gianfar: Add hardware TX timestamping support
[deliverable/linux.git] / drivers / net / gianfar.c
1 /*
2 * drivers/net/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 *
13 * Copyright 2002-2009 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
15 *
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
20 *
21 * Gianfar: AKA Lambda Draconis, "Dragon"
22 * RA 11 31 24.2
23 * Dec +69 19 52
24 * V 3.84
25 * B-V +1.62
26 *
27 * Theory of operation
28 *
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
31 *
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
37 *
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
53 * skb.
54 *
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
63 */
64
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
78 #include <linux/mm.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
81 #include <linux/ip.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
84 #include <linux/in.h>
85 #include <linux/net_tstamp.h>
86
87 #include <asm/io.h>
88 #include <asm/irq.h>
89 #include <asm/uaccess.h>
90 #include <linux/module.h>
91 #include <linux/dma-mapping.h>
92 #include <linux/crc32.h>
93 #include <linux/mii.h>
94 #include <linux/phy.h>
95 #include <linux/phy_fixed.h>
96 #include <linux/of.h>
97
98 #include "gianfar.h"
99 #include "fsl_pq_mdio.h"
100
101 #define TX_TIMEOUT (1*HZ)
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
104
105 const char gfar_driver_name[] = "Gianfar Ethernet";
106 const char gfar_driver_version[] = "1.3";
107
108 static int gfar_enet_open(struct net_device *dev);
109 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 struct sk_buff *gfar_new_skb(struct net_device *dev);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
115 struct sk_buff *skb);
116 static int gfar_set_mac_address(struct net_device *dev);
117 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
118 static irqreturn_t gfar_error(int irq, void *dev_id);
119 static irqreturn_t gfar_transmit(int irq, void *dev_id);
120 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
121 static void adjust_link(struct net_device *dev);
122 static void init_registers(struct net_device *dev);
123 static int init_phy(struct net_device *dev);
124 static int gfar_probe(struct of_device *ofdev,
125 const struct of_device_id *match);
126 static int gfar_remove(struct of_device *ofdev);
127 static void free_skb_resources(struct gfar_private *priv);
128 static void gfar_set_multi(struct net_device *dev);
129 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
130 static void gfar_configure_serdes(struct net_device *dev);
131 static int gfar_poll(struct napi_struct *napi, int budget);
132 #ifdef CONFIG_NET_POLL_CONTROLLER
133 static void gfar_netpoll(struct net_device *dev);
134 #endif
135 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
136 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
137 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
138 int amount_pull);
139 static void gfar_vlan_rx_register(struct net_device *netdev,
140 struct vlan_group *grp);
141 void gfar_halt(struct net_device *dev);
142 static void gfar_halt_nodisable(struct net_device *dev);
143 void gfar_start(struct net_device *dev);
144 static void gfar_clear_exact_match(struct net_device *dev);
145 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
146 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
147
148 MODULE_AUTHOR("Freescale Semiconductor, Inc");
149 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
150 MODULE_LICENSE("GPL");
151
152 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
153 dma_addr_t buf)
154 {
155 u32 lstatus;
156
157 bdp->bufPtr = buf;
158
159 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
160 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
161 lstatus |= BD_LFLAG(RXBD_WRAP);
162
163 eieio();
164
165 bdp->lstatus = lstatus;
166 }
167
168 static int gfar_init_bds(struct net_device *ndev)
169 {
170 struct gfar_private *priv = netdev_priv(ndev);
171 struct gfar_priv_tx_q *tx_queue = NULL;
172 struct gfar_priv_rx_q *rx_queue = NULL;
173 struct txbd8 *txbdp;
174 struct rxbd8 *rxbdp;
175 int i, j;
176
177 for (i = 0; i < priv->num_tx_queues; i++) {
178 tx_queue = priv->tx_queue[i];
179 /* Initialize some variables in our dev structure */
180 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
181 tx_queue->dirty_tx = tx_queue->tx_bd_base;
182 tx_queue->cur_tx = tx_queue->tx_bd_base;
183 tx_queue->skb_curtx = 0;
184 tx_queue->skb_dirtytx = 0;
185
186 /* Initialize Transmit Descriptor Ring */
187 txbdp = tx_queue->tx_bd_base;
188 for (j = 0; j < tx_queue->tx_ring_size; j++) {
189 txbdp->lstatus = 0;
190 txbdp->bufPtr = 0;
191 txbdp++;
192 }
193
194 /* Set the last descriptor in the ring to indicate wrap */
195 txbdp--;
196 txbdp->status |= TXBD_WRAP;
197 }
198
199 for (i = 0; i < priv->num_rx_queues; i++) {
200 rx_queue = priv->rx_queue[i];
201 rx_queue->cur_rx = rx_queue->rx_bd_base;
202 rx_queue->skb_currx = 0;
203 rxbdp = rx_queue->rx_bd_base;
204
205 for (j = 0; j < rx_queue->rx_ring_size; j++) {
206 struct sk_buff *skb = rx_queue->rx_skbuff[j];
207
208 if (skb) {
209 gfar_init_rxbdp(rx_queue, rxbdp,
210 rxbdp->bufPtr);
211 } else {
212 skb = gfar_new_skb(ndev);
213 if (!skb) {
214 pr_err("%s: Can't allocate RX buffers\n",
215 ndev->name);
216 goto err_rxalloc_fail;
217 }
218 rx_queue->rx_skbuff[j] = skb;
219
220 gfar_new_rxbdp(rx_queue, rxbdp, skb);
221 }
222
223 rxbdp++;
224 }
225
226 }
227
228 return 0;
229
230 err_rxalloc_fail:
231 free_skb_resources(priv);
232 return -ENOMEM;
233 }
234
235 static int gfar_alloc_skb_resources(struct net_device *ndev)
236 {
237 void *vaddr;
238 dma_addr_t addr;
239 int i, j, k;
240 struct gfar_private *priv = netdev_priv(ndev);
241 struct device *dev = &priv->ofdev->dev;
242 struct gfar_priv_tx_q *tx_queue = NULL;
243 struct gfar_priv_rx_q *rx_queue = NULL;
244
245 priv->total_tx_ring_size = 0;
246 for (i = 0; i < priv->num_tx_queues; i++)
247 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
248
249 priv->total_rx_ring_size = 0;
250 for (i = 0; i < priv->num_rx_queues; i++)
251 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
252
253 /* Allocate memory for the buffer descriptors */
254 vaddr = dma_alloc_coherent(dev,
255 sizeof(struct txbd8) * priv->total_tx_ring_size +
256 sizeof(struct rxbd8) * priv->total_rx_ring_size,
257 &addr, GFP_KERNEL);
258 if (!vaddr) {
259 if (netif_msg_ifup(priv))
260 pr_err("%s: Could not allocate buffer descriptors!\n",
261 ndev->name);
262 return -ENOMEM;
263 }
264
265 for (i = 0; i < priv->num_tx_queues; i++) {
266 tx_queue = priv->tx_queue[i];
267 tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
268 tx_queue->tx_bd_dma_base = addr;
269 tx_queue->dev = ndev;
270 /* enet DMA only understands physical addresses */
271 addr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
272 vaddr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
273 }
274
275 /* Start the rx descriptor ring where the tx ring leaves off */
276 for (i = 0; i < priv->num_rx_queues; i++) {
277 rx_queue = priv->rx_queue[i];
278 rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
279 rx_queue->rx_bd_dma_base = addr;
280 rx_queue->dev = ndev;
281 addr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
282 vaddr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
283 }
284
285 /* Setup the skbuff rings */
286 for (i = 0; i < priv->num_tx_queues; i++) {
287 tx_queue = priv->tx_queue[i];
288 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
289 tx_queue->tx_ring_size, GFP_KERNEL);
290 if (!tx_queue->tx_skbuff) {
291 if (netif_msg_ifup(priv))
292 pr_err("%s: Could not allocate tx_skbuff\n",
293 ndev->name);
294 goto cleanup;
295 }
296
297 for (k = 0; k < tx_queue->tx_ring_size; k++)
298 tx_queue->tx_skbuff[k] = NULL;
299 }
300
301 for (i = 0; i < priv->num_rx_queues; i++) {
302 rx_queue = priv->rx_queue[i];
303 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
304 rx_queue->rx_ring_size, GFP_KERNEL);
305
306 if (!rx_queue->rx_skbuff) {
307 if (netif_msg_ifup(priv))
308 pr_err("%s: Could not allocate rx_skbuff\n",
309 ndev->name);
310 goto cleanup;
311 }
312
313 for (j = 0; j < rx_queue->rx_ring_size; j++)
314 rx_queue->rx_skbuff[j] = NULL;
315 }
316
317 if (gfar_init_bds(ndev))
318 goto cleanup;
319
320 return 0;
321
322 cleanup:
323 free_skb_resources(priv);
324 return -ENOMEM;
325 }
326
327 static void gfar_init_tx_rx_base(struct gfar_private *priv)
328 {
329 struct gfar __iomem *regs = priv->gfargrp[0].regs;
330 u32 __iomem *baddr;
331 int i;
332
333 baddr = &regs->tbase0;
334 for(i = 0; i < priv->num_tx_queues; i++) {
335 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
336 baddr += 2;
337 }
338
339 baddr = &regs->rbase0;
340 for(i = 0; i < priv->num_rx_queues; i++) {
341 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
342 baddr += 2;
343 }
344 }
345
346 static void gfar_init_mac(struct net_device *ndev)
347 {
348 struct gfar_private *priv = netdev_priv(ndev);
349 struct gfar __iomem *regs = priv->gfargrp[0].regs;
350 u32 rctrl = 0;
351 u32 tctrl = 0;
352 u32 attrs = 0;
353
354 /* write the tx/rx base registers */
355 gfar_init_tx_rx_base(priv);
356
357 /* Configure the coalescing support */
358 gfar_configure_coalescing(priv, 0xFF, 0xFF);
359
360 if (priv->rx_filer_enable) {
361 rctrl |= RCTRL_FILREN;
362 /* Program the RIR0 reg with the required distribution */
363 gfar_write(&regs->rir0, DEFAULT_RIR0);
364 }
365
366 if (priv->rx_csum_enable)
367 rctrl |= RCTRL_CHECKSUMMING;
368
369 if (priv->extended_hash) {
370 rctrl |= RCTRL_EXTHASH;
371
372 gfar_clear_exact_match(ndev);
373 rctrl |= RCTRL_EMEN;
374 }
375
376 if (priv->padding) {
377 rctrl &= ~RCTRL_PAL_MASK;
378 rctrl |= RCTRL_PADDING(priv->padding);
379 }
380
381 /* Insert receive time stamps into padding alignment bytes */
382 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
383 rctrl &= ~RCTRL_PAL_MASK;
384 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE | RCTRL_PADDING(8);
385 priv->padding = 8;
386 }
387
388 /* keep vlan related bits if it's enabled */
389 if (priv->vlgrp) {
390 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
391 tctrl |= TCTRL_VLINS;
392 }
393
394 /* Init rctrl based on our settings */
395 gfar_write(&regs->rctrl, rctrl);
396
397 if (ndev->features & NETIF_F_IP_CSUM)
398 tctrl |= TCTRL_INIT_CSUM;
399
400 tctrl |= TCTRL_TXSCHED_PRIO;
401
402 gfar_write(&regs->tctrl, tctrl);
403
404 /* Set the extraction length and index */
405 attrs = ATTRELI_EL(priv->rx_stash_size) |
406 ATTRELI_EI(priv->rx_stash_index);
407
408 gfar_write(&regs->attreli, attrs);
409
410 /* Start with defaults, and add stashing or locking
411 * depending on the approprate variables */
412 attrs = ATTR_INIT_SETTINGS;
413
414 if (priv->bd_stash_en)
415 attrs |= ATTR_BDSTASH;
416
417 if (priv->rx_stash_size != 0)
418 attrs |= ATTR_BUFSTASH;
419
420 gfar_write(&regs->attr, attrs);
421
422 gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
423 gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
424 gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
425 }
426
427 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
428 {
429 struct gfar_private *priv = netdev_priv(dev);
430 struct netdev_queue *txq;
431 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
432 unsigned long tx_packets = 0, tx_bytes = 0;
433 int i = 0;
434
435 for (i = 0; i < priv->num_rx_queues; i++) {
436 rx_packets += priv->rx_queue[i]->stats.rx_packets;
437 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
438 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
439 }
440
441 dev->stats.rx_packets = rx_packets;
442 dev->stats.rx_bytes = rx_bytes;
443 dev->stats.rx_dropped = rx_dropped;
444
445 for (i = 0; i < priv->num_tx_queues; i++) {
446 txq = netdev_get_tx_queue(dev, i);
447 tx_bytes += txq->tx_bytes;
448 tx_packets += txq->tx_packets;
449 }
450
451 dev->stats.tx_bytes = tx_bytes;
452 dev->stats.tx_packets = tx_packets;
453
454 return &dev->stats;
455 }
456
457 static const struct net_device_ops gfar_netdev_ops = {
458 .ndo_open = gfar_enet_open,
459 .ndo_start_xmit = gfar_start_xmit,
460 .ndo_stop = gfar_close,
461 .ndo_change_mtu = gfar_change_mtu,
462 .ndo_set_multicast_list = gfar_set_multi,
463 .ndo_tx_timeout = gfar_timeout,
464 .ndo_do_ioctl = gfar_ioctl,
465 .ndo_get_stats = gfar_get_stats,
466 .ndo_vlan_rx_register = gfar_vlan_rx_register,
467 .ndo_set_mac_address = eth_mac_addr,
468 .ndo_validate_addr = eth_validate_addr,
469 #ifdef CONFIG_NET_POLL_CONTROLLER
470 .ndo_poll_controller = gfar_netpoll,
471 #endif
472 };
473
474 unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
475 unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
476
477 void lock_rx_qs(struct gfar_private *priv)
478 {
479 int i = 0x0;
480
481 for (i = 0; i < priv->num_rx_queues; i++)
482 spin_lock(&priv->rx_queue[i]->rxlock);
483 }
484
485 void lock_tx_qs(struct gfar_private *priv)
486 {
487 int i = 0x0;
488
489 for (i = 0; i < priv->num_tx_queues; i++)
490 spin_lock(&priv->tx_queue[i]->txlock);
491 }
492
493 void unlock_rx_qs(struct gfar_private *priv)
494 {
495 int i = 0x0;
496
497 for (i = 0; i < priv->num_rx_queues; i++)
498 spin_unlock(&priv->rx_queue[i]->rxlock);
499 }
500
501 void unlock_tx_qs(struct gfar_private *priv)
502 {
503 int i = 0x0;
504
505 for (i = 0; i < priv->num_tx_queues; i++)
506 spin_unlock(&priv->tx_queue[i]->txlock);
507 }
508
509 /* Returns 1 if incoming frames use an FCB */
510 static inline int gfar_uses_fcb(struct gfar_private *priv)
511 {
512 return priv->vlgrp || priv->rx_csum_enable ||
513 (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
514 }
515
516 static void free_tx_pointers(struct gfar_private *priv)
517 {
518 int i = 0;
519
520 for (i = 0; i < priv->num_tx_queues; i++)
521 kfree(priv->tx_queue[i]);
522 }
523
524 static void free_rx_pointers(struct gfar_private *priv)
525 {
526 int i = 0;
527
528 for (i = 0; i < priv->num_rx_queues; i++)
529 kfree(priv->rx_queue[i]);
530 }
531
532 static void unmap_group_regs(struct gfar_private *priv)
533 {
534 int i = 0;
535
536 for (i = 0; i < MAXGROUPS; i++)
537 if (priv->gfargrp[i].regs)
538 iounmap(priv->gfargrp[i].regs);
539 }
540
541 static void disable_napi(struct gfar_private *priv)
542 {
543 int i = 0;
544
545 for (i = 0; i < priv->num_grps; i++)
546 napi_disable(&priv->gfargrp[i].napi);
547 }
548
549 static void enable_napi(struct gfar_private *priv)
550 {
551 int i = 0;
552
553 for (i = 0; i < priv->num_grps; i++)
554 napi_enable(&priv->gfargrp[i].napi);
555 }
556
557 static int gfar_parse_group(struct device_node *np,
558 struct gfar_private *priv, const char *model)
559 {
560 u32 *queue_mask;
561 u64 addr, size;
562
563 addr = of_translate_address(np,
564 of_get_address(np, 0, &size, NULL));
565 priv->gfargrp[priv->num_grps].regs = ioremap(addr, size);
566
567 if (!priv->gfargrp[priv->num_grps].regs)
568 return -ENOMEM;
569
570 priv->gfargrp[priv->num_grps].interruptTransmit =
571 irq_of_parse_and_map(np, 0);
572
573 /* If we aren't the FEC we have multiple interrupts */
574 if (model && strcasecmp(model, "FEC")) {
575 priv->gfargrp[priv->num_grps].interruptReceive =
576 irq_of_parse_and_map(np, 1);
577 priv->gfargrp[priv->num_grps].interruptError =
578 irq_of_parse_and_map(np,2);
579 if (priv->gfargrp[priv->num_grps].interruptTransmit < 0 ||
580 priv->gfargrp[priv->num_grps].interruptReceive < 0 ||
581 priv->gfargrp[priv->num_grps].interruptError < 0) {
582 return -EINVAL;
583 }
584 }
585
586 priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
587 priv->gfargrp[priv->num_grps].priv = priv;
588 spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
589 if(priv->mode == MQ_MG_MODE) {
590 queue_mask = (u32 *)of_get_property(np,
591 "fsl,rx-bit-map", NULL);
592 priv->gfargrp[priv->num_grps].rx_bit_map =
593 queue_mask ? *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
594 queue_mask = (u32 *)of_get_property(np,
595 "fsl,tx-bit-map", NULL);
596 priv->gfargrp[priv->num_grps].tx_bit_map =
597 queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
598 } else {
599 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
600 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
601 }
602 priv->num_grps++;
603
604 return 0;
605 }
606
607 static int gfar_of_init(struct of_device *ofdev, struct net_device **pdev)
608 {
609 const char *model;
610 const char *ctype;
611 const void *mac_addr;
612 int err = 0, i;
613 struct net_device *dev = NULL;
614 struct gfar_private *priv = NULL;
615 struct device_node *np = ofdev->node;
616 struct device_node *child = NULL;
617 const u32 *stash;
618 const u32 *stash_len;
619 const u32 *stash_idx;
620 unsigned int num_tx_qs, num_rx_qs;
621 u32 *tx_queues, *rx_queues;
622
623 if (!np || !of_device_is_available(np))
624 return -ENODEV;
625
626 /* parse the num of tx and rx queues */
627 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
628 num_tx_qs = tx_queues ? *tx_queues : 1;
629
630 if (num_tx_qs > MAX_TX_QS) {
631 printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
632 num_tx_qs, MAX_TX_QS);
633 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
634 return -EINVAL;
635 }
636
637 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
638 num_rx_qs = rx_queues ? *rx_queues : 1;
639
640 if (num_rx_qs > MAX_RX_QS) {
641 printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
642 num_tx_qs, MAX_TX_QS);
643 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
644 return -EINVAL;
645 }
646
647 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
648 dev = *pdev;
649 if (NULL == dev)
650 return -ENOMEM;
651
652 priv = netdev_priv(dev);
653 priv->node = ofdev->node;
654 priv->ndev = dev;
655
656 dev->num_tx_queues = num_tx_qs;
657 dev->real_num_tx_queues = num_tx_qs;
658 priv->num_tx_queues = num_tx_qs;
659 priv->num_rx_queues = num_rx_qs;
660 priv->num_grps = 0x0;
661
662 model = of_get_property(np, "model", NULL);
663
664 for (i = 0; i < MAXGROUPS; i++)
665 priv->gfargrp[i].regs = NULL;
666
667 /* Parse and initialize group specific information */
668 if (of_device_is_compatible(np, "fsl,etsec2")) {
669 priv->mode = MQ_MG_MODE;
670 for_each_child_of_node(np, child) {
671 err = gfar_parse_group(child, priv, model);
672 if (err)
673 goto err_grp_init;
674 }
675 } else {
676 priv->mode = SQ_SG_MODE;
677 err = gfar_parse_group(np, priv, model);
678 if(err)
679 goto err_grp_init;
680 }
681
682 for (i = 0; i < priv->num_tx_queues; i++)
683 priv->tx_queue[i] = NULL;
684 for (i = 0; i < priv->num_rx_queues; i++)
685 priv->rx_queue[i] = NULL;
686
687 for (i = 0; i < priv->num_tx_queues; i++) {
688 priv->tx_queue[i] = (struct gfar_priv_tx_q *)kzalloc(
689 sizeof (struct gfar_priv_tx_q), GFP_KERNEL);
690 if (!priv->tx_queue[i]) {
691 err = -ENOMEM;
692 goto tx_alloc_failed;
693 }
694 priv->tx_queue[i]->tx_skbuff = NULL;
695 priv->tx_queue[i]->qindex = i;
696 priv->tx_queue[i]->dev = dev;
697 spin_lock_init(&(priv->tx_queue[i]->txlock));
698 }
699
700 for (i = 0; i < priv->num_rx_queues; i++) {
701 priv->rx_queue[i] = (struct gfar_priv_rx_q *)kzalloc(
702 sizeof (struct gfar_priv_rx_q), GFP_KERNEL);
703 if (!priv->rx_queue[i]) {
704 err = -ENOMEM;
705 goto rx_alloc_failed;
706 }
707 priv->rx_queue[i]->rx_skbuff = NULL;
708 priv->rx_queue[i]->qindex = i;
709 priv->rx_queue[i]->dev = dev;
710 spin_lock_init(&(priv->rx_queue[i]->rxlock));
711 }
712
713
714 stash = of_get_property(np, "bd-stash", NULL);
715
716 if (stash) {
717 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
718 priv->bd_stash_en = 1;
719 }
720
721 stash_len = of_get_property(np, "rx-stash-len", NULL);
722
723 if (stash_len)
724 priv->rx_stash_size = *stash_len;
725
726 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
727
728 if (stash_idx)
729 priv->rx_stash_index = *stash_idx;
730
731 if (stash_len || stash_idx)
732 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
733
734 mac_addr = of_get_mac_address(np);
735 if (mac_addr)
736 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
737
738 if (model && !strcasecmp(model, "TSEC"))
739 priv->device_flags =
740 FSL_GIANFAR_DEV_HAS_GIGABIT |
741 FSL_GIANFAR_DEV_HAS_COALESCE |
742 FSL_GIANFAR_DEV_HAS_RMON |
743 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
744 if (model && !strcasecmp(model, "eTSEC"))
745 priv->device_flags =
746 FSL_GIANFAR_DEV_HAS_GIGABIT |
747 FSL_GIANFAR_DEV_HAS_COALESCE |
748 FSL_GIANFAR_DEV_HAS_RMON |
749 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
750 FSL_GIANFAR_DEV_HAS_PADDING |
751 FSL_GIANFAR_DEV_HAS_CSUM |
752 FSL_GIANFAR_DEV_HAS_VLAN |
753 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
754 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
755 FSL_GIANFAR_DEV_HAS_TIMER;
756
757 ctype = of_get_property(np, "phy-connection-type", NULL);
758
759 /* We only care about rgmii-id. The rest are autodetected */
760 if (ctype && !strcmp(ctype, "rgmii-id"))
761 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
762 else
763 priv->interface = PHY_INTERFACE_MODE_MII;
764
765 if (of_get_property(np, "fsl,magic-packet", NULL))
766 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
767
768 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
769
770 /* Find the TBI PHY. If it's not there, we don't support SGMII */
771 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
772
773 return 0;
774
775 rx_alloc_failed:
776 free_rx_pointers(priv);
777 tx_alloc_failed:
778 free_tx_pointers(priv);
779 err_grp_init:
780 unmap_group_regs(priv);
781 free_netdev(dev);
782 return err;
783 }
784
785 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
786 struct ifreq *ifr, int cmd)
787 {
788 struct hwtstamp_config config;
789 struct gfar_private *priv = netdev_priv(netdev);
790
791 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
792 return -EFAULT;
793
794 /* reserved for future extensions */
795 if (config.flags)
796 return -EINVAL;
797
798 switch (config.tx_type) {
799 case HWTSTAMP_TX_OFF:
800 priv->hwts_tx_en = 0;
801 break;
802 case HWTSTAMP_TX_ON:
803 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
804 return -ERANGE;
805 priv->hwts_tx_en = 1;
806 break;
807 default:
808 return -ERANGE;
809 }
810
811 switch (config.rx_filter) {
812 case HWTSTAMP_FILTER_NONE:
813 priv->hwts_rx_en = 0;
814 break;
815 default:
816 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
817 return -ERANGE;
818 priv->hwts_rx_en = 1;
819 config.rx_filter = HWTSTAMP_FILTER_ALL;
820 break;
821 }
822
823 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
824 -EFAULT : 0;
825 }
826
827 /* Ioctl MII Interface */
828 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
829 {
830 struct gfar_private *priv = netdev_priv(dev);
831
832 if (!netif_running(dev))
833 return -EINVAL;
834
835 if (cmd == SIOCSHWTSTAMP)
836 return gfar_hwtstamp_ioctl(dev, rq, cmd);
837
838 if (!priv->phydev)
839 return -ENODEV;
840
841 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
842 }
843
844 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
845 {
846 unsigned int new_bit_map = 0x0;
847 int mask = 0x1 << (max_qs - 1), i;
848 for (i = 0; i < max_qs; i++) {
849 if (bit_map & mask)
850 new_bit_map = new_bit_map + (1 << i);
851 mask = mask >> 0x1;
852 }
853 return new_bit_map;
854 }
855
856 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
857 u32 class)
858 {
859 u32 rqfpr = FPR_FILER_MASK;
860 u32 rqfcr = 0x0;
861
862 rqfar--;
863 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
864 ftp_rqfpr[rqfar] = rqfpr;
865 ftp_rqfcr[rqfar] = rqfcr;
866 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
867
868 rqfar--;
869 rqfcr = RQFCR_CMP_NOMATCH;
870 ftp_rqfpr[rqfar] = rqfpr;
871 ftp_rqfcr[rqfar] = rqfcr;
872 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
873
874 rqfar--;
875 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
876 rqfpr = class;
877 ftp_rqfcr[rqfar] = rqfcr;
878 ftp_rqfpr[rqfar] = rqfpr;
879 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
880
881 rqfar--;
882 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
883 rqfpr = class;
884 ftp_rqfcr[rqfar] = rqfcr;
885 ftp_rqfpr[rqfar] = rqfpr;
886 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
887
888 return rqfar;
889 }
890
891 static void gfar_init_filer_table(struct gfar_private *priv)
892 {
893 int i = 0x0;
894 u32 rqfar = MAX_FILER_IDX;
895 u32 rqfcr = 0x0;
896 u32 rqfpr = FPR_FILER_MASK;
897
898 /* Default rule */
899 rqfcr = RQFCR_CMP_MATCH;
900 ftp_rqfcr[rqfar] = rqfcr;
901 ftp_rqfpr[rqfar] = rqfpr;
902 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
903
904 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
905 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
906 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
907 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
908 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
909 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
910
911 /* cur_filer_idx indicated the fisrt non-masked rule */
912 priv->cur_filer_idx = rqfar;
913
914 /* Rest are masked rules */
915 rqfcr = RQFCR_CMP_NOMATCH;
916 for (i = 0; i < rqfar; i++) {
917 ftp_rqfcr[i] = rqfcr;
918 ftp_rqfpr[i] = rqfpr;
919 gfar_write_filer(priv, i, rqfcr, rqfpr);
920 }
921 }
922
923 /* Set up the ethernet device structure, private data,
924 * and anything else we need before we start */
925 static int gfar_probe(struct of_device *ofdev,
926 const struct of_device_id *match)
927 {
928 u32 tempval;
929 struct net_device *dev = NULL;
930 struct gfar_private *priv = NULL;
931 struct gfar __iomem *regs = NULL;
932 int err = 0, i, grp_idx = 0;
933 int len_devname;
934 u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
935 u32 isrg = 0;
936 u32 __iomem *baddr;
937
938 err = gfar_of_init(ofdev, &dev);
939
940 if (err)
941 return err;
942
943 priv = netdev_priv(dev);
944 priv->ndev = dev;
945 priv->ofdev = ofdev;
946 priv->node = ofdev->node;
947 SET_NETDEV_DEV(dev, &ofdev->dev);
948
949 spin_lock_init(&priv->bflock);
950 INIT_WORK(&priv->reset_task, gfar_reset_task);
951
952 dev_set_drvdata(&ofdev->dev, priv);
953 regs = priv->gfargrp[0].regs;
954
955 /* Stop the DMA engine now, in case it was running before */
956 /* (The firmware could have used it, and left it running). */
957 gfar_halt(dev);
958
959 /* Reset MAC layer */
960 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
961
962 /* We need to delay at least 3 TX clocks */
963 udelay(2);
964
965 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
966 gfar_write(&regs->maccfg1, tempval);
967
968 /* Initialize MACCFG2. */
969 gfar_write(&regs->maccfg2, MACCFG2_INIT_SETTINGS);
970
971 /* Initialize ECNTRL */
972 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
973
974 /* Set the dev->base_addr to the gfar reg region */
975 dev->base_addr = (unsigned long) regs;
976
977 SET_NETDEV_DEV(dev, &ofdev->dev);
978
979 /* Fill in the dev structure */
980 dev->watchdog_timeo = TX_TIMEOUT;
981 dev->mtu = 1500;
982 dev->netdev_ops = &gfar_netdev_ops;
983 dev->ethtool_ops = &gfar_ethtool_ops;
984
985 /* Register for napi ...We are registering NAPI for each grp */
986 for (i = 0; i < priv->num_grps; i++)
987 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
988
989 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
990 priv->rx_csum_enable = 1;
991 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
992 } else
993 priv->rx_csum_enable = 0;
994
995 priv->vlgrp = NULL;
996
997 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
998 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
999
1000 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1001 priv->extended_hash = 1;
1002 priv->hash_width = 9;
1003
1004 priv->hash_regs[0] = &regs->igaddr0;
1005 priv->hash_regs[1] = &regs->igaddr1;
1006 priv->hash_regs[2] = &regs->igaddr2;
1007 priv->hash_regs[3] = &regs->igaddr3;
1008 priv->hash_regs[4] = &regs->igaddr4;
1009 priv->hash_regs[5] = &regs->igaddr5;
1010 priv->hash_regs[6] = &regs->igaddr6;
1011 priv->hash_regs[7] = &regs->igaddr7;
1012 priv->hash_regs[8] = &regs->gaddr0;
1013 priv->hash_regs[9] = &regs->gaddr1;
1014 priv->hash_regs[10] = &regs->gaddr2;
1015 priv->hash_regs[11] = &regs->gaddr3;
1016 priv->hash_regs[12] = &regs->gaddr4;
1017 priv->hash_regs[13] = &regs->gaddr5;
1018 priv->hash_regs[14] = &regs->gaddr6;
1019 priv->hash_regs[15] = &regs->gaddr7;
1020
1021 } else {
1022 priv->extended_hash = 0;
1023 priv->hash_width = 8;
1024
1025 priv->hash_regs[0] = &regs->gaddr0;
1026 priv->hash_regs[1] = &regs->gaddr1;
1027 priv->hash_regs[2] = &regs->gaddr2;
1028 priv->hash_regs[3] = &regs->gaddr3;
1029 priv->hash_regs[4] = &regs->gaddr4;
1030 priv->hash_regs[5] = &regs->gaddr5;
1031 priv->hash_regs[6] = &regs->gaddr6;
1032 priv->hash_regs[7] = &regs->gaddr7;
1033 }
1034
1035 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1036 priv->padding = DEFAULT_PADDING;
1037 else
1038 priv->padding = 0;
1039
1040 if (dev->features & NETIF_F_IP_CSUM ||
1041 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1042 dev->hard_header_len += GMAC_FCB_LEN;
1043
1044 /* Program the isrg regs only if number of grps > 1 */
1045 if (priv->num_grps > 1) {
1046 baddr = &regs->isrg0;
1047 for (i = 0; i < priv->num_grps; i++) {
1048 isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1049 isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1050 gfar_write(baddr, isrg);
1051 baddr++;
1052 isrg = 0x0;
1053 }
1054 }
1055
1056 /* Need to reverse the bit maps as bit_map's MSB is q0
1057 * but, for_each_set_bit parses from right to left, which
1058 * basically reverses the queue numbers */
1059 for (i = 0; i< priv->num_grps; i++) {
1060 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1061 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1062 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1063 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1064 }
1065
1066 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1067 * also assign queues to groups */
1068 for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1069 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1070 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1071 priv->num_rx_queues) {
1072 priv->gfargrp[grp_idx].num_rx_queues++;
1073 priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1074 rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1075 rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1076 }
1077 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1078 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1079 priv->num_tx_queues) {
1080 priv->gfargrp[grp_idx].num_tx_queues++;
1081 priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1082 tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1083 tqueue = tqueue | (TQUEUE_EN0 >> i);
1084 }
1085 priv->gfargrp[grp_idx].rstat = rstat;
1086 priv->gfargrp[grp_idx].tstat = tstat;
1087 rstat = tstat =0;
1088 }
1089
1090 gfar_write(&regs->rqueue, rqueue);
1091 gfar_write(&regs->tqueue, tqueue);
1092
1093 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1094
1095 /* Initializing some of the rx/tx queue level parameters */
1096 for (i = 0; i < priv->num_tx_queues; i++) {
1097 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1098 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1099 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1100 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1101 }
1102
1103 for (i = 0; i < priv->num_rx_queues; i++) {
1104 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1105 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1106 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1107 }
1108
1109 /* enable filer if using multiple RX queues*/
1110 if(priv->num_rx_queues > 1)
1111 priv->rx_filer_enable = 1;
1112 /* Enable most messages by default */
1113 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1114
1115 /* Carrier starts down, phylib will bring it up */
1116 netif_carrier_off(dev);
1117
1118 err = register_netdev(dev);
1119
1120 if (err) {
1121 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1122 dev->name);
1123 goto register_fail;
1124 }
1125
1126 device_init_wakeup(&dev->dev,
1127 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1128
1129 /* fill out IRQ number and name fields */
1130 len_devname = strlen(dev->name);
1131 for (i = 0; i < priv->num_grps; i++) {
1132 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1133 len_devname);
1134 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1135 strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1136 "_g", sizeof("_g"));
1137 priv->gfargrp[i].int_name_tx[
1138 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1139 strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1140 priv->gfargrp[i].int_name_tx)],
1141 "_tx", sizeof("_tx") + 1);
1142
1143 strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1144 len_devname);
1145 strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1146 "_g", sizeof("_g"));
1147 priv->gfargrp[i].int_name_rx[
1148 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1149 strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1150 priv->gfargrp[i].int_name_rx)],
1151 "_rx", sizeof("_rx") + 1);
1152
1153 strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1154 len_devname);
1155 strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1156 "_g", sizeof("_g"));
1157 priv->gfargrp[i].int_name_er[strlen(
1158 priv->gfargrp[i].int_name_er)] = i+48;
1159 strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1160 priv->gfargrp[i].int_name_er)],
1161 "_er", sizeof("_er") + 1);
1162 } else
1163 priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1164 }
1165
1166 /* Initialize the filer table */
1167 gfar_init_filer_table(priv);
1168
1169 /* Create all the sysfs files */
1170 gfar_init_sysfs(dev);
1171
1172 /* Print out the device info */
1173 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1174
1175 /* Even more device info helps when determining which kernel */
1176 /* provided which set of benchmarks. */
1177 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1178 for (i = 0; i < priv->num_rx_queues; i++)
1179 printk(KERN_INFO "%s: RX BD ring size for Q[%d]: %d\n",
1180 dev->name, i, priv->rx_queue[i]->rx_ring_size);
1181 for(i = 0; i < priv->num_tx_queues; i++)
1182 printk(KERN_INFO "%s: TX BD ring size for Q[%d]: %d\n",
1183 dev->name, i, priv->tx_queue[i]->tx_ring_size);
1184
1185 return 0;
1186
1187 register_fail:
1188 unmap_group_regs(priv);
1189 free_tx_pointers(priv);
1190 free_rx_pointers(priv);
1191 if (priv->phy_node)
1192 of_node_put(priv->phy_node);
1193 if (priv->tbi_node)
1194 of_node_put(priv->tbi_node);
1195 free_netdev(dev);
1196 return err;
1197 }
1198
1199 static int gfar_remove(struct of_device *ofdev)
1200 {
1201 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1202
1203 if (priv->phy_node)
1204 of_node_put(priv->phy_node);
1205 if (priv->tbi_node)
1206 of_node_put(priv->tbi_node);
1207
1208 dev_set_drvdata(&ofdev->dev, NULL);
1209
1210 unregister_netdev(priv->ndev);
1211 unmap_group_regs(priv);
1212 free_netdev(priv->ndev);
1213
1214 return 0;
1215 }
1216
1217 #ifdef CONFIG_PM
1218
1219 static int gfar_suspend(struct device *dev)
1220 {
1221 struct gfar_private *priv = dev_get_drvdata(dev);
1222 struct net_device *ndev = priv->ndev;
1223 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1224 unsigned long flags;
1225 u32 tempval;
1226
1227 int magic_packet = priv->wol_en &&
1228 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1229
1230 netif_device_detach(ndev);
1231
1232 if (netif_running(ndev)) {
1233
1234 local_irq_save(flags);
1235 lock_tx_qs(priv);
1236 lock_rx_qs(priv);
1237
1238 gfar_halt_nodisable(ndev);
1239
1240 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1241 tempval = gfar_read(&regs->maccfg1);
1242
1243 tempval &= ~MACCFG1_TX_EN;
1244
1245 if (!magic_packet)
1246 tempval &= ~MACCFG1_RX_EN;
1247
1248 gfar_write(&regs->maccfg1, tempval);
1249
1250 unlock_rx_qs(priv);
1251 unlock_tx_qs(priv);
1252 local_irq_restore(flags);
1253
1254 disable_napi(priv);
1255
1256 if (magic_packet) {
1257 /* Enable interrupt on Magic Packet */
1258 gfar_write(&regs->imask, IMASK_MAG);
1259
1260 /* Enable Magic Packet mode */
1261 tempval = gfar_read(&regs->maccfg2);
1262 tempval |= MACCFG2_MPEN;
1263 gfar_write(&regs->maccfg2, tempval);
1264 } else {
1265 phy_stop(priv->phydev);
1266 }
1267 }
1268
1269 return 0;
1270 }
1271
1272 static int gfar_resume(struct device *dev)
1273 {
1274 struct gfar_private *priv = dev_get_drvdata(dev);
1275 struct net_device *ndev = priv->ndev;
1276 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1277 unsigned long flags;
1278 u32 tempval;
1279 int magic_packet = priv->wol_en &&
1280 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1281
1282 if (!netif_running(ndev)) {
1283 netif_device_attach(ndev);
1284 return 0;
1285 }
1286
1287 if (!magic_packet && priv->phydev)
1288 phy_start(priv->phydev);
1289
1290 /* Disable Magic Packet mode, in case something
1291 * else woke us up.
1292 */
1293 local_irq_save(flags);
1294 lock_tx_qs(priv);
1295 lock_rx_qs(priv);
1296
1297 tempval = gfar_read(&regs->maccfg2);
1298 tempval &= ~MACCFG2_MPEN;
1299 gfar_write(&regs->maccfg2, tempval);
1300
1301 gfar_start(ndev);
1302
1303 unlock_rx_qs(priv);
1304 unlock_tx_qs(priv);
1305 local_irq_restore(flags);
1306
1307 netif_device_attach(ndev);
1308
1309 enable_napi(priv);
1310
1311 return 0;
1312 }
1313
1314 static int gfar_restore(struct device *dev)
1315 {
1316 struct gfar_private *priv = dev_get_drvdata(dev);
1317 struct net_device *ndev = priv->ndev;
1318
1319 if (!netif_running(ndev))
1320 return 0;
1321
1322 gfar_init_bds(ndev);
1323 init_registers(ndev);
1324 gfar_set_mac_address(ndev);
1325 gfar_init_mac(ndev);
1326 gfar_start(ndev);
1327
1328 priv->oldlink = 0;
1329 priv->oldspeed = 0;
1330 priv->oldduplex = -1;
1331
1332 if (priv->phydev)
1333 phy_start(priv->phydev);
1334
1335 netif_device_attach(ndev);
1336 enable_napi(priv);
1337
1338 return 0;
1339 }
1340
1341 static struct dev_pm_ops gfar_pm_ops = {
1342 .suspend = gfar_suspend,
1343 .resume = gfar_resume,
1344 .freeze = gfar_suspend,
1345 .thaw = gfar_resume,
1346 .restore = gfar_restore,
1347 };
1348
1349 #define GFAR_PM_OPS (&gfar_pm_ops)
1350
1351 static int gfar_legacy_suspend(struct of_device *ofdev, pm_message_t state)
1352 {
1353 return gfar_suspend(&ofdev->dev);
1354 }
1355
1356 static int gfar_legacy_resume(struct of_device *ofdev)
1357 {
1358 return gfar_resume(&ofdev->dev);
1359 }
1360
1361 #else
1362
1363 #define GFAR_PM_OPS NULL
1364 #define gfar_legacy_suspend NULL
1365 #define gfar_legacy_resume NULL
1366
1367 #endif
1368
1369 /* Reads the controller's registers to determine what interface
1370 * connects it to the PHY.
1371 */
1372 static phy_interface_t gfar_get_interface(struct net_device *dev)
1373 {
1374 struct gfar_private *priv = netdev_priv(dev);
1375 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1376 u32 ecntrl;
1377
1378 ecntrl = gfar_read(&regs->ecntrl);
1379
1380 if (ecntrl & ECNTRL_SGMII_MODE)
1381 return PHY_INTERFACE_MODE_SGMII;
1382
1383 if (ecntrl & ECNTRL_TBI_MODE) {
1384 if (ecntrl & ECNTRL_REDUCED_MODE)
1385 return PHY_INTERFACE_MODE_RTBI;
1386 else
1387 return PHY_INTERFACE_MODE_TBI;
1388 }
1389
1390 if (ecntrl & ECNTRL_REDUCED_MODE) {
1391 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1392 return PHY_INTERFACE_MODE_RMII;
1393 else {
1394 phy_interface_t interface = priv->interface;
1395
1396 /*
1397 * This isn't autodetected right now, so it must
1398 * be set by the device tree or platform code.
1399 */
1400 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1401 return PHY_INTERFACE_MODE_RGMII_ID;
1402
1403 return PHY_INTERFACE_MODE_RGMII;
1404 }
1405 }
1406
1407 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1408 return PHY_INTERFACE_MODE_GMII;
1409
1410 return PHY_INTERFACE_MODE_MII;
1411 }
1412
1413
1414 /* Initializes driver's PHY state, and attaches to the PHY.
1415 * Returns 0 on success.
1416 */
1417 static int init_phy(struct net_device *dev)
1418 {
1419 struct gfar_private *priv = netdev_priv(dev);
1420 uint gigabit_support =
1421 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1422 SUPPORTED_1000baseT_Full : 0;
1423 phy_interface_t interface;
1424
1425 priv->oldlink = 0;
1426 priv->oldspeed = 0;
1427 priv->oldduplex = -1;
1428
1429 interface = gfar_get_interface(dev);
1430
1431 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1432 interface);
1433 if (!priv->phydev)
1434 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1435 interface);
1436 if (!priv->phydev) {
1437 dev_err(&dev->dev, "could not attach to PHY\n");
1438 return -ENODEV;
1439 }
1440
1441 if (interface == PHY_INTERFACE_MODE_SGMII)
1442 gfar_configure_serdes(dev);
1443
1444 /* Remove any features not supported by the controller */
1445 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1446 priv->phydev->advertising = priv->phydev->supported;
1447
1448 return 0;
1449 }
1450
1451 /*
1452 * Initialize TBI PHY interface for communicating with the
1453 * SERDES lynx PHY on the chip. We communicate with this PHY
1454 * through the MDIO bus on each controller, treating it as a
1455 * "normal" PHY at the address found in the TBIPA register. We assume
1456 * that the TBIPA register is valid. Either the MDIO bus code will set
1457 * it to a value that doesn't conflict with other PHYs on the bus, or the
1458 * value doesn't matter, as there are no other PHYs on the bus.
1459 */
1460 static void gfar_configure_serdes(struct net_device *dev)
1461 {
1462 struct gfar_private *priv = netdev_priv(dev);
1463 struct phy_device *tbiphy;
1464
1465 if (!priv->tbi_node) {
1466 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1467 "device tree specify a tbi-handle\n");
1468 return;
1469 }
1470
1471 tbiphy = of_phy_find_device(priv->tbi_node);
1472 if (!tbiphy) {
1473 dev_err(&dev->dev, "error: Could not get TBI device\n");
1474 return;
1475 }
1476
1477 /*
1478 * If the link is already up, we must already be ok, and don't need to
1479 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1480 * everything for us? Resetting it takes the link down and requires
1481 * several seconds for it to come back.
1482 */
1483 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1484 return;
1485
1486 /* Single clk mode, mii mode off(for serdes communication) */
1487 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1488
1489 phy_write(tbiphy, MII_ADVERTISE,
1490 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1491 ADVERTISE_1000XPSE_ASYM);
1492
1493 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1494 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1495 }
1496
1497 static void init_registers(struct net_device *dev)
1498 {
1499 struct gfar_private *priv = netdev_priv(dev);
1500 struct gfar __iomem *regs = NULL;
1501 int i = 0;
1502
1503 for (i = 0; i < priv->num_grps; i++) {
1504 regs = priv->gfargrp[i].regs;
1505 /* Clear IEVENT */
1506 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1507
1508 /* Initialize IMASK */
1509 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1510 }
1511
1512 regs = priv->gfargrp[0].regs;
1513 /* Init hash registers to zero */
1514 gfar_write(&regs->igaddr0, 0);
1515 gfar_write(&regs->igaddr1, 0);
1516 gfar_write(&regs->igaddr2, 0);
1517 gfar_write(&regs->igaddr3, 0);
1518 gfar_write(&regs->igaddr4, 0);
1519 gfar_write(&regs->igaddr5, 0);
1520 gfar_write(&regs->igaddr6, 0);
1521 gfar_write(&regs->igaddr7, 0);
1522
1523 gfar_write(&regs->gaddr0, 0);
1524 gfar_write(&regs->gaddr1, 0);
1525 gfar_write(&regs->gaddr2, 0);
1526 gfar_write(&regs->gaddr3, 0);
1527 gfar_write(&regs->gaddr4, 0);
1528 gfar_write(&regs->gaddr5, 0);
1529 gfar_write(&regs->gaddr6, 0);
1530 gfar_write(&regs->gaddr7, 0);
1531
1532 /* Zero out the rmon mib registers if it has them */
1533 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1534 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1535
1536 /* Mask off the CAM interrupts */
1537 gfar_write(&regs->rmon.cam1, 0xffffffff);
1538 gfar_write(&regs->rmon.cam2, 0xffffffff);
1539 }
1540
1541 /* Initialize the max receive buffer length */
1542 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1543
1544 /* Initialize the Minimum Frame Length Register */
1545 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1546 }
1547
1548
1549 /* Halt the receive and transmit queues */
1550 static void gfar_halt_nodisable(struct net_device *dev)
1551 {
1552 struct gfar_private *priv = netdev_priv(dev);
1553 struct gfar __iomem *regs = NULL;
1554 u32 tempval;
1555 int i = 0;
1556
1557 for (i = 0; i < priv->num_grps; i++) {
1558 regs = priv->gfargrp[i].regs;
1559 /* Mask all interrupts */
1560 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1561
1562 /* Clear all interrupts */
1563 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1564 }
1565
1566 regs = priv->gfargrp[0].regs;
1567 /* Stop the DMA, and wait for it to stop */
1568 tempval = gfar_read(&regs->dmactrl);
1569 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1570 != (DMACTRL_GRS | DMACTRL_GTS)) {
1571 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1572 gfar_write(&regs->dmactrl, tempval);
1573
1574 while (!(gfar_read(&regs->ievent) &
1575 (IEVENT_GRSC | IEVENT_GTSC)))
1576 cpu_relax();
1577 }
1578 }
1579
1580 /* Halt the receive and transmit queues */
1581 void gfar_halt(struct net_device *dev)
1582 {
1583 struct gfar_private *priv = netdev_priv(dev);
1584 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1585 u32 tempval;
1586
1587 gfar_halt_nodisable(dev);
1588
1589 /* Disable Rx and Tx */
1590 tempval = gfar_read(&regs->maccfg1);
1591 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1592 gfar_write(&regs->maccfg1, tempval);
1593 }
1594
1595 static void free_grp_irqs(struct gfar_priv_grp *grp)
1596 {
1597 free_irq(grp->interruptError, grp);
1598 free_irq(grp->interruptTransmit, grp);
1599 free_irq(grp->interruptReceive, grp);
1600 }
1601
1602 void stop_gfar(struct net_device *dev)
1603 {
1604 struct gfar_private *priv = netdev_priv(dev);
1605 unsigned long flags;
1606 int i;
1607
1608 phy_stop(priv->phydev);
1609
1610
1611 /* Lock it down */
1612 local_irq_save(flags);
1613 lock_tx_qs(priv);
1614 lock_rx_qs(priv);
1615
1616 gfar_halt(dev);
1617
1618 unlock_rx_qs(priv);
1619 unlock_tx_qs(priv);
1620 local_irq_restore(flags);
1621
1622 /* Free the IRQs */
1623 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1624 for (i = 0; i < priv->num_grps; i++)
1625 free_grp_irqs(&priv->gfargrp[i]);
1626 } else {
1627 for (i = 0; i < priv->num_grps; i++)
1628 free_irq(priv->gfargrp[i].interruptTransmit,
1629 &priv->gfargrp[i]);
1630 }
1631
1632 free_skb_resources(priv);
1633 }
1634
1635 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1636 {
1637 struct txbd8 *txbdp;
1638 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1639 int i, j;
1640
1641 txbdp = tx_queue->tx_bd_base;
1642
1643 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1644 if (!tx_queue->tx_skbuff[i])
1645 continue;
1646
1647 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1648 txbdp->length, DMA_TO_DEVICE);
1649 txbdp->lstatus = 0;
1650 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1651 j++) {
1652 txbdp++;
1653 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1654 txbdp->length, DMA_TO_DEVICE);
1655 }
1656 txbdp++;
1657 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1658 tx_queue->tx_skbuff[i] = NULL;
1659 }
1660 kfree(tx_queue->tx_skbuff);
1661 }
1662
1663 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1664 {
1665 struct rxbd8 *rxbdp;
1666 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1667 int i;
1668
1669 rxbdp = rx_queue->rx_bd_base;
1670
1671 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1672 if (rx_queue->rx_skbuff[i]) {
1673 dma_unmap_single(&priv->ofdev->dev,
1674 rxbdp->bufPtr, priv->rx_buffer_size,
1675 DMA_FROM_DEVICE);
1676 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1677 rx_queue->rx_skbuff[i] = NULL;
1678 }
1679 rxbdp->lstatus = 0;
1680 rxbdp->bufPtr = 0;
1681 rxbdp++;
1682 }
1683 kfree(rx_queue->rx_skbuff);
1684 }
1685
1686 /* If there are any tx skbs or rx skbs still around, free them.
1687 * Then free tx_skbuff and rx_skbuff */
1688 static void free_skb_resources(struct gfar_private *priv)
1689 {
1690 struct gfar_priv_tx_q *tx_queue = NULL;
1691 struct gfar_priv_rx_q *rx_queue = NULL;
1692 int i;
1693
1694 /* Go through all the buffer descriptors and free their data buffers */
1695 for (i = 0; i < priv->num_tx_queues; i++) {
1696 tx_queue = priv->tx_queue[i];
1697 if(tx_queue->tx_skbuff)
1698 free_skb_tx_queue(tx_queue);
1699 }
1700
1701 for (i = 0; i < priv->num_rx_queues; i++) {
1702 rx_queue = priv->rx_queue[i];
1703 if(rx_queue->rx_skbuff)
1704 free_skb_rx_queue(rx_queue);
1705 }
1706
1707 dma_free_coherent(&priv->ofdev->dev,
1708 sizeof(struct txbd8) * priv->total_tx_ring_size +
1709 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1710 priv->tx_queue[0]->tx_bd_base,
1711 priv->tx_queue[0]->tx_bd_dma_base);
1712 }
1713
1714 void gfar_start(struct net_device *dev)
1715 {
1716 struct gfar_private *priv = netdev_priv(dev);
1717 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1718 u32 tempval;
1719 int i = 0;
1720
1721 /* Enable Rx and Tx in MACCFG1 */
1722 tempval = gfar_read(&regs->maccfg1);
1723 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1724 gfar_write(&regs->maccfg1, tempval);
1725
1726 /* Initialize DMACTRL to have WWR and WOP */
1727 tempval = gfar_read(&regs->dmactrl);
1728 tempval |= DMACTRL_INIT_SETTINGS;
1729 gfar_write(&regs->dmactrl, tempval);
1730
1731 /* Make sure we aren't stopped */
1732 tempval = gfar_read(&regs->dmactrl);
1733 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1734 gfar_write(&regs->dmactrl, tempval);
1735
1736 for (i = 0; i < priv->num_grps; i++) {
1737 regs = priv->gfargrp[i].regs;
1738 /* Clear THLT/RHLT, so that the DMA starts polling now */
1739 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1740 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1741 /* Unmask the interrupts we look for */
1742 gfar_write(&regs->imask, IMASK_DEFAULT);
1743 }
1744
1745 dev->trans_start = jiffies;
1746 }
1747
1748 void gfar_configure_coalescing(struct gfar_private *priv,
1749 unsigned long tx_mask, unsigned long rx_mask)
1750 {
1751 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1752 u32 __iomem *baddr;
1753 int i = 0;
1754
1755 /* Backward compatible case ---- even if we enable
1756 * multiple queues, there's only single reg to program
1757 */
1758 gfar_write(&regs->txic, 0);
1759 if(likely(priv->tx_queue[0]->txcoalescing))
1760 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1761
1762 gfar_write(&regs->rxic, 0);
1763 if(unlikely(priv->rx_queue[0]->rxcoalescing))
1764 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1765
1766 if (priv->mode == MQ_MG_MODE) {
1767 baddr = &regs->txic0;
1768 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1769 if (likely(priv->tx_queue[i]->txcoalescing)) {
1770 gfar_write(baddr + i, 0);
1771 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1772 }
1773 }
1774
1775 baddr = &regs->rxic0;
1776 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1777 if (likely(priv->rx_queue[i]->rxcoalescing)) {
1778 gfar_write(baddr + i, 0);
1779 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1780 }
1781 }
1782 }
1783 }
1784
1785 static int register_grp_irqs(struct gfar_priv_grp *grp)
1786 {
1787 struct gfar_private *priv = grp->priv;
1788 struct net_device *dev = priv->ndev;
1789 int err;
1790
1791 /* If the device has multiple interrupts, register for
1792 * them. Otherwise, only register for the one */
1793 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1794 /* Install our interrupt handlers for Error,
1795 * Transmit, and Receive */
1796 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1797 grp->int_name_er,grp)) < 0) {
1798 if (netif_msg_intr(priv))
1799 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1800 dev->name, grp->interruptError);
1801
1802 goto err_irq_fail;
1803 }
1804
1805 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1806 0, grp->int_name_tx, grp)) < 0) {
1807 if (netif_msg_intr(priv))
1808 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1809 dev->name, grp->interruptTransmit);
1810 goto tx_irq_fail;
1811 }
1812
1813 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1814 grp->int_name_rx, grp)) < 0) {
1815 if (netif_msg_intr(priv))
1816 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1817 dev->name, grp->interruptReceive);
1818 goto rx_irq_fail;
1819 }
1820 } else {
1821 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1822 grp->int_name_tx, grp)) < 0) {
1823 if (netif_msg_intr(priv))
1824 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1825 dev->name, grp->interruptTransmit);
1826 goto err_irq_fail;
1827 }
1828 }
1829
1830 return 0;
1831
1832 rx_irq_fail:
1833 free_irq(grp->interruptTransmit, grp);
1834 tx_irq_fail:
1835 free_irq(grp->interruptError, grp);
1836 err_irq_fail:
1837 return err;
1838
1839 }
1840
1841 /* Bring the controller up and running */
1842 int startup_gfar(struct net_device *ndev)
1843 {
1844 struct gfar_private *priv = netdev_priv(ndev);
1845 struct gfar __iomem *regs = NULL;
1846 int err, i, j;
1847
1848 for (i = 0; i < priv->num_grps; i++) {
1849 regs= priv->gfargrp[i].regs;
1850 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1851 }
1852
1853 regs= priv->gfargrp[0].regs;
1854 err = gfar_alloc_skb_resources(ndev);
1855 if (err)
1856 return err;
1857
1858 gfar_init_mac(ndev);
1859
1860 for (i = 0; i < priv->num_grps; i++) {
1861 err = register_grp_irqs(&priv->gfargrp[i]);
1862 if (err) {
1863 for (j = 0; j < i; j++)
1864 free_grp_irqs(&priv->gfargrp[j]);
1865 goto irq_fail;
1866 }
1867 }
1868
1869 /* Start the controller */
1870 gfar_start(ndev);
1871
1872 phy_start(priv->phydev);
1873
1874 gfar_configure_coalescing(priv, 0xFF, 0xFF);
1875
1876 return 0;
1877
1878 irq_fail:
1879 free_skb_resources(priv);
1880 return err;
1881 }
1882
1883 /* Called when something needs to use the ethernet device */
1884 /* Returns 0 for success. */
1885 static int gfar_enet_open(struct net_device *dev)
1886 {
1887 struct gfar_private *priv = netdev_priv(dev);
1888 int err;
1889
1890 enable_napi(priv);
1891
1892 skb_queue_head_init(&priv->rx_recycle);
1893
1894 /* Initialize a bunch of registers */
1895 init_registers(dev);
1896
1897 gfar_set_mac_address(dev);
1898
1899 err = init_phy(dev);
1900
1901 if (err) {
1902 disable_napi(priv);
1903 return err;
1904 }
1905
1906 err = startup_gfar(dev);
1907 if (err) {
1908 disable_napi(priv);
1909 return err;
1910 }
1911
1912 netif_tx_start_all_queues(dev);
1913
1914 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1915
1916 return err;
1917 }
1918
1919 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1920 {
1921 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1922
1923 memset(fcb, 0, GMAC_FCB_LEN);
1924
1925 return fcb;
1926 }
1927
1928 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1929 {
1930 u8 flags = 0;
1931
1932 /* If we're here, it's a IP packet with a TCP or UDP
1933 * payload. We set it to checksum, using a pseudo-header
1934 * we provide
1935 */
1936 flags = TXFCB_DEFAULT;
1937
1938 /* Tell the controller what the protocol is */
1939 /* And provide the already calculated phcs */
1940 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1941 flags |= TXFCB_UDP;
1942 fcb->phcs = udp_hdr(skb)->check;
1943 } else
1944 fcb->phcs = tcp_hdr(skb)->check;
1945
1946 /* l3os is the distance between the start of the
1947 * frame (skb->data) and the start of the IP hdr.
1948 * l4os is the distance between the start of the
1949 * l3 hdr and the l4 hdr */
1950 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1951 fcb->l4os = skb_network_header_len(skb);
1952
1953 fcb->flags = flags;
1954 }
1955
1956 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1957 {
1958 fcb->flags |= TXFCB_VLN;
1959 fcb->vlctl = vlan_tx_tag_get(skb);
1960 }
1961
1962 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1963 struct txbd8 *base, int ring_size)
1964 {
1965 struct txbd8 *new_bd = bdp + stride;
1966
1967 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1968 }
1969
1970 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1971 int ring_size)
1972 {
1973 return skip_txbd(bdp, 1, base, ring_size);
1974 }
1975
1976 /* This is called by the kernel when a frame is ready for transmission. */
1977 /* It is pointed to by the dev->hard_start_xmit function pointer */
1978 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1979 {
1980 struct gfar_private *priv = netdev_priv(dev);
1981 struct gfar_priv_tx_q *tx_queue = NULL;
1982 struct netdev_queue *txq;
1983 struct gfar __iomem *regs = NULL;
1984 struct txfcb *fcb = NULL;
1985 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1986 u32 lstatus;
1987 int i, rq = 0, do_tstamp = 0;
1988 u32 bufaddr;
1989 unsigned long flags;
1990 unsigned int nr_frags, nr_txbds, length;
1991 union skb_shared_tx *shtx;
1992
1993 rq = skb->queue_mapping;
1994 tx_queue = priv->tx_queue[rq];
1995 txq = netdev_get_tx_queue(dev, rq);
1996 base = tx_queue->tx_bd_base;
1997 regs = tx_queue->grp->regs;
1998 shtx = skb_tx(skb);
1999
2000 /* check if time stamp should be generated */
2001 if (unlikely(shtx->hardware && priv->hwts_tx_en))
2002 do_tstamp = 1;
2003
2004 /* make space for additional header when fcb is needed */
2005 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2006 (priv->vlgrp && vlan_tx_tag_present(skb)) ||
2007 unlikely(do_tstamp)) &&
2008 (skb_headroom(skb) < GMAC_FCB_LEN)) {
2009 struct sk_buff *skb_new;
2010
2011 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
2012 if (!skb_new) {
2013 dev->stats.tx_errors++;
2014 kfree_skb(skb);
2015 return NETDEV_TX_OK;
2016 }
2017 kfree_skb(skb);
2018 skb = skb_new;
2019 }
2020
2021 /* total number of fragments in the SKB */
2022 nr_frags = skb_shinfo(skb)->nr_frags;
2023
2024 /* calculate the required number of TxBDs for this skb */
2025 if (unlikely(do_tstamp))
2026 nr_txbds = nr_frags + 2;
2027 else
2028 nr_txbds = nr_frags + 1;
2029
2030 /* check if there is space to queue this packet */
2031 if (nr_txbds > tx_queue->num_txbdfree) {
2032 /* no space, stop the queue */
2033 netif_tx_stop_queue(txq);
2034 dev->stats.tx_fifo_errors++;
2035 return NETDEV_TX_BUSY;
2036 }
2037
2038 /* Update transmit stats */
2039 txq->tx_bytes += skb->len;
2040 txq->tx_packets ++;
2041
2042 txbdp = txbdp_start = tx_queue->cur_tx;
2043 lstatus = txbdp->lstatus;
2044
2045 /* Time stamp insertion requires one additional TxBD */
2046 if (unlikely(do_tstamp))
2047 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2048 tx_queue->tx_ring_size);
2049
2050 if (nr_frags == 0) {
2051 if (unlikely(do_tstamp))
2052 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2053 TXBD_INTERRUPT);
2054 else
2055 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2056 } else {
2057 /* Place the fragment addresses and lengths into the TxBDs */
2058 for (i = 0; i < nr_frags; i++) {
2059 /* Point at the next BD, wrapping as needed */
2060 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2061
2062 length = skb_shinfo(skb)->frags[i].size;
2063
2064 lstatus = txbdp->lstatus | length |
2065 BD_LFLAG(TXBD_READY);
2066
2067 /* Handle the last BD specially */
2068 if (i == nr_frags - 1)
2069 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2070
2071 bufaddr = dma_map_page(&priv->ofdev->dev,
2072 skb_shinfo(skb)->frags[i].page,
2073 skb_shinfo(skb)->frags[i].page_offset,
2074 length,
2075 DMA_TO_DEVICE);
2076
2077 /* set the TxBD length and buffer pointer */
2078 txbdp->bufPtr = bufaddr;
2079 txbdp->lstatus = lstatus;
2080 }
2081
2082 lstatus = txbdp_start->lstatus;
2083 }
2084
2085 /* Set up checksumming */
2086 if (CHECKSUM_PARTIAL == skb->ip_summed) {
2087 fcb = gfar_add_fcb(skb);
2088 lstatus |= BD_LFLAG(TXBD_TOE);
2089 gfar_tx_checksum(skb, fcb);
2090 }
2091
2092 if (priv->vlgrp && vlan_tx_tag_present(skb)) {
2093 if (unlikely(NULL == fcb)) {
2094 fcb = gfar_add_fcb(skb);
2095 lstatus |= BD_LFLAG(TXBD_TOE);
2096 }
2097
2098 gfar_tx_vlan(skb, fcb);
2099 }
2100
2101 /* Setup tx hardware time stamping if requested */
2102 if (unlikely(do_tstamp)) {
2103 shtx->in_progress = 1;
2104 if (fcb == NULL)
2105 fcb = gfar_add_fcb(skb);
2106 fcb->ptp = 1;
2107 lstatus |= BD_LFLAG(TXBD_TOE);
2108 }
2109
2110 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2111 skb_headlen(skb), DMA_TO_DEVICE);
2112
2113 /*
2114 * If time stamping is requested one additional TxBD must be set up. The
2115 * first TxBD points to the FCB and must have a data length of
2116 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2117 * the full frame length.
2118 */
2119 if (unlikely(do_tstamp)) {
2120 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + GMAC_FCB_LEN;
2121 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2122 (skb_headlen(skb) - GMAC_FCB_LEN);
2123 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2124 } else {
2125 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2126 }
2127
2128 /*
2129 * We can work in parallel with gfar_clean_tx_ring(), except
2130 * when modifying num_txbdfree. Note that we didn't grab the lock
2131 * when we were reading the num_txbdfree and checking for available
2132 * space, that's because outside of this function it can only grow,
2133 * and once we've got needed space, it cannot suddenly disappear.
2134 *
2135 * The lock also protects us from gfar_error(), which can modify
2136 * regs->tstat and thus retrigger the transfers, which is why we
2137 * also must grab the lock before setting ready bit for the first
2138 * to be transmitted BD.
2139 */
2140 spin_lock_irqsave(&tx_queue->txlock, flags);
2141
2142 /*
2143 * The powerpc-specific eieio() is used, as wmb() has too strong
2144 * semantics (it requires synchronization between cacheable and
2145 * uncacheable mappings, which eieio doesn't provide and which we
2146 * don't need), thus requiring a more expensive sync instruction. At
2147 * some point, the set of architecture-independent barrier functions
2148 * should be expanded to include weaker barriers.
2149 */
2150 eieio();
2151
2152 txbdp_start->lstatus = lstatus;
2153
2154 eieio(); /* force lstatus write before tx_skbuff */
2155
2156 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2157
2158 /* Update the current skb pointer to the next entry we will use
2159 * (wrapping if necessary) */
2160 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2161 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2162
2163 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2164
2165 /* reduce TxBD free count */
2166 tx_queue->num_txbdfree -= (nr_txbds);
2167
2168 dev->trans_start = jiffies;
2169
2170 /* If the next BD still needs to be cleaned up, then the bds
2171 are full. We need to tell the kernel to stop sending us stuff. */
2172 if (!tx_queue->num_txbdfree) {
2173 netif_tx_stop_queue(txq);
2174
2175 dev->stats.tx_fifo_errors++;
2176 }
2177
2178 /* Tell the DMA to go go go */
2179 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2180
2181 /* Unlock priv */
2182 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2183
2184 return NETDEV_TX_OK;
2185 }
2186
2187 /* Stops the kernel queue, and halts the controller */
2188 static int gfar_close(struct net_device *dev)
2189 {
2190 struct gfar_private *priv = netdev_priv(dev);
2191
2192 disable_napi(priv);
2193
2194 skb_queue_purge(&priv->rx_recycle);
2195 cancel_work_sync(&priv->reset_task);
2196 stop_gfar(dev);
2197
2198 /* Disconnect from the PHY */
2199 phy_disconnect(priv->phydev);
2200 priv->phydev = NULL;
2201
2202 netif_tx_stop_all_queues(dev);
2203
2204 return 0;
2205 }
2206
2207 /* Changes the mac address if the controller is not running. */
2208 static int gfar_set_mac_address(struct net_device *dev)
2209 {
2210 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2211
2212 return 0;
2213 }
2214
2215
2216 /* Enables and disables VLAN insertion/extraction */
2217 static void gfar_vlan_rx_register(struct net_device *dev,
2218 struct vlan_group *grp)
2219 {
2220 struct gfar_private *priv = netdev_priv(dev);
2221 struct gfar __iomem *regs = NULL;
2222 unsigned long flags;
2223 u32 tempval;
2224
2225 regs = priv->gfargrp[0].regs;
2226 local_irq_save(flags);
2227 lock_rx_qs(priv);
2228
2229 priv->vlgrp = grp;
2230
2231 if (grp) {
2232 /* Enable VLAN tag insertion */
2233 tempval = gfar_read(&regs->tctrl);
2234 tempval |= TCTRL_VLINS;
2235
2236 gfar_write(&regs->tctrl, tempval);
2237
2238 /* Enable VLAN tag extraction */
2239 tempval = gfar_read(&regs->rctrl);
2240 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2241 gfar_write(&regs->rctrl, tempval);
2242 } else {
2243 /* Disable VLAN tag insertion */
2244 tempval = gfar_read(&regs->tctrl);
2245 tempval &= ~TCTRL_VLINS;
2246 gfar_write(&regs->tctrl, tempval);
2247
2248 /* Disable VLAN tag extraction */
2249 tempval = gfar_read(&regs->rctrl);
2250 tempval &= ~RCTRL_VLEX;
2251 /* If parse is no longer required, then disable parser */
2252 if (tempval & RCTRL_REQ_PARSER)
2253 tempval |= RCTRL_PRSDEP_INIT;
2254 else
2255 tempval &= ~RCTRL_PRSDEP_INIT;
2256 gfar_write(&regs->rctrl, tempval);
2257 }
2258
2259 gfar_change_mtu(dev, dev->mtu);
2260
2261 unlock_rx_qs(priv);
2262 local_irq_restore(flags);
2263 }
2264
2265 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2266 {
2267 int tempsize, tempval;
2268 struct gfar_private *priv = netdev_priv(dev);
2269 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2270 int oldsize = priv->rx_buffer_size;
2271 int frame_size = new_mtu + ETH_HLEN;
2272
2273 if (priv->vlgrp)
2274 frame_size += VLAN_HLEN;
2275
2276 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2277 if (netif_msg_drv(priv))
2278 printk(KERN_ERR "%s: Invalid MTU setting\n",
2279 dev->name);
2280 return -EINVAL;
2281 }
2282
2283 if (gfar_uses_fcb(priv))
2284 frame_size += GMAC_FCB_LEN;
2285
2286 frame_size += priv->padding;
2287
2288 tempsize =
2289 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2290 INCREMENTAL_BUFFER_SIZE;
2291
2292 /* Only stop and start the controller if it isn't already
2293 * stopped, and we changed something */
2294 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2295 stop_gfar(dev);
2296
2297 priv->rx_buffer_size = tempsize;
2298
2299 dev->mtu = new_mtu;
2300
2301 gfar_write(&regs->mrblr, priv->rx_buffer_size);
2302 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2303
2304 /* If the mtu is larger than the max size for standard
2305 * ethernet frames (ie, a jumbo frame), then set maccfg2
2306 * to allow huge frames, and to check the length */
2307 tempval = gfar_read(&regs->maccfg2);
2308
2309 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
2310 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2311 else
2312 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2313
2314 gfar_write(&regs->maccfg2, tempval);
2315
2316 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2317 startup_gfar(dev);
2318
2319 return 0;
2320 }
2321
2322 /* gfar_reset_task gets scheduled when a packet has not been
2323 * transmitted after a set amount of time.
2324 * For now, assume that clearing out all the structures, and
2325 * starting over will fix the problem.
2326 */
2327 static void gfar_reset_task(struct work_struct *work)
2328 {
2329 struct gfar_private *priv = container_of(work, struct gfar_private,
2330 reset_task);
2331 struct net_device *dev = priv->ndev;
2332
2333 if (dev->flags & IFF_UP) {
2334 netif_tx_stop_all_queues(dev);
2335 stop_gfar(dev);
2336 startup_gfar(dev);
2337 netif_tx_start_all_queues(dev);
2338 }
2339
2340 netif_tx_schedule_all(dev);
2341 }
2342
2343 static void gfar_timeout(struct net_device *dev)
2344 {
2345 struct gfar_private *priv = netdev_priv(dev);
2346
2347 dev->stats.tx_errors++;
2348 schedule_work(&priv->reset_task);
2349 }
2350
2351 /* Interrupt Handler for Transmit complete */
2352 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2353 {
2354 struct net_device *dev = tx_queue->dev;
2355 struct gfar_private *priv = netdev_priv(dev);
2356 struct gfar_priv_rx_q *rx_queue = NULL;
2357 struct txbd8 *bdp, *next = NULL;
2358 struct txbd8 *lbdp = NULL;
2359 struct txbd8 *base = tx_queue->tx_bd_base;
2360 struct sk_buff *skb;
2361 int skb_dirtytx;
2362 int tx_ring_size = tx_queue->tx_ring_size;
2363 int frags = 0, nr_txbds = 0;
2364 int i;
2365 int howmany = 0;
2366 u32 lstatus;
2367 size_t buflen;
2368 union skb_shared_tx *shtx;
2369
2370 rx_queue = priv->rx_queue[tx_queue->qindex];
2371 bdp = tx_queue->dirty_tx;
2372 skb_dirtytx = tx_queue->skb_dirtytx;
2373
2374 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2375 unsigned long flags;
2376
2377 frags = skb_shinfo(skb)->nr_frags;
2378
2379 /*
2380 * When time stamping, one additional TxBD must be freed.
2381 * Also, we need to dma_unmap_single() the TxPAL.
2382 */
2383 shtx = skb_tx(skb);
2384 if (unlikely(shtx->in_progress))
2385 nr_txbds = frags + 2;
2386 else
2387 nr_txbds = frags + 1;
2388
2389 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2390
2391 lstatus = lbdp->lstatus;
2392
2393 /* Only clean completed frames */
2394 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2395 (lstatus & BD_LENGTH_MASK))
2396 break;
2397
2398 if (unlikely(shtx->in_progress)) {
2399 next = next_txbd(bdp, base, tx_ring_size);
2400 buflen = next->length + GMAC_FCB_LEN;
2401 } else
2402 buflen = bdp->length;
2403
2404 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2405 buflen, DMA_TO_DEVICE);
2406
2407 if (unlikely(shtx->in_progress)) {
2408 struct skb_shared_hwtstamps shhwtstamps;
2409 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2410 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2411 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2412 skb_tstamp_tx(skb, &shhwtstamps);
2413 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2414 bdp = next;
2415 }
2416
2417 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2418 bdp = next_txbd(bdp, base, tx_ring_size);
2419
2420 for (i = 0; i < frags; i++) {
2421 dma_unmap_page(&priv->ofdev->dev,
2422 bdp->bufPtr,
2423 bdp->length,
2424 DMA_TO_DEVICE);
2425 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2426 bdp = next_txbd(bdp, base, tx_ring_size);
2427 }
2428
2429 /*
2430 * If there's room in the queue (limit it to rx_buffer_size)
2431 * we add this skb back into the pool, if it's the right size
2432 */
2433 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2434 skb_recycle_check(skb, priv->rx_buffer_size +
2435 RXBUF_ALIGNMENT))
2436 __skb_queue_head(&priv->rx_recycle, skb);
2437 else
2438 dev_kfree_skb_any(skb);
2439
2440 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2441
2442 skb_dirtytx = (skb_dirtytx + 1) &
2443 TX_RING_MOD_MASK(tx_ring_size);
2444
2445 howmany++;
2446 spin_lock_irqsave(&tx_queue->txlock, flags);
2447 tx_queue->num_txbdfree += nr_txbds;
2448 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2449 }
2450
2451 /* If we freed a buffer, we can restart transmission, if necessary */
2452 if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2453 netif_wake_subqueue(dev, tx_queue->qindex);
2454
2455 /* Update dirty indicators */
2456 tx_queue->skb_dirtytx = skb_dirtytx;
2457 tx_queue->dirty_tx = bdp;
2458
2459 return howmany;
2460 }
2461
2462 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2463 {
2464 unsigned long flags;
2465
2466 spin_lock_irqsave(&gfargrp->grplock, flags);
2467 if (napi_schedule_prep(&gfargrp->napi)) {
2468 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2469 __napi_schedule(&gfargrp->napi);
2470 } else {
2471 /*
2472 * Clear IEVENT, so interrupts aren't called again
2473 * because of the packets that have already arrived.
2474 */
2475 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2476 }
2477 spin_unlock_irqrestore(&gfargrp->grplock, flags);
2478
2479 }
2480
2481 /* Interrupt Handler for Transmit complete */
2482 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2483 {
2484 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2485 return IRQ_HANDLED;
2486 }
2487
2488 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2489 struct sk_buff *skb)
2490 {
2491 struct net_device *dev = rx_queue->dev;
2492 struct gfar_private *priv = netdev_priv(dev);
2493 dma_addr_t buf;
2494
2495 buf = dma_map_single(&priv->ofdev->dev, skb->data,
2496 priv->rx_buffer_size, DMA_FROM_DEVICE);
2497 gfar_init_rxbdp(rx_queue, bdp, buf);
2498 }
2499
2500
2501 struct sk_buff * gfar_new_skb(struct net_device *dev)
2502 {
2503 unsigned int alignamount;
2504 struct gfar_private *priv = netdev_priv(dev);
2505 struct sk_buff *skb = NULL;
2506
2507 skb = __skb_dequeue(&priv->rx_recycle);
2508 if (!skb)
2509 skb = netdev_alloc_skb(dev,
2510 priv->rx_buffer_size + RXBUF_ALIGNMENT);
2511
2512 if (!skb)
2513 return NULL;
2514
2515 alignamount = RXBUF_ALIGNMENT -
2516 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
2517
2518 /* We need the data buffer to be aligned properly. We will reserve
2519 * as many bytes as needed to align the data properly
2520 */
2521 skb_reserve(skb, alignamount);
2522 GFAR_CB(skb)->alignamount = alignamount;
2523
2524 return skb;
2525 }
2526
2527 static inline void count_errors(unsigned short status, struct net_device *dev)
2528 {
2529 struct gfar_private *priv = netdev_priv(dev);
2530 struct net_device_stats *stats = &dev->stats;
2531 struct gfar_extra_stats *estats = &priv->extra_stats;
2532
2533 /* If the packet was truncated, none of the other errors
2534 * matter */
2535 if (status & RXBD_TRUNCATED) {
2536 stats->rx_length_errors++;
2537
2538 estats->rx_trunc++;
2539
2540 return;
2541 }
2542 /* Count the errors, if there were any */
2543 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2544 stats->rx_length_errors++;
2545
2546 if (status & RXBD_LARGE)
2547 estats->rx_large++;
2548 else
2549 estats->rx_short++;
2550 }
2551 if (status & RXBD_NONOCTET) {
2552 stats->rx_frame_errors++;
2553 estats->rx_nonoctet++;
2554 }
2555 if (status & RXBD_CRCERR) {
2556 estats->rx_crcerr++;
2557 stats->rx_crc_errors++;
2558 }
2559 if (status & RXBD_OVERRUN) {
2560 estats->rx_overrun++;
2561 stats->rx_crc_errors++;
2562 }
2563 }
2564
2565 irqreturn_t gfar_receive(int irq, void *grp_id)
2566 {
2567 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2568 return IRQ_HANDLED;
2569 }
2570
2571 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2572 {
2573 /* If valid headers were found, and valid sums
2574 * were verified, then we tell the kernel that no
2575 * checksumming is necessary. Otherwise, it is */
2576 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2577 skb->ip_summed = CHECKSUM_UNNECESSARY;
2578 else
2579 skb->ip_summed = CHECKSUM_NONE;
2580 }
2581
2582
2583 /* gfar_process_frame() -- handle one incoming packet if skb
2584 * isn't NULL. */
2585 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2586 int amount_pull)
2587 {
2588 struct gfar_private *priv = netdev_priv(dev);
2589 struct rxfcb *fcb = NULL;
2590
2591 int ret;
2592
2593 /* fcb is at the beginning if exists */
2594 fcb = (struct rxfcb *)skb->data;
2595
2596 /* Remove the FCB from the skb */
2597 /* Remove the padded bytes, if there are any */
2598 if (amount_pull) {
2599 skb_record_rx_queue(skb, fcb->rq);
2600 skb_pull(skb, amount_pull);
2601 }
2602
2603 /* Get receive timestamp from the skb */
2604 if (priv->hwts_rx_en) {
2605 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2606 u64 *ns = (u64 *) skb->data;
2607 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2608 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2609 }
2610
2611 if (priv->padding)
2612 skb_pull(skb, priv->padding);
2613
2614 if (priv->rx_csum_enable)
2615 gfar_rx_checksum(skb, fcb);
2616
2617 /* Tell the skb what kind of packet this is */
2618 skb->protocol = eth_type_trans(skb, dev);
2619
2620 /* Send the packet up the stack */
2621 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2622 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2623 else
2624 ret = netif_receive_skb(skb);
2625
2626 if (NET_RX_DROP == ret)
2627 priv->extra_stats.kernel_dropped++;
2628
2629 return 0;
2630 }
2631
2632 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2633 * until the budget/quota has been reached. Returns the number
2634 * of frames handled
2635 */
2636 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2637 {
2638 struct net_device *dev = rx_queue->dev;
2639 struct rxbd8 *bdp, *base;
2640 struct sk_buff *skb;
2641 int pkt_len;
2642 int amount_pull;
2643 int howmany = 0;
2644 struct gfar_private *priv = netdev_priv(dev);
2645
2646 /* Get the first full descriptor */
2647 bdp = rx_queue->cur_rx;
2648 base = rx_queue->rx_bd_base;
2649
2650 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2651
2652 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2653 struct sk_buff *newskb;
2654 rmb();
2655
2656 /* Add another skb for the future */
2657 newskb = gfar_new_skb(dev);
2658
2659 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2660
2661 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2662 priv->rx_buffer_size, DMA_FROM_DEVICE);
2663
2664 /* We drop the frame if we failed to allocate a new buffer */
2665 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2666 bdp->status & RXBD_ERR)) {
2667 count_errors(bdp->status, dev);
2668
2669 if (unlikely(!newskb))
2670 newskb = skb;
2671 else if (skb) {
2672 /*
2673 * We need to un-reserve() the skb to what it
2674 * was before gfar_new_skb() re-aligned
2675 * it to an RXBUF_ALIGNMENT boundary
2676 * before we put the skb back on the
2677 * recycle list.
2678 */
2679 skb_reserve(skb, -GFAR_CB(skb)->alignamount);
2680 __skb_queue_head(&priv->rx_recycle, skb);
2681 }
2682 } else {
2683 /* Increment the number of packets */
2684 rx_queue->stats.rx_packets++;
2685 howmany++;
2686
2687 if (likely(skb)) {
2688 pkt_len = bdp->length - ETH_FCS_LEN;
2689 /* Remove the FCS from the packet length */
2690 skb_put(skb, pkt_len);
2691 rx_queue->stats.rx_bytes += pkt_len;
2692 skb_record_rx_queue(skb, rx_queue->qindex);
2693 gfar_process_frame(dev, skb, amount_pull);
2694
2695 } else {
2696 if (netif_msg_rx_err(priv))
2697 printk(KERN_WARNING
2698 "%s: Missing skb!\n", dev->name);
2699 rx_queue->stats.rx_dropped++;
2700 priv->extra_stats.rx_skbmissing++;
2701 }
2702
2703 }
2704
2705 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2706
2707 /* Setup the new bdp */
2708 gfar_new_rxbdp(rx_queue, bdp, newskb);
2709
2710 /* Update to the next pointer */
2711 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2712
2713 /* update to point at the next skb */
2714 rx_queue->skb_currx =
2715 (rx_queue->skb_currx + 1) &
2716 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2717 }
2718
2719 /* Update the current rxbd pointer to be the next one */
2720 rx_queue->cur_rx = bdp;
2721
2722 return howmany;
2723 }
2724
2725 static int gfar_poll(struct napi_struct *napi, int budget)
2726 {
2727 struct gfar_priv_grp *gfargrp = container_of(napi,
2728 struct gfar_priv_grp, napi);
2729 struct gfar_private *priv = gfargrp->priv;
2730 struct gfar __iomem *regs = gfargrp->regs;
2731 struct gfar_priv_tx_q *tx_queue = NULL;
2732 struct gfar_priv_rx_q *rx_queue = NULL;
2733 int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2734 int tx_cleaned = 0, i, left_over_budget = budget;
2735 unsigned long serviced_queues = 0;
2736 int num_queues = 0;
2737
2738 num_queues = gfargrp->num_rx_queues;
2739 budget_per_queue = budget/num_queues;
2740
2741 /* Clear IEVENT, so interrupts aren't called again
2742 * because of the packets that have already arrived */
2743 gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2744
2745 while (num_queues && left_over_budget) {
2746
2747 budget_per_queue = left_over_budget/num_queues;
2748 left_over_budget = 0;
2749
2750 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2751 if (test_bit(i, &serviced_queues))
2752 continue;
2753 rx_queue = priv->rx_queue[i];
2754 tx_queue = priv->tx_queue[rx_queue->qindex];
2755
2756 tx_cleaned += gfar_clean_tx_ring(tx_queue);
2757 rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2758 budget_per_queue);
2759 rx_cleaned += rx_cleaned_per_queue;
2760 if(rx_cleaned_per_queue < budget_per_queue) {
2761 left_over_budget = left_over_budget +
2762 (budget_per_queue - rx_cleaned_per_queue);
2763 set_bit(i, &serviced_queues);
2764 num_queues--;
2765 }
2766 }
2767 }
2768
2769 if (tx_cleaned)
2770 return budget;
2771
2772 if (rx_cleaned < budget) {
2773 napi_complete(napi);
2774
2775 /* Clear the halt bit in RSTAT */
2776 gfar_write(&regs->rstat, gfargrp->rstat);
2777
2778 gfar_write(&regs->imask, IMASK_DEFAULT);
2779
2780 /* If we are coalescing interrupts, update the timer */
2781 /* Otherwise, clear it */
2782 gfar_configure_coalescing(priv,
2783 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2784 }
2785
2786 return rx_cleaned;
2787 }
2788
2789 #ifdef CONFIG_NET_POLL_CONTROLLER
2790 /*
2791 * Polling 'interrupt' - used by things like netconsole to send skbs
2792 * without having to re-enable interrupts. It's not called while
2793 * the interrupt routine is executing.
2794 */
2795 static void gfar_netpoll(struct net_device *dev)
2796 {
2797 struct gfar_private *priv = netdev_priv(dev);
2798 int i = 0;
2799
2800 /* If the device has multiple interrupts, run tx/rx */
2801 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2802 for (i = 0; i < priv->num_grps; i++) {
2803 disable_irq(priv->gfargrp[i].interruptTransmit);
2804 disable_irq(priv->gfargrp[i].interruptReceive);
2805 disable_irq(priv->gfargrp[i].interruptError);
2806 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2807 &priv->gfargrp[i]);
2808 enable_irq(priv->gfargrp[i].interruptError);
2809 enable_irq(priv->gfargrp[i].interruptReceive);
2810 enable_irq(priv->gfargrp[i].interruptTransmit);
2811 }
2812 } else {
2813 for (i = 0; i < priv->num_grps; i++) {
2814 disable_irq(priv->gfargrp[i].interruptTransmit);
2815 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2816 &priv->gfargrp[i]);
2817 enable_irq(priv->gfargrp[i].interruptTransmit);
2818 }
2819 }
2820 }
2821 #endif
2822
2823 /* The interrupt handler for devices with one interrupt */
2824 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2825 {
2826 struct gfar_priv_grp *gfargrp = grp_id;
2827
2828 /* Save ievent for future reference */
2829 u32 events = gfar_read(&gfargrp->regs->ievent);
2830
2831 /* Check for reception */
2832 if (events & IEVENT_RX_MASK)
2833 gfar_receive(irq, grp_id);
2834
2835 /* Check for transmit completion */
2836 if (events & IEVENT_TX_MASK)
2837 gfar_transmit(irq, grp_id);
2838
2839 /* Check for errors */
2840 if (events & IEVENT_ERR_MASK)
2841 gfar_error(irq, grp_id);
2842
2843 return IRQ_HANDLED;
2844 }
2845
2846 /* Called every time the controller might need to be made
2847 * aware of new link state. The PHY code conveys this
2848 * information through variables in the phydev structure, and this
2849 * function converts those variables into the appropriate
2850 * register values, and can bring down the device if needed.
2851 */
2852 static void adjust_link(struct net_device *dev)
2853 {
2854 struct gfar_private *priv = netdev_priv(dev);
2855 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2856 unsigned long flags;
2857 struct phy_device *phydev = priv->phydev;
2858 int new_state = 0;
2859
2860 local_irq_save(flags);
2861 lock_tx_qs(priv);
2862
2863 if (phydev->link) {
2864 u32 tempval = gfar_read(&regs->maccfg2);
2865 u32 ecntrl = gfar_read(&regs->ecntrl);
2866
2867 /* Now we make sure that we can be in full duplex mode.
2868 * If not, we operate in half-duplex mode. */
2869 if (phydev->duplex != priv->oldduplex) {
2870 new_state = 1;
2871 if (!(phydev->duplex))
2872 tempval &= ~(MACCFG2_FULL_DUPLEX);
2873 else
2874 tempval |= MACCFG2_FULL_DUPLEX;
2875
2876 priv->oldduplex = phydev->duplex;
2877 }
2878
2879 if (phydev->speed != priv->oldspeed) {
2880 new_state = 1;
2881 switch (phydev->speed) {
2882 case 1000:
2883 tempval =
2884 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2885
2886 ecntrl &= ~(ECNTRL_R100);
2887 break;
2888 case 100:
2889 case 10:
2890 tempval =
2891 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2892
2893 /* Reduced mode distinguishes
2894 * between 10 and 100 */
2895 if (phydev->speed == SPEED_100)
2896 ecntrl |= ECNTRL_R100;
2897 else
2898 ecntrl &= ~(ECNTRL_R100);
2899 break;
2900 default:
2901 if (netif_msg_link(priv))
2902 printk(KERN_WARNING
2903 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2904 dev->name, phydev->speed);
2905 break;
2906 }
2907
2908 priv->oldspeed = phydev->speed;
2909 }
2910
2911 gfar_write(&regs->maccfg2, tempval);
2912 gfar_write(&regs->ecntrl, ecntrl);
2913
2914 if (!priv->oldlink) {
2915 new_state = 1;
2916 priv->oldlink = 1;
2917 }
2918 } else if (priv->oldlink) {
2919 new_state = 1;
2920 priv->oldlink = 0;
2921 priv->oldspeed = 0;
2922 priv->oldduplex = -1;
2923 }
2924
2925 if (new_state && netif_msg_link(priv))
2926 phy_print_status(phydev);
2927 unlock_tx_qs(priv);
2928 local_irq_restore(flags);
2929 }
2930
2931 /* Update the hash table based on the current list of multicast
2932 * addresses we subscribe to. Also, change the promiscuity of
2933 * the device based on the flags (this function is called
2934 * whenever dev->flags is changed */
2935 static void gfar_set_multi(struct net_device *dev)
2936 {
2937 struct netdev_hw_addr *ha;
2938 struct gfar_private *priv = netdev_priv(dev);
2939 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2940 u32 tempval;
2941
2942 if (dev->flags & IFF_PROMISC) {
2943 /* Set RCTRL to PROM */
2944 tempval = gfar_read(&regs->rctrl);
2945 tempval |= RCTRL_PROM;
2946 gfar_write(&regs->rctrl, tempval);
2947 } else {
2948 /* Set RCTRL to not PROM */
2949 tempval = gfar_read(&regs->rctrl);
2950 tempval &= ~(RCTRL_PROM);
2951 gfar_write(&regs->rctrl, tempval);
2952 }
2953
2954 if (dev->flags & IFF_ALLMULTI) {
2955 /* Set the hash to rx all multicast frames */
2956 gfar_write(&regs->igaddr0, 0xffffffff);
2957 gfar_write(&regs->igaddr1, 0xffffffff);
2958 gfar_write(&regs->igaddr2, 0xffffffff);
2959 gfar_write(&regs->igaddr3, 0xffffffff);
2960 gfar_write(&regs->igaddr4, 0xffffffff);
2961 gfar_write(&regs->igaddr5, 0xffffffff);
2962 gfar_write(&regs->igaddr6, 0xffffffff);
2963 gfar_write(&regs->igaddr7, 0xffffffff);
2964 gfar_write(&regs->gaddr0, 0xffffffff);
2965 gfar_write(&regs->gaddr1, 0xffffffff);
2966 gfar_write(&regs->gaddr2, 0xffffffff);
2967 gfar_write(&regs->gaddr3, 0xffffffff);
2968 gfar_write(&regs->gaddr4, 0xffffffff);
2969 gfar_write(&regs->gaddr5, 0xffffffff);
2970 gfar_write(&regs->gaddr6, 0xffffffff);
2971 gfar_write(&regs->gaddr7, 0xffffffff);
2972 } else {
2973 int em_num;
2974 int idx;
2975
2976 /* zero out the hash */
2977 gfar_write(&regs->igaddr0, 0x0);
2978 gfar_write(&regs->igaddr1, 0x0);
2979 gfar_write(&regs->igaddr2, 0x0);
2980 gfar_write(&regs->igaddr3, 0x0);
2981 gfar_write(&regs->igaddr4, 0x0);
2982 gfar_write(&regs->igaddr5, 0x0);
2983 gfar_write(&regs->igaddr6, 0x0);
2984 gfar_write(&regs->igaddr7, 0x0);
2985 gfar_write(&regs->gaddr0, 0x0);
2986 gfar_write(&regs->gaddr1, 0x0);
2987 gfar_write(&regs->gaddr2, 0x0);
2988 gfar_write(&regs->gaddr3, 0x0);
2989 gfar_write(&regs->gaddr4, 0x0);
2990 gfar_write(&regs->gaddr5, 0x0);
2991 gfar_write(&regs->gaddr6, 0x0);
2992 gfar_write(&regs->gaddr7, 0x0);
2993
2994 /* If we have extended hash tables, we need to
2995 * clear the exact match registers to prepare for
2996 * setting them */
2997 if (priv->extended_hash) {
2998 em_num = GFAR_EM_NUM + 1;
2999 gfar_clear_exact_match(dev);
3000 idx = 1;
3001 } else {
3002 idx = 0;
3003 em_num = 0;
3004 }
3005
3006 if (netdev_mc_empty(dev))
3007 return;
3008
3009 /* Parse the list, and set the appropriate bits */
3010 netdev_for_each_mc_addr(ha, dev) {
3011 if (idx < em_num) {
3012 gfar_set_mac_for_addr(dev, idx, ha->addr);
3013 idx++;
3014 } else
3015 gfar_set_hash_for_addr(dev, ha->addr);
3016 }
3017 }
3018
3019 return;
3020 }
3021
3022
3023 /* Clears each of the exact match registers to zero, so they
3024 * don't interfere with normal reception */
3025 static void gfar_clear_exact_match(struct net_device *dev)
3026 {
3027 int idx;
3028 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
3029
3030 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3031 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
3032 }
3033
3034 /* Set the appropriate hash bit for the given addr */
3035 /* The algorithm works like so:
3036 * 1) Take the Destination Address (ie the multicast address), and
3037 * do a CRC on it (little endian), and reverse the bits of the
3038 * result.
3039 * 2) Use the 8 most significant bits as a hash into a 256-entry
3040 * table. The table is controlled through 8 32-bit registers:
3041 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3042 * gaddr7. This means that the 3 most significant bits in the
3043 * hash index which gaddr register to use, and the 5 other bits
3044 * indicate which bit (assuming an IBM numbering scheme, which
3045 * for PowerPC (tm) is usually the case) in the register holds
3046 * the entry. */
3047 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3048 {
3049 u32 tempval;
3050 struct gfar_private *priv = netdev_priv(dev);
3051 u32 result = ether_crc(MAC_ADDR_LEN, addr);
3052 int width = priv->hash_width;
3053 u8 whichbit = (result >> (32 - width)) & 0x1f;
3054 u8 whichreg = result >> (32 - width + 5);
3055 u32 value = (1 << (31-whichbit));
3056
3057 tempval = gfar_read(priv->hash_regs[whichreg]);
3058 tempval |= value;
3059 gfar_write(priv->hash_regs[whichreg], tempval);
3060
3061 return;
3062 }
3063
3064
3065 /* There are multiple MAC Address register pairs on some controllers
3066 * This function sets the numth pair to a given address
3067 */
3068 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
3069 {
3070 struct gfar_private *priv = netdev_priv(dev);
3071 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3072 int idx;
3073 char tmpbuf[MAC_ADDR_LEN];
3074 u32 tempval;
3075 u32 __iomem *macptr = &regs->macstnaddr1;
3076
3077 macptr += num*2;
3078
3079 /* Now copy it into the mac registers backwards, cuz */
3080 /* little endian is silly */
3081 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
3082 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
3083
3084 gfar_write(macptr, *((u32 *) (tmpbuf)));
3085
3086 tempval = *((u32 *) (tmpbuf + 4));
3087
3088 gfar_write(macptr+1, tempval);
3089 }
3090
3091 /* GFAR error interrupt handler */
3092 static irqreturn_t gfar_error(int irq, void *grp_id)
3093 {
3094 struct gfar_priv_grp *gfargrp = grp_id;
3095 struct gfar __iomem *regs = gfargrp->regs;
3096 struct gfar_private *priv= gfargrp->priv;
3097 struct net_device *dev = priv->ndev;
3098
3099 /* Save ievent for future reference */
3100 u32 events = gfar_read(&regs->ievent);
3101
3102 /* Clear IEVENT */
3103 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3104
3105 /* Magic Packet is not an error. */
3106 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3107 (events & IEVENT_MAG))
3108 events &= ~IEVENT_MAG;
3109
3110 /* Hmm... */
3111 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3112 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
3113 dev->name, events, gfar_read(&regs->imask));
3114
3115 /* Update the error counters */
3116 if (events & IEVENT_TXE) {
3117 dev->stats.tx_errors++;
3118
3119 if (events & IEVENT_LC)
3120 dev->stats.tx_window_errors++;
3121 if (events & IEVENT_CRL)
3122 dev->stats.tx_aborted_errors++;
3123 if (events & IEVENT_XFUN) {
3124 unsigned long flags;
3125
3126 if (netif_msg_tx_err(priv))
3127 printk(KERN_DEBUG "%s: TX FIFO underrun, "
3128 "packet dropped.\n", dev->name);
3129 dev->stats.tx_dropped++;
3130 priv->extra_stats.tx_underrun++;
3131
3132 local_irq_save(flags);
3133 lock_tx_qs(priv);
3134
3135 /* Reactivate the Tx Queues */
3136 gfar_write(&regs->tstat, gfargrp->tstat);
3137
3138 unlock_tx_qs(priv);
3139 local_irq_restore(flags);
3140 }
3141 if (netif_msg_tx_err(priv))
3142 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
3143 }
3144 if (events & IEVENT_BSY) {
3145 dev->stats.rx_errors++;
3146 priv->extra_stats.rx_bsy++;
3147
3148 gfar_receive(irq, grp_id);
3149
3150 if (netif_msg_rx_err(priv))
3151 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
3152 dev->name, gfar_read(&regs->rstat));
3153 }
3154 if (events & IEVENT_BABR) {
3155 dev->stats.rx_errors++;
3156 priv->extra_stats.rx_babr++;
3157
3158 if (netif_msg_rx_err(priv))
3159 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
3160 }
3161 if (events & IEVENT_EBERR) {
3162 priv->extra_stats.eberr++;
3163 if (netif_msg_rx_err(priv))
3164 printk(KERN_DEBUG "%s: bus error\n", dev->name);
3165 }
3166 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
3167 printk(KERN_DEBUG "%s: control frame\n", dev->name);
3168
3169 if (events & IEVENT_BABT) {
3170 priv->extra_stats.tx_babt++;
3171 if (netif_msg_tx_err(priv))
3172 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
3173 }
3174 return IRQ_HANDLED;
3175 }
3176
3177 static struct of_device_id gfar_match[] =
3178 {
3179 {
3180 .type = "network",
3181 .compatible = "gianfar",
3182 },
3183 {
3184 .compatible = "fsl,etsec2",
3185 },
3186 {},
3187 };
3188 MODULE_DEVICE_TABLE(of, gfar_match);
3189
3190 /* Structure for a device driver */
3191 static struct of_platform_driver gfar_driver = {
3192 .name = "fsl-gianfar",
3193 .match_table = gfar_match,
3194
3195 .probe = gfar_probe,
3196 .remove = gfar_remove,
3197 .suspend = gfar_legacy_suspend,
3198 .resume = gfar_legacy_resume,
3199 .driver.pm = GFAR_PM_OPS,
3200 };
3201
3202 static int __init gfar_init(void)
3203 {
3204 return of_register_platform_driver(&gfar_driver);
3205 }
3206
3207 static void __exit gfar_exit(void)
3208 {
3209 of_unregister_platform_driver(&gfar_driver);
3210 }
3211
3212 module_init(gfar_init);
3213 module_exit(gfar_exit);
3214
This page took 0.096625 seconds and 5 git commands to generate.