
1807 if (Flags & NV_RX_CRCERR) {
1808 np->stats.rx_crc_errors++;
1809 np->stats.rx_errors++;
1810 goto next_pkt;
1811 }
1812 if (Flags & NV_RX_OVERFLOW) {
1813 np->stats.rx_over_errors++;
1814 np->stats.rx_errors++;
1815 goto next_pkt;
1816 }
1817 if (Flags & NV_RX_ERROR4) {
1818 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1819 if (len < 0) {
1820 np->stats.rx_errors++;
1821 goto next_pkt;
1822 }
1823 }
1824 /* framing errors are soft errors. */
1825 if (Flags & NV_RX_FRAMINGERR) {
1826 if (Flags & NV_RX_SUBSTRACT1) {
1827 len--;
1828 }
1829 }
1830 }
1831 } else {
1832 if (!(Flags & NV_RX2_DESCRIPTORVALID))
1833 goto next_pkt;
1834
1835 if (Flags & NV_RX2_ERROR) {
1836 if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1837 np->stats.rx_errors++;
1838 goto next_pkt;
1839 }
1840 if (Flags & NV_RX2_CRCERR) {
1841 np->stats.rx_crc_errors++;
1842 np->stats.rx_errors++;
1843 goto next_pkt;
1844 }
1845 if (Flags & NV_RX2_OVERFLOW) {
1846 np->stats.rx_over_errors++;
1847 np->stats.rx_errors++;
1848 goto next_pkt;
1849 }
1850 if (Flags & NV_RX2_ERROR4) {
1851 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1852 if (len < 0) {
1853 np->stats.rx_errors++;
1854 goto next_pkt;
1855 }
1856 }
1857 /* framing errors are soft errors */
1858 if (Flags & NV_RX2_FRAMINGERR) {
1859 if (Flags & NV_RX2_SUBSTRACT1) {
1860 len--;
1861 }
1862 }
1863 }
1864 if (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) {
1865 Flags &= NV_RX2_CHECKSUMMASK;
1866 if (Flags == NV_RX2_CHECKSUMOK1 ||
1867 Flags == NV_RX2_CHECKSUMOK2 ||
1868 Flags == NV_RX2_CHECKSUMOK3) {
1869 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1870 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1871 } else {
1872 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1873 }
1874 }
1875 }
1876 /* got a valid packet - forward it to the network core */
1877 skb = np->rx_skbuff[i];
1878 np->rx_skbuff[i] = NULL;
1879
1880 skb_put(skb, len);
1881 skb->protocol = eth_type_trans(skb, dev);
1882 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1883 dev->name, np->cur_rx, len, skb->protocol);
1884 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
1885 vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
1886 } else {
1887 netif_rx(skb);
1888 }
1889 dev->last_rx = jiffies;
1890 np->stats.rx_packets++;
1891 np->stats.rx_bytes += len;
1892 next_pkt:
1893 np->cur_rx++;
1894 }
1895 }
1896
1897 static void set_bufsize(struct net_device *dev)
1898 {
1899 struct fe_priv *np = netdev_priv(dev);
1900
1901 if (dev->mtu <= ETH_DATA_LEN)
1902 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1903 else
1904 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1905 }
1906
1907 /*
1908 * nv_change_mtu: dev->change_mtu function
1909 * Called with dev_base_lock held for read.
1910 */
1911 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1912 {
1913 struct fe_priv *np = netdev_priv(dev);
1914 int old_mtu;
1915
1916 if (new_mtu < 64 || new_mtu > np->pkt_limit)
1917 return -EINVAL;
1918
1919 old_mtu = dev->mtu;
1920 dev->mtu = new_mtu;
1921
1922 /* return early if the buffer sizes will not change */
1923 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1924 return 0;
1925 if (old_mtu == new_mtu)
1926 return 0;
1927
1928 /* synchronized against open : rtnl_lock() held by caller */
1929 if (netif_running(dev)) {
1930 u8 __iomem *base = get_hwbase(dev);
1931 /*
1932 * It seems that the nic preloads valid ring entries into an
1933 * internal buffer. The procedure for flushing everything is
1934 * guessed, there is probably a simpler approach.
1935 * Changing the MTU is a rare event, it shouldn't matter.
1936 */
1937 nv_disable_irq(dev);
1938 netif_tx_lock_bh(dev);
1939 spin_lock(&np->lock);
1940 /* stop engines */
1941 nv_stop_rx(dev);
1942 nv_stop_tx(dev);
1943 nv_txrx_reset(dev);
1944 /* drain rx queue */
1945 nv_drain_rx(dev);
1946 nv_drain_tx(dev);
1947 /* reinit driver view of the rx queue */
1948 set_bufsize(dev);
1949 if (nv_init_ring(dev)) {
1950 if (!np->in_shutdown)
1951 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1952 }
1953 /* reinit nic view of the rx queue */
1954 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1955 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
1956 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
1957 base + NvRegRingSizes);
1958 pci_push(base);
1959 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1960 pci_push(base);
1961
1962 /* restart rx engine */
1963 nv_start_rx(dev);
1964 nv_start_tx(dev);
1965 spin_unlock(&np->lock);
1966 netif_tx_unlock_bh(dev);
1967 nv_enable_irq(dev);
1968 }
1969 return 0;
1970 }
1971
1972 static void nv_copy_mac_to_hw(struct net_device *dev)
1973 {
1974 u8 __iomem *base = get_hwbase(dev);
1975 u32 mac[2];
1976
1977 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1978 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1979 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1980
1981 writel(mac[0], base + NvRegMacAddrA);
1982 writel(mac[1], base + NvRegMacAddrB);
1983 }
1984
1985 /*
1986 * nv_set_mac_address: dev->set_mac_address function
1987 * Called with rtnl_lock() held.
1988 */
1989 static int nv_set_mac_address(struct net_device *dev, void *addr)
1990 {
1991 struct fe_priv *np = netdev_priv(dev);
1992 struct sockaddr *macaddr = (struct sockaddr*)addr;
1993
1994 if(!is_valid_ether_addr(macaddr->sa_data))
1995 return -EADDRNOTAVAIL;
1996
1997 /* synchronized against open : rtnl_lock() held by caller */
1998 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1999
2000 if (netif_running(dev)) {
2001 netif_tx_lock_bh(dev);
2002 spin_lock_irq(&np->lock);
2003
2004 /* stop rx engine */
2005 nv_stop_rx(dev);
2006
2007 /* set mac address */
2008 nv_copy_mac_to_hw(dev);
2009
2010 /* restart rx engine */
2011 nv_start_rx(dev);
2012 spin_unlock_irq(&np->lock);
2013 netif_tx_unlock_bh(dev);
2014 } else {
2015 nv_copy_mac_to_hw(dev);
2016 }
2017 return 0;
2018 }
2019
2020 /*
2021 * nv_set_multicast: dev->set_multicast function
2022 * Called with netif_tx_lock held.
2023 */
2024 static void nv_set_multicast(struct net_device *dev)
2025 {
2026 struct fe_priv *np = netdev_priv(dev);
2027 u8 __iomem *base = get_hwbase(dev);
2028 u32 addr[2];
2029 u32 mask[2];
2030 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
2031
2032 memset(addr, 0, sizeof(addr));
2033 memset(mask, 0, sizeof(mask));
2034
2035 if (dev->flags & IFF_PROMISC) {
2036 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
2037 pff |= NVREG_PFF_PROMISC;
2038 } else {
2039 pff |= NVREG_PFF_MYADDR;
2040
2041 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
2042 u32 alwaysOff[2];
2043 u32 alwaysOn[2];
2044
2045 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
2046 if (dev->flags & IFF_ALLMULTI) {
2047 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
2048 } else {
2049 struct dev_mc_list *walk;
2050
2051 walk = dev->mc_list;
2052 while (walk != NULL) {
2053 u32 a, b;
2054 a = le32_to_cpu(*(u32 *) walk->dmi_addr);
2055 b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
2056 alwaysOn[0] &= a;
2057 alwaysOff[0] &= ~a;
2058 alwaysOn[1] &= b;
2059 alwaysOff[1] &= ~b;
2060 walk = walk->next;
2061 }
2062 }
2063 addr[0] = alwaysOn[0];
2064 addr[1] = alwaysOn[1];
2065 mask[0] = alwaysOn[0] | alwaysOff[0];
2066 mask[1] = alwaysOn[1] | alwaysOff[1];
2067 }
2068 }
2069 addr[0] |= NVREG_MCASTADDRA_FORCE;
2070 pff |= NVREG_PFF_ALWAYS;
2071 spin_lock_irq(&np->lock);
2072 nv_stop_rx(dev);
2073 writel(addr[0], base + NvRegMulticastAddrA);
2074 writel(addr[1], base + NvRegMulticastAddrB);
2075 writel(mask[0], base + NvRegMulticastMaskA);
2076 writel(mask[1], base + NvRegMulticastMaskB);
2077 writel(pff, base + NvRegPacketFilterFlags);
2078 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2079 dev->name);
2080 nv_start_rx(dev);
2081 spin_unlock_irq(&np->lock);
2082 }
2083
2084 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
2085 {
2086 struct fe_priv *np = netdev_priv(dev);
2087 u8 __iomem *base = get_hwbase(dev);
2088
2089 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2090
2091 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2092 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2093 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2094 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2095 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2096 } else {
2097 writel(pff, base + NvRegPacketFilterFlags);
2098 }
2099 }
2100 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2101 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2102 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2103 writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
2104 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2105 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2106 } else {
2107 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
2108 writel(regmisc, base + NvRegMisc1);
2109 }
2110 }
2111 }
2112
2113 /**
2114 * nv_update_linkspeed: Setup the MAC according to the link partner
2115 * @dev: Network device to be configured
2116 *
2117 * The function queries the PHY and checks if there is a link partner.
2118 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2119 * set to 10 MBit HD.
2120 *
2121 * The function returns 0 if there is no link partner and 1 if there is
2122 * a good link partner.
2123 */
2124 static int nv_update_linkspeed(struct net_device *dev)
2125 {
2126 struct fe_priv *np = netdev_priv(dev);
2127 u8 __iomem *base = get_hwbase(dev);
2128 int adv = 0;
2129 int lpa = 0;
2130 int adv_lpa, adv_pause, lpa_pause;
2131 int newls = np->linkspeed;
2132 int newdup = np->duplex;
2133 int mii_status;
2134 int retval = 0;
2135 u32 control_1000, status_1000, phyreg, pause_flags, txreg;
2136
2137 /* BMSR_LSTATUS is latched, read it twice:
2138 * we want the current value.
2139 */
2140 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2141 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2142
2143 if (!(mii_status & BMSR_LSTATUS)) {
2144 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2145 dev->name);
2146 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2147 newdup = 0;
2148 retval = 0;
2149 goto set_speed;
2150 }
2151
2152 if (np->autoneg == 0) {
2153 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2154 dev->name, np->fixed_mode);
2155 if (np->fixed_mode & LPA_100FULL) {
2156 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2157 newdup = 1;
2158 } else if (np->fixed_mode & LPA_100HALF) {
2159 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2160 newdup = 0;
2161 } else if (np->fixed_mode & LPA_10FULL) {
2162 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2163 newdup = 1;
2164 } else {
2165 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2166 newdup = 0;
2167 }
2168 retval = 1;
2169 goto set_speed;
2170 }
2171 /* check auto negotiation is complete */
2172 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2173 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2174 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2175 newdup = 0;
2176 retval = 0;
2177 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2178 goto set_speed;
2179 }
2180
2181 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2182 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2183 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2184 dev->name, adv, lpa);
2185
2186 retval = 1;
2187 if (np->gigabit == PHY_GIGABIT) {
2188 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2189 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2190
2191 if ((control_1000 & ADVERTISE_1000FULL) &&
2192 (status_1000 & LPA_1000FULL)) {
2193 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2194 dev->name);
2195 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2196 newdup = 1;
2197 goto set_speed;
2198 }
2199 }
2200
2201 /* FIXME: handle parallel detection properly */
2202 adv_lpa = lpa & adv;
2203 if (adv_lpa & LPA_100FULL) {
2204 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2205 newdup = 1;
2206 } else if (adv_lpa & LPA_100HALF) {
2207 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2208 newdup = 0;
2209 } else if (adv_lpa & LPA_10FULL) {
2210 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2211 newdup = 1;
2212 } else if (adv_lpa & LPA_10HALF) {
2213 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2214 newdup = 0;
2215 } else {
2216 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2217 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2218 newdup = 0;
2219 }
2220
2221 set_speed:
2222 if (np->duplex == newdup && np->linkspeed == newls)
2223 return retval;
2224
2225 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2226 dev->name, np->linkspeed, np->duplex, newls, newdup);
2227
2228 np->duplex = newdup;
2229 np->linkspeed = newls;
2230
2231 if (np->gigabit == PHY_GIGABIT) {
2232 phyreg = readl(base + NvRegRandomSeed);
2233 phyreg &= ~(0x3FF00);
2234 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2235 phyreg |= NVREG_RNDSEED_FORCE3;
2236 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2237 phyreg |= NVREG_RNDSEED_FORCE2;
2238 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2239 phyreg |= NVREG_RNDSEED_FORCE;
2240 writel(phyreg, base + NvRegRandomSeed);
2241 }
2242
2243 phyreg = readl(base + NvRegPhyInterface);
2244 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2245 if (np->duplex == 0)
2246 phyreg |= PHY_HALF;
2247 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2248 phyreg |= PHY_100;
2249 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2250 phyreg |= PHY_1000;
2251 writel(phyreg, base + NvRegPhyInterface);
2252
2253 if (phyreg & PHY_RGMII) {
2254 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2255 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
2256 else
2257 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
2258 } else {
2259 txreg = NVREG_TX_DEFERRAL_DEFAULT;
2260 }
2261 writel(txreg, base + NvRegTxDeferral);
2262
2263 if (np->desc_ver == DESC_VER_1) {
2264 txreg = NVREG_TX_WM_DESC1_DEFAULT;
2265 } else {
2266 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2267 txreg = NVREG_TX_WM_DESC2_3_1000;
2268 else
2269 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
2270 }
2271 writel(txreg, base + NvRegTxWatermark);
2272
2273 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2274 base + NvRegMisc1);
2275 pci_push(base);
2276 writel(np->linkspeed, base + NvRegLinkSpeed);
2277 pci_push(base);
2278
2279 pause_flags = 0;
2280 /* setup pause frame */
2281 if (np->duplex != 0) {
2282 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
2283 adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2284 lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2285
2286 switch (adv_pause) {
2287 case (ADVERTISE_PAUSE_CAP):
2288 if (lpa_pause & LPA_PAUSE_CAP) {
2289 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2290 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2291 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2292 }
2293 break;
2294 case (ADVERTISE_PAUSE_ASYM):
2295 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2296 {
2297 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2298 }
2299 break;
2300 case (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM):
2301 if (lpa_pause & LPA_PAUSE_CAP)
2302 {
2303 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2304 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2305 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2306 }
2307 if (lpa_pause == LPA_PAUSE_ASYM)
2308 {
2309 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2310 }
2311 break;
2312 }
2313 } else {
2314 pause_flags = np->pause_flags;
2315 }
2316 }
2317 nv_update_pause(dev, pause_flags);
2318
2319 return retval;
2320 }
2321
2322 static void nv_linkchange(struct net_device *dev)
2323 {
2324 if (nv_update_linkspeed(dev)) {
2325 if (!netif_carrier_ok(dev)) {
2326 netif_carrier_on(dev);
2327 printk(KERN_INFO "%s: link up.\n", dev->name);
2328 nv_start_rx(dev);
2329 }
2330 } else {
2331 if (netif_carrier_ok(dev)) {
2332 netif_carrier_off(dev);
2333 printk(KERN_INFO "%s: link down.\n", dev->name);
2334 nv_stop_rx(dev);
2335 }
2336 }
2337 }
2338
2339 static void nv_link_irq(struct net_device *dev)
2340 {
2341 u8 __iomem *base = get_hwbase(dev);
2342 u32 miistat;
2343
2344 miistat = readl(base + NvRegMIIStatus);
2345 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2346 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2347
2348 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2349 nv_linkchange(dev);
2350 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2351 }
2352
2353 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
2354 {
2355 struct net_device *dev = (struct net_device *) data;
2356 struct fe_priv *np = netdev_priv(dev);
2357 u8 __iomem *base = get_hwbase(dev);
2358 u32 events;
2359 int i;
2360
2361 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2362
2363 for (i=0; ; i++) {
2364 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2365 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2366 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2367 } else {
2368 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2369 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2370 }
2371 pci_push(base);
2372 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2373 if (!(events & np->irqmask))
2374 break;
2375
2376 spin_lock(&np->lock);
2377 nv_tx_done(dev);
2378 spin_unlock(&np->lock);
2379
2380 nv_rx_process(dev);
2381 if (nv_alloc_rx(dev)) {
2382 spin_lock(&np->lock);
2383 if (!np->in_shutdown)
2384 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2385 spin_unlock(&np->lock);
2386 }
2387
2388 if (events & NVREG_IRQ_LINK) {
2389 spin_lock(&np->lock);
2390 nv_link_irq(dev);
2391 spin_unlock(&np->lock);
2392 }
2393 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2394 spin_lock(&np->lock);
2395 nv_linkchange(dev);
2396 spin_unlock(&np->lock);
2397 np->link_timeout = jiffies + LINK_TIMEOUT;
2398 }
2399 if (events & (NVREG_IRQ_TX_ERR)) {
2400 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2401 dev->name, events);
2402 }
2403 if (events & (NVREG_IRQ_UNKNOWN)) {
2404 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2405 dev->name, events);
2406 }
2407 if (i > max_interrupt_work) {
2408 spin_lock(&np->lock);
2409 /* disable interrupts on the nic */
2410 if (!(np->msi_flags & NV_MSI_X_ENABLED))
2411 writel(0, base + NvRegIrqMask);
2412 else
2413 writel(np->irqmask, base + NvRegIrqMask);
2414 pci_push(base);
2415
2416 if (!np->in_shutdown) {
2417 np->nic_poll_irq = np->irqmask;
2418 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2419 }
2420 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2421 spin_unlock(&np->lock);
2422 break;
2423 }
2424
2425 }
2426 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2427
2428 return IRQ_RETVAL(i);
2429 }
2430
2431 static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
2432 {
2433 struct net_device *dev = (struct net_device *) data;
2434 struct fe_priv *np = netdev_priv(dev);
2435 u8 __iomem *base = get_hwbase(dev);
2436 u32 events;
2437 int i;
2438
2439 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
2440
2441 for (i=0; ; i++) {
2442 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
2443 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
2444 pci_push(base);
2445 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
2446 if (!(events & np->irqmask))
2447 break;
2448
2449 spin_lock_irq(&np->lock);
2450 nv_tx_done(dev);
2451 spin_unlock_irq(&np->lock);
2452
2453 if (events & (NVREG_IRQ_TX_ERR)) {
2454 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2455 dev->name, events);
2456 }
2457 if (i > max_interrupt_work) {
2458 spin_lock_irq(&np->lock);
2459 /* disable interrupts on the nic */
2460 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
2461 pci_push(base);
2462
2463 if (!np->in_shutdown) {
2464 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
2465 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2466 }
2467 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
2468 spin_unlock_irq(&np->lock);
2469 break;
2470 }
2471
2472 }
2473 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
2474
2475 return IRQ_RETVAL(i);
2476 }
2477
2478 static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2479 {
2480 struct net_device *dev = (struct net_device *) data;
2481 struct fe_priv *np = netdev_priv(dev);
2482 u8 __iomem *base = get_hwbase(dev);
2483 u32 events;
2484 int i;
2485
2486 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
2487
2488 for (i=0; ; i++) {
2489 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2490 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2491 pci_push(base);
2492 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
2493 if (!(events & np->irqmask))
2494 break;
2495
2496 nv_rx_process(dev);
2497 if (nv_alloc_rx(dev)) {
2498 spin_lock_irq(&np->lock);
2499 if (!np->in_shutdown)
2500 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2501 spin_unlock_irq(&np->lock);
2502 }
2503
2504 if (i > max_interrupt_work) {
2505 spin_lock_irq(&np->lock);
2506 /* disable interrupts on the nic */
2507 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2508 pci_push(base);
2509
2510 if (!np->in_shutdown) {
2511 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
2512 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2513 }
2514 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
2515 spin_unlock_irq(&np->lock);
2516 break;
2517 }
2518
2519 }
2520 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
2521
2522 return IRQ_RETVAL(i);
2523 }
2524
2525 static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
2526 {
2527 struct net_device *dev = (struct net_device *) data;
2528 struct fe_priv *np = netdev_priv(dev);
2529 u8 __iomem *base = get_hwbase(dev);
2530 u32 events;
2531 int i;
2532
2533 dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
2534
2535 for (i=0; ; i++) {
2536 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
2537 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
2538 pci_push(base);
2539 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2540 if (!(events & np->irqmask))
2541 break;
2542
2543 if (events & NVREG_IRQ_LINK) {
2544 spin_lock_irq(&np->lock);
2545 nv_link_irq(dev);
2546 spin_unlock_irq(&np->lock);
2547 }
2548 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2549 spin_lock_irq(&np->lock);
2550 nv_linkchange(dev);
2551 spin_unlock_irq(&np->lock);
2552 np->link_timeout = jiffies + LINK_TIMEOUT;
2553 }
2554 if (events & (NVREG_IRQ_UNKNOWN)) {
2555 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2556 dev->name, events);
2557 }
2558 if (i > max_interrupt_work) {
2559 spin_lock_irq(&np->lock);
2560 /* disable interrupts on the nic */
2561 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
2562 pci_push(base);
2563
2564 if (!np->in_shutdown) {
2565 np->nic_poll_irq |= NVREG_IRQ_OTHER;
2566 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2567 }
2568 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
2569 spin_unlock_irq(&np->lock);
2570 break;
2571 }
2572
2573 }
2574 dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
2575
2576 return IRQ_RETVAL(i);
2577 }
2578
2579 static irqreturn_t nv_nic_irq_test(int foo, void *data, struct pt_regs *regs)
2580 {
2581 struct net_device *dev = (struct net_device *) data;
2582 struct fe_priv *np = netdev_priv(dev);
2583 u8 __iomem *base = get_hwbase(dev);
2584 u32 events;
2585
2586 dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
2587
2588 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2589 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2590 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
2591 } else {
2592 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2593 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
2594 }
2595 pci_push(base);
2596 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2597 if (!(events & NVREG_IRQ_TIMER))
2598 return IRQ_RETVAL(0);
2599
2600 spin_lock(&np->lock);
2601 np->intr_test = 1;
2602 spin_unlock(&np->lock);
2603
2604 dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
2605
2606 return IRQ_RETVAL(1);
2607 }
2608
2609 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
2610 {
2611 u8 __iomem *base = get_hwbase(dev);
2612 int i;
2613 u32 msixmap = 0;
2614
2615 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
2616 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
2617 * the remaining 8 interrupts.
2618 */
2619 for (i = 0; i < 8; i++) {
2620 if ((irqmask >> i) & 0x1) {
2621 msixmap |= vector << (i << 2);
2622 }
2623 }
2624 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
2625
2626 msixmap = 0;
2627 for (i = 0; i < 8; i++) {
2628 if ((irqmask >> (i + 8)) & 0x1) {
2629 msixmap |= vector << (i << 2);
2630 }
2631 }
2632 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
2633 }
2634
2635 static int nv_request_irq(struct net_device *dev, int intr_test)
2636 {
2637 struct fe_priv *np = get_nvpriv(dev);
2638 u8 __iomem *base = get_hwbase(dev);
2639 int ret = 1;
2640 int i;
2641
2642 if (np->msi_flags & NV_MSI_X_CAPABLE) {
2643 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2644 np->msi_x_entry[i].entry = i;
2645 }
2646 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
2647 np->msi_flags |= NV_MSI_X_ENABLED;
2648 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
2649 /* Request irq for rx handling */
2650 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
2651 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
2652 pci_disable_msix(np->pci_dev);
2653 np->msi_flags &= ~NV_MSI_X_ENABLED;
2654 goto out_err;
2655 }
2656 /* Request irq for tx handling */
2657 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
2658 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
2659 pci_disable_msix(np->pci_dev);
2660 np->msi_flags &= ~NV_MSI_X_ENABLED;
2661 goto out_free_rx;
2662 }
2663 /* Request irq for link and timer handling */
2664 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
2665 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
2666 pci_disable_msix(np->pci_dev);
2667 np->msi_flags &= ~NV_MSI_X_ENABLED;
2668 goto out_free_tx;
2669 }
2670 /* map interrupts to their respective vector */
2671 writel(0, base + NvRegMSIXMap0);
2672 writel(0, base + NvRegMSIXMap1);
2673 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
2674 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
2675 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
2676 } else {
2677 /* Request irq for all interrupts */
2678 if ((!intr_test &&
2679 request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2680 (intr_test &&
2681 request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
2682 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2683 pci_disable_msix(np->pci_dev);
2684 np->msi_flags &= ~NV_MSI_X_ENABLED;
2685 goto out_err;
2686 }
2687
2688 /* map interrupts to vector 0 */
2689 writel(0, base + NvRegMSIXMap0);
2690 writel(0, base + NvRegMSIXMap1);
2691 }
2692 }
2693 }
2694 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
2695 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
2696 np->msi_flags |= NV_MSI_ENABLED;
2697 if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2698 (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
2699 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2700 pci_disable_msi(np->pci_dev);
2701 np->msi_flags &= ~NV_MSI_ENABLED;
2702 goto out_err;
2703 }
2704
2705 /* map interrupts to vector 0 */
2706 writel(0, base + NvRegMSIMap0);
2707 writel(0, base + NvRegMSIMap1);
2708 /* enable msi vector 0 */
2709 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
2710 }
2711 }
2712 if (ret != 0) {
2713 if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2714 (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0))
2715 goto out_err;
2716
2717 }
2718
2719 return 0;
2720 out_free_tx:
2721 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
2722 out_free_rx:
2723 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
2724 out_err:
2725 return 1;
2726 }
2727
2728 static void nv_free_irq(struct net_device *dev)
2729 {
2730 struct fe_priv *np = get_nvpriv(dev);
2731 int i;
2732
2733 if (np->msi_flags & NV_MSI_X_ENABLED) {
2734 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2735 free_irq(np->msi_x_entry[i].vector, dev);
2736 }
2737 pci_disable_msix(np->pci_dev);
2738 np->msi_flags &= ~NV_MSI_X_ENABLED;
2739 } else {
2740 free_irq(np->pci_dev->irq, dev);
2741 if (np->msi_flags & NV_MSI_ENABLED) {
2742 pci_disable_msi(np->pci_dev);
2743 np->msi_flags &= ~NV_MSI_ENABLED;
2744 }
2745 }
2746 }
2747
2748 static void nv_do_nic_poll(unsigned long data)
2749 {
2750 struct net_device *dev = (struct net_device *) data;
2751 struct fe_priv *np = netdev_priv(dev);
2752 u8 __iomem *base = get_hwbase(dev);
2753 u32 mask = 0;
2754
2755 /*
2756 * First disable irq(s) and then
2757 * reenable interrupts on the nic, we have to do this before calling
2758 * nv_nic_irq because that may decide to do otherwise
2759 */
2760
2761 if (!using_multi_irqs(dev)) {
2762 if (np->msi_flags & NV_MSI_X_ENABLED)
2763 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2764 else
2765 disable_irq_lockdep(dev->irq);
2766 mask = np->irqmask;
2767 } else {
2768 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2769 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2770 mask |= NVREG_IRQ_RX_ALL;
2771 }
2772 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2773 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2774 mask |= NVREG_IRQ_TX_ALL;
2775 }
2776 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2777 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2778 mask |= NVREG_IRQ_OTHER;
2779 }
2780 }
2781 np->nic_poll_irq = 0;
2782
2783 /* FIXME: Do we need synchronize_irq(dev->irq) here? */
2784
2785 writel(mask, base + NvRegIrqMask);
2786 pci_push(base);
2787
2788 if (!using_multi_irqs(dev)) {
2789 nv_nic_irq(0, dev, NULL);
2790 if (np->msi_flags & NV_MSI_X_ENABLED)
2791 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2792 else
2793 enable_irq_lockdep(dev->irq);
2794 } else {
2795 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2796 nv_nic_irq_rx(0, dev, NULL);
2797 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2798 }
2799 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2800 nv_nic_irq_tx(0, dev, NULL);
2801 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2802 }
2803 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2804 nv_nic_irq_other(0, dev, NULL);
2805 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2806 }
2807 }
2808 }
2809
2810 #ifdef CONFIG_NET_POLL_CONTROLLER
2811 static void nv_poll_controller(struct net_device *dev)
2812 {
2813 nv_do_nic_poll((unsigned long) dev);
2814 }
2815 #endif
2816
2817 static void nv_do_stats_poll(unsigned long data)
2818 {
2819 struct net_device *dev = (struct net_device *) data;
2820 struct fe_priv *np = netdev_priv(dev);
2821 u8 __iomem *base = get_hwbase(dev);
2822
2823 np->estats.tx_bytes += readl(base + NvRegTxCnt);
2824 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
2825 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
2826 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
2827 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
2828 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
2829 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
2830 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
2831 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
2832 np->estats.tx_deferral += readl(base + NvRegTxDef);
2833 np->estats.tx_packets += readl(base + NvRegTxFrame);
2834 np->estats.tx_pause += readl(base + NvRegTxPause);
2835 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
2836 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
2837 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
2838 np->estats.rx_runt += readl(base + NvRegRxRunt);
2839 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
2840 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
2841 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
2842 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
2843 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
2844 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
2845 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
2846 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
2847 np->estats.rx_bytes += readl(base + NvRegRxCnt);
2848 np->estats.rx_pause += readl(base + NvRegRxPause);
2849 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
2850 np->estats.rx_packets =
2851 np->estats.rx_unicast +
2852 np->estats.rx_multicast +
2853 np->estats.rx_broadcast;
2854 np->estats.rx_errors_total =
2855 np->estats.rx_crc_errors +
2856 np->estats.rx_over_errors +
2857 np->estats.rx_frame_error +
2858 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
2859 np->estats.rx_late_collision +
2860 np->estats.rx_runt +
2861 np->estats.rx_frame_too_long;
2862
2863 if (!np->in_shutdown)
2864 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
2865 }
2866
2867 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2868 {
2869 struct fe_priv *np = netdev_priv(dev);
2870 strcpy(info->driver, "forcedeth");
2871 strcpy(info->version, FORCEDETH_VERSION);
2872 strcpy(info->bus_info, pci_name(np->pci_dev));
2873 }
2874
2875 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2876 {
2877 struct fe_priv *np = netdev_priv(dev);
2878 wolinfo->supported = WAKE_MAGIC;
2879
2880 spin_lock_irq(&np->lock);
2881 if (np->wolenabled)
2882 wolinfo->wolopts = WAKE_MAGIC;
2883 spin_unlock_irq(&np->lock);
2884 }
2885
2886 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2887 {
2888 struct fe_priv *np = netdev_priv(dev);
2889 u8 __iomem *base = get_hwbase(dev);
2890 u32 flags = 0;
2891
2892 if (wolinfo->wolopts == 0) {
2893 np->wolenabled = 0;
2894 } else if (wolinfo->wolopts & WAKE_MAGIC) {
2895 np->wolenabled = 1;
2896 flags = NVREG_WAKEUPFLAGS_ENABLE;
2897 }
2898 if (netif_running(dev)) {
2899 spin_lock_irq(&np->lock);
2900 writel(flags, base + NvRegWakeUpFlags);
2901 spin_unlock_irq(&np->lock);
2902 }
2903 return 0;
2904 }
2905
2906 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2907 {
2908 struct fe_priv *np = netdev_priv(dev);
2909 int adv;
2910
2911 spin_lock_irq(&np->lock);
2912 ecmd->port = PORT_MII;
2913 if (!netif_running(dev)) {
2914 /* We do not track link speed / duplex setting if the
2915 * interface is disabled. Force a link check */
2916 if (nv_update_linkspeed(dev)) {
2917 if (!netif_carrier_ok(dev))
2918 netif_carrier_on(dev);
2919 } else {
2920 if (netif_carrier_ok(dev))
2921 netif_carrier_off(dev);
2922 }
2923 }
2924
2925 if (netif_carrier_ok(dev)) {
2926 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
2927 case NVREG_LINKSPEED_10:
2928 ecmd->speed = SPEED_10;
2929 break;
2930 case NVREG_LINKSPEED_100:
2931 ecmd->speed = SPEED_100;
2932 break;
2933 case NVREG_LINKSPEED_1000:
2934 ecmd->speed = SPEED_1000;
2935 break;
2936 }
2937 ecmd->duplex = DUPLEX_HALF;
2938 if (np->duplex)
2939 ecmd->duplex = DUPLEX_FULL;
2940 } else {
2941 ecmd->speed = -1;
2942 ecmd->duplex = -1;
2943 }
2944
2945 ecmd->autoneg = np->autoneg;
2946
2947 ecmd->advertising = ADVERTISED_MII;
2948 if (np->autoneg) {
2949 ecmd->advertising |= ADVERTISED_Autoneg;
2950 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2951 if (adv & ADVERTISE_10HALF)
2952 ecmd->advertising |= ADVERTISED_10baseT_Half;
2953 if (adv & ADVERTISE_10FULL)
2954 ecmd->advertising |= ADVERTISED_10baseT_Full;
2955 if (adv & ADVERTISE_100HALF)
2956 ecmd->advertising |= ADVERTISED_100baseT_Half;
2957 if (adv & ADVERTISE_100FULL)
2958 ecmd->advertising |= ADVERTISED_100baseT_Full;
2959 if (np->gigabit == PHY_GIGABIT) {
2960 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2961 if (adv & ADVERTISE_1000FULL)
2962 ecmd->advertising |= ADVERTISED_1000baseT_Full;
2963 }
2964 }
2965 ecmd->supported = (SUPPORTED_Autoneg |
2966 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2967 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2968 SUPPORTED_MII);
2969 if (np->gigabit == PHY_GIGABIT)
2970 ecmd->supported |= SUPPORTED_1000baseT_Full;
2971
2972 ecmd->phy_address = np->phyaddr;
2973 ecmd->transceiver = XCVR_EXTERNAL;
2974
2975 /* ignore maxtxpkt, maxrxpkt for now */
2976 spin_unlock_irq(&np->lock);
2977 return 0;
2978 }
2979
2980 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2981 {
2982 struct fe_priv *np = netdev_priv(dev);
2983
2984 if (ecmd->port != PORT_MII)
2985 return -EINVAL;
2986 if (ecmd->transceiver != XCVR_EXTERNAL)
2987 return -EINVAL;
2988 if (ecmd->phy_address != np->phyaddr) {
2989 /* TODO: support switching between multiple phys. Should be
2990 * trivial, but not enabled due to lack of test hardware. */
2991 return -EINVAL;
2992 }
2993 if (ecmd->autoneg == AUTONEG_ENABLE) {
2994 u32 mask;
2995
2996 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
2997 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
2998 if (np->gigabit == PHY_GIGABIT)
2999 mask |= ADVERTISED_1000baseT_Full;
3000
3001 if ((ecmd->advertising & mask) == 0)
3002 return -EINVAL;
3003
3004 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
3005 /* Note: autonegotiation disable, speed 1000 intentionally
3006 * forbidden - noone should need that. */
3007
3008 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
3009 return -EINVAL;
3010 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
3011 return -EINVAL;
3012 } else {
3013 return -EINVAL;
3014 }
3015
3016 netif_carrier_off(dev);
3017 if (netif_running(dev)) {
3018 nv_disable_irq(dev);
3019 netif_tx_lock_bh(dev);
3020 spin_lock(&np->lock);
3021 /* stop engines */
3022 nv_stop_rx(dev);
3023 nv_stop_tx(dev);
3024 spin_unlock(&np->lock);
3025 netif_tx_unlock_bh(dev);
3026 }
3027
3028 if (ecmd->autoneg == AUTONEG_ENABLE) {
3029 int adv, bmcr;
3030
3031 np->autoneg = 1;
3032
3033 /* advertise only what has been requested */
3034 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3035 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3036 if (ecmd->advertising & ADVERTISED_10baseT_Half)
3037 adv |= ADVERTISE_10HALF;
3038 if (ecmd->advertising & ADVERTISED_10baseT_Full)
3039 adv |= ADVERTISE_10FULL;
3040 if (ecmd->advertising & ADVERTISED_100baseT_Half)
3041 adv |= ADVERTISE_100HALF;
3042 if (ecmd->advertising & ADVERTISED_100baseT_Full)
3043 adv |= ADVERTISE_100FULL;
3044 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
3045 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3046 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3047 adv |= ADVERTISE_PAUSE_ASYM;
3048 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3049
3050 if (np->gigabit == PHY_GIGABIT) {
3051 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3052 adv &= ~ADVERTISE_1000FULL;
3053 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
3054 adv |= ADVERTISE_1000FULL;
3055 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3056 }
3057
3058 if (netif_running(dev))
3059 printk(KERN_INFO "%s: link down.\n", dev->name);
3060 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3061 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3062 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3063
3064 } else {
3065 int adv, bmcr;
3066
3067 np->autoneg = 0;
3068
3069 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3070 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3071 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
3072 adv |= ADVERTISE_10HALF;
3073 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
3074 adv |= ADVERTISE_10FULL;
3075 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
3076 adv |= ADVERTISE_100HALF;
3077 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
3078 adv |= ADVERTISE_100FULL;
3079 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3080 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
3081 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3082 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3083 }
3084 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
3085 adv |= ADVERTISE_PAUSE_ASYM;
3086 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3087 }
3088 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3089 np->fixed_mode = adv;
3090
3091 if (np->gigabit == PHY_GIGABIT) {
3092 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3093 adv &= ~ADVERTISE_1000FULL;
3094 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3095 }
3096
3097 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3098 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
3099 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
3100 bmcr |= BMCR_FULLDPLX;
3101 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
3102 bmcr |= BMCR_SPEED100;
3103 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3104 if (np->phy_oui == PHY_OUI_MARVELL) {
3105 /* reset the phy */
3106 if (phy_reset(dev)) {
3107 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3108 return -EINVAL;
3109 }
3110 } else if (netif_running(dev)) {
3111 /* Wait a bit and then reconfigure the nic. */
3112 udelay(10);
3113 nv_linkchange(dev);
3114 }
3115 }
3116
3117 if (netif_running(dev)) {
3118 nv_start_rx(dev);
3119 nv_start_tx(dev);
3120 nv_enable_irq(dev);
3121 }
3122
3123 return 0;
3124 }
3125
3126 #define FORCEDETH_REGS_VER 1
3127
3128 static int nv_get_regs_len(struct net_device *dev)
3129 {
3130 struct fe_priv *np = netdev_priv(dev);
3131 return np->register_size;
3132 }
3133
3134 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
3135 {
3136 struct fe_priv *np = netdev_priv(dev);
3137 u8 __iomem *base = get_hwbase(dev);
3138 u32 *rbuf = buf;
3139 int i;
3140
3141 regs->version = FORCEDETH_REGS_VER;
3142 spin_lock_irq(&np->lock);
3143 for (i = 0;i <= np->register_size/sizeof(u32); i++)
3144 rbuf[i] = readl(base + i*sizeof(u32));
3145 spin_unlock_irq(&np->lock);
3146 }
3147
3148 static int nv_nway_reset(struct net_device *dev)
3149 {
3150 struct fe_priv *np = netdev_priv(dev);
3151 int ret;
3152
3153 if (np->autoneg) {
3154 int bmcr;
3155
3156 netif_carrier_off(dev);
3157 if (netif_running(dev)) {
3158 nv_disable_irq(dev);
3159 netif_tx_lock_bh(dev);
3160 spin_lock(&np->lock);
3161 /* stop engines */
3162 nv_stop_rx(dev);
3163 nv_stop_tx(dev);
3164 spin_unlock(&np->lock);
3165 netif_tx_unlock_bh(dev);
3166 printk(KERN_INFO "%s: link down.\n", dev->name);
3167 }
3168
3169 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3170 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3171 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3172
3173 if (netif_running(dev)) {
3174 nv_start_rx(dev);
3175 nv_start_tx(dev);
3176 nv_enable_irq(dev);
3177 }
3178 ret = 0;
3179 } else {
3180 ret = -EINVAL;
3181 }
3182
3183 return ret;
3184 }
3185
3186 static int nv_set_tso(struct net_device *dev, u32 value)
3187 {
3188 struct fe_priv *np = netdev_priv(dev);
3189
3190 if ((np->driver_data & DEV_HAS_CHECKSUM))
3191 return ethtool_op_set_tso(dev, value);
3192 else
3193 return -EOPNOTSUPP;
3194 }
3195
3196 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3197 {
3198 struct fe_priv *np = netdev_priv(dev);
3199
3200 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3201 ring->rx_mini_max_pending = 0;
3202 ring->rx_jumbo_max_pending = 0;
3203 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3204
3205 ring->rx_pending = np->rx_ring_size;
3206 ring->rx_mini_pending = 0;
3207 ring->rx_jumbo_pending = 0;
3208 ring->tx_pending = np->tx_ring_size;
3209 }
3210
3211 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3212 {
3213 struct fe_priv *np = netdev_priv(dev);
3214 u8 __iomem *base = get_hwbase(dev);
3215 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff, *rx_dma, *tx_dma, *tx_dma_len;
3216 dma_addr_t ring_addr;
3217
3218 if (ring->rx_pending < RX_RING_MIN ||
3219 ring->tx_pending < TX_RING_MIN ||
3220 ring->rx_mini_pending != 0 ||
3221 ring->rx_jumbo_pending != 0 ||
3222 (np->desc_ver == DESC_VER_1 &&
3223 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
3224 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
3225 (np->desc_ver != DESC_VER_1 &&
3226 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
3227 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
3228 return -EINVAL;
3229 }
3230
3231 /* allocate new rings */
3232 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3233 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3234 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3235 &ring_addr);
3236 } else {
3237 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3238 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3239 &ring_addr);
3240 }
3241 rx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->rx_pending, GFP_KERNEL);
3242 rx_dma = kmalloc(sizeof(dma_addr_t) * ring->rx_pending, GFP_KERNEL);
3243 tx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->tx_pending, GFP_KERNEL);
3244 tx_dma = kmalloc(sizeof(dma_addr_t) * ring->tx_pending, GFP_KERNEL);
3245 tx_dma_len = kmalloc(sizeof(unsigned int) * ring->tx_pending, GFP_KERNEL);
3246 if (!rxtx_ring || !rx_skbuff || !rx_dma || !tx_skbuff || !tx_dma || !tx_dma_len) {
3247 /* fall back to old rings */
3248 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3249 if(rxtx_ring)
3250 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3251 rxtx_ring, ring_addr);
3252 } else {
3253 if (rxtx_ring)
3254 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3255 rxtx_ring, ring_addr);
3256 }
3257 if (rx_skbuff)
3258 kfree(rx_skbuff);
3259 if (rx_dma)
3260 kfree(rx_dma);
3261 if (tx_skbuff)
3262 kfree(tx_skbuff);
3263 if (tx_dma)
3264 kfree(tx_dma);
3265 if (tx_dma_len)
3266 kfree(tx_dma_len);
3267 goto exit;
3268 }
3269
3270 if (netif_running(dev)) {
3271 nv_disable_irq(dev);
3272 netif_tx_lock_bh(dev);
3273 spin_lock(&np->lock);
3274 /* stop engines */
3275 nv_stop_rx(dev);
3276 nv_stop_tx(dev);
3277 nv_txrx_reset(dev);
3278 /* drain queues */
3279 nv_drain_rx(dev);
3280 nv_drain_tx(dev);
3281 /* delete queues */
3282 free_rings(dev);
3283 }
3284
3285 /* set new values */
3286 np->rx_ring_size = ring->rx_pending;
3287 np->tx_ring_size = ring->tx_pending;
3288 np->tx_limit_stop = ring->tx_pending - TX_LIMIT_DIFFERENCE;
3289 np->tx_limit_start = ring->tx_pending - TX_LIMIT_DIFFERENCE - 1;
3290 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3291 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
3292 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
3293 } else {
3294 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
3295 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
3296 }
3297 np->rx_skbuff = (struct sk_buff**)rx_skbuff;
3298 np->rx_dma = (dma_addr_t*)rx_dma;
3299 np->tx_skbuff = (struct sk_buff**)tx_skbuff;
3300 np->tx_dma = (dma_addr_t*)tx_dma;
3301 np->tx_dma_len = (unsigned int*)tx_dma_len;
3302 np->ring_addr = ring_addr;
3303
3304 memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
3305 memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
3306 memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
3307 memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
3308 memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
3309
3310 if (netif_running(dev)) {
3311 /* reinit driver view of the queues */
3312 set_bufsize(dev);
3313 if (nv_init_ring(dev)) {
3314 if (!np->in_shutdown)
3315 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3316 }
3317
3318 /* reinit nic view of the queues */
3319 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3320 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3321 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3322 base + NvRegRingSizes);
3323 pci_push(base);
3324 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3325 pci_push(base);
3326
3327 /* restart engines */
3328 nv_start_rx(dev);
3329 nv_start_tx(dev);
3330 spin_unlock(&np->lock);
3331 netif_tx_unlock_bh(dev);
3332 nv_enable_irq(dev);
3333 }
3334 return 0;
3335 exit:
3336 return -ENOMEM;
3337 }
3338
3339 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3340 {
3341 struct fe_priv *np = netdev_priv(dev);
3342
3343 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
3344 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
3345 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
3346 }
3347
3348 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3349 {
3350 struct fe_priv *np = netdev_priv(dev);
3351 int adv, bmcr;
3352
3353 if ((!np->autoneg && np->duplex == 0) ||
3354 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
3355 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
3356 dev->name);
3357 return -EINVAL;
3358 }
3359 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
3360 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
3361 return -EINVAL;
3362 }
3363
3364 netif_carrier_off(dev);
3365 if (netif_running(dev)) {
3366 nv_disable_irq(dev);
3367 netif_tx_lock_bh(dev);
3368 spin_lock(&np->lock);
3369 /* stop engines */
3370 nv_stop_rx(dev);
3371 nv_stop_tx(dev);
3372 spin_unlock(&np->lock);
3373 netif_tx_unlock_bh(dev);
3374 }
3375
3376 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
3377 if (pause->rx_pause)
3378 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
3379 if (pause->tx_pause)
3380 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
3381
3382 if (np->autoneg && pause->autoneg) {
3383 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
3384
3385 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3386 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3387 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
3388 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3389 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3390 adv |= ADVERTISE_PAUSE_ASYM;
3391 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3392
3393 if (netif_running(dev))
3394 printk(KERN_INFO "%s: link down.\n", dev->name);
3395 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3396 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3397 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3398 } else {
3399 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3400 if (pause->rx_pause)
3401 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3402 if (pause->tx_pause)
3403 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3404
3405 if (!netif_running(dev))
3406 nv_update_linkspeed(dev);
3407 else
3408 nv_update_pause(dev, np->pause_flags);
3409 }
3410
3411 if (netif_running(dev)) {
3412 nv_start_rx(dev);
3413 nv_start_tx(dev);
3414 nv_enable_irq(dev);
3415 }
3416 return 0;
3417 }
3418
3419 static u32 nv_get_rx_csum(struct net_device *dev)
3420 {
3421 struct fe_priv *np = netdev_priv(dev);
3422 return (np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) != 0;
3423 }
3424
3425 static int nv_set_rx_csum(struct net_device *dev, u32 data)
3426 {
3427 struct fe_priv *np = netdev_priv(dev);
3428 u8 __iomem *base = get_hwbase(dev);
3429 int retcode = 0;
3430
3431 if (np->driver_data & DEV_HAS_CHECKSUM) {
3432
3433 if (((np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && data) ||
3434 (!(np->txrxctl_bits & NVREG_TXRXCTL_RXCHECK) && !data)) {
3435 /* already set or unset */
3436 return 0;
3437 }
3438
3439 if (data) {
3440 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
3441 } else if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE)) {
3442 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
3443 } else {
3444 printk(KERN_INFO "Can not disable rx checksum if vlan is enabled\n");
3445 return -EINVAL;
3446 }
3447
3448 if (netif_running(dev)) {
3449 spin_lock_irq(&np->lock);
3450 writel(np->txrxctl_bits, base + NvRegTxRxControl);
3451 spin_unlock_irq(&np->lock);
3452 }
3453 } else {
3454 return -EINVAL;
3455 }
3456
3457 return retcode;
3458 }
3459
3460 static int nv_set_tx_csum(struct net_device *dev, u32 data)
3461 {
3462 struct fe_priv *np = netdev_priv(dev);
3463
3464 if (np->driver_data & DEV_HAS_CHECKSUM)
3465 return ethtool_op_set_tx_hw_csum(dev, data);
3466 else
3467 return -EOPNOTSUPP;
3468 }
3469
3470 static int nv_set_sg(struct net_device *dev, u32 data)
3471 {
3472 struct fe_priv *np = netdev_priv(dev);
3473
3474 if (np->driver_data & DEV_HAS_CHECKSUM)
3475 return ethtool_op_set_sg(dev, data);
3476 else
3477 return -EOPNOTSUPP;
3478 }
3479
3480 static int nv_get_stats_count(struct net_device *dev)
3481 {
3482 struct fe_priv *np = netdev_priv(dev);
3483
3484 if (np->driver_data & DEV_HAS_STATISTICS)
3485 return (sizeof(struct nv_ethtool_stats)/sizeof(u64));
3486 else
3487 return 0;
3488 }
3489
3490 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
3491 {
3492 struct fe_priv *np = netdev_priv(dev);
3493
3494 /* update stats */
3495 nv_do_stats_poll((unsigned long)dev);
3496
3497 memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
3498 }
3499
3500 static int nv_self_test_count(struct net_device *dev)
3501 {
3502 struct fe_priv *np = netdev_priv(dev);
3503
3504 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
3505 return NV_TEST_COUNT_EXTENDED;
3506 else
3507 return NV_TEST_COUNT_BASE;
3508 }
3509
3510 static int nv_link_test(struct net_device *dev)
3511 {
3512 struct fe_priv *np = netdev_priv(dev);
3513 int mii_status;
3514
3515 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3516 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3517
3518 /* check phy link status */
3519 if (!(mii_status & BMSR_LSTATUS))
3520 return 0;
3521 else
3522 return 1;
3523 }
3524
3525 static int nv_register_test(struct net_device *dev)
3526 {
3527 u8 __iomem *base = get_hwbase(dev);
3528 int i = 0;
3529 u32 orig_read, new_read;
3530
3531 do {
3532 orig_read = readl(base + nv_registers_test[i].reg);
3533
3534 /* xor with mask to toggle bits */
3535 orig_read ^= nv_registers_test[i].mask;
3536
3537 writel(orig_read, base + nv_registers_test[i].reg);
3538
3539 new_read = readl(base + nv_registers_test[i].reg);
3540
3541 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
3542 return 0;
3543
3544 /* restore original value */
3545 orig_read ^= nv_registers_test[i].mask;
3546 writel(orig_read, base + nv_registers_test[i].reg);
3547
3548 } while (nv_registers_test[++i].reg != 0);
3549
3550 return 1;
3551 }
3552
3553 static int nv_interrupt_test(struct net_device *dev)
3554 {
3555 struct fe_priv *np = netdev_priv(dev);
3556 u8 __iomem *base = get_hwbase(dev);
3557 int ret = 1;
3558 int testcnt;
3559 u32 save_msi_flags, save_poll_interval = 0;
3560
3561 if (netif_running(dev)) {
3562 /* free current irq */
3563 nv_free_irq(dev);
3564 save_poll_interval = readl(base+NvRegPollingInterval);
3565 }
3566
3567 /* flag to test interrupt handler */
3568 np->intr_test = 0;
3569
3570 /* setup test irq */
3571 save_msi_flags = np->msi_flags;
3572 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
3573 np->msi_flags |= 0x001; /* setup 1 vector */
3574 if (nv_request_irq(dev, 1))
3575 return 0;
3576
3577 /* setup timer interrupt */
3578 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
3579 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3580
3581 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
3582
3583 /* wait for at least one interrupt */
3584 msleep(100);
3585
3586 spin_lock_irq(&np->lock);
3587
3588 /* flag should be set within ISR */
3589 testcnt = np->intr_test;
3590 if (!testcnt)
3591 ret = 2;
3592
3593 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
3594 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3595 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3596 else
3597 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3598
3599 spin_unlock_irq(&np->lock);
3600
3601 nv_free_irq(dev);
3602
3603 np->msi_flags = save_msi_flags;
3604
3605 if (netif_running(dev)) {
3606 writel(save_poll_interval, base + NvRegPollingInterval);
3607 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3608 /* restore original irq */
3609 if (nv_request_irq(dev, 0))
3610 return 0;
3611 }
3612
3613 return ret;
3614 }
3615
3616 static int nv_loopback_test(struct net_device *dev)
3617 {
3618 struct fe_priv *np = netdev_priv(dev);
3619 u8 __iomem *base = get_hwbase(dev);
3620 struct sk_buff *tx_skb, *rx_skb;
3621 dma_addr_t test_dma_addr;
3622 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
3623 u32 Flags;
3624 int len, i, pkt_len;
3625 u8 *pkt_data;
3626 u32 filter_flags = 0;
3627 u32 misc1_flags = 0;
3628 int ret = 1;
3629
3630 if (netif_running(dev)) {
3631 nv_disable_irq(dev);
3632 filter_flags = readl(base + NvRegPacketFilterFlags);
3633 misc1_flags = readl(base + NvRegMisc1);
3634 } else {
3635 nv_txrx_reset(dev);
3636 }
3637
3638 /* reinit driver view of the rx queue */
3639 set_bufsize(dev);
3640 nv_init_ring(dev);
3641
3642 /* setup hardware for loopback */
3643 writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
3644 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
3645
3646 /* reinit nic view of the rx queue */
3647 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3648 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3649 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3650 base + NvRegRingSizes);
3651 pci_push(base);
3652
3653 /* restart rx engine */
3654 nv_start_rx(dev);
3655 nv_start_tx(dev);
3656
3657 /* setup packet for tx */
3658 pkt_len = ETH_DATA_LEN;
3659 tx_skb = dev_alloc_skb(pkt_len);
3660 pkt_data = skb_put(tx_skb, pkt_len);
3661 for (i = 0; i < pkt_len; i++)
3662 pkt_data[i] = (u8)(i & 0xff);
3663 test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
3664 tx_skb->end-tx_skb->data, PCI_DMA_FROMDEVICE);
3665
3666 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3667 np->tx_ring.orig[0].PacketBuffer = cpu_to_le32(test_dma_addr);
3668 np->tx_ring.orig[0].FlagLen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
3669 } else {
3670 np->tx_ring.ex[0].PacketBufferHigh = cpu_to_le64(test_dma_addr) >> 32;
3671 np->tx_ring.ex[0].PacketBufferLow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
3672 np->tx_ring.ex[0].FlagLen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
3673 }
3674 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3675 pci_push(get_hwbase(dev));
3676
3677 msleep(500);
3678
3679 /* check for rx of the packet */
3680 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3681 Flags = le32_to_cpu(np->rx_ring.orig[0].FlagLen);
3682 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
3683
3684 } else {
3685 Flags = le32_to_cpu(np->rx_ring.ex[0].FlagLen);
3686 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
3687 }
3688
3689 if (Flags & NV_RX_AVAIL) {
3690 ret = 0;
3691 } else if (np->desc_ver == DESC_VER_1) {
3692 if (Flags & NV_RX_ERROR)
3693 ret = 0;
3694 } else {
3695 if (Flags & NV_RX2_ERROR) {
3696 ret = 0;
3697 }
3698 }
3699
3700 if (ret) {
3701 if (len != pkt_len) {
3702 ret = 0;
3703 dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
3704 dev->name, len, pkt_len);
3705 } else {
3706 rx_skb = np->rx_skbuff[0];
3707 for (i = 0; i < pkt_len; i++) {
3708 if (rx_skb->data[i] != (u8)(i & 0xff)) {
3709 ret = 0;
3710 dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
3711 dev->name, i);
3712 break;
3713 }
3714 }
3715 }
3716 } else {
3717 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
3718 }
3719
3720 pci_unmap_page(np->pci_dev, test_dma_addr,
3721 tx_skb->end-tx_skb->data,
3722 PCI_DMA_TODEVICE);
3723 dev_kfree_skb_any(tx_skb);
3724
3725 /* stop engines */
3726 nv_stop_rx(dev);
3727 nv_stop_tx(dev);
3728 nv_txrx_reset(dev);
3729 /* drain rx queue */
3730 nv_drain_rx(dev);
3731 nv_drain_tx(dev);
3732
3733 if (netif_running(dev)) {
3734 writel(misc1_flags, base + NvRegMisc1);
3735 writel(filter_flags, base + NvRegPacketFilterFlags);
3736 nv_enable_irq(dev);
3737 }
3738
3739 return ret;
3740 }
3741
3742 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
3743 {
3744 struct fe_priv *np = netdev_priv(dev);
3745 u8 __iomem *base = get_hwbase(dev);
3746 int result;
3747 memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
3748
3749 if (!nv_link_test(dev)) {
3750 test->flags |= ETH_TEST_FL_FAILED;
3751 buffer[0] = 1;
3752 }
3753
3754 if (test->flags & ETH_TEST_FL_OFFLINE) {
3755 if (netif_running(dev)) {
3756 netif_stop_queue(dev);
3757 netif_tx_lock_bh(dev);
3758 spin_lock_irq(&np->lock);
3759 nv_disable_hw_interrupts(dev, np->irqmask);
3760 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3761 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3762 } else {
3763 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3764 }
3765 /* stop engines */
3766 nv_stop_rx(dev);
3767 nv_stop_tx(dev);
3768 nv_txrx_reset(dev);
3769 /* drain rx queue */
3770 nv_drain_rx(dev);
3771 nv_drain_tx(dev);
3772 spin_unlock_irq(&np->lock);
3773 netif_tx_unlock_bh(dev);
3774 }
3775
3776 if (!nv_register_test(dev)) {
3777 test->flags |= ETH_TEST_FL_FAILED;
3778 buffer[1] = 1;
3779 }
3780
3781 result = nv_interrupt_test(dev);
3782 if (result != 1) {
3783 test->flags |= ETH_TEST_FL_FAILED;
3784 buffer[2] = 1;
3785 }
3786 if (result == 0) {
3787 /* bail out */
3788 return;
3789 }
3790
3791 if (!nv_loopback_test(dev)) {
3792 test->flags |= ETH_TEST_FL_FAILED;
3793 buffer[3] = 1;
3794 }
3795
3796 if (netif_running(dev)) {
3797 /* reinit driver view of the rx queue */
3798 set_bufsize(dev);
3799 if (nv_init_ring(dev)) {
3800 if (!np->in_shutdown)
3801 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3802 }
3803 /* reinit nic view of the rx queue */
3804 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3805 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3806 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3807 base + NvRegRingSizes);
3808 pci_push(base);
3809 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3810 pci_push(base);
3811 /* restart rx engine */
3812 nv_start_rx(dev);
3813 nv_start_tx(dev);
3814 netif_start_queue(dev);
3815 nv_enable_hw_interrupts(dev, np->irqmask);
3816 }
3817 }
3818 }
3819
3820 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
3821 {
3822 switch (stringset) {
3823 case ETH_SS_STATS:
3824 memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
3825 break;
3826 case ETH_SS_TEST:
3827 memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
3828 break;
3829 }
3830 }
3831
3832 static struct ethtool_ops ops = {
3833 .get_drvinfo = nv_get_drvinfo,
3834 .get_link = ethtool_op_get_link,
3835 .get_wol = nv_get_wol,
3836 .set_wol = nv_set_wol,
3837 .get_settings = nv_get_settings,
3838 .set_settings = nv_set_settings,
3839 .get_regs_len = nv_get_regs_len,
3840 .get_regs = nv_get_regs,
3841 .nway_reset = nv_nway_reset,
3842 .get_perm_addr = ethtool_op_get_perm_addr,
3843 .get_tso = ethtool_op_get_tso,
3844 .set_tso = nv_set_tso,
3845 .get_ringparam = nv_get_ringparam,
3846 .set_ringparam = nv_set_ringparam,
3847 .get_pauseparam = nv_get_pauseparam,
3848 .set_pauseparam = nv_set_pauseparam,
3849 .get_rx_csum = nv_get_rx_csum,
3850 .set_rx_csum = nv_set_rx_csum,
3851 .get_tx_csum = ethtool_op_get_tx_csum,
3852 .set_tx_csum = nv_set_tx_csum,
3853 .get_sg = ethtool_op_get_sg,
3854 .set_sg = nv_set_sg,
3855 .get_strings = nv_get_strings,
3856 .get_stats_count = nv_get_stats_count,
3857 .get_ethtool_stats = nv_get_ethtool_stats,
3858 .self_test_count = nv_self_test_count,
3859 .self_test = nv_self_test,
3860 };
3861
3862 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
3863 {
3864 struct fe_priv *np = get_nvpriv(dev);
3865
3866 spin_lock_irq(&np->lock);
3867
3868 /* save vlan group */
3869 np->vlangrp = grp;
3870
3871 if (grp) {
3872 /* enable vlan on MAC */
3873 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
3874 } else {
3875 /* disable vlan on MAC */
3876 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
3877 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
3878 }
3879
3880 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3881
3882 spin_unlock_irq(&np->lock);
3883 };
3884
3885 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
3886 {
3887 /* nothing to do */
3888 };
3889
3890 static int nv_open(struct net_device *dev)
3891 {
3892 struct fe_priv *np = netdev_priv(dev);
3893 u8 __iomem *base = get_hwbase(dev);
3894 int ret = 1;
3895 int oom, i;
3896
3897 dprintk(KERN_DEBUG "nv_open: begin\n");
3898
3899 /* 1) erase previous misconfiguration */
3900 if (np->driver_data & DEV_HAS_POWER_CNTRL)
3901 nv_mac_reset(dev);
3902 /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
3903 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
3904 writel(0, base + NvRegMulticastAddrB);
3905 writel(0, base + NvRegMulticastMaskA);
3906 writel(0, base + NvRegMulticastMaskB);
3907 writel(0, base + NvRegPacketFilterFlags);
3908
3909 writel(0, base + NvRegTransmitterControl);
3910 writel(0, base + NvRegReceiverControl);
3911
3912 writel(0, base + NvRegAdapterControl);
3913
3914 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
3915 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
3916
3917 /* 2) initialize descriptor rings */
3918 set_bufsize(dev);
3919 oom = nv_init_ring(dev);
3920
3921 writel(0, base + NvRegLinkSpeed);
3922 writel(0, base + NvRegUnknownTransmitterReg);
3923 nv_txrx_reset(dev);
3924 writel(0, base + NvRegUnknownSetupReg6);
3925
3926 np->in_shutdown = 0;
3927
3928 /* 3) set mac address */
3929 nv_copy_mac_to_hw(dev);
3930
3931 /* 4) give hw rings */
3932 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3933 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3934 base + NvRegRingSizes);
3935
3936 /* 5) continue setup */
3937 writel(np->linkspeed, base + NvRegLinkSpeed);
3938 if (np->desc_ver == DESC_VER_1)
3939 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
3940 else
3941 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
3942 writel(np->txrxctl_bits, base + NvRegTxRxControl);
3943 writel(np->vlanctl_bits, base + NvRegVlanControl);
3944 pci_push(base);
3945 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
3946 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
3947 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
3948 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
3949
3950 writel(0, base + NvRegUnknownSetupReg4);
3951 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3952 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
3953
3954 /* 6) continue setup */
3955 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
3956 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
3957 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
3958 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3959
3960 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
3961 get_random_bytes(&i, sizeof(i));
3962 writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
3963 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
3964 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
3965 if (poll_interval == -1) {
3966 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
3967 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
3968 else
3969 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
3970 }
3971 else
3972 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
3973 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3974 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
3975 base + NvRegAdapterControl);
3976 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
3977 writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
3978 if (np->wolenabled)
3979 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
3980
3981 i = readl(base + NvRegPowerState);
3982 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
3983 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
3984
3985 pci_push(base);
3986 udelay(10);
3987 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
3988
3989 nv_disable_hw_interrupts(dev, np->irqmask);
3990 pci_push(base);
3991 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
3992 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3993 pci_push(base);
3994
3995 if (nv_request_irq(dev, 0)) {
3996 goto out_drain;
3997 }
3998
3999 /* ask for interrupts */
4000 nv_enable_hw_interrupts(dev, np->irqmask);
4001
4002 spin_lock_irq(&np->lock);
4003 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4004 writel(0, base + NvRegMulticastAddrB);
4005 writel(0, base + NvRegMulticastMaskA);
4006 writel(0, base + NvRegMulticastMaskB);
4007 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
4008 /* One manual link speed update: Interrupts are enabled, future link
4009 * speed changes cause interrupts and are handled by nv_link_irq().
4010 */
4011 {
4012 u32 miistat;
4013 miistat = readl(base + NvRegMIIStatus);
4014 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
4015 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
4016 }
4017 /* set linkspeed to invalid value, thus force nv_update_linkspeed
4018 * to init hw */
4019 np->linkspeed = 0;
4020 ret = nv_update_linkspeed(dev);
4021 nv_start_rx(dev);
4022 nv_start_tx(dev);
4023 netif_start_queue(dev);
4024 if (ret) {
4025 netif_carrier_on(dev);
4026 } else {
4027 printk("%s: no link during initialization.\n", dev->name);
4028 netif_carrier_off(dev);
4029 }
4030 if (oom)
4031 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4032
4033 /* start statistics timer */
4034 if (np->driver_data & DEV_HAS_STATISTICS)
4035 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
4036
4037 spin_unlock_irq(&np->lock);
4038
4039 return 0;
4040 out_drain:
4041 drain_ring(dev);
4042 return ret;
4043 }
4044
4045 static int nv_close(struct net_device *dev)
4046 {
4047 struct fe_priv *np = netdev_priv(dev);
4048 u8 __iomem *base;
4049
4050 spin_lock_irq(&np->lock);
4051 np->in_shutdown = 1;
4052 spin_unlock_irq(&np->lock);
4053 synchronize_irq(dev->irq);
4054
4055 del_timer_sync(&np->oom_kick);
4056 del_timer_sync(&np->nic_poll);
4057 del_timer_sync(&np->stats_poll);
4058
4059 netif_stop_queue(dev);
4060 spin_lock_irq(&np->lock);
4061 nv_stop_tx(dev);
4062 nv_stop_rx(dev);
4063 nv_txrx_reset(dev);
4064
4065 /* disable interrupts on the nic or we will lock up */
4066 base = get_hwbase(dev);
4067 nv_disable_hw_interrupts(dev, np->irqmask);
4068 pci_push(base);
4069 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
4070
4071 spin_unlock_irq(&np->lock);
4072
4073 nv_free_irq(dev);
4074
4075 drain_ring(dev);
4076
4077 if (np->wolenabled)
4078 nv_start_rx(dev);
4079
4080 /* special op: write back the misordered MAC address - otherwise
4081 * the next nv_probe would see a wrong address.
4082 */
4083 writel(np->orig_mac[0], base + NvRegMacAddrA);
4084 writel(np->orig_mac[1], base + NvRegMacAddrB);
4085
4086 /* FIXME: power down nic */
4087
4088 return 0;
4089 }
4090
4091 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
4092 {
4093 struct net_device *dev;
4094 struct fe_priv *np;
4095 unsigned long addr;
4096 u8 __iomem *base;
4097 int err, i;
4098 u32 powerstate;
4099
4100 dev = alloc_etherdev(sizeof(struct fe_priv));
4101 err = -ENOMEM;
4102 if (!dev)
4103 goto out;
4104
4105 np = netdev_priv(dev);
4106 np->pci_dev = pci_dev;
4107 spin_lock_init(&np->lock);
4108 SET_MODULE_OWNER(dev);
4109 SET_NETDEV_DEV(dev, &pci_dev->dev);
4110
4111 init_timer(&np->oom_kick);
4112 np->oom_kick.data = (unsigned long) dev;
4113 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
4114 init_timer(&np->nic_poll);
4115 np->nic_poll.data = (unsigned long) dev;
4116 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
4117 init_timer(&np->stats_poll);
4118 np->stats_poll.data = (unsigned long) dev;
4119 np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
4120
4121 err = pci_enable_device(pci_dev);
4122 if (err) {
4123 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
4124 err, pci_name(pci_dev));
4125 goto out_free;
4126 }
4127
4128 pci_set_master(pci_dev);
4129
4130 err = pci_request_regions(pci_dev, DRV_NAME);
4131 if (err < 0)
4132 goto out_disable;
4133
4134 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS))
4135 np->register_size = NV_PCI_REGSZ_VER2;
4136 else
4137 np->register_size = NV_PCI_REGSZ_VER1;
4138
4139 err = -EINVAL;
4140 addr = 0;
4141 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4142 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
4143 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
4144 pci_resource_len(pci_dev, i),
4145 pci_resource_flags(pci_dev, i));
4146 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
4147 pci_resource_len(pci_dev, i) >= np->register_size) {
4148 addr = pci_resource_start(pci_dev, i);
4149 break;
4150 }
4151 }
4152 if (i == DEVICE_COUNT_RESOURCE) {
4153 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
4154 pci_name(pci_dev));
4155 goto out_relreg;
4156 }
4157
4158 /* copy of driver data */
4159 np->driver_data = id->driver_data;
4160
4161 /* handle different descriptor versions */
4162 if (id->driver_data & DEV_HAS_HIGH_DMA) {
4163 /* packet format 3: supports 40-bit addressing */
4164 np->desc_ver = DESC_VER_3;
4165 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
4166 if (dma_64bit) {
4167 if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4168 printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
4169 pci_name(pci_dev));
4170 } else {
4171 dev->features |= NETIF_F_HIGHDMA;
4172 printk(KERN_INFO "forcedeth: using HIGHDMA\n");
4173 }
4174 if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4175 printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
4176 pci_name(pci_dev));
4177 }
4178 }
4179 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
4180 /* packet format 2: supports jumbo frames */
4181 np->desc_ver = DESC_VER_2;
4182 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
4183 } else {
4184 /* original packet format */
4185 np->desc_ver = DESC_VER_1;
4186 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
4187 }
4188
4189 np->pkt_limit = NV_PKTLIMIT_1;
4190 if (id->driver_data & DEV_HAS_LARGEDESC)
4191 np->pkt_limit = NV_PKTLIMIT_2;
4192
4193 if (id->driver_data & DEV_HAS_CHECKSUM) {
4194 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4195 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
4196 #ifdef NETIF_F_TSO
4197 dev->features |= NETIF_F_TSO;
4198 #endif
4199 }
4200
4201 np->vlanctl_bits = 0;
4202 if (id->driver_data & DEV_HAS_VLAN) {
4203 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
4204 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
4205 dev->vlan_rx_register = nv_vlan_rx_register;
4206 dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
4207 }
4208
4209 np->msi_flags = 0;
4210 if ((id->driver_data & DEV_HAS_MSI) && msi) {
4211 np->msi_flags |= NV_MSI_CAPABLE;
4212 }
4213 if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
4214 np->msi_flags |= NV_MSI_X_CAPABLE;
4215 }
4216
4217 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
4218 if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
4219 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
4220 }
4221
4222
4223 err = -ENOMEM;
4224 np->base = ioremap(addr, np->register_size);
4225 if (!np->base)
4226 goto out_relreg;
4227 dev->base_addr = (unsigned long)np->base;
4228
4229 dev->irq = pci_dev->irq;
4230
4231 np->rx_ring_size = RX_RING_DEFAULT;
4232 np->tx_ring_size = TX_RING_DEFAULT;
4233 np->tx_limit_stop = np->tx_ring_size - TX_LIMIT_DIFFERENCE;
4234 np->tx_limit_start = np->tx_ring_size - TX_LIMIT_DIFFERENCE - 1;
4235
4236 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4237 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
4238 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
4239 &np->ring_addr);
4240 if (!np->rx_ring.orig)
4241 goto out_unmap;
4242 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4243 } else {
4244 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
4245 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
4246 &np->ring_addr);
4247 if (!np->rx_ring.ex)
4248 goto out_unmap;
4249 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4250 }
4251 np->rx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->rx_ring_size, GFP_KERNEL);
4252 np->rx_dma = kmalloc(sizeof(dma_addr_t) * np->rx_ring_size, GFP_KERNEL);
4253 np->tx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->tx_ring_size, GFP_KERNEL);
4254 np->tx_dma = kmalloc(sizeof(dma_addr_t) * np->tx_ring_size, GFP_KERNEL);
4255 np->tx_dma_len = kmalloc(sizeof(unsigned int) * np->tx_ring_size, GFP_KERNEL);
4256 if (!np->rx_skbuff || !np->rx_dma || !np->tx_skbuff || !np->tx_dma || !np->tx_dma_len)
4257 goto out_freering;
4258 memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
4259 memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
4260 memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
4261 memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
4262 memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
4263
4264 dev->open = nv_open;
4265 dev->stop = nv_close;
4266 dev->hard_start_xmit = nv_start_xmit;
4267 dev->get_stats = nv_get_stats;
4268 dev->change_mtu = nv_change_mtu;
4269 dev->set_mac_address = nv_set_mac_address;
4270 dev->set_multicast_list = nv_set_multicast;
4271 #ifdef CONFIG_NET_POLL_CONTROLLER
4272 dev->poll_controller = nv_poll_controller;
4273 #endif
4274 SET_ETHTOOL_OPS(dev, &ops);
4275 dev->tx_timeout = nv_tx_timeout;
4276 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
4277
4278 pci_set_drvdata(pci_dev, dev);
4279
4280 /* read the mac address */
4281 base = get_hwbase(dev);
4282 np->orig_mac[0] = readl(base + NvRegMacAddrA);
4283 np->orig_mac[1] = readl(base + NvRegMacAddrB);
4284
4285 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
4286 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
4287 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
4288 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
4289 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
4290 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
4291 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
4292
4293 if (!is_valid_ether_addr(dev->perm_addr)) {
4294 /*
4295 * Bad mac address. At least one bios sets the mac address
4296 * to 01:23:45:67:89:ab
4297 */
4298 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
4299 pci_name(pci_dev),
4300 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
4301 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
4302 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
4303 dev->dev_addr[0] = 0x00;
4304 dev->dev_addr[1] = 0x00;
4305 dev->dev_addr[2] = 0x6c;
4306 get_random_bytes(&dev->dev_addr[3], 3);
4307 }
4308
4309 dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
4310 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
4311 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
4312
4313 /* disable WOL */
4314 writel(0, base + NvRegWakeUpFlags);
4315 np->wolenabled = 0;
4316
4317 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
4318 u8 revision_id;
4319 pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
4320
4321 /* take phy and nic out of low power mode */
4322 powerstate = readl(base + NvRegPowerState2);
4323 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
4324 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
4325 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
4326 revision_id >= 0xA3)
4327 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
4328 writel(powerstate, base + NvRegPowerState2);
4329 }
4330
4331 if (np->desc_ver == DESC_VER_1) {
4332 np->tx_flags = NV_TX_VALID;
4333 } else {
4334 np->tx_flags = NV_TX2_VALID;
4335 }
4336 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
4337 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
4338 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
4339 np->msi_flags |= 0x0003;
4340 } else {
4341 np->irqmask = NVREG_IRQMASK_CPU;
4342 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
4343 np->msi_flags |= 0x0001;
4344 }
4345
4346 if (id->driver_data & DEV_NEED_TIMERIRQ)
4347 np->irqmask |= NVREG_IRQ_TIMER;
4348 if (id->driver_data & DEV_NEED_LINKTIMER) {
4349 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
4350 np->need_linktimer = 1;
4351 np->link_timeout = jiffies + LINK_TIMEOUT;
4352 } else {
4353 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
4354 np->need_linktimer = 0;
4355 }
4356
4357 /* find a suitable phy */
4358 for (i = 1; i <= 32; i++) {
4359 int id1, id2;
4360 int phyaddr = i & 0x1F;
4361
4362 spin_lock_irq(&np->lock);
4363 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
4364 spin_unlock_irq(&np->lock);
4365 if (id1 < 0 || id1 == 0xffff)
4366 continue;
4367 spin_lock_irq(&np->lock);
4368 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
4369 spin_unlock_irq(&np->lock);
4370 if (id2 < 0 || id2 == 0xffff)
4371 continue;
4372
4373 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
4374 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
4375 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
4376 pci_name(pci_dev), id1, id2, phyaddr);
4377 np->phyaddr = phyaddr;
4378 np->phy_oui = id1 | id2;
4379 break;
4380 }
4381 if (i == 33) {
4382 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
4383 pci_name(pci_dev));
4384 goto out_error;
4385 }
4386
4387 /* reset it */
4388 phy_init(dev);
4389
4390 /* set default link speed settings */
4391 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
4392 np->duplex = 0;
4393 np->autoneg = 1;
4394
4395 err = register_netdev(dev);
4396 if (err) {
4397 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
4398 goto out_error;
4399 }
4400 printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
4401 dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
4402 pci_name(pci_dev));
4403
4404 return 0;
4405
4406 out_error:
4407 pci_set_drvdata(pci_dev, NULL);
4408 out_freering:
4409 free_rings(dev);
4410 out_unmap:
4411 iounmap(get_hwbase(dev));
4412 out_relreg:
4413 pci_release_regions(pci_dev);
4414 out_disable:
4415 pci_disable_device(pci_dev);
4416 out_free:
4417 free_netdev(dev);
4418 out:
4419 return err;
4420 }
4421
4422 static void __devexit nv_remove(struct pci_dev *pci_dev)
4423 {
4424 struct net_device *dev = pci_get_drvdata(pci_dev);
4425
4426 unregister_netdev(dev);
4427
4428 /* free all structures */
4429 free_rings(dev);
4430 iounmap(get_hwbase(dev));
4431 pci_release_regions(pci_dev);
4432 pci_disable_device(pci_dev);
4433 free_netdev(dev);
4434 pci_set_drvdata(pci_dev, NULL);
4435 }
4436
4437 static struct pci_device_id pci_tbl[] = {
4438 { /* nForce Ethernet Controller */
4439 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
4440 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4441 },
4442 { /* nForce2 Ethernet Controller */
4443 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
4444 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4445 },
4446 { /* nForce3 Ethernet Controller */
4447 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
4448 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4449 },
4450 { /* nForce3 Ethernet Controller */
4451 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
4452 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4453 },
4454 { /* nForce3 Ethernet Controller */
4455 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
4456 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4457 },
4458 { /* nForce3 Ethernet Controller */
4459 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
4460 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4461 },
4462 { /* nForce3 Ethernet Controller */
4463 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
4464 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4465 },
4466 { /* CK804 Ethernet Controller */
4467 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
4468 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4469 },
4470 { /* CK804 Ethernet Controller */
4471 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
4472 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4473 },
4474 { /* MCP04 Ethernet Controller */
4475 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
4476 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4477 },
4478 { /* MCP04 Ethernet Controller */
4479 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
4480 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4481 },
4482 { /* MCP51 Ethernet Controller */
4483 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
4484 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4485 },
4486 { /* MCP51 Ethernet Controller */
4487 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
4488 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4489 },
4490 { /* MCP55 Ethernet Controller */
4491 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
4492 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4493 },
4494 { /* MCP55 Ethernet Controller */
4495 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
4496 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4497 },
4498 { /* MCP61 Ethernet Controller */
4499 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
4500 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4501 },
4502 { /* MCP61 Ethernet Controller */
4503 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
4504 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4505 },
4506 { /* MCP61 Ethernet Controller */
4507 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
4508 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4509 },
4510 { /* MCP61 Ethernet Controller */
4511 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
4512 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4513 },
4514 { /* MCP65 Ethernet Controller */
4515 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
4516 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4517 },
4518 { /* MCP65 Ethernet Controller */
4519 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
4520 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4521 },
4522 { /* MCP65 Ethernet Controller */
4523 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
4524 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4525 },
4526 { /* MCP65 Ethernet Controller */
4527 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
4528 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4529 },
4530 {0,},
4531 };
4532
4533 static struct pci_driver driver = {
4534 .name = "forcedeth",
4535 .id_table = pci_tbl,
4536 .probe = nv_probe,
4537 .remove = __devexit_p(nv_remove),
4538 };
4539
4540
4541 static int __init init_nic(void)
4542 {
4543 printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
4544 return pci_module_init(&driver);
4545 }
4546
4547 static void __exit exit_nic(void)
4548 {
4549 pci_unregister_driver(&driver);
4550 }
4551
4552 module_param(max_interrupt_work, int, 0);
4553 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
4554 module_param(optimization_mode, int, 0);
4555 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
4556 module_param(poll_interval, int, 0);
4557 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
4558 module_param(msi, int, 0);
4559 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
4560 module_param(msix, int, 0);
4561 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
4562 module_param(dma_64bit, int, 0);
4563 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
4564
4565 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
4566 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
4567 MODULE_LICENSE("GPL");
4568
4569 MODULE_DEVICE_TABLE(pci, pci_tbl);
4570
4571 module_init(init_nic);
4572 module_exit(exit_nic);
This page took 0.236843 seconds and 6 git commands to generate.