forcedeth: Use round_jiffies for stats timer
[deliverable/linux.git] / drivers / net / forcedeth.c
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey.
7 *
8 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9 * trademarks of NVIDIA Corporation in the United States and other
10 * countries.
11 *
12 * Copyright (C) 2003,4,5 Manfred Spraul
13 * Copyright (C) 2004 Andrew de Quincey (wol support)
14 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15 * IRQ rate fixes, bigendian fixes, cleanups, verification)
16 * Copyright (c) 2004,2005,2006,2007,2008 NVIDIA Corporation
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * (at your option) any later version.
22 *
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
27 *
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, write to the Free Software
30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 *
32 * Changelog:
33 * 0.01: 05 Oct 2003: First release that compiles without warnings.
34 * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
35 * Check all PCI BARs for the register window.
36 * udelay added to mii_rw.
37 * 0.03: 06 Oct 2003: Initialize dev->irq.
38 * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
39 * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
40 * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
41 * irq mask updated
42 * 0.07: 14 Oct 2003: Further irq mask updates.
43 * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
44 * added into irq handler, NULL check for drain_ring.
45 * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
46 * requested interrupt sources.
47 * 0.10: 20 Oct 2003: First cleanup for release.
48 * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
49 * MAC Address init fix, set_multicast cleanup.
50 * 0.12: 23 Oct 2003: Cleanups for release.
51 * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
52 * Set link speed correctly. start rx before starting
53 * tx (nv_start_rx sets the link speed).
54 * 0.14: 25 Oct 2003: Nic dependant irq mask.
55 * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
56 * open.
57 * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
58 * increased to 1628 bytes.
59 * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
60 * the tx length.
61 * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
62 * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
63 * addresses, really stop rx if already running
64 * in nv_start_rx, clean up a bit.
65 * 0.20: 07 Dec 2003: alloc fixes
66 * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
67 * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
68 * on close.
69 * 0.23: 26 Jan 2004: various small cleanups
70 * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
71 * 0.25: 09 Mar 2004: wol support
72 * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
73 * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
74 * added CK804/MCP04 device IDs, code fixes
75 * for registers, link status and other minor fixes.
76 * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
77 * 0.29: 31 Aug 2004: Add backup timer for link change notification.
78 * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
79 * into nv_close, otherwise reenabling for wol can
80 * cause DMA to kfree'd memory.
81 * 0.31: 14 Nov 2004: ethtool support for getting/setting link
82 * capabilities.
83 * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
84 * 0.33: 16 May 2005: Support for MCP51 added.
85 * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
86 * 0.35: 26 Jun 2005: Support for MCP55 added.
87 * 0.36: 28 Jun 2005: Add jumbo frame support.
88 * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
89 * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
90 * per-packet flags.
91 * 0.39: 18 Jul 2005: Add 64bit descriptor support.
92 * 0.40: 19 Jul 2005: Add support for mac address change.
93 * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
94 * of nv_remove
95 * 0.42: 06 Aug 2005: Fix lack of link speed initialization
96 * in the second (and later) nv_open call
97 * 0.43: 10 Aug 2005: Add support for tx checksum.
98 * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
99 * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
100 * 0.46: 20 Oct 2005: Add irq optimization modes.
101 * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
102 * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
103 * 0.49: 10 Dec 2005: Fix tso for large buffers.
104 * 0.50: 20 Jan 2006: Add 8021pq tagging support.
105 * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
106 * 0.52: 20 Jan 2006: Add MSI/MSIX support.
107 * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
108 * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
109 * 0.55: 22 Mar 2006: Add flow control (pause frame).
110 * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
111 * 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
112 * 0.58: 30 Oct 2006: Added support for sideband management unit.
113 * 0.59: 30 Oct 2006: Added support for recoverable error.
114 * 0.60: 20 Jan 2007: Code optimizations for rings, rx & tx data paths, and stats.
115 *
116 * Known bugs:
117 * We suspect that on some hardware no TX done interrupts are generated.
118 * This means recovery from netif_stop_queue only happens if the hw timer
119 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
120 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
121 * If your hardware reliably generates tx done interrupts, then you can remove
122 * DEV_NEED_TIMERIRQ from the driver_data flags.
123 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
124 * superfluous timer interrupts from the nic.
125 */
126 #ifdef CONFIG_FORCEDETH_NAPI
127 #define DRIVERNAPI "-NAPI"
128 #else
129 #define DRIVERNAPI
130 #endif
131 #define FORCEDETH_VERSION "0.61"
132 #define DRV_NAME "forcedeth"
133
134 #include <linux/module.h>
135 #include <linux/types.h>
136 #include <linux/pci.h>
137 #include <linux/interrupt.h>
138 #include <linux/netdevice.h>
139 #include <linux/etherdevice.h>
140 #include <linux/delay.h>
141 #include <linux/spinlock.h>
142 #include <linux/ethtool.h>
143 #include <linux/timer.h>
144 #include <linux/skbuff.h>
145 #include <linux/mii.h>
146 #include <linux/random.h>
147 #include <linux/init.h>
148 #include <linux/if_vlan.h>
149 #include <linux/dma-mapping.h>
150
151 #include <asm/irq.h>
152 #include <asm/io.h>
153 #include <asm/uaccess.h>
154 #include <asm/system.h>
155
156 #if 0
157 #define dprintk printk
158 #else
159 #define dprintk(x...) do { } while (0)
160 #endif
161
162 #define TX_WORK_PER_LOOP 64
163 #define RX_WORK_PER_LOOP 64
164
165 /*
166 * Hardware access:
167 */
168
169 #define DEV_NEED_TIMERIRQ 0x00001 /* set the timer irq flag in the irq mask */
170 #define DEV_NEED_LINKTIMER 0x00002 /* poll link settings. Relies on the timer irq */
171 #define DEV_HAS_LARGEDESC 0x00004 /* device supports jumbo frames and needs packet format 2 */
172 #define DEV_HAS_HIGH_DMA 0x00008 /* device supports 64bit dma */
173 #define DEV_HAS_CHECKSUM 0x00010 /* device supports tx and rx checksum offloads */
174 #define DEV_HAS_VLAN 0x00020 /* device supports vlan tagging and striping */
175 #define DEV_HAS_MSI 0x00040 /* device supports MSI */
176 #define DEV_HAS_MSI_X 0x00080 /* device supports MSI-X */
177 #define DEV_HAS_POWER_CNTRL 0x00100 /* device supports power savings */
178 #define DEV_HAS_STATISTICS_V1 0x00200 /* device supports hw statistics version 1 */
179 #define DEV_HAS_STATISTICS_V2 0x00400 /* device supports hw statistics version 2 */
180 #define DEV_HAS_TEST_EXTENDED 0x00800 /* device supports extended diagnostic test */
181 #define DEV_HAS_MGMT_UNIT 0x01000 /* device supports management unit */
182 #define DEV_HAS_CORRECT_MACADDR 0x02000 /* device supports correct mac address order */
183 #define DEV_HAS_COLLISION_FIX 0x04000 /* device supports tx collision fix */
184 #define DEV_HAS_PAUSEFRAME_TX_V1 0x08000 /* device supports tx pause frames version 1 */
185 #define DEV_HAS_PAUSEFRAME_TX_V2 0x10000 /* device supports tx pause frames version 2 */
186 #define DEV_HAS_PAUSEFRAME_TX_V3 0x20000 /* device supports tx pause frames version 3 */
187 #define DEV_NEED_TX_LIMIT 0x40000 /* device needs to limit tx */
188
189 enum {
190 NvRegIrqStatus = 0x000,
191 #define NVREG_IRQSTAT_MIIEVENT 0x040
192 #define NVREG_IRQSTAT_MASK 0x81ff
193 NvRegIrqMask = 0x004,
194 #define NVREG_IRQ_RX_ERROR 0x0001
195 #define NVREG_IRQ_RX 0x0002
196 #define NVREG_IRQ_RX_NOBUF 0x0004
197 #define NVREG_IRQ_TX_ERR 0x0008
198 #define NVREG_IRQ_TX_OK 0x0010
199 #define NVREG_IRQ_TIMER 0x0020
200 #define NVREG_IRQ_LINK 0x0040
201 #define NVREG_IRQ_RX_FORCED 0x0080
202 #define NVREG_IRQ_TX_FORCED 0x0100
203 #define NVREG_IRQ_RECOVER_ERROR 0x8000
204 #define NVREG_IRQMASK_THROUGHPUT 0x00df
205 #define NVREG_IRQMASK_CPU 0x0060
206 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
207 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
208 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
209
210 #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
211 NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
212 NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
213
214 NvRegUnknownSetupReg6 = 0x008,
215 #define NVREG_UNKSETUP6_VAL 3
216
217 /*
218 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
219 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
220 */
221 NvRegPollingInterval = 0x00c,
222 #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
223 #define NVREG_POLL_DEFAULT_CPU 13
224 NvRegMSIMap0 = 0x020,
225 NvRegMSIMap1 = 0x024,
226 NvRegMSIIrqMask = 0x030,
227 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
228 NvRegMisc1 = 0x080,
229 #define NVREG_MISC1_PAUSE_TX 0x01
230 #define NVREG_MISC1_HD 0x02
231 #define NVREG_MISC1_FORCE 0x3b0f3c
232
233 NvRegMacReset = 0x34,
234 #define NVREG_MAC_RESET_ASSERT 0x0F3
235 NvRegTransmitterControl = 0x084,
236 #define NVREG_XMITCTL_START 0x01
237 #define NVREG_XMITCTL_MGMT_ST 0x40000000
238 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
239 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
240 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
241 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
242 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
243 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
244 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
245 #define NVREG_XMITCTL_HOST_LOADED 0x00004000
246 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
247 NvRegTransmitterStatus = 0x088,
248 #define NVREG_XMITSTAT_BUSY 0x01
249
250 NvRegPacketFilterFlags = 0x8c,
251 #define NVREG_PFF_PAUSE_RX 0x08
252 #define NVREG_PFF_ALWAYS 0x7F0000
253 #define NVREG_PFF_PROMISC 0x80
254 #define NVREG_PFF_MYADDR 0x20
255 #define NVREG_PFF_LOOPBACK 0x10
256
257 NvRegOffloadConfig = 0x90,
258 #define NVREG_OFFLOAD_HOMEPHY 0x601
259 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
260 NvRegReceiverControl = 0x094,
261 #define NVREG_RCVCTL_START 0x01
262 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
263 NvRegReceiverStatus = 0x98,
264 #define NVREG_RCVSTAT_BUSY 0x01
265
266 NvRegRandomSeed = 0x9c,
267 #define NVREG_RNDSEED_MASK 0x00ff
268 #define NVREG_RNDSEED_FORCE 0x7f00
269 #define NVREG_RNDSEED_FORCE2 0x2d00
270 #define NVREG_RNDSEED_FORCE3 0x7400
271
272 NvRegTxDeferral = 0xA0,
273 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
274 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
275 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
276 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
277 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
278 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
279 NvRegRxDeferral = 0xA4,
280 #define NVREG_RX_DEFERRAL_DEFAULT 0x16
281 NvRegMacAddrA = 0xA8,
282 NvRegMacAddrB = 0xAC,
283 NvRegMulticastAddrA = 0xB0,
284 #define NVREG_MCASTADDRA_FORCE 0x01
285 NvRegMulticastAddrB = 0xB4,
286 NvRegMulticastMaskA = 0xB8,
287 #define NVREG_MCASTMASKA_NONE 0xffffffff
288 NvRegMulticastMaskB = 0xBC,
289 #define NVREG_MCASTMASKB_NONE 0xffff
290
291 NvRegPhyInterface = 0xC0,
292 #define PHY_RGMII 0x10000000
293
294 NvRegTxRingPhysAddr = 0x100,
295 NvRegRxRingPhysAddr = 0x104,
296 NvRegRingSizes = 0x108,
297 #define NVREG_RINGSZ_TXSHIFT 0
298 #define NVREG_RINGSZ_RXSHIFT 16
299 NvRegTransmitPoll = 0x10c,
300 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
301 NvRegLinkSpeed = 0x110,
302 #define NVREG_LINKSPEED_FORCE 0x10000
303 #define NVREG_LINKSPEED_10 1000
304 #define NVREG_LINKSPEED_100 100
305 #define NVREG_LINKSPEED_1000 50
306 #define NVREG_LINKSPEED_MASK (0xFFF)
307 NvRegUnknownSetupReg5 = 0x130,
308 #define NVREG_UNKSETUP5_BIT31 (1<<31)
309 NvRegTxWatermark = 0x13c,
310 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
311 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
312 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
313 NvRegTxRxControl = 0x144,
314 #define NVREG_TXRXCTL_KICK 0x0001
315 #define NVREG_TXRXCTL_BIT1 0x0002
316 #define NVREG_TXRXCTL_BIT2 0x0004
317 #define NVREG_TXRXCTL_IDLE 0x0008
318 #define NVREG_TXRXCTL_RESET 0x0010
319 #define NVREG_TXRXCTL_RXCHECK 0x0400
320 #define NVREG_TXRXCTL_DESC_1 0
321 #define NVREG_TXRXCTL_DESC_2 0x002100
322 #define NVREG_TXRXCTL_DESC_3 0xc02200
323 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
324 #define NVREG_TXRXCTL_VLANINS 0x00080
325 NvRegTxRingPhysAddrHigh = 0x148,
326 NvRegRxRingPhysAddrHigh = 0x14C,
327 NvRegTxPauseFrame = 0x170,
328 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
329 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
330 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
331 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
332 NvRegMIIStatus = 0x180,
333 #define NVREG_MIISTAT_ERROR 0x0001
334 #define NVREG_MIISTAT_LINKCHANGE 0x0008
335 #define NVREG_MIISTAT_MASK_RW 0x0007
336 #define NVREG_MIISTAT_MASK_ALL 0x000f
337 NvRegMIIMask = 0x184,
338 #define NVREG_MII_LINKCHANGE 0x0008
339
340 NvRegAdapterControl = 0x188,
341 #define NVREG_ADAPTCTL_START 0x02
342 #define NVREG_ADAPTCTL_LINKUP 0x04
343 #define NVREG_ADAPTCTL_PHYVALID 0x40000
344 #define NVREG_ADAPTCTL_RUNNING 0x100000
345 #define NVREG_ADAPTCTL_PHYSHIFT 24
346 NvRegMIISpeed = 0x18c,
347 #define NVREG_MIISPEED_BIT8 (1<<8)
348 #define NVREG_MIIDELAY 5
349 NvRegMIIControl = 0x190,
350 #define NVREG_MIICTL_INUSE 0x08000
351 #define NVREG_MIICTL_WRITE 0x00400
352 #define NVREG_MIICTL_ADDRSHIFT 5
353 NvRegMIIData = 0x194,
354 NvRegWakeUpFlags = 0x200,
355 #define NVREG_WAKEUPFLAGS_VAL 0x7770
356 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
357 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
358 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
359 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
360 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
361 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
362 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
363 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
364 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
365 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
366
367 NvRegPatternCRC = 0x204,
368 NvRegPatternMask = 0x208,
369 NvRegPowerCap = 0x268,
370 #define NVREG_POWERCAP_D3SUPP (1<<30)
371 #define NVREG_POWERCAP_D2SUPP (1<<26)
372 #define NVREG_POWERCAP_D1SUPP (1<<25)
373 NvRegPowerState = 0x26c,
374 #define NVREG_POWERSTATE_POWEREDUP 0x8000
375 #define NVREG_POWERSTATE_VALID 0x0100
376 #define NVREG_POWERSTATE_MASK 0x0003
377 #define NVREG_POWERSTATE_D0 0x0000
378 #define NVREG_POWERSTATE_D1 0x0001
379 #define NVREG_POWERSTATE_D2 0x0002
380 #define NVREG_POWERSTATE_D3 0x0003
381 NvRegTxCnt = 0x280,
382 NvRegTxZeroReXmt = 0x284,
383 NvRegTxOneReXmt = 0x288,
384 NvRegTxManyReXmt = 0x28c,
385 NvRegTxLateCol = 0x290,
386 NvRegTxUnderflow = 0x294,
387 NvRegTxLossCarrier = 0x298,
388 NvRegTxExcessDef = 0x29c,
389 NvRegTxRetryErr = 0x2a0,
390 NvRegRxFrameErr = 0x2a4,
391 NvRegRxExtraByte = 0x2a8,
392 NvRegRxLateCol = 0x2ac,
393 NvRegRxRunt = 0x2b0,
394 NvRegRxFrameTooLong = 0x2b4,
395 NvRegRxOverflow = 0x2b8,
396 NvRegRxFCSErr = 0x2bc,
397 NvRegRxFrameAlignErr = 0x2c0,
398 NvRegRxLenErr = 0x2c4,
399 NvRegRxUnicast = 0x2c8,
400 NvRegRxMulticast = 0x2cc,
401 NvRegRxBroadcast = 0x2d0,
402 NvRegTxDef = 0x2d4,
403 NvRegTxFrame = 0x2d8,
404 NvRegRxCnt = 0x2dc,
405 NvRegTxPause = 0x2e0,
406 NvRegRxPause = 0x2e4,
407 NvRegRxDropFrame = 0x2e8,
408 NvRegVlanControl = 0x300,
409 #define NVREG_VLANCONTROL_ENABLE 0x2000
410 NvRegMSIXMap0 = 0x3e0,
411 NvRegMSIXMap1 = 0x3e4,
412 NvRegMSIXIrqStatus = 0x3f0,
413
414 NvRegPowerState2 = 0x600,
415 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
416 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
417 };
418
419 /* Big endian: should work, but is untested */
420 struct ring_desc {
421 __le32 buf;
422 __le32 flaglen;
423 };
424
425 struct ring_desc_ex {
426 __le32 bufhigh;
427 __le32 buflow;
428 __le32 txvlan;
429 __le32 flaglen;
430 };
431
432 union ring_type {
433 struct ring_desc* orig;
434 struct ring_desc_ex* ex;
435 };
436
437 #define FLAG_MASK_V1 0xffff0000
438 #define FLAG_MASK_V2 0xffffc000
439 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
440 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
441
442 #define NV_TX_LASTPACKET (1<<16)
443 #define NV_TX_RETRYERROR (1<<19)
444 #define NV_TX_FORCED_INTERRUPT (1<<24)
445 #define NV_TX_DEFERRED (1<<26)
446 #define NV_TX_CARRIERLOST (1<<27)
447 #define NV_TX_LATECOLLISION (1<<28)
448 #define NV_TX_UNDERFLOW (1<<29)
449 #define NV_TX_ERROR (1<<30)
450 #define NV_TX_VALID (1<<31)
451
452 #define NV_TX2_LASTPACKET (1<<29)
453 #define NV_TX2_RETRYERROR (1<<18)
454 #define NV_TX2_FORCED_INTERRUPT (1<<30)
455 #define NV_TX2_DEFERRED (1<<25)
456 #define NV_TX2_CARRIERLOST (1<<26)
457 #define NV_TX2_LATECOLLISION (1<<27)
458 #define NV_TX2_UNDERFLOW (1<<28)
459 /* error and valid are the same for both */
460 #define NV_TX2_ERROR (1<<30)
461 #define NV_TX2_VALID (1<<31)
462 #define NV_TX2_TSO (1<<28)
463 #define NV_TX2_TSO_SHIFT 14
464 #define NV_TX2_TSO_MAX_SHIFT 14
465 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
466 #define NV_TX2_CHECKSUM_L3 (1<<27)
467 #define NV_TX2_CHECKSUM_L4 (1<<26)
468
469 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
470
471 #define NV_RX_DESCRIPTORVALID (1<<16)
472 #define NV_RX_MISSEDFRAME (1<<17)
473 #define NV_RX_SUBSTRACT1 (1<<18)
474 #define NV_RX_ERROR1 (1<<23)
475 #define NV_RX_ERROR2 (1<<24)
476 #define NV_RX_ERROR3 (1<<25)
477 #define NV_RX_ERROR4 (1<<26)
478 #define NV_RX_CRCERR (1<<27)
479 #define NV_RX_OVERFLOW (1<<28)
480 #define NV_RX_FRAMINGERR (1<<29)
481 #define NV_RX_ERROR (1<<30)
482 #define NV_RX_AVAIL (1<<31)
483
484 #define NV_RX2_CHECKSUMMASK (0x1C000000)
485 #define NV_RX2_CHECKSUM_IP (0x10000000)
486 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
487 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
488 #define NV_RX2_DESCRIPTORVALID (1<<29)
489 #define NV_RX2_SUBSTRACT1 (1<<25)
490 #define NV_RX2_ERROR1 (1<<18)
491 #define NV_RX2_ERROR2 (1<<19)
492 #define NV_RX2_ERROR3 (1<<20)
493 #define NV_RX2_ERROR4 (1<<21)
494 #define NV_RX2_CRCERR (1<<22)
495 #define NV_RX2_OVERFLOW (1<<23)
496 #define NV_RX2_FRAMINGERR (1<<24)
497 /* error and avail are the same for both */
498 #define NV_RX2_ERROR (1<<30)
499 #define NV_RX2_AVAIL (1<<31)
500
501 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
502 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
503
504 /* Miscelaneous hardware related defines: */
505 #define NV_PCI_REGSZ_VER1 0x270
506 #define NV_PCI_REGSZ_VER2 0x2d4
507 #define NV_PCI_REGSZ_VER3 0x604
508
509 /* various timeout delays: all in usec */
510 #define NV_TXRX_RESET_DELAY 4
511 #define NV_TXSTOP_DELAY1 10
512 #define NV_TXSTOP_DELAY1MAX 500000
513 #define NV_TXSTOP_DELAY2 100
514 #define NV_RXSTOP_DELAY1 10
515 #define NV_RXSTOP_DELAY1MAX 500000
516 #define NV_RXSTOP_DELAY2 100
517 #define NV_SETUP5_DELAY 5
518 #define NV_SETUP5_DELAYMAX 50000
519 #define NV_POWERUP_DELAY 5
520 #define NV_POWERUP_DELAYMAX 5000
521 #define NV_MIIBUSY_DELAY 50
522 #define NV_MIIPHY_DELAY 10
523 #define NV_MIIPHY_DELAYMAX 10000
524 #define NV_MAC_RESET_DELAY 64
525
526 #define NV_WAKEUPPATTERNS 5
527 #define NV_WAKEUPMASKENTRIES 4
528
529 /* General driver defaults */
530 #define NV_WATCHDOG_TIMEO (5*HZ)
531
532 #define RX_RING_DEFAULT 128
533 #define TX_RING_DEFAULT 256
534 #define RX_RING_MIN 128
535 #define TX_RING_MIN 64
536 #define RING_MAX_DESC_VER_1 1024
537 #define RING_MAX_DESC_VER_2_3 16384
538
539 /* rx/tx mac addr + type + vlan + align + slack*/
540 #define NV_RX_HEADERS (64)
541 /* even more slack. */
542 #define NV_RX_ALLOC_PAD (64)
543
544 /* maximum mtu size */
545 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
546 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
547
548 #define OOM_REFILL (1+HZ/20)
549 #define POLL_WAIT (1+HZ/100)
550 #define LINK_TIMEOUT (3*HZ)
551 #define STATS_INTERVAL (10*HZ)
552
553 /*
554 * desc_ver values:
555 * The nic supports three different descriptor types:
556 * - DESC_VER_1: Original
557 * - DESC_VER_2: support for jumbo frames.
558 * - DESC_VER_3: 64-bit format.
559 */
560 #define DESC_VER_1 1
561 #define DESC_VER_2 2
562 #define DESC_VER_3 3
563
564 /* PHY defines */
565 #define PHY_OUI_MARVELL 0x5043
566 #define PHY_OUI_CICADA 0x03f1
567 #define PHY_OUI_VITESSE 0x01c1
568 #define PHY_OUI_REALTEK 0x0732
569 #define PHYID1_OUI_MASK 0x03ff
570 #define PHYID1_OUI_SHFT 6
571 #define PHYID2_OUI_MASK 0xfc00
572 #define PHYID2_OUI_SHFT 10
573 #define PHYID2_MODEL_MASK 0x03f0
574 #define PHY_MODEL_MARVELL_E3016 0x220
575 #define PHY_MARVELL_E3016_INITMASK 0x0300
576 #define PHY_CICADA_INIT1 0x0f000
577 #define PHY_CICADA_INIT2 0x0e00
578 #define PHY_CICADA_INIT3 0x01000
579 #define PHY_CICADA_INIT4 0x0200
580 #define PHY_CICADA_INIT5 0x0004
581 #define PHY_CICADA_INIT6 0x02000
582 #define PHY_VITESSE_INIT_REG1 0x1f
583 #define PHY_VITESSE_INIT_REG2 0x10
584 #define PHY_VITESSE_INIT_REG3 0x11
585 #define PHY_VITESSE_INIT_REG4 0x12
586 #define PHY_VITESSE_INIT_MSK1 0xc
587 #define PHY_VITESSE_INIT_MSK2 0x0180
588 #define PHY_VITESSE_INIT1 0x52b5
589 #define PHY_VITESSE_INIT2 0xaf8a
590 #define PHY_VITESSE_INIT3 0x8
591 #define PHY_VITESSE_INIT4 0x8f8a
592 #define PHY_VITESSE_INIT5 0xaf86
593 #define PHY_VITESSE_INIT6 0x8f86
594 #define PHY_VITESSE_INIT7 0xaf82
595 #define PHY_VITESSE_INIT8 0x0100
596 #define PHY_VITESSE_INIT9 0x8f82
597 #define PHY_VITESSE_INIT10 0x0
598 #define PHY_REALTEK_INIT_REG1 0x1f
599 #define PHY_REALTEK_INIT_REG2 0x19
600 #define PHY_REALTEK_INIT_REG3 0x13
601 #define PHY_REALTEK_INIT1 0x0000
602 #define PHY_REALTEK_INIT2 0x8e00
603 #define PHY_REALTEK_INIT3 0x0001
604 #define PHY_REALTEK_INIT4 0xad17
605
606 #define PHY_GIGABIT 0x0100
607
608 #define PHY_TIMEOUT 0x1
609 #define PHY_ERROR 0x2
610
611 #define PHY_100 0x1
612 #define PHY_1000 0x2
613 #define PHY_HALF 0x100
614
615 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
616 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
617 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
618 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
619 #define NV_PAUSEFRAME_RX_REQ 0x0010
620 #define NV_PAUSEFRAME_TX_REQ 0x0020
621 #define NV_PAUSEFRAME_AUTONEG 0x0040
622
623 /* MSI/MSI-X defines */
624 #define NV_MSI_X_MAX_VECTORS 8
625 #define NV_MSI_X_VECTORS_MASK 0x000f
626 #define NV_MSI_CAPABLE 0x0010
627 #define NV_MSI_X_CAPABLE 0x0020
628 #define NV_MSI_ENABLED 0x0040
629 #define NV_MSI_X_ENABLED 0x0080
630
631 #define NV_MSI_X_VECTOR_ALL 0x0
632 #define NV_MSI_X_VECTOR_RX 0x0
633 #define NV_MSI_X_VECTOR_TX 0x1
634 #define NV_MSI_X_VECTOR_OTHER 0x2
635
636 #define NV_RESTART_TX 0x1
637 #define NV_RESTART_RX 0x2
638
639 #define NV_TX_LIMIT_COUNT 16
640
641 /* statistics */
642 struct nv_ethtool_str {
643 char name[ETH_GSTRING_LEN];
644 };
645
646 static const struct nv_ethtool_str nv_estats_str[] = {
647 { "tx_bytes" },
648 { "tx_zero_rexmt" },
649 { "tx_one_rexmt" },
650 { "tx_many_rexmt" },
651 { "tx_late_collision" },
652 { "tx_fifo_errors" },
653 { "tx_carrier_errors" },
654 { "tx_excess_deferral" },
655 { "tx_retry_error" },
656 { "rx_frame_error" },
657 { "rx_extra_byte" },
658 { "rx_late_collision" },
659 { "rx_runt" },
660 { "rx_frame_too_long" },
661 { "rx_over_errors" },
662 { "rx_crc_errors" },
663 { "rx_frame_align_error" },
664 { "rx_length_error" },
665 { "rx_unicast" },
666 { "rx_multicast" },
667 { "rx_broadcast" },
668 { "rx_packets" },
669 { "rx_errors_total" },
670 { "tx_errors_total" },
671
672 /* version 2 stats */
673 { "tx_deferral" },
674 { "tx_packets" },
675 { "rx_bytes" },
676 { "tx_pause" },
677 { "rx_pause" },
678 { "rx_drop_frame" }
679 };
680
681 struct nv_ethtool_stats {
682 u64 tx_bytes;
683 u64 tx_zero_rexmt;
684 u64 tx_one_rexmt;
685 u64 tx_many_rexmt;
686 u64 tx_late_collision;
687 u64 tx_fifo_errors;
688 u64 tx_carrier_errors;
689 u64 tx_excess_deferral;
690 u64 tx_retry_error;
691 u64 rx_frame_error;
692 u64 rx_extra_byte;
693 u64 rx_late_collision;
694 u64 rx_runt;
695 u64 rx_frame_too_long;
696 u64 rx_over_errors;
697 u64 rx_crc_errors;
698 u64 rx_frame_align_error;
699 u64 rx_length_error;
700 u64 rx_unicast;
701 u64 rx_multicast;
702 u64 rx_broadcast;
703 u64 rx_packets;
704 u64 rx_errors_total;
705 u64 tx_errors_total;
706
707 /* version 2 stats */
708 u64 tx_deferral;
709 u64 tx_packets;
710 u64 rx_bytes;
711 u64 tx_pause;
712 u64 rx_pause;
713 u64 rx_drop_frame;
714 };
715
716 #define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
717 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
718
719 /* diagnostics */
720 #define NV_TEST_COUNT_BASE 3
721 #define NV_TEST_COUNT_EXTENDED 4
722
723 static const struct nv_ethtool_str nv_etests_str[] = {
724 { "link (online/offline)" },
725 { "register (offline) " },
726 { "interrupt (offline) " },
727 { "loopback (offline) " }
728 };
729
730 struct register_test {
731 __u32 reg;
732 __u32 mask;
733 };
734
735 static const struct register_test nv_registers_test[] = {
736 { NvRegUnknownSetupReg6, 0x01 },
737 { NvRegMisc1, 0x03c },
738 { NvRegOffloadConfig, 0x03ff },
739 { NvRegMulticastAddrA, 0xffffffff },
740 { NvRegTxWatermark, 0x0ff },
741 { NvRegWakeUpFlags, 0x07777 },
742 { 0,0 }
743 };
744
745 struct nv_skb_map {
746 struct sk_buff *skb;
747 dma_addr_t dma;
748 unsigned int dma_len;
749 struct ring_desc_ex *first_tx_desc;
750 struct nv_skb_map *next_tx_ctx;
751 };
752
753 /*
754 * SMP locking:
755 * All hardware access under dev->priv->lock, except the performance
756 * critical parts:
757 * - rx is (pseudo-) lockless: it relies on the single-threading provided
758 * by the arch code for interrupts.
759 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
760 * needs dev->priv->lock :-(
761 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
762 */
763
764 /* in dev: base, irq */
765 struct fe_priv {
766 spinlock_t lock;
767
768 struct net_device *dev;
769 struct napi_struct napi;
770
771 /* General data:
772 * Locking: spin_lock(&np->lock); */
773 struct nv_ethtool_stats estats;
774 int in_shutdown;
775 u32 linkspeed;
776 int duplex;
777 int autoneg;
778 int fixed_mode;
779 int phyaddr;
780 int wolenabled;
781 unsigned int phy_oui;
782 unsigned int phy_model;
783 u16 gigabit;
784 int intr_test;
785 int recover_error;
786
787 /* General data: RO fields */
788 dma_addr_t ring_addr;
789 struct pci_dev *pci_dev;
790 u32 orig_mac[2];
791 u32 irqmask;
792 u32 desc_ver;
793 u32 txrxctl_bits;
794 u32 vlanctl_bits;
795 u32 driver_data;
796 u32 register_size;
797 int rx_csum;
798 u32 mac_in_use;
799
800 void __iomem *base;
801
802 /* rx specific fields.
803 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
804 */
805 union ring_type get_rx, put_rx, first_rx, last_rx;
806 struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
807 struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
808 struct nv_skb_map *rx_skb;
809
810 union ring_type rx_ring;
811 unsigned int rx_buf_sz;
812 unsigned int pkt_limit;
813 struct timer_list oom_kick;
814 struct timer_list nic_poll;
815 struct timer_list stats_poll;
816 u32 nic_poll_irq;
817 int rx_ring_size;
818
819 /* media detection workaround.
820 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
821 */
822 int need_linktimer;
823 unsigned long link_timeout;
824 /*
825 * tx specific fields.
826 */
827 union ring_type get_tx, put_tx, first_tx, last_tx;
828 struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
829 struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
830 struct nv_skb_map *tx_skb;
831
832 union ring_type tx_ring;
833 u32 tx_flags;
834 int tx_ring_size;
835 int tx_limit;
836 u32 tx_pkts_in_progress;
837 struct nv_skb_map *tx_change_owner;
838 struct nv_skb_map *tx_end_flip;
839 int tx_stop;
840
841 /* vlan fields */
842 struct vlan_group *vlangrp;
843
844 /* msi/msi-x fields */
845 u32 msi_flags;
846 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
847
848 /* flow control */
849 u32 pause_flags;
850 };
851
852 /*
853 * Maximum number of loops until we assume that a bit in the irq mask
854 * is stuck. Overridable with module param.
855 */
856 static int max_interrupt_work = 5;
857
858 /*
859 * Optimization can be either throuput mode or cpu mode
860 *
861 * Throughput Mode: Every tx and rx packet will generate an interrupt.
862 * CPU Mode: Interrupts are controlled by a timer.
863 */
864 enum {
865 NV_OPTIMIZATION_MODE_THROUGHPUT,
866 NV_OPTIMIZATION_MODE_CPU
867 };
868 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
869
870 /*
871 * Poll interval for timer irq
872 *
873 * This interval determines how frequent an interrupt is generated.
874 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
875 * Min = 0, and Max = 65535
876 */
877 static int poll_interval = -1;
878
879 /*
880 * MSI interrupts
881 */
882 enum {
883 NV_MSI_INT_DISABLED,
884 NV_MSI_INT_ENABLED
885 };
886 static int msi = NV_MSI_INT_ENABLED;
887
888 /*
889 * MSIX interrupts
890 */
891 enum {
892 NV_MSIX_INT_DISABLED,
893 NV_MSIX_INT_ENABLED
894 };
895 static int msix = NV_MSIX_INT_DISABLED;
896
897 /*
898 * DMA 64bit
899 */
900 enum {
901 NV_DMA_64BIT_DISABLED,
902 NV_DMA_64BIT_ENABLED
903 };
904 static int dma_64bit = NV_DMA_64BIT_ENABLED;
905
906 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
907 {
908 return netdev_priv(dev);
909 }
910
911 static inline u8 __iomem *get_hwbase(struct net_device *dev)
912 {
913 return ((struct fe_priv *)netdev_priv(dev))->base;
914 }
915
916 static inline void pci_push(u8 __iomem *base)
917 {
918 /* force out pending posted writes */
919 readl(base);
920 }
921
922 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
923 {
924 return le32_to_cpu(prd->flaglen)
925 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
926 }
927
928 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
929 {
930 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
931 }
932
933 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
934 int delay, int delaymax, const char *msg)
935 {
936 u8 __iomem *base = get_hwbase(dev);
937
938 pci_push(base);
939 do {
940 udelay(delay);
941 delaymax -= delay;
942 if (delaymax < 0) {
943 if (msg)
944 printk(msg);
945 return 1;
946 }
947 } while ((readl(base + offset) & mask) != target);
948 return 0;
949 }
950
951 #define NV_SETUP_RX_RING 0x01
952 #define NV_SETUP_TX_RING 0x02
953
954 static inline u32 dma_low(dma_addr_t addr)
955 {
956 return addr;
957 }
958
959 static inline u32 dma_high(dma_addr_t addr)
960 {
961 return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
962 }
963
964 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
965 {
966 struct fe_priv *np = get_nvpriv(dev);
967 u8 __iomem *base = get_hwbase(dev);
968
969 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
970 if (rxtx_flags & NV_SETUP_RX_RING) {
971 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
972 }
973 if (rxtx_flags & NV_SETUP_TX_RING) {
974 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
975 }
976 } else {
977 if (rxtx_flags & NV_SETUP_RX_RING) {
978 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
979 writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
980 }
981 if (rxtx_flags & NV_SETUP_TX_RING) {
982 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
983 writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
984 }
985 }
986 }
987
988 static void free_rings(struct net_device *dev)
989 {
990 struct fe_priv *np = get_nvpriv(dev);
991
992 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
993 if (np->rx_ring.orig)
994 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
995 np->rx_ring.orig, np->ring_addr);
996 } else {
997 if (np->rx_ring.ex)
998 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
999 np->rx_ring.ex, np->ring_addr);
1000 }
1001 if (np->rx_skb)
1002 kfree(np->rx_skb);
1003 if (np->tx_skb)
1004 kfree(np->tx_skb);
1005 }
1006
1007 static int using_multi_irqs(struct net_device *dev)
1008 {
1009 struct fe_priv *np = get_nvpriv(dev);
1010
1011 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
1012 ((np->msi_flags & NV_MSI_X_ENABLED) &&
1013 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
1014 return 0;
1015 else
1016 return 1;
1017 }
1018
1019 static void nv_enable_irq(struct net_device *dev)
1020 {
1021 struct fe_priv *np = get_nvpriv(dev);
1022
1023 if (!using_multi_irqs(dev)) {
1024 if (np->msi_flags & NV_MSI_X_ENABLED)
1025 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1026 else
1027 enable_irq(np->pci_dev->irq);
1028 } else {
1029 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1030 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1031 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1032 }
1033 }
1034
1035 static void nv_disable_irq(struct net_device *dev)
1036 {
1037 struct fe_priv *np = get_nvpriv(dev);
1038
1039 if (!using_multi_irqs(dev)) {
1040 if (np->msi_flags & NV_MSI_X_ENABLED)
1041 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1042 else
1043 disable_irq(np->pci_dev->irq);
1044 } else {
1045 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1046 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1047 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1048 }
1049 }
1050
1051 /* In MSIX mode, a write to irqmask behaves as XOR */
1052 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
1053 {
1054 u8 __iomem *base = get_hwbase(dev);
1055
1056 writel(mask, base + NvRegIrqMask);
1057 }
1058
1059 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
1060 {
1061 struct fe_priv *np = get_nvpriv(dev);
1062 u8 __iomem *base = get_hwbase(dev);
1063
1064 if (np->msi_flags & NV_MSI_X_ENABLED) {
1065 writel(mask, base + NvRegIrqMask);
1066 } else {
1067 if (np->msi_flags & NV_MSI_ENABLED)
1068 writel(0, base + NvRegMSIIrqMask);
1069 writel(0, base + NvRegIrqMask);
1070 }
1071 }
1072
1073 #define MII_READ (-1)
1074 /* mii_rw: read/write a register on the PHY.
1075 *
1076 * Caller must guarantee serialization
1077 */
1078 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1079 {
1080 u8 __iomem *base = get_hwbase(dev);
1081 u32 reg;
1082 int retval;
1083
1084 writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
1085
1086 reg = readl(base + NvRegMIIControl);
1087 if (reg & NVREG_MIICTL_INUSE) {
1088 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1089 udelay(NV_MIIBUSY_DELAY);
1090 }
1091
1092 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1093 if (value != MII_READ) {
1094 writel(value, base + NvRegMIIData);
1095 reg |= NVREG_MIICTL_WRITE;
1096 }
1097 writel(reg, base + NvRegMIIControl);
1098
1099 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1100 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1101 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1102 dev->name, miireg, addr);
1103 retval = -1;
1104 } else if (value != MII_READ) {
1105 /* it was a write operation - fewer failures are detectable */
1106 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1107 dev->name, value, miireg, addr);
1108 retval = 0;
1109 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1110 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1111 dev->name, miireg, addr);
1112 retval = -1;
1113 } else {
1114 retval = readl(base + NvRegMIIData);
1115 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1116 dev->name, miireg, addr, retval);
1117 }
1118
1119 return retval;
1120 }
1121
1122 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1123 {
1124 struct fe_priv *np = netdev_priv(dev);
1125 u32 miicontrol;
1126 unsigned int tries = 0;
1127
1128 miicontrol = BMCR_RESET | bmcr_setup;
1129 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1130 return -1;
1131 }
1132
1133 /* wait for 500ms */
1134 msleep(500);
1135
1136 /* must wait till reset is deasserted */
1137 while (miicontrol & BMCR_RESET) {
1138 msleep(10);
1139 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1140 /* FIXME: 100 tries seem excessive */
1141 if (tries++ > 100)
1142 return -1;
1143 }
1144 return 0;
1145 }
1146
1147 static int phy_init(struct net_device *dev)
1148 {
1149 struct fe_priv *np = get_nvpriv(dev);
1150 u8 __iomem *base = get_hwbase(dev);
1151 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1152
1153 /* phy errata for E3016 phy */
1154 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1155 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1156 reg &= ~PHY_MARVELL_E3016_INITMASK;
1157 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1158 printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1159 return PHY_ERROR;
1160 }
1161 }
1162 if (np->phy_oui == PHY_OUI_REALTEK) {
1163 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1164 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1165 return PHY_ERROR;
1166 }
1167 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1168 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1169 return PHY_ERROR;
1170 }
1171 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1172 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1173 return PHY_ERROR;
1174 }
1175 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1176 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1177 return PHY_ERROR;
1178 }
1179 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1180 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1181 return PHY_ERROR;
1182 }
1183 }
1184
1185 /* set advertise register */
1186 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1187 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1188 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1189 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1190 return PHY_ERROR;
1191 }
1192
1193 /* get phy interface type */
1194 phyinterface = readl(base + NvRegPhyInterface);
1195
1196 /* see if gigabit phy */
1197 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1198 if (mii_status & PHY_GIGABIT) {
1199 np->gigabit = PHY_GIGABIT;
1200 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1201 mii_control_1000 &= ~ADVERTISE_1000HALF;
1202 if (phyinterface & PHY_RGMII)
1203 mii_control_1000 |= ADVERTISE_1000FULL;
1204 else
1205 mii_control_1000 &= ~ADVERTISE_1000FULL;
1206
1207 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1208 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1209 return PHY_ERROR;
1210 }
1211 }
1212 else
1213 np->gigabit = 0;
1214
1215 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1216 mii_control |= BMCR_ANENABLE;
1217
1218 /* reset the phy
1219 * (certain phys need bmcr to be setup with reset)
1220 */
1221 if (phy_reset(dev, mii_control)) {
1222 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1223 return PHY_ERROR;
1224 }
1225
1226 /* phy vendor specific configuration */
1227 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1228 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1229 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
1230 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
1231 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1232 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1233 return PHY_ERROR;
1234 }
1235 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1236 phy_reserved |= PHY_CICADA_INIT5;
1237 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1238 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1239 return PHY_ERROR;
1240 }
1241 }
1242 if (np->phy_oui == PHY_OUI_CICADA) {
1243 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1244 phy_reserved |= PHY_CICADA_INIT6;
1245 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1246 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1247 return PHY_ERROR;
1248 }
1249 }
1250 if (np->phy_oui == PHY_OUI_VITESSE) {
1251 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
1252 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1253 return PHY_ERROR;
1254 }
1255 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
1256 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1257 return PHY_ERROR;
1258 }
1259 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1260 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1261 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1262 return PHY_ERROR;
1263 }
1264 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1265 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1266 phy_reserved |= PHY_VITESSE_INIT3;
1267 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1268 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1269 return PHY_ERROR;
1270 }
1271 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
1272 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1273 return PHY_ERROR;
1274 }
1275 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
1276 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1277 return PHY_ERROR;
1278 }
1279 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1280 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1281 phy_reserved |= PHY_VITESSE_INIT3;
1282 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1283 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1284 return PHY_ERROR;
1285 }
1286 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1287 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1288 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1289 return PHY_ERROR;
1290 }
1291 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
1292 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1293 return PHY_ERROR;
1294 }
1295 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
1296 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1297 return PHY_ERROR;
1298 }
1299 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1300 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1301 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1302 return PHY_ERROR;
1303 }
1304 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1305 phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
1306 phy_reserved |= PHY_VITESSE_INIT8;
1307 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1308 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1309 return PHY_ERROR;
1310 }
1311 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
1312 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1313 return PHY_ERROR;
1314 }
1315 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
1316 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1317 return PHY_ERROR;
1318 }
1319 }
1320 if (np->phy_oui == PHY_OUI_REALTEK) {
1321 /* reset could have cleared these out, set them back */
1322 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1323 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1324 return PHY_ERROR;
1325 }
1326 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1327 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1328 return PHY_ERROR;
1329 }
1330 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1331 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1332 return PHY_ERROR;
1333 }
1334 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1335 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1336 return PHY_ERROR;
1337 }
1338 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1339 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1340 return PHY_ERROR;
1341 }
1342 }
1343
1344 /* some phys clear out pause advertisment on reset, set it back */
1345 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1346
1347 /* restart auto negotiation */
1348 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1349 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1350 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1351 return PHY_ERROR;
1352 }
1353
1354 return 0;
1355 }
1356
1357 static void nv_start_rx(struct net_device *dev)
1358 {
1359 struct fe_priv *np = netdev_priv(dev);
1360 u8 __iomem *base = get_hwbase(dev);
1361 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1362
1363 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1364 /* Already running? Stop it. */
1365 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1366 rx_ctrl &= ~NVREG_RCVCTL_START;
1367 writel(rx_ctrl, base + NvRegReceiverControl);
1368 pci_push(base);
1369 }
1370 writel(np->linkspeed, base + NvRegLinkSpeed);
1371 pci_push(base);
1372 rx_ctrl |= NVREG_RCVCTL_START;
1373 if (np->mac_in_use)
1374 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1375 writel(rx_ctrl, base + NvRegReceiverControl);
1376 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1377 dev->name, np->duplex, np->linkspeed);
1378 pci_push(base);
1379 }
1380
1381 static void nv_stop_rx(struct net_device *dev)
1382 {
1383 struct fe_priv *np = netdev_priv(dev);
1384 u8 __iomem *base = get_hwbase(dev);
1385 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1386
1387 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1388 if (!np->mac_in_use)
1389 rx_ctrl &= ~NVREG_RCVCTL_START;
1390 else
1391 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1392 writel(rx_ctrl, base + NvRegReceiverControl);
1393 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1394 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1395 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1396
1397 udelay(NV_RXSTOP_DELAY2);
1398 if (!np->mac_in_use)
1399 writel(0, base + NvRegLinkSpeed);
1400 }
1401
1402 static void nv_start_tx(struct net_device *dev)
1403 {
1404 struct fe_priv *np = netdev_priv(dev);
1405 u8 __iomem *base = get_hwbase(dev);
1406 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1407
1408 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1409 tx_ctrl |= NVREG_XMITCTL_START;
1410 if (np->mac_in_use)
1411 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1412 writel(tx_ctrl, base + NvRegTransmitterControl);
1413 pci_push(base);
1414 }
1415
1416 static void nv_stop_tx(struct net_device *dev)
1417 {
1418 struct fe_priv *np = netdev_priv(dev);
1419 u8 __iomem *base = get_hwbase(dev);
1420 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1421
1422 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1423 if (!np->mac_in_use)
1424 tx_ctrl &= ~NVREG_XMITCTL_START;
1425 else
1426 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1427 writel(tx_ctrl, base + NvRegTransmitterControl);
1428 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1429 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1430 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1431
1432 udelay(NV_TXSTOP_DELAY2);
1433 if (!np->mac_in_use)
1434 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1435 base + NvRegTransmitPoll);
1436 }
1437
1438 static void nv_txrx_reset(struct net_device *dev)
1439 {
1440 struct fe_priv *np = netdev_priv(dev);
1441 u8 __iomem *base = get_hwbase(dev);
1442
1443 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1444 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1445 pci_push(base);
1446 udelay(NV_TXRX_RESET_DELAY);
1447 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1448 pci_push(base);
1449 }
1450
1451 static void nv_mac_reset(struct net_device *dev)
1452 {
1453 struct fe_priv *np = netdev_priv(dev);
1454 u8 __iomem *base = get_hwbase(dev);
1455 u32 temp1, temp2, temp3;
1456
1457 dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1458
1459 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1460 pci_push(base);
1461
1462 /* save registers since they will be cleared on reset */
1463 temp1 = readl(base + NvRegMacAddrA);
1464 temp2 = readl(base + NvRegMacAddrB);
1465 temp3 = readl(base + NvRegTransmitPoll);
1466
1467 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1468 pci_push(base);
1469 udelay(NV_MAC_RESET_DELAY);
1470 writel(0, base + NvRegMacReset);
1471 pci_push(base);
1472 udelay(NV_MAC_RESET_DELAY);
1473
1474 /* restore saved registers */
1475 writel(temp1, base + NvRegMacAddrA);
1476 writel(temp2, base + NvRegMacAddrB);
1477 writel(temp3, base + NvRegTransmitPoll);
1478
1479 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1480 pci_push(base);
1481 }
1482
1483 static void nv_get_hw_stats(struct net_device *dev)
1484 {
1485 struct fe_priv *np = netdev_priv(dev);
1486 u8 __iomem *base = get_hwbase(dev);
1487
1488 np->estats.tx_bytes += readl(base + NvRegTxCnt);
1489 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1490 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1491 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1492 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1493 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1494 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1495 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1496 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1497 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1498 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1499 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1500 np->estats.rx_runt += readl(base + NvRegRxRunt);
1501 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1502 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1503 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1504 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1505 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1506 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1507 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1508 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1509 np->estats.rx_packets =
1510 np->estats.rx_unicast +
1511 np->estats.rx_multicast +
1512 np->estats.rx_broadcast;
1513 np->estats.rx_errors_total =
1514 np->estats.rx_crc_errors +
1515 np->estats.rx_over_errors +
1516 np->estats.rx_frame_error +
1517 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1518 np->estats.rx_late_collision +
1519 np->estats.rx_runt +
1520 np->estats.rx_frame_too_long;
1521 np->estats.tx_errors_total =
1522 np->estats.tx_late_collision +
1523 np->estats.tx_fifo_errors +
1524 np->estats.tx_carrier_errors +
1525 np->estats.tx_excess_deferral +
1526 np->estats.tx_retry_error;
1527
1528 if (np->driver_data & DEV_HAS_STATISTICS_V2) {
1529 np->estats.tx_deferral += readl(base + NvRegTxDef);
1530 np->estats.tx_packets += readl(base + NvRegTxFrame);
1531 np->estats.rx_bytes += readl(base + NvRegRxCnt);
1532 np->estats.tx_pause += readl(base + NvRegTxPause);
1533 np->estats.rx_pause += readl(base + NvRegRxPause);
1534 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1535 }
1536 }
1537
1538 /*
1539 * nv_get_stats: dev->get_stats function
1540 * Get latest stats value from the nic.
1541 * Called with read_lock(&dev_base_lock) held for read -
1542 * only synchronized against unregister_netdevice.
1543 */
1544 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1545 {
1546 struct fe_priv *np = netdev_priv(dev);
1547
1548 /* If the nic supports hw counters then retrieve latest values */
1549 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
1550 nv_get_hw_stats(dev);
1551
1552 /* copy to net_device stats */
1553 dev->stats.tx_bytes = np->estats.tx_bytes;
1554 dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
1555 dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
1556 dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
1557 dev->stats.rx_over_errors = np->estats.rx_over_errors;
1558 dev->stats.rx_errors = np->estats.rx_errors_total;
1559 dev->stats.tx_errors = np->estats.tx_errors_total;
1560 }
1561
1562 return &dev->stats;
1563 }
1564
1565 /*
1566 * nv_alloc_rx: fill rx ring entries.
1567 * Return 1 if the allocations for the skbs failed and the
1568 * rx engine is without Available descriptors
1569 */
1570 static int nv_alloc_rx(struct net_device *dev)
1571 {
1572 struct fe_priv *np = netdev_priv(dev);
1573 struct ring_desc* less_rx;
1574
1575 less_rx = np->get_rx.orig;
1576 if (less_rx-- == np->first_rx.orig)
1577 less_rx = np->last_rx.orig;
1578
1579 while (np->put_rx.orig != less_rx) {
1580 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1581 if (skb) {
1582 np->put_rx_ctx->skb = skb;
1583 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1584 skb->data,
1585 skb_tailroom(skb),
1586 PCI_DMA_FROMDEVICE);
1587 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1588 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1589 wmb();
1590 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1591 if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1592 np->put_rx.orig = np->first_rx.orig;
1593 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1594 np->put_rx_ctx = np->first_rx_ctx;
1595 } else {
1596 return 1;
1597 }
1598 }
1599 return 0;
1600 }
1601
1602 static int nv_alloc_rx_optimized(struct net_device *dev)
1603 {
1604 struct fe_priv *np = netdev_priv(dev);
1605 struct ring_desc_ex* less_rx;
1606
1607 less_rx = np->get_rx.ex;
1608 if (less_rx-- == np->first_rx.ex)
1609 less_rx = np->last_rx.ex;
1610
1611 while (np->put_rx.ex != less_rx) {
1612 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1613 if (skb) {
1614 np->put_rx_ctx->skb = skb;
1615 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1616 skb->data,
1617 skb_tailroom(skb),
1618 PCI_DMA_FROMDEVICE);
1619 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1620 np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
1621 np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
1622 wmb();
1623 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1624 if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1625 np->put_rx.ex = np->first_rx.ex;
1626 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1627 np->put_rx_ctx = np->first_rx_ctx;
1628 } else {
1629 return 1;
1630 }
1631 }
1632 return 0;
1633 }
1634
1635 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1636 #ifdef CONFIG_FORCEDETH_NAPI
1637 static void nv_do_rx_refill(unsigned long data)
1638 {
1639 struct net_device *dev = (struct net_device *) data;
1640 struct fe_priv *np = netdev_priv(dev);
1641
1642 /* Just reschedule NAPI rx processing */
1643 netif_rx_schedule(dev, &np->napi);
1644 }
1645 #else
1646 static void nv_do_rx_refill(unsigned long data)
1647 {
1648 struct net_device *dev = (struct net_device *) data;
1649 struct fe_priv *np = netdev_priv(dev);
1650 int retcode;
1651
1652 if (!using_multi_irqs(dev)) {
1653 if (np->msi_flags & NV_MSI_X_ENABLED)
1654 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1655 else
1656 disable_irq(np->pci_dev->irq);
1657 } else {
1658 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1659 }
1660 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1661 retcode = nv_alloc_rx(dev);
1662 else
1663 retcode = nv_alloc_rx_optimized(dev);
1664 if (retcode) {
1665 spin_lock_irq(&np->lock);
1666 if (!np->in_shutdown)
1667 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1668 spin_unlock_irq(&np->lock);
1669 }
1670 if (!using_multi_irqs(dev)) {
1671 if (np->msi_flags & NV_MSI_X_ENABLED)
1672 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1673 else
1674 enable_irq(np->pci_dev->irq);
1675 } else {
1676 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1677 }
1678 }
1679 #endif
1680
1681 static void nv_init_rx(struct net_device *dev)
1682 {
1683 struct fe_priv *np = netdev_priv(dev);
1684 int i;
1685 np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
1686 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1687 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1688 else
1689 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1690 np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
1691 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1692
1693 for (i = 0; i < np->rx_ring_size; i++) {
1694 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1695 np->rx_ring.orig[i].flaglen = 0;
1696 np->rx_ring.orig[i].buf = 0;
1697 } else {
1698 np->rx_ring.ex[i].flaglen = 0;
1699 np->rx_ring.ex[i].txvlan = 0;
1700 np->rx_ring.ex[i].bufhigh = 0;
1701 np->rx_ring.ex[i].buflow = 0;
1702 }
1703 np->rx_skb[i].skb = NULL;
1704 np->rx_skb[i].dma = 0;
1705 }
1706 }
1707
1708 static void nv_init_tx(struct net_device *dev)
1709 {
1710 struct fe_priv *np = netdev_priv(dev);
1711 int i;
1712 np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
1713 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1714 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1715 else
1716 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1717 np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
1718 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1719 np->tx_pkts_in_progress = 0;
1720 np->tx_change_owner = NULL;
1721 np->tx_end_flip = NULL;
1722
1723 for (i = 0; i < np->tx_ring_size; i++) {
1724 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1725 np->tx_ring.orig[i].flaglen = 0;
1726 np->tx_ring.orig[i].buf = 0;
1727 } else {
1728 np->tx_ring.ex[i].flaglen = 0;
1729 np->tx_ring.ex[i].txvlan = 0;
1730 np->tx_ring.ex[i].bufhigh = 0;
1731 np->tx_ring.ex[i].buflow = 0;
1732 }
1733 np->tx_skb[i].skb = NULL;
1734 np->tx_skb[i].dma = 0;
1735 np->tx_skb[i].dma_len = 0;
1736 np->tx_skb[i].first_tx_desc = NULL;
1737 np->tx_skb[i].next_tx_ctx = NULL;
1738 }
1739 }
1740
1741 static int nv_init_ring(struct net_device *dev)
1742 {
1743 struct fe_priv *np = netdev_priv(dev);
1744
1745 nv_init_tx(dev);
1746 nv_init_rx(dev);
1747 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1748 return nv_alloc_rx(dev);
1749 else
1750 return nv_alloc_rx_optimized(dev);
1751 }
1752
1753 static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
1754 {
1755 struct fe_priv *np = netdev_priv(dev);
1756
1757 if (tx_skb->dma) {
1758 pci_unmap_page(np->pci_dev, tx_skb->dma,
1759 tx_skb->dma_len,
1760 PCI_DMA_TODEVICE);
1761 tx_skb->dma = 0;
1762 }
1763 if (tx_skb->skb) {
1764 dev_kfree_skb_any(tx_skb->skb);
1765 tx_skb->skb = NULL;
1766 return 1;
1767 } else {
1768 return 0;
1769 }
1770 }
1771
1772 static void nv_drain_tx(struct net_device *dev)
1773 {
1774 struct fe_priv *np = netdev_priv(dev);
1775 unsigned int i;
1776
1777 for (i = 0; i < np->tx_ring_size; i++) {
1778 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1779 np->tx_ring.orig[i].flaglen = 0;
1780 np->tx_ring.orig[i].buf = 0;
1781 } else {
1782 np->tx_ring.ex[i].flaglen = 0;
1783 np->tx_ring.ex[i].txvlan = 0;
1784 np->tx_ring.ex[i].bufhigh = 0;
1785 np->tx_ring.ex[i].buflow = 0;
1786 }
1787 if (nv_release_txskb(dev, &np->tx_skb[i]))
1788 dev->stats.tx_dropped++;
1789 np->tx_skb[i].dma = 0;
1790 np->tx_skb[i].dma_len = 0;
1791 np->tx_skb[i].first_tx_desc = NULL;
1792 np->tx_skb[i].next_tx_ctx = NULL;
1793 }
1794 np->tx_pkts_in_progress = 0;
1795 np->tx_change_owner = NULL;
1796 np->tx_end_flip = NULL;
1797 }
1798
1799 static void nv_drain_rx(struct net_device *dev)
1800 {
1801 struct fe_priv *np = netdev_priv(dev);
1802 int i;
1803
1804 for (i = 0; i < np->rx_ring_size; i++) {
1805 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1806 np->rx_ring.orig[i].flaglen = 0;
1807 np->rx_ring.orig[i].buf = 0;
1808 } else {
1809 np->rx_ring.ex[i].flaglen = 0;
1810 np->rx_ring.ex[i].txvlan = 0;
1811 np->rx_ring.ex[i].bufhigh = 0;
1812 np->rx_ring.ex[i].buflow = 0;
1813 }
1814 wmb();
1815 if (np->rx_skb[i].skb) {
1816 pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
1817 (skb_end_pointer(np->rx_skb[i].skb) -
1818 np->rx_skb[i].skb->data),
1819 PCI_DMA_FROMDEVICE);
1820 dev_kfree_skb(np->rx_skb[i].skb);
1821 np->rx_skb[i].skb = NULL;
1822 }
1823 }
1824 }
1825
1826 static void drain_ring(struct net_device *dev)
1827 {
1828 nv_drain_tx(dev);
1829 nv_drain_rx(dev);
1830 }
1831
1832 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
1833 {
1834 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
1835 }
1836
1837 /*
1838 * nv_start_xmit: dev->hard_start_xmit function
1839 * Called with netif_tx_lock held.
1840 */
1841 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1842 {
1843 struct fe_priv *np = netdev_priv(dev);
1844 u32 tx_flags = 0;
1845 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1846 unsigned int fragments = skb_shinfo(skb)->nr_frags;
1847 unsigned int i;
1848 u32 offset = 0;
1849 u32 bcnt;
1850 u32 size = skb->len-skb->data_len;
1851 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1852 u32 empty_slots;
1853 struct ring_desc* put_tx;
1854 struct ring_desc* start_tx;
1855 struct ring_desc* prev_tx;
1856 struct nv_skb_map* prev_tx_ctx;
1857
1858 /* add fragments to entries count */
1859 for (i = 0; i < fragments; i++) {
1860 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1861 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1862 }
1863
1864 empty_slots = nv_get_empty_tx_slots(np);
1865 if (unlikely(empty_slots <= entries)) {
1866 spin_lock_irq(&np->lock);
1867 netif_stop_queue(dev);
1868 np->tx_stop = 1;
1869 spin_unlock_irq(&np->lock);
1870 return NETDEV_TX_BUSY;
1871 }
1872
1873 start_tx = put_tx = np->put_tx.orig;
1874
1875 /* setup the header buffer */
1876 do {
1877 prev_tx = put_tx;
1878 prev_tx_ctx = np->put_tx_ctx;
1879 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1880 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1881 PCI_DMA_TODEVICE);
1882 np->put_tx_ctx->dma_len = bcnt;
1883 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
1884 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1885
1886 tx_flags = np->tx_flags;
1887 offset += bcnt;
1888 size -= bcnt;
1889 if (unlikely(put_tx++ == np->last_tx.orig))
1890 put_tx = np->first_tx.orig;
1891 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1892 np->put_tx_ctx = np->first_tx_ctx;
1893 } while (size);
1894
1895 /* setup the fragments */
1896 for (i = 0; i < fragments; i++) {
1897 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1898 u32 size = frag->size;
1899 offset = 0;
1900
1901 do {
1902 prev_tx = put_tx;
1903 prev_tx_ctx = np->put_tx_ctx;
1904 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1905 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1906 PCI_DMA_TODEVICE);
1907 np->put_tx_ctx->dma_len = bcnt;
1908 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
1909 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1910
1911 offset += bcnt;
1912 size -= bcnt;
1913 if (unlikely(put_tx++ == np->last_tx.orig))
1914 put_tx = np->first_tx.orig;
1915 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1916 np->put_tx_ctx = np->first_tx_ctx;
1917 } while (size);
1918 }
1919
1920 /* set last fragment flag */
1921 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
1922
1923 /* save skb in this slot's context area */
1924 prev_tx_ctx->skb = skb;
1925
1926 if (skb_is_gso(skb))
1927 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1928 else
1929 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
1930 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
1931
1932 spin_lock_irq(&np->lock);
1933
1934 /* set tx flags */
1935 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1936 np->put_tx.orig = put_tx;
1937
1938 spin_unlock_irq(&np->lock);
1939
1940 dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
1941 dev->name, entries, tx_flags_extra);
1942 {
1943 int j;
1944 for (j=0; j<64; j++) {
1945 if ((j%16) == 0)
1946 dprintk("\n%03x:", j);
1947 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1948 }
1949 dprintk("\n");
1950 }
1951
1952 dev->trans_start = jiffies;
1953 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1954 return NETDEV_TX_OK;
1955 }
1956
1957 static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
1958 {
1959 struct fe_priv *np = netdev_priv(dev);
1960 u32 tx_flags = 0;
1961 u32 tx_flags_extra;
1962 unsigned int fragments = skb_shinfo(skb)->nr_frags;
1963 unsigned int i;
1964 u32 offset = 0;
1965 u32 bcnt;
1966 u32 size = skb->len-skb->data_len;
1967 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1968 u32 empty_slots;
1969 struct ring_desc_ex* put_tx;
1970 struct ring_desc_ex* start_tx;
1971 struct ring_desc_ex* prev_tx;
1972 struct nv_skb_map* prev_tx_ctx;
1973 struct nv_skb_map* start_tx_ctx;
1974
1975 /* add fragments to entries count */
1976 for (i = 0; i < fragments; i++) {
1977 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1978 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1979 }
1980
1981 empty_slots = nv_get_empty_tx_slots(np);
1982 if (unlikely(empty_slots <= entries)) {
1983 spin_lock_irq(&np->lock);
1984 netif_stop_queue(dev);
1985 np->tx_stop = 1;
1986 spin_unlock_irq(&np->lock);
1987 return NETDEV_TX_BUSY;
1988 }
1989
1990 start_tx = put_tx = np->put_tx.ex;
1991 start_tx_ctx = np->put_tx_ctx;
1992
1993 /* setup the header buffer */
1994 do {
1995 prev_tx = put_tx;
1996 prev_tx_ctx = np->put_tx_ctx;
1997 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1998 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1999 PCI_DMA_TODEVICE);
2000 np->put_tx_ctx->dma_len = bcnt;
2001 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2002 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2003 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2004
2005 tx_flags = NV_TX2_VALID;
2006 offset += bcnt;
2007 size -= bcnt;
2008 if (unlikely(put_tx++ == np->last_tx.ex))
2009 put_tx = np->first_tx.ex;
2010 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2011 np->put_tx_ctx = np->first_tx_ctx;
2012 } while (size);
2013
2014 /* setup the fragments */
2015 for (i = 0; i < fragments; i++) {
2016 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2017 u32 size = frag->size;
2018 offset = 0;
2019
2020 do {
2021 prev_tx = put_tx;
2022 prev_tx_ctx = np->put_tx_ctx;
2023 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
2024 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
2025 PCI_DMA_TODEVICE);
2026 np->put_tx_ctx->dma_len = bcnt;
2027 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
2028 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
2029 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
2030
2031 offset += bcnt;
2032 size -= bcnt;
2033 if (unlikely(put_tx++ == np->last_tx.ex))
2034 put_tx = np->first_tx.ex;
2035 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
2036 np->put_tx_ctx = np->first_tx_ctx;
2037 } while (size);
2038 }
2039
2040 /* set last fragment flag */
2041 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
2042
2043 /* save skb in this slot's context area */
2044 prev_tx_ctx->skb = skb;
2045
2046 if (skb_is_gso(skb))
2047 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
2048 else
2049 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
2050 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
2051
2052 /* vlan tag */
2053 if (likely(!np->vlangrp)) {
2054 start_tx->txvlan = 0;
2055 } else {
2056 if (vlan_tx_tag_present(skb))
2057 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
2058 else
2059 start_tx->txvlan = 0;
2060 }
2061
2062 spin_lock_irq(&np->lock);
2063
2064 if (np->tx_limit) {
2065 /* Limit the number of outstanding tx. Setup all fragments, but
2066 * do not set the VALID bit on the first descriptor. Save a pointer
2067 * to that descriptor and also for next skb_map element.
2068 */
2069
2070 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
2071 if (!np->tx_change_owner)
2072 np->tx_change_owner = start_tx_ctx;
2073
2074 /* remove VALID bit */
2075 tx_flags &= ~NV_TX2_VALID;
2076 start_tx_ctx->first_tx_desc = start_tx;
2077 start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
2078 np->tx_end_flip = np->put_tx_ctx;
2079 } else {
2080 np->tx_pkts_in_progress++;
2081 }
2082 }
2083
2084 /* set tx flags */
2085 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2086 np->put_tx.ex = put_tx;
2087
2088 spin_unlock_irq(&np->lock);
2089
2090 dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
2091 dev->name, entries, tx_flags_extra);
2092 {
2093 int j;
2094 for (j=0; j<64; j++) {
2095 if ((j%16) == 0)
2096 dprintk("\n%03x:", j);
2097 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2098 }
2099 dprintk("\n");
2100 }
2101
2102 dev->trans_start = jiffies;
2103 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2104 return NETDEV_TX_OK;
2105 }
2106
2107 static inline void nv_tx_flip_ownership(struct net_device *dev)
2108 {
2109 struct fe_priv *np = netdev_priv(dev);
2110
2111 np->tx_pkts_in_progress--;
2112 if (np->tx_change_owner) {
2113 __le32 flaglen = le32_to_cpu(np->tx_change_owner->first_tx_desc->flaglen);
2114 flaglen |= NV_TX2_VALID;
2115 np->tx_change_owner->first_tx_desc->flaglen = cpu_to_le32(flaglen);
2116 np->tx_pkts_in_progress++;
2117
2118 np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
2119 if (np->tx_change_owner == np->tx_end_flip)
2120 np->tx_change_owner = NULL;
2121
2122 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2123 }
2124 }
2125
2126 /*
2127 * nv_tx_done: check for completed packets, release the skbs.
2128 *
2129 * Caller must own np->lock.
2130 */
2131 static void nv_tx_done(struct net_device *dev)
2132 {
2133 struct fe_priv *np = netdev_priv(dev);
2134 u32 flags;
2135 struct ring_desc* orig_get_tx = np->get_tx.orig;
2136
2137 while ((np->get_tx.orig != np->put_tx.orig) &&
2138 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
2139
2140 dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
2141 dev->name, flags);
2142
2143 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
2144 np->get_tx_ctx->dma_len,
2145 PCI_DMA_TODEVICE);
2146 np->get_tx_ctx->dma = 0;
2147
2148 if (np->desc_ver == DESC_VER_1) {
2149 if (flags & NV_TX_LASTPACKET) {
2150 if (flags & NV_TX_ERROR) {
2151 if (flags & NV_TX_UNDERFLOW)
2152 dev->stats.tx_fifo_errors++;
2153 if (flags & NV_TX_CARRIERLOST)
2154 dev->stats.tx_carrier_errors++;
2155 dev->stats.tx_errors++;
2156 } else {
2157 dev->stats.tx_packets++;
2158 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2159 }
2160 dev_kfree_skb_any(np->get_tx_ctx->skb);
2161 np->get_tx_ctx->skb = NULL;
2162 }
2163 } else {
2164 if (flags & NV_TX2_LASTPACKET) {
2165 if (flags & NV_TX2_ERROR) {
2166 if (flags & NV_TX2_UNDERFLOW)
2167 dev->stats.tx_fifo_errors++;
2168 if (flags & NV_TX2_CARRIERLOST)
2169 dev->stats.tx_carrier_errors++;
2170 dev->stats.tx_errors++;
2171 } else {
2172 dev->stats.tx_packets++;
2173 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2174 }
2175 dev_kfree_skb_any(np->get_tx_ctx->skb);
2176 np->get_tx_ctx->skb = NULL;
2177 }
2178 }
2179 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
2180 np->get_tx.orig = np->first_tx.orig;
2181 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2182 np->get_tx_ctx = np->first_tx_ctx;
2183 }
2184 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
2185 np->tx_stop = 0;
2186 netif_wake_queue(dev);
2187 }
2188 }
2189
2190 static void nv_tx_done_optimized(struct net_device *dev, int limit)
2191 {
2192 struct fe_priv *np = netdev_priv(dev);
2193 u32 flags;
2194 struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
2195
2196 while ((np->get_tx.ex != np->put_tx.ex) &&
2197 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
2198 (limit-- > 0)) {
2199
2200 dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
2201 dev->name, flags);
2202
2203 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
2204 np->get_tx_ctx->dma_len,
2205 PCI_DMA_TODEVICE);
2206 np->get_tx_ctx->dma = 0;
2207
2208 if (flags & NV_TX2_LASTPACKET) {
2209 if (!(flags & NV_TX2_ERROR))
2210 dev->stats.tx_packets++;
2211 dev_kfree_skb_any(np->get_tx_ctx->skb);
2212 np->get_tx_ctx->skb = NULL;
2213
2214 if (np->tx_limit) {
2215 nv_tx_flip_ownership(dev);
2216 }
2217 }
2218 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
2219 np->get_tx.ex = np->first_tx.ex;
2220 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2221 np->get_tx_ctx = np->first_tx_ctx;
2222 }
2223 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
2224 np->tx_stop = 0;
2225 netif_wake_queue(dev);
2226 }
2227 }
2228
2229 /*
2230 * nv_tx_timeout: dev->tx_timeout function
2231 * Called with netif_tx_lock held.
2232 */
2233 static void nv_tx_timeout(struct net_device *dev)
2234 {
2235 struct fe_priv *np = netdev_priv(dev);
2236 u8 __iomem *base = get_hwbase(dev);
2237 u32 status;
2238
2239 if (np->msi_flags & NV_MSI_X_ENABLED)
2240 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2241 else
2242 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2243
2244 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
2245
2246 {
2247 int i;
2248
2249 printk(KERN_INFO "%s: Ring at %lx\n",
2250 dev->name, (unsigned long)np->ring_addr);
2251 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
2252 for (i=0;i<=np->register_size;i+= 32) {
2253 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
2254 i,
2255 readl(base + i + 0), readl(base + i + 4),
2256 readl(base + i + 8), readl(base + i + 12),
2257 readl(base + i + 16), readl(base + i + 20),
2258 readl(base + i + 24), readl(base + i + 28));
2259 }
2260 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
2261 for (i=0;i<np->tx_ring_size;i+= 4) {
2262 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2263 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
2264 i,
2265 le32_to_cpu(np->tx_ring.orig[i].buf),
2266 le32_to_cpu(np->tx_ring.orig[i].flaglen),
2267 le32_to_cpu(np->tx_ring.orig[i+1].buf),
2268 le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2269 le32_to_cpu(np->tx_ring.orig[i+2].buf),
2270 le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2271 le32_to_cpu(np->tx_ring.orig[i+3].buf),
2272 le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2273 } else {
2274 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
2275 i,
2276 le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2277 le32_to_cpu(np->tx_ring.ex[i].buflow),
2278 le32_to_cpu(np->tx_ring.ex[i].flaglen),
2279 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2280 le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2281 le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2282 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2283 le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2284 le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2285 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2286 le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2287 le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2288 }
2289 }
2290 }
2291
2292 spin_lock_irq(&np->lock);
2293
2294 /* 1) stop tx engine */
2295 nv_stop_tx(dev);
2296
2297 /* 2) check that the packets were not sent already: */
2298 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2299 nv_tx_done(dev);
2300 else
2301 nv_tx_done_optimized(dev, np->tx_ring_size);
2302
2303 /* 3) if there are dead entries: clear everything */
2304 if (np->get_tx_ctx != np->put_tx_ctx) {
2305 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
2306 nv_drain_tx(dev);
2307 nv_init_tx(dev);
2308 setup_hw_rings(dev, NV_SETUP_TX_RING);
2309 }
2310
2311 netif_wake_queue(dev);
2312
2313 /* 4) restart tx engine */
2314 nv_start_tx(dev);
2315 spin_unlock_irq(&np->lock);
2316 }
2317
2318 /*
2319 * Called when the nic notices a mismatch between the actual data len on the
2320 * wire and the len indicated in the 802 header
2321 */
2322 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2323 {
2324 int hdrlen; /* length of the 802 header */
2325 int protolen; /* length as stored in the proto field */
2326
2327 /* 1) calculate len according to header */
2328 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2329 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
2330 hdrlen = VLAN_HLEN;
2331 } else {
2332 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
2333 hdrlen = ETH_HLEN;
2334 }
2335 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
2336 dev->name, datalen, protolen, hdrlen);
2337 if (protolen > ETH_DATA_LEN)
2338 return datalen; /* Value in proto field not a len, no checks possible */
2339
2340 protolen += hdrlen;
2341 /* consistency checks: */
2342 if (datalen > ETH_ZLEN) {
2343 if (datalen >= protolen) {
2344 /* more data on wire than in 802 header, trim of
2345 * additional data.
2346 */
2347 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2348 dev->name, protolen);
2349 return protolen;
2350 } else {
2351 /* less data on wire than mentioned in header.
2352 * Discard the packet.
2353 */
2354 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
2355 dev->name);
2356 return -1;
2357 }
2358 } else {
2359 /* short packet. Accept only if 802 values are also short */
2360 if (protolen > ETH_ZLEN) {
2361 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
2362 dev->name);
2363 return -1;
2364 }
2365 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2366 dev->name, datalen);
2367 return datalen;
2368 }
2369 }
2370
2371 static int nv_rx_process(struct net_device *dev, int limit)
2372 {
2373 struct fe_priv *np = netdev_priv(dev);
2374 u32 flags;
2375 int rx_work = 0;
2376 struct sk_buff *skb;
2377 int len;
2378
2379 while((np->get_rx.orig != np->put_rx.orig) &&
2380 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2381 (rx_work < limit)) {
2382
2383 dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
2384 dev->name, flags);
2385
2386 /*
2387 * the packet is for us - immediately tear down the pci mapping.
2388 * TODO: check if a prefetch of the first cacheline improves
2389 * the performance.
2390 */
2391 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2392 np->get_rx_ctx->dma_len,
2393 PCI_DMA_FROMDEVICE);
2394 skb = np->get_rx_ctx->skb;
2395 np->get_rx_ctx->skb = NULL;
2396
2397 {
2398 int j;
2399 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2400 for (j=0; j<64; j++) {
2401 if ((j%16) == 0)
2402 dprintk("\n%03x:", j);
2403 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2404 }
2405 dprintk("\n");
2406 }
2407 /* look at what we actually got: */
2408 if (np->desc_ver == DESC_VER_1) {
2409 if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2410 len = flags & LEN_MASK_V1;
2411 if (unlikely(flags & NV_RX_ERROR)) {
2412 if (flags & NV_RX_ERROR4) {
2413 len = nv_getlen(dev, skb->data, len);
2414 if (len < 0) {
2415 dev->stats.rx_errors++;
2416 dev_kfree_skb(skb);
2417 goto next_pkt;
2418 }
2419 }
2420 /* framing errors are soft errors */
2421 else if (flags & NV_RX_FRAMINGERR) {
2422 if (flags & NV_RX_SUBSTRACT1) {
2423 len--;
2424 }
2425 }
2426 /* the rest are hard errors */
2427 else {
2428 if (flags & NV_RX_MISSEDFRAME)
2429 dev->stats.rx_missed_errors++;
2430 if (flags & NV_RX_CRCERR)
2431 dev->stats.rx_crc_errors++;
2432 if (flags & NV_RX_OVERFLOW)
2433 dev->stats.rx_over_errors++;
2434 dev->stats.rx_errors++;
2435 dev_kfree_skb(skb);
2436 goto next_pkt;
2437 }
2438 }
2439 } else {
2440 dev_kfree_skb(skb);
2441 goto next_pkt;
2442 }
2443 } else {
2444 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2445 len = flags & LEN_MASK_V2;
2446 if (unlikely(flags & NV_RX2_ERROR)) {
2447 if (flags & NV_RX2_ERROR4) {
2448 len = nv_getlen(dev, skb->data, len);
2449 if (len < 0) {
2450 dev->stats.rx_errors++;
2451 dev_kfree_skb(skb);
2452 goto next_pkt;
2453 }
2454 }
2455 /* framing errors are soft errors */
2456 else if (flags & NV_RX2_FRAMINGERR) {
2457 if (flags & NV_RX2_SUBSTRACT1) {
2458 len--;
2459 }
2460 }
2461 /* the rest are hard errors */
2462 else {
2463 if (flags & NV_RX2_CRCERR)
2464 dev->stats.rx_crc_errors++;
2465 if (flags & NV_RX2_OVERFLOW)
2466 dev->stats.rx_over_errors++;
2467 dev->stats.rx_errors++;
2468 dev_kfree_skb(skb);
2469 goto next_pkt;
2470 }
2471 }
2472 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2473 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2474 skb->ip_summed = CHECKSUM_UNNECESSARY;
2475 } else {
2476 dev_kfree_skb(skb);
2477 goto next_pkt;
2478 }
2479 }
2480 /* got a valid packet - forward it to the network core */
2481 skb_put(skb, len);
2482 skb->protocol = eth_type_trans(skb, dev);
2483 dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
2484 dev->name, len, skb->protocol);
2485 #ifdef CONFIG_FORCEDETH_NAPI
2486 netif_receive_skb(skb);
2487 #else
2488 netif_rx(skb);
2489 #endif
2490 dev->last_rx = jiffies;
2491 dev->stats.rx_packets++;
2492 dev->stats.rx_bytes += len;
2493 next_pkt:
2494 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2495 np->get_rx.orig = np->first_rx.orig;
2496 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2497 np->get_rx_ctx = np->first_rx_ctx;
2498
2499 rx_work++;
2500 }
2501
2502 return rx_work;
2503 }
2504
2505 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2506 {
2507 struct fe_priv *np = netdev_priv(dev);
2508 u32 flags;
2509 u32 vlanflags = 0;
2510 int rx_work = 0;
2511 struct sk_buff *skb;
2512 int len;
2513
2514 while((np->get_rx.ex != np->put_rx.ex) &&
2515 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2516 (rx_work < limit)) {
2517
2518 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
2519 dev->name, flags);
2520
2521 /*
2522 * the packet is for us - immediately tear down the pci mapping.
2523 * TODO: check if a prefetch of the first cacheline improves
2524 * the performance.
2525 */
2526 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2527 np->get_rx_ctx->dma_len,
2528 PCI_DMA_FROMDEVICE);
2529 skb = np->get_rx_ctx->skb;
2530 np->get_rx_ctx->skb = NULL;
2531
2532 {
2533 int j;
2534 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2535 for (j=0; j<64; j++) {
2536 if ((j%16) == 0)
2537 dprintk("\n%03x:", j);
2538 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2539 }
2540 dprintk("\n");
2541 }
2542 /* look at what we actually got: */
2543 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2544 len = flags & LEN_MASK_V2;
2545 if (unlikely(flags & NV_RX2_ERROR)) {
2546 if (flags & NV_RX2_ERROR4) {
2547 len = nv_getlen(dev, skb->data, len);
2548 if (len < 0) {
2549 dev_kfree_skb(skb);
2550 goto next_pkt;
2551 }
2552 }
2553 /* framing errors are soft errors */
2554 else if (flags & NV_RX2_FRAMINGERR) {
2555 if (flags & NV_RX2_SUBSTRACT1) {
2556 len--;
2557 }
2558 }
2559 /* the rest are hard errors */
2560 else {
2561 dev_kfree_skb(skb);
2562 goto next_pkt;
2563 }
2564 }
2565
2566 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2567 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2568 skb->ip_summed = CHECKSUM_UNNECESSARY;
2569
2570 /* got a valid packet - forward it to the network core */
2571 skb_put(skb, len);
2572 skb->protocol = eth_type_trans(skb, dev);
2573 prefetch(skb->data);
2574
2575 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
2576 dev->name, len, skb->protocol);
2577
2578 if (likely(!np->vlangrp)) {
2579 #ifdef CONFIG_FORCEDETH_NAPI
2580 netif_receive_skb(skb);
2581 #else
2582 netif_rx(skb);
2583 #endif
2584 } else {
2585 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
2586 if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
2587 #ifdef CONFIG_FORCEDETH_NAPI
2588 vlan_hwaccel_receive_skb(skb, np->vlangrp,
2589 vlanflags & NV_RX3_VLAN_TAG_MASK);
2590 #else
2591 vlan_hwaccel_rx(skb, np->vlangrp,
2592 vlanflags & NV_RX3_VLAN_TAG_MASK);
2593 #endif
2594 } else {
2595 #ifdef CONFIG_FORCEDETH_NAPI
2596 netif_receive_skb(skb);
2597 #else
2598 netif_rx(skb);
2599 #endif
2600 }
2601 }
2602
2603 dev->last_rx = jiffies;
2604 dev->stats.rx_packets++;
2605 dev->stats.rx_bytes += len;
2606 } else {
2607 dev_kfree_skb(skb);
2608 }
2609 next_pkt:
2610 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
2611 np->get_rx.ex = np->first_rx.ex;
2612 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2613 np->get_rx_ctx = np->first_rx_ctx;
2614
2615 rx_work++;
2616 }
2617
2618 return rx_work;
2619 }
2620
2621 static void set_bufsize(struct net_device *dev)
2622 {
2623 struct fe_priv *np = netdev_priv(dev);
2624
2625 if (dev->mtu <= ETH_DATA_LEN)
2626 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
2627 else
2628 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
2629 }
2630
2631 /*
2632 * nv_change_mtu: dev->change_mtu function
2633 * Called with dev_base_lock held for read.
2634 */
2635 static int nv_change_mtu(struct net_device *dev, int new_mtu)
2636 {
2637 struct fe_priv *np = netdev_priv(dev);
2638 int old_mtu;
2639
2640 if (new_mtu < 64 || new_mtu > np->pkt_limit)
2641 return -EINVAL;
2642
2643 old_mtu = dev->mtu;
2644 dev->mtu = new_mtu;
2645
2646 /* return early if the buffer sizes will not change */
2647 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
2648 return 0;
2649 if (old_mtu == new_mtu)
2650 return 0;
2651
2652 /* synchronized against open : rtnl_lock() held by caller */
2653 if (netif_running(dev)) {
2654 u8 __iomem *base = get_hwbase(dev);
2655 /*
2656 * It seems that the nic preloads valid ring entries into an
2657 * internal buffer. The procedure for flushing everything is
2658 * guessed, there is probably a simpler approach.
2659 * Changing the MTU is a rare event, it shouldn't matter.
2660 */
2661 nv_disable_irq(dev);
2662 netif_tx_lock_bh(dev);
2663 spin_lock(&np->lock);
2664 /* stop engines */
2665 nv_stop_rx(dev);
2666 nv_stop_tx(dev);
2667 nv_txrx_reset(dev);
2668 /* drain rx queue */
2669 nv_drain_rx(dev);
2670 nv_drain_tx(dev);
2671 /* reinit driver view of the rx queue */
2672 set_bufsize(dev);
2673 if (nv_init_ring(dev)) {
2674 if (!np->in_shutdown)
2675 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2676 }
2677 /* reinit nic view of the rx queue */
2678 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2679 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2680 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
2681 base + NvRegRingSizes);
2682 pci_push(base);
2683 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2684 pci_push(base);
2685
2686 /* restart rx engine */
2687 nv_start_rx(dev);
2688 nv_start_tx(dev);
2689 spin_unlock(&np->lock);
2690 netif_tx_unlock_bh(dev);
2691 nv_enable_irq(dev);
2692 }
2693 return 0;
2694 }
2695
2696 static void nv_copy_mac_to_hw(struct net_device *dev)
2697 {
2698 u8 __iomem *base = get_hwbase(dev);
2699 u32 mac[2];
2700
2701 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
2702 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
2703 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
2704
2705 writel(mac[0], base + NvRegMacAddrA);
2706 writel(mac[1], base + NvRegMacAddrB);
2707 }
2708
2709 /*
2710 * nv_set_mac_address: dev->set_mac_address function
2711 * Called with rtnl_lock() held.
2712 */
2713 static int nv_set_mac_address(struct net_device *dev, void *addr)
2714 {
2715 struct fe_priv *np = netdev_priv(dev);
2716 struct sockaddr *macaddr = (struct sockaddr*)addr;
2717
2718 if (!is_valid_ether_addr(macaddr->sa_data))
2719 return -EADDRNOTAVAIL;
2720
2721 /* synchronized against open : rtnl_lock() held by caller */
2722 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
2723
2724 if (netif_running(dev)) {
2725 netif_tx_lock_bh(dev);
2726 spin_lock_irq(&np->lock);
2727
2728 /* stop rx engine */
2729 nv_stop_rx(dev);
2730
2731 /* set mac address */
2732 nv_copy_mac_to_hw(dev);
2733
2734 /* restart rx engine */
2735 nv_start_rx(dev);
2736 spin_unlock_irq(&np->lock);
2737 netif_tx_unlock_bh(dev);
2738 } else {
2739 nv_copy_mac_to_hw(dev);
2740 }
2741 return 0;
2742 }
2743
2744 /*
2745 * nv_set_multicast: dev->set_multicast function
2746 * Called with netif_tx_lock held.
2747 */
2748 static void nv_set_multicast(struct net_device *dev)
2749 {
2750 struct fe_priv *np = netdev_priv(dev);
2751 u8 __iomem *base = get_hwbase(dev);
2752 u32 addr[2];
2753 u32 mask[2];
2754 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
2755
2756 memset(addr, 0, sizeof(addr));
2757 memset(mask, 0, sizeof(mask));
2758
2759 if (dev->flags & IFF_PROMISC) {
2760 pff |= NVREG_PFF_PROMISC;
2761 } else {
2762 pff |= NVREG_PFF_MYADDR;
2763
2764 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
2765 u32 alwaysOff[2];
2766 u32 alwaysOn[2];
2767
2768 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
2769 if (dev->flags & IFF_ALLMULTI) {
2770 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
2771 } else {
2772 struct dev_mc_list *walk;
2773
2774 walk = dev->mc_list;
2775 while (walk != NULL) {
2776 u32 a, b;
2777 a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
2778 b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
2779 alwaysOn[0] &= a;
2780 alwaysOff[0] &= ~a;
2781 alwaysOn[1] &= b;
2782 alwaysOff[1] &= ~b;
2783 walk = walk->next;
2784 }
2785 }
2786 addr[0] = alwaysOn[0];
2787 addr[1] = alwaysOn[1];
2788 mask[0] = alwaysOn[0] | alwaysOff[0];
2789 mask[1] = alwaysOn[1] | alwaysOff[1];
2790 } else {
2791 mask[0] = NVREG_MCASTMASKA_NONE;
2792 mask[1] = NVREG_MCASTMASKB_NONE;
2793 }
2794 }
2795 addr[0] |= NVREG_MCASTADDRA_FORCE;
2796 pff |= NVREG_PFF_ALWAYS;
2797 spin_lock_irq(&np->lock);
2798 nv_stop_rx(dev);
2799 writel(addr[0], base + NvRegMulticastAddrA);
2800 writel(addr[1], base + NvRegMulticastAddrB);
2801 writel(mask[0], base + NvRegMulticastMaskA);
2802 writel(mask[1], base + NvRegMulticastMaskB);
2803 writel(pff, base + NvRegPacketFilterFlags);
2804 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2805 dev->name);
2806 nv_start_rx(dev);
2807 spin_unlock_irq(&np->lock);
2808 }
2809
2810 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
2811 {
2812 struct fe_priv *np = netdev_priv(dev);
2813 u8 __iomem *base = get_hwbase(dev);
2814
2815 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2816
2817 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2818 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2819 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2820 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2821 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2822 } else {
2823 writel(pff, base + NvRegPacketFilterFlags);
2824 }
2825 }
2826 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2827 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2828 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2829 u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
2830 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
2831 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
2832 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)
2833 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
2834 writel(pause_enable, base + NvRegTxPauseFrame);
2835 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2836 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2837 } else {
2838 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
2839 writel(regmisc, base + NvRegMisc1);
2840 }
2841 }
2842 }
2843
2844 /**
2845 * nv_update_linkspeed: Setup the MAC according to the link partner
2846 * @dev: Network device to be configured
2847 *
2848 * The function queries the PHY and checks if there is a link partner.
2849 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2850 * set to 10 MBit HD.
2851 *
2852 * The function returns 0 if there is no link partner and 1 if there is
2853 * a good link partner.
2854 */
2855 static int nv_update_linkspeed(struct net_device *dev)
2856 {
2857 struct fe_priv *np = netdev_priv(dev);
2858 u8 __iomem *base = get_hwbase(dev);
2859 int adv = 0;
2860 int lpa = 0;
2861 int adv_lpa, adv_pause, lpa_pause;
2862 int newls = np->linkspeed;
2863 int newdup = np->duplex;
2864 int mii_status;
2865 int retval = 0;
2866 u32 control_1000, status_1000, phyreg, pause_flags, txreg;
2867 u32 txrxFlags = 0;
2868 u32 phy_exp;
2869
2870 /* BMSR_LSTATUS is latched, read it twice:
2871 * we want the current value.
2872 */
2873 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2874 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2875
2876 if (!(mii_status & BMSR_LSTATUS)) {
2877 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2878 dev->name);
2879 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2880 newdup = 0;
2881 retval = 0;
2882 goto set_speed;
2883 }
2884
2885 if (np->autoneg == 0) {
2886 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2887 dev->name, np->fixed_mode);
2888 if (np->fixed_mode & LPA_100FULL) {
2889 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2890 newdup = 1;
2891 } else if (np->fixed_mode & LPA_100HALF) {
2892 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2893 newdup = 0;
2894 } else if (np->fixed_mode & LPA_10FULL) {
2895 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2896 newdup = 1;
2897 } else {
2898 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2899 newdup = 0;
2900 }
2901 retval = 1;
2902 goto set_speed;
2903 }
2904 /* check auto negotiation is complete */
2905 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2906 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2907 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2908 newdup = 0;
2909 retval = 0;
2910 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2911 goto set_speed;
2912 }
2913
2914 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2915 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2916 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2917 dev->name, adv, lpa);
2918
2919 retval = 1;
2920 if (np->gigabit == PHY_GIGABIT) {
2921 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2922 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2923
2924 if ((control_1000 & ADVERTISE_1000FULL) &&
2925 (status_1000 & LPA_1000FULL)) {
2926 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2927 dev->name);
2928 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2929 newdup = 1;
2930 goto set_speed;
2931 }
2932 }
2933
2934 /* FIXME: handle parallel detection properly */
2935 adv_lpa = lpa & adv;
2936 if (adv_lpa & LPA_100FULL) {
2937 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2938 newdup = 1;
2939 } else if (adv_lpa & LPA_100HALF) {
2940 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2941 newdup = 0;
2942 } else if (adv_lpa & LPA_10FULL) {
2943 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2944 newdup = 1;
2945 } else if (adv_lpa & LPA_10HALF) {
2946 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2947 newdup = 0;
2948 } else {
2949 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2950 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2951 newdup = 0;
2952 }
2953
2954 set_speed:
2955 if (np->duplex == newdup && np->linkspeed == newls)
2956 return retval;
2957
2958 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2959 dev->name, np->linkspeed, np->duplex, newls, newdup);
2960
2961 np->duplex = newdup;
2962 np->linkspeed = newls;
2963
2964 /* The transmitter and receiver must be restarted for safe update */
2965 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
2966 txrxFlags |= NV_RESTART_TX;
2967 nv_stop_tx(dev);
2968 }
2969 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
2970 txrxFlags |= NV_RESTART_RX;
2971 nv_stop_rx(dev);
2972 }
2973
2974 if (np->gigabit == PHY_GIGABIT) {
2975 phyreg = readl(base + NvRegRandomSeed);
2976 phyreg &= ~(0x3FF00);
2977 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2978 phyreg |= NVREG_RNDSEED_FORCE3;
2979 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2980 phyreg |= NVREG_RNDSEED_FORCE2;
2981 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2982 phyreg |= NVREG_RNDSEED_FORCE;
2983 writel(phyreg, base + NvRegRandomSeed);
2984 }
2985
2986 phyreg = readl(base + NvRegPhyInterface);
2987 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2988 if (np->duplex == 0)
2989 phyreg |= PHY_HALF;
2990 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2991 phyreg |= PHY_100;
2992 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2993 phyreg |= PHY_1000;
2994 writel(phyreg, base + NvRegPhyInterface);
2995
2996 phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
2997 if (phyreg & PHY_RGMII) {
2998 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
2999 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
3000 } else {
3001 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
3002 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
3003 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
3004 else
3005 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
3006 } else {
3007 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
3008 }
3009 }
3010 } else {
3011 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
3012 txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
3013 else
3014 txreg = NVREG_TX_DEFERRAL_DEFAULT;
3015 }
3016 writel(txreg, base + NvRegTxDeferral);
3017
3018 if (np->desc_ver == DESC_VER_1) {
3019 txreg = NVREG_TX_WM_DESC1_DEFAULT;
3020 } else {
3021 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
3022 txreg = NVREG_TX_WM_DESC2_3_1000;
3023 else
3024 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
3025 }
3026 writel(txreg, base + NvRegTxWatermark);
3027
3028 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
3029 base + NvRegMisc1);
3030 pci_push(base);
3031 writel(np->linkspeed, base + NvRegLinkSpeed);
3032 pci_push(base);
3033
3034 pause_flags = 0;
3035 /* setup pause frame */
3036 if (np->duplex != 0) {
3037 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
3038 adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
3039 lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
3040
3041 switch (adv_pause) {
3042 case ADVERTISE_PAUSE_CAP:
3043 if (lpa_pause & LPA_PAUSE_CAP) {
3044 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3045 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3046 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3047 }
3048 break;
3049 case ADVERTISE_PAUSE_ASYM:
3050 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
3051 {
3052 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3053 }
3054 break;
3055 case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
3056 if (lpa_pause & LPA_PAUSE_CAP)
3057 {
3058 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3059 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3060 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3061 }
3062 if (lpa_pause == LPA_PAUSE_ASYM)
3063 {
3064 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3065 }
3066 break;
3067 }
3068 } else {
3069 pause_flags = np->pause_flags;
3070 }
3071 }
3072 nv_update_pause(dev, pause_flags);
3073
3074 if (txrxFlags & NV_RESTART_TX)
3075 nv_start_tx(dev);
3076 if (txrxFlags & NV_RESTART_RX)
3077 nv_start_rx(dev);
3078
3079 return retval;
3080 }
3081
3082 static void nv_linkchange(struct net_device *dev)
3083 {
3084 if (nv_update_linkspeed(dev)) {
3085 if (!netif_carrier_ok(dev)) {
3086 netif_carrier_on(dev);
3087 printk(KERN_INFO "%s: link up.\n", dev->name);
3088 nv_start_rx(dev);
3089 }
3090 } else {
3091 if (netif_carrier_ok(dev)) {
3092 netif_carrier_off(dev);
3093 printk(KERN_INFO "%s: link down.\n", dev->name);
3094 nv_stop_rx(dev);
3095 }
3096 }
3097 }
3098
3099 static void nv_link_irq(struct net_device *dev)
3100 {
3101 u8 __iomem *base = get_hwbase(dev);
3102 u32 miistat;
3103
3104 miistat = readl(base + NvRegMIIStatus);
3105 writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
3106 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
3107
3108 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
3109 nv_linkchange(dev);
3110 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
3111 }
3112
3113 static irqreturn_t nv_nic_irq(int foo, void *data)
3114 {
3115 struct net_device *dev = (struct net_device *) data;
3116 struct fe_priv *np = netdev_priv(dev);
3117 u8 __iomem *base = get_hwbase(dev);
3118 u32 events;
3119 int i;
3120
3121 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
3122
3123 for (i=0; ; i++) {
3124 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3125 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3126 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3127 } else {
3128 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3129 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3130 }
3131 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3132 if (!(events & np->irqmask))
3133 break;
3134
3135 spin_lock(&np->lock);
3136 nv_tx_done(dev);
3137 spin_unlock(&np->lock);
3138
3139 #ifdef CONFIG_FORCEDETH_NAPI
3140 if (events & NVREG_IRQ_RX_ALL) {
3141 netif_rx_schedule(dev, &np->napi);
3142
3143 /* Disable furthur receive irq's */
3144 spin_lock(&np->lock);
3145 np->irqmask &= ~NVREG_IRQ_RX_ALL;
3146
3147 if (np->msi_flags & NV_MSI_X_ENABLED)
3148 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3149 else
3150 writel(np->irqmask, base + NvRegIrqMask);
3151 spin_unlock(&np->lock);
3152 }
3153 #else
3154 if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
3155 if (unlikely(nv_alloc_rx(dev))) {
3156 spin_lock(&np->lock);
3157 if (!np->in_shutdown)
3158 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3159 spin_unlock(&np->lock);
3160 }
3161 }
3162 #endif
3163 if (unlikely(events & NVREG_IRQ_LINK)) {
3164 spin_lock(&np->lock);
3165 nv_link_irq(dev);
3166 spin_unlock(&np->lock);
3167 }
3168 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3169 spin_lock(&np->lock);
3170 nv_linkchange(dev);
3171 spin_unlock(&np->lock);
3172 np->link_timeout = jiffies + LINK_TIMEOUT;
3173 }
3174 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3175 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3176 dev->name, events);
3177 }
3178 if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
3179 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3180 dev->name, events);
3181 }
3182 if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
3183 spin_lock(&np->lock);
3184 /* disable interrupts on the nic */
3185 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3186 writel(0, base + NvRegIrqMask);
3187 else
3188 writel(np->irqmask, base + NvRegIrqMask);
3189 pci_push(base);
3190
3191 if (!np->in_shutdown) {
3192 np->nic_poll_irq = np->irqmask;
3193 np->recover_error = 1;
3194 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3195 }
3196 spin_unlock(&np->lock);
3197 break;
3198 }
3199 if (unlikely(i > max_interrupt_work)) {
3200 spin_lock(&np->lock);
3201 /* disable interrupts on the nic */
3202 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3203 writel(0, base + NvRegIrqMask);
3204 else
3205 writel(np->irqmask, base + NvRegIrqMask);
3206 pci_push(base);
3207
3208 if (!np->in_shutdown) {
3209 np->nic_poll_irq = np->irqmask;
3210 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3211 }
3212 spin_unlock(&np->lock);
3213 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
3214 break;
3215 }
3216
3217 }
3218 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
3219
3220 return IRQ_RETVAL(i);
3221 }
3222
3223 /**
3224 * All _optimized functions are used to help increase performance
3225 * (reduce CPU and increase throughput). They use descripter version 3,
3226 * compiler directives, and reduce memory accesses.
3227 */
3228 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
3229 {
3230 struct net_device *dev = (struct net_device *) data;
3231 struct fe_priv *np = netdev_priv(dev);
3232 u8 __iomem *base = get_hwbase(dev);
3233 u32 events;
3234 int i;
3235
3236 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
3237
3238 for (i=0; ; i++) {
3239 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3240 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3241 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3242 } else {
3243 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3244 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3245 }
3246 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3247 if (!(events & np->irqmask))
3248 break;
3249
3250 spin_lock(&np->lock);
3251 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3252 spin_unlock(&np->lock);
3253
3254 #ifdef CONFIG_FORCEDETH_NAPI
3255 if (events & NVREG_IRQ_RX_ALL) {
3256 netif_rx_schedule(dev, &np->napi);
3257
3258 /* Disable furthur receive irq's */
3259 spin_lock(&np->lock);
3260 np->irqmask &= ~NVREG_IRQ_RX_ALL;
3261
3262 if (np->msi_flags & NV_MSI_X_ENABLED)
3263 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3264 else
3265 writel(np->irqmask, base + NvRegIrqMask);
3266 spin_unlock(&np->lock);
3267 }
3268 #else
3269 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3270 if (unlikely(nv_alloc_rx_optimized(dev))) {
3271 spin_lock(&np->lock);
3272 if (!np->in_shutdown)
3273 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3274 spin_unlock(&np->lock);
3275 }
3276 }
3277 #endif
3278 if (unlikely(events & NVREG_IRQ_LINK)) {
3279 spin_lock(&np->lock);
3280 nv_link_irq(dev);
3281 spin_unlock(&np->lock);
3282 }
3283 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3284 spin_lock(&np->lock);
3285 nv_linkchange(dev);
3286 spin_unlock(&np->lock);
3287 np->link_timeout = jiffies + LINK_TIMEOUT;
3288 }
3289 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3290 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3291 dev->name, events);
3292 }
3293 if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
3294 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3295 dev->name, events);
3296 }
3297 if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
3298 spin_lock(&np->lock);
3299 /* disable interrupts on the nic */
3300 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3301 writel(0, base + NvRegIrqMask);
3302 else
3303 writel(np->irqmask, base + NvRegIrqMask);
3304 pci_push(base);
3305
3306 if (!np->in_shutdown) {
3307 np->nic_poll_irq = np->irqmask;
3308 np->recover_error = 1;
3309 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3310 }
3311 spin_unlock(&np->lock);
3312 break;
3313 }
3314
3315 if (unlikely(i > max_interrupt_work)) {
3316 spin_lock(&np->lock);
3317 /* disable interrupts on the nic */
3318 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3319 writel(0, base + NvRegIrqMask);
3320 else
3321 writel(np->irqmask, base + NvRegIrqMask);
3322 pci_push(base);
3323
3324 if (!np->in_shutdown) {
3325 np->nic_poll_irq = np->irqmask;
3326 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3327 }
3328 spin_unlock(&np->lock);
3329 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
3330 break;
3331 }
3332
3333 }
3334 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
3335
3336 return IRQ_RETVAL(i);
3337 }
3338
3339 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3340 {
3341 struct net_device *dev = (struct net_device *) data;
3342 struct fe_priv *np = netdev_priv(dev);
3343 u8 __iomem *base = get_hwbase(dev);
3344 u32 events;
3345 int i;
3346 unsigned long flags;
3347
3348 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
3349
3350 for (i=0; ; i++) {
3351 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3352 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
3353 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
3354 if (!(events & np->irqmask))
3355 break;
3356
3357 spin_lock_irqsave(&np->lock, flags);
3358 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3359 spin_unlock_irqrestore(&np->lock, flags);
3360
3361 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3362 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3363 dev->name, events);
3364 }
3365 if (unlikely(i > max_interrupt_work)) {
3366 spin_lock_irqsave(&np->lock, flags);
3367 /* disable interrupts on the nic */
3368 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3369 pci_push(base);
3370
3371 if (!np->in_shutdown) {
3372 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3373 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3374 }
3375 spin_unlock_irqrestore(&np->lock, flags);
3376 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
3377 break;
3378 }
3379
3380 }
3381 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
3382
3383 return IRQ_RETVAL(i);
3384 }
3385
3386 #ifdef CONFIG_FORCEDETH_NAPI
3387 static int nv_napi_poll(struct napi_struct *napi, int budget)
3388 {
3389 struct fe_priv *np = container_of(napi, struct fe_priv, napi);
3390 struct net_device *dev = np->dev;
3391 u8 __iomem *base = get_hwbase(dev);
3392 unsigned long flags;
3393 int pkts, retcode;
3394
3395 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3396 pkts = nv_rx_process(dev, budget);
3397 retcode = nv_alloc_rx(dev);
3398 } else {
3399 pkts = nv_rx_process_optimized(dev, budget);
3400 retcode = nv_alloc_rx_optimized(dev);
3401 }
3402
3403 if (retcode) {
3404 spin_lock_irqsave(&np->lock, flags);
3405 if (!np->in_shutdown)
3406 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3407 spin_unlock_irqrestore(&np->lock, flags);
3408 }
3409
3410 if (pkts < budget) {
3411 /* re-enable receive interrupts */
3412 spin_lock_irqsave(&np->lock, flags);
3413
3414 __netif_rx_complete(dev, napi);
3415
3416 np->irqmask |= NVREG_IRQ_RX_ALL;
3417 if (np->msi_flags & NV_MSI_X_ENABLED)
3418 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3419 else
3420 writel(np->irqmask, base + NvRegIrqMask);
3421
3422 spin_unlock_irqrestore(&np->lock, flags);
3423 }
3424 return pkts;
3425 }
3426 #endif
3427
3428 #ifdef CONFIG_FORCEDETH_NAPI
3429 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3430 {
3431 struct net_device *dev = (struct net_device *) data;
3432 struct fe_priv *np = netdev_priv(dev);
3433 u8 __iomem *base = get_hwbase(dev);
3434 u32 events;
3435
3436 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3437 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3438
3439 if (events) {
3440 netif_rx_schedule(dev, &np->napi);
3441 /* disable receive interrupts on the nic */
3442 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3443 pci_push(base);
3444 }
3445 return IRQ_HANDLED;
3446 }
3447 #else
3448 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3449 {
3450 struct net_device *dev = (struct net_device *) data;
3451 struct fe_priv *np = netdev_priv(dev);
3452 u8 __iomem *base = get_hwbase(dev);
3453 u32 events;
3454 int i;
3455 unsigned long flags;
3456
3457 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
3458
3459 for (i=0; ; i++) {
3460 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3461 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3462 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
3463 if (!(events & np->irqmask))
3464 break;
3465
3466 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3467 if (unlikely(nv_alloc_rx_optimized(dev))) {
3468 spin_lock_irqsave(&np->lock, flags);
3469 if (!np->in_shutdown)
3470 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3471 spin_unlock_irqrestore(&np->lock, flags);
3472 }
3473 }
3474
3475 if (unlikely(i > max_interrupt_work)) {
3476 spin_lock_irqsave(&np->lock, flags);
3477 /* disable interrupts on the nic */
3478 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3479 pci_push(base);
3480
3481 if (!np->in_shutdown) {
3482 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3483 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3484 }
3485 spin_unlock_irqrestore(&np->lock, flags);
3486 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
3487 break;
3488 }
3489 }
3490 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
3491
3492 return IRQ_RETVAL(i);
3493 }
3494 #endif
3495
3496 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3497 {
3498 struct net_device *dev = (struct net_device *) data;
3499 struct fe_priv *np = netdev_priv(dev);
3500 u8 __iomem *base = get_hwbase(dev);
3501 u32 events;
3502 int i;
3503 unsigned long flags;
3504
3505 dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
3506
3507 for (i=0; ; i++) {
3508 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3509 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
3510 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3511 if (!(events & np->irqmask))
3512 break;
3513
3514 /* check tx in case we reached max loop limit in tx isr */
3515 spin_lock_irqsave(&np->lock, flags);
3516 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3517 spin_unlock_irqrestore(&np->lock, flags);
3518
3519 if (events & NVREG_IRQ_LINK) {
3520 spin_lock_irqsave(&np->lock, flags);
3521 nv_link_irq(dev);
3522 spin_unlock_irqrestore(&np->lock, flags);
3523 }
3524 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3525 spin_lock_irqsave(&np->lock, flags);
3526 nv_linkchange(dev);
3527 spin_unlock_irqrestore(&np->lock, flags);
3528 np->link_timeout = jiffies + LINK_TIMEOUT;
3529 }
3530 if (events & NVREG_IRQ_RECOVER_ERROR) {
3531 spin_lock_irq(&np->lock);
3532 /* disable interrupts on the nic */
3533 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3534 pci_push(base);
3535
3536 if (!np->in_shutdown) {
3537 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3538 np->recover_error = 1;
3539 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3540 }
3541 spin_unlock_irq(&np->lock);
3542 break;
3543 }
3544 if (events & (NVREG_IRQ_UNKNOWN)) {
3545 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3546 dev->name, events);
3547 }
3548 if (unlikely(i > max_interrupt_work)) {
3549 spin_lock_irqsave(&np->lock, flags);
3550 /* disable interrupts on the nic */
3551 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3552 pci_push(base);
3553
3554 if (!np->in_shutdown) {
3555 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3556 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3557 }
3558 spin_unlock_irqrestore(&np->lock, flags);
3559 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
3560 break;
3561 }
3562
3563 }
3564 dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
3565
3566 return IRQ_RETVAL(i);
3567 }
3568
3569 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3570 {
3571 struct net_device *dev = (struct net_device *) data;
3572 struct fe_priv *np = netdev_priv(dev);
3573 u8 __iomem *base = get_hwbase(dev);
3574 u32 events;
3575
3576 dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
3577
3578 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3579 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3580 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3581 } else {
3582 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3583 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3584 }
3585 pci_push(base);
3586 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3587 if (!(events & NVREG_IRQ_TIMER))
3588 return IRQ_RETVAL(0);
3589
3590 spin_lock(&np->lock);
3591 np->intr_test = 1;
3592 spin_unlock(&np->lock);
3593
3594 dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
3595
3596 return IRQ_RETVAL(1);
3597 }
3598
3599 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3600 {
3601 u8 __iomem *base = get_hwbase(dev);
3602 int i;
3603 u32 msixmap = 0;
3604
3605 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3606 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3607 * the remaining 8 interrupts.
3608 */
3609 for (i = 0; i < 8; i++) {
3610 if ((irqmask >> i) & 0x1) {
3611 msixmap |= vector << (i << 2);
3612 }
3613 }
3614 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3615
3616 msixmap = 0;
3617 for (i = 0; i < 8; i++) {
3618 if ((irqmask >> (i + 8)) & 0x1) {
3619 msixmap |= vector << (i << 2);
3620 }
3621 }
3622 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3623 }
3624
3625 static int nv_request_irq(struct net_device *dev, int intr_test)
3626 {
3627 struct fe_priv *np = get_nvpriv(dev);
3628 u8 __iomem *base = get_hwbase(dev);
3629 int ret = 1;
3630 int i;
3631 irqreturn_t (*handler)(int foo, void *data);
3632
3633 if (intr_test) {
3634 handler = nv_nic_irq_test;
3635 } else {
3636 if (np->desc_ver == DESC_VER_3)
3637 handler = nv_nic_irq_optimized;
3638 else
3639 handler = nv_nic_irq;
3640 }
3641
3642 if (np->msi_flags & NV_MSI_X_CAPABLE) {
3643 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3644 np->msi_x_entry[i].entry = i;
3645 }
3646 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
3647 np->msi_flags |= NV_MSI_X_ENABLED;
3648 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
3649 /* Request irq for rx handling */
3650 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
3651 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
3652 pci_disable_msix(np->pci_dev);
3653 np->msi_flags &= ~NV_MSI_X_ENABLED;
3654 goto out_err;
3655 }
3656 /* Request irq for tx handling */
3657 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
3658 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
3659 pci_disable_msix(np->pci_dev);
3660 np->msi_flags &= ~NV_MSI_X_ENABLED;
3661 goto out_free_rx;
3662 }
3663 /* Request irq for link and timer handling */
3664 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
3665 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
3666 pci_disable_msix(np->pci_dev);
3667 np->msi_flags &= ~NV_MSI_X_ENABLED;
3668 goto out_free_tx;
3669 }
3670 /* map interrupts to their respective vector */
3671 writel(0, base + NvRegMSIXMap0);
3672 writel(0, base + NvRegMSIXMap1);
3673 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
3674 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
3675 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
3676 } else {
3677 /* Request irq for all interrupts */
3678 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
3679 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3680 pci_disable_msix(np->pci_dev);
3681 np->msi_flags &= ~NV_MSI_X_ENABLED;
3682 goto out_err;
3683 }
3684
3685 /* map interrupts to vector 0 */
3686 writel(0, base + NvRegMSIXMap0);
3687 writel(0, base + NvRegMSIXMap1);
3688 }
3689 }
3690 }
3691 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
3692 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
3693 np->msi_flags |= NV_MSI_ENABLED;
3694 dev->irq = np->pci_dev->irq;
3695 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
3696 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3697 pci_disable_msi(np->pci_dev);
3698 np->msi_flags &= ~NV_MSI_ENABLED;
3699 dev->irq = np->pci_dev->irq;
3700 goto out_err;
3701 }
3702
3703 /* map interrupts to vector 0 */
3704 writel(0, base + NvRegMSIMap0);
3705 writel(0, base + NvRegMSIMap1);
3706 /* enable msi vector 0 */
3707 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3708 }
3709 }
3710 if (ret != 0) {
3711 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
3712 goto out_err;
3713
3714 }
3715
3716 return 0;
3717 out_free_tx:
3718 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
3719 out_free_rx:
3720 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
3721 out_err:
3722 return 1;
3723 }
3724
3725 static void nv_free_irq(struct net_device *dev)
3726 {
3727 struct fe_priv *np = get_nvpriv(dev);
3728 int i;
3729
3730 if (np->msi_flags & NV_MSI_X_ENABLED) {
3731 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3732 free_irq(np->msi_x_entry[i].vector, dev);
3733 }
3734 pci_disable_msix(np->pci_dev);
3735 np->msi_flags &= ~NV_MSI_X_ENABLED;
3736 } else {
3737 free_irq(np->pci_dev->irq, dev);
3738 if (np->msi_flags & NV_MSI_ENABLED) {
3739 pci_disable_msi(np->pci_dev);
3740 np->msi_flags &= ~NV_MSI_ENABLED;
3741 }
3742 }
3743 }
3744
3745 static void nv_do_nic_poll(unsigned long data)
3746 {
3747 struct net_device *dev = (struct net_device *) data;
3748 struct fe_priv *np = netdev_priv(dev);
3749 u8 __iomem *base = get_hwbase(dev);
3750 u32 mask = 0;
3751
3752 /*
3753 * First disable irq(s) and then
3754 * reenable interrupts on the nic, we have to do this before calling
3755 * nv_nic_irq because that may decide to do otherwise
3756 */
3757
3758 if (!using_multi_irqs(dev)) {
3759 if (np->msi_flags & NV_MSI_X_ENABLED)
3760 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
3761 else
3762 disable_irq_lockdep(np->pci_dev->irq);
3763 mask = np->irqmask;
3764 } else {
3765 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
3766 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
3767 mask |= NVREG_IRQ_RX_ALL;
3768 }
3769 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
3770 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
3771 mask |= NVREG_IRQ_TX_ALL;
3772 }
3773 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
3774 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
3775 mask |= NVREG_IRQ_OTHER;
3776 }
3777 }
3778 np->nic_poll_irq = 0;
3779
3780 /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
3781
3782 if (np->recover_error) {
3783 np->recover_error = 0;
3784 printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
3785 if (netif_running(dev)) {
3786 netif_tx_lock_bh(dev);
3787 spin_lock(&np->lock);
3788 /* stop engines */
3789 nv_stop_rx(dev);
3790 nv_stop_tx(dev);
3791 nv_txrx_reset(dev);
3792 /* drain rx queue */
3793 nv_drain_rx(dev);
3794 nv_drain_tx(dev);
3795 /* reinit driver view of the rx queue */
3796 set_bufsize(dev);
3797 if (nv_init_ring(dev)) {
3798 if (!np->in_shutdown)
3799 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3800 }
3801 /* reinit nic view of the rx queue */
3802 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3803 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3804 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3805 base + NvRegRingSizes);
3806 pci_push(base);
3807 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3808 pci_push(base);
3809
3810 /* restart rx engine */
3811 nv_start_rx(dev);
3812 nv_start_tx(dev);
3813 spin_unlock(&np->lock);
3814 netif_tx_unlock_bh(dev);
3815 }
3816 }
3817
3818
3819 writel(mask, base + NvRegIrqMask);
3820 pci_push(base);
3821
3822 if (!using_multi_irqs(dev)) {
3823 if (np->desc_ver == DESC_VER_3)
3824 nv_nic_irq_optimized(0, dev);
3825 else
3826 nv_nic_irq(0, dev);
3827 if (np->msi_flags & NV_MSI_X_ENABLED)
3828 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
3829 else
3830 enable_irq_lockdep(np->pci_dev->irq);
3831 } else {
3832 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
3833 nv_nic_irq_rx(0, dev);
3834 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
3835 }
3836 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
3837 nv_nic_irq_tx(0, dev);
3838 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
3839 }
3840 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
3841 nv_nic_irq_other(0, dev);
3842 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
3843 }
3844 }
3845 }
3846
3847 #ifdef CONFIG_NET_POLL_CONTROLLER
3848 static void nv_poll_controller(struct net_device *dev)
3849 {
3850 nv_do_nic_poll((unsigned long) dev);
3851 }
3852 #endif
3853
3854 static void nv_do_stats_poll(unsigned long data)
3855 {
3856 struct net_device *dev = (struct net_device *) data;
3857 struct fe_priv *np = netdev_priv(dev);
3858
3859 nv_get_hw_stats(dev);
3860
3861 if (!np->in_shutdown)
3862 mod_timer(&np->stats_poll,
3863 round_jiffies(jiffies + STATS_INTERVAL));
3864 }
3865
3866 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3867 {
3868 struct fe_priv *np = netdev_priv(dev);
3869 strcpy(info->driver, DRV_NAME);
3870 strcpy(info->version, FORCEDETH_VERSION);
3871 strcpy(info->bus_info, pci_name(np->pci_dev));
3872 }
3873
3874 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3875 {
3876 struct fe_priv *np = netdev_priv(dev);
3877 wolinfo->supported = WAKE_MAGIC;
3878
3879 spin_lock_irq(&np->lock);
3880 if (np->wolenabled)
3881 wolinfo->wolopts = WAKE_MAGIC;
3882 spin_unlock_irq(&np->lock);
3883 }
3884
3885 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3886 {
3887 struct fe_priv *np = netdev_priv(dev);
3888 u8 __iomem *base = get_hwbase(dev);
3889 u32 flags = 0;
3890
3891 if (wolinfo->wolopts == 0) {
3892 np->wolenabled = 0;
3893 } else if (wolinfo->wolopts & WAKE_MAGIC) {
3894 np->wolenabled = 1;
3895 flags = NVREG_WAKEUPFLAGS_ENABLE;
3896 }
3897 if (netif_running(dev)) {
3898 spin_lock_irq(&np->lock);
3899 writel(flags, base + NvRegWakeUpFlags);
3900 spin_unlock_irq(&np->lock);
3901 }
3902 return 0;
3903 }
3904
3905 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3906 {
3907 struct fe_priv *np = netdev_priv(dev);
3908 int adv;
3909
3910 spin_lock_irq(&np->lock);
3911 ecmd->port = PORT_MII;
3912 if (!netif_running(dev)) {
3913 /* We do not track link speed / duplex setting if the
3914 * interface is disabled. Force a link check */
3915 if (nv_update_linkspeed(dev)) {
3916 if (!netif_carrier_ok(dev))
3917 netif_carrier_on(dev);
3918 } else {
3919 if (netif_carrier_ok(dev))
3920 netif_carrier_off(dev);
3921 }
3922 }
3923
3924 if (netif_carrier_ok(dev)) {
3925 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
3926 case NVREG_LINKSPEED_10:
3927 ecmd->speed = SPEED_10;
3928 break;
3929 case NVREG_LINKSPEED_100:
3930 ecmd->speed = SPEED_100;
3931 break;
3932 case NVREG_LINKSPEED_1000:
3933 ecmd->speed = SPEED_1000;
3934 break;
3935 }
3936 ecmd->duplex = DUPLEX_HALF;
3937 if (np->duplex)
3938 ecmd->duplex = DUPLEX_FULL;
3939 } else {
3940 ecmd->speed = -1;
3941 ecmd->duplex = -1;
3942 }
3943
3944 ecmd->autoneg = np->autoneg;
3945
3946 ecmd->advertising = ADVERTISED_MII;
3947 if (np->autoneg) {
3948 ecmd->advertising |= ADVERTISED_Autoneg;
3949 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3950 if (adv & ADVERTISE_10HALF)
3951 ecmd->advertising |= ADVERTISED_10baseT_Half;
3952 if (adv & ADVERTISE_10FULL)
3953 ecmd->advertising |= ADVERTISED_10baseT_Full;
3954 if (adv & ADVERTISE_100HALF)
3955 ecmd->advertising |= ADVERTISED_100baseT_Half;
3956 if (adv & ADVERTISE_100FULL)
3957 ecmd->advertising |= ADVERTISED_100baseT_Full;
3958 if (np->gigabit == PHY_GIGABIT) {
3959 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3960 if (adv & ADVERTISE_1000FULL)
3961 ecmd->advertising |= ADVERTISED_1000baseT_Full;
3962 }
3963 }
3964 ecmd->supported = (SUPPORTED_Autoneg |
3965 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
3966 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
3967 SUPPORTED_MII);
3968 if (np->gigabit == PHY_GIGABIT)
3969 ecmd->supported |= SUPPORTED_1000baseT_Full;
3970
3971 ecmd->phy_address = np->phyaddr;
3972 ecmd->transceiver = XCVR_EXTERNAL;
3973
3974 /* ignore maxtxpkt, maxrxpkt for now */
3975 spin_unlock_irq(&np->lock);
3976 return 0;
3977 }
3978
3979 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3980 {
3981 struct fe_priv *np = netdev_priv(dev);
3982
3983 if (ecmd->port != PORT_MII)
3984 return -EINVAL;
3985 if (ecmd->transceiver != XCVR_EXTERNAL)
3986 return -EINVAL;
3987 if (ecmd->phy_address != np->phyaddr) {
3988 /* TODO: support switching between multiple phys. Should be
3989 * trivial, but not enabled due to lack of test hardware. */
3990 return -EINVAL;
3991 }
3992 if (ecmd->autoneg == AUTONEG_ENABLE) {
3993 u32 mask;
3994
3995 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
3996 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
3997 if (np->gigabit == PHY_GIGABIT)
3998 mask |= ADVERTISED_1000baseT_Full;
3999
4000 if ((ecmd->advertising & mask) == 0)
4001 return -EINVAL;
4002
4003 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
4004 /* Note: autonegotiation disable, speed 1000 intentionally
4005 * forbidden - noone should need that. */
4006
4007 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
4008 return -EINVAL;
4009 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
4010 return -EINVAL;
4011 } else {
4012 return -EINVAL;
4013 }
4014
4015 netif_carrier_off(dev);
4016 if (netif_running(dev)) {
4017 nv_disable_irq(dev);
4018 netif_tx_lock_bh(dev);
4019 spin_lock(&np->lock);
4020 /* stop engines */
4021 nv_stop_rx(dev);
4022 nv_stop_tx(dev);
4023 spin_unlock(&np->lock);
4024 netif_tx_unlock_bh(dev);
4025 }
4026
4027 if (ecmd->autoneg == AUTONEG_ENABLE) {
4028 int adv, bmcr;
4029
4030 np->autoneg = 1;
4031
4032 /* advertise only what has been requested */
4033 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4034 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4035 if (ecmd->advertising & ADVERTISED_10baseT_Half)
4036 adv |= ADVERTISE_10HALF;
4037 if (ecmd->advertising & ADVERTISED_10baseT_Full)
4038 adv |= ADVERTISE_10FULL;
4039 if (ecmd->advertising & ADVERTISED_100baseT_Half)
4040 adv |= ADVERTISE_100HALF;
4041 if (ecmd->advertising & ADVERTISED_100baseT_Full)
4042 adv |= ADVERTISE_100FULL;
4043 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4044 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4045 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4046 adv |= ADVERTISE_PAUSE_ASYM;
4047 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4048
4049 if (np->gigabit == PHY_GIGABIT) {
4050 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4051 adv &= ~ADVERTISE_1000FULL;
4052 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
4053 adv |= ADVERTISE_1000FULL;
4054 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4055 }
4056
4057 if (netif_running(dev))
4058 printk(KERN_INFO "%s: link down.\n", dev->name);
4059 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4060 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4061 bmcr |= BMCR_ANENABLE;
4062 /* reset the phy in order for settings to stick,
4063 * and cause autoneg to start */
4064 if (phy_reset(dev, bmcr)) {
4065 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4066 return -EINVAL;
4067 }
4068 } else {
4069 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4070 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4071 }
4072 } else {
4073 int adv, bmcr;
4074
4075 np->autoneg = 0;
4076
4077 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4078 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4079 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
4080 adv |= ADVERTISE_10HALF;
4081 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
4082 adv |= ADVERTISE_10FULL;
4083 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
4084 adv |= ADVERTISE_100HALF;
4085 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
4086 adv |= ADVERTISE_100FULL;
4087 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4088 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
4089 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4090 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4091 }
4092 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
4093 adv |= ADVERTISE_PAUSE_ASYM;
4094 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4095 }
4096 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4097 np->fixed_mode = adv;
4098
4099 if (np->gigabit == PHY_GIGABIT) {
4100 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4101 adv &= ~ADVERTISE_1000FULL;
4102 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4103 }
4104
4105 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4106 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
4107 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
4108 bmcr |= BMCR_FULLDPLX;
4109 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
4110 bmcr |= BMCR_SPEED100;
4111 if (np->phy_oui == PHY_OUI_MARVELL) {
4112 /* reset the phy in order for forced mode settings to stick */
4113 if (phy_reset(dev, bmcr)) {
4114 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4115 return -EINVAL;
4116 }
4117 } else {
4118 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4119 if (netif_running(dev)) {
4120 /* Wait a bit and then reconfigure the nic. */
4121 udelay(10);
4122 nv_linkchange(dev);
4123 }
4124 }
4125 }
4126
4127 if (netif_running(dev)) {
4128 nv_start_rx(dev);
4129 nv_start_tx(dev);
4130 nv_enable_irq(dev);
4131 }
4132
4133 return 0;
4134 }
4135
4136 #define FORCEDETH_REGS_VER 1
4137
4138 static int nv_get_regs_len(struct net_device *dev)
4139 {
4140 struct fe_priv *np = netdev_priv(dev);
4141 return np->register_size;
4142 }
4143
4144 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
4145 {
4146 struct fe_priv *np = netdev_priv(dev);
4147 u8 __iomem *base = get_hwbase(dev);
4148 u32 *rbuf = buf;
4149 int i;
4150
4151 regs->version = FORCEDETH_REGS_VER;
4152 spin_lock_irq(&np->lock);
4153 for (i = 0;i <= np->register_size/sizeof(u32); i++)
4154 rbuf[i] = readl(base + i*sizeof(u32));
4155 spin_unlock_irq(&np->lock);
4156 }
4157
4158 static int nv_nway_reset(struct net_device *dev)
4159 {
4160 struct fe_priv *np = netdev_priv(dev);
4161 int ret;
4162
4163 if (np->autoneg) {
4164 int bmcr;
4165
4166 netif_carrier_off(dev);
4167 if (netif_running(dev)) {
4168 nv_disable_irq(dev);
4169 netif_tx_lock_bh(dev);
4170 spin_lock(&np->lock);
4171 /* stop engines */
4172 nv_stop_rx(dev);
4173 nv_stop_tx(dev);
4174 spin_unlock(&np->lock);
4175 netif_tx_unlock_bh(dev);
4176 printk(KERN_INFO "%s: link down.\n", dev->name);
4177 }
4178
4179 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4180 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4181 bmcr |= BMCR_ANENABLE;
4182 /* reset the phy in order for settings to stick*/
4183 if (phy_reset(dev, bmcr)) {
4184 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4185 return -EINVAL;
4186 }
4187 } else {
4188 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4189 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4190 }
4191
4192 if (netif_running(dev)) {
4193 nv_start_rx(dev);
4194 nv_start_tx(dev);
4195 nv_enable_irq(dev);
4196 }
4197 ret = 0;
4198 } else {
4199 ret = -EINVAL;
4200 }
4201
4202 return ret;
4203 }
4204
4205 static int nv_set_tso(struct net_device *dev, u32 value)
4206 {
4207 struct fe_priv *np = netdev_priv(dev);
4208
4209 if ((np->driver_data & DEV_HAS_CHECKSUM))
4210 return ethtool_op_set_tso(dev, value);
4211 else
4212 return -EOPNOTSUPP;
4213 }
4214
4215 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4216 {
4217 struct fe_priv *np = netdev_priv(dev);
4218
4219 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4220 ring->rx_mini_max_pending = 0;
4221 ring->rx_jumbo_max_pending = 0;
4222 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4223
4224 ring->rx_pending = np->rx_ring_size;
4225 ring->rx_mini_pending = 0;
4226 ring->rx_jumbo_pending = 0;
4227 ring->tx_pending = np->tx_ring_size;
4228 }
4229
4230 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4231 {
4232 struct fe_priv *np = netdev_priv(dev);
4233 u8 __iomem *base = get_hwbase(dev);
4234 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
4235 dma_addr_t ring_addr;
4236
4237 if (ring->rx_pending < RX_RING_MIN ||
4238 ring->tx_pending < TX_RING_MIN ||
4239 ring->rx_mini_pending != 0 ||
4240 ring->rx_jumbo_pending != 0 ||
4241 (np->desc_ver == DESC_VER_1 &&
4242 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
4243 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
4244 (np->desc_ver != DESC_VER_1 &&
4245 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
4246 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
4247 return -EINVAL;
4248 }
4249
4250 /* allocate new rings */
4251 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4252 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4253 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4254 &ring_addr);
4255 } else {
4256 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4257 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4258 &ring_addr);
4259 }
4260 rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
4261 tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
4262 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
4263 /* fall back to old rings */
4264 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4265 if (rxtx_ring)
4266 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4267 rxtx_ring, ring_addr);
4268 } else {
4269 if (rxtx_ring)
4270 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4271 rxtx_ring, ring_addr);
4272 }
4273 if (rx_skbuff)
4274 kfree(rx_skbuff);
4275 if (tx_skbuff)
4276 kfree(tx_skbuff);
4277 goto exit;
4278 }
4279
4280 if (netif_running(dev)) {
4281 nv_disable_irq(dev);
4282 netif_tx_lock_bh(dev);
4283 spin_lock(&np->lock);
4284 /* stop engines */
4285 nv_stop_rx(dev);
4286 nv_stop_tx(dev);
4287 nv_txrx_reset(dev);
4288 /* drain queues */
4289 nv_drain_rx(dev);
4290 nv_drain_tx(dev);
4291 /* delete queues */
4292 free_rings(dev);
4293 }
4294
4295 /* set new values */
4296 np->rx_ring_size = ring->rx_pending;
4297 np->tx_ring_size = ring->tx_pending;
4298 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4299 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
4300 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4301 } else {
4302 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
4303 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4304 }
4305 np->rx_skb = (struct nv_skb_map*)rx_skbuff;
4306 np->tx_skb = (struct nv_skb_map*)tx_skbuff;
4307 np->ring_addr = ring_addr;
4308
4309 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4310 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4311
4312 if (netif_running(dev)) {
4313 /* reinit driver view of the queues */
4314 set_bufsize(dev);
4315 if (nv_init_ring(dev)) {
4316 if (!np->in_shutdown)
4317 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4318 }
4319
4320 /* reinit nic view of the queues */
4321 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4322 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4323 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4324 base + NvRegRingSizes);
4325 pci_push(base);
4326 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4327 pci_push(base);
4328
4329 /* restart engines */
4330 nv_start_rx(dev);
4331 nv_start_tx(dev);
4332 spin_unlock(&np->lock);
4333 netif_tx_unlock_bh(dev);
4334 nv_enable_irq(dev);
4335 }
4336 return 0;
4337 exit:
4338 return -ENOMEM;
4339 }
4340
4341 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4342 {
4343 struct fe_priv *np = netdev_priv(dev);
4344
4345 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4346 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4347 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4348 }
4349
4350 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4351 {
4352 struct fe_priv *np = netdev_priv(dev);
4353 int adv, bmcr;
4354
4355 if ((!np->autoneg && np->duplex == 0) ||
4356 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4357 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
4358 dev->name);
4359 return -EINVAL;
4360 }
4361 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4362 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
4363 return -EINVAL;
4364 }
4365
4366 netif_carrier_off(dev);
4367 if (netif_running(dev)) {
4368 nv_disable_irq(dev);
4369 netif_tx_lock_bh(dev);
4370 spin_lock(&np->lock);
4371 /* stop engines */
4372 nv_stop_rx(dev);
4373 nv_stop_tx(dev);
4374 spin_unlock(&np->lock);
4375 netif_tx_unlock_bh(dev);
4376 }
4377
4378 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4379 if (pause->rx_pause)
4380 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4381 if (pause->tx_pause)
4382 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4383
4384 if (np->autoneg && pause->autoneg) {
4385 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4386
4387 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4388 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4389 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4390 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4391 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4392 adv |= ADVERTISE_PAUSE_ASYM;
4393 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4394
4395 if (netif_running(dev))
4396 printk(KERN_INFO "%s: link down.\n", dev->name);
4397 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4398 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4399 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4400 } else {
4401 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4402 if (pause->rx_pause)
4403 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4404 if (pause->tx_pause)
4405 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4406
4407 if (!netif_running(dev))
4408 nv_update_linkspeed(dev);
4409 else
4410 nv_update_pause(dev, np->pause_flags);
4411 }
4412
4413 if (netif_running(dev)) {
4414 nv_start_rx(dev);
4415 nv_start_tx(dev);
4416 nv_enable_irq(dev);
4417 }
4418 return 0;
4419 }
4420
4421 static u32 nv_get_rx_csum(struct net_device *dev)
4422 {
4423 struct fe_priv *np = netdev_priv(dev);
4424 return (np->rx_csum) != 0;
4425 }
4426
4427 static int nv_set_rx_csum(struct net_device *dev, u32 data)
4428 {
4429 struct fe_priv *np = netdev_priv(dev);
4430 u8 __iomem *base = get_hwbase(dev);
4431 int retcode = 0;
4432
4433 if (np->driver_data & DEV_HAS_CHECKSUM) {
4434 if (data) {
4435 np->rx_csum = 1;
4436 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4437 } else {
4438 np->rx_csum = 0;
4439 /* vlan is dependent on rx checksum offload */
4440 if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
4441 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4442 }
4443 if (netif_running(dev)) {
4444 spin_lock_irq(&np->lock);
4445 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4446 spin_unlock_irq(&np->lock);
4447 }
4448 } else {
4449 return -EINVAL;
4450 }
4451
4452 return retcode;
4453 }
4454
4455 static int nv_set_tx_csum(struct net_device *dev, u32 data)
4456 {
4457 struct fe_priv *np = netdev_priv(dev);
4458
4459 if (np->driver_data & DEV_HAS_CHECKSUM)
4460 return ethtool_op_set_tx_hw_csum(dev, data);
4461 else
4462 return -EOPNOTSUPP;
4463 }
4464
4465 static int nv_set_sg(struct net_device *dev, u32 data)
4466 {
4467 struct fe_priv *np = netdev_priv(dev);
4468
4469 if (np->driver_data & DEV_HAS_CHECKSUM)
4470 return ethtool_op_set_sg(dev, data);
4471 else
4472 return -EOPNOTSUPP;
4473 }
4474
4475 static int nv_get_sset_count(struct net_device *dev, int sset)
4476 {
4477 struct fe_priv *np = netdev_priv(dev);
4478
4479 switch (sset) {
4480 case ETH_SS_TEST:
4481 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4482 return NV_TEST_COUNT_EXTENDED;
4483 else
4484 return NV_TEST_COUNT_BASE;
4485 case ETH_SS_STATS:
4486 if (np->driver_data & DEV_HAS_STATISTICS_V1)
4487 return NV_DEV_STATISTICS_V1_COUNT;
4488 else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4489 return NV_DEV_STATISTICS_V2_COUNT;
4490 else
4491 return 0;
4492 default:
4493 return -EOPNOTSUPP;
4494 }
4495 }
4496
4497 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
4498 {
4499 struct fe_priv *np = netdev_priv(dev);
4500
4501 /* update stats */
4502 nv_do_stats_poll((unsigned long)dev);
4503
4504 memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
4505 }
4506
4507 static int nv_link_test(struct net_device *dev)
4508 {
4509 struct fe_priv *np = netdev_priv(dev);
4510 int mii_status;
4511
4512 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4513 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4514
4515 /* check phy link status */
4516 if (!(mii_status & BMSR_LSTATUS))
4517 return 0;
4518 else
4519 return 1;
4520 }
4521
4522 static int nv_register_test(struct net_device *dev)
4523 {
4524 u8 __iomem *base = get_hwbase(dev);
4525 int i = 0;
4526 u32 orig_read, new_read;
4527
4528 do {
4529 orig_read = readl(base + nv_registers_test[i].reg);
4530
4531 /* xor with mask to toggle bits */
4532 orig_read ^= nv_registers_test[i].mask;
4533
4534 writel(orig_read, base + nv_registers_test[i].reg);
4535
4536 new_read = readl(base + nv_registers_test[i].reg);
4537
4538 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
4539 return 0;
4540
4541 /* restore original value */
4542 orig_read ^= nv_registers_test[i].mask;
4543 writel(orig_read, base + nv_registers_test[i].reg);
4544
4545 } while (nv_registers_test[++i].reg != 0);
4546
4547 return 1;
4548 }
4549
4550 static int nv_interrupt_test(struct net_device *dev)
4551 {
4552 struct fe_priv *np = netdev_priv(dev);
4553 u8 __iomem *base = get_hwbase(dev);
4554 int ret = 1;
4555 int testcnt;
4556 u32 save_msi_flags, save_poll_interval = 0;
4557
4558 if (netif_running(dev)) {
4559 /* free current irq */
4560 nv_free_irq(dev);
4561 save_poll_interval = readl(base+NvRegPollingInterval);
4562 }
4563
4564 /* flag to test interrupt handler */
4565 np->intr_test = 0;
4566
4567 /* setup test irq */
4568 save_msi_flags = np->msi_flags;
4569 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
4570 np->msi_flags |= 0x001; /* setup 1 vector */
4571 if (nv_request_irq(dev, 1))
4572 return 0;
4573
4574 /* setup timer interrupt */
4575 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4576 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4577
4578 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4579
4580 /* wait for at least one interrupt */
4581 msleep(100);
4582
4583 spin_lock_irq(&np->lock);
4584
4585 /* flag should be set within ISR */
4586 testcnt = np->intr_test;
4587 if (!testcnt)
4588 ret = 2;
4589
4590 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4591 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4592 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4593 else
4594 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4595
4596 spin_unlock_irq(&np->lock);
4597
4598 nv_free_irq(dev);
4599
4600 np->msi_flags = save_msi_flags;
4601
4602 if (netif_running(dev)) {
4603 writel(save_poll_interval, base + NvRegPollingInterval);
4604 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4605 /* restore original irq */
4606 if (nv_request_irq(dev, 0))
4607 return 0;
4608 }
4609
4610 return ret;
4611 }
4612
4613 static int nv_loopback_test(struct net_device *dev)
4614 {
4615 struct fe_priv *np = netdev_priv(dev);
4616 u8 __iomem *base = get_hwbase(dev);
4617 struct sk_buff *tx_skb, *rx_skb;
4618 dma_addr_t test_dma_addr;
4619 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
4620 u32 flags;
4621 int len, i, pkt_len;
4622 u8 *pkt_data;
4623 u32 filter_flags = 0;
4624 u32 misc1_flags = 0;
4625 int ret = 1;
4626
4627 if (netif_running(dev)) {
4628 nv_disable_irq(dev);
4629 filter_flags = readl(base + NvRegPacketFilterFlags);
4630 misc1_flags = readl(base + NvRegMisc1);
4631 } else {
4632 nv_txrx_reset(dev);
4633 }
4634
4635 /* reinit driver view of the rx queue */
4636 set_bufsize(dev);
4637 nv_init_ring(dev);
4638
4639 /* setup hardware for loopback */
4640 writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
4641 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
4642
4643 /* reinit nic view of the rx queue */
4644 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4645 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4646 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4647 base + NvRegRingSizes);
4648 pci_push(base);
4649
4650 /* restart rx engine */
4651 nv_start_rx(dev);
4652 nv_start_tx(dev);
4653
4654 /* setup packet for tx */
4655 pkt_len = ETH_DATA_LEN;
4656 tx_skb = dev_alloc_skb(pkt_len);
4657 if (!tx_skb) {
4658 printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
4659 " of %s\n", dev->name);
4660 ret = 0;
4661 goto out;
4662 }
4663 test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
4664 skb_tailroom(tx_skb),
4665 PCI_DMA_FROMDEVICE);
4666 pkt_data = skb_put(tx_skb, pkt_len);
4667 for (i = 0; i < pkt_len; i++)
4668 pkt_data[i] = (u8)(i & 0xff);
4669
4670 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4671 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
4672 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4673 } else {
4674 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
4675 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
4676 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4677 }
4678 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4679 pci_push(get_hwbase(dev));
4680
4681 msleep(500);
4682
4683 /* check for rx of the packet */
4684 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4685 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
4686 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
4687
4688 } else {
4689 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
4690 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
4691 }
4692
4693 if (flags & NV_RX_AVAIL) {
4694 ret = 0;
4695 } else if (np->desc_ver == DESC_VER_1) {
4696 if (flags & NV_RX_ERROR)
4697 ret = 0;
4698 } else {
4699 if (flags & NV_RX2_ERROR) {
4700 ret = 0;
4701 }
4702 }
4703
4704 if (ret) {
4705 if (len != pkt_len) {
4706 ret = 0;
4707 dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
4708 dev->name, len, pkt_len);
4709 } else {
4710 rx_skb = np->rx_skb[0].skb;
4711 for (i = 0; i < pkt_len; i++) {
4712 if (rx_skb->data[i] != (u8)(i & 0xff)) {
4713 ret = 0;
4714 dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
4715 dev->name, i);
4716 break;
4717 }
4718 }
4719 }
4720 } else {
4721 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
4722 }
4723
4724 pci_unmap_page(np->pci_dev, test_dma_addr,
4725 (skb_end_pointer(tx_skb) - tx_skb->data),
4726 PCI_DMA_TODEVICE);
4727 dev_kfree_skb_any(tx_skb);
4728 out:
4729 /* stop engines */
4730 nv_stop_rx(dev);
4731 nv_stop_tx(dev);
4732 nv_txrx_reset(dev);
4733 /* drain rx queue */
4734 nv_drain_rx(dev);
4735 nv_drain_tx(dev);
4736
4737 if (netif_running(dev)) {
4738 writel(misc1_flags, base + NvRegMisc1);
4739 writel(filter_flags, base + NvRegPacketFilterFlags);
4740 nv_enable_irq(dev);
4741 }
4742
4743 return ret;
4744 }
4745
4746 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
4747 {
4748 struct fe_priv *np = netdev_priv(dev);
4749 u8 __iomem *base = get_hwbase(dev);
4750 int result;
4751 memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
4752
4753 if (!nv_link_test(dev)) {
4754 test->flags |= ETH_TEST_FL_FAILED;
4755 buffer[0] = 1;
4756 }
4757
4758 if (test->flags & ETH_TEST_FL_OFFLINE) {
4759 if (netif_running(dev)) {
4760 netif_stop_queue(dev);
4761 #ifdef CONFIG_FORCEDETH_NAPI
4762 napi_disable(&np->napi);
4763 #endif
4764 netif_tx_lock_bh(dev);
4765 spin_lock_irq(&np->lock);
4766 nv_disable_hw_interrupts(dev, np->irqmask);
4767 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
4768 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4769 } else {
4770 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4771 }
4772 /* stop engines */
4773 nv_stop_rx(dev);
4774 nv_stop_tx(dev);
4775 nv_txrx_reset(dev);
4776 /* drain rx queue */
4777 nv_drain_rx(dev);
4778 nv_drain_tx(dev);
4779 spin_unlock_irq(&np->lock);
4780 netif_tx_unlock_bh(dev);
4781 }
4782
4783 if (!nv_register_test(dev)) {
4784 test->flags |= ETH_TEST_FL_FAILED;
4785 buffer[1] = 1;
4786 }
4787
4788 result = nv_interrupt_test(dev);
4789 if (result != 1) {
4790 test->flags |= ETH_TEST_FL_FAILED;
4791 buffer[2] = 1;
4792 }
4793 if (result == 0) {
4794 /* bail out */
4795 return;
4796 }
4797
4798 if (!nv_loopback_test(dev)) {
4799 test->flags |= ETH_TEST_FL_FAILED;
4800 buffer[3] = 1;
4801 }
4802
4803 if (netif_running(dev)) {
4804 /* reinit driver view of the rx queue */
4805 set_bufsize(dev);
4806 if (nv_init_ring(dev)) {
4807 if (!np->in_shutdown)
4808 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4809 }
4810 /* reinit nic view of the rx queue */
4811 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4812 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4813 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4814 base + NvRegRingSizes);
4815 pci_push(base);
4816 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4817 pci_push(base);
4818 /* restart rx engine */
4819 nv_start_rx(dev);
4820 nv_start_tx(dev);
4821 netif_start_queue(dev);
4822 #ifdef CONFIG_FORCEDETH_NAPI
4823 napi_enable(&np->napi);
4824 #endif
4825 nv_enable_hw_interrupts(dev, np->irqmask);
4826 }
4827 }
4828 }
4829
4830 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
4831 {
4832 switch (stringset) {
4833 case ETH_SS_STATS:
4834 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
4835 break;
4836 case ETH_SS_TEST:
4837 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
4838 break;
4839 }
4840 }
4841
4842 static const struct ethtool_ops ops = {
4843 .get_drvinfo = nv_get_drvinfo,
4844 .get_link = ethtool_op_get_link,
4845 .get_wol = nv_get_wol,
4846 .set_wol = nv_set_wol,
4847 .get_settings = nv_get_settings,
4848 .set_settings = nv_set_settings,
4849 .get_regs_len = nv_get_regs_len,
4850 .get_regs = nv_get_regs,
4851 .nway_reset = nv_nway_reset,
4852 .set_tso = nv_set_tso,
4853 .get_ringparam = nv_get_ringparam,
4854 .set_ringparam = nv_set_ringparam,
4855 .get_pauseparam = nv_get_pauseparam,
4856 .set_pauseparam = nv_set_pauseparam,
4857 .get_rx_csum = nv_get_rx_csum,
4858 .set_rx_csum = nv_set_rx_csum,
4859 .set_tx_csum = nv_set_tx_csum,
4860 .set_sg = nv_set_sg,
4861 .get_strings = nv_get_strings,
4862 .get_ethtool_stats = nv_get_ethtool_stats,
4863 .get_sset_count = nv_get_sset_count,
4864 .self_test = nv_self_test,
4865 };
4866
4867 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
4868 {
4869 struct fe_priv *np = get_nvpriv(dev);
4870
4871 spin_lock_irq(&np->lock);
4872
4873 /* save vlan group */
4874 np->vlangrp = grp;
4875
4876 if (grp) {
4877 /* enable vlan on MAC */
4878 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
4879 } else {
4880 /* disable vlan on MAC */
4881 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
4882 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
4883 }
4884
4885 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4886
4887 spin_unlock_irq(&np->lock);
4888 }
4889
4890 /* The mgmt unit and driver use a semaphore to access the phy during init */
4891 static int nv_mgmt_acquire_sema(struct net_device *dev)
4892 {
4893 u8 __iomem *base = get_hwbase(dev);
4894 int i;
4895 u32 tx_ctrl, mgmt_sema;
4896
4897 for (i = 0; i < 10; i++) {
4898 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
4899 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
4900 break;
4901 msleep(500);
4902 }
4903
4904 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
4905 return 0;
4906
4907 for (i = 0; i < 2; i++) {
4908 tx_ctrl = readl(base + NvRegTransmitterControl);
4909 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
4910 writel(tx_ctrl, base + NvRegTransmitterControl);
4911
4912 /* verify that semaphore was acquired */
4913 tx_ctrl = readl(base + NvRegTransmitterControl);
4914 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
4915 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
4916 return 1;
4917 else
4918 udelay(50);
4919 }
4920
4921 return 0;
4922 }
4923
4924 static int nv_open(struct net_device *dev)
4925 {
4926 struct fe_priv *np = netdev_priv(dev);
4927 u8 __iomem *base = get_hwbase(dev);
4928 int ret = 1;
4929 int oom, i;
4930
4931 dprintk(KERN_DEBUG "nv_open: begin\n");
4932
4933 /* erase previous misconfiguration */
4934 if (np->driver_data & DEV_HAS_POWER_CNTRL)
4935 nv_mac_reset(dev);
4936 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4937 writel(0, base + NvRegMulticastAddrB);
4938 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
4939 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
4940 writel(0, base + NvRegPacketFilterFlags);
4941
4942 writel(0, base + NvRegTransmitterControl);
4943 writel(0, base + NvRegReceiverControl);
4944
4945 writel(0, base + NvRegAdapterControl);
4946
4947 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
4948 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
4949
4950 /* initialize descriptor rings */
4951 set_bufsize(dev);
4952 oom = nv_init_ring(dev);
4953
4954 writel(0, base + NvRegLinkSpeed);
4955 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
4956 nv_txrx_reset(dev);
4957 writel(0, base + NvRegUnknownSetupReg6);
4958
4959 np->in_shutdown = 0;
4960
4961 /* give hw rings */
4962 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4963 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4964 base + NvRegRingSizes);
4965
4966 writel(np->linkspeed, base + NvRegLinkSpeed);
4967 if (np->desc_ver == DESC_VER_1)
4968 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
4969 else
4970 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
4971 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4972 writel(np->vlanctl_bits, base + NvRegVlanControl);
4973 pci_push(base);
4974 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
4975 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
4976 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
4977 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
4978
4979 writel(0, base + NvRegMIIMask);
4980 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4981 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
4982
4983 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
4984 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
4985 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
4986 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4987
4988 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
4989 get_random_bytes(&i, sizeof(i));
4990 writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
4991 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
4992 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
4993 if (poll_interval == -1) {
4994 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
4995 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
4996 else
4997 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4998 }
4999 else
5000 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
5001 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
5002 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
5003 base + NvRegAdapterControl);
5004 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
5005 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
5006 if (np->wolenabled)
5007 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
5008
5009 i = readl(base + NvRegPowerState);
5010 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
5011 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
5012
5013 pci_push(base);
5014 udelay(10);
5015 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
5016
5017 nv_disable_hw_interrupts(dev, np->irqmask);
5018 pci_push(base);
5019 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5020 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
5021 pci_push(base);
5022
5023 if (nv_request_irq(dev, 0)) {
5024 goto out_drain;
5025 }
5026
5027 /* ask for interrupts */
5028 nv_enable_hw_interrupts(dev, np->irqmask);
5029
5030 spin_lock_irq(&np->lock);
5031 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
5032 writel(0, base + NvRegMulticastAddrB);
5033 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
5034 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
5035 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5036 /* One manual link speed update: Interrupts are enabled, future link
5037 * speed changes cause interrupts and are handled by nv_link_irq().
5038 */
5039 {
5040 u32 miistat;
5041 miistat = readl(base + NvRegMIIStatus);
5042 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5043 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
5044 }
5045 /* set linkspeed to invalid value, thus force nv_update_linkspeed
5046 * to init hw */
5047 np->linkspeed = 0;
5048 ret = nv_update_linkspeed(dev);
5049 nv_start_rx(dev);
5050 nv_start_tx(dev);
5051 netif_start_queue(dev);
5052 #ifdef CONFIG_FORCEDETH_NAPI
5053 napi_enable(&np->napi);
5054 #endif
5055
5056 if (ret) {
5057 netif_carrier_on(dev);
5058 } else {
5059 printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
5060 netif_carrier_off(dev);
5061 }
5062 if (oom)
5063 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
5064
5065 /* start statistics timer */
5066 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
5067 mod_timer(&np->stats_poll,
5068 round_jiffies(jiffies + STATS_INTERVAL));
5069
5070 spin_unlock_irq(&np->lock);
5071
5072 return 0;
5073 out_drain:
5074 drain_ring(dev);
5075 return ret;
5076 }
5077
5078 static int nv_close(struct net_device *dev)
5079 {
5080 struct fe_priv *np = netdev_priv(dev);
5081 u8 __iomem *base;
5082
5083 spin_lock_irq(&np->lock);
5084 np->in_shutdown = 1;
5085 spin_unlock_irq(&np->lock);
5086 #ifdef CONFIG_FORCEDETH_NAPI
5087 napi_disable(&np->napi);
5088 #endif
5089 synchronize_irq(np->pci_dev->irq);
5090
5091 del_timer_sync(&np->oom_kick);
5092 del_timer_sync(&np->nic_poll);
5093 del_timer_sync(&np->stats_poll);
5094
5095 netif_stop_queue(dev);
5096 spin_lock_irq(&np->lock);
5097 nv_stop_tx(dev);
5098 nv_stop_rx(dev);
5099 nv_txrx_reset(dev);
5100
5101 /* disable interrupts on the nic or we will lock up */
5102 base = get_hwbase(dev);
5103 nv_disable_hw_interrupts(dev, np->irqmask);
5104 pci_push(base);
5105 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
5106
5107 spin_unlock_irq(&np->lock);
5108
5109 nv_free_irq(dev);
5110
5111 drain_ring(dev);
5112
5113 if (np->wolenabled) {
5114 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5115 nv_start_rx(dev);
5116 }
5117
5118 /* FIXME: power down nic */
5119
5120 return 0;
5121 }
5122
5123 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
5124 {
5125 struct net_device *dev;
5126 struct fe_priv *np;
5127 unsigned long addr;
5128 u8 __iomem *base;
5129 int err, i;
5130 u32 powerstate, txreg;
5131 u32 phystate_orig = 0, phystate;
5132 int phyinitialized = 0;
5133 DECLARE_MAC_BUF(mac);
5134 static int printed_version;
5135
5136 if (!printed_version++)
5137 printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
5138 " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
5139
5140 dev = alloc_etherdev(sizeof(struct fe_priv));
5141 err = -ENOMEM;
5142 if (!dev)
5143 goto out;
5144
5145 np = netdev_priv(dev);
5146 np->dev = dev;
5147 np->pci_dev = pci_dev;
5148 spin_lock_init(&np->lock);
5149 SET_NETDEV_DEV(dev, &pci_dev->dev);
5150
5151 init_timer(&np->oom_kick);
5152 np->oom_kick.data = (unsigned long) dev;
5153 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
5154 init_timer(&np->nic_poll);
5155 np->nic_poll.data = (unsigned long) dev;
5156 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
5157 init_timer(&np->stats_poll);
5158 np->stats_poll.data = (unsigned long) dev;
5159 np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
5160
5161 err = pci_enable_device(pci_dev);
5162 if (err)
5163 goto out_free;
5164
5165 pci_set_master(pci_dev);
5166
5167 err = pci_request_regions(pci_dev, DRV_NAME);
5168 if (err < 0)
5169 goto out_disable;
5170
5171 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
5172 np->register_size = NV_PCI_REGSZ_VER3;
5173 else if (id->driver_data & DEV_HAS_STATISTICS_V1)
5174 np->register_size = NV_PCI_REGSZ_VER2;
5175 else
5176 np->register_size = NV_PCI_REGSZ_VER1;
5177
5178 err = -EINVAL;
5179 addr = 0;
5180 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5181 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
5182 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
5183 pci_resource_len(pci_dev, i),
5184 pci_resource_flags(pci_dev, i));
5185 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
5186 pci_resource_len(pci_dev, i) >= np->register_size) {
5187 addr = pci_resource_start(pci_dev, i);
5188 break;
5189 }
5190 }
5191 if (i == DEVICE_COUNT_RESOURCE) {
5192 dev_printk(KERN_INFO, &pci_dev->dev,
5193 "Couldn't find register window\n");
5194 goto out_relreg;
5195 }
5196
5197 /* copy of driver data */
5198 np->driver_data = id->driver_data;
5199
5200 /* handle different descriptor versions */
5201 if (id->driver_data & DEV_HAS_HIGH_DMA) {
5202 /* packet format 3: supports 40-bit addressing */
5203 np->desc_ver = DESC_VER_3;
5204 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
5205 if (dma_64bit) {
5206 if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
5207 dev_printk(KERN_INFO, &pci_dev->dev,
5208 "64-bit DMA failed, using 32-bit addressing\n");
5209 else
5210 dev->features |= NETIF_F_HIGHDMA;
5211 if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
5212 dev_printk(KERN_INFO, &pci_dev->dev,
5213 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
5214 }
5215 }
5216 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
5217 /* packet format 2: supports jumbo frames */
5218 np->desc_ver = DESC_VER_2;
5219 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
5220 } else {
5221 /* original packet format */
5222 np->desc_ver = DESC_VER_1;
5223 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
5224 }
5225
5226 np->pkt_limit = NV_PKTLIMIT_1;
5227 if (id->driver_data & DEV_HAS_LARGEDESC)
5228 np->pkt_limit = NV_PKTLIMIT_2;
5229
5230 if (id->driver_data & DEV_HAS_CHECKSUM) {
5231 np->rx_csum = 1;
5232 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
5233 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5234 dev->features |= NETIF_F_TSO;
5235 }
5236
5237 np->vlanctl_bits = 0;
5238 if (id->driver_data & DEV_HAS_VLAN) {
5239 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
5240 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
5241 dev->vlan_rx_register = nv_vlan_rx_register;
5242 }
5243
5244 np->msi_flags = 0;
5245 if ((id->driver_data & DEV_HAS_MSI) && msi) {
5246 np->msi_flags |= NV_MSI_CAPABLE;
5247 }
5248 if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
5249 np->msi_flags |= NV_MSI_X_CAPABLE;
5250 }
5251
5252 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
5253 if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
5254 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
5255 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
5256 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
5257 }
5258
5259
5260 err = -ENOMEM;
5261 np->base = ioremap(addr, np->register_size);
5262 if (!np->base)
5263 goto out_relreg;
5264 dev->base_addr = (unsigned long)np->base;
5265
5266 dev->irq = pci_dev->irq;
5267
5268 np->rx_ring_size = RX_RING_DEFAULT;
5269 np->tx_ring_size = TX_RING_DEFAULT;
5270
5271 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
5272 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
5273 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
5274 &np->ring_addr);
5275 if (!np->rx_ring.orig)
5276 goto out_unmap;
5277 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
5278 } else {
5279 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
5280 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
5281 &np->ring_addr);
5282 if (!np->rx_ring.ex)
5283 goto out_unmap;
5284 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
5285 }
5286 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5287 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5288 if (!np->rx_skb || !np->tx_skb)
5289 goto out_freering;
5290
5291 dev->open = nv_open;
5292 dev->stop = nv_close;
5293 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
5294 dev->hard_start_xmit = nv_start_xmit;
5295 else
5296 dev->hard_start_xmit = nv_start_xmit_optimized;
5297 dev->get_stats = nv_get_stats;
5298 dev->change_mtu = nv_change_mtu;
5299 dev->set_mac_address = nv_set_mac_address;
5300 dev->set_multicast_list = nv_set_multicast;
5301 #ifdef CONFIG_NET_POLL_CONTROLLER
5302 dev->poll_controller = nv_poll_controller;
5303 #endif
5304 #ifdef CONFIG_FORCEDETH_NAPI
5305 netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
5306 #endif
5307 SET_ETHTOOL_OPS(dev, &ops);
5308 dev->tx_timeout = nv_tx_timeout;
5309 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
5310
5311 pci_set_drvdata(pci_dev, dev);
5312
5313 /* read the mac address */
5314 base = get_hwbase(dev);
5315 np->orig_mac[0] = readl(base + NvRegMacAddrA);
5316 np->orig_mac[1] = readl(base + NvRegMacAddrB);
5317
5318 /* check the workaround bit for correct mac address order */
5319 txreg = readl(base + NvRegTransmitPoll);
5320 if ((txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) ||
5321 (id->driver_data & DEV_HAS_CORRECT_MACADDR)) {
5322 /* mac address is already in correct order */
5323 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5324 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5325 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5326 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5327 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5328 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5329 } else {
5330 /* need to reverse mac address to correct order */
5331 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
5332 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
5333 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
5334 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
5335 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
5336 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
5337 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5338 }
5339 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5340
5341 if (!is_valid_ether_addr(dev->perm_addr)) {
5342 /*
5343 * Bad mac address. At least one bios sets the mac address
5344 * to 01:23:45:67:89:ab
5345 */
5346 dev_printk(KERN_ERR, &pci_dev->dev,
5347 "Invalid Mac address detected: %s\n",
5348 print_mac(mac, dev->dev_addr));
5349 dev_printk(KERN_ERR, &pci_dev->dev,
5350 "Please complain to your hardware vendor. Switching to a random MAC.\n");
5351 dev->dev_addr[0] = 0x00;
5352 dev->dev_addr[1] = 0x00;
5353 dev->dev_addr[2] = 0x6c;
5354 get_random_bytes(&dev->dev_addr[3], 3);
5355 }
5356
5357 dprintk(KERN_DEBUG "%s: MAC Address %s\n",
5358 pci_name(pci_dev), print_mac(mac, dev->dev_addr));
5359
5360 /* set mac address */
5361 nv_copy_mac_to_hw(dev);
5362
5363 /* disable WOL */
5364 writel(0, base + NvRegWakeUpFlags);
5365 np->wolenabled = 0;
5366
5367 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5368
5369 /* take phy and nic out of low power mode */
5370 powerstate = readl(base + NvRegPowerState2);
5371 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5372 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
5373 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
5374 pci_dev->revision >= 0xA3)
5375 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5376 writel(powerstate, base + NvRegPowerState2);
5377 }
5378
5379 if (np->desc_ver == DESC_VER_1) {
5380 np->tx_flags = NV_TX_VALID;
5381 } else {
5382 np->tx_flags = NV_TX2_VALID;
5383 }
5384 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
5385 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5386 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5387 np->msi_flags |= 0x0003;
5388 } else {
5389 np->irqmask = NVREG_IRQMASK_CPU;
5390 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5391 np->msi_flags |= 0x0001;
5392 }
5393
5394 if (id->driver_data & DEV_NEED_TIMERIRQ)
5395 np->irqmask |= NVREG_IRQ_TIMER;
5396 if (id->driver_data & DEV_NEED_LINKTIMER) {
5397 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
5398 np->need_linktimer = 1;
5399 np->link_timeout = jiffies + LINK_TIMEOUT;
5400 } else {
5401 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
5402 np->need_linktimer = 0;
5403 }
5404
5405 /* Limit the number of tx's outstanding for hw bug */
5406 if (id->driver_data & DEV_NEED_TX_LIMIT) {
5407 np->tx_limit = 1;
5408 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
5409 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
5410 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
5411 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
5412 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
5413 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
5414 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
5415 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
5416 pci_dev->revision >= 0xA2)
5417 np->tx_limit = 0;
5418 }
5419
5420 /* clear phy state and temporarily halt phy interrupts */
5421 writel(0, base + NvRegMIIMask);
5422 phystate = readl(base + NvRegAdapterControl);
5423 if (phystate & NVREG_ADAPTCTL_RUNNING) {
5424 phystate_orig = 1;
5425 phystate &= ~NVREG_ADAPTCTL_RUNNING;
5426 writel(phystate, base + NvRegAdapterControl);
5427 }
5428 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5429
5430 if (id->driver_data & DEV_HAS_MGMT_UNIT) {
5431 /* management unit running on the mac? */
5432 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
5433 np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
5434 dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
5435 if (nv_mgmt_acquire_sema(dev)) {
5436 /* management unit setup the phy already? */
5437 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
5438 NVREG_XMITCTL_SYNC_PHY_INIT) {
5439 /* phy is inited by mgmt unit */
5440 phyinitialized = 1;
5441 dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
5442 } else {
5443 /* we need to init the phy */
5444 }
5445 }
5446 }
5447 }
5448
5449 /* find a suitable phy */
5450 for (i = 1; i <= 32; i++) {
5451 int id1, id2;
5452 int phyaddr = i & 0x1F;
5453
5454 spin_lock_irq(&np->lock);
5455 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
5456 spin_unlock_irq(&np->lock);
5457 if (id1 < 0 || id1 == 0xffff)
5458 continue;
5459 spin_lock_irq(&np->lock);
5460 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
5461 spin_unlock_irq(&np->lock);
5462 if (id2 < 0 || id2 == 0xffff)
5463 continue;
5464
5465 np->phy_model = id2 & PHYID2_MODEL_MASK;
5466 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
5467 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
5468 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
5469 pci_name(pci_dev), id1, id2, phyaddr);
5470 np->phyaddr = phyaddr;
5471 np->phy_oui = id1 | id2;
5472 break;
5473 }
5474 if (i == 33) {
5475 dev_printk(KERN_INFO, &pci_dev->dev,
5476 "open: Could not find a valid PHY.\n");
5477 goto out_error;
5478 }
5479
5480 if (!phyinitialized) {
5481 /* reset it */
5482 phy_init(dev);
5483 } else {
5484 /* see if it is a gigabit phy */
5485 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
5486 if (mii_status & PHY_GIGABIT) {
5487 np->gigabit = PHY_GIGABIT;
5488 }
5489 }
5490
5491 /* set default link speed settings */
5492 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
5493 np->duplex = 0;
5494 np->autoneg = 1;
5495
5496 err = register_netdev(dev);
5497 if (err) {
5498 dev_printk(KERN_INFO, &pci_dev->dev,
5499 "unable to register netdev: %d\n", err);
5500 goto out_error;
5501 }
5502
5503 dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
5504 "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
5505 dev->name,
5506 np->phy_oui,
5507 np->phyaddr,
5508 dev->dev_addr[0],
5509 dev->dev_addr[1],
5510 dev->dev_addr[2],
5511 dev->dev_addr[3],
5512 dev->dev_addr[4],
5513 dev->dev_addr[5]);
5514
5515 dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
5516 dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
5517 dev->features & (NETIF_F_HW_CSUM | NETIF_F_SG) ?
5518 "csum " : "",
5519 dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
5520 "vlan " : "",
5521 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
5522 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
5523 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
5524 np->gigabit == PHY_GIGABIT ? "gbit " : "",
5525 np->need_linktimer ? "lnktim " : "",
5526 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
5527 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
5528 np->desc_ver);
5529
5530 return 0;
5531
5532 out_error:
5533 if (phystate_orig)
5534 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
5535 pci_set_drvdata(pci_dev, NULL);
5536 out_freering:
5537 free_rings(dev);
5538 out_unmap:
5539 iounmap(get_hwbase(dev));
5540 out_relreg:
5541 pci_release_regions(pci_dev);
5542 out_disable:
5543 pci_disable_device(pci_dev);
5544 out_free:
5545 free_netdev(dev);
5546 out:
5547 return err;
5548 }
5549
5550 static void __devexit nv_remove(struct pci_dev *pci_dev)
5551 {
5552 struct net_device *dev = pci_get_drvdata(pci_dev);
5553 struct fe_priv *np = netdev_priv(dev);
5554 u8 __iomem *base = get_hwbase(dev);
5555
5556 unregister_netdev(dev);
5557
5558 /* special op: write back the misordered MAC address - otherwise
5559 * the next nv_probe would see a wrong address.
5560 */
5561 writel(np->orig_mac[0], base + NvRegMacAddrA);
5562 writel(np->orig_mac[1], base + NvRegMacAddrB);
5563 writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
5564 base + NvRegTransmitPoll);
5565
5566 /* free all structures */
5567 free_rings(dev);
5568 iounmap(get_hwbase(dev));
5569 pci_release_regions(pci_dev);
5570 pci_disable_device(pci_dev);
5571 free_netdev(dev);
5572 pci_set_drvdata(pci_dev, NULL);
5573 }
5574
5575 #ifdef CONFIG_PM
5576 static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
5577 {
5578 struct net_device *dev = pci_get_drvdata(pdev);
5579 struct fe_priv *np = netdev_priv(dev);
5580
5581 if (!netif_running(dev))
5582 goto out;
5583
5584 netif_device_detach(dev);
5585
5586 // Gross.
5587 nv_close(dev);
5588
5589 pci_save_state(pdev);
5590 pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
5591 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5592 out:
5593 return 0;
5594 }
5595
5596 static int nv_resume(struct pci_dev *pdev)
5597 {
5598 struct net_device *dev = pci_get_drvdata(pdev);
5599 int rc = 0;
5600
5601 if (!netif_running(dev))
5602 goto out;
5603
5604 netif_device_attach(dev);
5605
5606 pci_set_power_state(pdev, PCI_D0);
5607 pci_restore_state(pdev);
5608 pci_enable_wake(pdev, PCI_D0, 0);
5609
5610 rc = nv_open(dev);
5611 out:
5612 return rc;
5613 }
5614 #else
5615 #define nv_suspend NULL
5616 #define nv_resume NULL
5617 #endif /* CONFIG_PM */
5618
5619 static struct pci_device_id pci_tbl[] = {
5620 { /* nForce Ethernet Controller */
5621 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
5622 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5623 },
5624 { /* nForce2 Ethernet Controller */
5625 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
5626 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5627 },
5628 { /* nForce3 Ethernet Controller */
5629 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
5630 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5631 },
5632 { /* nForce3 Ethernet Controller */
5633 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
5634 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5635 },
5636 { /* nForce3 Ethernet Controller */
5637 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
5638 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5639 },
5640 { /* nForce3 Ethernet Controller */
5641 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
5642 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5643 },
5644 { /* nForce3 Ethernet Controller */
5645 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
5646 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5647 },
5648 { /* CK804 Ethernet Controller */
5649 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
5650 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
5651 },
5652 { /* CK804 Ethernet Controller */
5653 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
5654 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
5655 },
5656 { /* MCP04 Ethernet Controller */
5657 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
5658 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
5659 },
5660 { /* MCP04 Ethernet Controller */
5661 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
5662 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
5663 },
5664 { /* MCP51 Ethernet Controller */
5665 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
5666 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
5667 },
5668 { /* MCP51 Ethernet Controller */
5669 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
5670 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
5671 },
5672 { /* MCP55 Ethernet Controller */
5673 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
5674 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
5675 },
5676 { /* MCP55 Ethernet Controller */
5677 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
5678 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
5679 },
5680 { /* MCP61 Ethernet Controller */
5681 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
5682 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5683 },
5684 { /* MCP61 Ethernet Controller */
5685 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
5686 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5687 },
5688 { /* MCP61 Ethernet Controller */
5689 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
5690 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5691 },
5692 { /* MCP61 Ethernet Controller */
5693 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
5694 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5695 },
5696 { /* MCP65 Ethernet Controller */
5697 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
5698 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT,
5699 },
5700 { /* MCP65 Ethernet Controller */
5701 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
5702 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT,
5703 },
5704 { /* MCP65 Ethernet Controller */
5705 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
5706 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT,
5707 },
5708 { /* MCP65 Ethernet Controller */
5709 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
5710 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT,
5711 },
5712 { /* MCP67 Ethernet Controller */
5713 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
5714 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5715 },
5716 { /* MCP67 Ethernet Controller */
5717 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
5718 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5719 },
5720 { /* MCP67 Ethernet Controller */
5721 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
5722 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5723 },
5724 { /* MCP67 Ethernet Controller */
5725 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
5726 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5727 },
5728 { /* MCP73 Ethernet Controller */
5729 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
5730 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
5731 },
5732 { /* MCP73 Ethernet Controller */
5733 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
5734 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
5735 },
5736 { /* MCP73 Ethernet Controller */
5737 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
5738 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
5739 },
5740 { /* MCP73 Ethernet Controller */
5741 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
5742 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
5743 },
5744 { /* MCP77 Ethernet Controller */
5745 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
5746 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
5747 },
5748 { /* MCP77 Ethernet Controller */
5749 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
5750 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
5751 },
5752 { /* MCP77 Ethernet Controller */
5753 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
5754 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
5755 },
5756 { /* MCP77 Ethernet Controller */
5757 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
5758 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
5759 },
5760 { /* MCP79 Ethernet Controller */
5761 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
5762 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
5763 },
5764 { /* MCP79 Ethernet Controller */
5765 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
5766 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
5767 },
5768 { /* MCP79 Ethernet Controller */
5769 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
5770 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
5771 },
5772 { /* MCP79 Ethernet Controller */
5773 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
5774 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
5775 },
5776 {0,},
5777 };
5778
5779 static struct pci_driver driver = {
5780 .name = DRV_NAME,
5781 .id_table = pci_tbl,
5782 .probe = nv_probe,
5783 .remove = __devexit_p(nv_remove),
5784 .suspend = nv_suspend,
5785 .resume = nv_resume,
5786 };
5787
5788 static int __init init_nic(void)
5789 {
5790 return pci_register_driver(&driver);
5791 }
5792
5793 static void __exit exit_nic(void)
5794 {
5795 pci_unregister_driver(&driver);
5796 }
5797
5798 module_param(max_interrupt_work, int, 0);
5799 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
5800 module_param(optimization_mode, int, 0);
5801 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
5802 module_param(poll_interval, int, 0);
5803 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
5804 module_param(msi, int, 0);
5805 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
5806 module_param(msix, int, 0);
5807 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
5808 module_param(dma_64bit, int, 0);
5809 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
5810
5811 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
5812 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
5813 MODULE_LICENSE("GPL");
5814
5815 MODULE_DEVICE_TABLE(pci, pci_tbl);
5816
5817 module_init(init_nic);
5818 module_exit(exit_nic);
This page took 0.239107 seconds and 6 git commands to generate.