Merge branch 'master'
[deliverable/linux.git] / drivers / net / forcedeth.c
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey. It's neither supported nor endorsed
7 * by NVIDIA Corp. Use at your own risk.
8 *
9 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10 * trademarks of NVIDIA Corporation in the United States and other
11 * countries.
12 *
13 * Copyright (C) 2003,4,5 Manfred Spraul
14 * Copyright (C) 2004 Andrew de Quincey (wol support)
15 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16 * IRQ rate fixes, bigendian fixes, cleanups, verification)
17 * Copyright (c) 2004 NVIDIA Corporation
18 *
19 * This program is free software; you can redistribute it and/or modify
20 * it under the terms of the GNU General Public License as published by
21 * the Free Software Foundation; either version 2 of the License, or
22 * (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 *
33 * Changelog:
34 * 0.01: 05 Oct 2003: First release that compiles without warnings.
35 * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36 * Check all PCI BARs for the register window.
37 * udelay added to mii_rw.
38 * 0.03: 06 Oct 2003: Initialize dev->irq.
39 * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40 * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41 * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42 * irq mask updated
43 * 0.07: 14 Oct 2003: Further irq mask updates.
44 * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45 * added into irq handler, NULL check for drain_ring.
46 * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47 * requested interrupt sources.
48 * 0.10: 20 Oct 2003: First cleanup for release.
49 * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50 * MAC Address init fix, set_multicast cleanup.
51 * 0.12: 23 Oct 2003: Cleanups for release.
52 * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53 * Set link speed correctly. start rx before starting
54 * tx (nv_start_rx sets the link speed).
55 * 0.14: 25 Oct 2003: Nic dependant irq mask.
56 * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57 * open.
58 * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59 * increased to 1628 bytes.
60 * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61 * the tx length.
62 * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63 * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64 * addresses, really stop rx if already running
65 * in nv_start_rx, clean up a bit.
66 * 0.20: 07 Dec 2003: alloc fixes
67 * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68 * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69 * on close.
70 * 0.23: 26 Jan 2004: various small cleanups
71 * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72 * 0.25: 09 Mar 2004: wol support
73 * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74 * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75 * added CK804/MCP04 device IDs, code fixes
76 * for registers, link status and other minor fixes.
77 * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78 * 0.29: 31 Aug 2004: Add backup timer for link change notification.
79 * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80 * into nv_close, otherwise reenabling for wol can
81 * cause DMA to kfree'd memory.
82 * 0.31: 14 Nov 2004: ethtool support for getting/setting link
83 * capabilities.
84 * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
85 * 0.33: 16 May 2005: Support for MCP51 added.
86 * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87 * 0.35: 26 Jun 2005: Support for MCP55 added.
88 * 0.36: 28 Jun 2005: Add jumbo frame support.
89 * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90 * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91 * per-packet flags.
92 * 0.39: 18 Jul 2005: Add 64bit descriptor support.
93 * 0.40: 19 Jul 2005: Add support for mac address change.
94 * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95 * of nv_remove
96 * 0.42: 06 Aug 2005: Fix lack of link speed initialization
97 * in the second (and later) nv_open call
98 * 0.43: 10 Aug 2005: Add support for tx checksum.
99 * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100 * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101 * 0.46: 20 Oct 2005: Add irq optimization modes.
102 * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
103 * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
104 *
105 * Known bugs:
106 * We suspect that on some hardware no TX done interrupts are generated.
107 * This means recovery from netif_stop_queue only happens if the hw timer
108 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
109 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
110 * If your hardware reliably generates tx done interrupts, then you can remove
111 * DEV_NEED_TIMERIRQ from the driver_data flags.
112 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
113 * superfluous timer interrupts from the nic.
114 */
115 #define FORCEDETH_VERSION "0.48"
116 #define DRV_NAME "forcedeth"
117
118 #include <linux/module.h>
119 #include <linux/types.h>
120 #include <linux/pci.h>
121 #include <linux/interrupt.h>
122 #include <linux/netdevice.h>
123 #include <linux/etherdevice.h>
124 #include <linux/delay.h>
125 #include <linux/spinlock.h>
126 #include <linux/ethtool.h>
127 #include <linux/timer.h>
128 #include <linux/skbuff.h>
129 #include <linux/mii.h>
130 #include <linux/random.h>
131 #include <linux/init.h>
132 #include <linux/if_vlan.h>
133
134 #include <asm/irq.h>
135 #include <asm/io.h>
136 #include <asm/uaccess.h>
137 #include <asm/system.h>
138
139 #if 0
140 #define dprintk printk
141 #else
142 #define dprintk(x...) do { } while (0)
143 #endif
144
145
146 /*
147 * Hardware access:
148 */
149
150 #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
151 #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
152 #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
153 #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
154 #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
155
156 enum {
157 NvRegIrqStatus = 0x000,
158 #define NVREG_IRQSTAT_MIIEVENT 0x040
159 #define NVREG_IRQSTAT_MASK 0x1ff
160 NvRegIrqMask = 0x004,
161 #define NVREG_IRQ_RX_ERROR 0x0001
162 #define NVREG_IRQ_RX 0x0002
163 #define NVREG_IRQ_RX_NOBUF 0x0004
164 #define NVREG_IRQ_TX_ERR 0x0008
165 #define NVREG_IRQ_TX_OK 0x0010
166 #define NVREG_IRQ_TIMER 0x0020
167 #define NVREG_IRQ_LINK 0x0040
168 #define NVREG_IRQ_TX_ERROR 0x0080
169 #define NVREG_IRQ_TX1 0x0100
170 #define NVREG_IRQMASK_THROUGHPUT 0x00df
171 #define NVREG_IRQMASK_CPU 0x0040
172
173 #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
174 NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_TX_ERROR| \
175 NVREG_IRQ_TX1))
176
177 NvRegUnknownSetupReg6 = 0x008,
178 #define NVREG_UNKSETUP6_VAL 3
179
180 /*
181 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
182 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
183 */
184 NvRegPollingInterval = 0x00c,
185 #define NVREG_POLL_DEFAULT_THROUGHPUT 970
186 #define NVREG_POLL_DEFAULT_CPU 13
187 NvRegMisc1 = 0x080,
188 #define NVREG_MISC1_HD 0x02
189 #define NVREG_MISC1_FORCE 0x3b0f3c
190
191 NvRegTransmitterControl = 0x084,
192 #define NVREG_XMITCTL_START 0x01
193 NvRegTransmitterStatus = 0x088,
194 #define NVREG_XMITSTAT_BUSY 0x01
195
196 NvRegPacketFilterFlags = 0x8c,
197 #define NVREG_PFF_ALWAYS 0x7F0008
198 #define NVREG_PFF_PROMISC 0x80
199 #define NVREG_PFF_MYADDR 0x20
200
201 NvRegOffloadConfig = 0x90,
202 #define NVREG_OFFLOAD_HOMEPHY 0x601
203 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
204 NvRegReceiverControl = 0x094,
205 #define NVREG_RCVCTL_START 0x01
206 NvRegReceiverStatus = 0x98,
207 #define NVREG_RCVSTAT_BUSY 0x01
208
209 NvRegRandomSeed = 0x9c,
210 #define NVREG_RNDSEED_MASK 0x00ff
211 #define NVREG_RNDSEED_FORCE 0x7f00
212 #define NVREG_RNDSEED_FORCE2 0x2d00
213 #define NVREG_RNDSEED_FORCE3 0x7400
214
215 NvRegUnknownSetupReg1 = 0xA0,
216 #define NVREG_UNKSETUP1_VAL 0x16070f
217 NvRegUnknownSetupReg2 = 0xA4,
218 #define NVREG_UNKSETUP2_VAL 0x16
219 NvRegMacAddrA = 0xA8,
220 NvRegMacAddrB = 0xAC,
221 NvRegMulticastAddrA = 0xB0,
222 #define NVREG_MCASTADDRA_FORCE 0x01
223 NvRegMulticastAddrB = 0xB4,
224 NvRegMulticastMaskA = 0xB8,
225 NvRegMulticastMaskB = 0xBC,
226
227 NvRegPhyInterface = 0xC0,
228 #define PHY_RGMII 0x10000000
229
230 NvRegTxRingPhysAddr = 0x100,
231 NvRegRxRingPhysAddr = 0x104,
232 NvRegRingSizes = 0x108,
233 #define NVREG_RINGSZ_TXSHIFT 0
234 #define NVREG_RINGSZ_RXSHIFT 16
235 NvRegUnknownTransmitterReg = 0x10c,
236 NvRegLinkSpeed = 0x110,
237 #define NVREG_LINKSPEED_FORCE 0x10000
238 #define NVREG_LINKSPEED_10 1000
239 #define NVREG_LINKSPEED_100 100
240 #define NVREG_LINKSPEED_1000 50
241 #define NVREG_LINKSPEED_MASK (0xFFF)
242 NvRegUnknownSetupReg5 = 0x130,
243 #define NVREG_UNKSETUP5_BIT31 (1<<31)
244 NvRegUnknownSetupReg3 = 0x13c,
245 #define NVREG_UNKSETUP3_VAL1 0x200010
246 NvRegTxRxControl = 0x144,
247 #define NVREG_TXRXCTL_KICK 0x0001
248 #define NVREG_TXRXCTL_BIT1 0x0002
249 #define NVREG_TXRXCTL_BIT2 0x0004
250 #define NVREG_TXRXCTL_IDLE 0x0008
251 #define NVREG_TXRXCTL_RESET 0x0010
252 #define NVREG_TXRXCTL_RXCHECK 0x0400
253 #define NVREG_TXRXCTL_DESC_1 0
254 #define NVREG_TXRXCTL_DESC_2 0x02100
255 #define NVREG_TXRXCTL_DESC_3 0x02200
256 NvRegMIIStatus = 0x180,
257 #define NVREG_MIISTAT_ERROR 0x0001
258 #define NVREG_MIISTAT_LINKCHANGE 0x0008
259 #define NVREG_MIISTAT_MASK 0x000f
260 #define NVREG_MIISTAT_MASK2 0x000f
261 NvRegUnknownSetupReg4 = 0x184,
262 #define NVREG_UNKSETUP4_VAL 8
263
264 NvRegAdapterControl = 0x188,
265 #define NVREG_ADAPTCTL_START 0x02
266 #define NVREG_ADAPTCTL_LINKUP 0x04
267 #define NVREG_ADAPTCTL_PHYVALID 0x40000
268 #define NVREG_ADAPTCTL_RUNNING 0x100000
269 #define NVREG_ADAPTCTL_PHYSHIFT 24
270 NvRegMIISpeed = 0x18c,
271 #define NVREG_MIISPEED_BIT8 (1<<8)
272 #define NVREG_MIIDELAY 5
273 NvRegMIIControl = 0x190,
274 #define NVREG_MIICTL_INUSE 0x08000
275 #define NVREG_MIICTL_WRITE 0x00400
276 #define NVREG_MIICTL_ADDRSHIFT 5
277 NvRegMIIData = 0x194,
278 NvRegWakeUpFlags = 0x200,
279 #define NVREG_WAKEUPFLAGS_VAL 0x7770
280 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
281 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
282 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
283 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
284 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
285 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
286 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
287 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
288 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
289 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
290
291 NvRegPatternCRC = 0x204,
292 NvRegPatternMask = 0x208,
293 NvRegPowerCap = 0x268,
294 #define NVREG_POWERCAP_D3SUPP (1<<30)
295 #define NVREG_POWERCAP_D2SUPP (1<<26)
296 #define NVREG_POWERCAP_D1SUPP (1<<25)
297 NvRegPowerState = 0x26c,
298 #define NVREG_POWERSTATE_POWEREDUP 0x8000
299 #define NVREG_POWERSTATE_VALID 0x0100
300 #define NVREG_POWERSTATE_MASK 0x0003
301 #define NVREG_POWERSTATE_D0 0x0000
302 #define NVREG_POWERSTATE_D1 0x0001
303 #define NVREG_POWERSTATE_D2 0x0002
304 #define NVREG_POWERSTATE_D3 0x0003
305 };
306
307 /* Big endian: should work, but is untested */
308 struct ring_desc {
309 u32 PacketBuffer;
310 u32 FlagLen;
311 };
312
313 struct ring_desc_ex {
314 u32 PacketBufferHigh;
315 u32 PacketBufferLow;
316 u32 Reserved;
317 u32 FlagLen;
318 };
319
320 typedef union _ring_type {
321 struct ring_desc* orig;
322 struct ring_desc_ex* ex;
323 } ring_type;
324
325 #define FLAG_MASK_V1 0xffff0000
326 #define FLAG_MASK_V2 0xffffc000
327 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
328 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
329
330 #define NV_TX_LASTPACKET (1<<16)
331 #define NV_TX_RETRYERROR (1<<19)
332 #define NV_TX_FORCED_INTERRUPT (1<<24)
333 #define NV_TX_DEFERRED (1<<26)
334 #define NV_TX_CARRIERLOST (1<<27)
335 #define NV_TX_LATECOLLISION (1<<28)
336 #define NV_TX_UNDERFLOW (1<<29)
337 #define NV_TX_ERROR (1<<30)
338 #define NV_TX_VALID (1<<31)
339
340 #define NV_TX2_LASTPACKET (1<<29)
341 #define NV_TX2_RETRYERROR (1<<18)
342 #define NV_TX2_FORCED_INTERRUPT (1<<30)
343 #define NV_TX2_DEFERRED (1<<25)
344 #define NV_TX2_CARRIERLOST (1<<26)
345 #define NV_TX2_LATECOLLISION (1<<27)
346 #define NV_TX2_UNDERFLOW (1<<28)
347 /* error and valid are the same for both */
348 #define NV_TX2_ERROR (1<<30)
349 #define NV_TX2_VALID (1<<31)
350 #define NV_TX2_TSO (1<<28)
351 #define NV_TX2_TSO_SHIFT 14
352 #define NV_TX2_CHECKSUM_L3 (1<<27)
353 #define NV_TX2_CHECKSUM_L4 (1<<26)
354
355 #define NV_RX_DESCRIPTORVALID (1<<16)
356 #define NV_RX_MISSEDFRAME (1<<17)
357 #define NV_RX_SUBSTRACT1 (1<<18)
358 #define NV_RX_ERROR1 (1<<23)
359 #define NV_RX_ERROR2 (1<<24)
360 #define NV_RX_ERROR3 (1<<25)
361 #define NV_RX_ERROR4 (1<<26)
362 #define NV_RX_CRCERR (1<<27)
363 #define NV_RX_OVERFLOW (1<<28)
364 #define NV_RX_FRAMINGERR (1<<29)
365 #define NV_RX_ERROR (1<<30)
366 #define NV_RX_AVAIL (1<<31)
367
368 #define NV_RX2_CHECKSUMMASK (0x1C000000)
369 #define NV_RX2_CHECKSUMOK1 (0x10000000)
370 #define NV_RX2_CHECKSUMOK2 (0x14000000)
371 #define NV_RX2_CHECKSUMOK3 (0x18000000)
372 #define NV_RX2_DESCRIPTORVALID (1<<29)
373 #define NV_RX2_SUBSTRACT1 (1<<25)
374 #define NV_RX2_ERROR1 (1<<18)
375 #define NV_RX2_ERROR2 (1<<19)
376 #define NV_RX2_ERROR3 (1<<20)
377 #define NV_RX2_ERROR4 (1<<21)
378 #define NV_RX2_CRCERR (1<<22)
379 #define NV_RX2_OVERFLOW (1<<23)
380 #define NV_RX2_FRAMINGERR (1<<24)
381 /* error and avail are the same for both */
382 #define NV_RX2_ERROR (1<<30)
383 #define NV_RX2_AVAIL (1<<31)
384
385 /* Miscelaneous hardware related defines: */
386 #define NV_PCI_REGSZ 0x270
387
388 /* various timeout delays: all in usec */
389 #define NV_TXRX_RESET_DELAY 4
390 #define NV_TXSTOP_DELAY1 10
391 #define NV_TXSTOP_DELAY1MAX 500000
392 #define NV_TXSTOP_DELAY2 100
393 #define NV_RXSTOP_DELAY1 10
394 #define NV_RXSTOP_DELAY1MAX 500000
395 #define NV_RXSTOP_DELAY2 100
396 #define NV_SETUP5_DELAY 5
397 #define NV_SETUP5_DELAYMAX 50000
398 #define NV_POWERUP_DELAY 5
399 #define NV_POWERUP_DELAYMAX 5000
400 #define NV_MIIBUSY_DELAY 50
401 #define NV_MIIPHY_DELAY 10
402 #define NV_MIIPHY_DELAYMAX 10000
403
404 #define NV_WAKEUPPATTERNS 5
405 #define NV_WAKEUPMASKENTRIES 4
406
407 /* General driver defaults */
408 #define NV_WATCHDOG_TIMEO (5*HZ)
409
410 #define RX_RING 128
411 #define TX_RING 64
412 /*
413 * If your nic mysteriously hangs then try to reduce the limits
414 * to 1/0: It might be required to set NV_TX_LASTPACKET in the
415 * last valid ring entry. But this would be impossible to
416 * implement - probably a disassembly error.
417 */
418 #define TX_LIMIT_STOP 63
419 #define TX_LIMIT_START 62
420
421 /* rx/tx mac addr + type + vlan + align + slack*/
422 #define NV_RX_HEADERS (64)
423 /* even more slack. */
424 #define NV_RX_ALLOC_PAD (64)
425
426 /* maximum mtu size */
427 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
428 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
429
430 #define OOM_REFILL (1+HZ/20)
431 #define POLL_WAIT (1+HZ/100)
432 #define LINK_TIMEOUT (3*HZ)
433
434 /*
435 * desc_ver values:
436 * The nic supports three different descriptor types:
437 * - DESC_VER_1: Original
438 * - DESC_VER_2: support for jumbo frames.
439 * - DESC_VER_3: 64-bit format.
440 */
441 #define DESC_VER_1 1
442 #define DESC_VER_2 2
443 #define DESC_VER_3 3
444
445 /* PHY defines */
446 #define PHY_OUI_MARVELL 0x5043
447 #define PHY_OUI_CICADA 0x03f1
448 #define PHYID1_OUI_MASK 0x03ff
449 #define PHYID1_OUI_SHFT 6
450 #define PHYID2_OUI_MASK 0xfc00
451 #define PHYID2_OUI_SHFT 10
452 #define PHY_INIT1 0x0f000
453 #define PHY_INIT2 0x0e00
454 #define PHY_INIT3 0x01000
455 #define PHY_INIT4 0x0200
456 #define PHY_INIT5 0x0004
457 #define PHY_INIT6 0x02000
458 #define PHY_GIGABIT 0x0100
459
460 #define PHY_TIMEOUT 0x1
461 #define PHY_ERROR 0x2
462
463 #define PHY_100 0x1
464 #define PHY_1000 0x2
465 #define PHY_HALF 0x100
466
467 /* FIXME: MII defines that should be added to <linux/mii.h> */
468 #define MII_1000BT_CR 0x09
469 #define MII_1000BT_SR 0x0a
470 #define ADVERTISE_1000FULL 0x0200
471 #define ADVERTISE_1000HALF 0x0100
472 #define LPA_1000FULL 0x0800
473 #define LPA_1000HALF 0x0400
474
475
476 /*
477 * SMP locking:
478 * All hardware access under dev->priv->lock, except the performance
479 * critical parts:
480 * - rx is (pseudo-) lockless: it relies on the single-threading provided
481 * by the arch code for interrupts.
482 * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
483 * needs dev->priv->lock :-(
484 * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
485 */
486
487 /* in dev: base, irq */
488 struct fe_priv {
489 spinlock_t lock;
490
491 /* General data:
492 * Locking: spin_lock(&np->lock); */
493 struct net_device_stats stats;
494 int in_shutdown;
495 u32 linkspeed;
496 int duplex;
497 int autoneg;
498 int fixed_mode;
499 int phyaddr;
500 int wolenabled;
501 unsigned int phy_oui;
502 u16 gigabit;
503
504 /* General data: RO fields */
505 dma_addr_t ring_addr;
506 struct pci_dev *pci_dev;
507 u32 orig_mac[2];
508 u32 irqmask;
509 u32 desc_ver;
510 u32 txrxctl_bits;
511
512 void __iomem *base;
513
514 /* rx specific fields.
515 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
516 */
517 ring_type rx_ring;
518 unsigned int cur_rx, refill_rx;
519 struct sk_buff *rx_skbuff[RX_RING];
520 dma_addr_t rx_dma[RX_RING];
521 unsigned int rx_buf_sz;
522 unsigned int pkt_limit;
523 struct timer_list oom_kick;
524 struct timer_list nic_poll;
525
526 /* media detection workaround.
527 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
528 */
529 int need_linktimer;
530 unsigned long link_timeout;
531 /*
532 * tx specific fields.
533 */
534 ring_type tx_ring;
535 unsigned int next_tx, nic_tx;
536 struct sk_buff *tx_skbuff[TX_RING];
537 dma_addr_t tx_dma[TX_RING];
538 u32 tx_flags;
539 };
540
541 /*
542 * Maximum number of loops until we assume that a bit in the irq mask
543 * is stuck. Overridable with module param.
544 */
545 static int max_interrupt_work = 5;
546
547 /*
548 * Optimization can be either throuput mode or cpu mode
549 *
550 * Throughput Mode: Every tx and rx packet will generate an interrupt.
551 * CPU Mode: Interrupts are controlled by a timer.
552 */
553 #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
554 #define NV_OPTIMIZATION_MODE_CPU 1
555 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
556
557 /*
558 * Poll interval for timer irq
559 *
560 * This interval determines how frequent an interrupt is generated.
561 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
562 * Min = 0, and Max = 65535
563 */
564 static int poll_interval = -1;
565
566 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
567 {
568 return netdev_priv(dev);
569 }
570
571 static inline u8 __iomem *get_hwbase(struct net_device *dev)
572 {
573 return ((struct fe_priv *)netdev_priv(dev))->base;
574 }
575
576 static inline void pci_push(u8 __iomem *base)
577 {
578 /* force out pending posted writes */
579 readl(base);
580 }
581
582 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
583 {
584 return le32_to_cpu(prd->FlagLen)
585 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
586 }
587
588 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
589 {
590 return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
591 }
592
593 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
594 int delay, int delaymax, const char *msg)
595 {
596 u8 __iomem *base = get_hwbase(dev);
597
598 pci_push(base);
599 do {
600 udelay(delay);
601 delaymax -= delay;
602 if (delaymax < 0) {
603 if (msg)
604 printk(msg);
605 return 1;
606 }
607 } while ((readl(base + offset) & mask) != target);
608 return 0;
609 }
610
611 #define MII_READ (-1)
612 /* mii_rw: read/write a register on the PHY.
613 *
614 * Caller must guarantee serialization
615 */
616 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
617 {
618 u8 __iomem *base = get_hwbase(dev);
619 u32 reg;
620 int retval;
621
622 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
623
624 reg = readl(base + NvRegMIIControl);
625 if (reg & NVREG_MIICTL_INUSE) {
626 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
627 udelay(NV_MIIBUSY_DELAY);
628 }
629
630 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
631 if (value != MII_READ) {
632 writel(value, base + NvRegMIIData);
633 reg |= NVREG_MIICTL_WRITE;
634 }
635 writel(reg, base + NvRegMIIControl);
636
637 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
638 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
639 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
640 dev->name, miireg, addr);
641 retval = -1;
642 } else if (value != MII_READ) {
643 /* it was a write operation - fewer failures are detectable */
644 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
645 dev->name, value, miireg, addr);
646 retval = 0;
647 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
648 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
649 dev->name, miireg, addr);
650 retval = -1;
651 } else {
652 retval = readl(base + NvRegMIIData);
653 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
654 dev->name, miireg, addr, retval);
655 }
656
657 return retval;
658 }
659
660 static int phy_reset(struct net_device *dev)
661 {
662 struct fe_priv *np = netdev_priv(dev);
663 u32 miicontrol;
664 unsigned int tries = 0;
665
666 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
667 miicontrol |= BMCR_RESET;
668 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
669 return -1;
670 }
671
672 /* wait for 500ms */
673 msleep(500);
674
675 /* must wait till reset is deasserted */
676 while (miicontrol & BMCR_RESET) {
677 msleep(10);
678 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
679 /* FIXME: 100 tries seem excessive */
680 if (tries++ > 100)
681 return -1;
682 }
683 return 0;
684 }
685
686 static int phy_init(struct net_device *dev)
687 {
688 struct fe_priv *np = get_nvpriv(dev);
689 u8 __iomem *base = get_hwbase(dev);
690 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
691
692 /* set advertise register */
693 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
694 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
695 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
696 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
697 return PHY_ERROR;
698 }
699
700 /* get phy interface type */
701 phyinterface = readl(base + NvRegPhyInterface);
702
703 /* see if gigabit phy */
704 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
705 if (mii_status & PHY_GIGABIT) {
706 np->gigabit = PHY_GIGABIT;
707 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
708 mii_control_1000 &= ~ADVERTISE_1000HALF;
709 if (phyinterface & PHY_RGMII)
710 mii_control_1000 |= ADVERTISE_1000FULL;
711 else
712 mii_control_1000 &= ~ADVERTISE_1000FULL;
713
714 if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
715 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
716 return PHY_ERROR;
717 }
718 }
719 else
720 np->gigabit = 0;
721
722 /* reset the phy */
723 if (phy_reset(dev)) {
724 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
725 return PHY_ERROR;
726 }
727
728 /* phy vendor specific configuration */
729 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
730 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
731 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
732 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
733 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
734 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
735 return PHY_ERROR;
736 }
737 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
738 phy_reserved |= PHY_INIT5;
739 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
740 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
741 return PHY_ERROR;
742 }
743 }
744 if (np->phy_oui == PHY_OUI_CICADA) {
745 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
746 phy_reserved |= PHY_INIT6;
747 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
748 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
749 return PHY_ERROR;
750 }
751 }
752
753 /* restart auto negotiation */
754 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
755 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
756 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
757 return PHY_ERROR;
758 }
759
760 return 0;
761 }
762
763 static void nv_start_rx(struct net_device *dev)
764 {
765 struct fe_priv *np = netdev_priv(dev);
766 u8 __iomem *base = get_hwbase(dev);
767
768 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
769 /* Already running? Stop it. */
770 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
771 writel(0, base + NvRegReceiverControl);
772 pci_push(base);
773 }
774 writel(np->linkspeed, base + NvRegLinkSpeed);
775 pci_push(base);
776 writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
777 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
778 dev->name, np->duplex, np->linkspeed);
779 pci_push(base);
780 }
781
782 static void nv_stop_rx(struct net_device *dev)
783 {
784 u8 __iomem *base = get_hwbase(dev);
785
786 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
787 writel(0, base + NvRegReceiverControl);
788 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
789 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
790 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
791
792 udelay(NV_RXSTOP_DELAY2);
793 writel(0, base + NvRegLinkSpeed);
794 }
795
796 static void nv_start_tx(struct net_device *dev)
797 {
798 u8 __iomem *base = get_hwbase(dev);
799
800 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
801 writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
802 pci_push(base);
803 }
804
805 static void nv_stop_tx(struct net_device *dev)
806 {
807 u8 __iomem *base = get_hwbase(dev);
808
809 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
810 writel(0, base + NvRegTransmitterControl);
811 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
812 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
813 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
814
815 udelay(NV_TXSTOP_DELAY2);
816 writel(0, base + NvRegUnknownTransmitterReg);
817 }
818
819 static void nv_txrx_reset(struct net_device *dev)
820 {
821 struct fe_priv *np = netdev_priv(dev);
822 u8 __iomem *base = get_hwbase(dev);
823
824 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
825 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
826 pci_push(base);
827 udelay(NV_TXRX_RESET_DELAY);
828 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
829 pci_push(base);
830 }
831
832 /*
833 * nv_get_stats: dev->get_stats function
834 * Get latest stats value from the nic.
835 * Called with read_lock(&dev_base_lock) held for read -
836 * only synchronized against unregister_netdevice.
837 */
838 static struct net_device_stats *nv_get_stats(struct net_device *dev)
839 {
840 struct fe_priv *np = netdev_priv(dev);
841
842 /* It seems that the nic always generates interrupts and doesn't
843 * accumulate errors internally. Thus the current values in np->stats
844 * are already up to date.
845 */
846 return &np->stats;
847 }
848
849 /*
850 * nv_alloc_rx: fill rx ring entries.
851 * Return 1 if the allocations for the skbs failed and the
852 * rx engine is without Available descriptors
853 */
854 static int nv_alloc_rx(struct net_device *dev)
855 {
856 struct fe_priv *np = netdev_priv(dev);
857 unsigned int refill_rx = np->refill_rx;
858 int nr;
859
860 while (np->cur_rx != refill_rx) {
861 struct sk_buff *skb;
862
863 nr = refill_rx % RX_RING;
864 if (np->rx_skbuff[nr] == NULL) {
865
866 skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
867 if (!skb)
868 break;
869
870 skb->dev = dev;
871 np->rx_skbuff[nr] = skb;
872 } else {
873 skb = np->rx_skbuff[nr];
874 }
875 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
876 skb->end-skb->data, PCI_DMA_FROMDEVICE);
877 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
878 np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
879 wmb();
880 np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
881 } else {
882 np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
883 np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
884 wmb();
885 np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
886 }
887 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
888 dev->name, refill_rx);
889 refill_rx++;
890 }
891 np->refill_rx = refill_rx;
892 if (np->cur_rx - refill_rx == RX_RING)
893 return 1;
894 return 0;
895 }
896
897 static void nv_do_rx_refill(unsigned long data)
898 {
899 struct net_device *dev = (struct net_device *) data;
900 struct fe_priv *np = netdev_priv(dev);
901
902 disable_irq(dev->irq);
903 if (nv_alloc_rx(dev)) {
904 spin_lock(&np->lock);
905 if (!np->in_shutdown)
906 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
907 spin_unlock(&np->lock);
908 }
909 enable_irq(dev->irq);
910 }
911
912 static void nv_init_rx(struct net_device *dev)
913 {
914 struct fe_priv *np = netdev_priv(dev);
915 int i;
916
917 np->cur_rx = RX_RING;
918 np->refill_rx = 0;
919 for (i = 0; i < RX_RING; i++)
920 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
921 np->rx_ring.orig[i].FlagLen = 0;
922 else
923 np->rx_ring.ex[i].FlagLen = 0;
924 }
925
926 static void nv_init_tx(struct net_device *dev)
927 {
928 struct fe_priv *np = netdev_priv(dev);
929 int i;
930
931 np->next_tx = np->nic_tx = 0;
932 for (i = 0; i < TX_RING; i++) {
933 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
934 np->tx_ring.orig[i].FlagLen = 0;
935 else
936 np->tx_ring.ex[i].FlagLen = 0;
937 np->tx_skbuff[i] = NULL;
938 }
939 }
940
941 static int nv_init_ring(struct net_device *dev)
942 {
943 nv_init_tx(dev);
944 nv_init_rx(dev);
945 return nv_alloc_rx(dev);
946 }
947
948 static void nv_release_txskb(struct net_device *dev, unsigned int skbnr)
949 {
950 struct fe_priv *np = netdev_priv(dev);
951 struct sk_buff *skb = np->tx_skbuff[skbnr];
952 unsigned int j, entry, fragments;
953
954 dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d, skb %p\n",
955 dev->name, skbnr, np->tx_skbuff[skbnr]);
956
957 entry = skbnr;
958 if ((fragments = skb_shinfo(skb)->nr_frags) != 0) {
959 for (j = fragments; j >= 1; j--) {
960 skb_frag_t *frag = &skb_shinfo(skb)->frags[j-1];
961 pci_unmap_page(np->pci_dev, np->tx_dma[entry],
962 frag->size,
963 PCI_DMA_TODEVICE);
964 entry = (entry - 1) % TX_RING;
965 }
966 }
967 pci_unmap_single(np->pci_dev, np->tx_dma[entry],
968 skb->len - skb->data_len,
969 PCI_DMA_TODEVICE);
970 dev_kfree_skb_irq(skb);
971 np->tx_skbuff[skbnr] = NULL;
972 }
973
974 static void nv_drain_tx(struct net_device *dev)
975 {
976 struct fe_priv *np = netdev_priv(dev);
977 unsigned int i;
978
979 for (i = 0; i < TX_RING; i++) {
980 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
981 np->tx_ring.orig[i].FlagLen = 0;
982 else
983 np->tx_ring.ex[i].FlagLen = 0;
984 if (np->tx_skbuff[i]) {
985 nv_release_txskb(dev, i);
986 np->stats.tx_dropped++;
987 }
988 }
989 }
990
991 static void nv_drain_rx(struct net_device *dev)
992 {
993 struct fe_priv *np = netdev_priv(dev);
994 int i;
995 for (i = 0; i < RX_RING; i++) {
996 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
997 np->rx_ring.orig[i].FlagLen = 0;
998 else
999 np->rx_ring.ex[i].FlagLen = 0;
1000 wmb();
1001 if (np->rx_skbuff[i]) {
1002 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1003 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1004 PCI_DMA_FROMDEVICE);
1005 dev_kfree_skb(np->rx_skbuff[i]);
1006 np->rx_skbuff[i] = NULL;
1007 }
1008 }
1009 }
1010
1011 static void drain_ring(struct net_device *dev)
1012 {
1013 nv_drain_tx(dev);
1014 nv_drain_rx(dev);
1015 }
1016
1017 /*
1018 * nv_start_xmit: dev->hard_start_xmit function
1019 * Called with dev->xmit_lock held.
1020 */
1021 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1022 {
1023 struct fe_priv *np = netdev_priv(dev);
1024 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1025 unsigned int fragments = skb_shinfo(skb)->nr_frags;
1026 unsigned int nr = (np->next_tx + fragments) % TX_RING;
1027 unsigned int i;
1028
1029 spin_lock_irq(&np->lock);
1030
1031 if ((np->next_tx - np->nic_tx + fragments) > TX_LIMIT_STOP) {
1032 spin_unlock_irq(&np->lock);
1033 netif_stop_queue(dev);
1034 return NETDEV_TX_BUSY;
1035 }
1036
1037 np->tx_skbuff[nr] = skb;
1038
1039 if (fragments) {
1040 dprintk(KERN_DEBUG "%s: nv_start_xmit: buffer contains %d fragments\n", dev->name, fragments);
1041 /* setup descriptors in reverse order */
1042 for (i = fragments; i >= 1; i--) {
1043 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1044 np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset, frag->size,
1045 PCI_DMA_TODEVICE);
1046
1047 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1048 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1049 np->tx_ring.orig[nr].FlagLen = cpu_to_le32( (frag->size-1) | np->tx_flags | tx_flags_extra);
1050 } else {
1051 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1052 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1053 np->tx_ring.ex[nr].FlagLen = cpu_to_le32( (frag->size-1) | np->tx_flags | tx_flags_extra);
1054 }
1055
1056 nr = (nr - 1) % TX_RING;
1057
1058 if (np->desc_ver == DESC_VER_1)
1059 tx_flags_extra &= ~NV_TX_LASTPACKET;
1060 else
1061 tx_flags_extra &= ~NV_TX2_LASTPACKET;
1062 }
1063 }
1064
1065 #ifdef NETIF_F_TSO
1066 if (skb_shinfo(skb)->tso_size)
1067 tx_flags_extra |= NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
1068 else
1069 #endif
1070 tx_flags_extra |= (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
1071
1072 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data, skb->len-skb->data_len,
1073 PCI_DMA_TODEVICE);
1074
1075 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1076 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1077 np->tx_ring.orig[nr].FlagLen = cpu_to_le32( (skb->len-skb->data_len-1) | np->tx_flags | tx_flags_extra);
1078 } else {
1079 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1080 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1081 np->tx_ring.ex[nr].FlagLen = cpu_to_le32( (skb->len-skb->data_len-1) | np->tx_flags | tx_flags_extra);
1082 }
1083
1084 dprintk(KERN_DEBUG "%s: nv_start_xmit: packet packet %d queued for transmission. tx_flags_extra: %x\n",
1085 dev->name, np->next_tx, tx_flags_extra);
1086 {
1087 int j;
1088 for (j=0; j<64; j++) {
1089 if ((j%16) == 0)
1090 dprintk("\n%03x:", j);
1091 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1092 }
1093 dprintk("\n");
1094 }
1095
1096 np->next_tx += 1 + fragments;
1097
1098 dev->trans_start = jiffies;
1099 spin_unlock_irq(&np->lock);
1100 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1101 pci_push(get_hwbase(dev));
1102 return NETDEV_TX_OK;
1103 }
1104
1105 /*
1106 * nv_tx_done: check for completed packets, release the skbs.
1107 *
1108 * Caller must own np->lock.
1109 */
1110 static void nv_tx_done(struct net_device *dev)
1111 {
1112 struct fe_priv *np = netdev_priv(dev);
1113 u32 Flags;
1114 unsigned int i;
1115 struct sk_buff *skb;
1116
1117 while (np->nic_tx != np->next_tx) {
1118 i = np->nic_tx % TX_RING;
1119
1120 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1121 Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1122 else
1123 Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1124
1125 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1126 dev->name, np->nic_tx, Flags);
1127 if (Flags & NV_TX_VALID)
1128 break;
1129 if (np->desc_ver == DESC_VER_1) {
1130 if (Flags & NV_TX_LASTPACKET) {
1131 skb = np->tx_skbuff[i];
1132 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1133 NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1134 if (Flags & NV_TX_UNDERFLOW)
1135 np->stats.tx_fifo_errors++;
1136 if (Flags & NV_TX_CARRIERLOST)
1137 np->stats.tx_carrier_errors++;
1138 np->stats.tx_errors++;
1139 } else {
1140 np->stats.tx_packets++;
1141 np->stats.tx_bytes += skb->len;
1142 }
1143 nv_release_txskb(dev, i);
1144 }
1145 } else {
1146 if (Flags & NV_TX2_LASTPACKET) {
1147 skb = np->tx_skbuff[i];
1148 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1149 NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1150 if (Flags & NV_TX2_UNDERFLOW)
1151 np->stats.tx_fifo_errors++;
1152 if (Flags & NV_TX2_CARRIERLOST)
1153 np->stats.tx_carrier_errors++;
1154 np->stats.tx_errors++;
1155 } else {
1156 np->stats.tx_packets++;
1157 np->stats.tx_bytes += skb->len;
1158 }
1159 nv_release_txskb(dev, i);
1160 }
1161 }
1162 np->nic_tx++;
1163 }
1164 if (np->next_tx - np->nic_tx < TX_LIMIT_START)
1165 netif_wake_queue(dev);
1166 }
1167
1168 /*
1169 * nv_tx_timeout: dev->tx_timeout function
1170 * Called with dev->xmit_lock held.
1171 */
1172 static void nv_tx_timeout(struct net_device *dev)
1173 {
1174 struct fe_priv *np = netdev_priv(dev);
1175 u8 __iomem *base = get_hwbase(dev);
1176
1177 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name,
1178 readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK);
1179
1180 {
1181 int i;
1182
1183 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1184 dev->name, (unsigned long)np->ring_addr,
1185 np->next_tx, np->nic_tx);
1186 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1187 for (i=0;i<0x400;i+= 32) {
1188 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1189 i,
1190 readl(base + i + 0), readl(base + i + 4),
1191 readl(base + i + 8), readl(base + i + 12),
1192 readl(base + i + 16), readl(base + i + 20),
1193 readl(base + i + 24), readl(base + i + 28));
1194 }
1195 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1196 for (i=0;i<TX_RING;i+= 4) {
1197 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1198 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1199 i,
1200 le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1201 le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1202 le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1203 le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1204 le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1205 le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1206 le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1207 le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1208 } else {
1209 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1210 i,
1211 le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1212 le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1213 le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1214 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1215 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1216 le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1217 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1218 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1219 le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1220 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1221 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1222 le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1223 }
1224 }
1225 }
1226
1227 spin_lock_irq(&np->lock);
1228
1229 /* 1) stop tx engine */
1230 nv_stop_tx(dev);
1231
1232 /* 2) check that the packets were not sent already: */
1233 nv_tx_done(dev);
1234
1235 /* 3) if there are dead entries: clear everything */
1236 if (np->next_tx != np->nic_tx) {
1237 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1238 nv_drain_tx(dev);
1239 np->next_tx = np->nic_tx = 0;
1240 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1241 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
1242 else
1243 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
1244 netif_wake_queue(dev);
1245 }
1246
1247 /* 4) restart tx engine */
1248 nv_start_tx(dev);
1249 spin_unlock_irq(&np->lock);
1250 }
1251
1252 /*
1253 * Called when the nic notices a mismatch between the actual data len on the
1254 * wire and the len indicated in the 802 header
1255 */
1256 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1257 {
1258 int hdrlen; /* length of the 802 header */
1259 int protolen; /* length as stored in the proto field */
1260
1261 /* 1) calculate len according to header */
1262 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1263 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1264 hdrlen = VLAN_HLEN;
1265 } else {
1266 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1267 hdrlen = ETH_HLEN;
1268 }
1269 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1270 dev->name, datalen, protolen, hdrlen);
1271 if (protolen > ETH_DATA_LEN)
1272 return datalen; /* Value in proto field not a len, no checks possible */
1273
1274 protolen += hdrlen;
1275 /* consistency checks: */
1276 if (datalen > ETH_ZLEN) {
1277 if (datalen >= protolen) {
1278 /* more data on wire than in 802 header, trim of
1279 * additional data.
1280 */
1281 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1282 dev->name, protolen);
1283 return protolen;
1284 } else {
1285 /* less data on wire than mentioned in header.
1286 * Discard the packet.
1287 */
1288 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1289 dev->name);
1290 return -1;
1291 }
1292 } else {
1293 /* short packet. Accept only if 802 values are also short */
1294 if (protolen > ETH_ZLEN) {
1295 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1296 dev->name);
1297 return -1;
1298 }
1299 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1300 dev->name, datalen);
1301 return datalen;
1302 }
1303 }
1304
1305 static void nv_rx_process(struct net_device *dev)
1306 {
1307 struct fe_priv *np = netdev_priv(dev);
1308 u32 Flags;
1309
1310 for (;;) {
1311 struct sk_buff *skb;
1312 int len;
1313 int i;
1314 if (np->cur_rx - np->refill_rx >= RX_RING)
1315 break; /* we scanned the whole ring - do not continue */
1316
1317 i = np->cur_rx % RX_RING;
1318 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1319 Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1320 len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1321 } else {
1322 Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1323 len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1324 }
1325
1326 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1327 dev->name, np->cur_rx, Flags);
1328
1329 if (Flags & NV_RX_AVAIL)
1330 break; /* still owned by hardware, */
1331
1332 /*
1333 * the packet is for us - immediately tear down the pci mapping.
1334 * TODO: check if a prefetch of the first cacheline improves
1335 * the performance.
1336 */
1337 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1338 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1339 PCI_DMA_FROMDEVICE);
1340
1341 {
1342 int j;
1343 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1344 for (j=0; j<64; j++) {
1345 if ((j%16) == 0)
1346 dprintk("\n%03x:", j);
1347 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1348 }
1349 dprintk("\n");
1350 }
1351 /* look at what we actually got: */
1352 if (np->desc_ver == DESC_VER_1) {
1353 if (!(Flags & NV_RX_DESCRIPTORVALID))
1354 goto next_pkt;
1355
1356 if (Flags & NV_RX_ERROR) {
1357 if (Flags & NV_RX_MISSEDFRAME) {
1358 np->stats.rx_missed_errors++;
1359 np->stats.rx_errors++;
1360 goto next_pkt;
1361 }
1362 if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1363 np->stats.rx_errors++;
1364 goto next_pkt;
1365 }
1366 if (Flags & NV_RX_CRCERR) {
1367 np->stats.rx_crc_errors++;
1368 np->stats.rx_errors++;
1369 goto next_pkt;
1370 }
1371 if (Flags & NV_RX_OVERFLOW) {
1372 np->stats.rx_over_errors++;
1373 np->stats.rx_errors++;
1374 goto next_pkt;
1375 }
1376 if (Flags & NV_RX_ERROR4) {
1377 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1378 if (len < 0) {
1379 np->stats.rx_errors++;
1380 goto next_pkt;
1381 }
1382 }
1383 /* framing errors are soft errors. */
1384 if (Flags & NV_RX_FRAMINGERR) {
1385 if (Flags & NV_RX_SUBSTRACT1) {
1386 len--;
1387 }
1388 }
1389 }
1390 } else {
1391 if (!(Flags & NV_RX2_DESCRIPTORVALID))
1392 goto next_pkt;
1393
1394 if (Flags & NV_RX2_ERROR) {
1395 if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1396 np->stats.rx_errors++;
1397 goto next_pkt;
1398 }
1399 if (Flags & NV_RX2_CRCERR) {
1400 np->stats.rx_crc_errors++;
1401 np->stats.rx_errors++;
1402 goto next_pkt;
1403 }
1404 if (Flags & NV_RX2_OVERFLOW) {
1405 np->stats.rx_over_errors++;
1406 np->stats.rx_errors++;
1407 goto next_pkt;
1408 }
1409 if (Flags & NV_RX2_ERROR4) {
1410 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1411 if (len < 0) {
1412 np->stats.rx_errors++;
1413 goto next_pkt;
1414 }
1415 }
1416 /* framing errors are soft errors */
1417 if (Flags & NV_RX2_FRAMINGERR) {
1418 if (Flags & NV_RX2_SUBSTRACT1) {
1419 len--;
1420 }
1421 }
1422 }
1423 Flags &= NV_RX2_CHECKSUMMASK;
1424 if (Flags == NV_RX2_CHECKSUMOK1 ||
1425 Flags == NV_RX2_CHECKSUMOK2 ||
1426 Flags == NV_RX2_CHECKSUMOK3) {
1427 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1428 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1429 } else {
1430 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1431 }
1432 }
1433 /* got a valid packet - forward it to the network core */
1434 skb = np->rx_skbuff[i];
1435 np->rx_skbuff[i] = NULL;
1436
1437 skb_put(skb, len);
1438 skb->protocol = eth_type_trans(skb, dev);
1439 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1440 dev->name, np->cur_rx, len, skb->protocol);
1441 netif_rx(skb);
1442 dev->last_rx = jiffies;
1443 np->stats.rx_packets++;
1444 np->stats.rx_bytes += len;
1445 next_pkt:
1446 np->cur_rx++;
1447 }
1448 }
1449
1450 static void set_bufsize(struct net_device *dev)
1451 {
1452 struct fe_priv *np = netdev_priv(dev);
1453
1454 if (dev->mtu <= ETH_DATA_LEN)
1455 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1456 else
1457 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1458 }
1459
1460 /*
1461 * nv_change_mtu: dev->change_mtu function
1462 * Called with dev_base_lock held for read.
1463 */
1464 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1465 {
1466 struct fe_priv *np = netdev_priv(dev);
1467 int old_mtu;
1468
1469 if (new_mtu < 64 || new_mtu > np->pkt_limit)
1470 return -EINVAL;
1471
1472 old_mtu = dev->mtu;
1473 dev->mtu = new_mtu;
1474
1475 /* return early if the buffer sizes will not change */
1476 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1477 return 0;
1478 if (old_mtu == new_mtu)
1479 return 0;
1480
1481 /* synchronized against open : rtnl_lock() held by caller */
1482 if (netif_running(dev)) {
1483 u8 __iomem *base = get_hwbase(dev);
1484 /*
1485 * It seems that the nic preloads valid ring entries into an
1486 * internal buffer. The procedure for flushing everything is
1487 * guessed, there is probably a simpler approach.
1488 * Changing the MTU is a rare event, it shouldn't matter.
1489 */
1490 disable_irq(dev->irq);
1491 spin_lock_bh(&dev->xmit_lock);
1492 spin_lock(&np->lock);
1493 /* stop engines */
1494 nv_stop_rx(dev);
1495 nv_stop_tx(dev);
1496 nv_txrx_reset(dev);
1497 /* drain rx queue */
1498 nv_drain_rx(dev);
1499 nv_drain_tx(dev);
1500 /* reinit driver view of the rx queue */
1501 nv_init_rx(dev);
1502 nv_init_tx(dev);
1503 /* alloc new rx buffers */
1504 set_bufsize(dev);
1505 if (nv_alloc_rx(dev)) {
1506 if (!np->in_shutdown)
1507 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1508 }
1509 /* reinit nic view of the rx queue */
1510 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1511 writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr);
1512 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1513 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
1514 else
1515 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
1516 writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
1517 base + NvRegRingSizes);
1518 pci_push(base);
1519 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1520 pci_push(base);
1521
1522 /* restart rx engine */
1523 nv_start_rx(dev);
1524 nv_start_tx(dev);
1525 spin_unlock(&np->lock);
1526 spin_unlock_bh(&dev->xmit_lock);
1527 enable_irq(dev->irq);
1528 }
1529 return 0;
1530 }
1531
1532 static void nv_copy_mac_to_hw(struct net_device *dev)
1533 {
1534 u8 __iomem *base = get_hwbase(dev);
1535 u32 mac[2];
1536
1537 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1538 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1539 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1540
1541 writel(mac[0], base + NvRegMacAddrA);
1542 writel(mac[1], base + NvRegMacAddrB);
1543 }
1544
1545 /*
1546 * nv_set_mac_address: dev->set_mac_address function
1547 * Called with rtnl_lock() held.
1548 */
1549 static int nv_set_mac_address(struct net_device *dev, void *addr)
1550 {
1551 struct fe_priv *np = netdev_priv(dev);
1552 struct sockaddr *macaddr = (struct sockaddr*)addr;
1553
1554 if(!is_valid_ether_addr(macaddr->sa_data))
1555 return -EADDRNOTAVAIL;
1556
1557 /* synchronized against open : rtnl_lock() held by caller */
1558 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1559
1560 if (netif_running(dev)) {
1561 spin_lock_bh(&dev->xmit_lock);
1562 spin_lock_irq(&np->lock);
1563
1564 /* stop rx engine */
1565 nv_stop_rx(dev);
1566
1567 /* set mac address */
1568 nv_copy_mac_to_hw(dev);
1569
1570 /* restart rx engine */
1571 nv_start_rx(dev);
1572 spin_unlock_irq(&np->lock);
1573 spin_unlock_bh(&dev->xmit_lock);
1574 } else {
1575 nv_copy_mac_to_hw(dev);
1576 }
1577 return 0;
1578 }
1579
1580 /*
1581 * nv_set_multicast: dev->set_multicast function
1582 * Called with dev->xmit_lock held.
1583 */
1584 static void nv_set_multicast(struct net_device *dev)
1585 {
1586 struct fe_priv *np = netdev_priv(dev);
1587 u8 __iomem *base = get_hwbase(dev);
1588 u32 addr[2];
1589 u32 mask[2];
1590 u32 pff;
1591
1592 memset(addr, 0, sizeof(addr));
1593 memset(mask, 0, sizeof(mask));
1594
1595 if (dev->flags & IFF_PROMISC) {
1596 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
1597 pff = NVREG_PFF_PROMISC;
1598 } else {
1599 pff = NVREG_PFF_MYADDR;
1600
1601 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
1602 u32 alwaysOff[2];
1603 u32 alwaysOn[2];
1604
1605 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
1606 if (dev->flags & IFF_ALLMULTI) {
1607 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
1608 } else {
1609 struct dev_mc_list *walk;
1610
1611 walk = dev->mc_list;
1612 while (walk != NULL) {
1613 u32 a, b;
1614 a = le32_to_cpu(*(u32 *) walk->dmi_addr);
1615 b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
1616 alwaysOn[0] &= a;
1617 alwaysOff[0] &= ~a;
1618 alwaysOn[1] &= b;
1619 alwaysOff[1] &= ~b;
1620 walk = walk->next;
1621 }
1622 }
1623 addr[0] = alwaysOn[0];
1624 addr[1] = alwaysOn[1];
1625 mask[0] = alwaysOn[0] | alwaysOff[0];
1626 mask[1] = alwaysOn[1] | alwaysOff[1];
1627 }
1628 }
1629 addr[0] |= NVREG_MCASTADDRA_FORCE;
1630 pff |= NVREG_PFF_ALWAYS;
1631 spin_lock_irq(&np->lock);
1632 nv_stop_rx(dev);
1633 writel(addr[0], base + NvRegMulticastAddrA);
1634 writel(addr[1], base + NvRegMulticastAddrB);
1635 writel(mask[0], base + NvRegMulticastMaskA);
1636 writel(mask[1], base + NvRegMulticastMaskB);
1637 writel(pff, base + NvRegPacketFilterFlags);
1638 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
1639 dev->name);
1640 nv_start_rx(dev);
1641 spin_unlock_irq(&np->lock);
1642 }
1643
1644 /**
1645 * nv_update_linkspeed: Setup the MAC according to the link partner
1646 * @dev: Network device to be configured
1647 *
1648 * The function queries the PHY and checks if there is a link partner.
1649 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
1650 * set to 10 MBit HD.
1651 *
1652 * The function returns 0 if there is no link partner and 1 if there is
1653 * a good link partner.
1654 */
1655 static int nv_update_linkspeed(struct net_device *dev)
1656 {
1657 struct fe_priv *np = netdev_priv(dev);
1658 u8 __iomem *base = get_hwbase(dev);
1659 int adv, lpa;
1660 int newls = np->linkspeed;
1661 int newdup = np->duplex;
1662 int mii_status;
1663 int retval = 0;
1664 u32 control_1000, status_1000, phyreg;
1665
1666 /* BMSR_LSTATUS is latched, read it twice:
1667 * we want the current value.
1668 */
1669 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1670 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1671
1672 if (!(mii_status & BMSR_LSTATUS)) {
1673 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
1674 dev->name);
1675 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1676 newdup = 0;
1677 retval = 0;
1678 goto set_speed;
1679 }
1680
1681 if (np->autoneg == 0) {
1682 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
1683 dev->name, np->fixed_mode);
1684 if (np->fixed_mode & LPA_100FULL) {
1685 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1686 newdup = 1;
1687 } else if (np->fixed_mode & LPA_100HALF) {
1688 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1689 newdup = 0;
1690 } else if (np->fixed_mode & LPA_10FULL) {
1691 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1692 newdup = 1;
1693 } else {
1694 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1695 newdup = 0;
1696 }
1697 retval = 1;
1698 goto set_speed;
1699 }
1700 /* check auto negotiation is complete */
1701 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
1702 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
1703 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1704 newdup = 0;
1705 retval = 0;
1706 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
1707 goto set_speed;
1708 }
1709
1710 retval = 1;
1711 if (np->gigabit == PHY_GIGABIT) {
1712 control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1713 status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
1714
1715 if ((control_1000 & ADVERTISE_1000FULL) &&
1716 (status_1000 & LPA_1000FULL)) {
1717 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
1718 dev->name);
1719 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
1720 newdup = 1;
1721 goto set_speed;
1722 }
1723 }
1724
1725 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1726 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
1727 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
1728 dev->name, adv, lpa);
1729
1730 /* FIXME: handle parallel detection properly */
1731 lpa = lpa & adv;
1732 if (lpa & LPA_100FULL) {
1733 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1734 newdup = 1;
1735 } else if (lpa & LPA_100HALF) {
1736 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1737 newdup = 0;
1738 } else if (lpa & LPA_10FULL) {
1739 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1740 newdup = 1;
1741 } else if (lpa & LPA_10HALF) {
1742 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1743 newdup = 0;
1744 } else {
1745 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
1746 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1747 newdup = 0;
1748 }
1749
1750 set_speed:
1751 if (np->duplex == newdup && np->linkspeed == newls)
1752 return retval;
1753
1754 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
1755 dev->name, np->linkspeed, np->duplex, newls, newdup);
1756
1757 np->duplex = newdup;
1758 np->linkspeed = newls;
1759
1760 if (np->gigabit == PHY_GIGABIT) {
1761 phyreg = readl(base + NvRegRandomSeed);
1762 phyreg &= ~(0x3FF00);
1763 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
1764 phyreg |= NVREG_RNDSEED_FORCE3;
1765 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
1766 phyreg |= NVREG_RNDSEED_FORCE2;
1767 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
1768 phyreg |= NVREG_RNDSEED_FORCE;
1769 writel(phyreg, base + NvRegRandomSeed);
1770 }
1771
1772 phyreg = readl(base + NvRegPhyInterface);
1773 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
1774 if (np->duplex == 0)
1775 phyreg |= PHY_HALF;
1776 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
1777 phyreg |= PHY_100;
1778 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
1779 phyreg |= PHY_1000;
1780 writel(phyreg, base + NvRegPhyInterface);
1781
1782 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
1783 base + NvRegMisc1);
1784 pci_push(base);
1785 writel(np->linkspeed, base + NvRegLinkSpeed);
1786 pci_push(base);
1787
1788 return retval;
1789 }
1790
1791 static void nv_linkchange(struct net_device *dev)
1792 {
1793 if (nv_update_linkspeed(dev)) {
1794 if (!netif_carrier_ok(dev)) {
1795 netif_carrier_on(dev);
1796 printk(KERN_INFO "%s: link up.\n", dev->name);
1797 nv_start_rx(dev);
1798 }
1799 } else {
1800 if (netif_carrier_ok(dev)) {
1801 netif_carrier_off(dev);
1802 printk(KERN_INFO "%s: link down.\n", dev->name);
1803 nv_stop_rx(dev);
1804 }
1805 }
1806 }
1807
1808 static void nv_link_irq(struct net_device *dev)
1809 {
1810 u8 __iomem *base = get_hwbase(dev);
1811 u32 miistat;
1812
1813 miistat = readl(base + NvRegMIIStatus);
1814 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
1815 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
1816
1817 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
1818 nv_linkchange(dev);
1819 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
1820 }
1821
1822 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
1823 {
1824 struct net_device *dev = (struct net_device *) data;
1825 struct fe_priv *np = netdev_priv(dev);
1826 u8 __iomem *base = get_hwbase(dev);
1827 u32 events;
1828 int i;
1829
1830 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
1831
1832 for (i=0; ; i++) {
1833 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1834 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
1835 pci_push(base);
1836 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
1837 if (!(events & np->irqmask))
1838 break;
1839
1840 spin_lock(&np->lock);
1841 nv_tx_done(dev);
1842 spin_unlock(&np->lock);
1843
1844 nv_rx_process(dev);
1845 if (nv_alloc_rx(dev)) {
1846 spin_lock(&np->lock);
1847 if (!np->in_shutdown)
1848 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1849 spin_unlock(&np->lock);
1850 }
1851
1852 if (events & NVREG_IRQ_LINK) {
1853 spin_lock(&np->lock);
1854 nv_link_irq(dev);
1855 spin_unlock(&np->lock);
1856 }
1857 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
1858 spin_lock(&np->lock);
1859 nv_linkchange(dev);
1860 spin_unlock(&np->lock);
1861 np->link_timeout = jiffies + LINK_TIMEOUT;
1862 }
1863 if (events & (NVREG_IRQ_TX_ERR)) {
1864 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
1865 dev->name, events);
1866 }
1867 if (events & (NVREG_IRQ_UNKNOWN)) {
1868 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
1869 dev->name, events);
1870 }
1871 if (i > max_interrupt_work) {
1872 spin_lock(&np->lock);
1873 /* disable interrupts on the nic */
1874 writel(0, base + NvRegIrqMask);
1875 pci_push(base);
1876
1877 if (!np->in_shutdown)
1878 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
1879 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
1880 spin_unlock(&np->lock);
1881 break;
1882 }
1883
1884 }
1885 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
1886
1887 return IRQ_RETVAL(i);
1888 }
1889
1890 static void nv_do_nic_poll(unsigned long data)
1891 {
1892 struct net_device *dev = (struct net_device *) data;
1893 struct fe_priv *np = netdev_priv(dev);
1894 u8 __iomem *base = get_hwbase(dev);
1895
1896 disable_irq(dev->irq);
1897 /* FIXME: Do we need synchronize_irq(dev->irq) here? */
1898 /*
1899 * reenable interrupts on the nic, we have to do this before calling
1900 * nv_nic_irq because that may decide to do otherwise
1901 */
1902 writel(np->irqmask, base + NvRegIrqMask);
1903 pci_push(base);
1904 nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
1905 enable_irq(dev->irq);
1906 }
1907
1908 #ifdef CONFIG_NET_POLL_CONTROLLER
1909 static void nv_poll_controller(struct net_device *dev)
1910 {
1911 nv_do_nic_poll((unsigned long) dev);
1912 }
1913 #endif
1914
1915 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1916 {
1917 struct fe_priv *np = netdev_priv(dev);
1918 strcpy(info->driver, "forcedeth");
1919 strcpy(info->version, FORCEDETH_VERSION);
1920 strcpy(info->bus_info, pci_name(np->pci_dev));
1921 }
1922
1923 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
1924 {
1925 struct fe_priv *np = netdev_priv(dev);
1926 wolinfo->supported = WAKE_MAGIC;
1927
1928 spin_lock_irq(&np->lock);
1929 if (np->wolenabled)
1930 wolinfo->wolopts = WAKE_MAGIC;
1931 spin_unlock_irq(&np->lock);
1932 }
1933
1934 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
1935 {
1936 struct fe_priv *np = netdev_priv(dev);
1937 u8 __iomem *base = get_hwbase(dev);
1938
1939 spin_lock_irq(&np->lock);
1940 if (wolinfo->wolopts == 0) {
1941 writel(0, base + NvRegWakeUpFlags);
1942 np->wolenabled = 0;
1943 }
1944 if (wolinfo->wolopts & WAKE_MAGIC) {
1945 writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
1946 np->wolenabled = 1;
1947 }
1948 spin_unlock_irq(&np->lock);
1949 return 0;
1950 }
1951
1952 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1953 {
1954 struct fe_priv *np = netdev_priv(dev);
1955 int adv;
1956
1957 spin_lock_irq(&np->lock);
1958 ecmd->port = PORT_MII;
1959 if (!netif_running(dev)) {
1960 /* We do not track link speed / duplex setting if the
1961 * interface is disabled. Force a link check */
1962 nv_update_linkspeed(dev);
1963 }
1964 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
1965 case NVREG_LINKSPEED_10:
1966 ecmd->speed = SPEED_10;
1967 break;
1968 case NVREG_LINKSPEED_100:
1969 ecmd->speed = SPEED_100;
1970 break;
1971 case NVREG_LINKSPEED_1000:
1972 ecmd->speed = SPEED_1000;
1973 break;
1974 }
1975 ecmd->duplex = DUPLEX_HALF;
1976 if (np->duplex)
1977 ecmd->duplex = DUPLEX_FULL;
1978
1979 ecmd->autoneg = np->autoneg;
1980
1981 ecmd->advertising = ADVERTISED_MII;
1982 if (np->autoneg) {
1983 ecmd->advertising |= ADVERTISED_Autoneg;
1984 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1985 } else {
1986 adv = np->fixed_mode;
1987 }
1988 if (adv & ADVERTISE_10HALF)
1989 ecmd->advertising |= ADVERTISED_10baseT_Half;
1990 if (adv & ADVERTISE_10FULL)
1991 ecmd->advertising |= ADVERTISED_10baseT_Full;
1992 if (adv & ADVERTISE_100HALF)
1993 ecmd->advertising |= ADVERTISED_100baseT_Half;
1994 if (adv & ADVERTISE_100FULL)
1995 ecmd->advertising |= ADVERTISED_100baseT_Full;
1996 if (np->autoneg && np->gigabit == PHY_GIGABIT) {
1997 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1998 if (adv & ADVERTISE_1000FULL)
1999 ecmd->advertising |= ADVERTISED_1000baseT_Full;
2000 }
2001
2002 ecmd->supported = (SUPPORTED_Autoneg |
2003 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2004 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2005 SUPPORTED_MII);
2006 if (np->gigabit == PHY_GIGABIT)
2007 ecmd->supported |= SUPPORTED_1000baseT_Full;
2008
2009 ecmd->phy_address = np->phyaddr;
2010 ecmd->transceiver = XCVR_EXTERNAL;
2011
2012 /* ignore maxtxpkt, maxrxpkt for now */
2013 spin_unlock_irq(&np->lock);
2014 return 0;
2015 }
2016
2017 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2018 {
2019 struct fe_priv *np = netdev_priv(dev);
2020
2021 if (ecmd->port != PORT_MII)
2022 return -EINVAL;
2023 if (ecmd->transceiver != XCVR_EXTERNAL)
2024 return -EINVAL;
2025 if (ecmd->phy_address != np->phyaddr) {
2026 /* TODO: support switching between multiple phys. Should be
2027 * trivial, but not enabled due to lack of test hardware. */
2028 return -EINVAL;
2029 }
2030 if (ecmd->autoneg == AUTONEG_ENABLE) {
2031 u32 mask;
2032
2033 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
2034 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
2035 if (np->gigabit == PHY_GIGABIT)
2036 mask |= ADVERTISED_1000baseT_Full;
2037
2038 if ((ecmd->advertising & mask) == 0)
2039 return -EINVAL;
2040
2041 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2042 /* Note: autonegotiation disable, speed 1000 intentionally
2043 * forbidden - noone should need that. */
2044
2045 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2046 return -EINVAL;
2047 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2048 return -EINVAL;
2049 } else {
2050 return -EINVAL;
2051 }
2052
2053 spin_lock_irq(&np->lock);
2054 if (ecmd->autoneg == AUTONEG_ENABLE) {
2055 int adv, bmcr;
2056
2057 np->autoneg = 1;
2058
2059 /* advertise only what has been requested */
2060 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2061 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2062 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2063 adv |= ADVERTISE_10HALF;
2064 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2065 adv |= ADVERTISE_10FULL;
2066 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2067 adv |= ADVERTISE_100HALF;
2068 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2069 adv |= ADVERTISE_100FULL;
2070 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2071
2072 if (np->gigabit == PHY_GIGABIT) {
2073 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2074 adv &= ~ADVERTISE_1000FULL;
2075 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
2076 adv |= ADVERTISE_1000FULL;
2077 mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
2078 }
2079
2080 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2081 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2082 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2083
2084 } else {
2085 int adv, bmcr;
2086
2087 np->autoneg = 0;
2088
2089 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2090 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2091 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
2092 adv |= ADVERTISE_10HALF;
2093 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
2094 adv |= ADVERTISE_10FULL;
2095 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
2096 adv |= ADVERTISE_100HALF;
2097 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
2098 adv |= ADVERTISE_100FULL;
2099 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2100 np->fixed_mode = adv;
2101
2102 if (np->gigabit == PHY_GIGABIT) {
2103 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2104 adv &= ~ADVERTISE_1000FULL;
2105 mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
2106 }
2107
2108 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2109 bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
2110 if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
2111 bmcr |= BMCR_FULLDPLX;
2112 if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
2113 bmcr |= BMCR_SPEED100;
2114 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2115
2116 if (netif_running(dev)) {
2117 /* Wait a bit and then reconfigure the nic. */
2118 udelay(10);
2119 nv_linkchange(dev);
2120 }
2121 }
2122 spin_unlock_irq(&np->lock);
2123
2124 return 0;
2125 }
2126
2127 #define FORCEDETH_REGS_VER 1
2128 #define FORCEDETH_REGS_SIZE 0x400 /* 256 32-bit registers */
2129
2130 static int nv_get_regs_len(struct net_device *dev)
2131 {
2132 return FORCEDETH_REGS_SIZE;
2133 }
2134
2135 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2136 {
2137 struct fe_priv *np = netdev_priv(dev);
2138 u8 __iomem *base = get_hwbase(dev);
2139 u32 *rbuf = buf;
2140 int i;
2141
2142 regs->version = FORCEDETH_REGS_VER;
2143 spin_lock_irq(&np->lock);
2144 for (i=0;i<FORCEDETH_REGS_SIZE/sizeof(u32);i++)
2145 rbuf[i] = readl(base + i*sizeof(u32));
2146 spin_unlock_irq(&np->lock);
2147 }
2148
2149 static int nv_nway_reset(struct net_device *dev)
2150 {
2151 struct fe_priv *np = netdev_priv(dev);
2152 int ret;
2153
2154 spin_lock_irq(&np->lock);
2155 if (np->autoneg) {
2156 int bmcr;
2157
2158 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2159 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2160 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2161
2162 ret = 0;
2163 } else {
2164 ret = -EINVAL;
2165 }
2166 spin_unlock_irq(&np->lock);
2167
2168 return ret;
2169 }
2170
2171 static struct ethtool_ops ops = {
2172 .get_drvinfo = nv_get_drvinfo,
2173 .get_link = ethtool_op_get_link,
2174 .get_wol = nv_get_wol,
2175 .set_wol = nv_set_wol,
2176 .get_settings = nv_get_settings,
2177 .set_settings = nv_set_settings,
2178 .get_regs_len = nv_get_regs_len,
2179 .get_regs = nv_get_regs,
2180 .nway_reset = nv_nway_reset,
2181 .get_perm_addr = ethtool_op_get_perm_addr,
2182 };
2183
2184 static int nv_open(struct net_device *dev)
2185 {
2186 struct fe_priv *np = netdev_priv(dev);
2187 u8 __iomem *base = get_hwbase(dev);
2188 int ret, oom, i;
2189
2190 dprintk(KERN_DEBUG "nv_open: begin\n");
2191
2192 /* 1) erase previous misconfiguration */
2193 /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
2194 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2195 writel(0, base + NvRegMulticastAddrB);
2196 writel(0, base + NvRegMulticastMaskA);
2197 writel(0, base + NvRegMulticastMaskB);
2198 writel(0, base + NvRegPacketFilterFlags);
2199
2200 writel(0, base + NvRegTransmitterControl);
2201 writel(0, base + NvRegReceiverControl);
2202
2203 writel(0, base + NvRegAdapterControl);
2204
2205 /* 2) initialize descriptor rings */
2206 set_bufsize(dev);
2207 oom = nv_init_ring(dev);
2208
2209 writel(0, base + NvRegLinkSpeed);
2210 writel(0, base + NvRegUnknownTransmitterReg);
2211 nv_txrx_reset(dev);
2212 writel(0, base + NvRegUnknownSetupReg6);
2213
2214 np->in_shutdown = 0;
2215
2216 /* 3) set mac address */
2217 nv_copy_mac_to_hw(dev);
2218
2219 /* 4) give hw rings */
2220 writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr);
2221 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2222 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
2223 else
2224 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
2225 writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
2226 base + NvRegRingSizes);
2227
2228 /* 5) continue setup */
2229 writel(np->linkspeed, base + NvRegLinkSpeed);
2230 writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
2231 writel(np->txrxctl_bits, base + NvRegTxRxControl);
2232 pci_push(base);
2233 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
2234 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
2235 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
2236 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
2237
2238 writel(0, base + NvRegUnknownSetupReg4);
2239 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2240 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2241
2242 /* 6) continue setup */
2243 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
2244 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
2245 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
2246 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2247
2248 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
2249 get_random_bytes(&i, sizeof(i));
2250 writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
2251 writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
2252 writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
2253 if (poll_interval == -1) {
2254 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
2255 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
2256 else
2257 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
2258 }
2259 else
2260 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
2261 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
2262 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
2263 base + NvRegAdapterControl);
2264 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
2265 writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
2266 writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
2267
2268 i = readl(base + NvRegPowerState);
2269 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
2270 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
2271
2272 pci_push(base);
2273 udelay(10);
2274 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
2275
2276 writel(0, base + NvRegIrqMask);
2277 pci_push(base);
2278 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2279 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2280 pci_push(base);
2281
2282 ret = request_irq(dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev);
2283 if (ret)
2284 goto out_drain;
2285
2286 /* ask for interrupts */
2287 writel(np->irqmask, base + NvRegIrqMask);
2288
2289 spin_lock_irq(&np->lock);
2290 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2291 writel(0, base + NvRegMulticastAddrB);
2292 writel(0, base + NvRegMulticastMaskA);
2293 writel(0, base + NvRegMulticastMaskB);
2294 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
2295 /* One manual link speed update: Interrupts are enabled, future link
2296 * speed changes cause interrupts and are handled by nv_link_irq().
2297 */
2298 {
2299 u32 miistat;
2300 miistat = readl(base + NvRegMIIStatus);
2301 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2302 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
2303 }
2304 /* set linkspeed to invalid value, thus force nv_update_linkspeed
2305 * to init hw */
2306 np->linkspeed = 0;
2307 ret = nv_update_linkspeed(dev);
2308 nv_start_rx(dev);
2309 nv_start_tx(dev);
2310 netif_start_queue(dev);
2311 if (ret) {
2312 netif_carrier_on(dev);
2313 } else {
2314 printk("%s: no link during initialization.\n", dev->name);
2315 netif_carrier_off(dev);
2316 }
2317 if (oom)
2318 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2319 spin_unlock_irq(&np->lock);
2320
2321 return 0;
2322 out_drain:
2323 drain_ring(dev);
2324 return ret;
2325 }
2326
2327 static int nv_close(struct net_device *dev)
2328 {
2329 struct fe_priv *np = netdev_priv(dev);
2330 u8 __iomem *base;
2331
2332 spin_lock_irq(&np->lock);
2333 np->in_shutdown = 1;
2334 spin_unlock_irq(&np->lock);
2335 synchronize_irq(dev->irq);
2336
2337 del_timer_sync(&np->oom_kick);
2338 del_timer_sync(&np->nic_poll);
2339
2340 netif_stop_queue(dev);
2341 spin_lock_irq(&np->lock);
2342 nv_stop_tx(dev);
2343 nv_stop_rx(dev);
2344 nv_txrx_reset(dev);
2345
2346 /* disable interrupts on the nic or we will lock up */
2347 base = get_hwbase(dev);
2348 writel(0, base + NvRegIrqMask);
2349 pci_push(base);
2350 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
2351
2352 spin_unlock_irq(&np->lock);
2353
2354 free_irq(dev->irq, dev);
2355
2356 drain_ring(dev);
2357
2358 if (np->wolenabled)
2359 nv_start_rx(dev);
2360
2361 /* special op: write back the misordered MAC address - otherwise
2362 * the next nv_probe would see a wrong address.
2363 */
2364 writel(np->orig_mac[0], base + NvRegMacAddrA);
2365 writel(np->orig_mac[1], base + NvRegMacAddrB);
2366
2367 /* FIXME: power down nic */
2368
2369 return 0;
2370 }
2371
2372 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
2373 {
2374 struct net_device *dev;
2375 struct fe_priv *np;
2376 unsigned long addr;
2377 u8 __iomem *base;
2378 int err, i;
2379
2380 dev = alloc_etherdev(sizeof(struct fe_priv));
2381 err = -ENOMEM;
2382 if (!dev)
2383 goto out;
2384
2385 np = netdev_priv(dev);
2386 np->pci_dev = pci_dev;
2387 spin_lock_init(&np->lock);
2388 SET_MODULE_OWNER(dev);
2389 SET_NETDEV_DEV(dev, &pci_dev->dev);
2390
2391 init_timer(&np->oom_kick);
2392 np->oom_kick.data = (unsigned long) dev;
2393 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
2394 init_timer(&np->nic_poll);
2395 np->nic_poll.data = (unsigned long) dev;
2396 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
2397
2398 err = pci_enable_device(pci_dev);
2399 if (err) {
2400 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
2401 err, pci_name(pci_dev));
2402 goto out_free;
2403 }
2404
2405 pci_set_master(pci_dev);
2406
2407 err = pci_request_regions(pci_dev, DRV_NAME);
2408 if (err < 0)
2409 goto out_disable;
2410
2411 err = -EINVAL;
2412 addr = 0;
2413 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
2414 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
2415 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
2416 pci_resource_len(pci_dev, i),
2417 pci_resource_flags(pci_dev, i));
2418 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
2419 pci_resource_len(pci_dev, i) >= NV_PCI_REGSZ) {
2420 addr = pci_resource_start(pci_dev, i);
2421 break;
2422 }
2423 }
2424 if (i == DEVICE_COUNT_RESOURCE) {
2425 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
2426 pci_name(pci_dev));
2427 goto out_relreg;
2428 }
2429
2430 /* handle different descriptor versions */
2431 if (id->driver_data & DEV_HAS_HIGH_DMA) {
2432 /* packet format 3: supports 40-bit addressing */
2433 np->desc_ver = DESC_VER_3;
2434 if (pci_set_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
2435 printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
2436 pci_name(pci_dev));
2437 } else {
2438 dev->features |= NETIF_F_HIGHDMA;
2439 }
2440 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
2441 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
2442 /* packet format 2: supports jumbo frames */
2443 np->desc_ver = DESC_VER_2;
2444 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
2445 } else {
2446 /* original packet format */
2447 np->desc_ver = DESC_VER_1;
2448 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
2449 }
2450
2451 np->pkt_limit = NV_PKTLIMIT_1;
2452 if (id->driver_data & DEV_HAS_LARGEDESC)
2453 np->pkt_limit = NV_PKTLIMIT_2;
2454
2455 if (id->driver_data & DEV_HAS_CHECKSUM) {
2456 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
2457 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
2458 #ifdef NETIF_F_TSO
2459 /* disabled dev->features |= NETIF_F_TSO; */
2460 #endif
2461 }
2462
2463 err = -ENOMEM;
2464 np->base = ioremap(addr, NV_PCI_REGSZ);
2465 if (!np->base)
2466 goto out_relreg;
2467 dev->base_addr = (unsigned long)np->base;
2468
2469 dev->irq = pci_dev->irq;
2470
2471 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2472 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
2473 sizeof(struct ring_desc) * (RX_RING + TX_RING),
2474 &np->ring_addr);
2475 if (!np->rx_ring.orig)
2476 goto out_unmap;
2477 np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
2478 } else {
2479 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
2480 sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
2481 &np->ring_addr);
2482 if (!np->rx_ring.ex)
2483 goto out_unmap;
2484 np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
2485 }
2486
2487 dev->open = nv_open;
2488 dev->stop = nv_close;
2489 dev->hard_start_xmit = nv_start_xmit;
2490 dev->get_stats = nv_get_stats;
2491 dev->change_mtu = nv_change_mtu;
2492 dev->set_mac_address = nv_set_mac_address;
2493 dev->set_multicast_list = nv_set_multicast;
2494 #ifdef CONFIG_NET_POLL_CONTROLLER
2495 dev->poll_controller = nv_poll_controller;
2496 #endif
2497 SET_ETHTOOL_OPS(dev, &ops);
2498 dev->tx_timeout = nv_tx_timeout;
2499 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
2500
2501 pci_set_drvdata(pci_dev, dev);
2502
2503 /* read the mac address */
2504 base = get_hwbase(dev);
2505 np->orig_mac[0] = readl(base + NvRegMacAddrA);
2506 np->orig_mac[1] = readl(base + NvRegMacAddrB);
2507
2508 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
2509 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
2510 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
2511 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
2512 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
2513 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
2514 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
2515
2516 if (!is_valid_ether_addr(dev->perm_addr)) {
2517 /*
2518 * Bad mac address. At least one bios sets the mac address
2519 * to 01:23:45:67:89:ab
2520 */
2521 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
2522 pci_name(pci_dev),
2523 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
2524 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
2525 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
2526 dev->dev_addr[0] = 0x00;
2527 dev->dev_addr[1] = 0x00;
2528 dev->dev_addr[2] = 0x6c;
2529 get_random_bytes(&dev->dev_addr[3], 3);
2530 }
2531
2532 dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
2533 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
2534 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
2535
2536 /* disable WOL */
2537 writel(0, base + NvRegWakeUpFlags);
2538 np->wolenabled = 0;
2539
2540 if (np->desc_ver == DESC_VER_1) {
2541 np->tx_flags = NV_TX_VALID;
2542 } else {
2543 np->tx_flags = NV_TX2_VALID;
2544 }
2545 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
2546 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
2547 else
2548 np->irqmask = NVREG_IRQMASK_CPU;
2549
2550 if (id->driver_data & DEV_NEED_TIMERIRQ)
2551 np->irqmask |= NVREG_IRQ_TIMER;
2552 if (id->driver_data & DEV_NEED_LINKTIMER) {
2553 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
2554 np->need_linktimer = 1;
2555 np->link_timeout = jiffies + LINK_TIMEOUT;
2556 } else {
2557 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
2558 np->need_linktimer = 0;
2559 }
2560
2561 /* find a suitable phy */
2562 for (i = 1; i <= 32; i++) {
2563 int id1, id2;
2564 int phyaddr = i & 0x1F;
2565
2566 spin_lock_irq(&np->lock);
2567 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
2568 spin_unlock_irq(&np->lock);
2569 if (id1 < 0 || id1 == 0xffff)
2570 continue;
2571 spin_lock_irq(&np->lock);
2572 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
2573 spin_unlock_irq(&np->lock);
2574 if (id2 < 0 || id2 == 0xffff)
2575 continue;
2576
2577 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
2578 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
2579 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
2580 pci_name(pci_dev), id1, id2, phyaddr);
2581 np->phyaddr = phyaddr;
2582 np->phy_oui = id1 | id2;
2583 break;
2584 }
2585 if (i == 33) {
2586 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
2587 pci_name(pci_dev));
2588 goto out_freering;
2589 }
2590
2591 /* reset it */
2592 phy_init(dev);
2593
2594 /* set default link speed settings */
2595 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2596 np->duplex = 0;
2597 np->autoneg = 1;
2598
2599 err = register_netdev(dev);
2600 if (err) {
2601 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
2602 goto out_freering;
2603 }
2604 printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
2605 dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
2606 pci_name(pci_dev));
2607
2608 return 0;
2609
2610 out_freering:
2611 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2612 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
2613 np->rx_ring.orig, np->ring_addr);
2614 else
2615 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
2616 np->rx_ring.ex, np->ring_addr);
2617 pci_set_drvdata(pci_dev, NULL);
2618 out_unmap:
2619 iounmap(get_hwbase(dev));
2620 out_relreg:
2621 pci_release_regions(pci_dev);
2622 out_disable:
2623 pci_disable_device(pci_dev);
2624 out_free:
2625 free_netdev(dev);
2626 out:
2627 return err;
2628 }
2629
2630 static void __devexit nv_remove(struct pci_dev *pci_dev)
2631 {
2632 struct net_device *dev = pci_get_drvdata(pci_dev);
2633 struct fe_priv *np = netdev_priv(dev);
2634
2635 unregister_netdev(dev);
2636
2637 /* free all structures */
2638 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2639 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
2640 else
2641 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
2642 iounmap(get_hwbase(dev));
2643 pci_release_regions(pci_dev);
2644 pci_disable_device(pci_dev);
2645 free_netdev(dev);
2646 pci_set_drvdata(pci_dev, NULL);
2647 }
2648
2649 static struct pci_device_id pci_tbl[] = {
2650 { /* nForce Ethernet Controller */
2651 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
2652 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2653 },
2654 { /* nForce2 Ethernet Controller */
2655 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
2656 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2657 },
2658 { /* nForce3 Ethernet Controller */
2659 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
2660 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2661 },
2662 { /* nForce3 Ethernet Controller */
2663 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
2664 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2665 },
2666 { /* nForce3 Ethernet Controller */
2667 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
2668 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2669 },
2670 { /* nForce3 Ethernet Controller */
2671 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
2672 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2673 },
2674 { /* nForce3 Ethernet Controller */
2675 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
2676 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2677 },
2678 { /* CK804 Ethernet Controller */
2679 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
2680 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2681 },
2682 { /* CK804 Ethernet Controller */
2683 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
2684 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2685 },
2686 { /* MCP04 Ethernet Controller */
2687 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
2688 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2689 },
2690 { /* MCP04 Ethernet Controller */
2691 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
2692 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2693 },
2694 { /* MCP51 Ethernet Controller */
2695 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
2696 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
2697 },
2698 { /* MCP51 Ethernet Controller */
2699 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
2700 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
2701 },
2702 { /* MCP55 Ethernet Controller */
2703 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
2704 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2705 },
2706 { /* MCP55 Ethernet Controller */
2707 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
2708 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2709 },
2710 {0,},
2711 };
2712
2713 static struct pci_driver driver = {
2714 .name = "forcedeth",
2715 .id_table = pci_tbl,
2716 .probe = nv_probe,
2717 .remove = __devexit_p(nv_remove),
2718 };
2719
2720
2721 static int __init init_nic(void)
2722 {
2723 printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
2724 return pci_module_init(&driver);
2725 }
2726
2727 static void __exit exit_nic(void)
2728 {
2729 pci_unregister_driver(&driver);
2730 }
2731
2732 module_param(max_interrupt_work, int, 0);
2733 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
2734 module_param(optimization_mode, int, 0);
2735 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
2736 module_param(poll_interval, int, 0);
2737 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
2738
2739 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
2740 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
2741 MODULE_LICENSE("GPL");
2742
2743 MODULE_DEVICE_TABLE(pci, pci_tbl);
2744
2745 module_init(init_nic);
2746 module_exit(exit_nic);
This page took 0.139032 seconds and 6 git commands to generate.