Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[deliverable/linux.git] / drivers / net / forcedeth.c
1 /*
2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3 *
4 * Note: This driver is a cleanroom reimplementation based on reverse
5 * engineered documentation written by Carl-Daniel Hailfinger
6 * and Andrew de Quincey.
7 *
8 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9 * trademarks of NVIDIA Corporation in the United States and other
10 * countries.
11 *
12 * Copyright (C) 2003,4,5 Manfred Spraul
13 * Copyright (C) 2004 Andrew de Quincey (wol support)
14 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15 * IRQ rate fixes, bigendian fixes, cleanups, verification)
16 * Copyright (c) 2004,2005,2006,2007,2008 NVIDIA Corporation
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * (at your option) any later version.
22 *
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
27 *
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, write to the Free Software
30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
31 *
32 * Known bugs:
33 * We suspect that on some hardware no TX done interrupts are generated.
34 * This means recovery from netif_stop_queue only happens if the hw timer
35 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
36 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
37 * If your hardware reliably generates tx done interrupts, then you can remove
38 * DEV_NEED_TIMERIRQ from the driver_data flags.
39 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
40 * superfluous timer interrupts from the nic.
41 */
42 #define FORCEDETH_VERSION "0.61"
43 #define DRV_NAME "forcedeth"
44
45 #include <linux/module.h>
46 #include <linux/types.h>
47 #include <linux/pci.h>
48 #include <linux/interrupt.h>
49 #include <linux/netdevice.h>
50 #include <linux/etherdevice.h>
51 #include <linux/delay.h>
52 #include <linux/spinlock.h>
53 #include <linux/ethtool.h>
54 #include <linux/timer.h>
55 #include <linux/skbuff.h>
56 #include <linux/mii.h>
57 #include <linux/random.h>
58 #include <linux/init.h>
59 #include <linux/if_vlan.h>
60 #include <linux/dma-mapping.h>
61
62 #include <asm/irq.h>
63 #include <asm/io.h>
64 #include <asm/uaccess.h>
65 #include <asm/system.h>
66
67 #if 0
68 #define dprintk printk
69 #else
70 #define dprintk(x...) do { } while (0)
71 #endif
72
73 #define TX_WORK_PER_LOOP 64
74 #define RX_WORK_PER_LOOP 64
75
76 /*
77 * Hardware access:
78 */
79
80 #define DEV_NEED_TIMERIRQ 0x00001 /* set the timer irq flag in the irq mask */
81 #define DEV_NEED_LINKTIMER 0x00002 /* poll link settings. Relies on the timer irq */
82 #define DEV_HAS_LARGEDESC 0x00004 /* device supports jumbo frames and needs packet format 2 */
83 #define DEV_HAS_HIGH_DMA 0x00008 /* device supports 64bit dma */
84 #define DEV_HAS_CHECKSUM 0x00010 /* device supports tx and rx checksum offloads */
85 #define DEV_HAS_VLAN 0x00020 /* device supports vlan tagging and striping */
86 #define DEV_HAS_MSI 0x00040 /* device supports MSI */
87 #define DEV_HAS_MSI_X 0x00080 /* device supports MSI-X */
88 #define DEV_HAS_POWER_CNTRL 0x00100 /* device supports power savings */
89 #define DEV_HAS_STATISTICS_V1 0x00200 /* device supports hw statistics version 1 */
90 #define DEV_HAS_STATISTICS_V2 0x00400 /* device supports hw statistics version 2 */
91 #define DEV_HAS_TEST_EXTENDED 0x00800 /* device supports extended diagnostic test */
92 #define DEV_HAS_MGMT_UNIT 0x01000 /* device supports management unit */
93 #define DEV_HAS_CORRECT_MACADDR 0x02000 /* device supports correct mac address order */
94 #define DEV_HAS_COLLISION_FIX 0x04000 /* device supports tx collision fix */
95 #define DEV_HAS_PAUSEFRAME_TX_V1 0x08000 /* device supports tx pause frames version 1 */
96 #define DEV_HAS_PAUSEFRAME_TX_V2 0x10000 /* device supports tx pause frames version 2 */
97 #define DEV_HAS_PAUSEFRAME_TX_V3 0x20000 /* device supports tx pause frames version 3 */
98 #define DEV_NEED_TX_LIMIT 0x40000 /* device needs to limit tx */
99
100 enum {
101 NvRegIrqStatus = 0x000,
102 #define NVREG_IRQSTAT_MIIEVENT 0x040
103 #define NVREG_IRQSTAT_MASK 0x81ff
104 NvRegIrqMask = 0x004,
105 #define NVREG_IRQ_RX_ERROR 0x0001
106 #define NVREG_IRQ_RX 0x0002
107 #define NVREG_IRQ_RX_NOBUF 0x0004
108 #define NVREG_IRQ_TX_ERR 0x0008
109 #define NVREG_IRQ_TX_OK 0x0010
110 #define NVREG_IRQ_TIMER 0x0020
111 #define NVREG_IRQ_LINK 0x0040
112 #define NVREG_IRQ_RX_FORCED 0x0080
113 #define NVREG_IRQ_TX_FORCED 0x0100
114 #define NVREG_IRQ_RECOVER_ERROR 0x8000
115 #define NVREG_IRQMASK_THROUGHPUT 0x00df
116 #define NVREG_IRQMASK_CPU 0x0060
117 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
118 #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
119 #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
120
121 #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
122 NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
123 NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
124
125 NvRegUnknownSetupReg6 = 0x008,
126 #define NVREG_UNKSETUP6_VAL 3
127
128 /*
129 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
130 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
131 */
132 NvRegPollingInterval = 0x00c,
133 #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
134 #define NVREG_POLL_DEFAULT_CPU 13
135 NvRegMSIMap0 = 0x020,
136 NvRegMSIMap1 = 0x024,
137 NvRegMSIIrqMask = 0x030,
138 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
139 NvRegMisc1 = 0x080,
140 #define NVREG_MISC1_PAUSE_TX 0x01
141 #define NVREG_MISC1_HD 0x02
142 #define NVREG_MISC1_FORCE 0x3b0f3c
143
144 NvRegMacReset = 0x34,
145 #define NVREG_MAC_RESET_ASSERT 0x0F3
146 NvRegTransmitterControl = 0x084,
147 #define NVREG_XMITCTL_START 0x01
148 #define NVREG_XMITCTL_MGMT_ST 0x40000000
149 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
150 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
151 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
152 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
153 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
154 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
155 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
156 #define NVREG_XMITCTL_HOST_LOADED 0x00004000
157 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
158 NvRegTransmitterStatus = 0x088,
159 #define NVREG_XMITSTAT_BUSY 0x01
160
161 NvRegPacketFilterFlags = 0x8c,
162 #define NVREG_PFF_PAUSE_RX 0x08
163 #define NVREG_PFF_ALWAYS 0x7F0000
164 #define NVREG_PFF_PROMISC 0x80
165 #define NVREG_PFF_MYADDR 0x20
166 #define NVREG_PFF_LOOPBACK 0x10
167
168 NvRegOffloadConfig = 0x90,
169 #define NVREG_OFFLOAD_HOMEPHY 0x601
170 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
171 NvRegReceiverControl = 0x094,
172 #define NVREG_RCVCTL_START 0x01
173 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
174 NvRegReceiverStatus = 0x98,
175 #define NVREG_RCVSTAT_BUSY 0x01
176
177 NvRegRandomSeed = 0x9c,
178 #define NVREG_RNDSEED_MASK 0x00ff
179 #define NVREG_RNDSEED_FORCE 0x7f00
180 #define NVREG_RNDSEED_FORCE2 0x2d00
181 #define NVREG_RNDSEED_FORCE3 0x7400
182
183 NvRegTxDeferral = 0xA0,
184 #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
185 #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
186 #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
187 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
188 #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
189 #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
190 NvRegRxDeferral = 0xA4,
191 #define NVREG_RX_DEFERRAL_DEFAULT 0x16
192 NvRegMacAddrA = 0xA8,
193 NvRegMacAddrB = 0xAC,
194 NvRegMulticastAddrA = 0xB0,
195 #define NVREG_MCASTADDRA_FORCE 0x01
196 NvRegMulticastAddrB = 0xB4,
197 NvRegMulticastMaskA = 0xB8,
198 #define NVREG_MCASTMASKA_NONE 0xffffffff
199 NvRegMulticastMaskB = 0xBC,
200 #define NVREG_MCASTMASKB_NONE 0xffff
201
202 NvRegPhyInterface = 0xC0,
203 #define PHY_RGMII 0x10000000
204
205 NvRegTxRingPhysAddr = 0x100,
206 NvRegRxRingPhysAddr = 0x104,
207 NvRegRingSizes = 0x108,
208 #define NVREG_RINGSZ_TXSHIFT 0
209 #define NVREG_RINGSZ_RXSHIFT 16
210 NvRegTransmitPoll = 0x10c,
211 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
212 NvRegLinkSpeed = 0x110,
213 #define NVREG_LINKSPEED_FORCE 0x10000
214 #define NVREG_LINKSPEED_10 1000
215 #define NVREG_LINKSPEED_100 100
216 #define NVREG_LINKSPEED_1000 50
217 #define NVREG_LINKSPEED_MASK (0xFFF)
218 NvRegUnknownSetupReg5 = 0x130,
219 #define NVREG_UNKSETUP5_BIT31 (1<<31)
220 NvRegTxWatermark = 0x13c,
221 #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
222 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
223 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
224 NvRegTxRxControl = 0x144,
225 #define NVREG_TXRXCTL_KICK 0x0001
226 #define NVREG_TXRXCTL_BIT1 0x0002
227 #define NVREG_TXRXCTL_BIT2 0x0004
228 #define NVREG_TXRXCTL_IDLE 0x0008
229 #define NVREG_TXRXCTL_RESET 0x0010
230 #define NVREG_TXRXCTL_RXCHECK 0x0400
231 #define NVREG_TXRXCTL_DESC_1 0
232 #define NVREG_TXRXCTL_DESC_2 0x002100
233 #define NVREG_TXRXCTL_DESC_3 0xc02200
234 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
235 #define NVREG_TXRXCTL_VLANINS 0x00080
236 NvRegTxRingPhysAddrHigh = 0x148,
237 NvRegRxRingPhysAddrHigh = 0x14C,
238 NvRegTxPauseFrame = 0x170,
239 #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
240 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
241 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
242 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
243 NvRegMIIStatus = 0x180,
244 #define NVREG_MIISTAT_ERROR 0x0001
245 #define NVREG_MIISTAT_LINKCHANGE 0x0008
246 #define NVREG_MIISTAT_MASK_RW 0x0007
247 #define NVREG_MIISTAT_MASK_ALL 0x000f
248 NvRegMIIMask = 0x184,
249 #define NVREG_MII_LINKCHANGE 0x0008
250
251 NvRegAdapterControl = 0x188,
252 #define NVREG_ADAPTCTL_START 0x02
253 #define NVREG_ADAPTCTL_LINKUP 0x04
254 #define NVREG_ADAPTCTL_PHYVALID 0x40000
255 #define NVREG_ADAPTCTL_RUNNING 0x100000
256 #define NVREG_ADAPTCTL_PHYSHIFT 24
257 NvRegMIISpeed = 0x18c,
258 #define NVREG_MIISPEED_BIT8 (1<<8)
259 #define NVREG_MIIDELAY 5
260 NvRegMIIControl = 0x190,
261 #define NVREG_MIICTL_INUSE 0x08000
262 #define NVREG_MIICTL_WRITE 0x00400
263 #define NVREG_MIICTL_ADDRSHIFT 5
264 NvRegMIIData = 0x194,
265 NvRegWakeUpFlags = 0x200,
266 #define NVREG_WAKEUPFLAGS_VAL 0x7770
267 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
268 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
269 #define NVREG_WAKEUPFLAGS_D3SHIFT 12
270 #define NVREG_WAKEUPFLAGS_D2SHIFT 8
271 #define NVREG_WAKEUPFLAGS_D1SHIFT 4
272 #define NVREG_WAKEUPFLAGS_D0SHIFT 0
273 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
274 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
275 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
276 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
277
278 NvRegPatternCRC = 0x204,
279 NvRegPatternMask = 0x208,
280 NvRegPowerCap = 0x268,
281 #define NVREG_POWERCAP_D3SUPP (1<<30)
282 #define NVREG_POWERCAP_D2SUPP (1<<26)
283 #define NVREG_POWERCAP_D1SUPP (1<<25)
284 NvRegPowerState = 0x26c,
285 #define NVREG_POWERSTATE_POWEREDUP 0x8000
286 #define NVREG_POWERSTATE_VALID 0x0100
287 #define NVREG_POWERSTATE_MASK 0x0003
288 #define NVREG_POWERSTATE_D0 0x0000
289 #define NVREG_POWERSTATE_D1 0x0001
290 #define NVREG_POWERSTATE_D2 0x0002
291 #define NVREG_POWERSTATE_D3 0x0003
292 NvRegTxCnt = 0x280,
293 NvRegTxZeroReXmt = 0x284,
294 NvRegTxOneReXmt = 0x288,
295 NvRegTxManyReXmt = 0x28c,
296 NvRegTxLateCol = 0x290,
297 NvRegTxUnderflow = 0x294,
298 NvRegTxLossCarrier = 0x298,
299 NvRegTxExcessDef = 0x29c,
300 NvRegTxRetryErr = 0x2a0,
301 NvRegRxFrameErr = 0x2a4,
302 NvRegRxExtraByte = 0x2a8,
303 NvRegRxLateCol = 0x2ac,
304 NvRegRxRunt = 0x2b0,
305 NvRegRxFrameTooLong = 0x2b4,
306 NvRegRxOverflow = 0x2b8,
307 NvRegRxFCSErr = 0x2bc,
308 NvRegRxFrameAlignErr = 0x2c0,
309 NvRegRxLenErr = 0x2c4,
310 NvRegRxUnicast = 0x2c8,
311 NvRegRxMulticast = 0x2cc,
312 NvRegRxBroadcast = 0x2d0,
313 NvRegTxDef = 0x2d4,
314 NvRegTxFrame = 0x2d8,
315 NvRegRxCnt = 0x2dc,
316 NvRegTxPause = 0x2e0,
317 NvRegRxPause = 0x2e4,
318 NvRegRxDropFrame = 0x2e8,
319 NvRegVlanControl = 0x300,
320 #define NVREG_VLANCONTROL_ENABLE 0x2000
321 NvRegMSIXMap0 = 0x3e0,
322 NvRegMSIXMap1 = 0x3e4,
323 NvRegMSIXIrqStatus = 0x3f0,
324
325 NvRegPowerState2 = 0x600,
326 #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
327 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
328 };
329
330 /* Big endian: should work, but is untested */
331 struct ring_desc {
332 __le32 buf;
333 __le32 flaglen;
334 };
335
336 struct ring_desc_ex {
337 __le32 bufhigh;
338 __le32 buflow;
339 __le32 txvlan;
340 __le32 flaglen;
341 };
342
343 union ring_type {
344 struct ring_desc* orig;
345 struct ring_desc_ex* ex;
346 };
347
348 #define FLAG_MASK_V1 0xffff0000
349 #define FLAG_MASK_V2 0xffffc000
350 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
351 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
352
353 #define NV_TX_LASTPACKET (1<<16)
354 #define NV_TX_RETRYERROR (1<<19)
355 #define NV_TX_FORCED_INTERRUPT (1<<24)
356 #define NV_TX_DEFERRED (1<<26)
357 #define NV_TX_CARRIERLOST (1<<27)
358 #define NV_TX_LATECOLLISION (1<<28)
359 #define NV_TX_UNDERFLOW (1<<29)
360 #define NV_TX_ERROR (1<<30)
361 #define NV_TX_VALID (1<<31)
362
363 #define NV_TX2_LASTPACKET (1<<29)
364 #define NV_TX2_RETRYERROR (1<<18)
365 #define NV_TX2_FORCED_INTERRUPT (1<<30)
366 #define NV_TX2_DEFERRED (1<<25)
367 #define NV_TX2_CARRIERLOST (1<<26)
368 #define NV_TX2_LATECOLLISION (1<<27)
369 #define NV_TX2_UNDERFLOW (1<<28)
370 /* error and valid are the same for both */
371 #define NV_TX2_ERROR (1<<30)
372 #define NV_TX2_VALID (1<<31)
373 #define NV_TX2_TSO (1<<28)
374 #define NV_TX2_TSO_SHIFT 14
375 #define NV_TX2_TSO_MAX_SHIFT 14
376 #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
377 #define NV_TX2_CHECKSUM_L3 (1<<27)
378 #define NV_TX2_CHECKSUM_L4 (1<<26)
379
380 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
381
382 #define NV_RX_DESCRIPTORVALID (1<<16)
383 #define NV_RX_MISSEDFRAME (1<<17)
384 #define NV_RX_SUBSTRACT1 (1<<18)
385 #define NV_RX_ERROR1 (1<<23)
386 #define NV_RX_ERROR2 (1<<24)
387 #define NV_RX_ERROR3 (1<<25)
388 #define NV_RX_ERROR4 (1<<26)
389 #define NV_RX_CRCERR (1<<27)
390 #define NV_RX_OVERFLOW (1<<28)
391 #define NV_RX_FRAMINGERR (1<<29)
392 #define NV_RX_ERROR (1<<30)
393 #define NV_RX_AVAIL (1<<31)
394
395 #define NV_RX2_CHECKSUMMASK (0x1C000000)
396 #define NV_RX2_CHECKSUM_IP (0x10000000)
397 #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
398 #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
399 #define NV_RX2_DESCRIPTORVALID (1<<29)
400 #define NV_RX2_SUBSTRACT1 (1<<25)
401 #define NV_RX2_ERROR1 (1<<18)
402 #define NV_RX2_ERROR2 (1<<19)
403 #define NV_RX2_ERROR3 (1<<20)
404 #define NV_RX2_ERROR4 (1<<21)
405 #define NV_RX2_CRCERR (1<<22)
406 #define NV_RX2_OVERFLOW (1<<23)
407 #define NV_RX2_FRAMINGERR (1<<24)
408 /* error and avail are the same for both */
409 #define NV_RX2_ERROR (1<<30)
410 #define NV_RX2_AVAIL (1<<31)
411
412 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
413 #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
414
415 /* Miscelaneous hardware related defines: */
416 #define NV_PCI_REGSZ_VER1 0x270
417 #define NV_PCI_REGSZ_VER2 0x2d4
418 #define NV_PCI_REGSZ_VER3 0x604
419
420 /* various timeout delays: all in usec */
421 #define NV_TXRX_RESET_DELAY 4
422 #define NV_TXSTOP_DELAY1 10
423 #define NV_TXSTOP_DELAY1MAX 500000
424 #define NV_TXSTOP_DELAY2 100
425 #define NV_RXSTOP_DELAY1 10
426 #define NV_RXSTOP_DELAY1MAX 500000
427 #define NV_RXSTOP_DELAY2 100
428 #define NV_SETUP5_DELAY 5
429 #define NV_SETUP5_DELAYMAX 50000
430 #define NV_POWERUP_DELAY 5
431 #define NV_POWERUP_DELAYMAX 5000
432 #define NV_MIIBUSY_DELAY 50
433 #define NV_MIIPHY_DELAY 10
434 #define NV_MIIPHY_DELAYMAX 10000
435 #define NV_MAC_RESET_DELAY 64
436
437 #define NV_WAKEUPPATTERNS 5
438 #define NV_WAKEUPMASKENTRIES 4
439
440 /* General driver defaults */
441 #define NV_WATCHDOG_TIMEO (5*HZ)
442
443 #define RX_RING_DEFAULT 128
444 #define TX_RING_DEFAULT 256
445 #define RX_RING_MIN 128
446 #define TX_RING_MIN 64
447 #define RING_MAX_DESC_VER_1 1024
448 #define RING_MAX_DESC_VER_2_3 16384
449
450 /* rx/tx mac addr + type + vlan + align + slack*/
451 #define NV_RX_HEADERS (64)
452 /* even more slack. */
453 #define NV_RX_ALLOC_PAD (64)
454
455 /* maximum mtu size */
456 #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
457 #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
458
459 #define OOM_REFILL (1+HZ/20)
460 #define POLL_WAIT (1+HZ/100)
461 #define LINK_TIMEOUT (3*HZ)
462 #define STATS_INTERVAL (10*HZ)
463
464 /*
465 * desc_ver values:
466 * The nic supports three different descriptor types:
467 * - DESC_VER_1: Original
468 * - DESC_VER_2: support for jumbo frames.
469 * - DESC_VER_3: 64-bit format.
470 */
471 #define DESC_VER_1 1
472 #define DESC_VER_2 2
473 #define DESC_VER_3 3
474
475 /* PHY defines */
476 #define PHY_OUI_MARVELL 0x5043
477 #define PHY_OUI_CICADA 0x03f1
478 #define PHY_OUI_VITESSE 0x01c1
479 #define PHY_OUI_REALTEK 0x0732
480 #define PHYID1_OUI_MASK 0x03ff
481 #define PHYID1_OUI_SHFT 6
482 #define PHYID2_OUI_MASK 0xfc00
483 #define PHYID2_OUI_SHFT 10
484 #define PHYID2_MODEL_MASK 0x03f0
485 #define PHY_MODEL_MARVELL_E3016 0x220
486 #define PHY_MARVELL_E3016_INITMASK 0x0300
487 #define PHY_CICADA_INIT1 0x0f000
488 #define PHY_CICADA_INIT2 0x0e00
489 #define PHY_CICADA_INIT3 0x01000
490 #define PHY_CICADA_INIT4 0x0200
491 #define PHY_CICADA_INIT5 0x0004
492 #define PHY_CICADA_INIT6 0x02000
493 #define PHY_VITESSE_INIT_REG1 0x1f
494 #define PHY_VITESSE_INIT_REG2 0x10
495 #define PHY_VITESSE_INIT_REG3 0x11
496 #define PHY_VITESSE_INIT_REG4 0x12
497 #define PHY_VITESSE_INIT_MSK1 0xc
498 #define PHY_VITESSE_INIT_MSK2 0x0180
499 #define PHY_VITESSE_INIT1 0x52b5
500 #define PHY_VITESSE_INIT2 0xaf8a
501 #define PHY_VITESSE_INIT3 0x8
502 #define PHY_VITESSE_INIT4 0x8f8a
503 #define PHY_VITESSE_INIT5 0xaf86
504 #define PHY_VITESSE_INIT6 0x8f86
505 #define PHY_VITESSE_INIT7 0xaf82
506 #define PHY_VITESSE_INIT8 0x0100
507 #define PHY_VITESSE_INIT9 0x8f82
508 #define PHY_VITESSE_INIT10 0x0
509 #define PHY_REALTEK_INIT_REG1 0x1f
510 #define PHY_REALTEK_INIT_REG2 0x19
511 #define PHY_REALTEK_INIT_REG3 0x13
512 #define PHY_REALTEK_INIT1 0x0000
513 #define PHY_REALTEK_INIT2 0x8e00
514 #define PHY_REALTEK_INIT3 0x0001
515 #define PHY_REALTEK_INIT4 0xad17
516
517 #define PHY_GIGABIT 0x0100
518
519 #define PHY_TIMEOUT 0x1
520 #define PHY_ERROR 0x2
521
522 #define PHY_100 0x1
523 #define PHY_1000 0x2
524 #define PHY_HALF 0x100
525
526 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
527 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
528 #define NV_PAUSEFRAME_RX_ENABLE 0x0004
529 #define NV_PAUSEFRAME_TX_ENABLE 0x0008
530 #define NV_PAUSEFRAME_RX_REQ 0x0010
531 #define NV_PAUSEFRAME_TX_REQ 0x0020
532 #define NV_PAUSEFRAME_AUTONEG 0x0040
533
534 /* MSI/MSI-X defines */
535 #define NV_MSI_X_MAX_VECTORS 8
536 #define NV_MSI_X_VECTORS_MASK 0x000f
537 #define NV_MSI_CAPABLE 0x0010
538 #define NV_MSI_X_CAPABLE 0x0020
539 #define NV_MSI_ENABLED 0x0040
540 #define NV_MSI_X_ENABLED 0x0080
541
542 #define NV_MSI_X_VECTOR_ALL 0x0
543 #define NV_MSI_X_VECTOR_RX 0x0
544 #define NV_MSI_X_VECTOR_TX 0x1
545 #define NV_MSI_X_VECTOR_OTHER 0x2
546
547 #define NV_RESTART_TX 0x1
548 #define NV_RESTART_RX 0x2
549
550 #define NV_TX_LIMIT_COUNT 16
551
552 /* statistics */
553 struct nv_ethtool_str {
554 char name[ETH_GSTRING_LEN];
555 };
556
557 static const struct nv_ethtool_str nv_estats_str[] = {
558 { "tx_bytes" },
559 { "tx_zero_rexmt" },
560 { "tx_one_rexmt" },
561 { "tx_many_rexmt" },
562 { "tx_late_collision" },
563 { "tx_fifo_errors" },
564 { "tx_carrier_errors" },
565 { "tx_excess_deferral" },
566 { "tx_retry_error" },
567 { "rx_frame_error" },
568 { "rx_extra_byte" },
569 { "rx_late_collision" },
570 { "rx_runt" },
571 { "rx_frame_too_long" },
572 { "rx_over_errors" },
573 { "rx_crc_errors" },
574 { "rx_frame_align_error" },
575 { "rx_length_error" },
576 { "rx_unicast" },
577 { "rx_multicast" },
578 { "rx_broadcast" },
579 { "rx_packets" },
580 { "rx_errors_total" },
581 { "tx_errors_total" },
582
583 /* version 2 stats */
584 { "tx_deferral" },
585 { "tx_packets" },
586 { "rx_bytes" },
587 { "tx_pause" },
588 { "rx_pause" },
589 { "rx_drop_frame" }
590 };
591
592 struct nv_ethtool_stats {
593 u64 tx_bytes;
594 u64 tx_zero_rexmt;
595 u64 tx_one_rexmt;
596 u64 tx_many_rexmt;
597 u64 tx_late_collision;
598 u64 tx_fifo_errors;
599 u64 tx_carrier_errors;
600 u64 tx_excess_deferral;
601 u64 tx_retry_error;
602 u64 rx_frame_error;
603 u64 rx_extra_byte;
604 u64 rx_late_collision;
605 u64 rx_runt;
606 u64 rx_frame_too_long;
607 u64 rx_over_errors;
608 u64 rx_crc_errors;
609 u64 rx_frame_align_error;
610 u64 rx_length_error;
611 u64 rx_unicast;
612 u64 rx_multicast;
613 u64 rx_broadcast;
614 u64 rx_packets;
615 u64 rx_errors_total;
616 u64 tx_errors_total;
617
618 /* version 2 stats */
619 u64 tx_deferral;
620 u64 tx_packets;
621 u64 rx_bytes;
622 u64 tx_pause;
623 u64 rx_pause;
624 u64 rx_drop_frame;
625 };
626
627 #define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
628 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
629
630 /* diagnostics */
631 #define NV_TEST_COUNT_BASE 3
632 #define NV_TEST_COUNT_EXTENDED 4
633
634 static const struct nv_ethtool_str nv_etests_str[] = {
635 { "link (online/offline)" },
636 { "register (offline) " },
637 { "interrupt (offline) " },
638 { "loopback (offline) " }
639 };
640
641 struct register_test {
642 __u32 reg;
643 __u32 mask;
644 };
645
646 static const struct register_test nv_registers_test[] = {
647 { NvRegUnknownSetupReg6, 0x01 },
648 { NvRegMisc1, 0x03c },
649 { NvRegOffloadConfig, 0x03ff },
650 { NvRegMulticastAddrA, 0xffffffff },
651 { NvRegTxWatermark, 0x0ff },
652 { NvRegWakeUpFlags, 0x07777 },
653 { 0,0 }
654 };
655
656 struct nv_skb_map {
657 struct sk_buff *skb;
658 dma_addr_t dma;
659 unsigned int dma_len;
660 struct ring_desc_ex *first_tx_desc;
661 struct nv_skb_map *next_tx_ctx;
662 };
663
664 /*
665 * SMP locking:
666 * All hardware access under dev->priv->lock, except the performance
667 * critical parts:
668 * - rx is (pseudo-) lockless: it relies on the single-threading provided
669 * by the arch code for interrupts.
670 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
671 * needs dev->priv->lock :-(
672 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
673 */
674
675 /* in dev: base, irq */
676 struct fe_priv {
677 spinlock_t lock;
678
679 struct net_device *dev;
680 struct napi_struct napi;
681
682 /* General data:
683 * Locking: spin_lock(&np->lock); */
684 struct nv_ethtool_stats estats;
685 int in_shutdown;
686 u32 linkspeed;
687 int duplex;
688 int autoneg;
689 int fixed_mode;
690 int phyaddr;
691 int wolenabled;
692 unsigned int phy_oui;
693 unsigned int phy_model;
694 u16 gigabit;
695 int intr_test;
696 int recover_error;
697
698 /* General data: RO fields */
699 dma_addr_t ring_addr;
700 struct pci_dev *pci_dev;
701 u32 orig_mac[2];
702 u32 irqmask;
703 u32 desc_ver;
704 u32 txrxctl_bits;
705 u32 vlanctl_bits;
706 u32 driver_data;
707 u32 register_size;
708 int rx_csum;
709 u32 mac_in_use;
710
711 void __iomem *base;
712
713 /* rx specific fields.
714 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
715 */
716 union ring_type get_rx, put_rx, first_rx, last_rx;
717 struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
718 struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
719 struct nv_skb_map *rx_skb;
720
721 union ring_type rx_ring;
722 unsigned int rx_buf_sz;
723 unsigned int pkt_limit;
724 struct timer_list oom_kick;
725 struct timer_list nic_poll;
726 struct timer_list stats_poll;
727 u32 nic_poll_irq;
728 int rx_ring_size;
729
730 /* media detection workaround.
731 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
732 */
733 int need_linktimer;
734 unsigned long link_timeout;
735 /*
736 * tx specific fields.
737 */
738 union ring_type get_tx, put_tx, first_tx, last_tx;
739 struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
740 struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
741 struct nv_skb_map *tx_skb;
742
743 union ring_type tx_ring;
744 u32 tx_flags;
745 int tx_ring_size;
746 int tx_limit;
747 u32 tx_pkts_in_progress;
748 struct nv_skb_map *tx_change_owner;
749 struct nv_skb_map *tx_end_flip;
750 int tx_stop;
751
752 /* vlan fields */
753 struct vlan_group *vlangrp;
754
755 /* msi/msi-x fields */
756 u32 msi_flags;
757 struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
758
759 /* flow control */
760 u32 pause_flags;
761 };
762
763 /*
764 * Maximum number of loops until we assume that a bit in the irq mask
765 * is stuck. Overridable with module param.
766 */
767 static int max_interrupt_work = 5;
768
769 /*
770 * Optimization can be either throuput mode or cpu mode
771 *
772 * Throughput Mode: Every tx and rx packet will generate an interrupt.
773 * CPU Mode: Interrupts are controlled by a timer.
774 */
775 enum {
776 NV_OPTIMIZATION_MODE_THROUGHPUT,
777 NV_OPTIMIZATION_MODE_CPU
778 };
779 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
780
781 /*
782 * Poll interval for timer irq
783 *
784 * This interval determines how frequent an interrupt is generated.
785 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
786 * Min = 0, and Max = 65535
787 */
788 static int poll_interval = -1;
789
790 /*
791 * MSI interrupts
792 */
793 enum {
794 NV_MSI_INT_DISABLED,
795 NV_MSI_INT_ENABLED
796 };
797 static int msi = NV_MSI_INT_ENABLED;
798
799 /*
800 * MSIX interrupts
801 */
802 enum {
803 NV_MSIX_INT_DISABLED,
804 NV_MSIX_INT_ENABLED
805 };
806 static int msix = NV_MSIX_INT_DISABLED;
807
808 /*
809 * DMA 64bit
810 */
811 enum {
812 NV_DMA_64BIT_DISABLED,
813 NV_DMA_64BIT_ENABLED
814 };
815 static int dma_64bit = NV_DMA_64BIT_ENABLED;
816
817 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
818 {
819 return netdev_priv(dev);
820 }
821
822 static inline u8 __iomem *get_hwbase(struct net_device *dev)
823 {
824 return ((struct fe_priv *)netdev_priv(dev))->base;
825 }
826
827 static inline void pci_push(u8 __iomem *base)
828 {
829 /* force out pending posted writes */
830 readl(base);
831 }
832
833 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
834 {
835 return le32_to_cpu(prd->flaglen)
836 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
837 }
838
839 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
840 {
841 return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
842 }
843
844 static bool nv_optimized(struct fe_priv *np)
845 {
846 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
847 return false;
848 return true;
849 }
850
851 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
852 int delay, int delaymax, const char *msg)
853 {
854 u8 __iomem *base = get_hwbase(dev);
855
856 pci_push(base);
857 do {
858 udelay(delay);
859 delaymax -= delay;
860 if (delaymax < 0) {
861 if (msg)
862 printk(msg);
863 return 1;
864 }
865 } while ((readl(base + offset) & mask) != target);
866 return 0;
867 }
868
869 #define NV_SETUP_RX_RING 0x01
870 #define NV_SETUP_TX_RING 0x02
871
872 static inline u32 dma_low(dma_addr_t addr)
873 {
874 return addr;
875 }
876
877 static inline u32 dma_high(dma_addr_t addr)
878 {
879 return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
880 }
881
882 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
883 {
884 struct fe_priv *np = get_nvpriv(dev);
885 u8 __iomem *base = get_hwbase(dev);
886
887 if (!nv_optimized(np)) {
888 if (rxtx_flags & NV_SETUP_RX_RING) {
889 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
890 }
891 if (rxtx_flags & NV_SETUP_TX_RING) {
892 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
893 }
894 } else {
895 if (rxtx_flags & NV_SETUP_RX_RING) {
896 writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
897 writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
898 }
899 if (rxtx_flags & NV_SETUP_TX_RING) {
900 writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
901 writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
902 }
903 }
904 }
905
906 static void free_rings(struct net_device *dev)
907 {
908 struct fe_priv *np = get_nvpriv(dev);
909
910 if (!nv_optimized(np)) {
911 if (np->rx_ring.orig)
912 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
913 np->rx_ring.orig, np->ring_addr);
914 } else {
915 if (np->rx_ring.ex)
916 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
917 np->rx_ring.ex, np->ring_addr);
918 }
919 if (np->rx_skb)
920 kfree(np->rx_skb);
921 if (np->tx_skb)
922 kfree(np->tx_skb);
923 }
924
925 static int using_multi_irqs(struct net_device *dev)
926 {
927 struct fe_priv *np = get_nvpriv(dev);
928
929 if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
930 ((np->msi_flags & NV_MSI_X_ENABLED) &&
931 ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
932 return 0;
933 else
934 return 1;
935 }
936
937 static void nv_enable_irq(struct net_device *dev)
938 {
939 struct fe_priv *np = get_nvpriv(dev);
940
941 if (!using_multi_irqs(dev)) {
942 if (np->msi_flags & NV_MSI_X_ENABLED)
943 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
944 else
945 enable_irq(np->pci_dev->irq);
946 } else {
947 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
948 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
949 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
950 }
951 }
952
953 static void nv_disable_irq(struct net_device *dev)
954 {
955 struct fe_priv *np = get_nvpriv(dev);
956
957 if (!using_multi_irqs(dev)) {
958 if (np->msi_flags & NV_MSI_X_ENABLED)
959 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
960 else
961 disable_irq(np->pci_dev->irq);
962 } else {
963 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
964 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
965 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
966 }
967 }
968
969 /* In MSIX mode, a write to irqmask behaves as XOR */
970 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
971 {
972 u8 __iomem *base = get_hwbase(dev);
973
974 writel(mask, base + NvRegIrqMask);
975 }
976
977 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
978 {
979 struct fe_priv *np = get_nvpriv(dev);
980 u8 __iomem *base = get_hwbase(dev);
981
982 if (np->msi_flags & NV_MSI_X_ENABLED) {
983 writel(mask, base + NvRegIrqMask);
984 } else {
985 if (np->msi_flags & NV_MSI_ENABLED)
986 writel(0, base + NvRegMSIIrqMask);
987 writel(0, base + NvRegIrqMask);
988 }
989 }
990
991 #define MII_READ (-1)
992 /* mii_rw: read/write a register on the PHY.
993 *
994 * Caller must guarantee serialization
995 */
996 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
997 {
998 u8 __iomem *base = get_hwbase(dev);
999 u32 reg;
1000 int retval;
1001
1002 writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
1003
1004 reg = readl(base + NvRegMIIControl);
1005 if (reg & NVREG_MIICTL_INUSE) {
1006 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1007 udelay(NV_MIIBUSY_DELAY);
1008 }
1009
1010 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1011 if (value != MII_READ) {
1012 writel(value, base + NvRegMIIData);
1013 reg |= NVREG_MIICTL_WRITE;
1014 }
1015 writel(reg, base + NvRegMIIControl);
1016
1017 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1018 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1019 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1020 dev->name, miireg, addr);
1021 retval = -1;
1022 } else if (value != MII_READ) {
1023 /* it was a write operation - fewer failures are detectable */
1024 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1025 dev->name, value, miireg, addr);
1026 retval = 0;
1027 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1028 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1029 dev->name, miireg, addr);
1030 retval = -1;
1031 } else {
1032 retval = readl(base + NvRegMIIData);
1033 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1034 dev->name, miireg, addr, retval);
1035 }
1036
1037 return retval;
1038 }
1039
1040 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1041 {
1042 struct fe_priv *np = netdev_priv(dev);
1043 u32 miicontrol;
1044 unsigned int tries = 0;
1045
1046 miicontrol = BMCR_RESET | bmcr_setup;
1047 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1048 return -1;
1049 }
1050
1051 /* wait for 500ms */
1052 msleep(500);
1053
1054 /* must wait till reset is deasserted */
1055 while (miicontrol & BMCR_RESET) {
1056 msleep(10);
1057 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1058 /* FIXME: 100 tries seem excessive */
1059 if (tries++ > 100)
1060 return -1;
1061 }
1062 return 0;
1063 }
1064
1065 static int phy_init(struct net_device *dev)
1066 {
1067 struct fe_priv *np = get_nvpriv(dev);
1068 u8 __iomem *base = get_hwbase(dev);
1069 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1070
1071 /* phy errata for E3016 phy */
1072 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1073 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1074 reg &= ~PHY_MARVELL_E3016_INITMASK;
1075 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1076 printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1077 return PHY_ERROR;
1078 }
1079 }
1080 if (np->phy_oui == PHY_OUI_REALTEK) {
1081 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1082 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1083 return PHY_ERROR;
1084 }
1085 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1086 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1087 return PHY_ERROR;
1088 }
1089 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1090 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1091 return PHY_ERROR;
1092 }
1093 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1094 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1095 return PHY_ERROR;
1096 }
1097 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1098 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1099 return PHY_ERROR;
1100 }
1101 }
1102
1103 /* set advertise register */
1104 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1105 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1106 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1107 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1108 return PHY_ERROR;
1109 }
1110
1111 /* get phy interface type */
1112 phyinterface = readl(base + NvRegPhyInterface);
1113
1114 /* see if gigabit phy */
1115 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1116 if (mii_status & PHY_GIGABIT) {
1117 np->gigabit = PHY_GIGABIT;
1118 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1119 mii_control_1000 &= ~ADVERTISE_1000HALF;
1120 if (phyinterface & PHY_RGMII)
1121 mii_control_1000 |= ADVERTISE_1000FULL;
1122 else
1123 mii_control_1000 &= ~ADVERTISE_1000FULL;
1124
1125 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1126 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1127 return PHY_ERROR;
1128 }
1129 }
1130 else
1131 np->gigabit = 0;
1132
1133 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1134 mii_control |= BMCR_ANENABLE;
1135
1136 /* reset the phy
1137 * (certain phys need bmcr to be setup with reset)
1138 */
1139 if (phy_reset(dev, mii_control)) {
1140 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1141 return PHY_ERROR;
1142 }
1143
1144 /* phy vendor specific configuration */
1145 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1146 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1147 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
1148 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
1149 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1150 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1151 return PHY_ERROR;
1152 }
1153 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1154 phy_reserved |= PHY_CICADA_INIT5;
1155 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1156 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1157 return PHY_ERROR;
1158 }
1159 }
1160 if (np->phy_oui == PHY_OUI_CICADA) {
1161 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1162 phy_reserved |= PHY_CICADA_INIT6;
1163 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1164 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1165 return PHY_ERROR;
1166 }
1167 }
1168 if (np->phy_oui == PHY_OUI_VITESSE) {
1169 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
1170 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1171 return PHY_ERROR;
1172 }
1173 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
1174 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1175 return PHY_ERROR;
1176 }
1177 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1178 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1179 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1180 return PHY_ERROR;
1181 }
1182 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1183 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1184 phy_reserved |= PHY_VITESSE_INIT3;
1185 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1186 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1187 return PHY_ERROR;
1188 }
1189 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
1190 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1191 return PHY_ERROR;
1192 }
1193 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
1194 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1195 return PHY_ERROR;
1196 }
1197 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1198 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1199 phy_reserved |= PHY_VITESSE_INIT3;
1200 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1201 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1202 return PHY_ERROR;
1203 }
1204 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1205 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1206 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1207 return PHY_ERROR;
1208 }
1209 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
1210 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1211 return PHY_ERROR;
1212 }
1213 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
1214 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1215 return PHY_ERROR;
1216 }
1217 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1218 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1219 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1220 return PHY_ERROR;
1221 }
1222 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1223 phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
1224 phy_reserved |= PHY_VITESSE_INIT8;
1225 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1226 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1227 return PHY_ERROR;
1228 }
1229 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
1230 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1231 return PHY_ERROR;
1232 }
1233 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
1234 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1235 return PHY_ERROR;
1236 }
1237 }
1238 if (np->phy_oui == PHY_OUI_REALTEK) {
1239 /* reset could have cleared these out, set them back */
1240 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1241 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1242 return PHY_ERROR;
1243 }
1244 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
1245 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1246 return PHY_ERROR;
1247 }
1248 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
1249 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1250 return PHY_ERROR;
1251 }
1252 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
1253 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1254 return PHY_ERROR;
1255 }
1256 if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
1257 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1258 return PHY_ERROR;
1259 }
1260 }
1261
1262 /* some phys clear out pause advertisment on reset, set it back */
1263 mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1264
1265 /* restart auto negotiation */
1266 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1267 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1268 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1269 return PHY_ERROR;
1270 }
1271
1272 return 0;
1273 }
1274
1275 static void nv_start_rx(struct net_device *dev)
1276 {
1277 struct fe_priv *np = netdev_priv(dev);
1278 u8 __iomem *base = get_hwbase(dev);
1279 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1280
1281 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1282 /* Already running? Stop it. */
1283 if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1284 rx_ctrl &= ~NVREG_RCVCTL_START;
1285 writel(rx_ctrl, base + NvRegReceiverControl);
1286 pci_push(base);
1287 }
1288 writel(np->linkspeed, base + NvRegLinkSpeed);
1289 pci_push(base);
1290 rx_ctrl |= NVREG_RCVCTL_START;
1291 if (np->mac_in_use)
1292 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1293 writel(rx_ctrl, base + NvRegReceiverControl);
1294 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1295 dev->name, np->duplex, np->linkspeed);
1296 pci_push(base);
1297 }
1298
1299 static void nv_stop_rx(struct net_device *dev)
1300 {
1301 struct fe_priv *np = netdev_priv(dev);
1302 u8 __iomem *base = get_hwbase(dev);
1303 u32 rx_ctrl = readl(base + NvRegReceiverControl);
1304
1305 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1306 if (!np->mac_in_use)
1307 rx_ctrl &= ~NVREG_RCVCTL_START;
1308 else
1309 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1310 writel(rx_ctrl, base + NvRegReceiverControl);
1311 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1312 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1313 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1314
1315 udelay(NV_RXSTOP_DELAY2);
1316 if (!np->mac_in_use)
1317 writel(0, base + NvRegLinkSpeed);
1318 }
1319
1320 static void nv_start_tx(struct net_device *dev)
1321 {
1322 struct fe_priv *np = netdev_priv(dev);
1323 u8 __iomem *base = get_hwbase(dev);
1324 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1325
1326 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1327 tx_ctrl |= NVREG_XMITCTL_START;
1328 if (np->mac_in_use)
1329 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1330 writel(tx_ctrl, base + NvRegTransmitterControl);
1331 pci_push(base);
1332 }
1333
1334 static void nv_stop_tx(struct net_device *dev)
1335 {
1336 struct fe_priv *np = netdev_priv(dev);
1337 u8 __iomem *base = get_hwbase(dev);
1338 u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1339
1340 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1341 if (!np->mac_in_use)
1342 tx_ctrl &= ~NVREG_XMITCTL_START;
1343 else
1344 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1345 writel(tx_ctrl, base + NvRegTransmitterControl);
1346 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1347 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1348 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1349
1350 udelay(NV_TXSTOP_DELAY2);
1351 if (!np->mac_in_use)
1352 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1353 base + NvRegTransmitPoll);
1354 }
1355
1356 static void nv_start_rxtx(struct net_device *dev)
1357 {
1358 nv_start_rx(dev);
1359 nv_start_tx(dev);
1360 }
1361
1362 static void nv_stop_rxtx(struct net_device *dev)
1363 {
1364 nv_stop_rx(dev);
1365 nv_stop_tx(dev);
1366 }
1367
1368 static void nv_txrx_reset(struct net_device *dev)
1369 {
1370 struct fe_priv *np = netdev_priv(dev);
1371 u8 __iomem *base = get_hwbase(dev);
1372
1373 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1374 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1375 pci_push(base);
1376 udelay(NV_TXRX_RESET_DELAY);
1377 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1378 pci_push(base);
1379 }
1380
1381 static void nv_mac_reset(struct net_device *dev)
1382 {
1383 struct fe_priv *np = netdev_priv(dev);
1384 u8 __iomem *base = get_hwbase(dev);
1385 u32 temp1, temp2, temp3;
1386
1387 dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1388
1389 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1390 pci_push(base);
1391
1392 /* save registers since they will be cleared on reset */
1393 temp1 = readl(base + NvRegMacAddrA);
1394 temp2 = readl(base + NvRegMacAddrB);
1395 temp3 = readl(base + NvRegTransmitPoll);
1396
1397 writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1398 pci_push(base);
1399 udelay(NV_MAC_RESET_DELAY);
1400 writel(0, base + NvRegMacReset);
1401 pci_push(base);
1402 udelay(NV_MAC_RESET_DELAY);
1403
1404 /* restore saved registers */
1405 writel(temp1, base + NvRegMacAddrA);
1406 writel(temp2, base + NvRegMacAddrB);
1407 writel(temp3, base + NvRegTransmitPoll);
1408
1409 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1410 pci_push(base);
1411 }
1412
1413 static void nv_get_hw_stats(struct net_device *dev)
1414 {
1415 struct fe_priv *np = netdev_priv(dev);
1416 u8 __iomem *base = get_hwbase(dev);
1417
1418 np->estats.tx_bytes += readl(base + NvRegTxCnt);
1419 np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1420 np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1421 np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1422 np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1423 np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1424 np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1425 np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1426 np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1427 np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1428 np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1429 np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1430 np->estats.rx_runt += readl(base + NvRegRxRunt);
1431 np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1432 np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1433 np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1434 np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1435 np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1436 np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1437 np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1438 np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1439 np->estats.rx_packets =
1440 np->estats.rx_unicast +
1441 np->estats.rx_multicast +
1442 np->estats.rx_broadcast;
1443 np->estats.rx_errors_total =
1444 np->estats.rx_crc_errors +
1445 np->estats.rx_over_errors +
1446 np->estats.rx_frame_error +
1447 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1448 np->estats.rx_late_collision +
1449 np->estats.rx_runt +
1450 np->estats.rx_frame_too_long;
1451 np->estats.tx_errors_total =
1452 np->estats.tx_late_collision +
1453 np->estats.tx_fifo_errors +
1454 np->estats.tx_carrier_errors +
1455 np->estats.tx_excess_deferral +
1456 np->estats.tx_retry_error;
1457
1458 if (np->driver_data & DEV_HAS_STATISTICS_V2) {
1459 np->estats.tx_deferral += readl(base + NvRegTxDef);
1460 np->estats.tx_packets += readl(base + NvRegTxFrame);
1461 np->estats.rx_bytes += readl(base + NvRegRxCnt);
1462 np->estats.tx_pause += readl(base + NvRegTxPause);
1463 np->estats.rx_pause += readl(base + NvRegRxPause);
1464 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1465 }
1466 }
1467
1468 /*
1469 * nv_get_stats: dev->get_stats function
1470 * Get latest stats value from the nic.
1471 * Called with read_lock(&dev_base_lock) held for read -
1472 * only synchronized against unregister_netdevice.
1473 */
1474 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1475 {
1476 struct fe_priv *np = netdev_priv(dev);
1477
1478 /* If the nic supports hw counters then retrieve latest values */
1479 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
1480 nv_get_hw_stats(dev);
1481
1482 /* copy to net_device stats */
1483 dev->stats.tx_bytes = np->estats.tx_bytes;
1484 dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
1485 dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
1486 dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
1487 dev->stats.rx_over_errors = np->estats.rx_over_errors;
1488 dev->stats.rx_errors = np->estats.rx_errors_total;
1489 dev->stats.tx_errors = np->estats.tx_errors_total;
1490 }
1491
1492 return &dev->stats;
1493 }
1494
1495 /*
1496 * nv_alloc_rx: fill rx ring entries.
1497 * Return 1 if the allocations for the skbs failed and the
1498 * rx engine is without Available descriptors
1499 */
1500 static int nv_alloc_rx(struct net_device *dev)
1501 {
1502 struct fe_priv *np = netdev_priv(dev);
1503 struct ring_desc* less_rx;
1504
1505 less_rx = np->get_rx.orig;
1506 if (less_rx-- == np->first_rx.orig)
1507 less_rx = np->last_rx.orig;
1508
1509 while (np->put_rx.orig != less_rx) {
1510 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1511 if (skb) {
1512 np->put_rx_ctx->skb = skb;
1513 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1514 skb->data,
1515 skb_tailroom(skb),
1516 PCI_DMA_FROMDEVICE);
1517 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1518 np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1519 wmb();
1520 np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1521 if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1522 np->put_rx.orig = np->first_rx.orig;
1523 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1524 np->put_rx_ctx = np->first_rx_ctx;
1525 } else {
1526 return 1;
1527 }
1528 }
1529 return 0;
1530 }
1531
1532 static int nv_alloc_rx_optimized(struct net_device *dev)
1533 {
1534 struct fe_priv *np = netdev_priv(dev);
1535 struct ring_desc_ex* less_rx;
1536
1537 less_rx = np->get_rx.ex;
1538 if (less_rx-- == np->first_rx.ex)
1539 less_rx = np->last_rx.ex;
1540
1541 while (np->put_rx.ex != less_rx) {
1542 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1543 if (skb) {
1544 np->put_rx_ctx->skb = skb;
1545 np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1546 skb->data,
1547 skb_tailroom(skb),
1548 PCI_DMA_FROMDEVICE);
1549 np->put_rx_ctx->dma_len = skb_tailroom(skb);
1550 np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
1551 np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
1552 wmb();
1553 np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1554 if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1555 np->put_rx.ex = np->first_rx.ex;
1556 if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1557 np->put_rx_ctx = np->first_rx_ctx;
1558 } else {
1559 return 1;
1560 }
1561 }
1562 return 0;
1563 }
1564
1565 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1566 #ifdef CONFIG_FORCEDETH_NAPI
1567 static void nv_do_rx_refill(unsigned long data)
1568 {
1569 struct net_device *dev = (struct net_device *) data;
1570 struct fe_priv *np = netdev_priv(dev);
1571
1572 /* Just reschedule NAPI rx processing */
1573 netif_rx_schedule(dev, &np->napi);
1574 }
1575 #else
1576 static void nv_do_rx_refill(unsigned long data)
1577 {
1578 struct net_device *dev = (struct net_device *) data;
1579 struct fe_priv *np = netdev_priv(dev);
1580 int retcode;
1581
1582 if (!using_multi_irqs(dev)) {
1583 if (np->msi_flags & NV_MSI_X_ENABLED)
1584 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1585 else
1586 disable_irq(np->pci_dev->irq);
1587 } else {
1588 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1589 }
1590 if (!nv_optimized(np))
1591 retcode = nv_alloc_rx(dev);
1592 else
1593 retcode = nv_alloc_rx_optimized(dev);
1594 if (retcode) {
1595 spin_lock_irq(&np->lock);
1596 if (!np->in_shutdown)
1597 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1598 spin_unlock_irq(&np->lock);
1599 }
1600 if (!using_multi_irqs(dev)) {
1601 if (np->msi_flags & NV_MSI_X_ENABLED)
1602 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1603 else
1604 enable_irq(np->pci_dev->irq);
1605 } else {
1606 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1607 }
1608 }
1609 #endif
1610
1611 static void nv_init_rx(struct net_device *dev)
1612 {
1613 struct fe_priv *np = netdev_priv(dev);
1614 int i;
1615
1616 np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
1617
1618 if (!nv_optimized(np))
1619 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1620 else
1621 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1622 np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
1623 np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1624
1625 for (i = 0; i < np->rx_ring_size; i++) {
1626 if (!nv_optimized(np)) {
1627 np->rx_ring.orig[i].flaglen = 0;
1628 np->rx_ring.orig[i].buf = 0;
1629 } else {
1630 np->rx_ring.ex[i].flaglen = 0;
1631 np->rx_ring.ex[i].txvlan = 0;
1632 np->rx_ring.ex[i].bufhigh = 0;
1633 np->rx_ring.ex[i].buflow = 0;
1634 }
1635 np->rx_skb[i].skb = NULL;
1636 np->rx_skb[i].dma = 0;
1637 }
1638 }
1639
1640 static void nv_init_tx(struct net_device *dev)
1641 {
1642 struct fe_priv *np = netdev_priv(dev);
1643 int i;
1644
1645 np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
1646
1647 if (!nv_optimized(np))
1648 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1649 else
1650 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1651 np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
1652 np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1653 np->tx_pkts_in_progress = 0;
1654 np->tx_change_owner = NULL;
1655 np->tx_end_flip = NULL;
1656
1657 for (i = 0; i < np->tx_ring_size; i++) {
1658 if (!nv_optimized(np)) {
1659 np->tx_ring.orig[i].flaglen = 0;
1660 np->tx_ring.orig[i].buf = 0;
1661 } else {
1662 np->tx_ring.ex[i].flaglen = 0;
1663 np->tx_ring.ex[i].txvlan = 0;
1664 np->tx_ring.ex[i].bufhigh = 0;
1665 np->tx_ring.ex[i].buflow = 0;
1666 }
1667 np->tx_skb[i].skb = NULL;
1668 np->tx_skb[i].dma = 0;
1669 np->tx_skb[i].dma_len = 0;
1670 np->tx_skb[i].first_tx_desc = NULL;
1671 np->tx_skb[i].next_tx_ctx = NULL;
1672 }
1673 }
1674
1675 static int nv_init_ring(struct net_device *dev)
1676 {
1677 struct fe_priv *np = netdev_priv(dev);
1678
1679 nv_init_tx(dev);
1680 nv_init_rx(dev);
1681
1682 if (!nv_optimized(np))
1683 return nv_alloc_rx(dev);
1684 else
1685 return nv_alloc_rx_optimized(dev);
1686 }
1687
1688 static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
1689 {
1690 struct fe_priv *np = netdev_priv(dev);
1691
1692 if (tx_skb->dma) {
1693 pci_unmap_page(np->pci_dev, tx_skb->dma,
1694 tx_skb->dma_len,
1695 PCI_DMA_TODEVICE);
1696 tx_skb->dma = 0;
1697 }
1698 if (tx_skb->skb) {
1699 dev_kfree_skb_any(tx_skb->skb);
1700 tx_skb->skb = NULL;
1701 return 1;
1702 } else {
1703 return 0;
1704 }
1705 }
1706
1707 static void nv_drain_tx(struct net_device *dev)
1708 {
1709 struct fe_priv *np = netdev_priv(dev);
1710 unsigned int i;
1711
1712 for (i = 0; i < np->tx_ring_size; i++) {
1713 if (!nv_optimized(np)) {
1714 np->tx_ring.orig[i].flaglen = 0;
1715 np->tx_ring.orig[i].buf = 0;
1716 } else {
1717 np->tx_ring.ex[i].flaglen = 0;
1718 np->tx_ring.ex[i].txvlan = 0;
1719 np->tx_ring.ex[i].bufhigh = 0;
1720 np->tx_ring.ex[i].buflow = 0;
1721 }
1722 if (nv_release_txskb(dev, &np->tx_skb[i]))
1723 dev->stats.tx_dropped++;
1724 np->tx_skb[i].dma = 0;
1725 np->tx_skb[i].dma_len = 0;
1726 np->tx_skb[i].first_tx_desc = NULL;
1727 np->tx_skb[i].next_tx_ctx = NULL;
1728 }
1729 np->tx_pkts_in_progress = 0;
1730 np->tx_change_owner = NULL;
1731 np->tx_end_flip = NULL;
1732 }
1733
1734 static void nv_drain_rx(struct net_device *dev)
1735 {
1736 struct fe_priv *np = netdev_priv(dev);
1737 int i;
1738
1739 for (i = 0; i < np->rx_ring_size; i++) {
1740 if (!nv_optimized(np)) {
1741 np->rx_ring.orig[i].flaglen = 0;
1742 np->rx_ring.orig[i].buf = 0;
1743 } else {
1744 np->rx_ring.ex[i].flaglen = 0;
1745 np->rx_ring.ex[i].txvlan = 0;
1746 np->rx_ring.ex[i].bufhigh = 0;
1747 np->rx_ring.ex[i].buflow = 0;
1748 }
1749 wmb();
1750 if (np->rx_skb[i].skb) {
1751 pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
1752 (skb_end_pointer(np->rx_skb[i].skb) -
1753 np->rx_skb[i].skb->data),
1754 PCI_DMA_FROMDEVICE);
1755 dev_kfree_skb(np->rx_skb[i].skb);
1756 np->rx_skb[i].skb = NULL;
1757 }
1758 }
1759 }
1760
1761 static void nv_drain_rxtx(struct net_device *dev)
1762 {
1763 nv_drain_tx(dev);
1764 nv_drain_rx(dev);
1765 }
1766
1767 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
1768 {
1769 return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
1770 }
1771
1772 /*
1773 * nv_start_xmit: dev->hard_start_xmit function
1774 * Called with netif_tx_lock held.
1775 */
1776 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1777 {
1778 struct fe_priv *np = netdev_priv(dev);
1779 u32 tx_flags = 0;
1780 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1781 unsigned int fragments = skb_shinfo(skb)->nr_frags;
1782 unsigned int i;
1783 u32 offset = 0;
1784 u32 bcnt;
1785 u32 size = skb->len-skb->data_len;
1786 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1787 u32 empty_slots;
1788 struct ring_desc* put_tx;
1789 struct ring_desc* start_tx;
1790 struct ring_desc* prev_tx;
1791 struct nv_skb_map* prev_tx_ctx;
1792 unsigned long flags;
1793
1794 /* add fragments to entries count */
1795 for (i = 0; i < fragments; i++) {
1796 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1797 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1798 }
1799
1800 empty_slots = nv_get_empty_tx_slots(np);
1801 if (unlikely(empty_slots <= entries)) {
1802 spin_lock_irqsave(&np->lock, flags);
1803 netif_stop_queue(dev);
1804 np->tx_stop = 1;
1805 spin_unlock_irqrestore(&np->lock, flags);
1806 return NETDEV_TX_BUSY;
1807 }
1808
1809 start_tx = put_tx = np->put_tx.orig;
1810
1811 /* setup the header buffer */
1812 do {
1813 prev_tx = put_tx;
1814 prev_tx_ctx = np->put_tx_ctx;
1815 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1816 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1817 PCI_DMA_TODEVICE);
1818 np->put_tx_ctx->dma_len = bcnt;
1819 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
1820 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1821
1822 tx_flags = np->tx_flags;
1823 offset += bcnt;
1824 size -= bcnt;
1825 if (unlikely(put_tx++ == np->last_tx.orig))
1826 put_tx = np->first_tx.orig;
1827 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1828 np->put_tx_ctx = np->first_tx_ctx;
1829 } while (size);
1830
1831 /* setup the fragments */
1832 for (i = 0; i < fragments; i++) {
1833 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1834 u32 size = frag->size;
1835 offset = 0;
1836
1837 do {
1838 prev_tx = put_tx;
1839 prev_tx_ctx = np->put_tx_ctx;
1840 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1841 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1842 PCI_DMA_TODEVICE);
1843 np->put_tx_ctx->dma_len = bcnt;
1844 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
1845 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1846
1847 offset += bcnt;
1848 size -= bcnt;
1849 if (unlikely(put_tx++ == np->last_tx.orig))
1850 put_tx = np->first_tx.orig;
1851 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1852 np->put_tx_ctx = np->first_tx_ctx;
1853 } while (size);
1854 }
1855
1856 /* set last fragment flag */
1857 prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
1858
1859 /* save skb in this slot's context area */
1860 prev_tx_ctx->skb = skb;
1861
1862 if (skb_is_gso(skb))
1863 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1864 else
1865 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
1866 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
1867
1868 spin_lock_irqsave(&np->lock, flags);
1869
1870 /* set tx flags */
1871 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1872 np->put_tx.orig = put_tx;
1873
1874 spin_unlock_irqrestore(&np->lock, flags);
1875
1876 dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
1877 dev->name, entries, tx_flags_extra);
1878 {
1879 int j;
1880 for (j=0; j<64; j++) {
1881 if ((j%16) == 0)
1882 dprintk("\n%03x:", j);
1883 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1884 }
1885 dprintk("\n");
1886 }
1887
1888 dev->trans_start = jiffies;
1889 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1890 return NETDEV_TX_OK;
1891 }
1892
1893 static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
1894 {
1895 struct fe_priv *np = netdev_priv(dev);
1896 u32 tx_flags = 0;
1897 u32 tx_flags_extra;
1898 unsigned int fragments = skb_shinfo(skb)->nr_frags;
1899 unsigned int i;
1900 u32 offset = 0;
1901 u32 bcnt;
1902 u32 size = skb->len-skb->data_len;
1903 u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1904 u32 empty_slots;
1905 struct ring_desc_ex* put_tx;
1906 struct ring_desc_ex* start_tx;
1907 struct ring_desc_ex* prev_tx;
1908 struct nv_skb_map* prev_tx_ctx;
1909 struct nv_skb_map* start_tx_ctx;
1910 unsigned long flags;
1911
1912 /* add fragments to entries count */
1913 for (i = 0; i < fragments; i++) {
1914 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1915 ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1916 }
1917
1918 empty_slots = nv_get_empty_tx_slots(np);
1919 if (unlikely(empty_slots <= entries)) {
1920 spin_lock_irqsave(&np->lock, flags);
1921 netif_stop_queue(dev);
1922 np->tx_stop = 1;
1923 spin_unlock_irqrestore(&np->lock, flags);
1924 return NETDEV_TX_BUSY;
1925 }
1926
1927 start_tx = put_tx = np->put_tx.ex;
1928 start_tx_ctx = np->put_tx_ctx;
1929
1930 /* setup the header buffer */
1931 do {
1932 prev_tx = put_tx;
1933 prev_tx_ctx = np->put_tx_ctx;
1934 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1935 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1936 PCI_DMA_TODEVICE);
1937 np->put_tx_ctx->dma_len = bcnt;
1938 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
1939 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
1940 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1941
1942 tx_flags = NV_TX2_VALID;
1943 offset += bcnt;
1944 size -= bcnt;
1945 if (unlikely(put_tx++ == np->last_tx.ex))
1946 put_tx = np->first_tx.ex;
1947 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1948 np->put_tx_ctx = np->first_tx_ctx;
1949 } while (size);
1950
1951 /* setup the fragments */
1952 for (i = 0; i < fragments; i++) {
1953 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1954 u32 size = frag->size;
1955 offset = 0;
1956
1957 do {
1958 prev_tx = put_tx;
1959 prev_tx_ctx = np->put_tx_ctx;
1960 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1961 np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1962 PCI_DMA_TODEVICE);
1963 np->put_tx_ctx->dma_len = bcnt;
1964 put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
1965 put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
1966 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1967
1968 offset += bcnt;
1969 size -= bcnt;
1970 if (unlikely(put_tx++ == np->last_tx.ex))
1971 put_tx = np->first_tx.ex;
1972 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1973 np->put_tx_ctx = np->first_tx_ctx;
1974 } while (size);
1975 }
1976
1977 /* set last fragment flag */
1978 prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
1979
1980 /* save skb in this slot's context area */
1981 prev_tx_ctx->skb = skb;
1982
1983 if (skb_is_gso(skb))
1984 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1985 else
1986 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
1987 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
1988
1989 /* vlan tag */
1990 if (likely(!np->vlangrp)) {
1991 start_tx->txvlan = 0;
1992 } else {
1993 if (vlan_tx_tag_present(skb))
1994 start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
1995 else
1996 start_tx->txvlan = 0;
1997 }
1998
1999 spin_lock_irqsave(&np->lock, flags);
2000
2001 if (np->tx_limit) {
2002 /* Limit the number of outstanding tx. Setup all fragments, but
2003 * do not set the VALID bit on the first descriptor. Save a pointer
2004 * to that descriptor and also for next skb_map element.
2005 */
2006
2007 if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
2008 if (!np->tx_change_owner)
2009 np->tx_change_owner = start_tx_ctx;
2010
2011 /* remove VALID bit */
2012 tx_flags &= ~NV_TX2_VALID;
2013 start_tx_ctx->first_tx_desc = start_tx;
2014 start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
2015 np->tx_end_flip = np->put_tx_ctx;
2016 } else {
2017 np->tx_pkts_in_progress++;
2018 }
2019 }
2020
2021 /* set tx flags */
2022 start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
2023 np->put_tx.ex = put_tx;
2024
2025 spin_unlock_irqrestore(&np->lock, flags);
2026
2027 dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
2028 dev->name, entries, tx_flags_extra);
2029 {
2030 int j;
2031 for (j=0; j<64; j++) {
2032 if ((j%16) == 0)
2033 dprintk("\n%03x:", j);
2034 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2035 }
2036 dprintk("\n");
2037 }
2038
2039 dev->trans_start = jiffies;
2040 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2041 return NETDEV_TX_OK;
2042 }
2043
2044 static inline void nv_tx_flip_ownership(struct net_device *dev)
2045 {
2046 struct fe_priv *np = netdev_priv(dev);
2047
2048 np->tx_pkts_in_progress--;
2049 if (np->tx_change_owner) {
2050 np->tx_change_owner->first_tx_desc->flaglen |=
2051 cpu_to_le32(NV_TX2_VALID);
2052 np->tx_pkts_in_progress++;
2053
2054 np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
2055 if (np->tx_change_owner == np->tx_end_flip)
2056 np->tx_change_owner = NULL;
2057
2058 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2059 }
2060 }
2061
2062 /*
2063 * nv_tx_done: check for completed packets, release the skbs.
2064 *
2065 * Caller must own np->lock.
2066 */
2067 static void nv_tx_done(struct net_device *dev)
2068 {
2069 struct fe_priv *np = netdev_priv(dev);
2070 u32 flags;
2071 struct ring_desc* orig_get_tx = np->get_tx.orig;
2072
2073 while ((np->get_tx.orig != np->put_tx.orig) &&
2074 !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
2075
2076 dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
2077 dev->name, flags);
2078
2079 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
2080 np->get_tx_ctx->dma_len,
2081 PCI_DMA_TODEVICE);
2082 np->get_tx_ctx->dma = 0;
2083
2084 if (np->desc_ver == DESC_VER_1) {
2085 if (flags & NV_TX_LASTPACKET) {
2086 if (flags & NV_TX_ERROR) {
2087 if (flags & NV_TX_UNDERFLOW)
2088 dev->stats.tx_fifo_errors++;
2089 if (flags & NV_TX_CARRIERLOST)
2090 dev->stats.tx_carrier_errors++;
2091 dev->stats.tx_errors++;
2092 } else {
2093 dev->stats.tx_packets++;
2094 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2095 }
2096 dev_kfree_skb_any(np->get_tx_ctx->skb);
2097 np->get_tx_ctx->skb = NULL;
2098 }
2099 } else {
2100 if (flags & NV_TX2_LASTPACKET) {
2101 if (flags & NV_TX2_ERROR) {
2102 if (flags & NV_TX2_UNDERFLOW)
2103 dev->stats.tx_fifo_errors++;
2104 if (flags & NV_TX2_CARRIERLOST)
2105 dev->stats.tx_carrier_errors++;
2106 dev->stats.tx_errors++;
2107 } else {
2108 dev->stats.tx_packets++;
2109 dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
2110 }
2111 dev_kfree_skb_any(np->get_tx_ctx->skb);
2112 np->get_tx_ctx->skb = NULL;
2113 }
2114 }
2115 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
2116 np->get_tx.orig = np->first_tx.orig;
2117 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2118 np->get_tx_ctx = np->first_tx_ctx;
2119 }
2120 if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
2121 np->tx_stop = 0;
2122 netif_wake_queue(dev);
2123 }
2124 }
2125
2126 static void nv_tx_done_optimized(struct net_device *dev, int limit)
2127 {
2128 struct fe_priv *np = netdev_priv(dev);
2129 u32 flags;
2130 struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
2131
2132 while ((np->get_tx.ex != np->put_tx.ex) &&
2133 !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
2134 (limit-- > 0)) {
2135
2136 dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
2137 dev->name, flags);
2138
2139 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
2140 np->get_tx_ctx->dma_len,
2141 PCI_DMA_TODEVICE);
2142 np->get_tx_ctx->dma = 0;
2143
2144 if (flags & NV_TX2_LASTPACKET) {
2145 if (!(flags & NV_TX2_ERROR))
2146 dev->stats.tx_packets++;
2147 dev_kfree_skb_any(np->get_tx_ctx->skb);
2148 np->get_tx_ctx->skb = NULL;
2149
2150 if (np->tx_limit) {
2151 nv_tx_flip_ownership(dev);
2152 }
2153 }
2154 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
2155 np->get_tx.ex = np->first_tx.ex;
2156 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2157 np->get_tx_ctx = np->first_tx_ctx;
2158 }
2159 if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
2160 np->tx_stop = 0;
2161 netif_wake_queue(dev);
2162 }
2163 }
2164
2165 /*
2166 * nv_tx_timeout: dev->tx_timeout function
2167 * Called with netif_tx_lock held.
2168 */
2169 static void nv_tx_timeout(struct net_device *dev)
2170 {
2171 struct fe_priv *np = netdev_priv(dev);
2172 u8 __iomem *base = get_hwbase(dev);
2173 u32 status;
2174
2175 if (np->msi_flags & NV_MSI_X_ENABLED)
2176 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2177 else
2178 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2179
2180 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
2181
2182 {
2183 int i;
2184
2185 printk(KERN_INFO "%s: Ring at %lx\n",
2186 dev->name, (unsigned long)np->ring_addr);
2187 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
2188 for (i=0;i<=np->register_size;i+= 32) {
2189 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
2190 i,
2191 readl(base + i + 0), readl(base + i + 4),
2192 readl(base + i + 8), readl(base + i + 12),
2193 readl(base + i + 16), readl(base + i + 20),
2194 readl(base + i + 24), readl(base + i + 28));
2195 }
2196 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
2197 for (i=0;i<np->tx_ring_size;i+= 4) {
2198 if (!nv_optimized(np)) {
2199 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
2200 i,
2201 le32_to_cpu(np->tx_ring.orig[i].buf),
2202 le32_to_cpu(np->tx_ring.orig[i].flaglen),
2203 le32_to_cpu(np->tx_ring.orig[i+1].buf),
2204 le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2205 le32_to_cpu(np->tx_ring.orig[i+2].buf),
2206 le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2207 le32_to_cpu(np->tx_ring.orig[i+3].buf),
2208 le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2209 } else {
2210 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
2211 i,
2212 le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2213 le32_to_cpu(np->tx_ring.ex[i].buflow),
2214 le32_to_cpu(np->tx_ring.ex[i].flaglen),
2215 le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2216 le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2217 le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2218 le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2219 le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2220 le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2221 le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2222 le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2223 le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2224 }
2225 }
2226 }
2227
2228 spin_lock_irq(&np->lock);
2229
2230 /* 1) stop tx engine */
2231 nv_stop_tx(dev);
2232
2233 /* 2) check that the packets were not sent already: */
2234 if (!nv_optimized(np))
2235 nv_tx_done(dev);
2236 else
2237 nv_tx_done_optimized(dev, np->tx_ring_size);
2238
2239 /* 3) if there are dead entries: clear everything */
2240 if (np->get_tx_ctx != np->put_tx_ctx) {
2241 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
2242 nv_drain_tx(dev);
2243 nv_init_tx(dev);
2244 setup_hw_rings(dev, NV_SETUP_TX_RING);
2245 }
2246
2247 netif_wake_queue(dev);
2248
2249 /* 4) restart tx engine */
2250 nv_start_tx(dev);
2251 spin_unlock_irq(&np->lock);
2252 }
2253
2254 /*
2255 * Called when the nic notices a mismatch between the actual data len on the
2256 * wire and the len indicated in the 802 header
2257 */
2258 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2259 {
2260 int hdrlen; /* length of the 802 header */
2261 int protolen; /* length as stored in the proto field */
2262
2263 /* 1) calculate len according to header */
2264 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2265 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
2266 hdrlen = VLAN_HLEN;
2267 } else {
2268 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
2269 hdrlen = ETH_HLEN;
2270 }
2271 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
2272 dev->name, datalen, protolen, hdrlen);
2273 if (protolen > ETH_DATA_LEN)
2274 return datalen; /* Value in proto field not a len, no checks possible */
2275
2276 protolen += hdrlen;
2277 /* consistency checks: */
2278 if (datalen > ETH_ZLEN) {
2279 if (datalen >= protolen) {
2280 /* more data on wire than in 802 header, trim of
2281 * additional data.
2282 */
2283 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2284 dev->name, protolen);
2285 return protolen;
2286 } else {
2287 /* less data on wire than mentioned in header.
2288 * Discard the packet.
2289 */
2290 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
2291 dev->name);
2292 return -1;
2293 }
2294 } else {
2295 /* short packet. Accept only if 802 values are also short */
2296 if (protolen > ETH_ZLEN) {
2297 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
2298 dev->name);
2299 return -1;
2300 }
2301 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2302 dev->name, datalen);
2303 return datalen;
2304 }
2305 }
2306
2307 static int nv_rx_process(struct net_device *dev, int limit)
2308 {
2309 struct fe_priv *np = netdev_priv(dev);
2310 u32 flags;
2311 int rx_work = 0;
2312 struct sk_buff *skb;
2313 int len;
2314
2315 while((np->get_rx.orig != np->put_rx.orig) &&
2316 !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2317 (rx_work < limit)) {
2318
2319 dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
2320 dev->name, flags);
2321
2322 /*
2323 * the packet is for us - immediately tear down the pci mapping.
2324 * TODO: check if a prefetch of the first cacheline improves
2325 * the performance.
2326 */
2327 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2328 np->get_rx_ctx->dma_len,
2329 PCI_DMA_FROMDEVICE);
2330 skb = np->get_rx_ctx->skb;
2331 np->get_rx_ctx->skb = NULL;
2332
2333 {
2334 int j;
2335 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2336 for (j=0; j<64; j++) {
2337 if ((j%16) == 0)
2338 dprintk("\n%03x:", j);
2339 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2340 }
2341 dprintk("\n");
2342 }
2343 /* look at what we actually got: */
2344 if (np->desc_ver == DESC_VER_1) {
2345 if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2346 len = flags & LEN_MASK_V1;
2347 if (unlikely(flags & NV_RX_ERROR)) {
2348 if (flags & NV_RX_ERROR4) {
2349 len = nv_getlen(dev, skb->data, len);
2350 if (len < 0) {
2351 dev->stats.rx_errors++;
2352 dev_kfree_skb(skb);
2353 goto next_pkt;
2354 }
2355 }
2356 /* framing errors are soft errors */
2357 else if (flags & NV_RX_FRAMINGERR) {
2358 if (flags & NV_RX_SUBSTRACT1) {
2359 len--;
2360 }
2361 }
2362 /* the rest are hard errors */
2363 else {
2364 if (flags & NV_RX_MISSEDFRAME)
2365 dev->stats.rx_missed_errors++;
2366 if (flags & NV_RX_CRCERR)
2367 dev->stats.rx_crc_errors++;
2368 if (flags & NV_RX_OVERFLOW)
2369 dev->stats.rx_over_errors++;
2370 dev->stats.rx_errors++;
2371 dev_kfree_skb(skb);
2372 goto next_pkt;
2373 }
2374 }
2375 } else {
2376 dev_kfree_skb(skb);
2377 goto next_pkt;
2378 }
2379 } else {
2380 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2381 len = flags & LEN_MASK_V2;
2382 if (unlikely(flags & NV_RX2_ERROR)) {
2383 if (flags & NV_RX2_ERROR4) {
2384 len = nv_getlen(dev, skb->data, len);
2385 if (len < 0) {
2386 dev->stats.rx_errors++;
2387 dev_kfree_skb(skb);
2388 goto next_pkt;
2389 }
2390 }
2391 /* framing errors are soft errors */
2392 else if (flags & NV_RX2_FRAMINGERR) {
2393 if (flags & NV_RX2_SUBSTRACT1) {
2394 len--;
2395 }
2396 }
2397 /* the rest are hard errors */
2398 else {
2399 if (flags & NV_RX2_CRCERR)
2400 dev->stats.rx_crc_errors++;
2401 if (flags & NV_RX2_OVERFLOW)
2402 dev->stats.rx_over_errors++;
2403 dev->stats.rx_errors++;
2404 dev_kfree_skb(skb);
2405 goto next_pkt;
2406 }
2407 }
2408 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2409 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2410 skb->ip_summed = CHECKSUM_UNNECESSARY;
2411 } else {
2412 dev_kfree_skb(skb);
2413 goto next_pkt;
2414 }
2415 }
2416 /* got a valid packet - forward it to the network core */
2417 skb_put(skb, len);
2418 skb->protocol = eth_type_trans(skb, dev);
2419 dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
2420 dev->name, len, skb->protocol);
2421 #ifdef CONFIG_FORCEDETH_NAPI
2422 netif_receive_skb(skb);
2423 #else
2424 netif_rx(skb);
2425 #endif
2426 dev->last_rx = jiffies;
2427 dev->stats.rx_packets++;
2428 dev->stats.rx_bytes += len;
2429 next_pkt:
2430 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2431 np->get_rx.orig = np->first_rx.orig;
2432 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2433 np->get_rx_ctx = np->first_rx_ctx;
2434
2435 rx_work++;
2436 }
2437
2438 return rx_work;
2439 }
2440
2441 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2442 {
2443 struct fe_priv *np = netdev_priv(dev);
2444 u32 flags;
2445 u32 vlanflags = 0;
2446 int rx_work = 0;
2447 struct sk_buff *skb;
2448 int len;
2449
2450 while((np->get_rx.ex != np->put_rx.ex) &&
2451 !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2452 (rx_work < limit)) {
2453
2454 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
2455 dev->name, flags);
2456
2457 /*
2458 * the packet is for us - immediately tear down the pci mapping.
2459 * TODO: check if a prefetch of the first cacheline improves
2460 * the performance.
2461 */
2462 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2463 np->get_rx_ctx->dma_len,
2464 PCI_DMA_FROMDEVICE);
2465 skb = np->get_rx_ctx->skb;
2466 np->get_rx_ctx->skb = NULL;
2467
2468 {
2469 int j;
2470 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2471 for (j=0; j<64; j++) {
2472 if ((j%16) == 0)
2473 dprintk("\n%03x:", j);
2474 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2475 }
2476 dprintk("\n");
2477 }
2478 /* look at what we actually got: */
2479 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2480 len = flags & LEN_MASK_V2;
2481 if (unlikely(flags & NV_RX2_ERROR)) {
2482 if (flags & NV_RX2_ERROR4) {
2483 len = nv_getlen(dev, skb->data, len);
2484 if (len < 0) {
2485 dev_kfree_skb(skb);
2486 goto next_pkt;
2487 }
2488 }
2489 /* framing errors are soft errors */
2490 else if (flags & NV_RX2_FRAMINGERR) {
2491 if (flags & NV_RX2_SUBSTRACT1) {
2492 len--;
2493 }
2494 }
2495 /* the rest are hard errors */
2496 else {
2497 dev_kfree_skb(skb);
2498 goto next_pkt;
2499 }
2500 }
2501
2502 if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
2503 ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
2504 skb->ip_summed = CHECKSUM_UNNECESSARY;
2505
2506 /* got a valid packet - forward it to the network core */
2507 skb_put(skb, len);
2508 skb->protocol = eth_type_trans(skb, dev);
2509 prefetch(skb->data);
2510
2511 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
2512 dev->name, len, skb->protocol);
2513
2514 if (likely(!np->vlangrp)) {
2515 #ifdef CONFIG_FORCEDETH_NAPI
2516 netif_receive_skb(skb);
2517 #else
2518 netif_rx(skb);
2519 #endif
2520 } else {
2521 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
2522 if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
2523 #ifdef CONFIG_FORCEDETH_NAPI
2524 vlan_hwaccel_receive_skb(skb, np->vlangrp,
2525 vlanflags & NV_RX3_VLAN_TAG_MASK);
2526 #else
2527 vlan_hwaccel_rx(skb, np->vlangrp,
2528 vlanflags & NV_RX3_VLAN_TAG_MASK);
2529 #endif
2530 } else {
2531 #ifdef CONFIG_FORCEDETH_NAPI
2532 netif_receive_skb(skb);
2533 #else
2534 netif_rx(skb);
2535 #endif
2536 }
2537 }
2538
2539 dev->last_rx = jiffies;
2540 dev->stats.rx_packets++;
2541 dev->stats.rx_bytes += len;
2542 } else {
2543 dev_kfree_skb(skb);
2544 }
2545 next_pkt:
2546 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
2547 np->get_rx.ex = np->first_rx.ex;
2548 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2549 np->get_rx_ctx = np->first_rx_ctx;
2550
2551 rx_work++;
2552 }
2553
2554 return rx_work;
2555 }
2556
2557 static void set_bufsize(struct net_device *dev)
2558 {
2559 struct fe_priv *np = netdev_priv(dev);
2560
2561 if (dev->mtu <= ETH_DATA_LEN)
2562 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
2563 else
2564 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
2565 }
2566
2567 /*
2568 * nv_change_mtu: dev->change_mtu function
2569 * Called with dev_base_lock held for read.
2570 */
2571 static int nv_change_mtu(struct net_device *dev, int new_mtu)
2572 {
2573 struct fe_priv *np = netdev_priv(dev);
2574 int old_mtu;
2575
2576 if (new_mtu < 64 || new_mtu > np->pkt_limit)
2577 return -EINVAL;
2578
2579 old_mtu = dev->mtu;
2580 dev->mtu = new_mtu;
2581
2582 /* return early if the buffer sizes will not change */
2583 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
2584 return 0;
2585 if (old_mtu == new_mtu)
2586 return 0;
2587
2588 /* synchronized against open : rtnl_lock() held by caller */
2589 if (netif_running(dev)) {
2590 u8 __iomem *base = get_hwbase(dev);
2591 /*
2592 * It seems that the nic preloads valid ring entries into an
2593 * internal buffer. The procedure for flushing everything is
2594 * guessed, there is probably a simpler approach.
2595 * Changing the MTU is a rare event, it shouldn't matter.
2596 */
2597 nv_disable_irq(dev);
2598 netif_tx_lock_bh(dev);
2599 spin_lock(&np->lock);
2600 /* stop engines */
2601 nv_stop_rxtx(dev);
2602 nv_txrx_reset(dev);
2603 /* drain rx queue */
2604 nv_drain_rxtx(dev);
2605 /* reinit driver view of the rx queue */
2606 set_bufsize(dev);
2607 if (nv_init_ring(dev)) {
2608 if (!np->in_shutdown)
2609 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2610 }
2611 /* reinit nic view of the rx queue */
2612 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2613 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2614 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
2615 base + NvRegRingSizes);
2616 pci_push(base);
2617 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2618 pci_push(base);
2619
2620 /* restart rx engine */
2621 nv_start_rxtx(dev);
2622 spin_unlock(&np->lock);
2623 netif_tx_unlock_bh(dev);
2624 nv_enable_irq(dev);
2625 }
2626 return 0;
2627 }
2628
2629 static void nv_copy_mac_to_hw(struct net_device *dev)
2630 {
2631 u8 __iomem *base = get_hwbase(dev);
2632 u32 mac[2];
2633
2634 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
2635 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
2636 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
2637
2638 writel(mac[0], base + NvRegMacAddrA);
2639 writel(mac[1], base + NvRegMacAddrB);
2640 }
2641
2642 /*
2643 * nv_set_mac_address: dev->set_mac_address function
2644 * Called with rtnl_lock() held.
2645 */
2646 static int nv_set_mac_address(struct net_device *dev, void *addr)
2647 {
2648 struct fe_priv *np = netdev_priv(dev);
2649 struct sockaddr *macaddr = (struct sockaddr*)addr;
2650
2651 if (!is_valid_ether_addr(macaddr->sa_data))
2652 return -EADDRNOTAVAIL;
2653
2654 /* synchronized against open : rtnl_lock() held by caller */
2655 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
2656
2657 if (netif_running(dev)) {
2658 netif_tx_lock_bh(dev);
2659 spin_lock_irq(&np->lock);
2660
2661 /* stop rx engine */
2662 nv_stop_rx(dev);
2663
2664 /* set mac address */
2665 nv_copy_mac_to_hw(dev);
2666
2667 /* restart rx engine */
2668 nv_start_rx(dev);
2669 spin_unlock_irq(&np->lock);
2670 netif_tx_unlock_bh(dev);
2671 } else {
2672 nv_copy_mac_to_hw(dev);
2673 }
2674 return 0;
2675 }
2676
2677 /*
2678 * nv_set_multicast: dev->set_multicast function
2679 * Called with netif_tx_lock held.
2680 */
2681 static void nv_set_multicast(struct net_device *dev)
2682 {
2683 struct fe_priv *np = netdev_priv(dev);
2684 u8 __iomem *base = get_hwbase(dev);
2685 u32 addr[2];
2686 u32 mask[2];
2687 u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
2688
2689 memset(addr, 0, sizeof(addr));
2690 memset(mask, 0, sizeof(mask));
2691
2692 if (dev->flags & IFF_PROMISC) {
2693 pff |= NVREG_PFF_PROMISC;
2694 } else {
2695 pff |= NVREG_PFF_MYADDR;
2696
2697 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
2698 u32 alwaysOff[2];
2699 u32 alwaysOn[2];
2700
2701 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
2702 if (dev->flags & IFF_ALLMULTI) {
2703 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
2704 } else {
2705 struct dev_mc_list *walk;
2706
2707 walk = dev->mc_list;
2708 while (walk != NULL) {
2709 u32 a, b;
2710 a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
2711 b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
2712 alwaysOn[0] &= a;
2713 alwaysOff[0] &= ~a;
2714 alwaysOn[1] &= b;
2715 alwaysOff[1] &= ~b;
2716 walk = walk->next;
2717 }
2718 }
2719 addr[0] = alwaysOn[0];
2720 addr[1] = alwaysOn[1];
2721 mask[0] = alwaysOn[0] | alwaysOff[0];
2722 mask[1] = alwaysOn[1] | alwaysOff[1];
2723 } else {
2724 mask[0] = NVREG_MCASTMASKA_NONE;
2725 mask[1] = NVREG_MCASTMASKB_NONE;
2726 }
2727 }
2728 addr[0] |= NVREG_MCASTADDRA_FORCE;
2729 pff |= NVREG_PFF_ALWAYS;
2730 spin_lock_irq(&np->lock);
2731 nv_stop_rx(dev);
2732 writel(addr[0], base + NvRegMulticastAddrA);
2733 writel(addr[1], base + NvRegMulticastAddrB);
2734 writel(mask[0], base + NvRegMulticastMaskA);
2735 writel(mask[1], base + NvRegMulticastMaskB);
2736 writel(pff, base + NvRegPacketFilterFlags);
2737 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2738 dev->name);
2739 nv_start_rx(dev);
2740 spin_unlock_irq(&np->lock);
2741 }
2742
2743 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
2744 {
2745 struct fe_priv *np = netdev_priv(dev);
2746 u8 __iomem *base = get_hwbase(dev);
2747
2748 np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2749
2750 if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2751 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2752 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2753 writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2754 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2755 } else {
2756 writel(pff, base + NvRegPacketFilterFlags);
2757 }
2758 }
2759 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2760 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2761 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2762 u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
2763 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
2764 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
2765 if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)
2766 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
2767 writel(pause_enable, base + NvRegTxPauseFrame);
2768 writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2769 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2770 } else {
2771 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
2772 writel(regmisc, base + NvRegMisc1);
2773 }
2774 }
2775 }
2776
2777 /**
2778 * nv_update_linkspeed: Setup the MAC according to the link partner
2779 * @dev: Network device to be configured
2780 *
2781 * The function queries the PHY and checks if there is a link partner.
2782 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2783 * set to 10 MBit HD.
2784 *
2785 * The function returns 0 if there is no link partner and 1 if there is
2786 * a good link partner.
2787 */
2788 static int nv_update_linkspeed(struct net_device *dev)
2789 {
2790 struct fe_priv *np = netdev_priv(dev);
2791 u8 __iomem *base = get_hwbase(dev);
2792 int adv = 0;
2793 int lpa = 0;
2794 int adv_lpa, adv_pause, lpa_pause;
2795 int newls = np->linkspeed;
2796 int newdup = np->duplex;
2797 int mii_status;
2798 int retval = 0;
2799 u32 control_1000, status_1000, phyreg, pause_flags, txreg;
2800 u32 txrxFlags = 0;
2801 u32 phy_exp;
2802
2803 /* BMSR_LSTATUS is latched, read it twice:
2804 * we want the current value.
2805 */
2806 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2807 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2808
2809 if (!(mii_status & BMSR_LSTATUS)) {
2810 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2811 dev->name);
2812 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2813 newdup = 0;
2814 retval = 0;
2815 goto set_speed;
2816 }
2817
2818 if (np->autoneg == 0) {
2819 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2820 dev->name, np->fixed_mode);
2821 if (np->fixed_mode & LPA_100FULL) {
2822 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2823 newdup = 1;
2824 } else if (np->fixed_mode & LPA_100HALF) {
2825 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2826 newdup = 0;
2827 } else if (np->fixed_mode & LPA_10FULL) {
2828 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2829 newdup = 1;
2830 } else {
2831 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2832 newdup = 0;
2833 }
2834 retval = 1;
2835 goto set_speed;
2836 }
2837 /* check auto negotiation is complete */
2838 if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2839 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2840 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2841 newdup = 0;
2842 retval = 0;
2843 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2844 goto set_speed;
2845 }
2846
2847 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2848 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2849 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2850 dev->name, adv, lpa);
2851
2852 retval = 1;
2853 if (np->gigabit == PHY_GIGABIT) {
2854 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2855 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2856
2857 if ((control_1000 & ADVERTISE_1000FULL) &&
2858 (status_1000 & LPA_1000FULL)) {
2859 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2860 dev->name);
2861 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2862 newdup = 1;
2863 goto set_speed;
2864 }
2865 }
2866
2867 /* FIXME: handle parallel detection properly */
2868 adv_lpa = lpa & adv;
2869 if (adv_lpa & LPA_100FULL) {
2870 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2871 newdup = 1;
2872 } else if (adv_lpa & LPA_100HALF) {
2873 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2874 newdup = 0;
2875 } else if (adv_lpa & LPA_10FULL) {
2876 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2877 newdup = 1;
2878 } else if (adv_lpa & LPA_10HALF) {
2879 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2880 newdup = 0;
2881 } else {
2882 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2883 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2884 newdup = 0;
2885 }
2886
2887 set_speed:
2888 if (np->duplex == newdup && np->linkspeed == newls)
2889 return retval;
2890
2891 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2892 dev->name, np->linkspeed, np->duplex, newls, newdup);
2893
2894 np->duplex = newdup;
2895 np->linkspeed = newls;
2896
2897 /* The transmitter and receiver must be restarted for safe update */
2898 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
2899 txrxFlags |= NV_RESTART_TX;
2900 nv_stop_tx(dev);
2901 }
2902 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
2903 txrxFlags |= NV_RESTART_RX;
2904 nv_stop_rx(dev);
2905 }
2906
2907 if (np->gigabit == PHY_GIGABIT) {
2908 phyreg = readl(base + NvRegRandomSeed);
2909 phyreg &= ~(0x3FF00);
2910 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2911 phyreg |= NVREG_RNDSEED_FORCE3;
2912 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2913 phyreg |= NVREG_RNDSEED_FORCE2;
2914 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2915 phyreg |= NVREG_RNDSEED_FORCE;
2916 writel(phyreg, base + NvRegRandomSeed);
2917 }
2918
2919 phyreg = readl(base + NvRegPhyInterface);
2920 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2921 if (np->duplex == 0)
2922 phyreg |= PHY_HALF;
2923 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2924 phyreg |= PHY_100;
2925 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2926 phyreg |= PHY_1000;
2927 writel(phyreg, base + NvRegPhyInterface);
2928
2929 phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
2930 if (phyreg & PHY_RGMII) {
2931 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
2932 txreg = NVREG_TX_DEFERRAL_RGMII_1000;
2933 } else {
2934 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
2935 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
2936 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
2937 else
2938 txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
2939 } else {
2940 txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
2941 }
2942 }
2943 } else {
2944 if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
2945 txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
2946 else
2947 txreg = NVREG_TX_DEFERRAL_DEFAULT;
2948 }
2949 writel(txreg, base + NvRegTxDeferral);
2950
2951 if (np->desc_ver == DESC_VER_1) {
2952 txreg = NVREG_TX_WM_DESC1_DEFAULT;
2953 } else {
2954 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2955 txreg = NVREG_TX_WM_DESC2_3_1000;
2956 else
2957 txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
2958 }
2959 writel(txreg, base + NvRegTxWatermark);
2960
2961 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2962 base + NvRegMisc1);
2963 pci_push(base);
2964 writel(np->linkspeed, base + NvRegLinkSpeed);
2965 pci_push(base);
2966
2967 pause_flags = 0;
2968 /* setup pause frame */
2969 if (np->duplex != 0) {
2970 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
2971 adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2972 lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2973
2974 switch (adv_pause) {
2975 case ADVERTISE_PAUSE_CAP:
2976 if (lpa_pause & LPA_PAUSE_CAP) {
2977 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2978 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2979 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2980 }
2981 break;
2982 case ADVERTISE_PAUSE_ASYM:
2983 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2984 {
2985 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2986 }
2987 break;
2988 case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
2989 if (lpa_pause & LPA_PAUSE_CAP)
2990 {
2991 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2992 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2993 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2994 }
2995 if (lpa_pause == LPA_PAUSE_ASYM)
2996 {
2997 pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2998 }
2999 break;
3000 }
3001 } else {
3002 pause_flags = np->pause_flags;
3003 }
3004 }
3005 nv_update_pause(dev, pause_flags);
3006
3007 if (txrxFlags & NV_RESTART_TX)
3008 nv_start_tx(dev);
3009 if (txrxFlags & NV_RESTART_RX)
3010 nv_start_rx(dev);
3011
3012 return retval;
3013 }
3014
3015 static void nv_linkchange(struct net_device *dev)
3016 {
3017 if (nv_update_linkspeed(dev)) {
3018 if (!netif_carrier_ok(dev)) {
3019 netif_carrier_on(dev);
3020 printk(KERN_INFO "%s: link up.\n", dev->name);
3021 nv_start_rx(dev);
3022 }
3023 } else {
3024 if (netif_carrier_ok(dev)) {
3025 netif_carrier_off(dev);
3026 printk(KERN_INFO "%s: link down.\n", dev->name);
3027 nv_stop_rx(dev);
3028 }
3029 }
3030 }
3031
3032 static void nv_link_irq(struct net_device *dev)
3033 {
3034 u8 __iomem *base = get_hwbase(dev);
3035 u32 miistat;
3036
3037 miistat = readl(base + NvRegMIIStatus);
3038 writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
3039 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
3040
3041 if (miistat & (NVREG_MIISTAT_LINKCHANGE))
3042 nv_linkchange(dev);
3043 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
3044 }
3045
3046 static irqreturn_t nv_nic_irq(int foo, void *data)
3047 {
3048 struct net_device *dev = (struct net_device *) data;
3049 struct fe_priv *np = netdev_priv(dev);
3050 u8 __iomem *base = get_hwbase(dev);
3051 u32 events;
3052 int i;
3053
3054 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
3055
3056 for (i=0; ; i++) {
3057 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3058 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3059 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3060 } else {
3061 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3062 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3063 }
3064 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3065 if (!(events & np->irqmask))
3066 break;
3067
3068 spin_lock(&np->lock);
3069 nv_tx_done(dev);
3070 spin_unlock(&np->lock);
3071
3072 #ifdef CONFIG_FORCEDETH_NAPI
3073 if (events & NVREG_IRQ_RX_ALL) {
3074 netif_rx_schedule(dev, &np->napi);
3075
3076 /* Disable furthur receive irq's */
3077 spin_lock(&np->lock);
3078 np->irqmask &= ~NVREG_IRQ_RX_ALL;
3079
3080 if (np->msi_flags & NV_MSI_X_ENABLED)
3081 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3082 else
3083 writel(np->irqmask, base + NvRegIrqMask);
3084 spin_unlock(&np->lock);
3085 }
3086 #else
3087 if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
3088 if (unlikely(nv_alloc_rx(dev))) {
3089 spin_lock(&np->lock);
3090 if (!np->in_shutdown)
3091 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3092 spin_unlock(&np->lock);
3093 }
3094 }
3095 #endif
3096 if (unlikely(events & NVREG_IRQ_LINK)) {
3097 spin_lock(&np->lock);
3098 nv_link_irq(dev);
3099 spin_unlock(&np->lock);
3100 }
3101 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3102 spin_lock(&np->lock);
3103 nv_linkchange(dev);
3104 spin_unlock(&np->lock);
3105 np->link_timeout = jiffies + LINK_TIMEOUT;
3106 }
3107 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3108 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3109 dev->name, events);
3110 }
3111 if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
3112 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3113 dev->name, events);
3114 }
3115 if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
3116 spin_lock(&np->lock);
3117 /* disable interrupts on the nic */
3118 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3119 writel(0, base + NvRegIrqMask);
3120 else
3121 writel(np->irqmask, base + NvRegIrqMask);
3122 pci_push(base);
3123
3124 if (!np->in_shutdown) {
3125 np->nic_poll_irq = np->irqmask;
3126 np->recover_error = 1;
3127 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3128 }
3129 spin_unlock(&np->lock);
3130 break;
3131 }
3132 if (unlikely(i > max_interrupt_work)) {
3133 spin_lock(&np->lock);
3134 /* disable interrupts on the nic */
3135 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3136 writel(0, base + NvRegIrqMask);
3137 else
3138 writel(np->irqmask, base + NvRegIrqMask);
3139 pci_push(base);
3140
3141 if (!np->in_shutdown) {
3142 np->nic_poll_irq = np->irqmask;
3143 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3144 }
3145 spin_unlock(&np->lock);
3146 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
3147 break;
3148 }
3149
3150 }
3151 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
3152
3153 return IRQ_RETVAL(i);
3154 }
3155
3156 /**
3157 * All _optimized functions are used to help increase performance
3158 * (reduce CPU and increase throughput). They use descripter version 3,
3159 * compiler directives, and reduce memory accesses.
3160 */
3161 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
3162 {
3163 struct net_device *dev = (struct net_device *) data;
3164 struct fe_priv *np = netdev_priv(dev);
3165 u8 __iomem *base = get_hwbase(dev);
3166 u32 events;
3167 int i;
3168
3169 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
3170
3171 for (i=0; ; i++) {
3172 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3173 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3174 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3175 } else {
3176 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3177 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3178 }
3179 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3180 if (!(events & np->irqmask))
3181 break;
3182
3183 spin_lock(&np->lock);
3184 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3185 spin_unlock(&np->lock);
3186
3187 #ifdef CONFIG_FORCEDETH_NAPI
3188 if (events & NVREG_IRQ_RX_ALL) {
3189 netif_rx_schedule(dev, &np->napi);
3190
3191 /* Disable furthur receive irq's */
3192 spin_lock(&np->lock);
3193 np->irqmask &= ~NVREG_IRQ_RX_ALL;
3194
3195 if (np->msi_flags & NV_MSI_X_ENABLED)
3196 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3197 else
3198 writel(np->irqmask, base + NvRegIrqMask);
3199 spin_unlock(&np->lock);
3200 }
3201 #else
3202 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3203 if (unlikely(nv_alloc_rx_optimized(dev))) {
3204 spin_lock(&np->lock);
3205 if (!np->in_shutdown)
3206 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3207 spin_unlock(&np->lock);
3208 }
3209 }
3210 #endif
3211 if (unlikely(events & NVREG_IRQ_LINK)) {
3212 spin_lock(&np->lock);
3213 nv_link_irq(dev);
3214 spin_unlock(&np->lock);
3215 }
3216 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3217 spin_lock(&np->lock);
3218 nv_linkchange(dev);
3219 spin_unlock(&np->lock);
3220 np->link_timeout = jiffies + LINK_TIMEOUT;
3221 }
3222 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3223 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3224 dev->name, events);
3225 }
3226 if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
3227 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3228 dev->name, events);
3229 }
3230 if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
3231 spin_lock(&np->lock);
3232 /* disable interrupts on the nic */
3233 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3234 writel(0, base + NvRegIrqMask);
3235 else
3236 writel(np->irqmask, base + NvRegIrqMask);
3237 pci_push(base);
3238
3239 if (!np->in_shutdown) {
3240 np->nic_poll_irq = np->irqmask;
3241 np->recover_error = 1;
3242 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3243 }
3244 spin_unlock(&np->lock);
3245 break;
3246 }
3247
3248 if (unlikely(i > max_interrupt_work)) {
3249 spin_lock(&np->lock);
3250 /* disable interrupts on the nic */
3251 if (!(np->msi_flags & NV_MSI_X_ENABLED))
3252 writel(0, base + NvRegIrqMask);
3253 else
3254 writel(np->irqmask, base + NvRegIrqMask);
3255 pci_push(base);
3256
3257 if (!np->in_shutdown) {
3258 np->nic_poll_irq = np->irqmask;
3259 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3260 }
3261 spin_unlock(&np->lock);
3262 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
3263 break;
3264 }
3265
3266 }
3267 dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
3268
3269 return IRQ_RETVAL(i);
3270 }
3271
3272 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3273 {
3274 struct net_device *dev = (struct net_device *) data;
3275 struct fe_priv *np = netdev_priv(dev);
3276 u8 __iomem *base = get_hwbase(dev);
3277 u32 events;
3278 int i;
3279 unsigned long flags;
3280
3281 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
3282
3283 for (i=0; ; i++) {
3284 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3285 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
3286 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
3287 if (!(events & np->irqmask))
3288 break;
3289
3290 spin_lock_irqsave(&np->lock, flags);
3291 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3292 spin_unlock_irqrestore(&np->lock, flags);
3293
3294 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3295 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3296 dev->name, events);
3297 }
3298 if (unlikely(i > max_interrupt_work)) {
3299 spin_lock_irqsave(&np->lock, flags);
3300 /* disable interrupts on the nic */
3301 writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3302 pci_push(base);
3303
3304 if (!np->in_shutdown) {
3305 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3306 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3307 }
3308 spin_unlock_irqrestore(&np->lock, flags);
3309 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
3310 break;
3311 }
3312
3313 }
3314 dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
3315
3316 return IRQ_RETVAL(i);
3317 }
3318
3319 #ifdef CONFIG_FORCEDETH_NAPI
3320 static int nv_napi_poll(struct napi_struct *napi, int budget)
3321 {
3322 struct fe_priv *np = container_of(napi, struct fe_priv, napi);
3323 struct net_device *dev = np->dev;
3324 u8 __iomem *base = get_hwbase(dev);
3325 unsigned long flags;
3326 int pkts, retcode;
3327
3328 if (!nv_optimized(np)) {
3329 pkts = nv_rx_process(dev, budget);
3330 retcode = nv_alloc_rx(dev);
3331 } else {
3332 pkts = nv_rx_process_optimized(dev, budget);
3333 retcode = nv_alloc_rx_optimized(dev);
3334 }
3335
3336 if (retcode) {
3337 spin_lock_irqsave(&np->lock, flags);
3338 if (!np->in_shutdown)
3339 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3340 spin_unlock_irqrestore(&np->lock, flags);
3341 }
3342
3343 if (pkts < budget) {
3344 /* re-enable receive interrupts */
3345 spin_lock_irqsave(&np->lock, flags);
3346
3347 __netif_rx_complete(dev, napi);
3348
3349 np->irqmask |= NVREG_IRQ_RX_ALL;
3350 if (np->msi_flags & NV_MSI_X_ENABLED)
3351 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3352 else
3353 writel(np->irqmask, base + NvRegIrqMask);
3354
3355 spin_unlock_irqrestore(&np->lock, flags);
3356 }
3357 return pkts;
3358 }
3359 #endif
3360
3361 #ifdef CONFIG_FORCEDETH_NAPI
3362 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3363 {
3364 struct net_device *dev = (struct net_device *) data;
3365 struct fe_priv *np = netdev_priv(dev);
3366 u8 __iomem *base = get_hwbase(dev);
3367 u32 events;
3368
3369 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3370 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3371
3372 if (events) {
3373 netif_rx_schedule(dev, &np->napi);
3374 /* disable receive interrupts on the nic */
3375 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3376 pci_push(base);
3377 }
3378 return IRQ_HANDLED;
3379 }
3380 #else
3381 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3382 {
3383 struct net_device *dev = (struct net_device *) data;
3384 struct fe_priv *np = netdev_priv(dev);
3385 u8 __iomem *base = get_hwbase(dev);
3386 u32 events;
3387 int i;
3388 unsigned long flags;
3389
3390 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
3391
3392 for (i=0; ; i++) {
3393 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3394 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3395 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
3396 if (!(events & np->irqmask))
3397 break;
3398
3399 if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
3400 if (unlikely(nv_alloc_rx_optimized(dev))) {
3401 spin_lock_irqsave(&np->lock, flags);
3402 if (!np->in_shutdown)
3403 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3404 spin_unlock_irqrestore(&np->lock, flags);
3405 }
3406 }
3407
3408 if (unlikely(i > max_interrupt_work)) {
3409 spin_lock_irqsave(&np->lock, flags);
3410 /* disable interrupts on the nic */
3411 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3412 pci_push(base);
3413
3414 if (!np->in_shutdown) {
3415 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3416 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3417 }
3418 spin_unlock_irqrestore(&np->lock, flags);
3419 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
3420 break;
3421 }
3422 }
3423 dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
3424
3425 return IRQ_RETVAL(i);
3426 }
3427 #endif
3428
3429 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3430 {
3431 struct net_device *dev = (struct net_device *) data;
3432 struct fe_priv *np = netdev_priv(dev);
3433 u8 __iomem *base = get_hwbase(dev);
3434 u32 events;
3435 int i;
3436 unsigned long flags;
3437
3438 dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
3439
3440 for (i=0; ; i++) {
3441 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3442 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
3443 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3444 if (!(events & np->irqmask))
3445 break;
3446
3447 /* check tx in case we reached max loop limit in tx isr */
3448 spin_lock_irqsave(&np->lock, flags);
3449 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3450 spin_unlock_irqrestore(&np->lock, flags);
3451
3452 if (events & NVREG_IRQ_LINK) {
3453 spin_lock_irqsave(&np->lock, flags);
3454 nv_link_irq(dev);
3455 spin_unlock_irqrestore(&np->lock, flags);
3456 }
3457 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3458 spin_lock_irqsave(&np->lock, flags);
3459 nv_linkchange(dev);
3460 spin_unlock_irqrestore(&np->lock, flags);
3461 np->link_timeout = jiffies + LINK_TIMEOUT;
3462 }
3463 if (events & NVREG_IRQ_RECOVER_ERROR) {
3464 spin_lock_irq(&np->lock);
3465 /* disable interrupts on the nic */
3466 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3467 pci_push(base);
3468
3469 if (!np->in_shutdown) {
3470 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3471 np->recover_error = 1;
3472 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3473 }
3474 spin_unlock_irq(&np->lock);
3475 break;
3476 }
3477 if (events & (NVREG_IRQ_UNKNOWN)) {
3478 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3479 dev->name, events);
3480 }
3481 if (unlikely(i > max_interrupt_work)) {
3482 spin_lock_irqsave(&np->lock, flags);
3483 /* disable interrupts on the nic */
3484 writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3485 pci_push(base);
3486
3487 if (!np->in_shutdown) {
3488 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3489 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3490 }
3491 spin_unlock_irqrestore(&np->lock, flags);
3492 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
3493 break;
3494 }
3495
3496 }
3497 dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
3498
3499 return IRQ_RETVAL(i);
3500 }
3501
3502 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3503 {
3504 struct net_device *dev = (struct net_device *) data;
3505 struct fe_priv *np = netdev_priv(dev);
3506 u8 __iomem *base = get_hwbase(dev);
3507 u32 events;
3508
3509 dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
3510
3511 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3512 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3513 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3514 } else {
3515 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3516 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3517 }
3518 pci_push(base);
3519 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3520 if (!(events & NVREG_IRQ_TIMER))
3521 return IRQ_RETVAL(0);
3522
3523 spin_lock(&np->lock);
3524 np->intr_test = 1;
3525 spin_unlock(&np->lock);
3526
3527 dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
3528
3529 return IRQ_RETVAL(1);
3530 }
3531
3532 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3533 {
3534 u8 __iomem *base = get_hwbase(dev);
3535 int i;
3536 u32 msixmap = 0;
3537
3538 /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3539 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3540 * the remaining 8 interrupts.
3541 */
3542 for (i = 0; i < 8; i++) {
3543 if ((irqmask >> i) & 0x1) {
3544 msixmap |= vector << (i << 2);
3545 }
3546 }
3547 writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3548
3549 msixmap = 0;
3550 for (i = 0; i < 8; i++) {
3551 if ((irqmask >> (i + 8)) & 0x1) {
3552 msixmap |= vector << (i << 2);
3553 }
3554 }
3555 writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3556 }
3557
3558 static int nv_request_irq(struct net_device *dev, int intr_test)
3559 {
3560 struct fe_priv *np = get_nvpriv(dev);
3561 u8 __iomem *base = get_hwbase(dev);
3562 int ret = 1;
3563 int i;
3564 irqreturn_t (*handler)(int foo, void *data);
3565
3566 if (intr_test) {
3567 handler = nv_nic_irq_test;
3568 } else {
3569 if (nv_optimized(np))
3570 handler = nv_nic_irq_optimized;
3571 else
3572 handler = nv_nic_irq;
3573 }
3574
3575 if (np->msi_flags & NV_MSI_X_CAPABLE) {
3576 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3577 np->msi_x_entry[i].entry = i;
3578 }
3579 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
3580 np->msi_flags |= NV_MSI_X_ENABLED;
3581 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
3582 /* Request irq for rx handling */
3583 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
3584 printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
3585 pci_disable_msix(np->pci_dev);
3586 np->msi_flags &= ~NV_MSI_X_ENABLED;
3587 goto out_err;
3588 }
3589 /* Request irq for tx handling */
3590 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
3591 printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
3592 pci_disable_msix(np->pci_dev);
3593 np->msi_flags &= ~NV_MSI_X_ENABLED;
3594 goto out_free_rx;
3595 }
3596 /* Request irq for link and timer handling */
3597 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
3598 printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
3599 pci_disable_msix(np->pci_dev);
3600 np->msi_flags &= ~NV_MSI_X_ENABLED;
3601 goto out_free_tx;
3602 }
3603 /* map interrupts to their respective vector */
3604 writel(0, base + NvRegMSIXMap0);
3605 writel(0, base + NvRegMSIXMap1);
3606 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
3607 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
3608 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
3609 } else {
3610 /* Request irq for all interrupts */
3611 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
3612 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3613 pci_disable_msix(np->pci_dev);
3614 np->msi_flags &= ~NV_MSI_X_ENABLED;
3615 goto out_err;
3616 }
3617
3618 /* map interrupts to vector 0 */
3619 writel(0, base + NvRegMSIXMap0);
3620 writel(0, base + NvRegMSIXMap1);
3621 }
3622 }
3623 }
3624 if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
3625 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
3626 np->msi_flags |= NV_MSI_ENABLED;
3627 dev->irq = np->pci_dev->irq;
3628 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
3629 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3630 pci_disable_msi(np->pci_dev);
3631 np->msi_flags &= ~NV_MSI_ENABLED;
3632 dev->irq = np->pci_dev->irq;
3633 goto out_err;
3634 }
3635
3636 /* map interrupts to vector 0 */
3637 writel(0, base + NvRegMSIMap0);
3638 writel(0, base + NvRegMSIMap1);
3639 /* enable msi vector 0 */
3640 writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3641 }
3642 }
3643 if (ret != 0) {
3644 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
3645 goto out_err;
3646
3647 }
3648
3649 return 0;
3650 out_free_tx:
3651 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
3652 out_free_rx:
3653 free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
3654 out_err:
3655 return 1;
3656 }
3657
3658 static void nv_free_irq(struct net_device *dev)
3659 {
3660 struct fe_priv *np = get_nvpriv(dev);
3661 int i;
3662
3663 if (np->msi_flags & NV_MSI_X_ENABLED) {
3664 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3665 free_irq(np->msi_x_entry[i].vector, dev);
3666 }
3667 pci_disable_msix(np->pci_dev);
3668 np->msi_flags &= ~NV_MSI_X_ENABLED;
3669 } else {
3670 free_irq(np->pci_dev->irq, dev);
3671 if (np->msi_flags & NV_MSI_ENABLED) {
3672 pci_disable_msi(np->pci_dev);
3673 np->msi_flags &= ~NV_MSI_ENABLED;
3674 }
3675 }
3676 }
3677
3678 static void nv_do_nic_poll(unsigned long data)
3679 {
3680 struct net_device *dev = (struct net_device *) data;
3681 struct fe_priv *np = netdev_priv(dev);
3682 u8 __iomem *base = get_hwbase(dev);
3683 u32 mask = 0;
3684
3685 /*
3686 * First disable irq(s) and then
3687 * reenable interrupts on the nic, we have to do this before calling
3688 * nv_nic_irq because that may decide to do otherwise
3689 */
3690
3691 if (!using_multi_irqs(dev)) {
3692 if (np->msi_flags & NV_MSI_X_ENABLED)
3693 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
3694 else
3695 disable_irq_lockdep(np->pci_dev->irq);
3696 mask = np->irqmask;
3697 } else {
3698 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
3699 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
3700 mask |= NVREG_IRQ_RX_ALL;
3701 }
3702 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
3703 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
3704 mask |= NVREG_IRQ_TX_ALL;
3705 }
3706 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
3707 disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
3708 mask |= NVREG_IRQ_OTHER;
3709 }
3710 }
3711 np->nic_poll_irq = 0;
3712
3713 /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
3714
3715 if (np->recover_error) {
3716 np->recover_error = 0;
3717 printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
3718 if (netif_running(dev)) {
3719 netif_tx_lock_bh(dev);
3720 spin_lock(&np->lock);
3721 /* stop engines */
3722 nv_stop_rxtx(dev);
3723 nv_txrx_reset(dev);
3724 /* drain rx queue */
3725 nv_drain_rxtx(dev);
3726 /* reinit driver view of the rx queue */
3727 set_bufsize(dev);
3728 if (nv_init_ring(dev)) {
3729 if (!np->in_shutdown)
3730 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3731 }
3732 /* reinit nic view of the rx queue */
3733 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3734 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3735 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3736 base + NvRegRingSizes);
3737 pci_push(base);
3738 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3739 pci_push(base);
3740
3741 /* restart rx engine */
3742 nv_start_rxtx(dev);
3743 spin_unlock(&np->lock);
3744 netif_tx_unlock_bh(dev);
3745 }
3746 }
3747
3748
3749 writel(mask, base + NvRegIrqMask);
3750 pci_push(base);
3751
3752 if (!using_multi_irqs(dev)) {
3753 if (nv_optimized(np))
3754 nv_nic_irq_optimized(0, dev);
3755 else
3756 nv_nic_irq(0, dev);
3757 if (np->msi_flags & NV_MSI_X_ENABLED)
3758 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
3759 else
3760 enable_irq_lockdep(np->pci_dev->irq);
3761 } else {
3762 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
3763 nv_nic_irq_rx(0, dev);
3764 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
3765 }
3766 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
3767 nv_nic_irq_tx(0, dev);
3768 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
3769 }
3770 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
3771 nv_nic_irq_other(0, dev);
3772 enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
3773 }
3774 }
3775 }
3776
3777 #ifdef CONFIG_NET_POLL_CONTROLLER
3778 static void nv_poll_controller(struct net_device *dev)
3779 {
3780 nv_do_nic_poll((unsigned long) dev);
3781 }
3782 #endif
3783
3784 static void nv_do_stats_poll(unsigned long data)
3785 {
3786 struct net_device *dev = (struct net_device *) data;
3787 struct fe_priv *np = netdev_priv(dev);
3788
3789 nv_get_hw_stats(dev);
3790
3791 if (!np->in_shutdown)
3792 mod_timer(&np->stats_poll,
3793 round_jiffies(jiffies + STATS_INTERVAL));
3794 }
3795
3796 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3797 {
3798 struct fe_priv *np = netdev_priv(dev);
3799 strcpy(info->driver, DRV_NAME);
3800 strcpy(info->version, FORCEDETH_VERSION);
3801 strcpy(info->bus_info, pci_name(np->pci_dev));
3802 }
3803
3804 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3805 {
3806 struct fe_priv *np = netdev_priv(dev);
3807 wolinfo->supported = WAKE_MAGIC;
3808
3809 spin_lock_irq(&np->lock);
3810 if (np->wolenabled)
3811 wolinfo->wolopts = WAKE_MAGIC;
3812 spin_unlock_irq(&np->lock);
3813 }
3814
3815 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3816 {
3817 struct fe_priv *np = netdev_priv(dev);
3818 u8 __iomem *base = get_hwbase(dev);
3819 u32 flags = 0;
3820
3821 if (wolinfo->wolopts == 0) {
3822 np->wolenabled = 0;
3823 } else if (wolinfo->wolopts & WAKE_MAGIC) {
3824 np->wolenabled = 1;
3825 flags = NVREG_WAKEUPFLAGS_ENABLE;
3826 }
3827 if (netif_running(dev)) {
3828 spin_lock_irq(&np->lock);
3829 writel(flags, base + NvRegWakeUpFlags);
3830 spin_unlock_irq(&np->lock);
3831 }
3832 return 0;
3833 }
3834
3835 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3836 {
3837 struct fe_priv *np = netdev_priv(dev);
3838 int adv;
3839
3840 spin_lock_irq(&np->lock);
3841 ecmd->port = PORT_MII;
3842 if (!netif_running(dev)) {
3843 /* We do not track link speed / duplex setting if the
3844 * interface is disabled. Force a link check */
3845 if (nv_update_linkspeed(dev)) {
3846 if (!netif_carrier_ok(dev))
3847 netif_carrier_on(dev);
3848 } else {
3849 if (netif_carrier_ok(dev))
3850 netif_carrier_off(dev);
3851 }
3852 }
3853
3854 if (netif_carrier_ok(dev)) {
3855 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
3856 case NVREG_LINKSPEED_10:
3857 ecmd->speed = SPEED_10;
3858 break;
3859 case NVREG_LINKSPEED_100:
3860 ecmd->speed = SPEED_100;
3861 break;
3862 case NVREG_LINKSPEED_1000:
3863 ecmd->speed = SPEED_1000;
3864 break;
3865 }
3866 ecmd->duplex = DUPLEX_HALF;
3867 if (np->duplex)
3868 ecmd->duplex = DUPLEX_FULL;
3869 } else {
3870 ecmd->speed = -1;
3871 ecmd->duplex = -1;
3872 }
3873
3874 ecmd->autoneg = np->autoneg;
3875
3876 ecmd->advertising = ADVERTISED_MII;
3877 if (np->autoneg) {
3878 ecmd->advertising |= ADVERTISED_Autoneg;
3879 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3880 if (adv & ADVERTISE_10HALF)
3881 ecmd->advertising |= ADVERTISED_10baseT_Half;
3882 if (adv & ADVERTISE_10FULL)
3883 ecmd->advertising |= ADVERTISED_10baseT_Full;
3884 if (adv & ADVERTISE_100HALF)
3885 ecmd->advertising |= ADVERTISED_100baseT_Half;
3886 if (adv & ADVERTISE_100FULL)
3887 ecmd->advertising |= ADVERTISED_100baseT_Full;
3888 if (np->gigabit == PHY_GIGABIT) {
3889 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3890 if (adv & ADVERTISE_1000FULL)
3891 ecmd->advertising |= ADVERTISED_1000baseT_Full;
3892 }
3893 }
3894 ecmd->supported = (SUPPORTED_Autoneg |
3895 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
3896 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
3897 SUPPORTED_MII);
3898 if (np->gigabit == PHY_GIGABIT)
3899 ecmd->supported |= SUPPORTED_1000baseT_Full;
3900
3901 ecmd->phy_address = np->phyaddr;
3902 ecmd->transceiver = XCVR_EXTERNAL;
3903
3904 /* ignore maxtxpkt, maxrxpkt for now */
3905 spin_unlock_irq(&np->lock);
3906 return 0;
3907 }
3908
3909 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3910 {
3911 struct fe_priv *np = netdev_priv(dev);
3912
3913 if (ecmd->port != PORT_MII)
3914 return -EINVAL;
3915 if (ecmd->transceiver != XCVR_EXTERNAL)
3916 return -EINVAL;
3917 if (ecmd->phy_address != np->phyaddr) {
3918 /* TODO: support switching between multiple phys. Should be
3919 * trivial, but not enabled due to lack of test hardware. */
3920 return -EINVAL;
3921 }
3922 if (ecmd->autoneg == AUTONEG_ENABLE) {
3923 u32 mask;
3924
3925 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
3926 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
3927 if (np->gigabit == PHY_GIGABIT)
3928 mask |= ADVERTISED_1000baseT_Full;
3929
3930 if ((ecmd->advertising & mask) == 0)
3931 return -EINVAL;
3932
3933 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
3934 /* Note: autonegotiation disable, speed 1000 intentionally
3935 * forbidden - noone should need that. */
3936
3937 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
3938 return -EINVAL;
3939 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
3940 return -EINVAL;
3941 } else {
3942 return -EINVAL;
3943 }
3944
3945 netif_carrier_off(dev);
3946 if (netif_running(dev)) {
3947 nv_disable_irq(dev);
3948 netif_tx_lock_bh(dev);
3949 spin_lock(&np->lock);
3950 /* stop engines */
3951 nv_stop_rxtx(dev);
3952 spin_unlock(&np->lock);
3953 netif_tx_unlock_bh(dev);
3954 }
3955
3956 if (ecmd->autoneg == AUTONEG_ENABLE) {
3957 int adv, bmcr;
3958
3959 np->autoneg = 1;
3960
3961 /* advertise only what has been requested */
3962 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3963 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3964 if (ecmd->advertising & ADVERTISED_10baseT_Half)
3965 adv |= ADVERTISE_10HALF;
3966 if (ecmd->advertising & ADVERTISED_10baseT_Full)
3967 adv |= ADVERTISE_10FULL;
3968 if (ecmd->advertising & ADVERTISED_100baseT_Half)
3969 adv |= ADVERTISE_100HALF;
3970 if (ecmd->advertising & ADVERTISED_100baseT_Full)
3971 adv |= ADVERTISE_100FULL;
3972 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
3973 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3974 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3975 adv |= ADVERTISE_PAUSE_ASYM;
3976 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3977
3978 if (np->gigabit == PHY_GIGABIT) {
3979 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3980 adv &= ~ADVERTISE_1000FULL;
3981 if (ecmd->advertising & ADVERTISED_1000baseT_Full)
3982 adv |= ADVERTISE_1000FULL;
3983 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3984 }
3985
3986 if (netif_running(dev))
3987 printk(KERN_INFO "%s: link down.\n", dev->name);
3988 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3989 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
3990 bmcr |= BMCR_ANENABLE;
3991 /* reset the phy in order for settings to stick,
3992 * and cause autoneg to start */
3993 if (phy_reset(dev, bmcr)) {
3994 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3995 return -EINVAL;
3996 }
3997 } else {
3998 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3999 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4000 }
4001 } else {
4002 int adv, bmcr;
4003
4004 np->autoneg = 0;
4005
4006 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4007 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4008 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
4009 adv |= ADVERTISE_10HALF;
4010 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
4011 adv |= ADVERTISE_10FULL;
4012 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
4013 adv |= ADVERTISE_100HALF;
4014 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
4015 adv |= ADVERTISE_100FULL;
4016 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4017 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
4018 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4019 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4020 }
4021 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
4022 adv |= ADVERTISE_PAUSE_ASYM;
4023 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4024 }
4025 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4026 np->fixed_mode = adv;
4027
4028 if (np->gigabit == PHY_GIGABIT) {
4029 adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
4030 adv &= ~ADVERTISE_1000FULL;
4031 mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
4032 }
4033
4034 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4035 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
4036 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
4037 bmcr |= BMCR_FULLDPLX;
4038 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
4039 bmcr |= BMCR_SPEED100;
4040 if (np->phy_oui == PHY_OUI_MARVELL) {
4041 /* reset the phy in order for forced mode settings to stick */
4042 if (phy_reset(dev, bmcr)) {
4043 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4044 return -EINVAL;
4045 }
4046 } else {
4047 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4048 if (netif_running(dev)) {
4049 /* Wait a bit and then reconfigure the nic. */
4050 udelay(10);
4051 nv_linkchange(dev);
4052 }
4053 }
4054 }
4055
4056 if (netif_running(dev)) {
4057 nv_start_rxtx(dev);
4058 nv_enable_irq(dev);
4059 }
4060
4061 return 0;
4062 }
4063
4064 #define FORCEDETH_REGS_VER 1
4065
4066 static int nv_get_regs_len(struct net_device *dev)
4067 {
4068 struct fe_priv *np = netdev_priv(dev);
4069 return np->register_size;
4070 }
4071
4072 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
4073 {
4074 struct fe_priv *np = netdev_priv(dev);
4075 u8 __iomem *base = get_hwbase(dev);
4076 u32 *rbuf = buf;
4077 int i;
4078
4079 regs->version = FORCEDETH_REGS_VER;
4080 spin_lock_irq(&np->lock);
4081 for (i = 0;i <= np->register_size/sizeof(u32); i++)
4082 rbuf[i] = readl(base + i*sizeof(u32));
4083 spin_unlock_irq(&np->lock);
4084 }
4085
4086 static int nv_nway_reset(struct net_device *dev)
4087 {
4088 struct fe_priv *np = netdev_priv(dev);
4089 int ret;
4090
4091 if (np->autoneg) {
4092 int bmcr;
4093
4094 netif_carrier_off(dev);
4095 if (netif_running(dev)) {
4096 nv_disable_irq(dev);
4097 netif_tx_lock_bh(dev);
4098 spin_lock(&np->lock);
4099 /* stop engines */
4100 nv_stop_rxtx(dev);
4101 spin_unlock(&np->lock);
4102 netif_tx_unlock_bh(dev);
4103 printk(KERN_INFO "%s: link down.\n", dev->name);
4104 }
4105
4106 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4107 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
4108 bmcr |= BMCR_ANENABLE;
4109 /* reset the phy in order for settings to stick*/
4110 if (phy_reset(dev, bmcr)) {
4111 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
4112 return -EINVAL;
4113 }
4114 } else {
4115 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4116 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4117 }
4118
4119 if (netif_running(dev)) {
4120 nv_start_rxtx(dev);
4121 nv_enable_irq(dev);
4122 }
4123 ret = 0;
4124 } else {
4125 ret = -EINVAL;
4126 }
4127
4128 return ret;
4129 }
4130
4131 static int nv_set_tso(struct net_device *dev, u32 value)
4132 {
4133 struct fe_priv *np = netdev_priv(dev);
4134
4135 if ((np->driver_data & DEV_HAS_CHECKSUM))
4136 return ethtool_op_set_tso(dev, value);
4137 else
4138 return -EOPNOTSUPP;
4139 }
4140
4141 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4142 {
4143 struct fe_priv *np = netdev_priv(dev);
4144
4145 ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4146 ring->rx_mini_max_pending = 0;
4147 ring->rx_jumbo_max_pending = 0;
4148 ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4149
4150 ring->rx_pending = np->rx_ring_size;
4151 ring->rx_mini_pending = 0;
4152 ring->rx_jumbo_pending = 0;
4153 ring->tx_pending = np->tx_ring_size;
4154 }
4155
4156 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4157 {
4158 struct fe_priv *np = netdev_priv(dev);
4159 u8 __iomem *base = get_hwbase(dev);
4160 u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
4161 dma_addr_t ring_addr;
4162
4163 if (ring->rx_pending < RX_RING_MIN ||
4164 ring->tx_pending < TX_RING_MIN ||
4165 ring->rx_mini_pending != 0 ||
4166 ring->rx_jumbo_pending != 0 ||
4167 (np->desc_ver == DESC_VER_1 &&
4168 (ring->rx_pending > RING_MAX_DESC_VER_1 ||
4169 ring->tx_pending > RING_MAX_DESC_VER_1)) ||
4170 (np->desc_ver != DESC_VER_1 &&
4171 (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
4172 ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
4173 return -EINVAL;
4174 }
4175
4176 /* allocate new rings */
4177 if (!nv_optimized(np)) {
4178 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4179 sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4180 &ring_addr);
4181 } else {
4182 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4183 sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4184 &ring_addr);
4185 }
4186 rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
4187 tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
4188 if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
4189 /* fall back to old rings */
4190 if (!nv_optimized(np)) {
4191 if (rxtx_ring)
4192 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4193 rxtx_ring, ring_addr);
4194 } else {
4195 if (rxtx_ring)
4196 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4197 rxtx_ring, ring_addr);
4198 }
4199 if (rx_skbuff)
4200 kfree(rx_skbuff);
4201 if (tx_skbuff)
4202 kfree(tx_skbuff);
4203 goto exit;
4204 }
4205
4206 if (netif_running(dev)) {
4207 nv_disable_irq(dev);
4208 netif_tx_lock_bh(dev);
4209 spin_lock(&np->lock);
4210 /* stop engines */
4211 nv_stop_rxtx(dev);
4212 nv_txrx_reset(dev);
4213 /* drain queues */
4214 nv_drain_rxtx(dev);
4215 /* delete queues */
4216 free_rings(dev);
4217 }
4218
4219 /* set new values */
4220 np->rx_ring_size = ring->rx_pending;
4221 np->tx_ring_size = ring->tx_pending;
4222
4223 if (!nv_optimized(np)) {
4224 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
4225 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4226 } else {
4227 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
4228 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4229 }
4230 np->rx_skb = (struct nv_skb_map*)rx_skbuff;
4231 np->tx_skb = (struct nv_skb_map*)tx_skbuff;
4232 np->ring_addr = ring_addr;
4233
4234 memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4235 memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4236
4237 if (netif_running(dev)) {
4238 /* reinit driver view of the queues */
4239 set_bufsize(dev);
4240 if (nv_init_ring(dev)) {
4241 if (!np->in_shutdown)
4242 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4243 }
4244
4245 /* reinit nic view of the queues */
4246 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4247 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4248 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4249 base + NvRegRingSizes);
4250 pci_push(base);
4251 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4252 pci_push(base);
4253
4254 /* restart engines */
4255 nv_start_rxtx(dev);
4256 spin_unlock(&np->lock);
4257 netif_tx_unlock_bh(dev);
4258 nv_enable_irq(dev);
4259 }
4260 return 0;
4261 exit:
4262 return -ENOMEM;
4263 }
4264
4265 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4266 {
4267 struct fe_priv *np = netdev_priv(dev);
4268
4269 pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4270 pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4271 pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4272 }
4273
4274 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4275 {
4276 struct fe_priv *np = netdev_priv(dev);
4277 int adv, bmcr;
4278
4279 if ((!np->autoneg && np->duplex == 0) ||
4280 (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4281 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
4282 dev->name);
4283 return -EINVAL;
4284 }
4285 if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4286 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
4287 return -EINVAL;
4288 }
4289
4290 netif_carrier_off(dev);
4291 if (netif_running(dev)) {
4292 nv_disable_irq(dev);
4293 netif_tx_lock_bh(dev);
4294 spin_lock(&np->lock);
4295 /* stop engines */
4296 nv_stop_rxtx(dev);
4297 spin_unlock(&np->lock);
4298 netif_tx_unlock_bh(dev);
4299 }
4300
4301 np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4302 if (pause->rx_pause)
4303 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4304 if (pause->tx_pause)
4305 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4306
4307 if (np->autoneg && pause->autoneg) {
4308 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4309
4310 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4311 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4312 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4313 adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4314 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4315 adv |= ADVERTISE_PAUSE_ASYM;
4316 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4317
4318 if (netif_running(dev))
4319 printk(KERN_INFO "%s: link down.\n", dev->name);
4320 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4321 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4322 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4323 } else {
4324 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4325 if (pause->rx_pause)
4326 np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4327 if (pause->tx_pause)
4328 np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4329
4330 if (!netif_running(dev))
4331 nv_update_linkspeed(dev);
4332 else
4333 nv_update_pause(dev, np->pause_flags);
4334 }
4335
4336 if (netif_running(dev)) {
4337 nv_start_rxtx(dev);
4338 nv_enable_irq(dev);
4339 }
4340 return 0;
4341 }
4342
4343 static u32 nv_get_rx_csum(struct net_device *dev)
4344 {
4345 struct fe_priv *np = netdev_priv(dev);
4346 return (np->rx_csum) != 0;
4347 }
4348
4349 static int nv_set_rx_csum(struct net_device *dev, u32 data)
4350 {
4351 struct fe_priv *np = netdev_priv(dev);
4352 u8 __iomem *base = get_hwbase(dev);
4353 int retcode = 0;
4354
4355 if (np->driver_data & DEV_HAS_CHECKSUM) {
4356 if (data) {
4357 np->rx_csum = 1;
4358 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4359 } else {
4360 np->rx_csum = 0;
4361 /* vlan is dependent on rx checksum offload */
4362 if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
4363 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4364 }
4365 if (netif_running(dev)) {
4366 spin_lock_irq(&np->lock);
4367 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4368 spin_unlock_irq(&np->lock);
4369 }
4370 } else {
4371 return -EINVAL;
4372 }
4373
4374 return retcode;
4375 }
4376
4377 static int nv_set_tx_csum(struct net_device *dev, u32 data)
4378 {
4379 struct fe_priv *np = netdev_priv(dev);
4380
4381 if (np->driver_data & DEV_HAS_CHECKSUM)
4382 return ethtool_op_set_tx_hw_csum(dev, data);
4383 else
4384 return -EOPNOTSUPP;
4385 }
4386
4387 static int nv_set_sg(struct net_device *dev, u32 data)
4388 {
4389 struct fe_priv *np = netdev_priv(dev);
4390
4391 if (np->driver_data & DEV_HAS_CHECKSUM)
4392 return ethtool_op_set_sg(dev, data);
4393 else
4394 return -EOPNOTSUPP;
4395 }
4396
4397 static int nv_get_sset_count(struct net_device *dev, int sset)
4398 {
4399 struct fe_priv *np = netdev_priv(dev);
4400
4401 switch (sset) {
4402 case ETH_SS_TEST:
4403 if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4404 return NV_TEST_COUNT_EXTENDED;
4405 else
4406 return NV_TEST_COUNT_BASE;
4407 case ETH_SS_STATS:
4408 if (np->driver_data & DEV_HAS_STATISTICS_V1)
4409 return NV_DEV_STATISTICS_V1_COUNT;
4410 else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4411 return NV_DEV_STATISTICS_V2_COUNT;
4412 else
4413 return 0;
4414 default:
4415 return -EOPNOTSUPP;
4416 }
4417 }
4418
4419 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
4420 {
4421 struct fe_priv *np = netdev_priv(dev);
4422
4423 /* update stats */
4424 nv_do_stats_poll((unsigned long)dev);
4425
4426 memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
4427 }
4428
4429 static int nv_link_test(struct net_device *dev)
4430 {
4431 struct fe_priv *np = netdev_priv(dev);
4432 int mii_status;
4433
4434 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4435 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4436
4437 /* check phy link status */
4438 if (!(mii_status & BMSR_LSTATUS))
4439 return 0;
4440 else
4441 return 1;
4442 }
4443
4444 static int nv_register_test(struct net_device *dev)
4445 {
4446 u8 __iomem *base = get_hwbase(dev);
4447 int i = 0;
4448 u32 orig_read, new_read;
4449
4450 do {
4451 orig_read = readl(base + nv_registers_test[i].reg);
4452
4453 /* xor with mask to toggle bits */
4454 orig_read ^= nv_registers_test[i].mask;
4455
4456 writel(orig_read, base + nv_registers_test[i].reg);
4457
4458 new_read = readl(base + nv_registers_test[i].reg);
4459
4460 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
4461 return 0;
4462
4463 /* restore original value */
4464 orig_read ^= nv_registers_test[i].mask;
4465 writel(orig_read, base + nv_registers_test[i].reg);
4466
4467 } while (nv_registers_test[++i].reg != 0);
4468
4469 return 1;
4470 }
4471
4472 static int nv_interrupt_test(struct net_device *dev)
4473 {
4474 struct fe_priv *np = netdev_priv(dev);
4475 u8 __iomem *base = get_hwbase(dev);
4476 int ret = 1;
4477 int testcnt;
4478 u32 save_msi_flags, save_poll_interval = 0;
4479
4480 if (netif_running(dev)) {
4481 /* free current irq */
4482 nv_free_irq(dev);
4483 save_poll_interval = readl(base+NvRegPollingInterval);
4484 }
4485
4486 /* flag to test interrupt handler */
4487 np->intr_test = 0;
4488
4489 /* setup test irq */
4490 save_msi_flags = np->msi_flags;
4491 np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
4492 np->msi_flags |= 0x001; /* setup 1 vector */
4493 if (nv_request_irq(dev, 1))
4494 return 0;
4495
4496 /* setup timer interrupt */
4497 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4498 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4499
4500 nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4501
4502 /* wait for at least one interrupt */
4503 msleep(100);
4504
4505 spin_lock_irq(&np->lock);
4506
4507 /* flag should be set within ISR */
4508 testcnt = np->intr_test;
4509 if (!testcnt)
4510 ret = 2;
4511
4512 nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4513 if (!(np->msi_flags & NV_MSI_X_ENABLED))
4514 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4515 else
4516 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4517
4518 spin_unlock_irq(&np->lock);
4519
4520 nv_free_irq(dev);
4521
4522 np->msi_flags = save_msi_flags;
4523
4524 if (netif_running(dev)) {
4525 writel(save_poll_interval, base + NvRegPollingInterval);
4526 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4527 /* restore original irq */
4528 if (nv_request_irq(dev, 0))
4529 return 0;
4530 }
4531
4532 return ret;
4533 }
4534
4535 static int nv_loopback_test(struct net_device *dev)
4536 {
4537 struct fe_priv *np = netdev_priv(dev);
4538 u8 __iomem *base = get_hwbase(dev);
4539 struct sk_buff *tx_skb, *rx_skb;
4540 dma_addr_t test_dma_addr;
4541 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
4542 u32 flags;
4543 int len, i, pkt_len;
4544 u8 *pkt_data;
4545 u32 filter_flags = 0;
4546 u32 misc1_flags = 0;
4547 int ret = 1;
4548
4549 if (netif_running(dev)) {
4550 nv_disable_irq(dev);
4551 filter_flags = readl(base + NvRegPacketFilterFlags);
4552 misc1_flags = readl(base + NvRegMisc1);
4553 } else {
4554 nv_txrx_reset(dev);
4555 }
4556
4557 /* reinit driver view of the rx queue */
4558 set_bufsize(dev);
4559 nv_init_ring(dev);
4560
4561 /* setup hardware for loopback */
4562 writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
4563 writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
4564
4565 /* reinit nic view of the rx queue */
4566 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4567 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4568 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4569 base + NvRegRingSizes);
4570 pci_push(base);
4571
4572 /* restart rx engine */
4573 nv_start_rxtx(dev);
4574
4575 /* setup packet for tx */
4576 pkt_len = ETH_DATA_LEN;
4577 tx_skb = dev_alloc_skb(pkt_len);
4578 if (!tx_skb) {
4579 printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
4580 " of %s\n", dev->name);
4581 ret = 0;
4582 goto out;
4583 }
4584 test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
4585 skb_tailroom(tx_skb),
4586 PCI_DMA_FROMDEVICE);
4587 pkt_data = skb_put(tx_skb, pkt_len);
4588 for (i = 0; i < pkt_len; i++)
4589 pkt_data[i] = (u8)(i & 0xff);
4590
4591 if (!nv_optimized(np)) {
4592 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
4593 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4594 } else {
4595 np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
4596 np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
4597 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4598 }
4599 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4600 pci_push(get_hwbase(dev));
4601
4602 msleep(500);
4603
4604 /* check for rx of the packet */
4605 if (!nv_optimized(np)) {
4606 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
4607 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
4608
4609 } else {
4610 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
4611 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
4612 }
4613
4614 if (flags & NV_RX_AVAIL) {
4615 ret = 0;
4616 } else if (np->desc_ver == DESC_VER_1) {
4617 if (flags & NV_RX_ERROR)
4618 ret = 0;
4619 } else {
4620 if (flags & NV_RX2_ERROR) {
4621 ret = 0;
4622 }
4623 }
4624
4625 if (ret) {
4626 if (len != pkt_len) {
4627 ret = 0;
4628 dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
4629 dev->name, len, pkt_len);
4630 } else {
4631 rx_skb = np->rx_skb[0].skb;
4632 for (i = 0; i < pkt_len; i++) {
4633 if (rx_skb->data[i] != (u8)(i & 0xff)) {
4634 ret = 0;
4635 dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
4636 dev->name, i);
4637 break;
4638 }
4639 }
4640 }
4641 } else {
4642 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
4643 }
4644
4645 pci_unmap_page(np->pci_dev, test_dma_addr,
4646 (skb_end_pointer(tx_skb) - tx_skb->data),
4647 PCI_DMA_TODEVICE);
4648 dev_kfree_skb_any(tx_skb);
4649 out:
4650 /* stop engines */
4651 nv_stop_rxtx(dev);
4652 nv_txrx_reset(dev);
4653 /* drain rx queue */
4654 nv_drain_rxtx(dev);
4655
4656 if (netif_running(dev)) {
4657 writel(misc1_flags, base + NvRegMisc1);
4658 writel(filter_flags, base + NvRegPacketFilterFlags);
4659 nv_enable_irq(dev);
4660 }
4661
4662 return ret;
4663 }
4664
4665 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
4666 {
4667 struct fe_priv *np = netdev_priv(dev);
4668 u8 __iomem *base = get_hwbase(dev);
4669 int result;
4670 memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
4671
4672 if (!nv_link_test(dev)) {
4673 test->flags |= ETH_TEST_FL_FAILED;
4674 buffer[0] = 1;
4675 }
4676
4677 if (test->flags & ETH_TEST_FL_OFFLINE) {
4678 if (netif_running(dev)) {
4679 netif_stop_queue(dev);
4680 #ifdef CONFIG_FORCEDETH_NAPI
4681 napi_disable(&np->napi);
4682 #endif
4683 netif_tx_lock_bh(dev);
4684 spin_lock_irq(&np->lock);
4685 nv_disable_hw_interrupts(dev, np->irqmask);
4686 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
4687 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4688 } else {
4689 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4690 }
4691 /* stop engines */
4692 nv_stop_rxtx(dev);
4693 nv_txrx_reset(dev);
4694 /* drain rx queue */
4695 nv_drain_rxtx(dev);
4696 spin_unlock_irq(&np->lock);
4697 netif_tx_unlock_bh(dev);
4698 }
4699
4700 if (!nv_register_test(dev)) {
4701 test->flags |= ETH_TEST_FL_FAILED;
4702 buffer[1] = 1;
4703 }
4704
4705 result = nv_interrupt_test(dev);
4706 if (result != 1) {
4707 test->flags |= ETH_TEST_FL_FAILED;
4708 buffer[2] = 1;
4709 }
4710 if (result == 0) {
4711 /* bail out */
4712 return;
4713 }
4714
4715 if (!nv_loopback_test(dev)) {
4716 test->flags |= ETH_TEST_FL_FAILED;
4717 buffer[3] = 1;
4718 }
4719
4720 if (netif_running(dev)) {
4721 /* reinit driver view of the rx queue */
4722 set_bufsize(dev);
4723 if (nv_init_ring(dev)) {
4724 if (!np->in_shutdown)
4725 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4726 }
4727 /* reinit nic view of the rx queue */
4728 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4729 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4730 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4731 base + NvRegRingSizes);
4732 pci_push(base);
4733 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4734 pci_push(base);
4735 /* restart rx engine */
4736 nv_start_rxtx(dev);
4737 netif_start_queue(dev);
4738 #ifdef CONFIG_FORCEDETH_NAPI
4739 napi_enable(&np->napi);
4740 #endif
4741 nv_enable_hw_interrupts(dev, np->irqmask);
4742 }
4743 }
4744 }
4745
4746 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
4747 {
4748 switch (stringset) {
4749 case ETH_SS_STATS:
4750 memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
4751 break;
4752 case ETH_SS_TEST:
4753 memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
4754 break;
4755 }
4756 }
4757
4758 static const struct ethtool_ops ops = {
4759 .get_drvinfo = nv_get_drvinfo,
4760 .get_link = ethtool_op_get_link,
4761 .get_wol = nv_get_wol,
4762 .set_wol = nv_set_wol,
4763 .get_settings = nv_get_settings,
4764 .set_settings = nv_set_settings,
4765 .get_regs_len = nv_get_regs_len,
4766 .get_regs = nv_get_regs,
4767 .nway_reset = nv_nway_reset,
4768 .set_tso = nv_set_tso,
4769 .get_ringparam = nv_get_ringparam,
4770 .set_ringparam = nv_set_ringparam,
4771 .get_pauseparam = nv_get_pauseparam,
4772 .set_pauseparam = nv_set_pauseparam,
4773 .get_rx_csum = nv_get_rx_csum,
4774 .set_rx_csum = nv_set_rx_csum,
4775 .set_tx_csum = nv_set_tx_csum,
4776 .set_sg = nv_set_sg,
4777 .get_strings = nv_get_strings,
4778 .get_ethtool_stats = nv_get_ethtool_stats,
4779 .get_sset_count = nv_get_sset_count,
4780 .self_test = nv_self_test,
4781 };
4782
4783 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
4784 {
4785 struct fe_priv *np = get_nvpriv(dev);
4786
4787 spin_lock_irq(&np->lock);
4788
4789 /* save vlan group */
4790 np->vlangrp = grp;
4791
4792 if (grp) {
4793 /* enable vlan on MAC */
4794 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
4795 } else {
4796 /* disable vlan on MAC */
4797 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
4798 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
4799 }
4800
4801 writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4802
4803 spin_unlock_irq(&np->lock);
4804 }
4805
4806 /* The mgmt unit and driver use a semaphore to access the phy during init */
4807 static int nv_mgmt_acquire_sema(struct net_device *dev)
4808 {
4809 u8 __iomem *base = get_hwbase(dev);
4810 int i;
4811 u32 tx_ctrl, mgmt_sema;
4812
4813 for (i = 0; i < 10; i++) {
4814 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
4815 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
4816 break;
4817 msleep(500);
4818 }
4819
4820 if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
4821 return 0;
4822
4823 for (i = 0; i < 2; i++) {
4824 tx_ctrl = readl(base + NvRegTransmitterControl);
4825 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
4826 writel(tx_ctrl, base + NvRegTransmitterControl);
4827
4828 /* verify that semaphore was acquired */
4829 tx_ctrl = readl(base + NvRegTransmitterControl);
4830 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
4831 ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
4832 return 1;
4833 else
4834 udelay(50);
4835 }
4836
4837 return 0;
4838 }
4839
4840 static int nv_open(struct net_device *dev)
4841 {
4842 struct fe_priv *np = netdev_priv(dev);
4843 u8 __iomem *base = get_hwbase(dev);
4844 int ret = 1;
4845 int oom, i;
4846
4847 dprintk(KERN_DEBUG "nv_open: begin\n");
4848
4849 /* erase previous misconfiguration */
4850 if (np->driver_data & DEV_HAS_POWER_CNTRL)
4851 nv_mac_reset(dev);
4852 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4853 writel(0, base + NvRegMulticastAddrB);
4854 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
4855 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
4856 writel(0, base + NvRegPacketFilterFlags);
4857
4858 writel(0, base + NvRegTransmitterControl);
4859 writel(0, base + NvRegReceiverControl);
4860
4861 writel(0, base + NvRegAdapterControl);
4862
4863 if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
4864 writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
4865
4866 /* initialize descriptor rings */
4867 set_bufsize(dev);
4868 oom = nv_init_ring(dev);
4869
4870 writel(0, base + NvRegLinkSpeed);
4871 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
4872 nv_txrx_reset(dev);
4873 writel(0, base + NvRegUnknownSetupReg6);
4874
4875 np->in_shutdown = 0;
4876
4877 /* give hw rings */
4878 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4879 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4880 base + NvRegRingSizes);
4881
4882 writel(np->linkspeed, base + NvRegLinkSpeed);
4883 if (np->desc_ver == DESC_VER_1)
4884 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
4885 else
4886 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
4887 writel(np->txrxctl_bits, base + NvRegTxRxControl);
4888 writel(np->vlanctl_bits, base + NvRegVlanControl);
4889 pci_push(base);
4890 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
4891 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
4892 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
4893 KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
4894
4895 writel(0, base + NvRegMIIMask);
4896 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4897 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
4898
4899 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
4900 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
4901 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
4902 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4903
4904 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
4905 get_random_bytes(&i, sizeof(i));
4906 writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
4907 writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
4908 writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
4909 if (poll_interval == -1) {
4910 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
4911 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
4912 else
4913 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4914 }
4915 else
4916 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
4917 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4918 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
4919 base + NvRegAdapterControl);
4920 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
4921 writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
4922 if (np->wolenabled)
4923 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
4924
4925 i = readl(base + NvRegPowerState);
4926 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
4927 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
4928
4929 pci_push(base);
4930 udelay(10);
4931 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
4932
4933 nv_disable_hw_interrupts(dev, np->irqmask);
4934 pci_push(base);
4935 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
4936 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4937 pci_push(base);
4938
4939 if (nv_request_irq(dev, 0)) {
4940 goto out_drain;
4941 }
4942
4943 /* ask for interrupts */
4944 nv_enable_hw_interrupts(dev, np->irqmask);
4945
4946 spin_lock_irq(&np->lock);
4947 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4948 writel(0, base + NvRegMulticastAddrB);
4949 writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
4950 writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
4951 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
4952 /* One manual link speed update: Interrupts are enabled, future link
4953 * speed changes cause interrupts and are handled by nv_link_irq().
4954 */
4955 {
4956 u32 miistat;
4957 miistat = readl(base + NvRegMIIStatus);
4958 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
4959 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
4960 }
4961 /* set linkspeed to invalid value, thus force nv_update_linkspeed
4962 * to init hw */
4963 np->linkspeed = 0;
4964 ret = nv_update_linkspeed(dev);
4965 nv_start_rxtx(dev);
4966 netif_start_queue(dev);
4967 #ifdef CONFIG_FORCEDETH_NAPI
4968 napi_enable(&np->napi);
4969 #endif
4970
4971 if (ret) {
4972 netif_carrier_on(dev);
4973 } else {
4974 printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
4975 netif_carrier_off(dev);
4976 }
4977 if (oom)
4978 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4979
4980 /* start statistics timer */
4981 if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
4982 mod_timer(&np->stats_poll,
4983 round_jiffies(jiffies + STATS_INTERVAL));
4984
4985 spin_unlock_irq(&np->lock);
4986
4987 return 0;
4988 out_drain:
4989 nv_drain_rxtx(dev);
4990 return ret;
4991 }
4992
4993 static int nv_close(struct net_device *dev)
4994 {
4995 struct fe_priv *np = netdev_priv(dev);
4996 u8 __iomem *base;
4997
4998 spin_lock_irq(&np->lock);
4999 np->in_shutdown = 1;
5000 spin_unlock_irq(&np->lock);
5001 #ifdef CONFIG_FORCEDETH_NAPI
5002 napi_disable(&np->napi);
5003 #endif
5004 synchronize_irq(np->pci_dev->irq);
5005
5006 del_timer_sync(&np->oom_kick);
5007 del_timer_sync(&np->nic_poll);
5008 del_timer_sync(&np->stats_poll);
5009
5010 netif_stop_queue(dev);
5011 spin_lock_irq(&np->lock);
5012 nv_stop_rxtx(dev);
5013 nv_txrx_reset(dev);
5014
5015 /* disable interrupts on the nic or we will lock up */
5016 base = get_hwbase(dev);
5017 nv_disable_hw_interrupts(dev, np->irqmask);
5018 pci_push(base);
5019 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
5020
5021 spin_unlock_irq(&np->lock);
5022
5023 nv_free_irq(dev);
5024
5025 nv_drain_rxtx(dev);
5026
5027 if (np->wolenabled) {
5028 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
5029 nv_start_rx(dev);
5030 }
5031
5032 /* FIXME: power down nic */
5033
5034 return 0;
5035 }
5036
5037 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
5038 {
5039 struct net_device *dev;
5040 struct fe_priv *np;
5041 unsigned long addr;
5042 u8 __iomem *base;
5043 int err, i;
5044 u32 powerstate, txreg;
5045 u32 phystate_orig = 0, phystate;
5046 int phyinitialized = 0;
5047 DECLARE_MAC_BUF(mac);
5048 static int printed_version;
5049
5050 if (!printed_version++)
5051 printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
5052 " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
5053
5054 dev = alloc_etherdev(sizeof(struct fe_priv));
5055 err = -ENOMEM;
5056 if (!dev)
5057 goto out;
5058
5059 np = netdev_priv(dev);
5060 np->dev = dev;
5061 np->pci_dev = pci_dev;
5062 spin_lock_init(&np->lock);
5063 SET_NETDEV_DEV(dev, &pci_dev->dev);
5064
5065 init_timer(&np->oom_kick);
5066 np->oom_kick.data = (unsigned long) dev;
5067 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
5068 init_timer(&np->nic_poll);
5069 np->nic_poll.data = (unsigned long) dev;
5070 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
5071 init_timer(&np->stats_poll);
5072 np->stats_poll.data = (unsigned long) dev;
5073 np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
5074
5075 err = pci_enable_device(pci_dev);
5076 if (err)
5077 goto out_free;
5078
5079 pci_set_master(pci_dev);
5080
5081 err = pci_request_regions(pci_dev, DRV_NAME);
5082 if (err < 0)
5083 goto out_disable;
5084
5085 if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
5086 np->register_size = NV_PCI_REGSZ_VER3;
5087 else if (id->driver_data & DEV_HAS_STATISTICS_V1)
5088 np->register_size = NV_PCI_REGSZ_VER2;
5089 else
5090 np->register_size = NV_PCI_REGSZ_VER1;
5091
5092 err = -EINVAL;
5093 addr = 0;
5094 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5095 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
5096 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
5097 pci_resource_len(pci_dev, i),
5098 pci_resource_flags(pci_dev, i));
5099 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
5100 pci_resource_len(pci_dev, i) >= np->register_size) {
5101 addr = pci_resource_start(pci_dev, i);
5102 break;
5103 }
5104 }
5105 if (i == DEVICE_COUNT_RESOURCE) {
5106 dev_printk(KERN_INFO, &pci_dev->dev,
5107 "Couldn't find register window\n");
5108 goto out_relreg;
5109 }
5110
5111 /* copy of driver data */
5112 np->driver_data = id->driver_data;
5113
5114 /* handle different descriptor versions */
5115 if (id->driver_data & DEV_HAS_HIGH_DMA) {
5116 /* packet format 3: supports 40-bit addressing */
5117 np->desc_ver = DESC_VER_3;
5118 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
5119 if (dma_64bit) {
5120 if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
5121 dev_printk(KERN_INFO, &pci_dev->dev,
5122 "64-bit DMA failed, using 32-bit addressing\n");
5123 else
5124 dev->features |= NETIF_F_HIGHDMA;
5125 if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
5126 dev_printk(KERN_INFO, &pci_dev->dev,
5127 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
5128 }
5129 }
5130 } else if (id->driver_data & DEV_HAS_LARGEDESC) {
5131 /* packet format 2: supports jumbo frames */
5132 np->desc_ver = DESC_VER_2;
5133 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
5134 } else {
5135 /* original packet format */
5136 np->desc_ver = DESC_VER_1;
5137 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
5138 }
5139
5140 np->pkt_limit = NV_PKTLIMIT_1;
5141 if (id->driver_data & DEV_HAS_LARGEDESC)
5142 np->pkt_limit = NV_PKTLIMIT_2;
5143
5144 if (id->driver_data & DEV_HAS_CHECKSUM) {
5145 np->rx_csum = 1;
5146 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
5147 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5148 dev->features |= NETIF_F_TSO;
5149 }
5150
5151 np->vlanctl_bits = 0;
5152 if (id->driver_data & DEV_HAS_VLAN) {
5153 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
5154 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
5155 dev->vlan_rx_register = nv_vlan_rx_register;
5156 }
5157
5158 np->msi_flags = 0;
5159 if ((id->driver_data & DEV_HAS_MSI) && msi) {
5160 np->msi_flags |= NV_MSI_CAPABLE;
5161 }
5162 if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
5163 np->msi_flags |= NV_MSI_X_CAPABLE;
5164 }
5165
5166 np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
5167 if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
5168 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
5169 (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
5170 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
5171 }
5172
5173
5174 err = -ENOMEM;
5175 np->base = ioremap(addr, np->register_size);
5176 if (!np->base)
5177 goto out_relreg;
5178 dev->base_addr = (unsigned long)np->base;
5179
5180 dev->irq = pci_dev->irq;
5181
5182 np->rx_ring_size = RX_RING_DEFAULT;
5183 np->tx_ring_size = TX_RING_DEFAULT;
5184
5185 if (!nv_optimized(np)) {
5186 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
5187 sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
5188 &np->ring_addr);
5189 if (!np->rx_ring.orig)
5190 goto out_unmap;
5191 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
5192 } else {
5193 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
5194 sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
5195 &np->ring_addr);
5196 if (!np->rx_ring.ex)
5197 goto out_unmap;
5198 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
5199 }
5200 np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5201 np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
5202 if (!np->rx_skb || !np->tx_skb)
5203 goto out_freering;
5204
5205 dev->open = nv_open;
5206 dev->stop = nv_close;
5207
5208 if (!nv_optimized(np))
5209 dev->hard_start_xmit = nv_start_xmit;
5210 else
5211 dev->hard_start_xmit = nv_start_xmit_optimized;
5212 dev->get_stats = nv_get_stats;
5213 dev->change_mtu = nv_change_mtu;
5214 dev->set_mac_address = nv_set_mac_address;
5215 dev->set_multicast_list = nv_set_multicast;
5216 #ifdef CONFIG_NET_POLL_CONTROLLER
5217 dev->poll_controller = nv_poll_controller;
5218 #endif
5219 #ifdef CONFIG_FORCEDETH_NAPI
5220 netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
5221 #endif
5222 SET_ETHTOOL_OPS(dev, &ops);
5223 dev->tx_timeout = nv_tx_timeout;
5224 dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
5225
5226 pci_set_drvdata(pci_dev, dev);
5227
5228 /* read the mac address */
5229 base = get_hwbase(dev);
5230 np->orig_mac[0] = readl(base + NvRegMacAddrA);
5231 np->orig_mac[1] = readl(base + NvRegMacAddrB);
5232
5233 /* check the workaround bit for correct mac address order */
5234 txreg = readl(base + NvRegTransmitPoll);
5235 if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
5236 /* mac address is already in correct order */
5237 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5238 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5239 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5240 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5241 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5242 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5243 } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
5244 /* mac address is already in correct order */
5245 dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
5246 dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
5247 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5248 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5249 dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
5250 dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
5251 /*
5252 * Set orig mac address back to the reversed version.
5253 * This flag will be cleared during low power transition.
5254 * Therefore, we should always put back the reversed address.
5255 */
5256 np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
5257 (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
5258 np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
5259 } else {
5260 /* need to reverse mac address to correct order */
5261 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
5262 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
5263 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
5264 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
5265 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
5266 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
5267 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5268 }
5269 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5270
5271 if (!is_valid_ether_addr(dev->perm_addr)) {
5272 /*
5273 * Bad mac address. At least one bios sets the mac address
5274 * to 01:23:45:67:89:ab
5275 */
5276 dev_printk(KERN_ERR, &pci_dev->dev,
5277 "Invalid Mac address detected: %s\n",
5278 print_mac(mac, dev->dev_addr));
5279 dev_printk(KERN_ERR, &pci_dev->dev,
5280 "Please complain to your hardware vendor. Switching to a random MAC.\n");
5281 dev->dev_addr[0] = 0x00;
5282 dev->dev_addr[1] = 0x00;
5283 dev->dev_addr[2] = 0x6c;
5284 get_random_bytes(&dev->dev_addr[3], 3);
5285 }
5286
5287 dprintk(KERN_DEBUG "%s: MAC Address %s\n",
5288 pci_name(pci_dev), print_mac(mac, dev->dev_addr));
5289
5290 /* set mac address */
5291 nv_copy_mac_to_hw(dev);
5292
5293 /* disable WOL */
5294 writel(0, base + NvRegWakeUpFlags);
5295 np->wolenabled = 0;
5296
5297 if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5298
5299 /* take phy and nic out of low power mode */
5300 powerstate = readl(base + NvRegPowerState2);
5301 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5302 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
5303 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
5304 pci_dev->revision >= 0xA3)
5305 powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5306 writel(powerstate, base + NvRegPowerState2);
5307 }
5308
5309 if (np->desc_ver == DESC_VER_1) {
5310 np->tx_flags = NV_TX_VALID;
5311 } else {
5312 np->tx_flags = NV_TX2_VALID;
5313 }
5314 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
5315 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5316 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5317 np->msi_flags |= 0x0003;
5318 } else {
5319 np->irqmask = NVREG_IRQMASK_CPU;
5320 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5321 np->msi_flags |= 0x0001;
5322 }
5323
5324 if (id->driver_data & DEV_NEED_TIMERIRQ)
5325 np->irqmask |= NVREG_IRQ_TIMER;
5326 if (id->driver_data & DEV_NEED_LINKTIMER) {
5327 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
5328 np->need_linktimer = 1;
5329 np->link_timeout = jiffies + LINK_TIMEOUT;
5330 } else {
5331 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
5332 np->need_linktimer = 0;
5333 }
5334
5335 /* Limit the number of tx's outstanding for hw bug */
5336 if (id->driver_data & DEV_NEED_TX_LIMIT) {
5337 np->tx_limit = 1;
5338 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
5339 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
5340 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
5341 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
5342 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
5343 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
5344 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
5345 id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
5346 pci_dev->revision >= 0xA2)
5347 np->tx_limit = 0;
5348 }
5349
5350 /* clear phy state and temporarily halt phy interrupts */
5351 writel(0, base + NvRegMIIMask);
5352 phystate = readl(base + NvRegAdapterControl);
5353 if (phystate & NVREG_ADAPTCTL_RUNNING) {
5354 phystate_orig = 1;
5355 phystate &= ~NVREG_ADAPTCTL_RUNNING;
5356 writel(phystate, base + NvRegAdapterControl);
5357 }
5358 writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
5359
5360 if (id->driver_data & DEV_HAS_MGMT_UNIT) {
5361 /* management unit running on the mac? */
5362 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
5363 np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
5364 dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
5365 if (nv_mgmt_acquire_sema(dev)) {
5366 /* management unit setup the phy already? */
5367 if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
5368 NVREG_XMITCTL_SYNC_PHY_INIT) {
5369 /* phy is inited by mgmt unit */
5370 phyinitialized = 1;
5371 dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
5372 } else {
5373 /* we need to init the phy */
5374 }
5375 }
5376 }
5377 }
5378
5379 /* find a suitable phy */
5380 for (i = 1; i <= 32; i++) {
5381 int id1, id2;
5382 int phyaddr = i & 0x1F;
5383
5384 spin_lock_irq(&np->lock);
5385 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
5386 spin_unlock_irq(&np->lock);
5387 if (id1 < 0 || id1 == 0xffff)
5388 continue;
5389 spin_lock_irq(&np->lock);
5390 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
5391 spin_unlock_irq(&np->lock);
5392 if (id2 < 0 || id2 == 0xffff)
5393 continue;
5394
5395 np->phy_model = id2 & PHYID2_MODEL_MASK;
5396 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
5397 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
5398 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
5399 pci_name(pci_dev), id1, id2, phyaddr);
5400 np->phyaddr = phyaddr;
5401 np->phy_oui = id1 | id2;
5402 break;
5403 }
5404 if (i == 33) {
5405 dev_printk(KERN_INFO, &pci_dev->dev,
5406 "open: Could not find a valid PHY.\n");
5407 goto out_error;
5408 }
5409
5410 if (!phyinitialized) {
5411 /* reset it */
5412 phy_init(dev);
5413 } else {
5414 /* see if it is a gigabit phy */
5415 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
5416 if (mii_status & PHY_GIGABIT) {
5417 np->gigabit = PHY_GIGABIT;
5418 }
5419 }
5420
5421 /* set default link speed settings */
5422 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
5423 np->duplex = 0;
5424 np->autoneg = 1;
5425
5426 err = register_netdev(dev);
5427 if (err) {
5428 dev_printk(KERN_INFO, &pci_dev->dev,
5429 "unable to register netdev: %d\n", err);
5430 goto out_error;
5431 }
5432
5433 dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
5434 "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
5435 dev->name,
5436 np->phy_oui,
5437 np->phyaddr,
5438 dev->dev_addr[0],
5439 dev->dev_addr[1],
5440 dev->dev_addr[2],
5441 dev->dev_addr[3],
5442 dev->dev_addr[4],
5443 dev->dev_addr[5]);
5444
5445 dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
5446 dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
5447 dev->features & (NETIF_F_HW_CSUM | NETIF_F_SG) ?
5448 "csum " : "",
5449 dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
5450 "vlan " : "",
5451 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
5452 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
5453 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
5454 np->gigabit == PHY_GIGABIT ? "gbit " : "",
5455 np->need_linktimer ? "lnktim " : "",
5456 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
5457 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
5458 np->desc_ver);
5459
5460 return 0;
5461
5462 out_error:
5463 if (phystate_orig)
5464 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
5465 pci_set_drvdata(pci_dev, NULL);
5466 out_freering:
5467 free_rings(dev);
5468 out_unmap:
5469 iounmap(get_hwbase(dev));
5470 out_relreg:
5471 pci_release_regions(pci_dev);
5472 out_disable:
5473 pci_disable_device(pci_dev);
5474 out_free:
5475 free_netdev(dev);
5476 out:
5477 return err;
5478 }
5479
5480 static void __devexit nv_remove(struct pci_dev *pci_dev)
5481 {
5482 struct net_device *dev = pci_get_drvdata(pci_dev);
5483 struct fe_priv *np = netdev_priv(dev);
5484 u8 __iomem *base = get_hwbase(dev);
5485
5486 unregister_netdev(dev);
5487
5488 /* special op: write back the misordered MAC address - otherwise
5489 * the next nv_probe would see a wrong address.
5490 */
5491 writel(np->orig_mac[0], base + NvRegMacAddrA);
5492 writel(np->orig_mac[1], base + NvRegMacAddrB);
5493 writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
5494 base + NvRegTransmitPoll);
5495
5496 /* free all structures */
5497 free_rings(dev);
5498 iounmap(get_hwbase(dev));
5499 pci_release_regions(pci_dev);
5500 pci_disable_device(pci_dev);
5501 free_netdev(dev);
5502 pci_set_drvdata(pci_dev, NULL);
5503 }
5504
5505 #ifdef CONFIG_PM
5506 static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
5507 {
5508 struct net_device *dev = pci_get_drvdata(pdev);
5509 struct fe_priv *np = netdev_priv(dev);
5510
5511 if (!netif_running(dev))
5512 goto out;
5513
5514 netif_device_detach(dev);
5515
5516 // Gross.
5517 nv_close(dev);
5518
5519 pci_save_state(pdev);
5520 pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
5521 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5522 out:
5523 return 0;
5524 }
5525
5526 static int nv_resume(struct pci_dev *pdev)
5527 {
5528 struct net_device *dev = pci_get_drvdata(pdev);
5529 u8 __iomem *base = get_hwbase(dev);
5530 int rc = 0;
5531 u32 txreg;
5532
5533 if (!netif_running(dev))
5534 goto out;
5535
5536 netif_device_attach(dev);
5537
5538 pci_set_power_state(pdev, PCI_D0);
5539 pci_restore_state(pdev);
5540 pci_enable_wake(pdev, PCI_D0, 0);
5541
5542 /* restore mac address reverse flag */
5543 txreg = readl(base + NvRegTransmitPoll);
5544 txreg |= NVREG_TRANSMITPOLL_MAC_ADDR_REV;
5545 writel(txreg, base + NvRegTransmitPoll);
5546
5547 rc = nv_open(dev);
5548 out:
5549 return rc;
5550 }
5551 #else
5552 #define nv_suspend NULL
5553 #define nv_resume NULL
5554 #endif /* CONFIG_PM */
5555
5556 static struct pci_device_id pci_tbl[] = {
5557 { /* nForce Ethernet Controller */
5558 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
5559 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5560 },
5561 { /* nForce2 Ethernet Controller */
5562 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
5563 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5564 },
5565 { /* nForce3 Ethernet Controller */
5566 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
5567 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5568 },
5569 { /* nForce3 Ethernet Controller */
5570 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
5571 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5572 },
5573 { /* nForce3 Ethernet Controller */
5574 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
5575 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5576 },
5577 { /* nForce3 Ethernet Controller */
5578 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
5579 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5580 },
5581 { /* nForce3 Ethernet Controller */
5582 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
5583 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5584 },
5585 { /* CK804 Ethernet Controller */
5586 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
5587 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
5588 },
5589 { /* CK804 Ethernet Controller */
5590 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
5591 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
5592 },
5593 { /* MCP04 Ethernet Controller */
5594 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
5595 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
5596 },
5597 { /* MCP04 Ethernet Controller */
5598 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
5599 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
5600 },
5601 { /* MCP51 Ethernet Controller */
5602 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
5603 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
5604 },
5605 { /* MCP51 Ethernet Controller */
5606 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
5607 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
5608 },
5609 { /* MCP55 Ethernet Controller */
5610 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
5611 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
5612 },
5613 { /* MCP55 Ethernet Controller */
5614 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
5615 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
5616 },
5617 { /* MCP61 Ethernet Controller */
5618 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
5619 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5620 },
5621 { /* MCP61 Ethernet Controller */
5622 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
5623 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5624 },
5625 { /* MCP61 Ethernet Controller */
5626 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
5627 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5628 },
5629 { /* MCP61 Ethernet Controller */
5630 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
5631 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5632 },
5633 { /* MCP65 Ethernet Controller */
5634 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
5635 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT,
5636 },
5637 { /* MCP65 Ethernet Controller */
5638 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
5639 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT,
5640 },
5641 { /* MCP65 Ethernet Controller */
5642 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
5643 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT,
5644 },
5645 { /* MCP65 Ethernet Controller */
5646 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
5647 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT,
5648 },
5649 { /* MCP67 Ethernet Controller */
5650 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
5651 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5652 },
5653 { /* MCP67 Ethernet Controller */
5654 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
5655 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5656 },
5657 { /* MCP67 Ethernet Controller */
5658 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
5659 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5660 },
5661 { /* MCP67 Ethernet Controller */
5662 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
5663 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
5664 },
5665 { /* MCP73 Ethernet Controller */
5666 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
5667 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
5668 },
5669 { /* MCP73 Ethernet Controller */
5670 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
5671 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
5672 },
5673 { /* MCP73 Ethernet Controller */
5674 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
5675 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
5676 },
5677 { /* MCP73 Ethernet Controller */
5678 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
5679 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
5680 },
5681 { /* MCP77 Ethernet Controller */
5682 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
5683 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
5684 },
5685 { /* MCP77 Ethernet Controller */
5686 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
5687 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
5688 },
5689 { /* MCP77 Ethernet Controller */
5690 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
5691 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
5692 },
5693 { /* MCP77 Ethernet Controller */
5694 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
5695 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
5696 },
5697 { /* MCP79 Ethernet Controller */
5698 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
5699 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
5700 },
5701 { /* MCP79 Ethernet Controller */
5702 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
5703 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
5704 },
5705 { /* MCP79 Ethernet Controller */
5706 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
5707 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
5708 },
5709 { /* MCP79 Ethernet Controller */
5710 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
5711 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
5712 },
5713 {0,},
5714 };
5715
5716 static struct pci_driver driver = {
5717 .name = DRV_NAME,
5718 .id_table = pci_tbl,
5719 .probe = nv_probe,
5720 .remove = __devexit_p(nv_remove),
5721 .suspend = nv_suspend,
5722 .resume = nv_resume,
5723 };
5724
5725 static int __init init_nic(void)
5726 {
5727 return pci_register_driver(&driver);
5728 }
5729
5730 static void __exit exit_nic(void)
5731 {
5732 pci_unregister_driver(&driver);
5733 }
5734
5735 module_param(max_interrupt_work, int, 0);
5736 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
5737 module_param(optimization_mode, int, 0);
5738 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
5739 module_param(poll_interval, int, 0);
5740 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
5741 module_param(msi, int, 0);
5742 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
5743 module_param(msix, int, 0);
5744 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
5745 module_param(dma_64bit, int, 0);
5746 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
5747
5748 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
5749 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
5750 MODULE_LICENSE("GPL");
5751
5752 MODULE_DEVICE_TABLE(pci, pci_tbl);
5753
5754 module_init(init_nic);
5755 module_exit(exit_nic);
This page took 0.236483 seconds and 6 git commands to generate.